WO2018154165A1 - Nanoparticles modified with alkoxy-silane derivatives - Google Patents

Nanoparticles modified with alkoxy-silane derivatives Download PDF

Info

Publication number
WO2018154165A1
WO2018154165A1 PCT/ES2018/070130 ES2018070130W WO2018154165A1 WO 2018154165 A1 WO2018154165 A1 WO 2018154165A1 ES 2018070130 W ES2018070130 W ES 2018070130W WO 2018154165 A1 WO2018154165 A1 WO 2018154165A1
Authority
WO
WIPO (PCT)
Prior art keywords
aptes
teos
nps
spion
nanoparticle
Prior art date
Application number
PCT/ES2018/070130
Other languages
Spanish (es)
French (fr)
Inventor
Guillermo DE LA CUEVA MÉNDEZ
Manuel CANO LUNA
Rebeca NÚÑEZ LOZANO
Original Assignee
Fundación Pública Andaluza Progreso Y Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Pública Andaluza Progreso Y Salud filed Critical Fundación Pública Andaluza Progreso Y Salud
Publication of WO2018154165A1 publication Critical patent/WO2018154165A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention is within the field of medicine (Nanomedicine), chemistry and biochemistry, and refers to a superparamagnetic nanoparticle, preferably iron oxide (SPION) obtained by thermal decomposition, superficially modified by an exchange of linking with two alkoxy silane derivatives simultaneously.
  • SPION iron oxide
  • the present invention also relates to the compositions, the method of modifying the nanoparticle and its uses.
  • NMR nuclear magnetic resonance
  • Hydrogen is one of the most appropriate elements for the phenomenon of nuclear magnetic resonance, and is the most common element contained in the human body.
  • magnetic resonance imaging is capable of providing high resolution images of soft tissues with detailed anatomical information.
  • the images are obtained by placing the subject in a magnetic field and observing the interactions between the magnetic spins of the subject's water protons and the radiofrequency of radiation applied.
  • the image is solved by applying orthogonal magnetic field gradients that ultimately encode spatially the three coordinates of each pixel in the image.
  • T1 longitudinal relaxation time
  • T2 transverse relaxation time
  • T1 or spin-net relaxation time represents the transfer of energy between the spins of the observed proton and the surrounding network
  • T2 or spin-spin relaxation time is the transfer of energy between different spins or protons.
  • T2 * is also necessary to properly describe the total decay of the magnetic induction.
  • the detected magnetic resonance (MR) signal includes, by both, a combination of relaxation times T1, T2 and T2 *, as well as the contribution of proton density.
  • An advantage of this technique is that it does not use ionizing radiation, providing high quality images without exposing the patient to any type of harmful radiation.
  • endogenous and inherent NMR contrasts are, in many cases, insufficient to adequately resolve small anatomical lesions or properly characterize tissue physiology.
  • specific series of exogenous agents have been developed to enhance the T1, T2 or T2 * components of the image, respectively.
  • T1 and T2 enhancing agents much less is known about the investigation of T2 * potentiation, which could make possible the image of tissue and tumor perfusion with greatly increased resolution and sensitivity.
  • the contrast agents for magnetic resonance imaging are divided into two general classes of magnetically active materials: Paramagnetic and superparamagnetic or ferromagnetic materials.
  • Paramagnetic contrast agents include substances based on small gadolinium (III) chelates (Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-D03A) [E. Toth et al. , 2001.
  • NPs nanoparticles
  • Fe 3 0 4 , Fe 2 0 3 iron oxide core
  • SPIO-superparamagnetic ⁇ ron oxide very small ( ⁇ 10 nm, USPIO-ultrasmall superparamagnetic ⁇ ron oxide particles) or reduced ( ⁇ 100 nm, SPIO-superparamagnetic ⁇ ron oxide)
  • Paramagnetic agents induce an increase in MR image intensity in T1-weighted sequences (positive contrast enhancement), and superparamagnetic agents induce a decrease in the magnetic resonance signal in T2-weighted sequences (negative contrast enhancement).
