WO2018159277A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2018159277A1
WO2018159277A1 PCT/JP2018/004787 JP2018004787W WO2018159277A1 WO 2018159277 A1 WO2018159277 A1 WO 2018159277A1 JP 2018004787 W JP2018004787 W JP 2018004787W WO 2018159277 A1 WO2018159277 A1 WO 2018159277A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured product
layer
compound
optical laminate
curable composition
Prior art date
Application number
PCT/JP2018/004787
Other languages
French (fr)
Japanese (ja)
Inventor
智 永安
政大 藤田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020197027660A priority Critical patent/KR102484820B1/en
Priority to CN201880013787.1A priority patent/CN110325887B/en
Publication of WO2018159277A1 publication Critical patent/WO2018159277A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to an optical laminate used for an image display panel or the like.
  • Patent Document 1 discloses a photocation curable type containing an aliphatic epoxy, an alicyclic epoxy and / or oxetane, and a photopolymerization initiator.
  • An adhesive curable composition
  • a cured product obtained by curing the adhesive functions as an adhesive.
  • transparent conductive films such as indium tin oxide (ITO) thin films have been widely used in display devices.
  • the transparent conductive film is formed on the opposite side of the liquid crystal display device using an in-plane switching (IPS) type liquid crystal cell from the side in contact with the liquid crystal layer of the transparent substrate constituting the liquid crystal cell. It is known to be a layer.
  • the transparent conductive film having the transparent conductive film formed on the transparent resin film is used for an electrode substrate of a touch panel, for example, a liquid crystal display device or an image display device used for a mobile phone, a portable music player, and the like. Input devices using a combination of touch panels have become widespread.
  • the dichroic dye contained in the polarizing film compares the adhesive layer. May be transmitted to the conductive layer, and may cause malfunction such as poor sensing. Since the movement of the dichroic dye from the polarizing film becomes remarkable particularly in a high temperature and high humidity environment, the dichroic dye contained in the polarizing film is also used in the pressure sensitive adhesive layer even in a high temperature and high humidity environment. Therefore, there is a need for an optical laminate that can prevent deterioration of the conductive layer due to the transition to the conductive layer.
  • an object of the present invention is to provide an optical laminate that can effectively suppress the migration of the dichroic dye contained in the polarizing film to the conductive layer and prevent the deterioration of the conductive layer.
  • a first cured product layer composed of a cured product of a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol resin, an adhesive layer, An optical laminate in which the conductive layer is laminated in this order,
  • the first cured product layer is an optical laminate in which the absorbance increase rate represented by the following formula (1) is 30% or less.
  • Absorbance increase rate (%) (Abs after immersion (360 nm) ⁇ Abs before immersion (360 nm)) / Abs before immersion (360 nm) ⁇ 100 (1)
  • Abs (360 nm) after immersion indicates the absorbance at 360 nm after the cured product was immersed in an aqueous solution of 50% potassium iodide for 100 hours in an atmosphere at a temperature of 23 ° C. and a relative humidity of 60%.
  • a first cured product layer composed of a cured product of a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol-based resin, an adhesive layer, An optical laminate in which the conductive layer is laminated in this order,
  • the polymerizable compound includes an oxetane compound having two or more oxetanyl groups, and the content of the oxetane compound is 40 parts by mass or more with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition.
  • An optical laminate [3] The optical laminate according to [1] or [2], wherein the thickness of the first cured product layer is 0.1 to 15 ⁇ m. [4] The optical laminate according to any one of [1] to [3], wherein the cured product constituting the first cured product layer is a photocured product of a curable composition containing the polymerizable compound. [5] The optical laminate according to any one of [1] to [4], wherein a second cured product layer and a protective film are laminated on the surface of the polarizing film opposite to the first cured product layer. . [6] The moisture permeability of the protective film is 1200 g at a temperature of 23 ° C. and a relative humidity of 55%. / The optical laminated body according to [5], which is 24 hours or shorter.
  • the optical layered body of the present invention can suppress the movement of the dichroic dye contained in the polarizing film to the conductive layer, and can effectively suppress the corrosion of the conductive layer.
  • mode of the optical laminated body of this invention is represented.
  • mode of the optical laminated body of this invention is represented.
  • the structure in one embodiment of the optical laminate of the present invention will be described with reference to FIG. 1.
  • the optical laminate 10 of the present invention has a first cured product layer 2 and an adhesive layer 3 on one surface of a polarizing film 1. And the conductive layer 4 are stacked in this order. If necessary, a protective film 6 may be provided on the surface of the polarizing film 1 opposite to the first cured product layer via the second cured product layer 5.
  • the conductive layer 4 of the optical laminate 10 is laminated on the substrate X.
  • the optical laminated body of this invention may have the 1st protective film 7 between the 1st hardened
  • FIG. This embodiment is shown in FIG. Even if the optical laminated body 10 is equipped with the 2nd protective film 6 via the 2nd hardened
  • the conductive layer 4 of the optical laminate 10 is laminated on the substrate X.
  • the optical layered body of the present invention is a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol resin (hereinafter referred to as curable composition (1)).
  • curable composition (1) a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol resin (hereinafter referred to as curable composition (1)).
  • a first cured product layer composed of a cured product.
  • the first cured product layer has an absorbance increase rate represented by the following formula (1) of 30% or less.
  • Absorbance increase rate (%) (Abs after immersion (360 nm) ⁇ Abs before immersion (360 nm)) / Abs before immersion (360 nm) ⁇ 100 (1)
  • Abs (360 nm) after immersion indicates the absorbance at 360 nm after the cured product was immersed in an aqueous solution of 50% potassium iodide for 100 hours in an atmosphere at a temperature of 23 ° C. and a relative humidity of 60%.
  • Abs (360 nm) indicates the absorbance at 360 nm before the cured product is immersed in a 50% aqueous potassium iodide solution]
  • the absorbance increase rate represented by the formula (1) is 30% or less. This indicates that the first cured product layer has relatively low absorbability with respect to iodine (dichroic dye).
  • the optical laminated body of this invention can suppress effectively the movement to the 1st hardened
  • the absorbance increase rate represented by the formula (1) is preferably 25% or less, more preferably 20% or less, still more preferably 15% or less, and particularly preferably 10% or less.
  • the absorbance increase rate is less than the above value, the movement of iodine (dichroic dye) contained in the polarizing film to the first cured product layer can be more effectively suppressed as described above, and corrosion of the conductive layer can be achieved.
  • the polymerizable compound contained in the curable composition (1) is not particularly limited as long as it can form a cured product constituting the first cured product layer.
  • the polymerizable compound include an active energy ray-curable resin composition, a water-soluble resin composition, a water-dispersible resin composition, and the like. Among these, from the viewpoint of simplifying the process, the active energy ray-curing property is used.
  • a resin composition is preferable, and (meth) acrylate compounds, acrylamide compounds, oxetane compounds, and epoxy compounds containing epoxy acrylate, urethane acrylate, and the like are particularly preferable.
  • the cured product constituting the first cured product layer is a photocured product of a curable composition containing a polymerizable compound.
  • the polymerizable compound is preferably a photocurable compound.
  • the polymerizable compound preferably contains an oxetane compound having two or more oxetanyl groups (oxetane ring) in the molecule (hereinafter sometimes referred to as “oxetane compound (A)”).
  • the oxetane compound (A) is a compound having two or more oxetanyl groups in the molecule, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound. Specific examples of the oxetane compound (A) include 1,4-bis [ ⁇ (3-ethyloxetane-3-yl) methoxy ⁇ methyl] benzene (also called xylylene bisoxetane), bis (3-ethyl- 3-oxetanylmethyl) ether and the like. These oxetane compounds (A) may be used alone or in combination of a plurality of different types.
  • a dense cured product having a high crosslinking density can be obtained.
  • the cured product layer having a high crosslink density on one surface of the polarizing film, it is possible to effectively suppress the movement of the dichroic dye from the polarizing film.
  • the content of the oxetane compound (A) is, for example, 40 parts by mass or more, preferably 45 parts by mass or more, more preferably with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition (1). Is 50 parts by mass or more.
  • the content of the oxetane compound (A) is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition (1). More preferably, it is 70 mass parts or less, Most preferably, it is 65 mass parts or less.
  • the content of the oxetane compound (A) may be a combination of these lower limit value and upper limit value, and the total amount of all polymerizable compounds contained in the curable composition (1) is 100 parts by mass. However, it may be 40 to 65 parts by mass, more preferably 45 to 60 parts by mass. Moreover, content of an oxetane compound (A) is 35 mass parts or more with respect to 100 mass parts of total amounts of the said curable composition (1), Preferably it is 40 mass parts or more, More preferably, it is 45 mass parts. That's it.
  • the content of the oxetane compound (A) is not less than the above value, the movement of the dichroic dye contained in the polarizing film to the first cured product layer can be more effectively suppressed, and the corrosion of the conductive layer can be suppressed. In addition, it is possible to more effectively prevent the optical performance of the optical laminate from being deteriorated.
  • the polymerizable compound preferably further contains an epoxy compound (B).
  • the epoxy compound is preferably (B1) an aliphatic epoxy compound having two or more epoxy groups (hereinafter sometimes referred to as “aliphatic epoxy compound (B1)”), (B2) two or more epoxy groups.
  • An alicyclic epoxy compound hereinafter sometimes referred to as “alicyclic epoxy compound (B2)”
  • an aromatic epoxy compound having one or more aromatic rings hereinafter referred to as “aromatic epoxy”. At least one selected from “compound (B3)”.
  • the aliphatic epoxy compound (B1) is a compound having at least two oxirane rings bonded to an aliphatic carbon atom in the molecule.
  • Examples of the aliphatic epoxy compound (B1) include bifunctional compounds such as 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexane dimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, and the like.
  • Epoxy compounds Trifunctional or higher functional epoxy compounds such as trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, and the like can be mentioned.
  • the aliphatic epoxy compound (B1) When the aliphatic epoxy compound (B1) is included, from the viewpoint of adhesion between the polarizing film and the protective film or the adhesive layer, a bifunctional epoxy compound having two oxirane rings bonded to an aliphatic carbon atom in the molecule (Also referred to as an aliphatic diepoxy compound) is preferred, and an aliphatic diepoxy compound represented by the following formula (I) is more preferred.
  • the curable composition contains an aliphatic diepoxy compound represented by the following formula (I) as the aliphatic epoxy compound (B1), a curable composition having a low viscosity and easy to apply can be obtained.
  • Z is an alkylene group having 1 to 9 carbon atoms, an alkylidene group having 3 or 4 carbon atoms, a divalent alicyclic hydrocarbon group, or a formula —C m H 2m —Z 1 —C n H It represents a divalent group represented by 2n-.
  • —Z 1 — represents —O—, —CO—O—, —O—CO—, —SO 2 —, —SO— or CO—
  • m and n each independently represents an integer of 1 or more. However, the sum of m and n is 9 or less.
  • the divalent alicyclic hydrocarbon group may be, for example, a divalent alicyclic hydrocarbon group having 4 to 8 carbon atoms, such as a divalent residue represented by the following formula (I-1): Is mentioned.
  • Specific examples of the compound represented by the formula (I) include diglycidyl ethers of alkanediols; diglycidyl ethers of oligoalkylene glycols having up to about 4 repetitions; diglycidyl ethers of alicyclic diols, and the like.
  • diol (glycol) that can form the compound represented by the formula (I) include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 2-butyl-2- Ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1 , 5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol , 1,8-octanediol, 2-methyl-1,8-octanediol,
  • Oligoalkylene glycols such as diethylene glycol, triethylene glycol, tetraethylene glycol and dipropylene glycol
  • alicyclic diols such as cyclohexanediol and cyclohexanedimethanol.
  • the aliphatic epoxy compound (B1) 1,4-butanediol diglycidyl ether, 1,6-hexanediol diene is used from the viewpoint that it can be formed into a curable composition having a low viscosity and easy to apply. Glycidyl ether and neopentyl glycol diglycidyl ether are preferred. In view of maintaining optical performance, 1,6-hexanediol diglycidyl ether and pentaerythritol polyglycidyl ether are preferable.
  • the aliphatic epoxy compound (B1) one kind of aliphatic epoxy compound may be used alone, or a plurality of different kinds may be used in combination.
  • curable composition (1) contains an aliphatic epoxy compound (B1)
  • content of an aliphatic epoxy compound (B1) is with respect to 100 mass parts of total amounts of all the polymeric compounds contained in a curable composition.
  • the amount is preferably 1 to 40 parts by mass, more preferably 3 to 30 parts by mass, still more preferably 5 to 20 parts by mass, particularly 7 to 15 parts by mass.
  • the curable composition (1) has a low viscosity and can be easily applied.
  • the alicyclic epoxy compound (B2) is a compound having two or more epoxy groups bonded to the alicyclic ring in the molecule.
  • “Epoxy group bonded to alicyclic ring” means the following formula (a):
  • m is an integer of 2 to 5.
  • a compound in which two or more groups in the form in which one or more hydrogen atoms in (CH 2 ) m in the above formula (a) are removed is bonded to another chemical structure is an alicyclic epoxy compound (B2 )
  • One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • an epoxycyclopentane structure (m 3 in the above formula (a)) or an epoxycyclohexane structure
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and when the alkyl group has 3 or more carbon atoms, it has an alicyclic structure. Also good.
  • the alkyl group having 1 to 6 carbon atoms may be a linear or branched alkyl group, and examples of the alkyl group having an alicyclic structure include a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group.
  • X is an oxygen atom, an alkanediyl group having 1 to 6 carbon atoms, or the following formulas (IIa) to (IId):
  • alkanediyl group having 1 to 6 carbon atoms include a methylene group, an ethylene group, and a propane-1,2-diyl group.
  • Y 1 to Y 4 in each formula are each independently of 1 to 20 carbon atoms.
  • a and b each independently represents an integer of 0 to 20.
  • Examples of the compound represented by the formula (II) include the following compounds A to G.
  • the following chemical formulas A to G correspond to the compounds A to G, respectively.
  • the alicyclic epoxy compound (B2) is more preferably 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate from the viewpoint of easy availability. Further, from the viewpoint that corrosion of the conductive layer can be effectively suppressed, 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol is preferable.
  • a combination of 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol When used as an alicyclic epoxy compound (B2), corrosion of the conductive layer can be more effectively suppressed.
  • the alicyclic epoxy compound (B2) one type of alicyclic epoxy compound may be used alone, or a plurality of different types may be used in combination.
  • curable composition (1) contains an alicyclic epoxy compound (B2)
  • content of alicyclic epoxy compound (B2) is the total amount of all the polymerizable compounds contained in curable composition (1) 100.
  • the amount is preferably 3 to 70 parts by mass, more preferably 10 to 60 parts by mass, still more preferably 20 to 55 parts by mass, and particularly preferably 25 to 50 parts by mass with respect to parts by mass.
  • the aromatic epoxy compound (B3) is a compound having one or more aromatic rings in the molecule, and specific examples thereof include the following. Monohydric phenol having at least one aromatic ring such as phenol, cresol, butylphenol or the like, or a mono / polyglycidyl etherified product of an alkylene oxide adduct thereof, such as bisphenol A, bisphenol F, or a compound obtained by further adding an alkylene oxide thereto Glycidyl etherified products and epoxy novolac resins; A glycidyl ether of an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, catechol; Mono / polyglycidyl etherified products of aromatic compounds having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, benzenedibutanol; Glycidyl esters of polybasic aromatic compounds having two or more carboxylic acids such as phthalic acid, terephthalic acid, trim
  • the aromatic epoxy compound (B3) when included, from the viewpoint of reducing the viscosity of the curable composition, glycidyl ether of phenols, glycidyl etherified products of aromatic compounds having two or more alcoholic hydroxyl groups, polyhydric phenols It preferably contains at least one selected from the group consisting of glycidyl etherified products, glycidyl esters of benzoic acids, glycidyl esters of polybasic acids, styrene oxide or epoxidized products of divinylbenzene. Further, in order to improve the curability of the curable composition, the aromatic epoxy compound (B3) preferably has an epoxy equivalent of 80 to 500. As the aromatic epoxy compound (B3), one kind of aromatic epoxy compound may be used alone, or a plurality of different kinds may be used in combination.
  • aromatic epoxy compound (B3) commercially available products can be used.
  • the curable composition contains the aromatic epoxy compound (B3)
  • the curable composition becomes a hydrophobic resin, and the cured product layer obtained thereby becomes hydrophobic. For this reason, the penetration
  • the content of the aromatic epoxy compound (B3) is 100 mass of the total polymerizable compound contained in the curable composition (1).
  • the amount is preferably 1 to 70 parts by mass, more preferably 5 to 60 parts by mass, still more preferably 7 to 55 parts by mass, and particularly preferably 10 to 50 parts by mass with respect to parts.
  • the content of the aromatic epoxy compound (B3) is in the above range, the hydrophobicity of the cured product layer can be improved, and the permeability of the dichroic dye (iodine) to the cured product layer can be reduced.
  • curable composition (1) contains oxetane compound (A) and alicyclic epoxy compound (B2), content of alicyclic epoxy compound (B2) with respect to content (WA) of oxetane compound (A)
  • the mass ratio (WB2 / WA) of the amount (WB2) is preferably 0.05 to 1.5.
  • curable composition (1) contains oxetane compound (A) and aliphatic epoxy compound (B1)
  • content of aliphatic epoxy compound (B1) with respect to content (WA) of oxetane compound (A) ( The mass ratio (WB1 / WA) of WB1) is preferably 0.1 to 0.5.
  • curable composition (1) contains oxetane compound (A) and aromatic epoxy compound (B3)
  • content of aromatic epoxy compound (B1) with respect to content (WA) of oxetane compound (A) is preferably 0.1 to 1.5.
  • the curable composition (1) may contain a polymerizable compound other than the oxetane compound (A) and the epoxy compound (B). Specific examples include aliphatic monoepoxy compounds and alicyclic monoepoxy compounds.
  • the content of the polymerizable compound contained in the curable composition (1) is preferably 80 to 100 parts by mass, more preferably 90 to 99.99 parts by mass with respect to 100 parts by mass of the total mass of the curable composition (1).
  • the amount is 5 parts by mass, more preferably 95 to 99 parts by mass.
  • the curable composition usually contains a polymerization initiator for initiating polymerization.
  • the polymerization initiator may be a photopolymerization initiator (for example, a photocationic polymerization initiator or a radical photopolymerization initiator) or a thermal polymerization initiator.
  • a curable composition contains the said oxetane compound (A), an epoxy compound (B), etc. as a polymeric compound, it is preferable to use a photocationic polymerization initiator for a polymerization initiator.
  • the cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams, and initiates a polymerization reaction of the cationically polymerizable compound. . Since the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with a polymerizable compound.
  • Examples of the compound that generates a cationic species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic iodonium salts and aromatic sulfonium salts, aromatic diazonium salts, and iron-arene complexes.
  • the aromatic iodonium salt is a compound having a diaryl iodonium cation, and typical examples of the cation include a diphenyl iodonium cation.
  • the aromatic sulfonium salt is a compound having a triarylsulfonium cation, and typical examples of the cation include a triphenylsulfonium cation and a 4,4′-bis (diphenylsulfonio) diphenylsulfide cation.
  • the aromatic diazonium salt is a compound having a diazonium cation, and typical examples of the cation include a benzenediazonium cation.
  • the iron-arene complex is typically a cyclopentadienyl iron (II) arene cation complex salt.
  • the cation shown above forms a photocationic polymerization initiator in combination with an anion (anion).
  • anions constituting the photocationic polymerization initiator special phosphorus anions [(Rf) n PF 6-n ] ⁇ , hexafluorophosphate anion PF 6 ⁇ , hexafluoroantimonate anion SbF 6 ⁇ , pentafluorohydroxyantimonate Anion SbF 5 (OH) ⁇ , hexafluoroarsenate anion AsF 6 ⁇ , tetrafluoroborate anion BF 4 ⁇ , tetrakis (pentafluorophenyl) borate anion B (C 6 F 5 ) 4 — and the like can be mentioned.
  • cationic photopolymerization initiator special phosphorus-based anion [(Rf) n PF 6- n] -, hexafluorophosphate anion PF 6 - It is preferable that
  • the photocationic polymerization initiator may be used alone or in combination with a plurality of different types.
  • aromatic sulfonium salts are preferable because they have ultraviolet absorption characteristics even in a wavelength region near 300 nm, and are excellent in curability and can provide a cured product having good mechanical strength and adhesive strength.
  • the content of the polymerization initiator in the curable composition (1) is usually 0.5 to 10 parts by weight, preferably 6 parts by weight or less, more preferably 3 parts by weight with respect to 100 parts by weight of the polymerizable compound. Or less.
  • the content of the polymerization initiator is within the above range, the polymerizable compound can be sufficiently cured, and high mechanical strength and adhesive strength can be given to the cured product layer formed from the obtained cured product.
  • the product from the cationic photopolymerization initiator may react with the hydroxyl group of polyvinyl alcohol constituting the polarizing film, thereby reducing the optical performance of the polarizing film.
  • the curable composition (1) can contain additives generally used in the curable composition as necessary.
  • additives include ion trapping agents, antioxidants, chain transfer agents, polymerization accelerators (polyols, etc.), sensitizers, sensitization aids, light stabilizers, tackifiers, thermoplastic resins. , Fillers, flow regulators, plasticizers, antifoaming agents, leveling agents, silane coupling agents, dyes, antistatic agents, ultraviolet absorbers and the like.
  • the sensitizer examples include a photosensitizer.
  • the photosensitizer is a compound that exhibits maximum absorption at a wavelength longer than the maximum absorption wavelength exhibited by the photocationic polymerization initiator and promotes the polymerization initiation reaction by the photocationic polymerization initiator.
  • the photosensitizing aid is a compound that further promotes the action of the photosensitizer.
  • the photosensitizer is preferably a compound that exhibits maximum absorption in light having a wavelength longer than 380 nm, for example.
  • Examples of the photosensitizer include anthracene compounds described below. 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-dibutoxyanthracene, 9,10-dipentyloxyanthracene, 9,10-dihexyloxyanthracene, 9,10-bis (2-methoxyethoxy) anthracene, 9,10-bis (2-ethoxyethoxy) anthracene, 9,10-bis (2-butoxyethoxy) anthracene, 9,10-bis (3-butoxypropoxy) anthracene, 2-methyl- or 2-ethyl-9,10-dimethoxyanthracene, 2-methyl- or 2-eth
  • the curable composition (1) is obtained by mixing a polymerizable compound, a polymerization initiator, and additives as necessary.
  • cured material layer apply
  • the light source for curing the curable composition (1) examples include an active energy ray light source.
  • the light source of the active energy ray may be any light source that generates ultraviolet rays, electron beams, X-rays, and the like.
  • a light source having a light emission distribution at a wavelength of 400 nm or less is preferable, and examples thereof include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, and a metal halide lamp.
  • Light irradiation intensity at the time of curing the curable composition (1) is different for each composition, the light irradiation intensity of the wavelength region effective for activation of the polymerization initiator is 0.1 ⁇ 1000mW / cm 2 It is preferable. If the light irradiation intensity at the time of curing of the curable composition (1) is too small, the time required for the reaction to proceed sufficiently increases, and conversely, if the light irradiation intensity is too large, the heat radiated from the lamp. In addition, heat generated during polymerization of the curable composition (1) may cause deterioration of a film to be attached.
  • the light irradiation time at the time of curing of the curable composition (1) is controlled for each composition and is not particularly limited, but the integrated light amount expressed as the product of the light irradiation intensity and the light irradiation time is 10. It is preferable to set it to ⁇ 5000 mJ / cm 2 . If the integrated light quantity is too small, the generation of active species derived from the polymerization initiator is not sufficient, and the resulting curing may be insufficient. On the other hand, if the integrated light quantity is too large, the irradiation time becomes very long, which is disadvantageous for improving productivity.
  • the curable composition is cured by irradiation with active energy rays, for example, the polarization degree of the polarizing film, the transmittance and the hue, and the transparency of various films constituting the protective film and the optical layer, for example, It is preferable to perform the curing under conditions that do not deteriorate the various functions.
  • the thickness of the first cured product layer is not particularly limited, but is preferably 0.1 to 15 ⁇ m, more preferably 0.5 to 10 ⁇ m, and still more preferably 0.5. ⁇ 7 ⁇ m.
  • the thickness of the first cured product layer is at least the lower limit value, the movement of the dichroic dye can be effectively suppressed, and when it is at most the upper limit value, the curable composition can be sufficiently cured. .
  • the absorbance increase rate of the first cured product layer is 30%, and the absorbability with respect to the dichroic dye is relatively low.
  • the movement of the dichroic dye can be accelerated by the ingress of moisture from the outside.
  • the first curing of the dichroic dye contained in the polarizing film is performed. The movement to the physical layer can be effectively suppressed. For this reason, even when placed in a high-temperature and high-humidity environment, corrosion of the conductive layer can be effectively prevented, and optical performance can be maintained.
  • the pressure-sensitive adhesive layer constituting the optical laminate includes an ionic compound as an antistatic agent
  • the ionic compound present in the pressure-sensitive adhesive layer is transmitted through the protective film constituting the optical laminate and polarized. It may move to a film and cause an interaction with the dichroic dye in the polarizing film to deteriorate the optical performance of the optical laminate. Since the first cured product layer is present between the polarizing film and the adhesive layer, the optical laminate of the present invention can effectively suppress the movement of the ionic compound from the adhesive layer. The deterioration of the optical performance of the body can be prevented.
  • cured material layer also plays the role as an adhesive bond layer which adhere
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer conventionally known pressure-sensitive adhesives can be used without particular limitation.
  • an acrylic resin, a rubber-based resin, a urethane-based resin, a silicone-based resin, a polyvinyl ether-based resin, or the like is used as a base polymer.
  • an energy ray curable pressure sensitive adhesive, a thermosetting pressure sensitive adhesive, or the like may be used.
  • an adhesive having a base polymer of an acrylic resin that is excellent in transparency, adhesive strength, reworkability, weather resistance, heat resistance, and the like is preferable.
  • the adhesive layer contains an acrylic resin
  • the acrylic resin is not particularly limited, and conventionally known ones can be used.
  • the adhesive layer contained in the optical laminate of the present invention preferably contains the following acrylic resin (P).
  • the acrylic resin (P) has the following formula (III):
  • R a represents a hydrogen atom or a methyl group
  • R b represents an alkyl group having 1 to 14 carbon atoms which may be substituted with an alkoxy group having 1 to 10 carbon atoms
  • polar functional group-containing monomer An acrylic resin containing a structural unit derived from
  • (meth) acrylic acid means that either acrylic acid or methacrylic acid may be used, and in addition, “(meth)” when referred to as (meth) acrylate or the like has the same purpose. It is.
  • Examples of the (meth) acrylic acid alkyl ester (P1) represented by the formula (III) include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, n-octyl acrylate, and lauryl acrylate.
  • Linear alkyl acrylates Linear alkyl acrylates; branched alkyl acrylates such as isobutyl acrylate, 2-ethylhexyl acrylate, and isooctyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-methacrylate
  • Linear alkyl methacrylates such as butyl, n-octyl methacrylate, and lauryl methacrylate
  • branched alkyl esters such as isobutyl methacrylate, 2-ethylhexyl methacrylate, and isooctyl methacrylate 2-methoxyethyl acrylate, ethoxymethyl acrylate, methacrylate, 2-methoxyethyl, and methacrylate ethoxymethyl and the like.
  • n-butyl acrylate is preferable, and specifically, n-butyl acrylate is preferably 50% by mass or more based on the total amount of all monomers constituting the acrylic resin (P).
  • These (meth) acrylic acid alkyl esters (P1) may be used alone or in combination of two or more different types.
  • examples of the polar functional group include a free carboxyl group, a hydroxyl group, an amino group, and a heterocyclic group including an epoxy group.
  • the polar functional group-containing monomer (P2) is preferably a (meth) acrylic acid compound having a polar functional group.
  • Examples thereof include unsaturated monomers having a free carboxyl group such as acrylic acid, methacrylic acid, and ⁇ -carboxyethyl acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, ( Unsaturated monomers having a hydroxyl group such as 2-methacrylic acid 2- or 3-chloro-2-hydroxypropyl and diethylene glycol mono (meth) acrylate; acryloylmorpholine, vinylcaprolactam, N-vinyl-2-pyrrolidone, tetrahydrofur Unsaturated monocyclic compounds having heterocyclic groups such as furyl (meth) acrylate, caprolactone-modified tetrahydrofurfuryl acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, and 2,5-dihydrofuran Body; N, and the like unsaturated mono
  • the polar functional group-containing monomer (P2) is preferably an unsaturated monomer having a hydroxyl group.
  • an unsaturated monomer having a hydroxyl group it is also effective to use an unsaturated monomer having another polar functional group, for example, an unsaturated monomer having a free carboxyl group.
  • the structural unit derived from the (meth) acrylic acid alkyl ester (P1) represented by the formula (III) is 100 parts by mass in total of all the structural units constituting the acrylic resin (P). For example, 50 to 100 parts by mass.
  • the structural unit derived from the polar functional group-containing monomer (P2) is, for example, 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of all structural units constituting the acrylic resin (P).
  • the acrylic resin (P) includes a structural unit derived from a monomer different from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) represented by the formula (III). May be. Examples thereof include an unsaturated monomer (P3) having one olefinic double bond and at least one aromatic ring in the molecule (hereinafter sometimes referred to as “aromatic ring-containing monomer”).
  • the unsaturated monomer (aromatic ring-containing monomer) (P3) having one olefinic double bond and at least one aromatic ring in the molecule is a group containing an olefinic double bond (meta )
  • Those having an acryloyl group are preferred. Examples thereof include benzyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, etc. Among them, formula (IV):
  • R 3 represents a hydrogen atom or a methyl group
  • n is an integer of 1 ⁇ 8
  • R 4 is a hydrogen atom, an alkyl group having 1-9 carbon atoms, an aralkyl group or C 7 to 11 carbon atoms
  • Examples of the alkyl group having 1 to 9 carbon atoms include methyl, butyl and nonyl.
  • Examples of the aralkyl group having 7 to 11 carbon atoms include benzyl, phenethyl, naphthylmethyl and the like.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl, tolyl, naphthyl and the like.
  • aromatic ring-containing (meth) acrylic compound represented by the formula (IV) examples include (meth) acrylic acid 2-phenoxyethyl, (meth) acrylic acid 2- (2-phenoxyethoxy) ethyl, and ethylene oxide-modified nonylphenol (meth) ) Acrylic acid ester, 2- (o-phenylphenoxy) ethyl (meth) acrylate, and the like. These aromatic ring-containing monomers may be used alone or in combination of a plurality of different types.
  • the alicyclic structure in the structural unit derived from the (meth) acrylic acid ester having an alicyclic structure in the molecule is a cycloparaffin structure having usually 5 or more carbon atoms, preferably 5 to 7 carbon atoms.
  • Specific examples of the acrylate ester having an alicyclic structure include isobornyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, cyclododecyl acrylate, methylcyclohexyl acrylate, trimethylcyclohexyl acrylate, and tert-butyl acrylate.
  • methacrylic acid esters having an alicyclic structure examples include isobornyl methacrylate, cyclohexyl methacrylate, dicyclopentanyl methacrylate, methacrylic acid, and the like, such as cyclohexyl, ⁇ -ethoxyacrylate cyclohexyl, and cyclohexyl phenyl acrylate. Cyclododecyl, methyl cyclohexyl methacrylate, trimethyl cyclohexyl methacrylate, tert-butyl cyclohexyl methacrylate, cyclohexyl methacrylate Phenyl and the like.
  • styrenic monomer examples include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, heptyl styrene, octyl styrene, and the like.
  • Alkyl styrenes such as fluorostyrene, chlorostyrene, bromostyrene, dibromostyrene, and iodostyrene; and nitrostyrene, acetylstyrene, methoxystyrene, divinylbenzene, and the like.
  • vinyl monomers include fatty acid vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, and vinyl laurate; halogenations such as vinyl chloride and vinyl bromide.
  • Vinyl; vinylidene halides such as vinylidene chloride; nitrogen-containing aromatic vinyls such as vinyl pyridine, vinyl pyrrolidone, and vinyl carbazole; conjugated diene monomers such as butadiene, isoprene, and chloroprene; and acrylonitrile, methacrylate Ronitrile etc. can be mentioned.
  • the monomer having a plurality of (meth) acryloyl groups in the molecule include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonane.
  • Monomers different from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) represented by the formula (III) may be used alone or in combination of two or more. it can.
  • the structural unit derived from a monomer different from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) is an acrylic resin.
  • the amount is usually 0 to 30 parts by mass with respect to 100 parts by mass as the total amount of all structural units constituting (P).
  • the resin component constituting the pressure-sensitive adhesive composition is an acrylic resin containing a structural unit derived from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) represented by the formula (III). Two or more types may be included.
  • an acrylic resin different from the acrylic resin (P) for example, an acrylic resin having a structural unit derived from a (meth) acrylic acid alkyl ester of the formula (III) and containing no polar functional group is mixed. May be used.
  • the acrylic resin (P) containing a structural unit derived from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) represented by the formula (III) is an acrylic resin contained in the adhesive layer
  • it may be 70 parts by mass or more with respect to the total amount of 100 parts by mass.
  • the acrylic resin (P) which is a copolymer of a monomer mixture containing the (meth) acrylic acid alkyl ester (P1) represented by the formula (III) and the polar functional group-containing monomer (P2), is gel permeation. It is preferable that the weight average molecular weight Mw in terms of standard polystyrene by the chromatography chromatography (GPC) is in the range of 1 million to 2 million. When the weight average molecular weight in terms of standard polystyrene is within the above range, the adhesiveness under high temperature and high humidity is improved, and there is a tendency that the possibility of peeling or floating between the conductive layer and the adhesive layer is reduced. Furthermore, reworkability tends to be improved.
  • GPC chromatography chromatography
  • the adhesive layer easily follows the change in dimension, and for example, when the optical laminate is bonded to the liquid crystal cell, the brightness and center of the peripheral edge of the liquid crystal cell There is no difference between the brightness and the whiteness and the color unevenness tends to be suppressed.
  • the molecular weight distribution represented by the ratio Mw / Mn between the weight average molecular weight Mw and the number average molecular weight Mn is preferably in the range of 3-7.
  • the molecular weight distribution Mw / Mn is in the range of 3 to 7, the occurrence of defects such as white spots can be suppressed even when the liquid crystal display panel or the liquid crystal display device is exposed to a high temperature.
  • the acrylic resin (P) preferably has a glass transition temperature in the range of ⁇ 10 to ⁇ 60 ° C. from the viewpoint of developing adhesiveness.
  • the glass transition temperature of the resin can generally be measured with a differential scanning calorimeter.
  • the acrylic resin (P) can be produced by various known methods such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, and a suspension polymerization method.
  • a polymerization initiator is usually used in the production of the acrylic resin (P).
  • the content of the polymerization initiator is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass in total of all monomers used for the production of the acrylic resin.
  • the polymerization initiator a thermal polymerization initiator, a photopolymerization initiator, or the like is used.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone.
  • thermal polymerization initiators examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethyl-4-methoxyvaleronitrile), dimethyl-2,2′-azobis (2-methylpropio) And azo compounds such as 2,2′-azobis (2-hydroxymethylpropionitrile); lauryl peroxide, tert-butyl hydroperoxide, benzoyl peroxide, tert-butyl peroxybenzoate, cumene hydroper Oxide, diisopropyl peroxydicarbonate, dipropyl peroxydicarbonate, te Organic peroxides such as t-butyl peroxyneodecanoate, tert-butyl peroxypivalate, and (3,5,5-tri
  • a solution polymerization method is particularly preferable.
  • a specific example of the solution polymerization method will be described.
  • a desired monomer and an organic solvent are mixed, a thermal polymerization initiator is added under a nitrogen atmosphere, and a temperature of 40 to 90 ° C., preferably 50 to 80 ° C. is set.
  • a method of stirring for ⁇ 10 hours can be mentioned.
  • examples of the organic solvent include aromatic hydrocarbons such as toluene and xylene; esters such as ethyl acetate and butyl acetate; aliphatic alcohols such as propyl alcohol and isopropyl alcohol; acetone, methyl ethyl ketone, and methyl isobutyl. Ketones such as ketones can be used.
  • the adhesive layer contained in the optical layered body of the present invention is preferably composed of an acrylic resin (P) and a crosslinking agent in combination.
  • the crosslinking agent is a compound that reacts with a structural unit derived from the polar functional group-containing monomer (P2) in the acrylic resin (P) to crosslink the acrylic resin.
  • Specific examples include isocyanate compounds, epoxy compounds, aziridine compounds, metal chelate compounds, and the like.
  • the isocyanate compound, the epoxy compound, and the aziridine compound have at least two functional groups in the molecule that can react with the polar functional group in the acrylic resin (P).
  • Isocyanate compounds are compounds having at least two isocyanato groups (—NCO) in the molecule, such as tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, diphenylmethane diisocyanate, Examples thereof include hydrogenated diphenylmethane diisocyanate, naphthalene diisocyanate, and triphenylmethane triisocyanate.
  • —NCO isocyanato groups
  • adducts obtained by reacting these isocyanate compounds with polyols such as glycerol and trimethylolpropane, and those obtained by converting isocyanate compounds to dimers and trimers can also be used as a crosslinking agent for pressure-sensitive adhesives.
  • Two or more isocyanate compounds can be mixed and used.
  • the epoxy compound is a compound having at least two epoxy groups in the molecule, for example, bisphenol A type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether. 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, N, N-diglycidylaniline, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis ( N, N′-diglycidylaminomethyl) cyclohexane and the like. Two or more types of epoxy compounds can be mixed and used.
  • An aziridine-based compound is a compound having at least two 3-membered ring skeletons composed of one nitrogen atom and two carbon atoms, also called ethyleneimine, for example, diphenylmethane-4,4′-bis ( 1-aziridinecarboxamide), toluene-2,4-bis (1-aziridinecarboxamide), triethylenemelamine, isophthaloylbis-1- (2-methylaziridine), tris-1-aziridinylphosphine oxide, hexamethylene 1,6-bis (1-aziridinecarboxamide), trimethylolpropane, tris- ⁇ -aziridinylpropionate, tetramethylolmethane, tris- ⁇ -aziridinylpropionate, and the like.
  • metal chelate compound for example, acetylacetone or ethyl acetoacetate is coordinated to a polyvalent metal such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium, and zirconium. Compound etc. are mentioned.
  • isocyanate compounds especially xylylene diisocyanate, tolylene diisocyanate or hexamethylene diisocyanate, or adducts obtained by reacting these isocyanate compounds with polyols such as glycerol and trimethylolpropane, Those obtained by making these isocyanate compounds into dimers, trimers or the like, or those obtained by mixing these isocyanate compounds are preferably used.
  • the polar functional group-containing monomer (P2) has a polar functional group selected from a free carboxyl group, a hydroxyl group, an amino group, and an epoxy group, it is preferable to use at least one isocyanate compound as a crosslinking agent.
  • tolylene diisocyanate adducts obtained by reacting tolylene diisocyanate with polyols, tolylene diisocyanate dimers, and tolylene diisocyanate trimers, hexamethylene diisocyanate, hexamethylene diisocyanate are suitable isocyanate compounds.
  • adducts obtained by reacting with a polyol, a dimer of hexamethylene diisocyanate, and a trimer of hexamethylene diisocyanate are suitable isocyanate compounds.
  • the crosslinking agent may be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the acrylic resin (P).
  • the amount of the crosslinking agent is within the above range, the durability of the pressure-sensitive adhesive layer tends to be improved, and white spots on the liquid crystal display panel tend to be inconspicuous.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer preferably contains a silane-based compound, and in particular, the acrylic resin before the crosslinking agent is mixed preferably contains a silane-based compound. Since the silane-based compound improves the adhesive strength to glass, high adhesive strength to the display panel can be ensured by including the silane-based compound.
  • silane compound examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-amino Ethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl Trimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxy Run, 3-
  • the silane compound may be of a silicone oligomer type.
  • silicone oligomer is shown in the form of (monomer)-(monomer) copolymer, for example, the following can be mentioned.
  • Mercaptomethyl such as mercaptomethyltrimethoxysilane-tetramethoxysilane copolymer, mercaptomethyltrimethoxysilane-tetraethoxysilane copolymer
  • the compounding amount of the silane compound in the pressure-sensitive adhesive may be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the acrylic resin (P) (the total amount when two or more types are used).
  • P the acrylic resin
  • the adhesion between the adhesive layer and the substrate (or the liquid crystal cell) is preferably improved. It is preferable because bleeding tends to be suppressed.
  • the adhesive layer may contain an ionic compound.
  • the ionic compound can function as an antistatic agent.
  • the acrylic resin (P) contains the aromatic ring-containing (meth) acrylic compound represented by the formula (IV) and n in the formula (IV) is 2 or more, it is effective for suppressing white spots.
  • an ionic compound to the pressure-sensitive adhesive containing an acrylic resin copolymerized with this monomer, it is possible to impart good antistatic properties while imparting a whitening suppression effect.
  • the ionic compound here is a compound that exists in a combination of a cation and an anion, and the cation and the anion may be inorganic or organic, respectively, but the acrylic resin (P) and From the viewpoint of compatibility, it is preferable that at least one of the cation and the anion is an ionic compound containing an organic group.
  • Examples of inorganic cations constituting the ionic compound include alkali metal ions such as lithium cation [Li + ], sodium cation [Na + ], potassium cation [K + ], cesium cation [Cs + ]; beryllium cation [Be 2+ ], magnesium cation [Mg 2+ ], calcium cation [Ca 2+ ] and other alkaline earth metal ions.
  • alkali metal ions such as lithium cation [Li + ], sodium cation [Na + ], potassium cation [K + ], cesium cation [Cs + ]; beryllium cation [Be 2+ ], magnesium cation [Mg 2+ ], calcium cation [Ca 2+ ] and other alkaline earth metal ions.
  • lithium cation [Li + ] potassium cation [K + ] or sodium cation [Na + ]
  • potassium cation [K + ] is preferable. More
  • Examples of the organic cation constituting the ionic compound include a pyridinium cation represented by the following formula (V): a quaternary ammonium cation represented by the following formula (VI).
  • R 5 to R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 10 represents an alkyl group having 1 to 16 carbon atoms
  • R 11 represents an alkyl group having 1 to 12 carbon atoms
  • R 12 , R 13, and R 14 each independently represents an alkyl group having 6 to 12 carbon atoms.
  • the pyridinium cation represented by the above formula (V) preferably has a total carbon number of 8 or more, particularly 10 or more from the viewpoint of compatibility with the acrylic resin (P).
  • the total number of carbon atoms is preferably 36 or less, more preferably 30 or less.
  • R 7 bonded to the 4-position carbon atom of the pyridine ring is an alkyl group, and R 5 , R 6 , R bonded to other carbon atoms of the pyridine ring.
  • 8 and R 9 are each a hydrogen atom is one of the preferred cations.
  • pyridinium cation represented by the formula (V) include N-methyl-4-hexylpyridinium cation, N-butyl-4-methylpyridinium cation, N-butyl-2,4-diethylpyridinium cation, N- Butyl-2-hexylpyridinium cation, N-hexyl-2-butylpyridinium cation, N-hexyl-4-methylpyridinium cation, N-hexyl-4-ethylpyridinium cation, N-hexyl-4-butylpyridinium cation, N- Examples include octyl-4-methylpyridinium cation, N-octyl-4-ethylpyridinium cation, and N-octylpyridinium cation.
  • the ammonium cation represented by the above formula (VI) preferably has a total carbon number of 20 or more, and more preferably 22 or more from the viewpoint of compatibility with the acrylic resin (P).
  • the total number of carbon atoms is preferably 36 or less, more preferably 30 or less.
  • tetraalkylammonium cation represented by the formula (VI) include a tetrahexylammonium cation, a tetraoctylammonium cation, a tributylmethylammonium cation, a trihexylmethylammonium cation, a trioctylmethylammonium cation, a tridecylmethylammonium cation, Examples include trihexylethylammonium cation and trioctylethylammonium cation.
  • anions constituting an ionic compound include chloride anions [Cl ⁇ ], bromide anions [Br ⁇ ], iodide anions [I ⁇ ], tetrachloroaluminate anions [AlCl 4 ⁇ ], heptachlorodi Aluminate anion [Al 2 Cl 7 ⁇ ], tetrafluoroborate anion [BF 4 ⁇ ], hexafluorophosphate anion [PF 6 ⁇ ], perchlorate anion [ClO 4 ⁇ ], nitrate anion [NO 3 ⁇ ], acetate Anion [CH 3 COO ⁇ ], trifluoroacetate anion [CF 3 COO ⁇ ], methanesulfonate anion [CH 3 SO 3 ⁇ ], trifluoromethanesulfonate anion [CF 3 SO 3 ⁇ ], bis (trifluoromethanesulfonyl) i Midani
  • ionic compound can be appropriately selected from the combination of the above cation and anion.
  • ionic compounds that are combinations of cations and anions include lithium bis (trifluoromethanesulfonyl) imide, lithium hexafluorophosphate, lithium iodide (lithium iodide), lithium bis (pentafluoroethanesulfonyl) imide, and lithium tris.
  • Trifluoromethanesulfonyl methanide, sodium bis (trifluoromethanesulfonyl) imide, sodium bis (pentafluoroethanesulfonyl) imide, sodium tris (trifluoromethanesulfonyl) methanide, potassium bis (trifluoromethanesulfonyl) imide, potassium bis (pentafluoroethane) (Sulfonyl) imide, potassium tris (trifluoromethanesulfonyl) methanide, N-methyl- -Hexylpyridinium bis (trifluoromethanesulfonyl) imide, N-butyl-2-methylpyridinium bis (trifluoromethanesulfonyl) imide, N-hexyl-4-methylpyridinium bis (trifluoromethanesulfonyl) imide, N-octyl-4-methyl Pyridinium bis (trifluflu
  • ionic compounds can be used alone or in combination of two or more.
  • the amount thereof may be, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic resin (P).
  • the adhesive layer may further contain a crosslinking catalyst, a weather resistance stabilizer, a tackifier, a plasticizer, a softener, a dye, a pigment, an inorganic filler, a resin other than an acrylic resin, and the like. It is also useful to form a harder adhesive layer by blending an ultraviolet curable compound such as a polyfunctional acrylate and a photoinitiator into the adhesive, and irradiating and curing the ultraviolet ray after forming the adhesive layer. This embodies the second cross-linked structure in the pressure-sensitive adhesive, and plays a role of improving durability during a heat test.
  • a crosslinking catalyst such as a polyfunctional acrylate and a photoinitiator
  • the pressure-sensitive adhesive layer can be prepared by aging in a short time.
  • the pressure-sensitive adhesive layer and the first cured product layer or the first protective film It is possible to suppress the occurrence of floating or peeling between the layers or foaming in the adhesive layer, and the reworkability may be improved.
  • crosslinking catalyst examples include amine compounds such as hexamethylenediamine, ethylenediamine, polyethyleneimine, hexamethylenetetramine, diethylenetriamine, triethylenetetramine, isophoronediamine, trimethylenediamine, polyamino resin, and melamine resin.
  • amine compounds such as hexamethylenediamine, ethylenediamine, polyethyleneimine, hexamethylenetetramine, diethylenetriamine, triethylenetetramine, isophoronediamine, trimethylenediamine, polyamino resin, and melamine resin.
  • the adhesive layer can also be a pressure-sensitive adhesive layer containing light particles by containing fine particles.
  • the adhesive layer may contain an antioxidant, an ultraviolet absorber and the like.
  • ultraviolet absorbers include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
  • the pressure-sensitive adhesive layer is provided by, for example, applying the above-mentioned pressure-sensitive adhesive as an organic solvent solution, applying it on a film or layer (for example, a polarizing film, etc.) to be laminated with a die coater or a gravure coater, and drying. Can do. Moreover, it can also provide by the method of transcribe
  • the thickness of the adhesive layer is not particularly limited, but is preferably in the range of 2 to 40 ⁇ m, more preferably in the range of 5 to 35 ⁇ m, and still more preferably in the range of 10 to 30 ⁇ m. .
  • the adhesive layer preferably has a storage elastic modulus of 0.10 to 5.0 MPa at 23 to 80 ° C., more preferably 0.15 to 1.0 MPa. It is preferable that the storage elastic modulus at 23 to 80 ° C. is 0.10 MPa or more because white spots due to shrinkage of the optical laminate when the liquid crystal display panel including the optical laminate is exposed to a high temperature can be suppressed. Moreover, since it is hard to produce the fall of durability by the fall of adhesive force as it is 5 Mpa or less, it is preferable.
  • “showing a storage elastic modulus of 0.10 to 5.0 MPa at 23 to 80 ° C.” means that the storage elastic modulus takes a value within the above range at any temperature within this range.
  • the adhesive layer Since the storage elastic modulus usually decreases gradually as the temperature rises, if both the storage elastic modulus at 23 ° C. and 80 ° C. are within the above range, the adhesive layer has a storage elastic modulus within the above range at this temperature range. Can be seen.
  • the storage elastic modulus of the adhesive layer can be measured with a commercially available viscoelasticity measuring device, for example, a viscoelasticity measuring device “DYNAMIC ANALYZER RDA II” manufactured by REOMETRIC.
  • the conductive layer included in the optical layered body of the present invention may be, for example, a conductive transparent metal oxide layer or a metal wiring layer.
  • a conductive layer is, for example, aluminum, copper, silver, iron, tin, zinc, platinum, nickel, molybdenum, chromium, tungsten, lead, titanium, palladium, indium, and an alloy containing two or more of these metals.
  • It may be a layer containing at least one metal element selected from:
  • the conductive layer may be a layer containing at least one metal element selected from aluminum, copper, silver and gold from the viewpoint of conductivity, and from the viewpoint of conductivity and cost, More preferably, it may be a layer containing an aluminum element.
  • blackening treatment may be performed from the viewpoint of preventing light reflection.
  • the blackening treatment is to oxidize the surface of the conductive layer to precipitate Cu 2 O or CuO.
  • the conductive layer may be a layer containing, for example, metallic silver, ITO (tin-doped indium oxide), graphene, zinc oxide, or AZO (aluminum-doped zinc oxide).
  • the conductive layer (conductive layer 4 in FIGS. 1 and 2) is provided, for example, on a substrate (substrate X in FIGS. 1 and 2).
  • a substrate substrate X in FIGS. 1 and 2.
  • Examples of the method for forming the conductive layer on the substrate include a sputtering method.
  • the substrate may be a transparent substrate constituting a liquid crystal cell included in the touch input element, or may be a glass substrate.
  • the transparent substrate may be formed of, for example, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene naphthalate, polyether sulfone, cyclic olefin copolymer, triacetyl cellulose, polyvinyl alcohol, polyimide, polystyrene, biaxially stretched polystyrene, or the like.
  • the glass substrate may be formed of, for example, soda lime glass, low alkali glass, non-alkali glass, or the like.
  • the conductive layer may be formed on the entire surface of the substrate or may be formed on a part thereof.
  • the conductive transparent metal oxide layer examples include transparent electrode layers such as ITO (tin-doped indium oxide) and AZO (aluminum-doped zinc oxide).
  • the metal wiring layer examples include a metal mesh that is a thin metal wiring layer, metal nanoparticles, and a layer in which metal nanowires are added in a binder.
  • the metal mesh indicates a two-dimensional network structure formed of metal wiring.
  • the shape of the opening of the metal mesh is not particularly limited, and may be, for example, a polygon (triangle, square, pentagon, hexagon, etc.), circle, ellipse, or indefinite shape. Each opening may be the same or different. In a preferred embodiment, the openings of the metal mesh have the same shape and are square or rectangular.
  • the metal wiring may be arranged with a predetermined interval in the vertical and horizontal directions of the plane on the substrate X.
  • the opening may be filled with a resin (adhesive or the like), or a metal wiring layer may be embedded in the resin (adhesive or the like).
  • the conductive layer (conductive layer 4) is comprised with both metal wiring and resin (adhesive).
  • the line width of the metal wiring (particularly metal mesh) is usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the line width of the metal wiring layer may be a combination of these upper and lower limits, and is preferably 0.5 to 5 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the thickness of the conductive layer is not particularly limited, but is usually 10 ⁇ m or less, preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, particularly preferably 0.5 ⁇ m or less, Usually, it is 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the thickness of the conductive layer may be a combination of these upper and lower limits, and is preferably 0.01 to 3 ⁇ m, more preferably 0.05 to 1 ⁇ m.
  • the thickness of the conductive layer is a thickness including the resin.
  • the method for preparing the conductive layer is not particularly limited, and may be lamination of metal foil. Vacuum deposition method, sputtering method, wet coating, ion plating method, ink jet printing method, gravure printing method, electrolytic plating, electroless plating However, it is preferably a conductive layer formed by a sputtering method, an ink jet printing method, or a gravure printing method, and more preferably a conductive layer formed by sputtering.
  • the conductive layer (for example, metal mesh) may have a function of generating a signal when touching a transparent substrate in a touch panel, for example, and transmitting touch coordinates to an integrated circuit or the like.
  • the laminate in which the first cured product layer and the adhesive layer are laminated in this order on one surface of the polarizing film is bonded to a conductive layer formed on a substrate (or Can be obtained).
  • An optical laminate including a conductive layer is useful because it can be used for a touch input type liquid crystal display device having a touch panel function, but a polarizing film.
  • the dichroic dye (iodine) contained in is moved to the conductive layer and the conductive layer is easily corroded.
  • the conductive layer is more easily corroded because the line width is narrow.
  • the optical layered body of the present invention includes the first cured product layer, the movement of the dichroic dye to the conductive layer can be effectively suppressed, and corrosion of the conductive layer can be effectively prevented.
  • the polarizing film constituting the optical laminate of the present invention is a film having a function of extracting linearly polarized light from incident natural light.
  • the polyvinyl alcohol resin film contains a dichroic dye, preferably iodine. It is a film that is adsorbed and oriented.
  • a saponified polyvinyl acetate resin can be used as the polyvinyl alcohol resin constituting the polyvinyl alcohol resin film.
  • Polyvinyl acetate resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith (for example, ethylene-vinyl acetate copolymer). And the like.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol resin is usually 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified.
  • polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like can be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, and preferably 1500 to 5000.
  • a film obtained by forming such a polyvinyl alcohol-based resin can be used as an original film of a polarizing film.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a conventionally known method.
  • the film thickness of the raw film made of polyvinyl alcohol resin is not particularly limited, but considering easiness of stretching, it is, for example, 10 to 150 ⁇ m, preferably 15 to 100 ⁇ m, more preferably Is 20 to 80 ⁇ m.
  • the polarizing film is usually a step of uniaxially stretching such a polyvinyl alcohol resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol resin film with a dichroic dye, and a dichroic dye It is manufactured through a process of treating the adsorbed polyvinyl alcohol-based resin film with a boric acid aqueous solution and a step of washing with water after the treatment with the boric acid aqueous solution.
  • the uniaxial stretching of the polyvinyl alcohol-based resin film may be performed before the dichroic dye is dyed, may be performed simultaneously with the dyeing, or may be performed after the dyeing.
  • the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. It is also possible to perform uniaxial stretching in these plural stages. In uniaxial stretching, it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll.
  • the uniaxial stretching may be dry stretching in which stretching is performed in the atmosphere, or may be wet stretching in which stretching is performed in a state where a solvent is used and the polyvinyl alcohol-based resin film is swollen.
  • the draw ratio is preferably 8 times or less, more preferably 7.5 times or less, and even more preferably 7 times or less. Moreover, it is preferable that a draw ratio is 4.5 times or more from a viewpoint of expressing the function as a polarizing film.
  • a method of immersing and dyeing a polyvinyl alcohol resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
  • the content of iodine in the aqueous solution is usually 0.01 to 1 part by mass per 100 parts by mass of water, and the content of potassium iodide is usually 0.5 to 20 parts by mass per 100 parts by mass of water.
  • the temperature of the aqueous solution used for dyeing is usually 20 to 40 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually 20 to 1800 seconds.
  • the boric acid treatment after dyeing with iodine can be performed by immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution.
  • the amount of boric acid in the boric acid-containing aqueous solution is usually 2 to 15 parts by mass, preferably 5 to 12 parts by mass per 100 parts by mass of water.
  • this boric acid-containing aqueous solution preferably contains potassium iodide.
  • the amount of potassium iodide in the boric acid-containing aqueous solution is usually 0.1 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water.
  • the immersion time in the boric acid-containing aqueous solution is usually 60 to 1200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
  • the temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
  • the polyvinyl alcohol resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment can be performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water.
  • the temperature of water in the water washing treatment is usually 5 to 40 ° C., and the immersion time is usually 1 to 120 seconds.
  • a drying process is performed to obtain a polarizing film.
  • the drying treatment can be performed using a hot air dryer or a far infrared heater.
  • the temperature for the drying treatment is usually 30 to 100 ° C., preferably 40 to 95 ° C., more preferably 50 to 90 ° C.
  • the drying treatment time is usually 60 to 600 seconds, preferably 120 to 600 seconds.
  • the polyvinyl alcohol-based resin film is uniaxially stretched, dyed with a dichroic dye, preferably iodine, and treated with boric acid to obtain a polarizing film.
  • the thickness of the polarizing film can be 5 to 40 ⁇ m, for example.
  • the optical laminated body of this invention may be equipped with the 2nd hardened
  • cured material layer can be suitably selected according to adhesiveness with a polarizing film or a 2nd protective film, and is contained in the range of the curable composition which comprises the above-mentioned 1st hardened
  • the composition may be a photocurable adhesive or the like known in the art.
  • the curable composition When using the composition contained in the range of the curable composition which comprises the above-mentioned 1st hardened
  • Examples of the photocurable adhesive known in the art include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator, and a mixture of a photocurable acrylic resin and a photoradical polymerization initiator.
  • a curable composition for forming a cured product constituting the second cured product layer is, for example, a photocurable adhesive containing a photocurable component and a cationic photopolymerization initiator described in International Publication No. 2014/129368. Can be used.
  • the second cured product layer is applied by applying a curable composition constituting the second cured product layer to the surface opposite to the surface on which the first cured product layer of the optical laminate is laminated, and cured. Can be formed.
  • Examples of the coating method of the curable composition constituting the second cured product layer include the same coating method as that of the curable composition (1).
  • the curable composition or the curable adhesive is irradiated by irradiating active energy rays. Is cured.
  • the light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable, and specifically, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferable.
  • the light irradiation intensity to the curable composition constituting the second cured product layer can be appropriately selected depending on the composition of the curable composition and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator. Is preferably 0.1 to 1000 mW / cm 2 .
  • the light irradiation time to the curable composition constituting the second cured product layer may be appropriately selected depending on the curable composition to be cured, and the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is preferably It is set to be 10 to 5000 mJ / cm 2 .
  • the thickness of the second cured product layer is not particularly limited, but is usually 0.1 to 10 ⁇ m.
  • the optical laminate of the present invention has a first protective film (7 shown in FIG. 2) laminated on one surface of the polarizing film via a first cured product layer.
  • the optical laminate of the present invention is laminated on the other surface of the polarizing film (the surface opposite to the first cured product layer 2) via the second cured product layer. It has a second protective film (6 shown in FIGS. 1 and 2). From the viewpoint of contributing to prevention of shrinkage and expansion of the polarizing film, prevention of deterioration of the polarizing film due to temperature, humidity, ultraviolet rays, and the like, in one embodiment, the optical laminate of the present invention has the first protective film.
  • the optical laminate of the present invention does not include the first protective film. Since the 1st hardened material layer in this invention replaces with a protective film and contributes also to prevention of deterioration of a polarizing film, from a viewpoint of achieving the prevention of deterioration of a polarizing film and thinning of an optical laminated body with sufficient balance, it is optical of this invention. It is preferable that a laminated body does not contain a 1st protective film.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose polymers such as diacetyl cellulose and triacetyl cellulose
  • acrylic polymers such as polymethyl methacrylate
  • styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin) Type polymer
  • polycarbonate type polymer such as polycarbonate type polymer.
  • polyethylene, polypropylene, polyolefin having a cyclo or norbornene structure examples include blends of the above polymers.
  • polyolefin polymer such as ethylene / propylene copolymer
  • vinyl chloride polymer amide polymer such as nylon or aromatic polyamide
  • imide polymer sulfone Polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or
  • the polymer that forms the protective film examples include blends of the above polymers.
  • the protective film can also be formed as a cured product layer of thermosetting or ultraviolet curable resin such as acrylic, urethane, acrylurethane, epoxy, or silicone. Among them, those having a hydroxyl group having reactivity with an isocyanate crosslinking agent are preferable, and cellulose polymers are particularly preferable.
  • the first protective film and the second protective film may be composed of the same material or may be composed of different materials.
  • the moisture permeability of the second protective film is preferably 1200 g / (m 2 ⁇ 24 hours) or less, more preferably 800 g / (m 2 ⁇ 24 hours) or less at a temperature of 23 ° C. and a relative humidity of 55%. More preferably, it is 600 g / (m 2 ⁇ 24 hours) or less, particularly preferably 400 g / (m 2 ⁇ 24 hours) or less, and most preferably 200 g / (m 2 ⁇ 24 hours) or less.
  • the moisture permeability of the second protective film is equal to or lower than the above value, entry of moisture from the outside under high temperature and high humidity is prevented, and acceleration of movement of the dichroic dye (iodine) contained in the polarizing film is prevented.
  • the optical layered body of the present invention has the first cured product layer, even if the second protective film does not satisfy the above moisture permeability, the movement of the dichroic dye (iodine) contained in the polarizing film is suppressed, It is possible to prevent deterioration of the conductive layer and optical characteristics.
  • the thickness of the protective film is not particularly limited, but both the first protective film and the second protective film are usually 5 to 500 ⁇ m, preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, still more preferably 10 to 100 ⁇ m.
  • the protective film may be comprised from the protective film etc. which added the optical compensation function.
  • the first cured product layer can effectively suppress the movement of the dichroic dye from the polarizing film to the adhesive layer and the movement of the ionic compound from the adhesive layer to the polarizing film. Therefore, the selection range about the material of the 1st protective film which comprises an optical laminated body spreads. That is, it is not necessary to use a protective film that hardly transmits an ionic compound, and an optical laminate can be formed using a protective film that is generally inexpensive and easily transmits an ionic compound.
  • the optical layered body of the present invention is advantageous from an industrial point of view, such as reducing the production cost.
  • the first cured product layer is directly laminated on the polarizing film, but the first cured product is provided between the polarizing film and the first cured product layer.
  • a primer layer may be provided between the layer and the pressure-sensitive adhesive layer. Examples of the material for forming the primer layer include various polymers such as urethane oligomers, metal oxide sols, silica sols, and the like.
  • the primer layer is thinner than the protective film, for example, 0.01 to 3 ⁇ m, preferably 0.1 to 2 ⁇ m, more preferably 0.5 to 1 ⁇ m.
  • the optical layered body of the present invention may include a protective film via an adhesive layer between the polarizing film and the first cured product layer.
  • a protective film the protective film similar to the 1st protective film or the 2nd protective film illustrated above is mentioned, for example.
  • the thickness of the protective film is usually 5 to 500 ⁇ m as in the case of the first protective film or the second protective film.
  • the optical layered body of the present invention can effectively prevent the movement of the dichroic dye even if the first cured product layer is not provided with a protective film between the polarizing film and the first cured product layer. For this reason, in the optical laminate of the present invention, the first cured product layer is laminated directly on the polarizing film, or the first cured product layer is laminated on the polarizing film via the primer layer, or the first A mode in which an adhesive layer is laminated on one cured product layer via a primer layer is preferred.
  • the optical layered body of the present invention may further include an optical layer such as a retardation film, a viewing angle compensation film, and a brightness enhancement film, if necessary.
  • an optical layer such as a retardation film, a viewing angle compensation film, and a brightness enhancement film, if necessary.
  • the optical layer can be formed using a material known in the art.
  • the optical laminate of the present invention can be produced by a known method.
  • a curable composition is apply
  • the curable composition (1) is applied on the peelable film to form the first cured composition layer, and the polarizing film side of the laminate on the coated surface Paste.
  • active energy rays such as ultraviolet rays and electron beams are irradiated to cure the second cured composition layer and the first cured composition layer to form the second cured product layer and the first cured product layer.
  • the peelable film is peeled off to form an adhesive layer on the first cured product layer. And what is necessary is just to bond an adhesive layer to the conductive layer laminated
  • the curable composition (1) is applied on the protective film to form a first cured composition layer, and the polarizing film side of the laminate is applied to the coated surface.
  • the first cured composition layer is formed by irradiating active energy rays such as ultraviolet rays and electron beams to form a first cured product layer, and then an adhesive layer is formed on the first protective film. To do. And what is necessary is just to bond an adhesive layer to the conductive layer laminated
  • a laminate composed of a polarizing film and a first cured product layer is obtained by laminating a separate film (peeling film) on one surface of the polarizing film via a first cured product layer, and first curing with active energy rays or the like. It can form by peeling a separate film (peeling film), after hardening a physical layer.
  • the present invention comprises an optical laminate having the above-described configuration, that is, a cured product of a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol-based resin.
  • An optical laminate (optical laminate shown in FIGS. 1 and 2 in one embodiment) in which a first cured product layer, an adhesive layer, and a conductive layer are laminated in this order,
  • the polymerizable compound includes an oxetane compound having two or more oxetanyl groups, and the content of the oxetane compound is 40 parts by mass or more with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition.
  • An optical laminate is a cured product of a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol-based resin.
  • a dense first cured product layer having a high crosslinking density can be formed. Therefore, a first cured product of a dichroic dye (iodine) contained in a polarizing film The movement to the layer can be effectively suppressed, and the corrosion of the conductive layer and the deterioration of the optical performance due to the dichroic dye (iodine) can be effectively prevented.
  • the rate of increase in absorbance of the first cured product layer may or may not be 30% or less.
  • the oxetane compound having two or more oxetanyl groups is the above-mentioned oxetane compound (A), and the components and contents contained in the curable composition forming the cured product of the first cured product layer ( Preferred components and contents are also included).
  • the polarizing film, the adhesive layer, and the conductive layer included in the optical laminate are the same as those described above.
  • cured material layer comprised from the hardened
  • dichroic dye iodine
  • the water contact angle of the first cured product layer is, for example, 90 ° or more, preferably 95 ° or more, more preferably 100 ° or more.
  • the water contact angle is equal to or greater than the above value, the migration of the dichroic dye to the first cured product layer is effectively suppressed even under high temperature and high humidity, and the conductive layer is effectively corroded and the optical performance is reduced. Can be prevented.
  • cured material layer comprised from the hardened
  • the barrier property against dichroic dye (iodine) is high, and the migration of the dichroic dye (iodine) to the first cured product layer is effectively suppressed, and the corrosion of the conductive layer and the optical performance are effectively reduced. Can be prevented.
  • the storage elastic modulus at 30 ° C. of the first cured product layer is, for example, 1500 to 3500 MPa, preferably 1800 to 3500 MPa, more preferably 2000 to 3500 MPa, and further preferably 2500 to 3500 MPa.
  • the elastic modulus is equal to or higher than the lower limit, the movement of the dichroic dye (iodine) to the first cured product layer is more effectively suppressed, and the corrosion of the conductive layer and the deterioration of the optical performance are more effectively prevented. be able to.
  • cured material layer comprised from the hardened
  • the optical laminate in which the adhesive layer and the conductive layer are laminated in this order, and the optical laminate having the glass transition temperature of the first cured product layer of 90 ° C. or higher is due to the relatively high crosslinking density.
  • the barrier property against the dichroic dye (iodine) is high, and the migration of the dichroic dye (iodine) to the first cured product layer is effectively suppressed, and the corrosion of the conductive layer and the optical performance are effectively reduced. Can be prevented.
  • the glass transition temperature of the first cured product layer is, for example, 90 to 180 ° C., preferably 100 to 180 ° C., more preferably 120 to 180 ° C., and further preferably 150 to 180 ° C.
  • the elastic modulus is equal to or higher than the lower limit, the movement of the dichroic dye (iodine) to the first cured product layer is more effectively suppressed, and the corrosion of the conductive layer and the deterioration of the optical performance are more effectively prevented. be able to.
  • Example 1 Preparation of curable composition (I) constituting first cured product layer According to the composition shown in Table 1 below, each component was mixed to prepare curable compositions (I) of Production Examples 1 to 31.
  • the integrated light quantity from 280 nm to 320 nm is 1000 mJ / cm 2 using an ultraviolet irradiation device with a belt conveyor (the lamp uses “D bulb” manufactured by Fusion UV Systems).
  • the cycloolefin film on both sides of the obtained laminate was peeled off, and the cured product (first cured product layer) of the curable composition (I) was isolated and used as an evaluation sample.
  • the absorbance at 360 nm was measured for the evaluation sample using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, “UV2450”). This absorbance is defined as absorbance before immersion.
  • UV2450 ultraviolet-visible spectrophotometer
  • the absorbance at 360 nm was measured using an ultraviolet-visible spectrophotometer (“UV2450” manufactured by Shimadzu Corporation). This absorbance is defined as absorbance after immersion.
  • UV2450 ultraviolet-visible spectrophotometer
  • a polarizing film (1) having a thickness of 7 ⁇ m in which iodine was adsorbed and oriented on a polyvinyl alcohol film was obtained.
  • Laminate (1) A triacetyl cellulose film coated with a water-based adhesive (1) on one surface of a polarizing film (1) and hard-coated on the surface (manufactured by Toppan TOMOEGAWA optical film, “ 25KCHC-TC "(trade name), thickness 32 ⁇ m), the surface not subjected to the hard coat treatment was bonded to the polarizing film via the aqueous adhesive (1). This was dried at 60 ° C. for 6 minutes to produce a laminate (1) having a protective film on one side.
  • Laminate (2) A curable composition (I) was cured on one side of a cycloolefin film [trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.] having a thickness of 50 ⁇ m using a bar coater. Coating was performed so that the film thickness was about 3 ⁇ m.
  • the polarizing film side of the laminate (1) was bonded to the coated surface to produce a laminate. From the cycloolefin film side of the laminate, an integrated light quantity of 280 nm to 320 nm is 200 mJ / cm 2 using an ultraviolet irradiation device with a belt conveyor (the lamp uses “D bulb” manufactured by Fusion UV Systems).
  • Laminate (3) An organic solvent solution of an acrylic pressure-sensitive adhesive was prepared, and the organic solvent solution of the acrylic pressure-sensitive adhesive was subjected to a release treatment to a polyethylene terephthalate film with a thickness of 38 ⁇ m [manufactured by Lintec Corporation] , “SP-PLR382020” (trade name), referred to as release film], coated with a die coater so that the thickness after drying is 20 ⁇ m, and dried to form a sheet with release film An adhesive was prepared.
  • the temperature was 23 ° C., relative It was cured for 7 days under the condition of humidity 65% to obtain a laminate (3) provided with an adhesive layer.
  • This laminate has a configuration in which a release film is bonded onto an adhesive layer.
  • ⁇ Base polymer Copolymer of butyl acrylate, methyl acrylate, acrylic acid and hydroxyethyl acrylate
  • ⁇ isocyanate-based crosslinking agent Ethyl acetate solution of trimethylolpropane adduct of tolylene diisocyanate (solid content concentration 75%) ("Coronate L” (trade name), manufactured by Tosoh Corporation)
  • ⁇ Silane coupling agent> 3-Glycidoxypropyltrimethoxysilane, liquid (“KBM-403" (trade name), manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Antistatic agent 1-hexylpyridinium hexafluorophosphate, a compound represented by the following formula (III).
  • ITO film was formed on one surface of an alkali-free glass by a sputtering method to produce a glass having an ITO film.
  • the glass having this ITO thin film was cut into 25 mm ⁇ 25 mm, and the central part on the ITO thin film was measured using a low resistivity meter (“Loresta AX MCP-T370”, manufactured by Mitsubishi Chemical Analytech). Initial resistance value ”.
  • the sample for evaluation was put into an environment of 80 ° C. and a relative humidity of 90% for 72 hours and then taken out, and the laminate (3) was peeled off.
  • the ITO thin film was washed with tanol, and the value measured using the same device as above was defined as “resistance value after durability”.
  • Resistance value increase rate is 20% or less ⁇ : Resistance value increase rate exceeds 20% and less than 30% ⁇ : Resistance value increase rate is 30% or more
  • the pressure-sensitive adhesive layer side of the laminated body (3) was made of alkali-free glass [manufactured by Corning, “EAGLE XG "].
  • the sample was autoclaved for 1 hour at a temperature of 50 ° C. and a pressure of 5 kg / cm 2 (490.3 kPa), and then left for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 55%.
  • an optional accessory “film holder with polarizing film” is set in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, “UV2450”), and the transmission axis direction and absorption of the laminate in the wavelength range of 380 to 700 nm are set.
  • Examples 2 to 22 and Comparative Examples 1 to 9 A first cured product layer and a laminate (3) were obtained in the same manner as in Example 1 using the curable compositions (I) of Production Examples 2 to 31. Using the obtained laminate (3), the ITO resistance value increase rate and the polarization degree change ⁇ Py were calculated in the same manner as in Example 1. These results are shown in Table 2.
  • the optical layered body in which the absorbance increase rate of the first cured product layer is 30% or less does not corrode ITO even if it is placed under high temperature and high humidity for a long time. It shows that it can suppress effectively.
  • Examples 4 to 20 and Example 22 show that the optical laminate in which the absorbance increase rate of the first cured product layer is 20% or less can more effectively suppress the corrosion of ITO.
  • Examples 1 to 22 show that optical laminates having an absorbance increase rate of 30% or less are excellent in durability and can maintain optical performance even under high temperature and high humidity.
  • Examples 1 to 22 include 40 parts by mass or more of an oxetane compound in which the first cured product layer has two or more oxetanyl groups with respect to a total amount of 100 parts by mass of all polymerizable compounds. It shows that the optical laminated body which is a hardened

Abstract

[Problem] To provide an optical laminate which is capable of preventing deterioration of a conductive layer by effectively suppressing migration of a dichroic dye that is contained in a polarizing film to the conductive layer. [Solution] An optical laminate which is obtained by sequentially laminating, on one surface of a polarizing film that contains a dichroic dye in a polyvinyl alcohol resin, a first cured product layer that is configured from a cured product of a curable composition containing a polymerizable compound, an adhesive layer and a conductive layer in this order, and wherein the absorbance increase rate of the first cured product layer as expressed by formula (1) is 30% or less. Absorbance increase rate (%) = (Abs after immersion (360 nm) – Abs before immersion (360 nm))/Abs before immersion (360 nm) × 100 (1)

Description

光学積層体Optical laminate
 本発明は、画像表示パネル等に利用される光学積層体に関する。 The present invention relates to an optical laminate used for an image display panel or the like.
 従来、ポリビニルアルコール系樹脂フィルムにヨウ素等の二色性色素を吸着配向させた偏光フィルムの一方の面に、接着剤を介して、保護フィルムが積層された光学積層体が知られている。このような光学積層体を構成するために用いられる接着剤として、例えば特許文献1には、脂肪族エポキシと、脂環式エポキシ及び/又はオキセタンと、光重合開始剤とを含む光カチオン硬化型接着剤(硬化性組成物)が記載されており、これを硬化させた硬化物が接着剤として機能している。 Conventionally, an optical laminate in which a protective film is laminated on one surface of a polarizing film in which a dichroic dye such as iodine is adsorbed and oriented on a polyvinyl alcohol resin film via an adhesive is known. As an adhesive used to constitute such an optical laminate, for example, Patent Document 1 discloses a photocation curable type containing an aliphatic epoxy, an alicyclic epoxy and / or oxetane, and a photopolymerization initiator. An adhesive (curable composition) is described, and a cured product obtained by curing the adhesive functions as an adhesive.
 近年、酸化インジウムスズ(ITO)薄膜等の透明導電膜が表示装置において広く使用されている。例えば、前記透明導電膜は、インプレーンスイッチング(IPS)方式等の液晶セルを用いた液晶表示装置の、液晶セルを構成する透明基板の液晶層と接する側とは反対側に形成され、帯電防止層とすることが知られている。また、前記透明導電膜が透明樹脂フィルム上に形成された透明導電性フィルムは、タッチパネルの電極基板に用いられ、例えば、携帯電話や携帯用音楽プレイヤー等に用いる液晶表示装置や画像表示装置と当該タッチパネルを組み合わせて用いる入力装置が広く普及してきている。 In recent years, transparent conductive films such as indium tin oxide (ITO) thin films have been widely used in display devices. For example, the transparent conductive film is formed on the opposite side of the liquid crystal display device using an in-plane switching (IPS) type liquid crystal cell from the side in contact with the liquid crystal layer of the transparent substrate constituting the liquid crystal cell. It is known to be a layer. The transparent conductive film having the transparent conductive film formed on the transparent resin film is used for an electrode substrate of a touch panel, for example, a liquid crystal display device or an image display device used for a mobile phone, a portable music player, and the like. Input devices using a combination of touch panels have become widespread.
特開2008-063397号公報JP 2008-063397 A
 しかしながら、特許文献1に記載の光学積層体の偏光フィルム側に、粘着剤層を介して、ITO層等の導電層を積層した場合、偏光フィルムに含まれる二色性色素が粘着剤層を比較的透過しやすく、導電層まで移動する場合があり、感知不良等の誤作動を生じさせる場合がある。このような偏光フィルムからの二色性色素の移動は、特に高温高湿の環境下において顕著となるため、高温高湿の環境下においても偏光フィルムに含まれる二色性色素が、粘着剤層を介して、導電層へ移行する事による導電層の劣化を防止できる光学積層体が必要とされる。 However, when a conductive layer such as an ITO layer is laminated on the polarizing film side of the optical laminate described in Patent Document 1 via an adhesive layer, the dichroic dye contained in the polarizing film compares the adhesive layer. May be transmitted to the conductive layer, and may cause malfunction such as poor sensing. Since the movement of the dichroic dye from the polarizing film becomes remarkable particularly in a high temperature and high humidity environment, the dichroic dye contained in the polarizing film is also used in the pressure sensitive adhesive layer even in a high temperature and high humidity environment. Therefore, there is a need for an optical laminate that can prevent deterioration of the conductive layer due to the transition to the conductive layer.
 従って、本発明の目的は、偏光フィルムに含まれる二色性色素の導電層への移行を有効に抑制し、導電層の劣化を防止できる光学積層体を提供することにある。 Therefore, an object of the present invention is to provide an optical laminate that can effectively suppress the migration of the dichroic dye contained in the polarizing film to the conductive layer and prevent the deterioration of the conductive layer.
 本発明は、以下の好適な態様[1]~[6]を提供するものである。
[1]ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、重合性化合物を含む硬化性組成物の硬化物から構成される第1硬化物層と、粘着層と、導電層とがこの順に積層された光学積層体であって、
 前記第1硬化物層は、下記式(1)で表される吸光度上昇率が30%以下である、光学積層体。
 吸光度上昇率(%)=(浸漬後Abs(360nm)-浸漬前Abs(360nm))/浸漬前Abs(360nm)×100   (1)
[式中、浸漬後Abs(360nm)は、温度23℃、相対湿度60%の大気中で、50%ヨウ化カリウム水溶液に硬化物を100時間浸漬させた後の360nmにおける吸光度を示し、浸漬前Abs(360nm)は、50%ヨウ化カリウム水溶液に硬化物を浸漬させる前の360nmにおける吸光度を示す]
[2]ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、重合性化合物を含む硬化性組成物の硬化物から構成される第1硬化物層と、粘着層と、導電層とがこの順に積層された光学積層体であって、
 前記重合性化合物は、2つ以上のオキセタニル基を有するオキセタン化合物を含み、該オキセタン化合物の含有量は、硬化性組成物に含まれる全重合性化合物の総量100質量部に対して40質量部以上である、光学積層体。
[3]第1硬化物層の厚みは、0.1~15μmである、[1]又は[2]に記載の光学積層体。
[4]第1硬化物層を構成する硬化物は、前記重合性化合物を含む硬化性組成物の光硬化
物である、[1]~[3]のいずれかに記載の光学積層体。
[5]前記偏光フィルムの第1硬化物層とは反対側の面に、第2硬化物層と保護フィルムとが積層された、[1]~[4]のいずれかに記載の光学積層体。
[6]前記保護フィルムの透湿度は、温度23℃、相対湿度55%において、1200g
/24時間以下である、[5]に記載の光学積層体。
The present invention provides the following preferred embodiments [1] to [6].
[1] A first cured product layer composed of a cured product of a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol resin, an adhesive layer, An optical laminate in which the conductive layer is laminated in this order,
The first cured product layer is an optical laminate in which the absorbance increase rate represented by the following formula (1) is 30% or less.
Absorbance increase rate (%) = (Abs after immersion (360 nm) −Abs before immersion (360 nm)) / Abs before immersion (360 nm) × 100 (1)
[In the formula, Abs (360 nm) after immersion indicates the absorbance at 360 nm after the cured product was immersed in an aqueous solution of 50% potassium iodide for 100 hours in an atmosphere at a temperature of 23 ° C. and a relative humidity of 60%. Abs (360 nm) indicates the absorbance at 360 nm before the cured product is immersed in a 50% aqueous potassium iodide solution]
[2] A first cured product layer composed of a cured product of a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol-based resin, an adhesive layer, An optical laminate in which the conductive layer is laminated in this order,
The polymerizable compound includes an oxetane compound having two or more oxetanyl groups, and the content of the oxetane compound is 40 parts by mass or more with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition. An optical laminate.
[3] The optical laminate according to [1] or [2], wherein the thickness of the first cured product layer is 0.1 to 15 μm.
[4] The optical laminate according to any one of [1] to [3], wherein the cured product constituting the first cured product layer is a photocured product of a curable composition containing the polymerizable compound.
[5] The optical laminate according to any one of [1] to [4], wherein a second cured product layer and a protective film are laminated on the surface of the polarizing film opposite to the first cured product layer. .
[6] The moisture permeability of the protective film is 1200 g at a temperature of 23 ° C. and a relative humidity of 55%.
/ The optical laminated body according to [5], which is 24 hours or shorter.
 本発明の光学積層体は、偏光フィルムに含まれる二色性色素の導電層への移動を抑制し、導電層の腐食を有効に抑制することができる。 The optical layered body of the present invention can suppress the movement of the dichroic dye contained in the polarizing film to the conductive layer, and can effectively suppress the corrosion of the conductive layer.
本発明の光学積層体の一態様である構成を示す断面図を表す。Sectional drawing which shows the structure which is one aspect | mode of the optical laminated body of this invention is represented. 本発明の光学積層体の一態様である構成を示す断面図を表す。Sectional drawing which shows the structure which is one aspect | mode of the optical laminated body of this invention is represented.
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. Note that the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention.
 本発明の光学積層体の一実施態様における構成を図1に基づいて説明すると、本発明の光学積層体10は、偏光フィルム1の一方の面に、第1硬化物層2と、粘着層3と、導電層4とがこの順に積層された構造を有する。必要に応じて、偏光フィルム1の第1硬化物層とは反対側の面に、第2硬化物層5を介して保護フィルム6が備えられてもよい。また、図1の実施態様では、光学積層体10の導電層4が基板Xに積層されている。 The structure in one embodiment of the optical laminate of the present invention will be described with reference to FIG. 1. The optical laminate 10 of the present invention has a first cured product layer 2 and an adhesive layer 3 on one surface of a polarizing film 1. And the conductive layer 4 are stacked in this order. If necessary, a protective film 6 may be provided on the surface of the polarizing film 1 opposite to the first cured product layer via the second cured product layer 5. In the embodiment of FIG. 1, the conductive layer 4 of the optical laminate 10 is laminated on the substrate X.
 また、本発明の光学積層体は、第1硬化物層2と粘着層3との間に第1保護フィルム7を有してもよい。この実施態様を図2に示す。光学積層体10には、必要に応じて、偏光フィルム1の第1硬化物層2とは反対側の面に、第2硬化物層5を介して第2保護フィルム6が備えられていてもよい。また、図2の実施態様では、光学積層体10の導電層4が基板Xに積層されている。
 以下、本発明の光学積層体の各構成成分について詳細に説明する。
Moreover, the optical laminated body of this invention may have the 1st protective film 7 between the 1st hardened | cured material layer 2 and the adhesion layer 3. FIG. This embodiment is shown in FIG. Even if the optical laminated body 10 is equipped with the 2nd protective film 6 via the 2nd hardened | cured material layer 5 in the surface on the opposite side to the 1st hardened | cured material layer 2 of the polarizing film 1 as needed. Good. In the embodiment of FIG. 2, the conductive layer 4 of the optical laminate 10 is laminated on the substrate X.
Hereinafter, each component of the optical layered body of the present invention will be described in detail.
[第1硬化物層]
 本発明の光学積層体は、ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、重合性化合物を含む硬化性組成物(以下、硬化性組成物(1)という場合がある。)の硬化物から構成される第1硬化物層を有する。
[First cured product layer]
The optical layered body of the present invention is a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol resin (hereinafter referred to as curable composition (1)). A first cured product layer composed of a cured product.
 第1硬化物層は、下記式(1)で表される吸光度上昇率が30%以下である。
  吸光度上昇率(%)=(浸漬後Abs(360nm)-浸漬前Abs(360nm))/浸漬前Abs(360nm)×100   (1)
[式中、浸漬後Abs(360nm)は、温度23℃、相対湿度60%の大気中で、50%ヨウ化カリウム水溶液に硬化物を100時間浸漬させた後の360nmにおける吸光度を示し、浸漬前Abs(360nm)は、50%ヨウ化カリウム水溶液に硬化物を浸漬させる前の360nmにおける吸光度を示す]
The first cured product layer has an absorbance increase rate represented by the following formula (1) of 30% or less.
Absorbance increase rate (%) = (Abs after immersion (360 nm) −Abs before immersion (360 nm)) / Abs before immersion (360 nm) × 100 (1)
[In the formula, Abs (360 nm) after immersion indicates the absorbance at 360 nm after the cured product was immersed in an aqueous solution of 50% potassium iodide for 100 hours in an atmosphere at a temperature of 23 ° C. and a relative humidity of 60%. Abs (360 nm) indicates the absorbance at 360 nm before the cured product is immersed in a 50% aqueous potassium iodide solution]
 第1硬化物層は、50%ヨウ化カリウム水溶液に100時間浸漬させても、前記式(1)で表される吸光度上昇率が30%以下である。これは第1硬化物層のヨウ素(二色性色素)に対する吸収性が比較的低いことを示す。このため、本発明の光学積層体は、偏光フィルムに含まれるヨウ素(二色性色素)の第1硬化物層への移動を有効に抑制することができ、ヨウ素(二色性色素)による導電層(例えばITO層)の腐食を防止することが可能である。さらに光学積層体の光学性能を維持することもできる。 Even when the first cured product layer is immersed in a 50% aqueous potassium iodide solution for 100 hours, the absorbance increase rate represented by the formula (1) is 30% or less. This indicates that the first cured product layer has relatively low absorbability with respect to iodine (dichroic dye). For this reason, the optical laminated body of this invention can suppress effectively the movement to the 1st hardened | cured material layer of the iodine (dichroic dye) contained in a polarizing film, and the electroconductivity by an iodine (dichroic dye). It is possible to prevent corrosion of the layer (eg, ITO layer). Furthermore, the optical performance of the optical laminate can be maintained.
 前記式(1)で表される吸光度上昇率は、好ましくは25%以下、より好ましくは20%以下、さらに好ましくは15%以下、特に好ましくは10%以下である。吸光度上昇率が上記値以下であると、上述のように偏光フィルムに含まれるヨウ素(二色性色素)の第1硬化物層への移動をより有効に抑制することができ、導電層の腐食及び光学積層体の光学性能の低下をより効果的に防止することが可能である。 The absorbance increase rate represented by the formula (1) is preferably 25% or less, more preferably 20% or less, still more preferably 15% or less, and particularly preferably 10% or less. When the absorbance increase rate is less than the above value, the movement of iodine (dichroic dye) contained in the polarizing film to the first cured product layer can be more effectively suppressed as described above, and corrosion of the conductive layer can be achieved. In addition, it is possible to more effectively prevent the optical performance of the optical laminate from being deteriorated.
 硬化性組成物(1)に含まれる重合性化合物は、第1硬化物層を構成する硬化物を形成できれば、特に限定されない。重合性化合物の例としては、活性エネルギー線硬化性樹脂組成物、水溶性樹脂組成物、水分散性樹脂組成物等が挙げられ、これらの中でもプロセスの簡素化の観点より、活性エネルギー線硬化性樹脂組成物が好ましく、特にエポキシアクリレート、ウレタンアクリレート等を含む(メタ)アクリレート化合物、アクリルアミド化合物、オキセタン化合物、エポキシ化合物が好ましい。 The polymerizable compound contained in the curable composition (1) is not particularly limited as long as it can form a cured product constituting the first cured product layer. Examples of the polymerizable compound include an active energy ray-curable resin composition, a water-soluble resin composition, a water-dispersible resin composition, and the like. Among these, from the viewpoint of simplifying the process, the active energy ray-curing property is used. A resin composition is preferable, and (meth) acrylate compounds, acrylamide compounds, oxetane compounds, and epoxy compounds containing epoxy acrylate, urethane acrylate, and the like are particularly preferable.
 好ましい態様において、第1硬化物層を構成する硬化物は、重合性化合物を含む硬化性組成物の光硬化物である。このため、前記重合性化合物は光硬化性化合物が好ましい。 In a preferred embodiment, the cured product constituting the first cured product layer is a photocured product of a curable composition containing a polymerizable compound. For this reason, the polymerizable compound is preferably a photocurable compound.
 重合性化合物は、分子内に2つ以上のオキセタニル基(オキセタン環)を有するオキセタン化合物(以下、「オキセタン化合物(A)」と称する場合がある)を含むことが好ましい。 The polymerizable compound preferably contains an oxetane compound having two or more oxetanyl groups (oxetane ring) in the molecule (hereinafter sometimes referred to as “oxetane compound (A)”).
 オキセタン化合物(A)は、分子内に2つ以上のオキセタニル基を有する化合物であり、脂肪族化合物、脂環式化合物又は芳香族化合物であってよい。オキセタン化合物(A)としては、具体的には、1,4-ビス〔{(3-エチルオキセタン-3-イル)メトキシ}メチル〕ベンゼン(キシリレンビスオキセタンとも呼ばれる)、ビス(3-エチル-3-オキセタニルメチル)エーテル等が挙げられる。これらのオキセタン化合物(A)は、それぞれ単独で用いても、異なる複数種を組み合わせて用いてもよい。オキセタン化合物(A)を含むことにより架橋密度が高く緻密な硬化物を得ることができる。架橋密度が高い硬化物層を偏光フィルムの一方の面に設けることにより、偏光フィルムからの二色性色素の移動を効果的に抑制することが可能となる。 The oxetane compound (A) is a compound having two or more oxetanyl groups in the molecule, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound. Specific examples of the oxetane compound (A) include 1,4-bis [{(3-ethyloxetane-3-yl) methoxy} methyl] benzene (also called xylylene bisoxetane), bis (3-ethyl- 3-oxetanylmethyl) ether and the like. These oxetane compounds (A) may be used alone or in combination of a plurality of different types. By containing the oxetane compound (A), a dense cured product having a high crosslinking density can be obtained. By providing the cured product layer having a high crosslink density on one surface of the polarizing film, it is possible to effectively suppress the movement of the dichroic dye from the polarizing film.
 オキセタン化合物(A)の含有量は、硬化性組成物(1)に含まれる全重合性化合物の総量100質量部に対して、例えば40質量部以上であり、好ましくは45質量部以上、より好ましくは50質量部以上である。また、オキセタン化合物(A)の含有量は、硬化性組成物(1)に含まれる全重合性化合物の総量100質量部に対して、好ましくは90質量部以下、より好ましくは80質量部以下、さらに好ましくは70質量部以下、特に好ましくは65質量部以下である。また、前記オキセタン化合物(A)の含有量は、これらの下限値と上限値の組み合わせであってもよく、硬化性組成物(1)に含まれる全重合性化合物の総量100質量部に対して、好ましくは40質量部~65質量部、より好ましくは45質量部~60質量部であってもよい。
 また、オキセタン化合物(A)の含有量は、前記硬化性組成物(1)の総量100質量部に対して、例えば35質量部以上であり、好ましくは40質量部以上、より好ましくは45質量部以上である。前記オキセタン化合物(A)の含有量が上記値以上であると、偏光フィルムに含まれる二色性色素の第1硬化物層への移動をより効果的に抑制することができ、導電層の腐食及び光学積層体の光学性能の低下をより効果的に防止することが可能である。
The content of the oxetane compound (A) is, for example, 40 parts by mass or more, preferably 45 parts by mass or more, more preferably with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition (1). Is 50 parts by mass or more. The content of the oxetane compound (A) is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition (1). More preferably, it is 70 mass parts or less, Most preferably, it is 65 mass parts or less. Further, the content of the oxetane compound (A) may be a combination of these lower limit value and upper limit value, and the total amount of all polymerizable compounds contained in the curable composition (1) is 100 parts by mass. However, it may be 40 to 65 parts by mass, more preferably 45 to 60 parts by mass.
Moreover, content of an oxetane compound (A) is 35 mass parts or more with respect to 100 mass parts of total amounts of the said curable composition (1), Preferably it is 40 mass parts or more, More preferably, it is 45 mass parts. That's it. When the content of the oxetane compound (A) is not less than the above value, the movement of the dichroic dye contained in the polarizing film to the first cured product layer can be more effectively suppressed, and the corrosion of the conductive layer can be suppressed. In addition, it is possible to more effectively prevent the optical performance of the optical laminate from being deteriorated.
 重合性化合物は、さらにエポキシ化合物(B)を含むことが好ましい。エポキシ化合物は、好ましくは、(B1)2つ以上のエポキシ基を有する脂肪族エポキシ化合物(以下、「脂肪族エポキシ化合物(B1)」と称する場合がある)、(B2)2つ以上のエポキシ基を有する脂環式エポキシ化合物(以下、「脂環式エポキシ化合物(B2)」と称する場合がある)、及び(B3)1つ以上の芳香環を有する芳香族エポキシ化合物(以下、「芳香族エポキシ化合物(B3)」と称する場合がある)から選択される少なくとも1種である。 The polymerizable compound preferably further contains an epoxy compound (B). The epoxy compound is preferably (B1) an aliphatic epoxy compound having two or more epoxy groups (hereinafter sometimes referred to as “aliphatic epoxy compound (B1)”), (B2) two or more epoxy groups. An alicyclic epoxy compound (hereinafter sometimes referred to as “alicyclic epoxy compound (B2)”), and (B3) an aromatic epoxy compound having one or more aromatic rings (hereinafter referred to as “aromatic epoxy”). At least one selected from “compound (B3)”.
 前記脂肪族エポキシ化合物(B1)は、脂肪族炭素原子に結合するオキシラン環を分子内に少なくとも2つ以上有する化合物である。脂肪族エポキシ化合物(B1)としては、例えば、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル等の2官能のエポキシ化合物;トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等の3官能以上のエポキシ化合物等が挙げられる。 The aliphatic epoxy compound (B1) is a compound having at least two oxirane rings bonded to an aliphatic carbon atom in the molecule. Examples of the aliphatic epoxy compound (B1) include bifunctional compounds such as 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexane dimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, and the like. Epoxy compounds: Trifunctional or higher functional epoxy compounds such as trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, and the like can be mentioned.
 脂肪族エポキシ化合物(B1)を含む場合、偏光フィルムと保護フィルム又は粘着層の間との接着性の観点から、脂肪族炭素原子に結合するオキシラン環を分子内に2個有する2官能のエポキシ化合物(脂肪族ジエポキシ化合物ともいう)が好ましく、下記式(I)で表される脂肪族ジエポキシ化合物がより好ましい。硬化性組成物が下記式(I)で表される脂肪族ジエポキシ化合物を脂肪族エポキシ化合物(B1)として含むことにより、粘度が低く、塗布し易い硬化性組成物を得ることができる。 When the aliphatic epoxy compound (B1) is included, from the viewpoint of adhesion between the polarizing film and the protective film or the adhesive layer, a bifunctional epoxy compound having two oxirane rings bonded to an aliphatic carbon atom in the molecule (Also referred to as an aliphatic diepoxy compound) is preferred, and an aliphatic diepoxy compound represented by the following formula (I) is more preferred. When the curable composition contains an aliphatic diepoxy compound represented by the following formula (I) as the aliphatic epoxy compound (B1), a curable composition having a low viscosity and easy to apply can be obtained.
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Zは炭素数1~9のアルキレン基、炭素数3もしくは4のアルキリデン基、2価の脂環式炭化水素基、又は式-C2m-Z-C2n-で示される2価の基を表す。-Z-は、-O-、-CO-O-、-O-CO-、-SO-、-SO-又はCO-を表し、m及びnは各々独立に1以上の整数を表す。ただし、m及びnの合計は9以下である。
Figure JPOXMLDOC01-appb-C000001
In the formula (I), Z is an alkylene group having 1 to 9 carbon atoms, an alkylidene group having 3 or 4 carbon atoms, a divalent alicyclic hydrocarbon group, or a formula —C m H 2m —Z 1 —C n H It represents a divalent group represented by 2n-. —Z 1 — represents —O—, —CO—O—, —O—CO—, —SO 2 —, —SO— or CO—, and m and n each independently represents an integer of 1 or more. However, the sum of m and n is 9 or less.
 2価の脂環式炭化水素基は、例えば、炭素数4~8の2価の脂環式炭化水素基であってよく、例えば下記式(I-1)で示される2価の残基等が挙げられる。 The divalent alicyclic hydrocarbon group may be, for example, a divalent alicyclic hydrocarbon group having 4 to 8 carbon atoms, such as a divalent residue represented by the following formula (I-1): Is mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(I)で示される化合物の具体例としては、アルカンジオールのジグリシジルエーテル;繰り返し数4程度までのオリゴアルキレングリコールのジグリシジルエーテル;脂環式ジオールのジグリシジルエーテル等が挙げられる。 Specific examples of the compound represented by the formula (I) include diglycidyl ethers of alkanediols; diglycidyl ethers of oligoalkylene glycols having up to about 4 repetitions; diglycidyl ethers of alicyclic diols, and the like.
 前記式(I)で示される化合物を形成し得るジオール(グリコール)としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-2,4-ペンタンジオール、2,4-ペンタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、3,5-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール等のアルカンジオール;
 ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール等のオリゴアルキレングリコール;
 シクロヘキサンジオール、シクロヘキサンジメタノール等の脂環式ジオール等が挙げられる。
Examples of the diol (glycol) that can form the compound represented by the formula (I) include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 2-butyl-2- Ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1 , 5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol , 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, etc. Le;
Oligoalkylene glycols such as diethylene glycol, triethylene glycol, tetraethylene glycol and dipropylene glycol;
And alicyclic diols such as cyclohexanediol and cyclohexanedimethanol.
 本発明において、脂肪族エポキシ化合物(B1)としては、粘度が低く、塗布しやすい硬化性組成物となし得るとの観点から、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテルが好ましい。光学性能を維持できる点では、1,6-ヘキサンジオールジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルが好ましい。脂肪族エポキシ化合物(B1)としては、1種の脂肪族エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。 In the present invention, as the aliphatic epoxy compound (B1), 1,4-butanediol diglycidyl ether, 1,6-hexanediol diene is used from the viewpoint that it can be formed into a curable composition having a low viscosity and easy to apply. Glycidyl ether and neopentyl glycol diglycidyl ether are preferred. In view of maintaining optical performance, 1,6-hexanediol diglycidyl ether and pentaerythritol polyglycidyl ether are preferable. As the aliphatic epoxy compound (B1), one kind of aliphatic epoxy compound may be used alone, or a plurality of different kinds may be used in combination.
 硬化性組成物(1)が脂肪族エポキシ化合物(B1)を含む場合、脂肪族エポキシ化合物(B1)の含有量は、硬化性組成物に含まれる全重合性化合物の総量100質量部に対して、好ましくは1~40質量部、より好ましくは3~30質量部、さらに好ましくは5~20質量部、特に7~15質量部である。脂肪族エポキシ化合物(B1)の含有量が上記範囲にあると、硬化性組成物(1)の粘度が低く、塗布しやすい組成物とすることができる。 When curable composition (1) contains an aliphatic epoxy compound (B1), content of an aliphatic epoxy compound (B1) is with respect to 100 mass parts of total amounts of all the polymeric compounds contained in a curable composition. The amount is preferably 1 to 40 parts by mass, more preferably 3 to 30 parts by mass, still more preferably 5 to 20 parts by mass, particularly 7 to 15 parts by mass. When the content of the aliphatic epoxy compound (B1) is in the above range, the curable composition (1) has a low viscosity and can be easily applied.
 前記脂環式エポキシ化合物(B2)は、脂環式環に結合したエポキシ基を分子内に2つ以上有する化合物である。「脂環式環に結合したエポキシ基」とは、下記式(a): The alicyclic epoxy compound (B2) is a compound having two or more epoxy groups bonded to the alicyclic ring in the molecule. “Epoxy group bonded to alicyclic ring” means the following formula (a):
Figure JPOXMLDOC01-appb-C000003
で示される構造における橋かけの酸素原子-O-を意味する。上記式(a)中、mは2~5の整数である。
Figure JPOXMLDOC01-appb-C000003
A bridging oxygen atom —O— in the structure represented by In the above formula (a), m is an integer of 2 to 5.
 上記式(a)における(CH中の1個又は複数個の水素原子を取り除いた形の基2つ以上が他の化学構造に結合している化合物が、脂環式エポキシ化合物(B2)となり得る。(CH中の1個又は複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。 A compound in which two or more groups in the form in which one or more hydrogen atoms in (CH 2 ) m in the above formula (a) are removed is bonded to another chemical structure is an alicyclic epoxy compound (B2 ) One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
 中でも、硬化物のガラス転移温度が高く、また偏光フィルムと保護フィルムとの間の接着性に優れる観点から、エポキシシクロペンタン構造〔上記式(a)においてm=3のもの〕や、エポキシシクロヘキサン構造〔上記式(a)においてm=4のもの〕を有する脂環式エポキシ化合物が好ましく、下記式(II)で表される脂環式ジエポキシ化合物がより好ましい。硬化性組成物(1)が下記式(II)で表される脂環式ジエポキシ化合物を化合物(B2)として含むことにより、硬化性組成物が硬化した後の硬化物層は、弾性が高くなり、偏光フィルムの熱収縮による割れを抑えることができる。 Among them, from the viewpoint of high glass transition temperature of the cured product and excellent adhesion between the polarizing film and the protective film, an epoxycyclopentane structure (m = 3 in the above formula (a)) or an epoxycyclohexane structure An alicyclic epoxy compound having [m = 4 in the above formula (a)] is preferred, and an alicyclic diepoxy compound represented by the following formula (II) is more preferred. By including the alicyclic diepoxy compound represented by the following formula (II) as the compound (B2) in the curable composition (1), the cured product layer after the curable composition is cured has high elasticity. Moreover, the crack by the heat shrink of a polarizing film can be suppressed.
Figure JPOXMLDOC01-appb-C000004
 式(II)中、R及びRは各々独立に水素原子又は炭素数1~6のアルキル基を表し、前記アルキル基が炭素数3以上である場合は脂環式構造を有していてもよい。前記炭素数1~6のアルキル基は直鎖又は分枝アルキル基であってよく、脂環式構造を有するアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
In formula (II), R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and when the alkyl group has 3 or more carbon atoms, it has an alicyclic structure. Also good. The alkyl group having 1 to 6 carbon atoms may be a linear or branched alkyl group, and examples of the alkyl group having an alicyclic structure include a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group.
 式(II)中、Xは酸素原子、炭素数1~6のアルカンジイル基又は下記式(IIa)~(IId): In the formula (II), X is an oxygen atom, an alkanediyl group having 1 to 6 carbon atoms, or the following formulas (IIa) to (IId):
Figure JPOXMLDOC01-appb-C000005
のいずれかで示される2価の基を表す。
 炭素数1~6のアルカンジイル基としては、例えば、メチレン基、エチレン基、プロパン-1,2-ジイル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Represents a divalent group represented by any of the above.
Examples of the alkanediyl group having 1 to 6 carbon atoms include a methylene group, an ethylene group, and a propane-1,2-diyl group.
 式(II)中のXが、前記式(IIa)~(IId)のいずれかで示される2価の基である場合、各式におけるY~Yは各々独立に炭素数1~20のアルカンジイル基であり、前記アルカンジイル基が炭素数3以上である場合は脂環式構造を有していてもよい。
a及びbは各々独立に0~20の整数を表す。
When X in the formula (II) is a divalent group represented by any one of the formulas (IIa) to (IId), Y 1 to Y 4 in each formula are each independently of 1 to 20 carbon atoms. When it is an alkanediyl group and the alkanediyl group has 3 or more carbon atoms, it may have an alicyclic structure.
a and b each independently represents an integer of 0 to 20.
 式(II)で示される化合物としては、例えば以下のA~Gの化合物が挙げられる。なお、その後に示す化学式A~Gは、それぞれ化合物A~Gに対応するものである。 Examples of the compound represented by the formula (II) include the following compounds A to G. The following chemical formulas A to G correspond to the compounds A to G, respectively.
 A:3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート
 B:3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート
 C:エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)
 D:ビス(3,4-エポキシシクロヘキシルメチル) アジペート
 E:ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル) アジペート
 F:ジエチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)
 G:エチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)
A: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate B: 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate C: ethylenebis (3,4 -Epoxycyclohexanecarboxylate)
D: bis (3,4-epoxycyclohexylmethyl) adipate E: bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate F: diethylene glycol bis (3,4-epoxycyclohexylmethyl ether)
G: Ethylene glycol bis (3,4-epoxycyclohexyl methyl ether)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本発明において、脂環式エポキシ化合物(B2)としては、入手が容易であるとの観点から、3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレートがより好ましい。また、導電層の腐食を効果的に抑制できるという観点から、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物が好ましい。特に3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレートと2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物とを組み合わせて脂環式エポキシ化合物(B2)として使用すると、導電層の腐食
をより効果的に抑制することができる。脂環式エポキシ化合物(B2)として、1種の脂環式エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。
In the present invention, the alicyclic epoxy compound (B2) is more preferably 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate from the viewpoint of easy availability. Further, from the viewpoint that corrosion of the conductive layer can be effectively suppressed, 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol is preferable. In particular, a combination of 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol When used as an alicyclic epoxy compound (B2), corrosion of the conductive layer can be more effectively suppressed. As the alicyclic epoxy compound (B2), one type of alicyclic epoxy compound may be used alone, or a plurality of different types may be used in combination.
 硬化性組成物(1)が脂環式エポキシ化合物(B2)を含む場合、脂環式エポキシ化合物(B2)の含有量は、硬化性組成物(1)に含まれる全重合性化合物の総量100質量部に対して、好ましくは3~70質量部、より好ましくは10~60質量部、さらに好ましくは20~55質量部、特に好ましくは25~50質量部である。脂環式エポキシ化合物(B2)の含有量が上記範囲にあると、紫外線等の活性エネルギー線の照射による硬化が速やかに進行し、十分な硬さの硬化物層を容易に形成することができる。 When curable composition (1) contains an alicyclic epoxy compound (B2), content of alicyclic epoxy compound (B2) is the total amount of all the polymerizable compounds contained in curable composition (1) 100. The amount is preferably 3 to 70 parts by mass, more preferably 10 to 60 parts by mass, still more preferably 20 to 55 parts by mass, and particularly preferably 25 to 50 parts by mass with respect to parts by mass. When the content of the alicyclic epoxy compound (B2) is in the above range, curing by irradiation with active energy rays such as ultraviolet rays proceeds rapidly, and a cured product layer having sufficient hardness can be easily formed. .
 前記芳香族エポキシ化合物(B3)は、分子内に1つ以上の芳香環を有する化合物であり、具体的には、例えば以下のようなものが挙げられる。
 フェノール、クレゾール、ブチルフェノール等の少なくとも1つの芳香環を有する1価フェノール又は、そのアルキレンオキシド付加物のモノ/ポリグリシジルエーテル化物、例えばビスフェノールA、ビスフェノールF、又はこれらにさらにアルキレンオキシドを付加した化合物のグリシジルエーテル化物やエポキシノボラック樹脂;
 レゾルシノールやハイドロキノン、カテコール等の2つ以上のフェノール性水酸基を有する芳香族化合物のグリシジルエーテル;
 ベンゼンジメタノールやベンゼンジエタノール、ベンゼンジブタノール等のアルコール性水酸基を2つ以上有する芳香族化合物のモノ/ポリグリシジルエーテル化物;
 フタル酸、テレフタル酸、トリメリット酸等の2つ以上のカルボン酸を有する多塩基酸
芳香族化合物のグリシジルエステル;
 安息香酸やトルイル酸、ナフトエ酸等の安息香酸類のグリシジルエステル;
 スチレンオキシド又はジビニルベンゼンのエポキシ化物等。
The aromatic epoxy compound (B3) is a compound having one or more aromatic rings in the molecule, and specific examples thereof include the following.
Monohydric phenol having at least one aromatic ring such as phenol, cresol, butylphenol or the like, or a mono / polyglycidyl etherified product of an alkylene oxide adduct thereof, such as bisphenol A, bisphenol F, or a compound obtained by further adding an alkylene oxide thereto Glycidyl etherified products and epoxy novolac resins;
A glycidyl ether of an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, catechol;
Mono / polyglycidyl etherified products of aromatic compounds having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, benzenedibutanol;
Glycidyl esters of polybasic aromatic compounds having two or more carboxylic acids such as phthalic acid, terephthalic acid, trimellitic acid;
Glycidyl esters of benzoic acids such as benzoic acid, toluic acid, naphthoic acid;
Epoxidized styrene oxide or divinylbenzene.
 芳香族エポキシ化合物(B3)を含む場合、硬化性組成物の低粘度化の観点から、フェノール類のグリシジルエーテル、アルコール性水酸基を2つ以上有する芳香族化合物のグリシジルエーテル化物、多価フェノール類のグリシジルエーテル化物、安息香酸類のグリシジルエステル、多塩基酸類のグリシジルエステル、スチレンオキシド又はジビニルベンゼンのエポキシ化物の群から選ばれる少なくとも1種を含むことが好ましい。
 また、硬化性組成物の硬化性を向上させることから、芳香族エポキシ化合物(B3)としては、エポキシ当量が80~500であるものが好ましい。
 芳香族エポキシ化合物(B3)として、1種の芳香族エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。
When the aromatic epoxy compound (B3) is included, from the viewpoint of reducing the viscosity of the curable composition, glycidyl ether of phenols, glycidyl etherified products of aromatic compounds having two or more alcoholic hydroxyl groups, polyhydric phenols It preferably contains at least one selected from the group consisting of glycidyl etherified products, glycidyl esters of benzoic acids, glycidyl esters of polybasic acids, styrene oxide or epoxidized products of divinylbenzene.
Further, in order to improve the curability of the curable composition, the aromatic epoxy compound (B3) preferably has an epoxy equivalent of 80 to 500.
As the aromatic epoxy compound (B3), one kind of aromatic epoxy compound may be used alone, or a plurality of different kinds may be used in combination.