  • the sensitivity and specificity of both types of agents is very different. While gadolinium chelates have a relaxivity that requires millimolar concentrations of the compound in the target tissue, superparamagnetic NPs, due to their greater molecular weight, are effective in micromolar or nanomolar ranges.
  • Superparamagnetic nanostructured materials were developed as a contrast agent for MRI since their nanoscale structure profoundly modified the relaxation time of protons, thereby enhancing the sensitivity of MRI diagnosis. Furthermore, by modifications on the surface of the NPs with specific biologically active vectors, such as monoclonal or polyclonal antibodies or avidin-biotin systems, the specificity of the MRI diagnosis can also be increased.
  • the quality of the particles used as an MRI contrast agent is determined by the magnetic properties of the core of the material, the particle size distribution, the particle's loading surface, stability in almost neutral solvents or physiological serum, as well. as the chemical and functional properties of immobilized molecules on the surface. In addition, pharmacokinetic behavior is an important determinant in magnetic resonance imaging applications, since the agent should ideally remain in the target tissue only during the MRI exam, and be quickly removed afterwards, without accumulating anywhere in the body.
  • dextran or carboxydextran coatings result in a significant and non-specific binding by absorption of these particles to vascular and tissue surfaces, limiting the effective removal of these particles once the imaging study has been performed being required. relatively long waiting times until complete elimination and eventual readministration. For these reasons, the production and characterization of magnetic NPs with poor tissue and vascular adhesion that favor rapid elimination and low tissue accumulation are currently of great relevance.
  • An appropriate protocol for producing magnetic iron oxide NPs comprises coprecipitation of ferric and ferrous salts in an alkaline medium in the absence or presence of surfactants.
  • the NPs thus obtained have a core with a diameter between 1 and 50 nm.
  • NPs with biocompatible polymers or copolymers have a hydrodynamic diameter between 1 and 150 nm.
  • M Fe, Co, Mn
  • the efficient obtaining of this type of inorganic NPs with an adequate size, shape, homogeneity and crystallinity is achieved using synthesis methods based on the thermal decomposition of their organic iron precursors, and require the use of organic solvents, surfactants and elevated temperatures.
  • the superparamagnetic iron oxide NPs (SPIONs, Superparamagnetic ron oxide nanoparticles) generated by these methods are hydrophobic, being coated with surfactant ligands, and therefore stable in apolar solvents.
  • hydrophobic SPIONs In order to use these hydrophobic SPIONs in any industrial and clinical application it is necessary to make them hydrophilic, especially in those cases in which their use necessarily takes place in aqueous media (such as those oriented to biology, biotechnology and biomedicine).
  • One of the most used methods to change the solubility of these NPs are those of "Ligand Exchange", which are based on the replacement of hydrophobic ligands on their surface with other ligands that have a reactive end with the surface of the particle and another extreme with hydrophilic groups [De Palma et al., 2007. Chem. Mater. 19, 1821-1831].
  • this method is carried out by adding an excess of the new ligand to a very dilute solution of the NPs in a certain organic solvent, which causes a displacement of the original hydrophobic ligand by concentration gradient.
  • Some of the most commonly used ligand exchange ligands usually contain carboxylic acid groups (eg Citrate) [Lattuada M. et al., 2007. Langmuir 23, 2158-2168], phosphonate or bisphosphonate [Sandiford L. et al., 2013. ACS Nano 7, 500-512], alcohol (eg Dextrano) [López-Cruz A. et al., 2009, J. Mater. Chem.
  • the SPIONs obtained in this way can lose any functionalization to which they have been subjected during the synthesis process, since this type of non-covalent binding can be affected (compromised) by the conditions in which the reaction takes place and / or in the processes required for purification (especially in the case of the use of Sephadex® columns), which induce the separation of molecules associated with the particle, necessary for its correct function (clinical, biotechnological, industrial, etc.).
  • the surface modification of the SPIONs obtained by thermal decomposition was proposed with the minus two alkoxy silane derivatives simultaneously.