 芳香族エポキシ化合物(B3)としては、市販品を用いることができ、例えば、デナコールEX-121、デナコールEX-141、デナコールEX-142、デナコールEX-145、デナコールEX-146、デナコールEX-147、デナコールEX-201、デナコールEX-203、デナコールEX-711、デナコールEX-721、オンコートEX-1020、オンコートEX-1030、オンコートEX-1040、オンコートEX-1050、オンコートEX-1051、オンコートEX-1010、オンコートEX-1011、オンコート1012(以上、ナガセケムテックス社製);オグソールPG-100、オグソールEG-200、オグソールEG-210、オグソールEG-250(以上、大阪ガスケミカル社製);HP4032、HP4032D、HP4700(以上、DIC社製);ESN-475V(新日鉄住金化学社製);エピコートYX8800、jER828EL(三菱化学社製);マープルーフG-0105SA、マープルーフG-0130SP(日油社製);エピクロンN-665、エピクロンHP-7200(以上、DIC社製);EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、XD-1000、NC-3000、EPPN-501H、EPPN-501HY、EPPN-502H、NC-7000L(以上、日本化薬社製);アデカグリシロールED-501、アデカグリシロールED-502、アデカグリシロールED-509、アデカグリシロールED-529、アデカレジンEP-4000、アデカレジンEP-4005、アデカレジンEP-4100、アデカレジンEP-4901(以上、ADEKA社製);TECHMORE VG-3101L、EPOX-MKR710、EPOX-MKR151(以上、プリンテック社製)等が挙げられる。 As the aromatic epoxy compound (B3), commercially available products can be used. For example, Denacol EX-121, Denacol EX-141, Denacol EX-142, Denacol EX-145, Denacol EX-146, Denacol EX-147, Denacol EX-201, Denacol EX-203, Denacol EX-711, Denacol EX-721, On Coat EX-1020, On Coat EX-1030, On Coat EX-1040, On Coat EX-1050, On Coat EX-1051, ONCOAT EX-1010, ONCOAT EX-1011, ONCOAT 1012 (above, manufactured by Nagase ChemteX Corporation); Ogusol PG-100, Ogusol EG-200, Ogusol EG-210, Ogusol EG-250 (above, Osaka Gas Chemical) HP4032, HP4032D, HP4700 (manufactured by DIC); ESN-475V (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.); Epicoat YX8800, jER828EL (manufactured by Mitsubishi Chemical); Marproof G-0105SA, Marproof G-0130SP ( Manufactured by NOF Corporation); Epicron N-665, Epicron HP-7200 (manufactured by DIC Corporation); EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, XD-1000, NC-3000, EPPN-501H EPPN-501HY, EPPN-502H, NC-7000L (above, Nippon Kayaku Co., Ltd.); Adekaglycilol ED-501, Adekaglycilol ED-502, Adekaglycilol ED-509, Adekaglycilol ED-529, Adeka Resin E -4000, Adecaresin EP-4005, ADEKA RESIN EP-4100, ADEKA RESIN EP-4901 (manufactured by ADEKA Corporation); TECHMORE VG-3101L, EPOX-MKR710, EPOX-MKR151 (or, purine Tech Co., Ltd.) and the like.
 前記硬化性組成物は芳香族エポキシ化合物(B3)を含むことにより、硬化性組成物が疎水性の樹脂となり、これにより得られる硬化物層も疎水性となる。このため、高温高湿下において外部からの水分の侵入を防ぎ、偏光フィルムに含まれる二色性色素(ヨウ素)の移動を効果的に抑制することができる。 When the curable composition contains the aromatic epoxy compound (B3), the curable composition becomes a hydrophobic resin, and the cured product layer obtained thereby becomes hydrophobic. For this reason, the penetration | invasion of the water | moisture content from the outside under high temperature high humidity can be prevented, and the movement of the dichroic dye (iodine) contained in a polarizing film can be suppressed effectively.
 硬化性組成物(1)に芳香族エポキシ化合物(B3)を含む場合、芳香族エポキシ化合物(B3)の含有量は、前記硬化性組成物(1)に含まれる全重合性化合物の総量100質量部に対して、好ましくは1~70質量部、より好ましくは5~60質量部、さらに好ましくは7~55質量部、特に好ましくは10~50質量部である。芳香族エポキシ化合物(B3)の含有量が上記範囲にあると、硬化物層の疎水性を向上でき、硬化物層に対する二色性色素(ヨウ素)の透過性を低下させることができる。 When the curable composition (1) contains the aromatic epoxy compound (B3), the content of the aromatic epoxy compound (B3) is 100 mass of the total polymerizable compound contained in the curable composition (1). The amount is preferably 1 to 70 parts by mass, more preferably 5 to 60 parts by mass, still more preferably 7 to 55 parts by mass, and particularly preferably 10 to 50 parts by mass with respect to parts. When the content of the aromatic epoxy compound (B3) is in the above range, the hydrophobicity of the cured product layer can be improved, and the permeability of the dichroic dye (iodine) to the cured product layer can be reduced.
 硬化性組成物(1)が、オキセタン化合物(A)及び脂環式エポキシ化合物(B2)を含有する場合、オキセタン化合物(A)の含有量(WA)に対する脂環式エポキシ化合物(B2)の含有量(WB2)の質量比(WB2/WA)は、0.05~1.5であることが好ましい。
 硬化性組成物(1)が、オキセタン化合物(A)及び脂肪族エポキシ化合物(B1)を含有する場合、オキセタン化合物(A)の含有量(WA)に対する脂肪族エポキシ化合物(B1)の含有量(WB1)の質量比(WB1/WA)は、0.1~0.5であることが好ましい。
 硬化性組成物(1)が、オキセタン化合物(A)及び芳香族エポキシ化合物(B3)を含有する場合、オキセタン化合物(A)の含有量(WA)に対する芳香族エポキシ化合物(B1)の含有量(WB3)の質量比(WB3/WA)は、0.1~1.5であることが好ましい。
When curable composition (1) contains oxetane compound (A) and alicyclic epoxy compound (B2), content of alicyclic epoxy compound (B2) with respect to content (WA) of oxetane compound (A) The mass ratio (WB2 / WA) of the amount (WB2) is preferably 0.05 to 1.5.
When curable composition (1) contains oxetane compound (A) and aliphatic epoxy compound (B1), content of aliphatic epoxy compound (B1) with respect to content (WA) of oxetane compound (A) ( The mass ratio (WB1 / WA) of WB1) is preferably 0.1 to 0.5.
When curable composition (1) contains oxetane compound (A) and aromatic epoxy compound (B3), content of aromatic epoxy compound (B1) with respect to content (WA) of oxetane compound (A) ( The mass ratio (WB3 / WA) of WB3) is preferably 0.1 to 1.5.
 硬化性組成物(1)は、オキセタン化合物(A)及びエポキシ化合物(B)以外の重合性化合物を含有していてもよい。具体的には、脂肪族モノエポキシ化合物、脂環式モノエポキシ化合物等が挙げられる。 The curable composition (1) may contain a polymerizable compound other than the oxetane compound (A) and the epoxy compound (B). Specific examples include aliphatic monoepoxy compounds and alicyclic monoepoxy compounds.
 硬化性組成物(1)に含まれる重合性化合物の含有量は、硬化性組成物(1)の総質量100質量部に対して、好ましくは80~100質量部、より好ましくは90~99.5質量部、さらに好ましくは95~99質量部である。重合性化合物の含有量が上記範囲にあると、偏光フィルムに含まれる二色性色素の第1硬化物層への移動をより効果的に抑制することができる。 The content of the polymerizable compound contained in the curable composition (1) is preferably 80 to 100 parts by mass, more preferably 90 to 99.99 parts by mass with respect to 100 parts by mass of the total mass of the curable composition (1). The amount is 5 parts by mass, more preferably 95 to 99 parts by mass. When content of a polymeric compound exists in the said range, the movement to the 1st hardened | cured material layer of the dichroic dye contained in a polarizing film can be suppressed more effectively.
 硬化性組成物は、通常、重合を開始させるための重合開始剤を含有する。重合開始剤は、光重合開始剤(例えば光カチオン重合開始剤、光ラジカル重合開始剤)であっても、熱重合開始剤であってもよい。例えば、硬化性組成物が前記オキセタン化合物(A)やエポキシ化合物(B)等を重合性化合物として含む場合、重合開始剤に光カチオン重合開始剤を用いるのが好ましい。 The curable composition usually contains a polymerization initiator for initiating polymerization. The polymerization initiator may be a photopolymerization initiator (for example, a photocationic polymerization initiator or a radical photopolymerization initiator) or a thermal polymerization initiator. For example, when a curable composition contains the said oxetane compound (A), an epoxy compound (B), etc. as a polymeric compound, it is preferable to use a photocationic polymerization initiator for a polymerization initiator.
 光カチオン重合開始剤は、可視光線、紫外線、X線、又は電子線のような活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、カチオン重合性化合物の重合反応を開始させるものである。光カチオン重合開始剤は、光で触媒的に作用するため、重合
性化合物に混合しても保存安定性や作業性に優れる。活性エネルギー線の照射によりカチオン種又はルイス酸を生じる化合物として、例えば、芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩、芳香族ジアゾニウム塩、鉄-アレーン錯体等を挙げることができる。
The cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams, and initiates a polymerization reaction of the cationically polymerizable compound. . Since the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with a polymerizable compound. Examples of the compound that generates a cationic species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic iodonium salts and aromatic sulfonium salts, aromatic diazonium salts, and iron-arene complexes.
 芳香族ヨードニウム塩は、ジアリールヨードニウムカチオンを有する化合物であり、当該カチオンとして、典型的にはジフェニルヨードニウムカチオンを挙げることができる。芳香族スルホニウム塩は、トリアリールスルホニウムカチオンを有する化合物であり、当該カチオンとして、典型的にはトリフェニルスルホニウムカチオンや4,4’-ビス(ジフェニルスルホニオ)ジフェニルスルフィドカチオン等を挙げることができる。芳香族ジアゾニウム塩は、ジアゾニウムカチオンを有する化合物であり、当該カチオンとして、典型的にはベンゼンジアゾニウムカチオンを挙げることができる。また、鉄-アレーン錯体は、典型的にはシクロペンタジエニル鉄(II)アレーンカチオン錯塩である。 The aromatic iodonium salt is a compound having a diaryl iodonium cation, and typical examples of the cation include a diphenyl iodonium cation. The aromatic sulfonium salt is a compound having a triarylsulfonium cation, and typical examples of the cation include a triphenylsulfonium cation and a 4,4′-bis (diphenylsulfonio) diphenylsulfide cation. The aromatic diazonium salt is a compound having a diazonium cation, and typical examples of the cation include a benzenediazonium cation. The iron-arene complex is typically a cyclopentadienyl iron (II) arene cation complex salt.
 上に示したカチオンは、アニオン(陰イオン)と対になって光カチオン重合開始剤を構成する。光カチオン重合開始剤を構成するアニオンとしては、特殊リン系アニオン[(Rf)PF6-n、ヘキサフルオロホスフェートアニオンPF 、ヘキサフルオロアンチモネートアニオンSbF 、ペンタフルオロヒドロキシアンチモネートアニオンSbF(OH)、ヘキサフルオロアーセネートアニオンAsF 、テトラフルオロボレートアニオンBF 、テトラキス(ペンタフルオロフェニル)ボレートアニオンB(C 等が挙げられる。中でも、重合性化合物の硬化性及び得られる硬化物層の安全性の観点から、光カチオン重合開始剤が特殊リン系アニオン[(Rf)PF6-n、ヘキサフルオロホスフェートアニオンPF であることが好ましい。 The cation shown above forms a photocationic polymerization initiator in combination with an anion (anion). As anions constituting the photocationic polymerization initiator, special phosphorus anions [(Rf) n PF 6-n ] , hexafluorophosphate anion PF 6 , hexafluoroantimonate anion SbF 6 , pentafluorohydroxyantimonate Anion SbF 5 (OH) , hexafluoroarsenate anion AsF 6 , tetrafluoroborate anion BF 4 , tetrakis (pentafluorophenyl) borate anion B (C 6 F 5 ) 4 — and the like can be mentioned. Among them, from the viewpoint of safety of the curability and the resulting cured product layer of a polymerizable compound, cationic photopolymerization initiator special phosphorus-based anion [(Rf) n PF 6- n] -, hexafluorophosphate anion PF 6 - It is preferable that
 光カチオン重合開始剤は、1種を単独で用いても、異なる複数種を組み合わせて用いてもよい。中でも、芳香族スルホニウム塩は、300nm付近の波長領域でも紫外線吸収特性を有することから硬化性に優れ、良好な機械的強度や接着強度を有する硬化物をもたらすことができるため好ましい。 The photocationic polymerization initiator may be used alone or in combination with a plurality of different types. Among these, aromatic sulfonium salts are preferable because they have ultraviolet absorption characteristics even in a wavelength region near 300 nm, and are excellent in curability and can provide a cured product having good mechanical strength and adhesive strength.
 硬化性組成物(1)における重合開始剤の含有量は、重合性化合物100質量部に対して、通常、0.5~10質量部であり、好ましくは6質量部以下、より好ましくは3質量部以下である。重合開始剤の含有量が前記範囲内であると、重合性化合物を十分に硬化させることができ、得られる硬化物から構成される硬化物層に高い機械的強度や接着強度を与えることができる。一方で、その量が過度に多くなると、光カチオン重合開始剤からの生成物が偏光フィルムを構成するポリビニルアルコールの水酸基と反応して、偏光フィルムの光学性能を低下させるおそれがある。 The content of the polymerization initiator in the curable composition (1) is usually 0.5 to 10 parts by weight, preferably 6 parts by weight or less, more preferably 3 parts by weight with respect to 100 parts by weight of the polymerizable compound. Or less. When the content of the polymerization initiator is within the above range, the polymerizable compound can be sufficiently cured, and high mechanical strength and adhesive strength can be given to the cured product layer formed from the obtained cured product. . On the other hand, if the amount is excessively large, the product from the cationic photopolymerization initiator may react with the hydroxyl group of polyvinyl alcohol constituting the polarizing film, thereby reducing the optical performance of the polarizing film.
 本発明において、硬化性組成物(1)は、必要に応じて硬化性組成物に一般的に用いられる添加剤を含むことができる。そのような添加剤としては、例えば、イオントラップ剤、酸化防止剤、連鎖移動剤、重合促進剤(ポリオール等)、増感剤、増感助剤、光安定剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、レベリング剤、シランカップリング剤、色素、帯電防止剤、紫外線吸収剤等が挙げられる。 In the present invention, the curable composition (1) can contain additives generally used in the curable composition as necessary. Examples of such additives include ion trapping agents, antioxidants, chain transfer agents, polymerization accelerators (polyols, etc.), sensitizers, sensitization aids, light stabilizers, tackifiers, thermoplastic resins. , Fillers, flow regulators, plasticizers, antifoaming agents, leveling agents, silane coupling agents, dyes, antistatic agents, ultraviolet absorbers and the like.
 増感剤としては、例えば光増感剤が挙げられる。光増感剤は、光カチオン重合開始剤が示す極大吸収波長よりも長い波長に極大吸収を示し、光カチオン重合開始剤による重合開始反応を促進させる化合物である。また、光増感助剤は、光増感剤の作用を一層促進させる化合物である。保護フィルムの種類によっては、このような光増感剤、さらには光増感助剤を配合することが好ましい。これらの光増感剤、光増感助剤を配合することにより、UV透過性の低いフィルムを使用した場合においても、所望の性能を有する硬化物を形成する事ができる。 Examples of the sensitizer include a photosensitizer. The photosensitizer is a compound that exhibits maximum absorption at a wavelength longer than the maximum absorption wavelength exhibited by the photocationic polymerization initiator and promotes the polymerization initiation reaction by the photocationic polymerization initiator. The photosensitizing aid is a compound that further promotes the action of the photosensitizer. Depending on the type of the protective film, it is preferable to blend such a photosensitizer and further a photosensitization aid. By blending these photosensitizers and photosensitization aids, a cured product having desired performance can be formed even when a film having low UV transmittance is used.
 光増感剤は、例えば380nmよりも長い波長の光に極大吸収を示す化合物であることが好ましい。かかる光増感剤としては、以下に記載のアントラセン系化合物等が挙げられる。
 9,10-ジメトキシアントラセン、
 9,10-ジエトキシアントラセン、
 9,10-ジプロポキシアントラセン、
 9,10-ジイソプロポキシアントラセン、
 9,10-ジブトキシアントラセン、
 9,10-ジペンチルオキシアントラセン、
 9,10-ジヘキシルオキシアントラセン、
 9,10-ビス(2-メトキシエトキシ)アントラセン、
 9,10-ビス(2-エトキシエトキシ)アントラセン、
 9,10-ビス(2-ブトキシエトキシ)アントラセン、
 9,10-ビス(3-ブトキシプロポキシ)アントラセン、
 2-メチル-又は2-エチル-9,10-ジメトキシアントラセン、
 2-メチル-又は2-エチル-9,10-ジエトキシアントラセン、
 2-メチル-又は2-エチル-9,10-ジプロポキシアントラセン、
 2-メチル-又は2-エチル-9,10-ジイソプロポキシアントラセン、
 2-メチル-又は2-エチル-9,10-ジブトキシアントラセン、
 2-メチル-又は2-エチル-9,10-ジペンチルオキシアントラセン、
 2-メチル-又は2-エチル-9,10-ジヘキシルオキシアントラセン。
The photosensitizer is preferably a compound that exhibits maximum absorption in light having a wavelength longer than 380 nm, for example. Examples of the photosensitizer include anthracene compounds described below.
9,10-dimethoxyanthracene,
9,10-diethoxyanthracene,
9,10-dipropoxyanthracene,
9,10-diisopropoxyanthracene,
9,10-dibutoxyanthracene,
9,10-dipentyloxyanthracene,
9,10-dihexyloxyanthracene,
9,10-bis (2-methoxyethoxy) anthracene,
9,10-bis (2-ethoxyethoxy) anthracene,
9,10-bis (2-butoxyethoxy) anthracene,
9,10-bis (3-butoxypropoxy) anthracene,
2-methyl- or 2-ethyl-9,10-dimethoxyanthracene,
2-methyl- or 2-ethyl-9,10-diethoxyanthracene,
2-methyl- or 2-ethyl-9,10-dipropoxyanthracene,
2-methyl- or 2-ethyl-9,10-diisopropoxyanthracene,
2-methyl- or 2-ethyl-9,10-dibutoxyanthracene,
2-methyl- or 2-ethyl-9,10-dipentyloxyanthracene,
2-Methyl- or 2-ethyl-9,10-dihexyloxyanthracene.
 硬化性組成物(1)は、重合性化合物及び重合開始剤、並びに必要に応じて添加剤を混合して得られる。第1硬化物層は硬化性組成物(1)を、偏光フィルム上に、又は第1保護フィルムを用いる場合にはこの第1保護フィルム上に塗布し、紫外線、電子線等の活性エネルギー線を照射することにより塗布した硬化性組成物を硬化させて形成することができる。 The curable composition (1) is obtained by mixing a polymerizable compound, a polymerization initiator, and additives as necessary. A 1st hardened | cured material layer apply | coats a curable composition (1) on this polarizing film or on this 1st protective film, when using a 1st protective film, and active energy rays, such as an ultraviolet-ray and an electron beam, are applied. It can be formed by curing the applied curable composition by irradiation.
 硬化性組成物(1)の塗工には、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなど、種々の塗工方式が利用できる。硬化性組成物(1)を硬化させる際の光源としては、活性エネルギー線の光源が挙げられる。活性エネルギー線の光源は、例えば、紫外線、電子線、X線などを発生するものであればよい。特に波長400nm以下に発光分布を有する光源が好ましく、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどを挙げることができる。 For coating of the curable composition (1), various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used. Examples of the light source for curing the curable composition (1) include an active energy ray light source. The light source of the active energy ray may be any light source that generates ultraviolet rays, electron beams, X-rays, and the like. In particular, a light source having a light emission distribution at a wavelength of 400 nm or less is preferable, and examples thereof include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, and a metal halide lamp.
 硬化性組成物(1)を硬化させる際の光照射強度は、組成物ごとに異なるが、重合開始剤の活性化に有効な波長領域の光照射強度が0.1~1000mW/cmであることが好ましい。硬化性組成物(1)の硬化の際の光照射強度が小さすぎると、反応が十分に進行するまでに要する時間が長くなり、逆に光照射強度が大きすぎると、ランプから輻射される熱及び硬化性組成物(1)の重合時の発熱によって、貼着されるフィルムの劣化を生じる可能性がある。硬化性組成物(1)の硬化の際の光照射時間は、組成物ごとに制御されるものであって特に限定されないが、光照射強度と光照射時間の積として表される積算光量が10~5000mJ/cmとなるように設定することが好ましい。積算光量が小さすぎると、重合開始剤由来の活性種の発生が十分でなく、得られる硬化が不十分になる可能性がある。また、積算光量が大きすぎると、照射時間が非常に長くなり、生産性向上には不利なものとなる。 Light irradiation intensity at the time of curing the curable composition (1) is different for each composition, the light irradiation intensity of the wavelength region effective for activation of the polymerization initiator is 0.1 ~ 1000mW / cm 2 It is preferable. If the light irradiation intensity at the time of curing of the curable composition (1) is too small, the time required for the reaction to proceed sufficiently increases, and conversely, if the light irradiation intensity is too large, the heat radiated from the lamp. In addition, heat generated during polymerization of the curable composition (1) may cause deterioration of a film to be attached. The light irradiation time at the time of curing of the curable composition (1) is controlled for each composition and is not particularly limited, but the integrated light amount expressed as the product of the light irradiation intensity and the light irradiation time is 10. It is preferable to set it to ˜5000 mJ / cm 2 . If the integrated light quantity is too small, the generation of active species derived from the polymerization initiator is not sufficient, and the resulting curing may be insufficient. On the other hand, if the integrated light quantity is too large, the irradiation time becomes very long, which is disadvantageous for improving productivity.
 なお、活性エネルギー線の照射によって硬化性組成物を硬化させる場合、例えば、偏光フィルムの偏光度、透過率及び色相、並びに保護フィルム及び光学層を構成する各種フィルムの透明性といった、光学積層体の諸機能が低下しない条件で硬化を行なうことが好ましい。 In the case where the curable composition is cured by irradiation with active energy rays, for example, the polarization degree of the polarizing film, the transmittance and the hue, and the transparency of various films constituting the protective film and the optical layer, for example, It is preferable to perform the curing under conditions that do not deteriorate the various functions.
 本発明の光学積層体において、第1硬化物層の厚みは、特に制限はないが、好ましくは0.1~15μmであり、より好ましくは0.5~10μmであり、さらに好ましくは0.5~7μmである。第1硬化物層の厚みが下限値以上であると、二色性色素の移動を有効に抑制することができ、上記上限値以下であると、硬化性組成物を十分に硬化させることができる。 In the optical laminate of the present invention, the thickness of the first cured product layer is not particularly limited, but is preferably 0.1 to 15 μm, more preferably 0.5 to 10 μm, and still more preferably 0.5. ~ 7 μm. When the thickness of the first cured product layer is at least the lower limit value, the movement of the dichroic dye can be effectively suppressed, and when it is at most the upper limit value, the curable composition can be sufficiently cured. .
 本発明の光学積層体は、第1硬化物層の前記吸光度上昇率が30%であり、二色性色素に対する吸収性が比較的低い。通常、高温高湿環境下においては、外部からの水分の浸入により二色性色素の移動は加速され得るが、本発明の光学積層体においては偏光フィルムに含まれる二色性色素の第1硬化物層への移動を効果的に抑制することができる。このため、高温高湿環境下におかれても、導電層の腐食を効果的に防止することができるとともに、光学性能を維持することもできる。さらに、光学積層体を構成する粘着層が、例えば帯電防止剤などとしてイオン性化合物を含む場合に、粘着層中に存在するイオン性化合物が光学積層体を構成する保護フィルムを透過して、偏光フィルムへと移動し、偏光フィルム中の二色性色素と相互作用を引き起こして光学積層体の光学性能を低下させることがある。本発明の光学積層体は、偏光フィルムと粘着層の間に前記第1硬化物層が存在するため、粘着層からのイオン性化合物の移動を効果的に抑制することができ、これにより光学積層体の光学性能の低下を防止することができる。
 なお、第1硬化物層は、偏光フィルムと保護フィルム又は粘着層とを接着する接着剤層としての役割も果たす。その場合、特に、イオン化合物等が透過しやすい保護フィルムにおいても光学積層体の光学性能の低下を防止する事ができる。
In the optical layered body of the present invention, the absorbance increase rate of the first cured product layer is 30%, and the absorbability with respect to the dichroic dye is relatively low. Usually, in a high-temperature and high-humidity environment, the movement of the dichroic dye can be accelerated by the ingress of moisture from the outside. However, in the optical laminate of the present invention, the first curing of the dichroic dye contained in the polarizing film is performed. The movement to the physical layer can be effectively suppressed. For this reason, even when placed in a high-temperature and high-humidity environment, corrosion of the conductive layer can be effectively prevented, and optical performance can be maintained. Further, when the pressure-sensitive adhesive layer constituting the optical laminate includes an ionic compound as an antistatic agent, for example, the ionic compound present in the pressure-sensitive adhesive layer is transmitted through the protective film constituting the optical laminate and polarized. It may move to a film and cause an interaction with the dichroic dye in the polarizing film to deteriorate the optical performance of the optical laminate. Since the first cured product layer is present between the polarizing film and the adhesive layer, the optical laminate of the present invention can effectively suppress the movement of the ionic compound from the adhesive layer. The deterioration of the optical performance of the body can be prevented.
In addition, the 1st hardened | cured material layer also plays the role as an adhesive bond layer which adhere | attaches a polarizing film, a protective film, or an adhesion layer. In that case, it is possible to prevent a decrease in the optical performance of the optical laminate, particularly in a protective film through which an ionic compound or the like is easily transmitted.
 〔粘着層〕
 粘着層を構成する粘着剤としては、従来公知の粘着剤を特に制限なく用いることができ、例えば、アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂などをベースポリマーとして有する粘着剤を用いることができる。また、エネルギー線硬化型粘着剤、熱硬化型粘着剤などであってもよい。これらの中でも、透明性、粘着力、リワーク性、耐候性、耐熱性などに優れるアクリル系樹脂をベースポリマーとした粘着剤が好適である。
(Adhesive layer)
As the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer, conventionally known pressure-sensitive adhesives can be used without particular limitation. For example, an acrylic resin, a rubber-based resin, a urethane-based resin, a silicone-based resin, a polyvinyl ether-based resin, or the like is used as a base polymer. Can be used. Further, an energy ray curable pressure sensitive adhesive, a thermosetting pressure sensitive adhesive, or the like may be used. Among these, an adhesive having a base polymer of an acrylic resin that is excellent in transparency, adhesive strength, reworkability, weather resistance, heat resistance, and the like is preferable.
 本発明において粘着層がアクリル系樹脂を含む場合、そのアクリル系樹脂としては、特に限定されるものではなく、従来公知のものを用いることができる。中でも粘着性及びリワーク性の観点から、本発明の光学積層体に含まれる粘着層が下記アクリル樹脂(P)を含むことが好ましい。 In the present invention, when the adhesive layer contains an acrylic resin, the acrylic resin is not particularly limited, and conventionally known ones can be used. Among these, from the viewpoint of adhesiveness and reworkability, the adhesive layer contained in the optical laminate of the present invention preferably contains the following acrylic resin (P).
 アクリル樹脂(P)は、下記式(III): The acrylic resin (P) has the following formula (III):
Figure JPOXMLDOC01-appb-C000007
〔式中、Rは水素原子又はメチル基を表し、Rは炭素数1~10のアルコキシ基で置換されていてもよい炭素数1~14のアルキル基を表す〕
で示される(メタ)アクリル酸アルキルエステル(P1)に由来する構造単位を主成分とし、さらに、極性官能基を有する不飽和単量体(P2)(以下、「極性官能基含有単量体」と称する場合がある)に由来する構造単位を含むアクリル樹脂である。
 ここで、本明細書において、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸のいずれでもよいことを意味し、この他、(メタ)アクリレートなどというときの「(メタ)」も同様の趣旨である。
Figure JPOXMLDOC01-appb-C000007
[Wherein, R a represents a hydrogen atom or a methyl group, and R b represents an alkyl group having 1 to 14 carbon atoms which may be substituted with an alkoxy group having 1 to 10 carbon atoms]
An unsaturated monomer (P2) having a structural unit derived from (meth) acrylic acid alkyl ester (P1) as a main component and further having a polar functional group (hereinafter referred to as “polar functional group-containing monomer”) An acrylic resin containing a structural unit derived from
Here, in the present specification, (meth) acrylic acid means that either acrylic acid or methacrylic acid may be used, and in addition, “(meth)” when referred to as (meth) acrylate or the like has the same purpose. It is.
 式(III)で示される(メタ)アクリル酸アルキルエステル(P1)としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸n-オクチル、及びアクリル酸ラウリルなどの直鎖状のアクリル酸アルキルエステル;アクリル酸イソブチル、アクリル酸2-エチルヘキシル、及びアクリル酸イソオクチルなどの分枝状のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸n-オクチル、及びメタクリル酸ラウリルなどの直鎖状のメタクリル酸アルキルエステル;メタクリル酸イソブチル、メタクリル酸2-エチルヘキシル、及びメタクリル酸イソオクチルなどの分枝状のメタクリル酸アルキルエステル;アクリル酸2-メトキシエチル、アクリル酸エトキシメチル、メタクリル酸2-メトキシエチル、メタクリル酸エトキシメチル等が挙げられる。
これらの中でもアクリル酸n-ブチルが好ましく、具体的には、アクリル樹脂(P)を構成する全単量体の総量に対して、アクリル酸n-ブチルが50質量%以上であることが好ましい。これらの(メタ)アクリル酸アルキルエステル(P1)は、それぞれ単独で用いても、異なる複数種を組み合わせて用いてもよい。
Examples of the (meth) acrylic acid alkyl ester (P1) represented by the formula (III) include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, n-octyl acrylate, and lauryl acrylate. Linear alkyl acrylates; branched alkyl acrylates such as isobutyl acrylate, 2-ethylhexyl acrylate, and isooctyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-methacrylate Linear alkyl methacrylates such as butyl, n-octyl methacrylate, and lauryl methacrylate; branched alkyl esters such as isobutyl methacrylate, 2-ethylhexyl methacrylate, and isooctyl methacrylate 2-methoxyethyl acrylate, ethoxymethyl acrylate, methacrylate, 2-methoxyethyl, and methacrylate ethoxymethyl and the like.
Among these, n-butyl acrylate is preferable, and specifically, n-butyl acrylate is preferably 50% by mass or more based on the total amount of all monomers constituting the acrylic resin (P). These (meth) acrylic acid alkyl esters (P1) may be used alone or in combination of two or more different types.
 極性官能基含有単量体(P2)において、極性官能基としては、遊離カルボキシル基、水酸基、アミノ基、エポキシ基をはじめとする複素環基などが挙げられる。極性官能基含有単量体(P2)は、好ましくは極性官能基を有する(メタ)アクリル酸系化合物である。その例として、アクリル酸、メタクリル酸、及びβ-カルボキシエチルアクリレートなどの遊離カルボキシル基を有する不飽和単量体;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-又は3-クロロ-2-ヒドロキシプロピル、及びジエチレングリコールモノ(メタ)アクリレートなどの水酸基を有する不飽和単量体;アクリロイルモルホリン、ビニルカプロラクタム、N-ビニル-2-ピロリドン、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリルアクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレート、及び2,5-ジヒドロフランなどの複素環基を有する不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレートなどの複素環とは異なるアミノ基を有する不飽和単量体などを挙げることができる。これらの極性官能基含有単量体は、それぞれ単独で用いてもよいし、異なる複数種を用いてもよい。 In the polar functional group-containing monomer (P2), examples of the polar functional group include a free carboxyl group, a hydroxyl group, an amino group, and a heterocyclic group including an epoxy group. The polar functional group-containing monomer (P2) is preferably a (meth) acrylic acid compound having a polar functional group. Examples thereof include unsaturated monomers having a free carboxyl group such as acrylic acid, methacrylic acid, and β-carboxyethyl acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, ( Unsaturated monomers having a hydroxyl group such as 2-methacrylic acid 2- or 3-chloro-2-hydroxypropyl and diethylene glycol mono (meth) acrylate; acryloylmorpholine, vinylcaprolactam, N-vinyl-2-pyrrolidone, tetrahydrofur Unsaturated monocyclic compounds having heterocyclic groups such as furyl (meth) acrylate, caprolactone-modified tetrahydrofurfuryl acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, and 2,5-dihydrofuran Body; N, and the like unsaturated monomer having a different amino groups and heterocyclic rings such as N- dimethylaminoethyl (meth) acrylate. These polar functional group-containing monomers may be used singly or in a plurality of different types.
 極性官能基含有単量体(P2)は、水酸基を有する不飽和単量体であることが好ましい。また、水酸基を有する不飽和単量体に加えて、他の極性官能基を有する不飽和単量体、例えば、遊離カルボキシル基を有する不飽和単量体を併用するのも有効である。 The polar functional group-containing monomer (P2) is preferably an unsaturated monomer having a hydroxyl group. In addition to the unsaturated monomer having a hydroxyl group, it is also effective to use an unsaturated monomer having another polar functional group, for example, an unsaturated monomer having a free carboxyl group.
 アクリル樹脂(P)において、前記式(III)で示される(メタ)アクリル酸アルキルエステル(P1)に由来する構造単位は、アクリル樹脂(P)を構成する全構造単位の総量100質量部に対して、例えば50~100質量部である。極性官能基含有単量体(P2)に由来する構造単位は、アクリル樹脂(P)を構成する全構造単位の総量100質量部に対して例えば0.1~20質量部である。 In the acrylic resin (P), the structural unit derived from the (meth) acrylic acid alkyl ester (P1) represented by the formula (III) is 100 parts by mass in total of all the structural units constituting the acrylic resin (P). For example, 50 to 100 parts by mass. The structural unit derived from the polar functional group-containing monomer (P2) is, for example, 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of all structural units constituting the acrylic resin (P).
 アクリル樹脂(P)は、前記式(III)で示される(メタ)アクリル酸アルキルエステル(P1)及び極性官能基含有単量体(P2)とは異なる単量体に由来する構造単位を含んでいてもよい。これらの例としては、分子内に1個のオレフィン性二重結合と少なくとも1個の芳香環とを有する不飽和単量体(P3)(以下、「芳香環含有単量体」と称する場合がある)に由来する構造単位、分子内に脂環式構造を有する(メタ)アクリル酸エステルに由来する構造単位、スチレン系単量体に由来する構造単位、ビニル系単量体に由来する構造単位、分子内に複数の(メタ)アクリロイル基を有する単量体に由来する構造単位などを挙げることができる。 The acrylic resin (P) includes a structural unit derived from a monomer different from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) represented by the formula (III). May be. Examples thereof include an unsaturated monomer (P3) having one olefinic double bond and at least one aromatic ring in the molecule (hereinafter sometimes referred to as “aromatic ring-containing monomer”). A structural unit derived from (a), a structural unit derived from a (meth) acrylic acid ester having an alicyclic structure in the molecule, a structural unit derived from a styrene monomer, a structural unit derived from a vinyl monomer And a structural unit derived from a monomer having a plurality of (meth) acryloyl groups in the molecule.
 分子内に1個のオレフィン性二重結合と少なくとも1個の芳香環とを有する不飽和単量体(芳香環含有単量体)(P3)は、オレフィン性二重結合を含む基として(メタ)アクリロイル基を有するものが好ましい。その例として、ベンジル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレートなどを挙げることができるが、中でも式(IV): The unsaturated monomer (aromatic ring-containing monomer) (P3) having one olefinic double bond and at least one aromatic ring in the molecule is a group containing an olefinic double bond (meta ) Those having an acryloyl group are preferred. Examples thereof include benzyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, etc. Among them, formula (IV):
Figure JPOXMLDOC01-appb-C000008
〔式中、Rは水素原子又はメチル基を表し、nは1~8の整数であり、Rは水素原子、炭素数1~9のアルキル基、炭素数7~11のアラルキル基又は炭素数6~10のアリール基を表す〕
で示される芳香環含有(メタ)アクリル化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
Wherein, R 3 represents a hydrogen atom or a methyl group, n is an integer of 1 ~ 8, R 4 is a hydrogen atom, an alkyl group having 1-9 carbon atoms, an aralkyl group or C 7 to 11 carbon atoms Represents an aryl group of formula 6-10]
An aromatic ring-containing (meth) acrylic compound represented by
 炭素数1~9のアルキル基としては、メチル、ブチル、ノニルなどが挙げられる。炭素数7~11のアラルキル基としては、ベンジル、フェネチル、ナフチルメチルなどが挙げられる。炭素数6~10のアリール基としては、フェニル、トリル、ナフチルなどが挙げられる。 Examples of the alkyl group having 1 to 9 carbon atoms include methyl, butyl and nonyl. Examples of the aralkyl group having 7 to 11 carbon atoms include benzyl, phenethyl, naphthylmethyl and the like. Examples of the aryl group having 6 to 10 carbon atoms include phenyl, tolyl, naphthyl and the like.
 式(IV)で示される芳香環含有(メタ)アクリル化合物としては、(メタ)アクリル酸2-フェノキシエチル、(メタ)アクリル酸2-(2-フェノキシエトキシ)エチル、エチレンオキサイド変性ノニルフェノールの(メタ)アクリル酸エステル、(メタ)アクリル酸2-(o-フェニルフェノキシ)エチルなどを挙げることができる。これらの芳香環含有単量体は、それぞれ単独で用いてもよいし、異なる複数種を組み合せて用いてもよい。これらの中でも、(メタ)アクリル酸2-フェノキシエチル〔前記式(IV)において、R=H、n=1の化合物〕、(メタ)アクリル酸2-(o-フェニルフェノキシ)エチル〔前記式(IV)において、R=o-フェニル、n=1の化合物〕、又は(メタ)アクリル酸2-(2-フェノキシエトキシ)エチル〔前記式(IV)において、R=H、n=2の化合物〕が、アクリル樹脂(P)を構成する芳香環含有単量体(P3)の1つとして好適である。 Examples of the aromatic ring-containing (meth) acrylic compound represented by the formula (IV) include (meth) acrylic acid 2-phenoxyethyl, (meth) acrylic acid 2- (2-phenoxyethoxy) ethyl, and ethylene oxide-modified nonylphenol (meth) ) Acrylic acid ester, 2- (o-phenylphenoxy) ethyl (meth) acrylate, and the like. These aromatic ring-containing monomers may be used alone or in combination of a plurality of different types. Among these, 2-phenoxyethyl (meth) acrylate [a compound of R 4 = H and n = 1 in the above formula (IV)], 2- (o-phenylphenoxy) ethyl (meth) acrylate [the above formula In (IV), R 4 = o-phenyl, compound of n = 1], or 2- (2-phenoxyethoxy) ethyl (meth) acrylate [in the above formula (IV), R 4 = H, n = 2 Of the aromatic ring-containing monomer (P3) constituting the acrylic resin (P).
 分子内に脂環式構造を有する(メタ)アクリル酸エステルに由来する構造単位における脂環式構造とは、炭素数が、通常5以上、好ましくは5~7のシクロパラフィン構造である。脂環式構造を有するアクリル酸エステルの具体例としては、アクリル酸イソボルニル、アクリル酸シクロヘキシル、アクリル酸ジシクロペンタニル、アクリル酸シクロドデシル、アクリル酸メチルシクロヘキシル、アクリル酸トリメチルシクロヘキシル、アクリル酸tert-ブチルシクロヘキシル、α-エトキシアクリル酸シクロヘキシル、アクリル酸シクロヘキシルフェニルなどが挙げられ、脂環式構造を有するメタクリル酸エステルの具体例としては、メタクリル酸イソボルニル、メタクリル酸シクロヘキシル、メタクリル酸ジシクロペンタニル、メタクリル酸シクロドデシル、メタクリル酸メチルシクロヘキシル、メタクリル酸トリメチルシクロヘキシル、メタクリル酸tert-ブチルシクロヘキシル、メタクリル酸シクロヘキシルフェニルなどが挙げられる。 The alicyclic structure in the structural unit derived from the (meth) acrylic acid ester having an alicyclic structure in the molecule is a cycloparaffin structure having usually 5 or more carbon atoms, preferably 5 to 7 carbon atoms. Specific examples of the acrylate ester having an alicyclic structure include isobornyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, cyclododecyl acrylate, methylcyclohexyl acrylate, trimethylcyclohexyl acrylate, and tert-butyl acrylate. Examples of methacrylic acid esters having an alicyclic structure include isobornyl methacrylate, cyclohexyl methacrylate, dicyclopentanyl methacrylate, methacrylic acid, and the like, such as cyclohexyl, α-ethoxyacrylate cyclohexyl, and cyclohexyl phenyl acrylate. Cyclododecyl, methyl cyclohexyl methacrylate, trimethyl cyclohexyl methacrylate, tert-butyl cyclohexyl methacrylate, cyclohexyl methacrylate Phenyl and the like.
 スチレン系単量体の具体例としては、スチレンのほか、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、ヘプチルスチレン、及びオクチルスチレンのなどのアルキルスチレン;フルオロスチレン、クロロスチレン、ブロモスチレン、ジブロモスチレン、及びヨードスチレンのなどのハロゲン化スチレン;さらに、ニトロスチレン、アセチルスチレン、メトキシスチレン、ジビニルベンゼンなどを挙げることができる。 Specific examples of the styrenic monomer include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, heptyl styrene, octyl styrene, and the like. Alkyl styrenes; halogenated styrenes such as fluorostyrene, chlorostyrene, bromostyrene, dibromostyrene, and iodostyrene; and nitrostyrene, acetylstyrene, methoxystyrene, divinylbenzene, and the like.
 ビニル系単量体の具体例としては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、2-エチルヘキサン酸ビニル、及びラウリン酸ビニルのなどの脂肪酸ビニルエステル;塩化ビニルや臭化ビニルのなどのハロゲン化ビニル;塩化ビニリデンのなどのハロゲン化ビニリデン;ビニルピリジン、ビニルピロリドン、及びビニルカルバゾールのなどの含窒素芳香族ビニル;ブタジエン、イソプレン、及びクロロプレンのなどの共役ジエン単量体;さらには、アクリロニトリル、メタクリロニトリルなどを挙げることができる。 Specific examples of vinyl monomers include fatty acid vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, and vinyl laurate; halogenations such as vinyl chloride and vinyl bromide. Vinyl; vinylidene halides such as vinylidene chloride; nitrogen-containing aromatic vinyls such as vinyl pyridine, vinyl pyrrolidone, and vinyl carbazole; conjugated diene monomers such as butadiene, isoprene, and chloroprene; and acrylonitrile, methacrylate Ronitrile etc. can be mentioned.
 分子内に複数の(メタ)アクリロイル基を有する単量体の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、及びトリプロピレングリコールジ(メタ)アクリレートなどの分子内に2個の(メタ)アクリロイル基を有する単量体;トリメチロールプロパントリ(メタ)アクリレートなどの分子内に3個の(メタ)アクリロイル基を有する単量体などを挙げることができる。 Specific examples of the monomer having a plurality of (meth) acryloyl groups in the molecule include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonane. In the molecule, such as diol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate, ) Monomers having an acryloyl group; monomers having three (meth) acryloyl groups in the molecule such as trimethylolpropane tri (meth) acrylate can be mentioned.
 式(III)で示される(メタ)アクリル酸アルキルエステル(P1)及び極性官能基含有単量体(P2)とは異なる単量体は、それぞれ単独で、又は2種以上組み合わせて使用することができる。粘着剤に含まれる場合、アクリル樹脂(P)において、(メタ)アクリル酸アルキルエステル(P1)及び極性官能基含有単量体(P2)とは異なる単量体に由来する構造単位は、アクリル樹脂(P)を構成する全構造単位の総量100質量部に対して、通常0~30質量部である。 Monomers different from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) represented by the formula (III) may be used alone or in combination of two or more. it can. When included in the adhesive, in the acrylic resin (P), the structural unit derived from a monomer different from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) is an acrylic resin. The amount is usually 0 to 30 parts by mass with respect to 100 parts by mass as the total amount of all structural units constituting (P).
 粘着剤組成物を構成する樹脂成分は、前記式(III)で示される(メタ)アクリル酸アルキルエステル(P1)及び極性官能基含有単量体(P2)に由来する構造単位を含むアクリル樹脂を2種類以上含むものであってもよい。また、アクリル樹脂(P)に、それとは異なるアクリル樹脂、例えば、式(III)の(メタ)アクリル酸アルキルエステルに由来する構造単位を有し、極性官能基を含まないアクリル樹脂などを混合して用いてもよい。式(III)で示される(メタ)アクリル酸アルキルエステル(P1)及び極性官能基含有単量体(P2)に由来する構造単位を含むアクリル樹脂(P)は、粘着層に含まれるアクリル系樹脂の総量100質量部に対して、例えば70質量部以上であってよい。 The resin component constituting the pressure-sensitive adhesive composition is an acrylic resin containing a structural unit derived from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) represented by the formula (III). Two or more types may be included. In addition, an acrylic resin different from the acrylic resin (P), for example, an acrylic resin having a structural unit derived from a (meth) acrylic acid alkyl ester of the formula (III) and containing no polar functional group is mixed. May be used. The acrylic resin (P) containing a structural unit derived from the (meth) acrylic acid alkyl ester (P1) and the polar functional group-containing monomer (P2) represented by the formula (III) is an acrylic resin contained in the adhesive layer For example, it may be 70 parts by mass or more with respect to the total amount of 100 parts by mass.
 式(III)で示される(メタ)アクリル酸アルキルエステル(P1)及び極性官能基含有単量体(P2)を含む単量体混合物の共重合体であるアクリル樹脂(P)は、ゲルパーミエイションクロマトグラフィー(GPC)による標準ポリスチレン換算の重量平均分子量Mwが100万~200万の範囲であることが好ましい。標準ポリスチレン換算の重量平均分子量が前記範囲内であると、高温高湿下での接着性が向上し、導電層と粘着層との間に剥がれや浮きが生じる可能性が低くなる傾向にあり、さらにリワーク性が向上する傾向にある。また、偏光フィルムの寸法が変化しても、その寸法変化に粘着層が追随して変動しやすくなり、例えば光学積層体を液晶セルに貼合した場合、液晶セルの周縁部の明るさと中心部の明るさとの間に差がなくなり、白ヌケや色ムラが抑制される傾向にある。 The acrylic resin (P), which is a copolymer of a monomer mixture containing the (meth) acrylic acid alkyl ester (P1) represented by the formula (III) and the polar functional group-containing monomer (P2), is gel permeation. It is preferable that the weight average molecular weight Mw in terms of standard polystyrene by the chromatography chromatography (GPC) is in the range of 1 million to 2 million. When the weight average molecular weight in terms of standard polystyrene is within the above range, the adhesiveness under high temperature and high humidity is improved, and there is a tendency that the possibility of peeling or floating between the conductive layer and the adhesive layer is reduced. Furthermore, reworkability tends to be improved. Further, even if the dimension of the polarizing film changes, the adhesive layer easily follows the change in dimension, and for example, when the optical laminate is bonded to the liquid crystal cell, the brightness and center of the peripheral edge of the liquid crystal cell There is no difference between the brightness and the whiteness and the color unevenness tends to be suppressed.
 重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnで表される分子量分布は、3~7の範囲であることが好ましい。分子量分布Mw/Mnが3~7の範囲であると、液晶表示パネル又は液晶表示装置が高温にさらされた場合でも、白ヌケなどの不具合の発生を抑制することができる。 The molecular weight distribution represented by the ratio Mw / Mn between the weight average molecular weight Mw and the number average molecular weight Mn is preferably in the range of 3-7. When the molecular weight distribution Mw / Mn is in the range of 3 to 7, the occurrence of defects such as white spots can be suppressed even when the liquid crystal display panel or the liquid crystal display device is exposed to a high temperature.
 また、前記アクリル樹脂(P)は、粘着性発現の観点から、そのガラス転移温度が-10~-60℃の範囲にあることが好ましい。樹脂のガラス転移温度は一般に、示差走査熱量計により測定することができる。 The acrylic resin (P) preferably has a glass transition temperature in the range of −10 to −60 ° C. from the viewpoint of developing adhesiveness. The glass transition temperature of the resin can generally be measured with a differential scanning calorimeter.
 アクリル樹脂(P)は、例えば、溶液重合法、乳化重合法、塊状重合法、懸濁重合法など、公知の各種方法によって製造することができる。アクリル樹脂(P)の製造においては、通常、重合開始剤が用いられる。重合開始剤の含有量は、アクリル樹脂の製造に用いられる全ての単量体の合計100質量部に対して、0.001~5質量部であることが好ましい。 The acrylic resin (P) can be produced by various known methods such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, and a suspension polymerization method. In the production of the acrylic resin (P), a polymerization initiator is usually used. The content of the polymerization initiator is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass in total of all monomers used for the production of the acrylic resin.
 重合開始剤としては、熱重合開始剤や光重合開始剤などが用いられる。光重合開始剤として、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトンなどを挙げることができる。熱重合開始剤として、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、及び2,2’-アゾビス(2-ヒドロキシメチルプロピオニトリル)などのアゾ系化合物;ラウリルパーオキサイド、tert-ブチルハイドロパーオキサイド、過酸化ベンゾイル、tert-ブチルパーオキシベンゾエート、クメンハイドロパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジプロピルパーオキシジカーボネート、tert-ブチルパーオキシネオデカノエート、tert-ブチルパーオキシピバレート、及び(3,5,5-トリメチルヘキサノイル)パーオキサイドなどの有機過酸化物;過硫酸カリウム、過硫酸アンモニウム、及び過酸化水素などの無機過酸化物などを挙げることができる。また、過酸化物と還元剤を併用したレドックス系開始剤なども、重合開始剤として使用し得る。 As the polymerization initiator, a thermal polymerization initiator, a photopolymerization initiator, or the like is used. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone. Examples of thermal polymerization initiators include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethyl-4-methoxyvaleronitrile), dimethyl-2,2′-azobis (2-methylpropio) And azo compounds such as 2,2′-azobis (2-hydroxymethylpropionitrile); lauryl peroxide, tert-butyl hydroperoxide, benzoyl peroxide, tert-butyl peroxybenzoate, cumene hydroper Oxide, diisopropyl peroxydicarbonate, dipropyl peroxydicarbonate, te Organic peroxides such as t-butyl peroxyneodecanoate, tert-butyl peroxypivalate, and (3,5,5-trimethylhexanoyl) peroxide; potassium persulfate, ammonium persulfate, and hydrogen peroxide And inorganic peroxides. A redox initiator using a peroxide and a reducing agent in combination can also be used as the polymerization initiator.
 アクリル樹脂(P)の製造方法としては、溶液重合法が特に好ましい。溶液重合法の具体例を挙げて説明すると、所望の単量体及び有機溶媒を混合し、窒素雰囲気下で熱重合開始剤を添加して、40~90℃、好ましくは50~80℃で3~10時間攪拌する方法を挙げることができる。また、反応を制御するために、単量体や熱重合開始剤を重合中に連続的又は間歇的に添加したり、有機溶媒に溶解した状態で添加したりしてもよい。ここで、有機溶媒としては、例えば、トルエンやキシレンなどの芳香族炭化水素類;酢酸エチルや酢酸ブチルなどのエステル類;プロピルアルコールやイソプロピルアルコールなどの脂肪族アルコール類;アセトン、メチルエチルケトン、及びメチルイソブチルケトンなどのケトン類等を用いることができる。 As a method for producing the acrylic resin (P), a solution polymerization method is particularly preferable. A specific example of the solution polymerization method will be described. A desired monomer and an organic solvent are mixed, a thermal polymerization initiator is added under a nitrogen atmosphere, and a temperature of 40 to 90 ° C., preferably 50 to 80 ° C. is set. A method of stirring for ˜10 hours can be mentioned. Moreover, in order to control reaction, you may add a monomer and a thermal-polymerization initiator continuously or intermittently during superposition | polymerization, or may be added in the state melt | dissolved in the organic solvent. Here, examples of the organic solvent include aromatic hydrocarbons such as toluene and xylene; esters such as ethyl acetate and butyl acetate; aliphatic alcohols such as propyl alcohol and isopropyl alcohol; acetone, methyl ethyl ketone, and methyl isobutyl. Ketones such as ketones can be used.
 本発明の光学積層体に含まれる粘着層は、アクリル樹脂(P)と架橋剤とを併用して構成されることが好ましい。架橋剤としては、例えばアクリル樹脂(P)中の特に極性官能基含有単量体(P2)に由来する構造単位と反応し、アクリル樹脂を架橋させる化合物である。具体的には、イソシアネート系化合物、エポキシ系化合物、アジリジン系化合物、金属キレート系化合物などが例示される。これらのうち、イソシアネート系化合物、エポキシ系化合物及びアジリジン系化合物は、アクリル樹脂(P)中の極性官能基と反応し得る官能基を分子内に少なくとも2個有する。 The adhesive layer contained in the optical layered body of the present invention is preferably composed of an acrylic resin (P) and a crosslinking agent in combination. The crosslinking agent is a compound that reacts with a structural unit derived from the polar functional group-containing monomer (P2) in the acrylic resin (P) to crosslink the acrylic resin. Specific examples include isocyanate compounds, epoxy compounds, aziridine compounds, metal chelate compounds, and the like. Among these, the isocyanate compound, the epoxy compound, and the aziridine compound have at least two functional groups in the molecule that can react with the polar functional group in the acrylic resin (P).
 イソシアネート系化合物は、分子内に少なくとも2個のイソシアナト基(-NCO)を有する化合物であり、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、トリフェニルメタントリイソシアネートなどが挙げられる。また、これらのイソシアネート系化合物に、グリセロールやトリメチロールプロパンなどのポリオールを反応せしめたアダクト体や、イソシアネート系化合物を二量体、三量体等にしたものも粘着剤に用いられる架橋剤となり得る。2種以上のイソシアネート系化合物を混合して用いることもできる。 Isocyanate compounds are compounds having at least two isocyanato groups (—NCO) in the molecule, such as tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, diphenylmethane diisocyanate, Examples thereof include hydrogenated diphenylmethane diisocyanate, naphthalene diisocyanate, and triphenylmethane triisocyanate. In addition, adducts obtained by reacting these isocyanate compounds with polyols such as glycerol and trimethylolpropane, and those obtained by converting isocyanate compounds to dimers and trimers can also be used as a crosslinking agent for pressure-sensitive adhesives. . Two or more isocyanate compounds can be mixed and used.
 エポキシ系化合物は、分子内に少なくとも2個のエポキシ基を有する化合物であり、例えば、ビスフェノールA型のエポキシ樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、N,N-ジグリシジルアニリン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N’-ジグリシジルアミノメチル)シクロヘキサンなどが挙げられる。2種以上のエポキシ系化合物を混合して用いることもできる。 The epoxy compound is a compound having at least two epoxy groups in the molecule, for example, bisphenol A type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether. 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, N, N-diglycidylaniline, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis ( N, N′-diglycidylaminomethyl) cyclohexane and the like. Two or more types of epoxy compounds can be mixed and used.
 アジリジン系化合物は、エチレンイミンとも呼ばれる1個の窒素原子と2個の炭素原子からなる3員環の骨格を分子内に少なくとも2個有する化合物であり、例えば、ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキサミド)、トルエン-2,4-ビス(1-アジリジンカルボキサミド)、トリエチレンメラミン、イソフタロイルビス-1-(2-メチルアジリジン)、トリス-1-アジリジニルホスフィンオキサイド、ヘキサメチレン-1,6-ビス(1-アジリジンカルボキサミド)、トリメチロールプロパン トリス-β-アジリジニルプロピオネート、テトラメチロールメタン トリス-β-アジリジニルプロピオネートなどが挙げられる。 An aziridine-based compound is a compound having at least two 3-membered ring skeletons composed of one nitrogen atom and two carbon atoms, also called ethyleneimine, for example, diphenylmethane-4,4′-bis ( 1-aziridinecarboxamide), toluene-2,4-bis (1-aziridinecarboxamide), triethylenemelamine, isophthaloylbis-1- (2-methylaziridine), tris-1-aziridinylphosphine oxide, hexamethylene 1,6-bis (1-aziridinecarboxamide), trimethylolpropane, tris-β-aziridinylpropionate, tetramethylolmethane, tris-β-aziridinylpropionate, and the like.
 金属キレート系化合物としては、例えば、アルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、アンチモン、マグネシウム、バナジウム、クロム、及びジルコニウムのなどの多価金属に、アセチルアセトンやアセト酢酸エチルが配位した化合物などが挙げられる。 As the metal chelate compound, for example, acetylacetone or ethyl acetoacetate is coordinated to a polyvalent metal such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium, and zirconium. Compound etc. are mentioned.
 これらの架橋剤の中でも、イソシアネート系化合物、とりわけ、キシリレンジイソシアネート、トリレンジイソシアネート若しくはヘキサメチレンジイソシアネート、又はこれらのイソシアネート系化合物を、グリセロールやトリメチロールプロパンのなどのポリオールに反応せしめたアダクト体や、これらのイソシアネート系化合物を二量体、三量体等にしたもの、これらのイソシアネート系化合物を混合したものなどが、好ましく用いられる。極性官能基含有単量体(P2)が、遊離カルボキシル基、水酸基、アミノ基及びエポキシ基から選ばれる極性官能基を有する場合は特に、架橋剤として少なくとも1種のイソシアネート系化合物を用いることが好ましい。中でも好適なイソシアネート系化合物として、トリレンジイソシアネート、トリレンジイソシアネートをポリオールに反応せしめたアダクト体、トリレンジイソシアネートの二量体、及びトリレンジイソシアネートの三量体、また、ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートをポリオールに反応せしめたアダクト体、ヘキサメチレンジイソシアネートの二量体、及びヘキサメチレンジイソシアネートの三量体が挙げられる。 Among these cross-linking agents, isocyanate compounds, especially xylylene diisocyanate, tolylene diisocyanate or hexamethylene diisocyanate, or adducts obtained by reacting these isocyanate compounds with polyols such as glycerol and trimethylolpropane, Those obtained by making these isocyanate compounds into dimers, trimers or the like, or those obtained by mixing these isocyanate compounds are preferably used. In particular, when the polar functional group-containing monomer (P2) has a polar functional group selected from a free carboxyl group, a hydroxyl group, an amino group, and an epoxy group, it is preferable to use at least one isocyanate compound as a crosslinking agent. . Among them, tolylene diisocyanate, adducts obtained by reacting tolylene diisocyanate with polyols, tolylene diisocyanate dimers, and tolylene diisocyanate trimers, hexamethylene diisocyanate, hexamethylene diisocyanate are suitable isocyanate compounds. Are adducts obtained by reacting with a polyol, a dimer of hexamethylene diisocyanate, and a trimer of hexamethylene diisocyanate.
 本発明の光学積層体を構成する粘着層において、架橋剤は、アクリル樹脂(P)100質量部に対して、例えば0.01~10質量部であってよい。架橋剤の量が前記範囲内であると、粘着層の耐久性が向上する傾向にあり、また液晶表示パネルの白ヌケが目立たな
くなる傾向にあることから好ましい。
In the pressure-sensitive adhesive layer constituting the optical layered body of the present invention, the crosslinking agent may be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the acrylic resin (P). When the amount of the crosslinking agent is within the above range, the durability of the pressure-sensitive adhesive layer tends to be improved, and white spots on the liquid crystal display panel tend to be inconspicuous.
 本発明において粘着層を構成する粘着剤には、シラン系化合物を含有させることが好ましく、とりわけ、架橋剤を配合する前のアクリル樹脂にシラン系化合物を含有させておくことが好ましい。シラン系化合物はガラスに対する粘着力を向上させるため、シラン系化合物を含むことにより、表示パネルに対する高い接着力を確保することができる。 In the present invention, the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer preferably contains a silane-based compound, and in particular, the acrylic resin before the crosslinking agent is mixed preferably contains a silane-based compound. Since the silane-based compound improves the adhesive strength to glass, high adhesive strength to the display panel can be ensured by including the silane-based compound.
 シラン系化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルエトキシジメチルシランなどが挙げられる。これらのシラン系化合物は、単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。 Examples of the silane compound include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-amino Ethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl Trimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxy Run, 3-glycidoxypropyl triethoxysilane, 3-glycidoxypropyl dimethoxymethyl silane, such as 3-glycidoxypropyl ethoxy dimethyl silane. These silane compounds may be used alone or in combination of two or more.
 シラン系化合物は、シリコーンオリゴマータイプのものであってもよい。シリコーンオリゴマーを(モノマー)-(モノマー)コポリマーの形式で示すと、例えば、次のようなものを挙げることができる。
 3-メルカプトプロピルトリメトキシシラン-テトラメトキシシランコポリマー、3-メルカプトプロピルトリメトキシシラン-テトラエトキシシランコポリマー、3-メルカプトプロピルトリエトキシシラン-テトラメトキシシランコポリマー、及び3-メルカプトプロピルトリエトキシシラン-テトラエトキシシランコポリマーのなどの、メルカプトプロピル基含有のコポリマー;
 メルカプトメチルトリメトキシシラン-テトラメトキシシランコポリマー、メルカプトメチルトリメトキシシラン-テトラエトキシシランコポリマー、メルカプトメチルトリエトキシシラン-テトラメトキシシランコポリマー、及びメルカプトメチルトリエトキシシラン-テトラエトキシシランコポリマーのなどの、メルカプトメチル基含有のコポリマー;
 3-メタクリロイルオキシプロピルトリメトキシシラン-テトラメトキシシランコポリマー、3-メタクリロイルオキシプロピルトリメトキシシラン-テトラエトキシシランコポリマー、3-メタクリロイルオキシプロピルトリエトキシシラン-テトラメトキシシランコポリマー、3-メタクリロイルオキシプロピルトリエトキシシラン-テトラエトキシシランコポリマー、3-メタクリロイルオキシプロピルメチルジメトキシシラン-テトラメトキシシランコポリマー、3-メタクリロイルオキシプロピルメチルジメトキシシラン-テトラエトキシシランコポリマー、3-メタクリロイルオキシプロピルメチルジエトキシシラン-テトラメトキシシランコポリマー、及び3-メタクリロイルオキシプロピルメチルジエトキシシラン-テトラエトキシシランコポリマーのなどの、メタクリロイルオキシプロピル基含有のコポリマー;
 3-アクリロイルオキシプロピルトリメトキシシラン-テトラメトキシシランコポリマー、3-アクリロイルオキシプロピルトリメトキシシラン-テトラエトキシシランコポリマー、3-アクリロイルオキシプロピルトリエトキシシラン-テトラメトキシシランコポリマー、3-アクリロイルオキシプロピルトリエトキシシラン-テトラエトキシシランコポリマー、3-アクリロイルオキシプロピルメチルジメトキシシラン-テトラメトキシシランコポリマー、3-アクリロイルオキシプロピルメチルジメトキシシラン-テトラエトキシシランコポリマー、3-アクリロイルオキシプロピルメチルジエトキシシラン-テトラメトキシシランコポリマー、及び3-アクリロイルオキシプロピルメチルジエトキシシラン-テトラエトキシシランコポリマーのなどの、アクリロイルオキシプロピル基含有のコポリマー;
 ビニルトリメトキシシラン-テトラメトキシシランコポリマー、ビニルトリメトキシシラン-テトラエトキシシランコポリマー、ビニルトリエトキシシラン-テトラメトキシシランコポリマー、ビニルトリエトキシシラン-テトラエトキシシランコポリマー、ビニルメチルジメトキシシラン-テトラメトキシシランコポリマー、ビニルメチルジメトキシシラン-テトラエトキシシランコポリマー、ビニルメチルジエトキシシラン-テトラメトキシシランコポリマー、及びビニルメチルジエトキシシラン-テトラエトキシシランコポリマーのなどの、ビニル基含有のコポリマー;
 3-アミノプロピルトリメトキシシラン-テトラメトキシシランコポリマー、3-アミノプロピルトリメトキシシラン-テトラエトキシシランコポリマー、3-アミノプロピルトリエトキシシラン-テトラメトキシシランコポリマー、3-アミノプロピルトリエトキシシラン-テトラエトキシシランコポリマー、3-アミノプロピルメチルジメトキシシラン-テトラメトキシシランコポリマー、3-アミノプロピルメチルジメトキシシラン-テトラエトキシシランコポリマー、3-アミノプロピルメチルジエトキシシラン-テトラメトキシシランコポリマー、及び3-アミノプロピルメチルジエトキシシラン-テトラエトキシシランコポリマーのなどの、アミノ基含有のコポリマーなど。
The silane compound may be of a silicone oligomer type. When the silicone oligomer is shown in the form of (monomer)-(monomer) copolymer, for example, the following can be mentioned.
3-mercaptopropyltrimethoxysilane-tetramethoxysilane copolymer, 3-mercaptopropyltrimethoxysilane-tetraethoxysilane copolymer, 3-mercaptopropyltriethoxysilane-tetramethoxysilane copolymer, and 3-mercaptopropyltriethoxysilane-tetraethoxy A copolymer containing mercaptopropyl groups, such as of a silane copolymer;
Mercaptomethyl, such as mercaptomethyltrimethoxysilane-tetramethoxysilane copolymer, mercaptomethyltrimethoxysilane-tetraethoxysilane copolymer, mercaptomethyltriethoxysilane-tetramethoxysilane copolymer, and mercaptomethyltriethoxysilane-tetraethoxysilane copolymer Group-containing copolymers;
3-methacryloyloxypropyltrimethoxysilane-tetramethoxysilane copolymer, 3-methacryloyloxypropyltrimethoxysilane-tetraethoxysilane copolymer, 3-methacryloyloxypropyltriethoxysilane-tetramethoxysilane copolymer, 3-methacryloyloxypropyltriethoxysilane -Tetraethoxysilane copolymer, 3-methacryloyloxypropylmethyldimethoxysilane-tetramethoxysilane copolymer, 3-methacryloyloxypropylmethyldimethoxysilane-tetraethoxysilane copolymer, 3-methacryloyloxypropylmethyldiethoxysilane-tetramethoxysilane copolymer, and 3-Methacryloyloxypropylmethyldiethoxysilane-tetra Toki such beasts Ranco polymer, methacryloyloxypropyl group containing copolymers;
3-acryloyloxypropyltrimethoxysilane-tetramethoxysilane copolymer, 3-acryloyloxypropyltrimethoxysilane-tetraethoxysilane copolymer, 3-acryloyloxypropyltriethoxysilane-tetramethoxysilane copolymer, 3-acryloyloxypropyltriethoxysilane -Tetraethoxysilane copolymer, 3-acryloyloxypropylmethyldimethoxysilane-tetramethoxysilane copolymer, 3-acryloyloxypropylmethyldimethoxysilane-tetraethoxysilane copolymer, 3-acryloyloxypropylmethyldiethoxysilane-tetramethoxysilane copolymer, and 3-acryloyloxypropylmethyldiethoxysilane-tetraethoxysilane Such as the Rimmer, acryloyloxypropyl group-containing copolymer;
Vinyltrimethoxysilane-tetramethoxysilane copolymer, vinyltrimethoxysilane-tetraethoxysilane copolymer, vinyltriethoxysilane-tetramethoxysilane copolymer, vinyltriethoxysilane-tetraethoxysilane copolymer, vinylmethyldimethoxysilane-tetramethoxysilane copolymer, Vinyl group-containing copolymers such as vinylmethyldimethoxysilane-tetraethoxysilane copolymer, vinylmethyldiethoxysilane-tetramethoxysilane copolymer, and vinylmethyldiethoxysilane-tetraethoxysilane copolymer;
3-aminopropyltrimethoxysilane-tetramethoxysilane copolymer, 3-aminopropyltrimethoxysilane-tetraethoxysilane copolymer, 3-aminopropyltriethoxysilane-tetramethoxysilane copolymer, 3-aminopropyltriethoxysilane-tetraethoxysilane Copolymer, 3-aminopropylmethyldimethoxysilane-tetramethoxysilane copolymer, 3-aminopropylmethyldimethoxysilane-tetraethoxysilane copolymer, 3-aminopropylmethyldiethoxysilane-tetramethoxysilane copolymer, and 3-aminopropylmethyldiethoxy Amino group-containing copolymers, such as silane-tetraethoxysilane copolymers.
 これらのシラン系化合物は、多くの場合液体である。粘着剤におけるシラン系化合物の配合量は、アクリル樹脂(P)100質量部(2種類以上用いる場合はその合計量)に対して、例えば0.01~10質量部であってよい。アクリル樹脂(P)100質量部に対するシラン系化合物の量が前記範囲にあると、粘着層と基板(又は液晶セル)との密着性が向上することから好ましく、また、粘着層からシラン系化合物のブリードアウトが抑制される傾向にあることから好ましい。 These silane compounds are often liquids. The compounding amount of the silane compound in the pressure-sensitive adhesive may be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the acrylic resin (P) (the total amount when two or more types are used). When the amount of the silane compound relative to 100 parts by mass of the acrylic resin (P) is within the above range, the adhesion between the adhesive layer and the substrate (or the liquid crystal cell) is preferably improved. It is preferable because bleeding tends to be suppressed.
 粘着層はイオン性化合物を含有してもよい。イオン性化合物は帯電防止剤として機能することができる。特に、アクリル樹脂(P)が前記式(IV)で示される芳香環含有(メタ)アクリル化合物を含み、式(IV)中のnが2以上である場合には、白ヌケの抑制に有効であり、この単量体が共重合されたアクリル樹脂を含む粘着剤中にイオン性化合物を配合することにより、白ヌケ抑制効果を付与しながら良好な帯電防止性も付与することができる。ここでいうイオン性化合物とは、カチオンとアニオンの組合せで存在する化合物であり、カチオン及びアニオンはそれぞれ、無機のものであっても有機のものであってもよいが、アクリル樹脂(P)との相溶性の観点からは、カチオン及びアニオンの少なくとも一方が有機基を含むイオン性化合物であることが好ましい。 The adhesive layer may contain an ionic compound. The ionic compound can function as an antistatic agent. In particular, when the acrylic resin (P) contains the aromatic ring-containing (meth) acrylic compound represented by the formula (IV) and n in the formula (IV) is 2 or more, it is effective for suppressing white spots. In addition, by adding an ionic compound to the pressure-sensitive adhesive containing an acrylic resin copolymerized with this monomer, it is possible to impart good antistatic properties while imparting a whitening suppression effect. The ionic compound here is a compound that exists in a combination of a cation and an anion, and the cation and the anion may be inorganic or organic, respectively, but the acrylic resin (P) and From the viewpoint of compatibility, it is preferable that at least one of the cation and the anion is an ionic compound containing an organic group.
 イオン性化合物を構成する無機カチオンの例としては、リチウムカチオン〔Li〕、ナトリウムカチオン〔Na〕、カリウムカチオン〔K〕、セシウムカチオン〔Cs〕等のアルカリ金属イオン;ベリリウムカチオン〔Be2+〕、マグネシウムカチオン〔Mg2+〕、カルシウムカチオン〔Ca2+〕等のアルカリ土類金属イオン等が挙げられる。中でも、耐金属腐食性の観点から、リチウムカチオン〔Li〕、カリウムカチオン〔K〕又はナトリウムカチオン〔Na〕を用いることが好ましく、耐久性の観点からは、カリウムカチオン〔K〕を用いることがさらに好ましい。 Examples of inorganic cations constituting the ionic compound include alkali metal ions such as lithium cation [Li + ], sodium cation [Na + ], potassium cation [K + ], cesium cation [Cs + ]; beryllium cation [Be 2+ ], magnesium cation [Mg 2+ ], calcium cation [Ca 2+ ] and other alkaline earth metal ions. Among these, from the viewpoint of metal corrosion resistance, it is preferable to use lithium cation [Li + ], potassium cation [K + ] or sodium cation [Na + ], and from the viewpoint of durability, potassium cation [K + ] is preferable. More preferably, it is used.
 イオン性化合物を構成する有機カチオンの例としては、下記式(V):で示されるピリジニウム系カチオン、下記式(VI)で示される4級アンモニウムカチオンなどが挙げられる。 Examples of the organic cation constituting the ionic compound include a pyridinium cation represented by the following formula (V): a quaternary ammonium cation represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(V)中、R~Rは、それぞれ独立に水素原子又は炭素数1~6のアルキル基を表し、R10は、炭素数1~16のアルキル基を表す。式(VI)中、R11は炭素数1~12のアルキル基を表し、R12、R13及びR14はそれぞれ独立に炭素数6~12のアルキル基を表す。 In formula (V), R 5 to R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 10 represents an alkyl group having 1 to 16 carbon atoms. In formula (VI), R 11 represents an alkyl group having 1 to 12 carbon atoms, and R 12 , R 13, and R 14 each independently represents an alkyl group having 6 to 12 carbon atoms.
 上記式(V)で示されるピリジニウム系カチオンは、総炭素数が8以上、とりわけ10以上であることが、アクリル樹脂(P)との相溶性の観点から好ましい。またその総炭素数は、36以下、さらには30以下であるのが好ましい。式(V)で示されるピリジニウム系カチオンの中でも、ピリジン環の4-位の炭素原子に結合するRがアルキル基であり、ピリジン環の他の炭素原子に結合するR、R、R及びRがそれぞれ水素原子であるものが好ましいカチオンの1つである。 The pyridinium cation represented by the above formula (V) preferably has a total carbon number of 8 or more, particularly 10 or more from the viewpoint of compatibility with the acrylic resin (P). The total number of carbon atoms is preferably 36 or less, more preferably 30 or less. Among the pyridinium-based cations represented by the formula (V), R 7 bonded to the 4-position carbon atom of the pyridine ring is an alkyl group, and R 5 , R 6 , R bonded to other carbon atoms of the pyridine ring. One in which 8 and R 9 are each a hydrogen atom is one of the preferred cations.
 式(V)で示されるピリジニウム系カチオンの具体例としては、N-メチル-4-ヘキシルピリジニウムカチオン、N-ブチル-4-メチルピリジニウムカチオン、N-ブチル-2,4-ジエチルピリジニウムカチオン、N-ブチル-2-ヘキシルピリジニウムカチオン、N-ヘキシル-2-ブチルピリジニウムカチオン、N-ヘキシル-4-メチルピリジニウムカチオン、N-ヘキシル-4-エチルピリジニウムカチオン、N-ヘキシル-4-ブチルピリジニウムカチオン、N-オクチル-4-メチルピリジニウムカチオン、N-オクチル-4-エチルピリジニウムカチオン、N-オクチルピリジニウムカチオンなどが挙げられる。 Specific examples of the pyridinium cation represented by the formula (V) include N-methyl-4-hexylpyridinium cation, N-butyl-4-methylpyridinium cation, N-butyl-2,4-diethylpyridinium cation, N- Butyl-2-hexylpyridinium cation, N-hexyl-2-butylpyridinium cation, N-hexyl-4-methylpyridinium cation, N-hexyl-4-ethylpyridinium cation, N-hexyl-4-butylpyridinium cation, N- Examples include octyl-4-methylpyridinium cation, N-octyl-4-ethylpyridinium cation, and N-octylpyridinium cation.
 上記式(VI)で示されるアンモニウムカチオンは、総炭素数が20以上、さらには22以上であることが、アクリル樹脂(P)との相溶性の観点から好ましい。またその総炭素数は36以下、さらには30以下であることが好ましい。 The ammonium cation represented by the above formula (VI) preferably has a total carbon number of 20 or more, and more preferably 22 or more from the viewpoint of compatibility with the acrylic resin (P). The total number of carbon atoms is preferably 36 or less, more preferably 30 or less.
 式(VI)で示されるテトラアルキルアンモニウムカチオンの具体例としては、テトラヘキシルアンモニウムカチオン、テトラオクチルアンモニウムカチオン、トリブチルメチルアンモニウムカチオン、トリヘキシルメチルアンモニウムカチオン、トリオクチルメチルアンモニウムカチオン、トリデシルメチルアンモニウムカチオン、トリヘキシルエチルアンモニウムカチオン、トリオクチルエチルアンモニウムカチオンなどが挙げられる。 Specific examples of the tetraalkylammonium cation represented by the formula (VI) include a tetrahexylammonium cation, a tetraoctylammonium cation, a tributylmethylammonium cation, a trihexylmethylammonium cation, a trioctylmethylammonium cation, a tridecylmethylammonium cation, Examples include trihexylethylammonium cation and trioctylethylammonium cation.
 一方、イオン性化合物を構成するアニオンの例としては、クロライドアニオン〔Cl〕、ブロマイドアニオン〔Br〕、ヨーダイドアニオン〔I〕、テトラクロロアルミネートアニオン〔AlCl4-〕、ヘプタクロロジアルミネートアニオン〔AlCl 〕、テトラフルオロボレートアニオン〔BF 〕、ヘキサフルオロホスフェートアニオン〔PF 〕、パークロレートアニオン〔ClO 〕、ナイトレートアニオン〔NO 〕、アセテートアニオン〔CHCOO〕、トリフルオロアセテートアニオン〔CFCOO〕、メタンスルホネートアニオン〔CHSO 〕、トリフルオロメタンスルホネートアニオン〔CFSO 〕、ビス(トリフルオロメタンスルホニル)イミドアニオン〔(CFSO〕、トリス(トリフルオロメタンスルホニル)メタニドアニオン〔(CFSO〕、ヘキサフルオロアーセネートアニオン〔AsF 〕、ヘキサフルオロアンチモネートアニオン〔SbF 〕、ヘキサフルオロニオベートアニオン〔NbF 〕、ヘキサフルオロタンタレートアニオン〔TaF 〕、(ポリ)ハイドロフルオロフルオライドアニオン〔F(HF) 〕(nは1~3程度)、チオシアンアニオン〔SCN〕、ジシアナミドアニオン〔(CN)〕、パーフルオロブタンスルホネートアニオン〔CSO 〕、ビス(ペンタフルオロエタンスルホニル)イミドアニオン〔(CSO〕、パーフルオロブタノエートアニオン〔CCOO〕、(トリフルオロメタンスルホニル)(トリフルオロメタンカルボニル)イミドアニオン〔(CFSO)(CFCO)N〕等が挙げられる。 On the other hand, examples of anions constituting an ionic compound include chloride anions [Cl ], bromide anions [Br ], iodide anions [I ], tetrachloroaluminate anions [AlCl 4 − ], heptachlorodi Aluminate anion [Al 2 Cl 7 ], tetrafluoroborate anion [BF 4 ], hexafluorophosphate anion [PF 6 ], perchlorate anion [ClO 4 ], nitrate anion [NO 3 ], acetate Anion [CH 3 COO ], trifluoroacetate anion [CF 3 COO ], methanesulfonate anion [CH 3 SO 3 ], trifluoromethanesulfonate anion [CF 3 SO 3 ], bis (trifluoromethanesulfonyl) i Midanion [(CF 3 SO 2 ) 2 N ], Tris (trifluoromethanesulfonyl) methanide anion [(CF 3 SO 2 ) 3 C ], hexafluoroarsenate anion [AsF 6 ], hexafluoroantimonate anion [SbF 6 ], hexafluoroniobate anion [NbF 6 ], hexafluorotantalate anion [TaF 6 ], (poly) hydrofluorofluoride anion [F (HF) n ] (n is 1 to 3 Degree), thiocyan anion [SCN ], dicyanamide anion [(CN) 2 N ], perfluorobutane sulfonate anion [C 4 F 9 SO 3 ], bis (pentafluoroethanesulfonyl) imide anion [(C 2 F 5 SO 2) 2 N -], perfluoro Tano benzoate anion [C 3 F 7 COO -] -, and the like, (trifluoromethanesulfonyl) (trifluoromethane carbonyl) imide anion [(CF 3 SO 2) (CF 3 CO) N ].
 イオン性化合物の具体例は、上記したカチオンとアニオンの組合せから適宜選択することができる。具体的なカチオンとアニオンの組合せであるイオン性化合物としては、リチウム ビス(トリフルオロメタンスルホニル)イミド、リチウム ヘキサフルオロホスフェート、リチウム ヨーダイド(ヨウ化リチウム)、リチウム ビス(ペンタフルオロエタンスルホニル)イミド、リチウム トリス(トリフルオロメタンスルホニル)メタニド、ナトリウム ビス(トリフルオロメタンスルホニル)イミド、ナトリウム ビス(ペンタフルオロエタンスルホニル)イミド、ナトリウム トリス(トリフルオロメタンスルホニル)メタニド、カリウム ビス(トリフルオロメタンスルホニル)イミド、カリウム ビス(ペンタフルオロエタンスルホニル)イミド、 カリウム トリス(トリフルオロメタンスルホニル)メタニド、N-メチル-4-ヘキシルピリジニウム ビス(トリフルオロメタンスルホニル)イミド、N-ブチル-2-メチルピリジニウム ビス(トリフルオロメタンスルホニル)イミド、N-ヘキシル-4-メチルピリジニウム ビス(トリフルオロメタンスルホニル)イミド、N-オクチル-4-メチルピリジニウム ビス(トリフルオロメタンスルホニル)イミド、N-メチル-4-ヘキシルピリジニウム ヘキサフルオロホスフェート、N-ブチル-2-メチルピリジニウム ヘキサフルオロホスフェート、N-ヘキシル-4-メチルピリジニウム ヘキサフルオロホスフェート、N-オクチル-4-メチルピリジニウム ヘキサフルオロホスフェート、N-メチル-4-ヘキシルピリジニウム パークロレート、N-ブチル-2-メチルピリジニウム パークロレート、N-ヘキシル-4-メチルピリジニウム パークロレート、N-オクチル-4-メチルピリジニウム パークロレート、テトラヘキシルアンモニウム ビス(トリフルオロメタンスルホニル)イミド、トリブチルメチルアンモニウム ビス(トリフルオロメタンスルホニル)イミド、トリヘキシルメチルアンモニウム ビス(トリフルオロメタンスルホニル)イミド、トリオクチルメチルアンモニウム ビス(トリフルオロメタンスルホニル)イミド、テトラヘキシルアンモニウム ヘキサフルオロホスフェート、トリブチルメチルアンモニウム ヘキサフルオロホスフェート、トリヘキシルメチルアンモニウム ヘキサフルオロホスフェート、トリオクチルメチルアンモニウム ヘキサフルオロホスフェート、テトラヘキシルアンモニウム パークロレート、トリブチルメチルアンモニウム パークロレート、トリヘキシルメチルアンモニウム パークロレート、トリオクチルメチルアンモニウム パークロレート等が挙げられる。 Specific examples of the ionic compound can be appropriately selected from the combination of the above cation and anion. Specific examples of ionic compounds that are combinations of cations and anions include lithium bis (trifluoromethanesulfonyl) imide, lithium hexafluorophosphate, lithium iodide (lithium iodide), lithium bis (pentafluoroethanesulfonyl) imide, and lithium tris. (Trifluoromethanesulfonyl) methanide, sodium bis (trifluoromethanesulfonyl) imide, sodium bis (pentafluoroethanesulfonyl) imide, sodium tris (trifluoromethanesulfonyl) methanide, potassium bis (trifluoromethanesulfonyl) imide, potassium bis (pentafluoroethane) (Sulfonyl) imide, potassium tris (trifluoromethanesulfonyl) methanide, N-methyl- -Hexylpyridinium bis (trifluoromethanesulfonyl) imide, N-butyl-2-methylpyridinium bis (trifluoromethanesulfonyl) imide, N-hexyl-4-methylpyridinium bis (trifluoromethanesulfonyl) imide, N-octyl-4-methyl Pyridinium bis (trifluoromethanesulfonyl) imide, N-methyl-4-hexylpyridinium hexafluorophosphate, N-butyl-2-methylpyridinium hexafluorophosphate, N-hexyl-4-methylpyridinium hexafluorophosphate, N-octyl-4 -Methylpyridinium hexafluorophosphate, N-methyl-4-hexylpyridinium perchlorate, N-butyl-2-methylpyridinium par Chlorate, N-hexyl-4-methylpyridinium perchlorate, N-octyl-4-methylpyridinium perchlorate, tetrahexylammonium bis (trifluoromethanesulfonyl) imide, tributylmethylammonium bis (trifluoromethanesulfonyl) imide, trihexylmethylammonium Bis (trifluoromethanesulfonyl) imide, trioctylmethylammonium bis (trifluoromethanesulfonyl) imide, tetrahexylammonium hexafluorophosphate, tributylmethylammonium hexafluorophosphate, trihexylmethylammonium hexafluorophosphate, trioctylmethylammonium hexafluorophosphate, Tetrahexyl Ammonium perchlorate, tributyl ammonium perchlorate, tri-hexyl ammonium perchlorate, trioctylmethylammonium perchlorate and the like.
 これらのイオン性化合物は、それぞれ単独で、又は2種以上組み合わせて用いることができる。イオン性化合物を含有する場合、その量は、アクリル樹脂(P)100質量部に対して、例えば0.1~10質量部であってよい。 These ionic compounds can be used alone or in combination of two or more. When the ionic compound is contained, the amount thereof may be, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic resin (P).
 本発明において、粘着層はさらに、架橋触媒、耐候安定剤、タッキファイヤー、可塑剤、軟化剤、染料、顔料、無機フィラー、アクリル樹脂以外の樹脂などを含有してもよい。粘着剤に多官能性アクリレート等の紫外線硬化性化合物と光開始剤を配合し、粘着層形成後に紫外線を照射して硬化させることで、より硬い粘着層とすることも有用である。これは粘着剤内に第2架橋構造を具現し、耐熱試験時等の耐久性を向上する役割をする。また、粘着剤に架橋剤とともに架橋触媒を併用すれば、粘着層を短時間の熟成で調製することができ、得られる光学積層体において、粘着層と第1硬化物層又は第1保護フィルムとの間の浮きや剥がれが発生したり、粘着層内で発泡が起こったりすることを抑制でき、リワーク性も良好となることがある。 In the present invention, the adhesive layer may further contain a crosslinking catalyst, a weather resistance stabilizer, a tackifier, a plasticizer, a softener, a dye, a pigment, an inorganic filler, a resin other than an acrylic resin, and the like. It is also useful to form a harder adhesive layer by blending an ultraviolet curable compound such as a polyfunctional acrylate and a photoinitiator into the adhesive, and irradiating and curing the ultraviolet ray after forming the adhesive layer. This embodies the second cross-linked structure in the pressure-sensitive adhesive, and plays a role of improving durability during a heat test. Moreover, if a crosslinking catalyst is used together with a crosslinking agent in the pressure-sensitive adhesive, the pressure-sensitive adhesive layer can be prepared by aging in a short time. In the resulting optical laminate, the pressure-sensitive adhesive layer and the first cured product layer or the first protective film It is possible to suppress the occurrence of floating or peeling between the layers or foaming in the adhesive layer, and the reworkability may be improved.
 架橋触媒としては、例えば、ヘキサメチレンジアミン、エチレンジアミン、ポリエチレンイミン、ヘキサメチレンテトラミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、トリメチレンジアミン、ポリアミノ樹脂、及びメラミン樹脂などのアミン系化合物などを挙げることができる。粘着剤に架橋触媒としてアミン系化合物を配合する場合、架橋剤としてはイソシアネート系化合物が好適である。 Examples of the crosslinking catalyst include amine compounds such as hexamethylenediamine, ethylenediamine, polyethyleneimine, hexamethylenetetramine, diethylenetriamine, triethylenetetramine, isophoronediamine, trimethylenediamine, polyamino resin, and melamine resin. . When an amine compound is added to the adhesive as a crosslinking catalyst, an isocyanate compound is suitable as the crosslinking agent.
 さらに、微粒子を含有させて光散乱性を示す粘着層とすることもできる。また粘着層には、酸化防止剤や紫外線吸収剤などが配合されていてもよい。紫外線吸収剤には、サリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などがある。 Furthermore, it can also be a pressure-sensitive adhesive layer containing light particles by containing fine particles. The adhesive layer may contain an antioxidant, an ultraviolet absorber and the like. Examples of ultraviolet absorbers include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
 粘着層は、例えば上述したような粘着剤を有機溶剤溶液とし、それを積層しようとするフィルム又は層(例えば偏光フィルム等)上にダイコーターやグラビアコーターなどによって塗布し、乾燥させる方法によって設けることができる。また、離型処理が施されたプラスチックフィルム(セパレートフィルムと呼ばれる)上に形成されたシート状粘着剤を、積層しようとするフィルム又は層に転写する方法によっても設けることができる。粘着層の厚みについては、特に制限はないが、2~40μmの範囲内であることが好ましく、5~35μmの範囲内であることがより好ましく、10~30μmの範囲内であることがさらに好ましい。 The pressure-sensitive adhesive layer is provided by, for example, applying the above-mentioned pressure-sensitive adhesive as an organic solvent solution, applying it on a film or layer (for example, a polarizing film, etc.) to be laminated with a die coater or a gravure coater, and drying. Can do. Moreover, it can also provide by the method of transcribe | transferring the sheet-like adhesive formed on the plastic film (it is called a separate film) to which the mold release process was given to the film or layer which is going to laminate | stack. The thickness of the adhesive layer is not particularly limited, but is preferably in the range of 2 to 40 μm, more preferably in the range of 5 to 35 μm, and still more preferably in the range of 10 to 30 μm. .
 粘着層は、その貯蔵弾性率が23~80℃において0.10~5.0MPaであることが好ましく、0.15~1.0MPaであることがより好ましい。23~80℃における貯蔵弾性率が0.10MPa以上であると、光学積層体を含む液晶表示パネルが高温などにさられた際の光学積層体の収縮による白ヌケを抑制できるため好ましい。また、5MPa以下であると粘着力の低下による耐久性の低下が起こりにくいため好ましい。ここで、「23~80℃において0.10~5.0MPaの貯蔵弾性率を示す」とは、この範囲のいずれの温度においても、貯蔵弾性率が上記範囲の値をとることを意味する。貯蔵弾性率は通常、温度上昇に伴って漸減するので、23℃及び80℃における貯蔵弾性率がいずれも上記範囲に入っていれば、この範囲の温度において、粘着層が上記範囲の貯蔵弾性率を示すとみることができる。なお、粘着層の貯蔵弾性率は、市販の粘弾性測定装置、例えば、REOMETRIC社製の粘弾性測定装置「DYNAMIC ANALYZER RDA II」により測定することができる。 The adhesive layer preferably has a storage elastic modulus of 0.10 to 5.0 MPa at 23 to 80 ° C., more preferably 0.15 to 1.0 MPa. It is preferable that the storage elastic modulus at 23 to 80 ° C. is 0.10 MPa or more because white spots due to shrinkage of the optical laminate when the liquid crystal display panel including the optical laminate is exposed to a high temperature can be suppressed. Moreover, since it is hard to produce the fall of durability by the fall of adhesive force as it is 5 Mpa or less, it is preferable. Here, “showing a storage elastic modulus of 0.10 to 5.0 MPa at 23 to 80 ° C.” means that the storage elastic modulus takes a value within the above range at any temperature within this range. Since the storage elastic modulus usually decreases gradually as the temperature rises, if both the storage elastic modulus at 23 ° C. and 80 ° C. are within the above range, the adhesive layer has a storage elastic modulus within the above range at this temperature range. Can be seen. The storage elastic modulus of the adhesive layer can be measured with a commercially available viscoelasticity measuring device, for example, a viscoelasticity measuring device “DYNAMIC ANALYZER RDA II” manufactured by REOMETRIC.
 [導電層]
 本発明の光学積層体に含まれる導電層は、例えば導電性の透明金属酸化物層であってもよく、金属配線層であってもよい。このような導電層は、例えば、アルミニウム、銅、銀、鉄、スズ、亜鉛、白金、ニッケル、モリブデン、クロム、タングステン、鉛、チタン、パラジウム、インジウム及びこれらの2種以上の金属を含有する合金から選択される少なくとも1種の金属元素を含む層であってもよい。これらのうち、導電層は、導電性の観点から、好ましくはアルミニウム、銅、銀及び金から選択される少なくとも1種の金属元素を含む層であってもよく、導電性及びコストの観点から、より好ましくはアルミニウム元素を含む層であってもよい。なお、銅を含む層である場合、光の反射を防止する観点から、黒化処理を施してもよい。黒化処理とは、導電層の表面を酸化させてCuO又はCuOを析出させることである。また、導電層は、例えば、金属銀、ITO(錫ドープ酸化インジウム)、グラフェン、酸化亜鉛、AZO(アルミニウムドープ酸化亜鉛)を含む層であってもよい。
[Conductive layer]
The conductive layer included in the optical layered body of the present invention may be, for example, a conductive transparent metal oxide layer or a metal wiring layer. Such a conductive layer is, for example, aluminum, copper, silver, iron, tin, zinc, platinum, nickel, molybdenum, chromium, tungsten, lead, titanium, palladium, indium, and an alloy containing two or more of these metals. It may be a layer containing at least one metal element selected from: Among these, the conductive layer may be a layer containing at least one metal element selected from aluminum, copper, silver and gold from the viewpoint of conductivity, and from the viewpoint of conductivity and cost, More preferably, it may be a layer containing an aluminum element. In the case of a layer containing copper, blackening treatment may be performed from the viewpoint of preventing light reflection. The blackening treatment is to oxidize the surface of the conductive layer to precipitate Cu 2 O or CuO. The conductive layer may be a layer containing, for example, metallic silver, ITO (tin-doped indium oxide), graphene, zinc oxide, or AZO (aluminum-doped zinc oxide).
 導電層(図1及び図2における導電層4)は例えば、基板(図1及び図2における基板X)上に設けられる。基板上に導電層を形成する方法としては、例えばスパッタリング法などが挙げられる。基板は、タッチ入力素子に含まれる液晶セルを構成する透明基板であってもよく、ガラス基板であってもよい。透明基板は、例えばポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンナフタレート、ポリエーテルスルホン、環状オレフィンコポリマー、トリアセチルセルロース、ポリビニルアルコール、ポリイミド、ポリスチレン、二軸延伸ポリスチレン等で形成されていてもよい。ガラス基板は、例えばソーダライムガラス、低アルカリガラス、無アルカリガラス等で形成されていてもよい。導電層は、基板の全面に形成されていてもよく、その一部に形成されていてもよい。 The conductive layer (conductive layer 4 in FIGS. 1 and 2) is provided, for example, on a substrate (substrate X in FIGS. 1 and 2). Examples of the method for forming the conductive layer on the substrate include a sputtering method. The substrate may be a transparent substrate constituting a liquid crystal cell included in the touch input element, or may be a glass substrate. The transparent substrate may be formed of, for example, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene naphthalate, polyether sulfone, cyclic olefin copolymer, triacetyl cellulose, polyvinyl alcohol, polyimide, polystyrene, biaxially stretched polystyrene, or the like. The glass substrate may be formed of, for example, soda lime glass, low alkali glass, non-alkali glass, or the like. The conductive layer may be formed on the entire surface of the substrate or may be formed on a part thereof.
 導電性の透明金属酸化物層としては、例えばITO(錫ドープ酸化インジウム)、AZO(アルミニウムドープ酸化亜鉛)等の透明電極層が挙げられる。 Examples of the conductive transparent metal oxide layer include transparent electrode layers such as ITO (tin-doped indium oxide) and AZO (aluminum-doped zinc oxide).
 金属配線層としては、例えば、細線の金属配線層であるメタルメッシュ、金属ナノ粒子、金属ナノワイヤーをバインダー中に添加した層などが挙げられる。なお、メタルメッシュとは、金属配線で形成された二次元の網目状構造を示す。メタルメッシュの開口部(配線間の開口部又は網の目)の形状は、特に限定されず、例えば、多角形(三角形、四角形、五角形、六角形等)、円形、楕円形、不定形であってもよく、それぞれの開口部は同一又は異なっていてもよい。好ましい態様では、メタルメッシュの開口部の形状はそれぞれ同じ形状であり、かつ正方形又は長方形である。 Examples of the metal wiring layer include a metal mesh that is a thin metal wiring layer, metal nanoparticles, and a layer in which metal nanowires are added in a binder. The metal mesh indicates a two-dimensional network structure formed of metal wiring. The shape of the opening of the metal mesh (opening between wirings or mesh) is not particularly limited, and may be, for example, a polygon (triangle, square, pentagon, hexagon, etc.), circle, ellipse, or indefinite shape. Each opening may be the same or different. In a preferred embodiment, the openings of the metal mesh have the same shape and are square or rectangular.
 導電層が金属配線層(特にメタルメッシュ)である場合、例えば基板X上の平面の縦横方向に所定の間隔をあけて金属配線を配置してもよい。この際に、前記開口部は樹脂(接着剤等)で充填してもよく、樹脂(接着剤等)の中に金属配線層を埋め込んでもよい。なお、樹脂等を用いる場合、導電層(導電層4)は、金属配線と樹脂(接着剤)の両方で構成されている。 When the conductive layer is a metal wiring layer (particularly a metal mesh), for example, the metal wiring may be arranged with a predetermined interval in the vertical and horizontal directions of the plane on the substrate X. At this time, the opening may be filled with a resin (adhesive or the like), or a metal wiring layer may be embedded in the resin (adhesive or the like). In addition, when using resin etc., the conductive layer (conductive layer 4) is comprised with both metal wiring and resin (adhesive).
 金属配線(特にメタルメッシュ)の線幅は通常10μm以下、好ましくは5μm以下、さらに好ましくは3μm以下であり、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上である。金属配線層の線幅はこれらの上限値と下限値の組み合わせであってもよく、好ましくは0.5~5μm、より好ましくは1~3μmである。 The line width of the metal wiring (particularly metal mesh) is usually 10 μm or less, preferably 5 μm or less, more preferably 3 μm or less, usually 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm or more. The line width of the metal wiring layer may be a combination of these upper and lower limits, and is preferably 0.5 to 5 μm, more preferably 1 to 3 μm.
 導電層(導電性の透明金属酸化物層又は金属配線層)の厚みは、特に限定されないが、通常10μm以下、好ましくは3μm以下、より好ましくは1μm以下、特に好ましくは0.5μm以下であり、通常0.01μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上である。導電層の厚みはこれらの上限値と下限値の組み合わせであってもよく、好ましくは0.01~3μm、より好ましくは0.05~1μmである。なお、導電層が金属配線層であり、金属配線層が樹脂(接着剤等)と金属配線の両方で構成されている場合、導電層の厚みは樹脂を含む厚みである。 The thickness of the conductive layer (conductive transparent metal oxide layer or metal wiring layer) is not particularly limited, but is usually 10 μm or less, preferably 3 μm or less, more preferably 1 μm or less, particularly preferably 0.5 μm or less, Usually, it is 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm or more. The thickness of the conductive layer may be a combination of these upper and lower limits, and is preferably 0.01 to 3 μm, more preferably 0.05 to 1 μm. When the conductive layer is a metal wiring layer and the metal wiring layer is composed of both a resin (such as an adhesive) and a metal wiring, the thickness of the conductive layer is a thickness including the resin.
 導電層の調製方法は特に限定されず、金属箔のラミネーションであってもよく、真空蒸着法、スパッタリング法、湿式コーティング、イオンプレーティング法、インクジェット印刷法、グラビア印刷法、電解メッキ、無電解メッキにより形成されたものであってもよいが、好ましくはスパッタリング法、インクジェット印刷法、グラビア印刷法により形成された導電層であり、より好ましくはスパッタリングにより形成された導電層である。 The method for preparing the conductive layer is not particularly limited, and may be lamination of metal foil. Vacuum deposition method, sputtering method, wet coating, ion plating method, ink jet printing method, gravure printing method, electrolytic plating, electroless plating However, it is preferably a conductive layer formed by a sputtering method, an ink jet printing method, or a gravure printing method, and more preferably a conductive layer formed by sputtering.
 導電層(例えばメタルメッシュ)は、例えばタッチパネルにおいて、透明基板をタッチした際に信号を発生させ、集積回路等にタッチ座標を伝える機能を有していてもよい。 The conductive layer (for example, metal mesh) may have a function of generating a signal when touching a transparent substrate in a touch panel, for example, and transmitting touch coordinates to an integrated circuit or the like.
 本発明の光学積層体は、前記偏光フィルムの一方の面に、前記第1硬化物層、前記粘着層がこの順に積層された積層体を、基板上に形成された導電層に貼合(又は積層)して得ることができる。 In the optical laminate of the present invention, the laminate in which the first cured product layer and the adhesive layer are laminated in this order on one surface of the polarizing film is bonded to a conductive layer formed on a substrate (or Can be obtained).
 導電層(例えば導電性の透明金属酸化物層、金属配線層等)を備える光学積層体は、タッチパネル機能を有するタッチ入力式液晶表示装置等に利用することができるため有用であるものの、偏光フィルムに含まれる二色性色素(ヨウ素)が導電層に移動して導電層が腐食されやすい。特にメタルメッシュ等の金属配線層を使用した場合、線幅が狭いため導電層がより腐食されやすくなる。しかし、本発明の光学積層体は、第1硬化物層を備えるため、二色性色素の導電層への移動を有効に抑制し、導電層の腐食を効果的に防止することができる。 An optical laminate including a conductive layer (for example, a conductive transparent metal oxide layer or a metal wiring layer) is useful because it can be used for a touch input type liquid crystal display device having a touch panel function, but a polarizing film. The dichroic dye (iodine) contained in is moved to the conductive layer and the conductive layer is easily corroded. In particular, when a metal wiring layer such as a metal mesh is used, the conductive layer is more easily corroded because the line width is narrow. However, since the optical layered body of the present invention includes the first cured product layer, the movement of the dichroic dye to the conductive layer can be effectively suppressed, and corrosion of the conductive layer can be effectively prevented.
〔偏光フィルム〕
 本発明の光学積層体を構成する偏光フィルムは、入射する自然光から直線偏光を取り出す機能を有するフィルムであって、本発明においては、ポリビニルアルコール系樹脂フィルムに二色性色素、好ましくはヨウ素を含有させ、吸着配向させたフィルムである。ポリビニルアルコール系樹脂フィルムを構成するポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとこれに共重合可能な他の単量体との共重合体(例えば、エチレン-酢酸ビニル共重合体等)が挙げられる。酢酸ビニルと共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド
類等が挙げられる。
[Polarized film]
The polarizing film constituting the optical laminate of the present invention is a film having a function of extracting linearly polarized light from incident natural light. In the present invention, the polyvinyl alcohol resin film contains a dichroic dye, preferably iodine. It is a film that is adsorbed and oriented. As the polyvinyl alcohol resin constituting the polyvinyl alcohol resin film, a saponified polyvinyl acetate resin can be used. Polyvinyl acetate resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith (for example, ethylene-vinyl acetate copolymer). And the like. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常、85~100モル%であり、98モル%以上が好ましい。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、及びポリビニルブチラール等を用いることができる。ポリビニルアルコール系樹脂の重合度は、通常、1000~10000であり、1500~5000が好ましい。 The saponification degree of the polyvinyl alcohol resin is usually 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified. For example, polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like can be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, and preferably 1500 to 5000.
 このようなポリビニルアルコール系樹脂を製膜したフィルムを、偏光フィルムの原反フィルムとして用いることができる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、従来公知の方法で製膜することができる。ポリビニルアルコール系樹脂からなる原反フィルムの膜厚は、特に限定されるものではないが、延伸のしやすさを考慮すれば、例えば10~150μmであり、好ましくは15~100μmであり、より好ましくは20~80μmである。 A film obtained by forming such a polyvinyl alcohol-based resin can be used as an original film of a polarizing film. The method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a conventionally known method. The film thickness of the raw film made of polyvinyl alcohol resin is not particularly limited, but considering easiness of stretching, it is, for example, 10 to 150 μm, preferably 15 to 100 μm, more preferably Is 20 to 80 μm.
 偏光フィルムは、通常、このようなポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、二色性色素を吸着させる工程、二色性色素が吸着したポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造される。 The polarizing film is usually a step of uniaxially stretching such a polyvinyl alcohol resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol resin film with a dichroic dye, and a dichroic dye It is manufactured through a process of treating the adsorbed polyvinyl alcohol-based resin film with a boric acid aqueous solution and a step of washing with water after the treatment with the boric acid aqueous solution.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素の染色前に行なってもよいし、染色と同時に行なってもよいし、又は染色の後に行なってもよい。一軸延伸を染色の後で行なう場合には、この一軸延伸は、ホウ酸処理の前に行なってもよいし、ホウ酸処理中に行なってもよい。これらの複数の段階で一軸延伸を行なうことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また、一軸延伸は、大気中で延伸を行なう乾式延伸であってもよいし、溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行なう湿式延伸であってもよい。延伸倍率は、偏光フィルムの変形を抑制する観点から、好ましくは8倍以下、より好ましくは7.5倍以下、さらに好ましくは7倍以下である。また、延伸倍率は、偏光フィルムとしての機能を発現させる観点からは、4.5倍以上であることが好ましい。 The uniaxial stretching of the polyvinyl alcohol-based resin film may be performed before the dichroic dye is dyed, may be performed simultaneously with the dyeing, or may be performed after the dyeing. When uniaxial stretching is performed after dyeing, the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. It is also possible to perform uniaxial stretching in these plural stages. In uniaxial stretching, it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll. The uniaxial stretching may be dry stretching in which stretching is performed in the atmosphere, or may be wet stretching in which stretching is performed in a state where a solvent is used and the polyvinyl alcohol-based resin film is swollen. From the viewpoint of suppressing deformation of the polarizing film, the draw ratio is preferably 8 times or less, more preferably 7.5 times or less, and even more preferably 7 times or less. Moreover, it is preferable that a draw ratio is 4.5 times or more from a viewpoint of expressing the function as a polarizing film.
 本発明においては、通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。前記水溶液におけるヨウ素の含有量は、通常、水100質量部あたり0.01~1質量部であり、ヨウ化カリウムの含有量は、通常、水100質量部あたり0.5~20質量部である。染色に用いる水溶液の温度は、通常20~40℃であり、また、この水溶液への浸漬時間(染色時間)は、通常20~1800秒である。 In the present invention, a method of immersing and dyeing a polyvinyl alcohol resin film in an aqueous solution containing iodine and potassium iodide is usually employed. The content of iodine in the aqueous solution is usually 0.01 to 1 part by mass per 100 parts by mass of water, and the content of potassium iodide is usually 0.5 to 20 parts by mass per 100 parts by mass of water. . The temperature of the aqueous solution used for dyeing is usually 20 to 40 ° C., and the immersion time (dyeing time) in this aqueous solution is usually 20 to 1800 seconds.
 ヨウ素による染色後のホウ酸処理は、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬することにより行なうことができる。ホウ酸含有水溶液におけるホウ酸の量は、水100質量部あたり、通常2~15質量部、好ましくは5~12質量部である。本発明においては、このホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの量は、水100質量部あたり、通常0.1~15質量部、好ましくは5~12質量部である。ホウ酸含有水溶液への浸漬時間は、通常60~1200秒、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸含有水溶液の温度は、通常50℃以上であり、好ましくは50~85℃、より好ましくは60~80℃である。 The boric acid treatment after dyeing with iodine can be performed by immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution. The amount of boric acid in the boric acid-containing aqueous solution is usually 2 to 15 parts by mass, preferably 5 to 12 parts by mass per 100 parts by mass of water. In the present invention, this boric acid-containing aqueous solution preferably contains potassium iodide. The amount of potassium iodide in the boric acid-containing aqueous solution is usually 0.1 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water. The immersion time in the boric acid-containing aqueous solution is usually 60 to 1200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds. The temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは、通常、水洗処理される。水洗処理は、たとえば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬することにより行なうことができる。水洗処理における水の温度は、通常5~40℃であり、浸漬時間は、通常1~120秒である。水洗後は乾燥処理が施されて、偏光フィルムが得られる。乾燥処理は、熱風乾燥機や遠赤外線ヒーターを用いて行なうことができる。乾燥処理の温度は、通常30~100℃、好ましくは40~95℃、より好ましくは50~90℃である。乾燥処理の時間は、通常60~600秒、好ましくは120~600秒である。 The polyvinyl alcohol resin film after the boric acid treatment is usually washed with water. The water washing treatment can be performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water. The temperature of water in the water washing treatment is usually 5 to 40 ° C., and the immersion time is usually 1 to 120 seconds. After washing with water, a drying process is performed to obtain a polarizing film. The drying treatment can be performed using a hot air dryer or a far infrared heater. The temperature for the drying treatment is usually 30 to 100 ° C., preferably 40 to 95 ° C., more preferably 50 to 90 ° C. The drying treatment time is usually 60 to 600 seconds, preferably 120 to 600 seconds.
 このようにポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素、好ましくはヨウ素による染色、及びホウ酸処理が施され、偏光フィルムが得られる。偏光フィルムの厚みは、例えば5~40μmとすることができる。 Thus, the polyvinyl alcohol-based resin film is uniaxially stretched, dyed with a dichroic dye, preferably iodine, and treated with boric acid to obtain a polarizing film. The thickness of the polarizing film can be 5 to 40 μm, for example.
〔第2硬化物層〕
 本発明の光学積層体は、偏光フィルムの前記第1硬化物層とは反対側の面に、硬化性組成物の硬化物から構成される第2硬化物層を備えていてもよい。第2硬化物層を構成する硬化性組成物は、偏光フィルムや第2保護フィルムとの接着性に応じて適宜選択でき、上述の第1硬化物層を構成する硬化性組成物の範囲に含まれる組成物であってもよく、当該分野で既知の光硬化性接着剤等であってもよい。上述の第1硬化物層を構成する硬化性組成物の範囲に含まれる組成物を用いる場合、光学積層体を構成する第1硬化物層の硬化性組成物と同じ組成の硬化性組成物を第2硬化物層に使用してもよく、異なる組成の硬化性組成物を第2硬化物層に使用してもよい。
[Second cured product layer]
The optical laminated body of this invention may be equipped with the 2nd hardened | cured material layer comprised from the hardened | cured material of a curable composition in the surface on the opposite side to the said 1st hardened | cured material layer of a polarizing film. The curable composition which comprises a 2nd hardened | cured material layer can be suitably selected according to adhesiveness with a polarizing film or a 2nd protective film, and is contained in the range of the curable composition which comprises the above-mentioned 1st hardened | cured material layer. The composition may be a photocurable adhesive or the like known in the art. When using the composition contained in the range of the curable composition which comprises the above-mentioned 1st hardened | cured material layer, the curable composition of the same composition as the curable composition of the 1st hardened | cured material layer which comprises an optical laminated body is used. You may use for a 2nd hardened | cured material layer, and you may use a curable composition of a different composition for a 2nd hardened | cured material layer.
 当該分野で既知の光硬化性接着剤としては、例えば、光硬化性エポキシ樹脂と光カチオン重合開始剤などの混合物や光硬化性アクリル樹脂と光ラジカル重合開始剤などの混合物が挙げられる。第2硬化物層を構成する硬化物を形成する硬化性組成物は、例えば国際公開第2014/129368号に記載される、光硬化性成分及び光カチオン重合開始剤を含む光硬化性接着剤を用いることができる。 Examples of the photocurable adhesive known in the art include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator, and a mixture of a photocurable acrylic resin and a photoradical polymerization initiator. A curable composition for forming a cured product constituting the second cured product layer is, for example, a photocurable adhesive containing a photocurable component and a cationic photopolymerization initiator described in International Publication No. 2014/129368. Can be used.
 第2硬化物層は、光学積層体の第1硬化物層が積層された面とは反対側の面に、第2硬化物層を構成する硬化性組成物を公知の方法により塗布し、硬化させることで形成することができる。第2硬化物層を構成する硬化性組成物の塗工方式は、例えば、硬化性組成物(1)の塗工と同様の塗工方式が挙げられる。 The second cured product layer is applied by applying a curable composition constituting the second cured product layer to the surface opposite to the surface on which the first cured product layer of the optical laminate is laminated, and cured. Can be formed. Examples of the coating method of the curable composition constituting the second cured product layer include the same coating method as that of the curable composition (1).
 第2硬化物層を構成する硬化性組成物として、光硬化性組成物又は既知の光硬化性接着剤を用いる場合には、活性エネルギー線を照射することによって硬化性組成物又は硬化性接着剤を硬化させる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線が好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが好ましい。 When a photocurable composition or a known photocurable adhesive is used as the curable composition constituting the second cured product layer, the curable composition or the curable adhesive is irradiated by irradiating active energy rays. Is cured. The light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable, and specifically, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferable.
 第2硬化物層を構成する硬化性組成物への光照射強度は、該硬化性組成物の組成によって適宜選択でき、特に限定されないが、重合開始剤の活性化に有効な波長領域の照射強度は、好ましくは0.1~1000mW/cmである。第2硬化物層を構成する硬化性組成物への光照射時間は、硬化させる硬化性組成物によって適宜選択すればよく、上記照射強度と照射時間との積として表される積算光量が好ましくは10~5000mJ/cmとなるように設定される。 The light irradiation intensity to the curable composition constituting the second cured product layer can be appropriately selected depending on the composition of the curable composition and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator. Is preferably 0.1 to 1000 mW / cm 2 . The light irradiation time to the curable composition constituting the second cured product layer may be appropriately selected depending on the curable composition to be cured, and the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is preferably It is set to be 10 to 5000 mJ / cm 2 .
 なお、活性エネルギー線の照射によって硬化性組成物を硬化させる場合、例えば、偏光フィルムの偏光度、透過率及び色相、ならびに保護フィルム及び光学層を構成する各種フィルムの透明性といった、光学積層体の諸機能が低下しない条件で硬化を行なうことが好ましい。第2硬化物層の厚みは、特に限定されるものではないが、通常、0.1~10μmである。 In the case of curing the curable composition by irradiation with active energy rays, for example, the degree of polarization of the polarizing film, the transmittance and the hue, and the transparency of various films constituting the protective film and the optical layer, for example, It is preferable to perform the curing under conditions that do not deteriorate the various functions. The thickness of the second cured product layer is not particularly limited, but is usually 0.1 to 10 μm.
 〔保護フィルム〕
 一実施態様において、本発明の光学積層体は、前記偏光フィルムの一方の面に第1硬化物層を介して積層された第1保護フィルム(図2に示される7)を有する。また、一実施態様において、本発明の光学積層体は、前記偏光フィルムのもう一方の面(第1硬化物層2とは反対側の面)に、第2硬化物層を介して積層された第2保護フィルム(図1及び2に示される6)を有する。偏光フィルムの収縮及び膨張防止、温度、湿度、紫外線等による偏光フィルムの劣化防止に寄与する観点から、一実施態様において、本発明の光学積層体は前記第1保護フィルムを有する。一方、光学積層体の薄型化の観点から、一実施態様において、本発明の光学積層体は前記第1保護フィルムを含まない。本発明における第1硬化物層は保護フィルムに代えて偏光フィルムの劣化防止にも寄与するため、偏光フィルムの劣化防止及び光学積層体の薄型化をバランスよく達成する観点からは、本発明の光学積層体が第1保護フィルムを含まないことが好ましい。
〔Protective film〕
In one embodiment, the optical laminate of the present invention has a first protective film (7 shown in FIG. 2) laminated on one surface of the polarizing film via a first cured product layer. In one embodiment, the optical laminate of the present invention is laminated on the other surface of the polarizing film (the surface opposite to the first cured product layer 2) via the second cured product layer. It has a second protective film (6 shown in FIGS. 1 and 2). From the viewpoint of contributing to prevention of shrinkage and expansion of the polarizing film, prevention of deterioration of the polarizing film due to temperature, humidity, ultraviolet rays, and the like, in one embodiment, the optical laminate of the present invention has the first protective film. On the other hand, from the viewpoint of reducing the thickness of the optical laminate, in one embodiment, the optical laminate of the present invention does not include the first protective film. Since the 1st hardened material layer in this invention replaces with a protective film and contributes also to prevention of deterioration of a polarizing film, from a viewpoint of achieving the prevention of deterioration of a polarizing film and thinning of an optical laminated body with sufficient balance, it is optical of this invention. It is preferable that a laminated body does not contain a 1st protective film.
 保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮蔽性、等方性等に優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー;ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー;ポリメチルメタクリレート等のアクリル系ポリマー;ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー;ポリカーボネート系ポリマーがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系又はノルボルネン構造を有するポリオレフィン;エチレン・プロピレン共重合体のようなポリオレフィン系ポリマー;塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー;イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又は前記ポリマーのブレンド物なども保護フィルムを形成するポリマーの例として挙げられる。保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型、紫外線硬化型の樹脂による硬化物層として形成することもできる。中でもイソシアネート架橋剤との反応性を有する水酸基を有するものが好ましく、特にセルロース系ポリマーが好ましい。
 本発明の光学積層体において、第1保護フィルムと第2保護フィルムとは同じ材料から構成されていてもよく、異なる材料から構成されていてもよい。
As a material for forming the protective film, a material excellent in transparency, mechanical strength, thermal stability, moisture shielding property, isotropy and the like is preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate; cellulose polymers such as diacetyl cellulose and triacetyl cellulose; acrylic polymers such as polymethyl methacrylate; styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin) Type polymer; polycarbonate type polymer. In addition, polyethylene, polypropylene, polyolefin having a cyclo or norbornene structure; polyolefin polymer such as ethylene / propylene copolymer; vinyl chloride polymer, amide polymer such as nylon or aromatic polyamide; imide polymer, sulfone Polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or Examples of the polymer that forms the protective film include blends of the above polymers. The protective film can also be formed as a cured product layer of thermosetting or ultraviolet curable resin such as acrylic, urethane, acrylurethane, epoxy, or silicone. Among them, those having a hydroxyl group having reactivity with an isocyanate crosslinking agent are preferable, and cellulose polymers are particularly preferable.
In the optical laminate of the present invention, the first protective film and the second protective film may be composed of the same material or may be composed of different materials.
 第2保護フィルムの透湿度は、温度23℃、相対湿度55%において、好ましくは1200g/(m・24時間)以下であり、より好ましくは800g/(m・24時間)以下であり、さらに好ましくは600g/(m・24時間)以下であり、特に好ましくは400g/(m・24時間)以下であり、最も好ましくは200g/(m・24時間)以下である。第2保護フィルムの透湿度が上記値以下であると、高温高湿下において外部からの水分の浸入を防ぎ、偏光フィルムに含まれる二色性色素(ヨウ素)の移動が加速されるのを防ぐことができるため、導電層の腐食及び光学特性の劣化をより効果的に防止することができる。一方、本発明の光学積層体は第1硬化物層を有するため、第2保護フィルムが上記透湿度を満たさなくても、偏光フィルムに含まれる二色性色素(ヨウ素)の移動を抑制し、導電層の劣化及び光学特性の劣化を防止可能である。 The moisture permeability of the second protective film is preferably 1200 g / (m 2 · 24 hours) or less, more preferably 800 g / (m 2 · 24 hours) or less at a temperature of 23 ° C. and a relative humidity of 55%. More preferably, it is 600 g / (m 2 · 24 hours) or less, particularly preferably 400 g / (m 2 · 24 hours) or less, and most preferably 200 g / (m 2 · 24 hours) or less. When the moisture permeability of the second protective film is equal to or lower than the above value, entry of moisture from the outside under high temperature and high humidity is prevented, and acceleration of movement of the dichroic dye (iodine) contained in the polarizing film is prevented. Therefore, corrosion of the conductive layer and deterioration of optical properties can be more effectively prevented. On the other hand, since the optical layered body of the present invention has the first cured product layer, even if the second protective film does not satisfy the above moisture permeability, the movement of the dichroic dye (iodine) contained in the polarizing film is suppressed, It is possible to prevent deterioration of the conductive layer and optical characteristics.
 保護フィルムの厚みは特に制限されるものではないが、第1保護フィルム及び第2保護フィルムはいずれも、通常5~500μmであり、好ましくは1~300μm、より好ましくは5~200μm、さらに好ましくは10~100μmである。また、保護フィルムは、光学補償機能を付加させた保護フィルム等から構成されていてもよい。 The thickness of the protective film is not particularly limited, but both the first protective film and the second protective film are usually 5 to 500 μm, preferably 1 to 300 μm, more preferably 5 to 200 μm, still more preferably 10 to 100 μm. Moreover, the protective film may be comprised from the protective film etc. which added the optical compensation function.
 本発明の光学積層体において、第1硬化物層は偏光フィルムから粘着層への二色性色素の移動、及び粘着層から偏光フィルムへのイオン性化合物の移動を効果的に抑制することができるため、光学積層体を構成する第1保護フィルムの材料についての選択範囲が広がる。すなわち、イオン性化合物を透過しにくい保護フィルムを用いる必要がなく、イオン性化合物を透過しやすい一般的に安価な構成の保護フィルムを用いて光学積層体を構成することが可能となる。これにより生産コストを安くできるなど、本発明の光学積層体は工業的な観点においても有利である。 In the optical layered body of the present invention, the first cured product layer can effectively suppress the movement of the dichroic dye from the polarizing film to the adhesive layer and the movement of the ionic compound from the adhesive layer to the polarizing film. Therefore, the selection range about the material of the 1st protective film which comprises an optical laminated body spreads. That is, it is not necessary to use a protective film that hardly transmits an ionic compound, and an optical laminate can be formed using a protective film that is generally inexpensive and easily transmits an ionic compound. The optical layered body of the present invention is advantageous from an industrial point of view, such as reducing the production cost.
 図1及び図2に示される本発明の光学積層体は、偏光フィルムに直接第1硬化物層が積層されているが、偏光フィルムと第1硬化物層との間、或いは、第1硬化物層と粘着剤層との間にプライマー層が備えられていてもよい。プライマー層を形成する材料としては、例えばウレタンオリゴマー等の各種ポリマー類、金属酸化物のゾル、シリカゾル等が挙げられる。プライマー層は、保護フィルムよりも厚みが薄く、例えば0.01~3μm、好ましくは0.1~2μm、より好ましくは0.5~1μmである。 In the optical laminate of the present invention shown in FIGS. 1 and 2, the first cured product layer is directly laminated on the polarizing film, but the first cured product is provided between the polarizing film and the first cured product layer. A primer layer may be provided between the layer and the pressure-sensitive adhesive layer. Examples of the material for forming the primer layer include various polymers such as urethane oligomers, metal oxide sols, silica sols, and the like. The primer layer is thinner than the protective film, for example, 0.01 to 3 μm, preferably 0.1 to 2 μm, more preferably 0.5 to 1 μm.
 また、本発明の光学積層体は、偏光フィルムと第1硬化物層との間に、接着剤層を介して保護フィルムを備えていてもよい。保護フィルムとしては、例えば上記に例示の第1保護フィルム又は第2保護フィルムと同様の保護フィルムが挙げられる。保護フィルムの厚みも第1保護フィルム又は第2保護フィルムと同様に、通常5~500μmである。 Moreover, the optical layered body of the present invention may include a protective film via an adhesive layer between the polarizing film and the first cured product layer. As a protective film, the protective film similar to the 1st protective film or the 2nd protective film illustrated above is mentioned, for example. The thickness of the protective film is usually 5 to 500 μm as in the case of the first protective film or the second protective film.
 本発明の光学積層体は、偏光フィルムと第1硬化物層との間に保護フィルムを備えていなくても、第1硬化物層が効果的に二色性色素の移動を防ぐことができる。このため、本発明の光学積層体は、偏光フィルムに直接第1硬化物層が積層されている態様、又は偏光フィルムにプライマー層を介して第1硬化物層が積層されている態様、又は第1硬化物層にプライマー層を介して粘着剤層が積層されている態様が好ましい。 The optical layered body of the present invention can effectively prevent the movement of the dichroic dye even if the first cured product layer is not provided with a protective film between the polarizing film and the first cured product layer. For this reason, in the optical laminate of the present invention, the first cured product layer is laminated directly on the polarizing film, or the first cured product layer is laminated on the polarizing film via the primer layer, or the first A mode in which an adhesive layer is laminated on one cured product layer via a primer layer is preferred.
 本発明の光学積層体は、必要に応じて、さらに、位相差フィルム、視角補償フィルム及び輝度向上フィルム等の光学層を積層していてもよい。本発明の光学積層体において光学層は、当該分野で既知の材料を用いて形成することができる。 The optical layered body of the present invention may further include an optical layer such as a retardation film, a viewing angle compensation film, and a brightness enhancement film, if necessary. In the optical layered body of the present invention, the optical layer can be formed using a material known in the art.
 本発明の光学積層体は、公知の方法で製造することができる。例えば、第2保護フィルムに硬化性組成物を塗布して第2硬化組成物層を形成し、前記第2硬化組成物層に偏光フィルムを貼合し積層体を作製する。第1保護フィルムを含まない光学積層体の場合、剥離性フィルム上に硬化性組成物(1)を塗布して第1硬化組成物層を形成し、その塗工面に前記積層体の偏光フィルム側を貼合する。次いで、紫外線、電子線等の活性エネルギー線を照射して第2硬化組成物層及び第1硬化組成物層を硬化させて第2硬化物層及び第1硬化物層を形成する。その後、剥離性フィルムを剥がし、第1硬化物層上に粘着層を形成する。そして、例えば基板上に積層された導電層に粘着剤層を貼合すればよい。一方、第1保護フィルムを含む光学積層体の場合、保護フィルム上に硬化性組成物(1)を塗布して第1硬化組成物層を形成し、その塗工面に前記積層体の偏光フィルム側を貼合した後、紫外線、電子線等の活性エネルギー線を照射して第1硬化組成物層を硬化させて第1硬化物層を形成し、次いで、第1保護フィルム上に粘着層を形成する。そして、例えば基板上に積層された導電層に粘着剤層を貼合すればよい。 The optical laminate of the present invention can be produced by a known method. For example, a curable composition is apply | coated to a 2nd protective film, a 2nd cured composition layer is formed, a polarizing film is bonded to the said 2nd cured composition layer, and a laminated body is produced. In the case of an optical laminate that does not include the first protective film, the curable composition (1) is applied on the peelable film to form the first cured composition layer, and the polarizing film side of the laminate on the coated surface Paste. Next, active energy rays such as ultraviolet rays and electron beams are irradiated to cure the second cured composition layer and the first cured composition layer to form the second cured product layer and the first cured product layer. Thereafter, the peelable film is peeled off to form an adhesive layer on the first cured product layer. And what is necessary is just to bond an adhesive layer to the conductive layer laminated | stacked on the board | substrate, for example. On the other hand, in the case of an optical laminate including a first protective film, the curable composition (1) is applied on the protective film to form a first cured composition layer, and the polarizing film side of the laminate is applied to the coated surface. After bonding, the first cured composition layer is formed by irradiating active energy rays such as ultraviolet rays and electron beams to form a first cured product layer, and then an adhesive layer is formed on the first protective film. To do. And what is necessary is just to bond an adhesive layer to the conductive layer laminated | stacked on the board | substrate, for example.
 硬化性組成物を塗工した際の厚みムラを軽減させ、且つ、光学積層体の薄型化を両立させる観点から、上記のようにセパレートフィルム(剥離フィルム)を用いて積層体を形成することができる。例えば、偏光フィルムと第1硬化物層からなる積層体は、偏光フィルムの一方の面に第1硬化物層を介してセパレートフィルム(剥離フィルム)を積層し、活性エネルギー線等により、第1硬化物層を硬化させた後に、セパレートフィルム(剥離フィルム)を剥離することにより形成することができる。 From the viewpoint of reducing thickness unevenness when the curable composition is applied and making the optical laminate thin, it is possible to form a laminate using a separate film (release film) as described above. it can. For example, a laminate composed of a polarizing film and a first cured product layer is obtained by laminating a separate film (peeling film) on one surface of the polarizing film via a first cured product layer, and first curing with active energy rays or the like. It can form by peeling a separate film (peeling film), after hardening a physical layer.
 本発明は、上述した構成を有する光学積層体、すなわち、ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、重合性化合物を含む硬化性組成物の硬化物から構成される第1硬化物層と、粘着層と、導電層とがこの順に積層された光学積層体(一実施態様において図1及び図2で示される光学積層体)であって、
 前記重合性化合物は、2つ以上のオキセタニル基を有するオキセタン化合物を含み、該オキセタン化合物の含有量は、硬化性組成物に含まれる全重合性化合物の総量100質量部に対して40質量部以上である、光学積層体を包含する。2つ以上のオキセタニル基を有するオキセタン化合物を所定量以上含むと、架橋密度が高く緻密な第1硬化物層を形成できるため、偏光フィルムに含まれる二色性色素(ヨウ素)の第1硬化物層への移動を有効に抑制することができ、二色性色素(ヨウ素)による導電層の腐食及び光学性能の低下を効果的に防止することが可能となる。なお、このような光学積層体については、第1硬化物層の吸光度上昇率が30%以下であってもなくてもよい。好ましい態様においては、2つ以上のオキセタニル基を有するオキセタン化合物は、上述のオキセタン化合物(A)であり、第1硬化物層の硬化物を形成する硬化性組成物に含まれる成分や含有量(好ましい成分や含有量も含む)も上述のものと同じである。また光学積層体に含まれる偏光フィルム、粘着層、及び導電層も上述のものと同じである。
The present invention comprises an optical laminate having the above-described configuration, that is, a cured product of a curable composition containing a polymerizable compound on one surface of a polarizing film containing a dichroic dye in a polyvinyl alcohol-based resin. An optical laminate (optical laminate shown in FIGS. 1 and 2 in one embodiment) in which a first cured product layer, an adhesive layer, and a conductive layer are laminated in this order,
The polymerizable compound includes an oxetane compound having two or more oxetanyl groups, and the content of the oxetane compound is 40 parts by mass or more with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition. An optical laminate. When a predetermined amount or more of an oxetane compound having two or more oxetanyl groups is included, a dense first cured product layer having a high crosslinking density can be formed. Therefore, a first cured product of a dichroic dye (iodine) contained in a polarizing film The movement to the layer can be effectively suppressed, and the corrosion of the conductive layer and the deterioration of the optical performance due to the dichroic dye (iodine) can be effectively prevented. In addition, about such an optical laminated body, the rate of increase in absorbance of the first cured product layer may or may not be 30% or less. In a preferred embodiment, the oxetane compound having two or more oxetanyl groups is the above-mentioned oxetane compound (A), and the components and contents contained in the curable composition forming the cured product of the first cured product layer ( Preferred components and contents are also included). In addition, the polarizing film, the adhesive layer, and the conductive layer included in the optical laminate are the same as those described above.
 本発明において、ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、重合性化合物を含む硬化性組成物の硬化物から構成される第1硬化物層と、粘着層と、導電層とがこの順に積層された光学積層体であって、第1硬化物層の水接触角が90°以上である光学積層体は、第1硬化物層の優れた疎水性に起因して、二色性色素(ヨウ素)の移動が顕著となる高温高湿環境下においても、二色性色素の移動を有効に抑制し、導電層の腐食及び光学性能の低下を効果的に防止することができる。 In this invention, the 1st hardened | cured material layer comprised from the hardened | cured material of the curable composition containing a polymeric compound on one surface of the polarizing film containing a dichroic dye in polyvinyl alcohol-type resin, and an adhesion layer And an optical laminate in which the conductive layer is laminated in this order, and the optical laminate having a water contact angle of the first cured product layer of 90 ° or more is caused by the excellent hydrophobicity of the first cured product layer. Even in high-temperature and high-humidity environments where the movement of dichroic dye (iodine) becomes significant, it effectively suppresses the movement of dichroic dye and effectively prevents corrosion of the conductive layer and degradation of optical performance. can do.
 本発明において、第1硬化物層の水接触角は、例えば90°以上であり、好ましくは95°以上、より好ましくは100°以上である。水接触角が上記値以上であると、高温高湿下においても、第1硬化物層への二色性色素の移動を有効に抑制し、導電層の腐食及び光学性能の低下を効果的に防止することができる。 In the present invention, the water contact angle of the first cured product layer is, for example, 90 ° or more, preferably 95 ° or more, more preferably 100 ° or more. When the water contact angle is equal to or greater than the above value, the migration of the dichroic dye to the first cured product layer is effectively suppressed even under high temperature and high humidity, and the conductive layer is effectively corroded and the optical performance is reduced. Can be prevented.
 本発明において、ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、重合性化合物を含む硬化性組成物の硬化物から構成される第1硬化物層と、粘着層と、導電層とがこの順に積層された光学積層体であって、第1硬化物層の30℃における貯蔵弾性率が1500MPa以上である光学積層体は、架橋密度が比較的高いことに起因して、二色性色素(ヨウ素)に対するバリア性が高く、第1硬化物層への二色性色素(ヨウ素)の移動を有効に抑制し、導電層の腐食及び光学性能の低下を効果的に防止することができる。 In this invention, the 1st hardened | cured material layer comprised from the hardened | cured material of the curable composition containing a polymeric compound on one surface of the polarizing film containing a dichroic dye in polyvinyl alcohol-type resin, and an adhesion layer And an optical laminate in which a conductive layer is laminated in this order, and the optical laminate having a storage elastic modulus at 30 ° C. of the first cured product layer of 1500 MPa or more is caused by a relatively high crosslinking density. In addition, the barrier property against dichroic dye (iodine) is high, and the migration of the dichroic dye (iodine) to the first cured product layer is effectively suppressed, and the corrosion of the conductive layer and the optical performance are effectively reduced. Can be prevented.
 第1硬化物層の30℃における貯蔵弾性率は、例えば1500~3500MPa、好ましくは1800~3500MPa、より好ましくは2000~3500MPa、さらに好ましくは2500~3500MPaである。弾性率が上記下限値以上であると、第1硬化物層への二色性色素(ヨウ素)の移動をより有効に抑制し、導電層の腐食及び光学性能の低下をより効果的に防止することができる。 The storage elastic modulus at 30 ° C. of the first cured product layer is, for example, 1500 to 3500 MPa, preferably 1800 to 3500 MPa, more preferably 2000 to 3500 MPa, and further preferably 2500 to 3500 MPa. When the elastic modulus is equal to or higher than the lower limit, the movement of the dichroic dye (iodine) to the first cured product layer is more effectively suppressed, and the corrosion of the conductive layer and the deterioration of the optical performance are more effectively prevented. be able to.
 本発明において、ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、重合性化合物を含む硬化性組成物(1)の硬化物から構成される第1硬化物層と、粘着層と、導電層とがこの順に積層された光学積層体であって、第1硬化物層のガラス転移温度が90℃以上である光学積層体は、架橋密度が比較的高いことに起因して、二色性色素(ヨウ素)に対するバリア性が高く、第1硬化物層への二色性色素(ヨウ素)の移動を有効に抑制し、導電層の腐食及び光学性能の低下を効果的に防止することができる。 In this invention, the 1st hardened | cured material layer comprised from the hardened | cured material of the curable composition (1) containing a polymeric compound on one surface of the polarizing film containing a dichroic dye in a polyvinyl alcohol-type resin, The optical laminate in which the adhesive layer and the conductive layer are laminated in this order, and the optical laminate having the glass transition temperature of the first cured product layer of 90 ° C. or higher is due to the relatively high crosslinking density. In addition, the barrier property against the dichroic dye (iodine) is high, and the migration of the dichroic dye (iodine) to the first cured product layer is effectively suppressed, and the corrosion of the conductive layer and the optical performance are effectively reduced. Can be prevented.
 第1硬化物層のガラス転移温度は、例えば90~180℃、好ましくは100~180℃、より好ましくは120~180℃、さらに好ましくは150~180℃である。弾性率が上記下限値以上であると、第1硬化物層への二色性色素(ヨウ素)の移動をより有効に抑制し、導電層の腐食及び光学性能の低下をより効果的に防止することができる。 The glass transition temperature of the first cured product layer is, for example, 90 to 180 ° C., preferably 100 to 180 ° C., more preferably 120 to 180 ° C., and further preferably 150 to 180 ° C. When the elastic modulus is equal to or higher than the lower limit, the movement of the dichroic dye (iodine) to the first cured product layer is more effectively suppressed, and the corrosion of the conductive layer and the deterioration of the optical performance are more effectively prevented. be able to.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例、比較例中の「%」及び「部」は特に断りのない限り、それぞれ「質量%」及び「質量部」を表す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples and comparative examples, “%” and “parts” represent “% by mass” and “parts by mass”, respectively, unless otherwise specified.
[実施例1]
1.第1硬化物層を構成する硬化性組成物(I)の調製
 下記表1の組成に従い、各成分を混合して、製造例1~製造例31の硬化性組成物(I)を調製した。
[Example 1]
1. Preparation of curable composition (I) constituting first cured product layer According to the composition shown in Table 1 below, each component was mixed to prepare curable compositions (I) of Production Examples 1 to 31.
2.第1硬化物層の吸光度上昇率の評価(ヨウ素イオン吸収性評価)
 厚さ50μmのシクロオレフィン系フィルム〔商品名「ZEONOR」、日本ゼオン(株)製〕の片面に、製造例1の硬化性組成物(I)を、バーコーターを用いて硬化後の膜厚が約30μmとなるように塗工した。その塗工面に、厚さ50μmのシクロオレフィン系フィルム〔商品名「ZEONOR」、日本ゼオン(株)製〕を貼合し、積層体を作製した。前記積層体のシクロオレフィン系フィルム側から、ベルトコンベア付き紫外線照射装置〔ランプはフュージョンUVシステムズ社製の「Dバルブ」を使用〕を用いて280nm~320nmの積算光量が1000mJ/cmとなるように紫外線を照射し、硬化性組成物(I)を硬化させ、第1硬化物層の両側にシクロオレフィン系フィルムが積層された積層体を得た。得られた積層体の両側のシクロオレフィン系フィルムを剥離して、硬化性組成物(I)の硬化物(第1硬化物層)を単離し、評価用サンプルとした。
 評価用サンプルを、紫外可視分光光度計((株)島津製作所製、「UV2450」)を用いて360nmにおける吸光度を測定した。この吸光度を浸漬前吸光度とする。
 次に、評価用サンプルを温度23℃、相対湿度60%の大気中で、50%ヨウ化カリウム水溶液に100時間浸漬させた。評価用サンプルを取り出し、純水にて表面をふき取った後、紫外可視分光光度計((株)島津製作所製、「UV2450」)を用いて360nmにおける吸光度を測定した。この吸光度を浸漬後吸光度とする。
 得られた吸光度を用いて、下記式で表される吸光度上昇率(%)を算出した。結果を表1に示す。また、同様にして、製造例2~31の硬化性組成物(I)から形成されるそれぞれの硬化層の吸光度上昇率を求めた。結果を表1に示す。
 吸光度上昇率(%)=(浸漬後吸光度(360nm)-浸漬前吸光度(360nm))/浸漬前吸光度(360nm)×100   (1)
2. Evaluation of absorbance increase rate of first cured product layer (Iodine ion absorptivity evaluation)
On one side of a 50 μm thick cycloolefin film [trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.], the curable composition (I) of Production Example 1 is cured using a bar coater. The coating was performed to have a thickness of about 30 μm. A 50 μm-thick cycloolefin film [trade name “ZEONOR”, manufactured by Nippon Zeon Co., Ltd.] was bonded to the coated surface to prepare a laminate. From the cycloolefin film side of the laminate, the integrated light quantity from 280 nm to 320 nm is 1000 mJ / cm 2 using an ultraviolet irradiation device with a belt conveyor (the lamp uses “D bulb” manufactured by Fusion UV Systems). Were irradiated with ultraviolet rays to cure the curable composition (I) to obtain a laminate in which cycloolefin films were laminated on both sides of the first cured product layer. The cycloolefin film on both sides of the obtained laminate was peeled off, and the cured product (first cured product layer) of the curable composition (I) was isolated and used as an evaluation sample.
The absorbance at 360 nm was measured for the evaluation sample using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, “UV2450”). This absorbance is defined as absorbance before immersion.
Next, the sample for evaluation was immersed in an aqueous solution of 50% potassium iodide for 100 hours in an atmosphere having a temperature of 23 ° C. and a relative humidity of 60%. After taking out the sample for evaluation and wiping the surface with pure water, the absorbance at 360 nm was measured using an ultraviolet-visible spectrophotometer (“UV2450” manufactured by Shimadzu Corporation). This absorbance is defined as absorbance after immersion.
Using the obtained absorbance, the absorbance increase rate (%) represented by the following formula was calculated. The results are shown in Table 1. Similarly, the rate of increase in absorbance of each cured layer formed from the curable compositions (I) of Production Examples 2 to 31 was determined. The results are shown in Table 1.
Absorbance increase rate (%) = (absorbance after immersion (360 nm) −absorbance before immersion (360 nm)) / absorbance before immersion (360 nm) × 100 (1)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1における各成分を以下に示す。
<脂環式エポキシ化合物(B2)>
 B2-1:3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(「セロキサイド 2021P」(商品名)、ダイセル化学(株)製) B2-2:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(「EHPE3150」(商品名)、ダイセル化学(株)製)
<脂肪族エポキシ化合物(B1)>
 B1-1:1,4-ブタンジオールジグリシジルエーテル、(「EX-214」(商品名)、ナガセケムテックス(株)製)
 B1-2:シクロヘキサンジメタノールジグリシジルエーテル(「EX-216」(商品名)、ナガセケムテックス(株)製)
 B1-3:シクロヘキサンジメタノールジグリシジルエーテル(「EX-411」(商品名)、ナガセケムテックス(株)製)
<芳香族エポキシ化合物(B3)>
 B3-1:レソルシノールジグリシジルエーテル(「EX-201」(商品名)、ナガセケムテックス(株)製)
 B3-2:ビスAタイプエポキシ樹脂(「jER828EL」(商品名)、三菱化学(株)製)
 B3-3:2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1、1-ビス[4-([2、3-エポキシプロポキシ]フェニル]エチル]フェニル]プロパン(「TECHMORE VG3101L」(商品名)、(株)プリンテック製)
<オキセタン化合物(A)>
 A1-1:ビス(3-エチル-3-オキセタニルメチル)エーテル(「OXT-221」(商品名)、東亞合成(株)製)
 A1-2:キシリレンビスオキセタン(「OXT-121」(商品名)、東亞合成(株)製)
<オキセタン化合物(a)>
 a1-1:2-エチルヘキシルオキセタン(「OXT-212」(商品名)、東亞合成(株)製、オキセタニル基を1つ有する化合物)
 a1-2:3-エチル-3-ヒドロキシメチルオキセタン(「OXT-101」(商品名)、東亞合成(株)製、オキセタニル基を1つ有する化合物)
<アクリル化合物>
 P1-1:トリシクロデカンジメタノールジアクリレート(「A-DCP」(商品名)、新中村化学(株)製)
 P1-2:ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物のジアクリレート(「A-DOG(商品名)」、新中村化学(株)製)
<重合開始剤>
 G1-1:光カチオン重合開始剤:トリアリールスルホニウムヘキサフルオロホスフェートのプロピレンカーボネート50溶液(「CPI-100P」(商品名)、サンアプロ(株)製)
 G1-2:光ラジカル重合開始剤:2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(「ダロキュア1173」(商品名)、BASFジャパン(株)製)
<レベリング剤>
 S1-1:シリコーン系レベリング剤(「SH710」(商品名)、東レ・ダウコーニング(株)製)
Each component in Table 1 is shown below.
<Alicyclic epoxy compound (B2)>
B2-1: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (“Celoxide 2021P” (trade name), manufactured by Daicel Chemical Industries, Ltd.) B2-2: 2,2-bis (hydroxymethyl)- 1,2-Epoxy-4- (2-oxiranyl) cyclohexane adduct of 1-butanol (“EHPE3150” (trade name), manufactured by Daicel Chemical Industries, Ltd.)
<Aliphatic epoxy compound (B1)>
B1-1: 1,4-butanediol diglycidyl ether ("EX-214" (trade name), manufactured by Nagase ChemteX Corporation)
B1-2: Cyclohexanedimethanol diglycidyl ether (“EX-216” (trade name), manufactured by Nagase ChemteX Corporation)
B1-3: Cyclohexanedimethanol diglycidyl ether (“EX-411” (trade name), manufactured by Nagase ChemteX Corporation)
<Aromatic epoxy compound (B3)>
B3-1: Resorcinol diglycidyl ether ("EX-201" (trade name), manufactured by Nagase ChemteX Corporation)
B3-2: Bis A type epoxy resin ("jER828EL" (trade name), manufactured by Mitsubishi Chemical Corporation)
B3-3: 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4-([2,3-epoxypropoxy] phenyl] ethyl] phenyl] propane ("TECHMORE VG3101L" (trade name), manufactured by Printec Co., Ltd.)
<Oxetane compound (A)>
A1-1: Bis (3-ethyl-3-oxetanylmethyl) ether (“OXT-221” (trade name), manufactured by Toagosei Co., Ltd.)
A1-2: Xylylenebisoxetane ("OXT-121" (trade name), manufactured by Toagosei Co., Ltd.)
<Oxetane compound (a)>
a1-1: 2-Ethylhexyloxetane (“OXT-212” (trade name), manufactured by Toagosei Co., Ltd., compound having one oxetanyl group)
a1-2: 3-ethyl-3-hydroxymethyloxetane (“OXT-101” (trade name), manufactured by Toagosei Co., Ltd., compound having one oxetanyl group)
<Acrylic compound>
P1-1: Tricyclodecane dimethanol diacrylate (“A-DCP” (trade name), manufactured by Shin-Nakamura Chemical Co., Ltd.)
P1-2: Diacrylate of acetal compound of hydroxypivalaldehyde and trimethylolpropane (“A-DOG (trade name)”, manufactured by Shin-Nakamura Chemical Co., Ltd.)
<Polymerization initiator>
G1-1: Photocationic polymerization initiator: propylene carbonate 50 solution of triarylsulfonium hexafluorophosphate (“CPI-100P” (trade name), manufactured by San Apro Co., Ltd.)
G1-2: Photoradical polymerization initiator: 2-hydroxy-2-methyl-1-phenyl-propan-1-one ("Darocur 1173" (trade name), manufactured by BASF Japan Ltd.)
<Leveling agent>
S1-1: Silicone leveling agent ("SH710" (trade name), manufactured by Toray Dow Corning Co., Ltd.)
3.偏光フィルムの作製
 厚さ20μmのポリビニルアルコールフィルム((株)クラレ製、「クラレポバール KL318」(商品名):カルボキシル基変性ポリビニルアルコール、平均重合度約2,400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の質量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の質量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。さらに、26℃の純水で20秒間洗浄し、65℃で乾燥した後、ポリビニルアルコールフィルムにヨウ素が吸着配向した厚さ7μmの偏光フィルム(1)を得た。
3. Production of Polarizing Film Polyvinyl alcohol film having a thickness of 20 μm (manufactured by Kuraray Co., Ltd., “Kuraray Poval KL318” (trade name): carboxyl group-modified polyvinyl alcohol, average polymerization degree of about 2,400, saponification degree of 99.9 mol% The above is uniaxially stretched about 5 times by dry stretching, and further immersed in pure water at 60 ° C. for 1 minute while maintaining the tension state, the mass ratio of iodine / potassium iodide / water is 0.05 / It was immersed in a 5/100 aqueous solution at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a mass ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Further, after washing with pure water at 26 ° C. for 20 seconds and drying at 65 ° C., a polarizing film (1) having a thickness of 7 μm in which iodine was adsorbed and oriented on a polyvinyl alcohol film was obtained.
4.水系接着剤の調製
 純粋100質量部、ポリビニルアルコールフィルム((株)クラレ製、「クラレポバール KL318」(商品名):カルボキシル基変性ポリビニルアルコール)3.0質量部、及び水溶性ポリアミドエポキシ樹脂(住化ケムテックス(株)製、「スミレーズレジン 650」(商品名)、固形分濃度30%の使用液)1.5質量部を混合し、水系接着剤(1)を調製した。なお、「スミレーズレジン 650」の質量部は固形分の質量を示している。
4). Preparation of water-based adhesive 100 parts by mass pure, polyvinyl alcohol film (manufactured by Kuraray Co., Ltd., “Kuraray Poval KL318” (trade name): carboxyl group-modified polyvinyl alcohol), and water-soluble polyamide epoxy resin (Sumi Aqueous adhesive (1) was prepared by mixing 1.5 parts by mass of “Smileze Resin 650” (trade name), 30% solid content working solution) manufactured by Kachemtechs. In addition, the mass part of “Smilease Resin 650” indicates the mass of the solid content.
5.積層体(1)の作製
 偏光フィルム(1)の一方の面に、水系接着剤(1)を塗布し、表面がハードコート処理されたトリアセチルセルロースフィルム((株)トッパンTOMOEGAWAオプティカルフィルム製、「25KCHC-TC」(商品名)、厚み32μm)にケン化処理を施した後、ハードコート処理されていない面を、水系接着剤(1)を介して偏光フィルムと貼合した。これを60℃で6分間乾燥し、片面に保護フィルムを有する積層体(1)を作製した。
5). Production of Laminate (1) A triacetyl cellulose film coated with a water-based adhesive (1) on one surface of a polarizing film (1) and hard-coated on the surface (manufactured by Toppan TOMOEGAWA optical film, “ 25KCHC-TC "(trade name), thickness 32 μm), the surface not subjected to the hard coat treatment was bonded to the polarizing film via the aqueous adhesive (1). This was dried at 60 ° C. for 6 minutes to produce a laminate (1) having a protective film on one side.
6.積層体(2)の作製
 厚さ50μmのシクロオレフィン系フィルム〔商品名「ZEONOR」、日本ゼオン(株)製〕の片面に、硬化性組成物(I)を、バーコーターを用いて硬化後の膜厚が約3μmとなるように塗工した。その塗工面に、積層体(1)の偏光フィルム側を貼合し、積層体を作製した。前記積層体のシクロオレフィン系フィルム側から、ベルトコンベア付き紫外線照射装置〔ランプはフュージョンUVシステムズ社製の「Dバルブ」を使用〕を用いて280nm~320nmの積算光量が200mJ/cmとなるように紫外線を照射し、硬化性組成物(I)を硬化させ、その後シクロオレフィン系フィルムを剥離した。保護フィルム/水系接着剤/偏光子フィルム/硬化性組成物(I)の硬化物(第1硬化物層)からなる積層体(2)を作製した。
6). Production of Laminate (2) A curable composition (I) was cured on one side of a cycloolefin film [trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.] having a thickness of 50 μm using a bar coater. Coating was performed so that the film thickness was about 3 μm. The polarizing film side of the laminate (1) was bonded to the coated surface to produce a laminate. From the cycloolefin film side of the laminate, an integrated light quantity of 280 nm to 320 nm is 200 mJ / cm 2 using an ultraviolet irradiation device with a belt conveyor (the lamp uses “D bulb” manufactured by Fusion UV Systems). Were irradiated with ultraviolet rays to cure the curable composition (I), and then the cycloolefin-based film was peeled off. A laminate (2) composed of a cured product (first cured product layer) of protective film / aqueous adhesive / polarizer film / curable composition (I) was produced.
7.積層体(3)の作製
 アクリル系粘着剤の有機溶剤溶液を調製し、このアクリル系粘着剤の有機溶剤溶液を、離型処理が施された厚さ38μmのポリエチレンテレフタレートフィルム〔リンテック(株)製、「SP-PLR382050」(商品名)、剥離フィルムと称する〕の離型処理面に、ダイコーターにて乾燥後の厚みが20μmとなるように塗工し、乾燥させて、剥離フィルム付きシート状粘着剤を作製した。次いで、積層体(2)の第1硬化物層側に、得られたシート状粘着剤の剥離フィルムとは反対側の面(粘着剤面)をラミネーターにより貼り合わせたのち、温度23℃、相対湿度65%の条件で7日間養生して、粘着剤層を設けた積層体(3)を得た。この積層体は粘着剤層の上に、剥離フィルムが貼合された構成になっている。
7). Preparation of Laminate (3) An organic solvent solution of an acrylic pressure-sensitive adhesive was prepared, and the organic solvent solution of the acrylic pressure-sensitive adhesive was subjected to a release treatment to a polyethylene terephthalate film with a thickness of 38 μm [manufactured by Lintec Corporation] , “SP-PLR382020” (trade name), referred to as release film], coated with a die coater so that the thickness after drying is 20 μm, and dried to form a sheet with release film An adhesive was prepared. Then, after laminating the surface (adhesive surface) opposite to the release film of the obtained sheet-like adhesive on the first cured product layer side of the laminate (2), the temperature was 23 ° C., relative It was cured for 7 days under the condition of humidity 65% to obtain a laminate (3) provided with an adhesive layer. This laminate has a configuration in which a release film is bonded onto an adhesive layer.
 アクリル系粘着剤としては、以下のものを含有する。
<ベースポリマー>
 ブチルアクリレート、メチルアクリレート、アクリル酸及びヒドロキシエチルアクリレートの共重合体
 〈イソシアネート系架橋剤〉
 トリレンジイソシアネートのトリメチロールプロパンアダクト体の酢酸エチル溶液(固形分濃度75%)(「コロネートL」(商品名)、東ソー株式会社製)
 〈シランカップリング剤〉
 3-グリシドキシプロピルトリメトキシシラン、液体(「KBM-403」(商品名)、信越化学工業(株)製)
 〈帯電防止剤〉
 1-ヘキシルピリジニウム ヘキサフルオロフォスフェート、下式(III)で示される化合物。
As an acrylic adhesive, the following are contained.
<Base polymer>
Copolymer of butyl acrylate, methyl acrylate, acrylic acid and hydroxyethyl acrylate <isocyanate-based crosslinking agent>
Ethyl acetate solution of trimethylolpropane adduct of tolylene diisocyanate (solid content concentration 75%) ("Coronate L" (trade name), manufactured by Tosoh Corporation)
<Silane coupling agent>
3-Glycidoxypropyltrimethoxysilane, liquid ("KBM-403" (trade name), manufactured by Shin-Etsu Chemical Co., Ltd.)
<Antistatic agent>
1-hexylpyridinium hexafluorophosphate, a compound represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
8.ITO腐食性評価
 無アルカリガラスの一方の面に、スパッタリング法によりITO膜を形成し、ITO膜を有するガラスを作製した。このITO薄膜を有するガラスを25mm×25mmに切断し、ITO薄膜上の中央部を、低抵抗率計(「ロレスタAX MCP-T370」、三菱化学アナリテック製)を用いて測定し、これを「初期抵抗値」とした。次いで、積層体(3)を15mm×15mmに切断したものを、積層体(3)の粘着剤層とITO薄膜とが接触するように貼り合わせた後、温度50℃、圧力5kg/cm(490.3kPa)で1時間オートクレーブ処理を施し、温度23℃、相対湿度55%の環境下で24時間放置した。これを評価用サンプルとした。その後、この評価用サンプルを、80℃、相対湿度90%の環境に72時間投入した後取り出し、積層体(3)を剥した。次いで、ITO薄膜上をタノールにより洗浄し、上記と同様の装置を用いて測定したものを「耐久後抵抗値」とした。上述のように測定した「初期抵抗値」及び「耐久後抵抗値」から、下記式によりITO抵抗値上昇率を算出し、以下の評価基準でITO腐食性を評価した。結果を表2に示す。表2中の数字は、下記式における上昇率の値を示す。
抵抗値上昇率(%)=(耐久後抵抗値―初期抵抗値)/初期抵抗値×100 
8). Evaluation of ITO corrosivity An ITO film was formed on one surface of an alkali-free glass by a sputtering method to produce a glass having an ITO film. The glass having this ITO thin film was cut into 25 mm × 25 mm, and the central part on the ITO thin film was measured using a low resistivity meter (“Loresta AX MCP-T370”, manufactured by Mitsubishi Chemical Analytech). Initial resistance value ”. Then, the laminate (3) which was cut into 15 mm × 15 mm, after which the pressure-sensitive adhesive layer of the laminate (3) and ITO thin film was laminated so as to contact, temperature 50 ° C., the pressure 5 kg / cm 2 ( 490.3 kPa) for 1 hour and then left for 24 hours in an environment at a temperature of 23 ° C. and a relative humidity of 55%. This was used as a sample for evaluation. Thereafter, the sample for evaluation was put into an environment of 80 ° C. and a relative humidity of 90% for 72 hours and then taken out, and the laminate (3) was peeled off. Next, the ITO thin film was washed with tanol, and the value measured using the same device as above was defined as “resistance value after durability”. From the “initial resistance value” and “resistance value after endurance” measured as described above, an ITO resistance value increase rate was calculated by the following formula, and ITO corrosivity was evaluated according to the following evaluation criteria. The results are shown in Table 2. The numbers in Table 2 indicate the rate of increase in the following formula.
Resistance value increase rate (%) = (resistance value after endurance−initial resistance value) / initial resistance value × 100
 ◎:抵抗値上昇率が20%以下
 ○:抵抗値上昇率が20%を超え30%未満
 ×:抵抗値上昇率が30%以上
◎: Resistance value increase rate is 20% or less ○: Resistance value increase rate exceeds 20% and less than 30% ×: Resistance value increase rate is 30% or more
9.積層体の耐久性評価
 積層体(3)を30mm×30mmの大きさに裁断し、剥離フィルムを剥した後、積層体(3)の粘着剤層側を無アルカリガラス〔コーニング社製、「EAGLE XG」〕に貼合した。このサンプルに、温度50℃、圧力5kg/cm(490.3kPa)で1時間オートクレーブ処理を施した後、温度23℃、相対湿度55%の環境下で24時間放置した。次いで、紫外可視分光光度計((株)島津製作所製、「UV2450」)にオプションアクセサリーの「偏光フィルム付フィルムホルダー」をセットして、波長380~700nmの範囲における積層体の透過軸方向と吸収軸方向の透過スペクトルを測定し、それらをもとに、偏光度Py(単位:%)を求めた。この偏光度を初期Pyとした。さらに、80℃で相対湿度90%の環境下に24時間静置した後の偏光度を測定し、この偏光度を試験後Pyとした。これらを基に、下記式により偏光度変化ΔPyを算出した。結果を表1に示す。
  ΔPy=試験後Py-初期Py
9. Durability Evaluation of Laminated Body After the laminated body (3) was cut into a size of 30 mm × 30 mm and the release film was peeled off, the pressure-sensitive adhesive layer side of the laminated body (3) was made of alkali-free glass [manufactured by Corning, “EAGLE XG "]. The sample was autoclaved for 1 hour at a temperature of 50 ° C. and a pressure of 5 kg / cm 2 (490.3 kPa), and then left for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 55%. Next, an optional accessory “film holder with polarizing film” is set in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, “UV2450”), and the transmission axis direction and absorption of the laminate in the wavelength range of 380 to 700 nm are set. The transmission spectrum in the axial direction was measured, and based on these, the degree of polarization Py (unit:%) was determined. This degree of polarization was defined as initial Py. Further, the degree of polarization after standing at 80 ° C. in an environment of 90% relative humidity for 24 hours was measured, and this degree of polarization was defined as Py after the test. Based on these, the degree of polarization change ΔPy was calculated by the following formula. The results are shown in Table 1.
ΔPy = post-test Py−initial Py
[実施例2~22及び比較例1~9]
 製造例2~31の硬化性組成物(I)を用いて、実施例1と同様にして第1硬化物層及び積層体(3)を得た。得られた積層体(3)を用いて、実施例1と同様の方法により、ITO抵抗値上昇率及び偏光度変化ΔPyを算出した。これらの結果を表2に示す。
[Examples 2 to 22 and Comparative Examples 1 to 9]
A first cured product layer and a laminate (3) were obtained in the same manner as in Example 1 using the curable compositions (I) of Production Examples 2 to 31. Using the obtained laminate (3), the ITO resistance value increase rate and the polarization degree change ΔPy were calculated in the same manner as in Example 1. These results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に示されるように、実施例1~22は、第1硬化物層の吸光度上昇率が30%以下である光学積層体が、高温高湿下に長時間おかれてもITOの腐食を効果的に抑制できることを示す。特に実施例4~20及び実施例22は、第1硬化物層の吸光度上昇率が20%以下である光学積層体が、ITOの腐食をより効果的に抑制できることを示す。また、実施例1~22は、吸光度上昇率が30%以下である光学積層体が、耐久性に優れ、高温高湿下においても光学性能を維持できることを示す。 As shown in Table 2, in Examples 1 to 22, the optical layered body in which the absorbance increase rate of the first cured product layer is 30% or less does not corrode ITO even if it is placed under high temperature and high humidity for a long time. It shows that it can suppress effectively. In particular, Examples 4 to 20 and Example 22 show that the optical laminate in which the absorbance increase rate of the first cured product layer is 20% or less can more effectively suppress the corrosion of ITO. In addition, Examples 1 to 22 show that optical laminates having an absorbance increase rate of 30% or less are excellent in durability and can maintain optical performance even under high temperature and high humidity.
 表2に示されるように、実施例1~22は、第1硬化物層が2つ以上のオキセタニル基を有するオキセタン化合物を、全重合性化合物の総量100質量部に対して40質量部以上含む硬化物層である光学積層体がITOの腐食をより効果的に抑制できることを示す。 As shown in Table 2, Examples 1 to 22 include 40 parts by mass or more of an oxetane compound in which the first cured product layer has two or more oxetanyl groups with respect to a total amount of 100 parts by mass of all polymerizable compounds. It shows that the optical laminated body which is a hardened | cured material layer can suppress the corrosion of ITO more effectively.
1…偏光フィルム、2…第1硬化物層、3…粘着層、4…導電層、5…第2硬化物層、6…第2保護フィルム、7…第1保護フィルム、10…光学積層体、X…基板 DESCRIPTION OF SYMBOLS 1 ... Polarizing film, 2 ... 1st hardened | cured material layer, 3 ... Adhesive layer, 4 ... Conductive layer, 5 ... 2nd hardened | cured material layer, 6 ... 2nd protective film, 7 ... 1st protective film, 10 ... Optical laminated body , X ... substrate

Claims (6)

  1.  ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、
    重合性化合物を含む硬化性組成物の硬化物から構成される第1硬化物層と、粘着層と、
    導電層とがこの順に積層された光学積層体であって、
     前記第1硬化物層は、下記式(1)で表される吸光度上昇率が30%以下である、光学積層体。
     吸光度上昇率(%)=(浸漬後Abs(360nm)-浸漬前Abs(360nm))/浸漬前Abs(360nm)×100   (1)
    [式中、浸漬後Abs(360nm)は、温度23℃、相対湿度60%の大気中で、50%ヨウ化カリウム水溶液に硬化物を100時間浸漬させた後の360nmにおける吸光度を示し、浸漬前Abs(360nm)は、50%ヨウ化カリウム水溶液に硬化物を浸漬させる前の360nmにおける吸光度を示す]
    On one side of a polarizing film containing a dichroic dye in a polyvinyl alcohol resin,
    A first cured product layer composed of a cured product of a curable composition containing a polymerizable compound, an adhesive layer,
    An optical laminate in which conductive layers are laminated in this order,
    The first cured product layer is an optical laminate in which the absorbance increase rate represented by the following formula (1) is 30% or less.
    Absorbance increase rate (%) = (Abs after immersion (360 nm) −Abs before immersion (360 nm)) / Abs before immersion (360 nm) × 100 (1)
    [In the formula, Abs (360 nm) after immersion indicates the absorbance at 360 nm after the cured product was immersed in an aqueous solution of 50% potassium iodide for 100 hours in an atmosphere at a temperature of 23 ° C. and a relative humidity of 60%. Abs (360 nm) indicates the absorbance at 360 nm before the cured product is immersed in 50% aqueous potassium iodide solution]
  2.  ポリビニルアルコール系樹脂中に二色性色素を含有する偏光フィルムの一方の面に、
    重合性化合物を含む硬化性組成物の硬化物から構成される第1硬化物層と、粘着層と、
    導電層とがこの順に積層された光学積層体であって、
     前記重合性化合物は、2つ以上のオキセタニル基を有するオキセタン化合物を含み、該オキセタン化合物の含有量は、硬化性組成物に含まれる全重合性化合物の総量100質量部に対して40質量部以上である、光学積層体。
    On one side of a polarizing film containing a dichroic dye in a polyvinyl alcohol resin,
    A first cured product layer composed of a cured product of a curable composition containing a polymerizable compound, an adhesive layer,
    An optical laminate in which conductive layers are laminated in this order,
    The polymerizable compound includes an oxetane compound having two or more oxetanyl groups, and the content of the oxetane compound is 40 parts by mass or more with respect to 100 parts by mass of the total amount of all polymerizable compounds contained in the curable composition. An optical laminate.
  3.  第1硬化物層の厚みは、0.1~15μmである、請求項1又は2に記載の光学積層体。 3. The optical laminate according to claim 1, wherein the thickness of the first cured product layer is 0.1 to 15 μm.
  4.  第1硬化物層を構成する硬化物は、前記重合性化合物を含む硬化性組成物の光硬化物である、請求項1~3のいずれかに記載の光学積層体。 4. The optical laminate according to claim 1, wherein the cured product constituting the first cured product layer is a photocured product of a curable composition containing the polymerizable compound.
  5.  前記偏光フィルムの第1硬化物層とは反対側の面に、第2硬化物層と保護フィルムとが積層された、請求項1~4のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, wherein a second cured product layer and a protective film are laminated on a surface of the polarizing film opposite to the first cured product layer.
  6.  前記保護フィルムの透湿度は、温度23℃、相対湿度55%において、1200g/24時間以下である、請求項5に記載の光学積層体。 The optical laminate according to claim 5, wherein the moisture permeability of the protective film is 1200 g / 24 hours or less at a temperature of 23 ° C and a relative humidity of 55%.
PCT/JP2018/004787 2017-02-28 2018-02-13 Optical laminate WO2018159277A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197027660A KR102484820B1 (en) 2017-02-28 2018-02-13 optical stack
CN201880013787.1A CN110325887B (en) 2017-02-28 2018-02-13 Optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037344 2017-02-28
JP2017-037344 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159277A1 true WO2018159277A1 (en) 2018-09-07

Family

ID=63370940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004787 WO2018159277A1 (en) 2017-02-28 2018-02-13 Optical laminate

Country Status (5)

Country Link
JP (3) JP7408272B2 (en)
KR (1) KR102484820B1 (en)
CN (2) CN110325887B (en)
TW (1) TW201841758A (en)
WO (1) WO2018159277A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182146A1 (en) * 2018-03-22 2019-09-26 三菱ケミカル株式会社 Active energy ray-curable resin composition, polarizing film protective layer, and polarizing plate
WO2023112700A1 (en) * 2021-12-16 2023-06-22 日東電工株式会社 Sensor laminate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819871B2 (en) * 2016-03-22 2021-01-27 荒川化学工業株式会社 Method of manufacturing a laminate
CN110928006A (en) * 2019-11-07 2020-03-27 惠州市华星光电技术有限公司 Substrate, substrate manufacturing method and display panel
KR20220122694A (en) * 2019-12-26 2022-09-02 스미또모 가가꾸 가부시키가이샤 laminate
CN114902096A (en) * 2019-12-26 2022-08-12 住友化学株式会社 Optical laminate
CN115004068A (en) * 2020-01-24 2022-09-02 日东电工株式会社 Polarizing plate, polarizing plate with retardation layer, and image display device using same
WO2021149311A1 (en) * 2020-01-24 2021-07-29 日東電工株式会社 Retardation layer–equipped polarizing plate and image display device using same
CN115190980A (en) * 2020-01-24 2022-10-14 日东电工株式会社 Polarizing plate, polarizing plate with retardation layer, and image display device using same
JP7273769B2 (en) * 2020-01-24 2023-05-15 日東電工株式会社 Polarizing plate, polarizing plate with retardation layer, and image display device using these
JP7273768B2 (en) * 2020-01-24 2023-05-15 日東電工株式会社 Polarizing plate, polarizing plate with retardation layer, and image display device using these
CN115004067A (en) * 2020-01-24 2022-09-02 日东电工株式会社 Polarizing plate with phase difference layer and image display device using same
CN112068735A (en) * 2020-09-29 2020-12-11 京东方科技集团股份有限公司 Flexible polaroid and flexible touch display device
US11852855B2 (en) * 2021-04-09 2023-12-26 Innolux Corporation Electronic device and method for manufacturing electronic device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049698A (en) * 2003-07-30 2005-02-24 Fuji Photo Film Co Ltd Polarizing plate
JP2007334307A (en) * 2006-05-16 2007-12-27 Nitto Denko Corp Polarizing plate and image display including the same
WO2008066157A1 (en) * 2006-11-30 2008-06-05 Nippon Steel Chemical Co., Ltd. Polarizing plate protective film, polarizing plate, and resistive touch panel
JP2008257199A (en) * 2007-03-15 2008-10-23 Sumitomo Chemical Co Ltd Photocurable adhesive agent, polarizing plate using the photocurable adhesive agent, method for production of the polarizing plate, optical member, and liquid crystal display device
JP2011221186A (en) * 2010-04-07 2011-11-04 Nitto Denko Corp Adhesive polarization plate and image display device
JP2013050583A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Polarizing plate, image display apparatus employing the same, and adhesive composition
JP2014505274A (en) * 2011-10-14 2014-02-27 エルジー・ケム・リミテッド Double-sided polarizing plate and optical device including the same
JP2014182321A (en) * 2013-03-21 2014-09-29 Sumitomo Chemical Co Ltd Polarizing plate and method for manufacturing the same
JP2015052765A (en) * 2013-09-09 2015-03-19 日東電工株式会社 Polarizing film with adhesive layer for transparent conductive films, laminate, and image display device
JP2016122054A (en) * 2014-12-24 2016-07-07 日東電工株式会社 Polarizing film with coating layer, polarizing film with adhesive layer, and image display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037074B2 (en) 2006-09-06 2012-09-26 協立化学産業株式会社 Photo cation curable or thermal cation curable adhesive
JP2011236389A (en) * 2010-05-13 2011-11-24 Toyo Ink Sc Holdings Co Ltd Photosetting adhesive for forming polarizing plate, and polarizing plate
CN103415584B (en) * 2011-10-14 2016-06-08 Lg化学株式会社 For the adhesive and the polarization plates that comprises this adhesive of polarization plates

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049698A (en) * 2003-07-30 2005-02-24 Fuji Photo Film Co Ltd Polarizing plate
JP2007334307A (en) * 2006-05-16 2007-12-27 Nitto Denko Corp Polarizing plate and image display including the same
WO2008066157A1 (en) * 2006-11-30 2008-06-05 Nippon Steel Chemical Co., Ltd. Polarizing plate protective film, polarizing plate, and resistive touch panel
JP2008257199A (en) * 2007-03-15 2008-10-23 Sumitomo Chemical Co Ltd Photocurable adhesive agent, polarizing plate using the photocurable adhesive agent, method for production of the polarizing plate, optical member, and liquid crystal display device
JP2011221186A (en) * 2010-04-07 2011-11-04 Nitto Denko Corp Adhesive polarization plate and image display device
JP2013050583A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Polarizing plate, image display apparatus employing the same, and adhesive composition
JP2014505274A (en) * 2011-10-14 2014-02-27 エルジー・ケム・リミテッド Double-sided polarizing plate and optical device including the same
JP2014182321A (en) * 2013-03-21 2014-09-29 Sumitomo Chemical Co Ltd Polarizing plate and method for manufacturing the same
JP2015052765A (en) * 2013-09-09 2015-03-19 日東電工株式会社 Polarizing film with adhesive layer for transparent conductive films, laminate, and image display device
JP2016122054A (en) * 2014-12-24 2016-07-07 日東電工株式会社 Polarizing film with coating layer, polarizing film with adhesive layer, and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182146A1 (en) * 2018-03-22 2019-09-26 三菱ケミカル株式会社 Active energy ray-curable resin composition, polarizing film protective layer, and polarizing plate
WO2023112700A1 (en) * 2021-12-16 2023-06-22 日東電工株式会社 Sensor laminate

Also Published As

Publication number Publication date
JP2018141962A (en) 2018-09-13
CN110325887A (en) 2019-10-11
KR20190125990A (en) 2019-11-07
TW201841758A (en) 2018-12-01
CN113917590A (en) 2022-01-11
JP2024003102A (en) 2024-01-11
JP2023024446A (en) 2023-02-16
CN110325887B (en) 2021-11-26
JP7408272B2 (en) 2024-01-05
KR102484820B1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2018159277A1 (en) Optical laminate
JP5354674B2 (en) Optical film with adhesive and optical laminate using the same
JP6064637B2 (en) Pressure-sensitive adhesive sheet, optical film with pressure-sensitive adhesive, optical laminate, and method for producing pressure-sensitive adhesive sheet
CN106569297B (en) Polarizing plate
KR102390086B1 (en) Optical film with adhesive and optical laminate
JP2018205770A (en) Optical laminate
JP6744115B2 (en) Optical film with adhesive layer and liquid crystal display device
KR102475634B1 (en) Optical laminate
KR20110037894A (en) A liquid crystal panel
WO2013146556A1 (en) Polarizing plate
KR102345852B1 (en) Adhesive composition, manufacturing method of adhesive, adhesive, adhesive sheet, manufacturing method of adhesive sheet, manufacturing method of display body and display body
TWI721972B (en) Optical laminate and liquid crystal display device
JP6382873B2 (en) Optical member with adhesive layer
JP6829012B2 (en) Polarizer
CN106569296B (en) Polarizing plate
JP2019174814A (en) Optical film with adhesive and optical laminate
WO2023053798A1 (en) Polarization film, image display device, and method for producing polarization film
JP2020126276A (en) Polarizing plate
KR20220029445A (en) Adhesive composition and optical film with adhesive layer
KR20210010369A (en) Polarizing plate with adhesive layer
KR20160085584A (en) Curable composition with active energy ray, polarizing plate comprising thereof and liquid crystal display device
KR20160085585A (en) Curable composition with active energy ray, polarizing plate comprising thereof and liquid crystal display device
KR20160085583A (en) Curable composition with active energy ray, polarizing plate comprising thereof and liquid crystal display device
KR20140086752A (en) Adhesive film for polarizing plate, adhesive composition for the same, polarizing plate comprising the same, and optical member comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027660

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18760654

Country of ref document: EP

Kind code of ref document: A1