  • the present invention describes how the use of a combination of 60% Si (OCH2CH3) 4 (TEOS) and 40% NH2- (CH2) 3-Si (OCH2CH3) 3 (APTES), for surface modification of These hydrophobic SPIONs, and their subsequent PEGylation, allow to generate particles with better T2-MRI contrast properties than their predecessors obtained only with APTES (100%).
  • PEGylated SPIONs produced by this method maintain good properties of structural and colloidal stability, low cytotoxicity and ease of subsequent functionalization.
  • Figure 1 Schematic illustration of the synthesis of structural and colloidal stable SPIONs. Both molecules and NPs are not drawn to scale.
  • Figure 3 Colloidal stability of SPION-TEOS / APTES NPs in MES buffer solution at pH 6.0
  • A and SPION-TEOS / APTES-PEG in water
  • C SPION-TEOS / APTES-PEG in water
  • B Variation of the hydrodynamic size of the SPION-TEOS / APTES NPs in water or 0.25 M PBS (pH 7.4) or 0.05 M MES (pH 6.0) or 30 mg / mL BSA at 0.25 M PBS (pH 7.4) over time For 5 days.
  • D Same as (B) for SPION-TEOS / APTES-PEG NPs over time for 7 days.
  • FIG. 4 (A) FTIR and (B) TGA of the SPION-OA (black), SPION-TEOS / APTES (blue) and SPION-TEOS / APTES-PEG NPs (red). (C) XPS of NPs SPION-APTES (black) and SPION-TEOS / APTES (red). (D) Zeta-potential variation as a function of pH for NPs SPION-APTES-PEG (black) and SPION-TEOS / APTES-PEG (red). Figure 5. (A) VSM analysis of the SPION-OA (black), SPION-APTES (blue) and SPION-APTES-PEG (red) NPs.
  • (B) MRI phantom images showing the positive (T1) and negative (T2) contrast produced by the SPION-TEOS / APTES-PEG NPs and / or the SPION-APTES-PEG at the indicated concentrations at a magnetic field of 9.4 T.
  • FIG. 6 Cytotoxicity of HepG2 cells treated with SPION-APTES / TEOS-PEG NPs.
  • B Total number of cells in culture treated with the indicated concentrations of NPs for 24 and 48 hours.
  • C Total number of dead cells in culture analyzed in B.
  • D Percentage of dead cells in the same cells analyzed in B.
  • FIG. 7 Representative T2W images obtained from mice before and after intravenous administration of 9-11 mg Fe Kg-1 of SPION-APTES-PEG (AF) and SPION-APTES / TEOS-PEG (GL ) at the indicated times. The two transverse images of the animal at each time show certain organs.
  • MN T2 relaxation time ratios in the different tissues measured from the MRI maps after intravenous injection of NPs SPION-APTES-PEG (M) and SPION-APTES / TEOS-PEG (N).
  • A UV-visible spectrum of NPs SPION-TEOS / APTES-PEG-Cy5 (pink), SPION-TEOS / APTES-PEG (red), SPION-TEOS / APTES (blue) and a blank as control sample (black) treated with ninhydrin.
  • B Schematic illustration of the functionalization of the SPION-TEOS / APTES-PEG NPs with Cy5-NHS ester.
  • C UV-visible absorption spectrum of the SPION-TEOS / APTES-PEG-Cy5 NPs (pink), SPION-TEOS / APTES-PEG (red) and free Cy5 (green).
  • Figure 10 Representation of some alkoxy silane derivatives that can be used for chemical modification of different surfaces.
  • Nano particles preferably SPIONs obtained by thermal decomposition, which is based on an exchange of ligand with at least two alkoxy silane derivatives simultaneously in a determined proportion such as for example , but without representing a limitation, 60% TEOS and 40% APTES, and its preferable subsequent PEGylation by an amidation reaction with a polyethylene glycol derivative (a-Methoxy-w-carboxy PEG).
  • Nano particles, preferably PEGylated, generated in this way have better T2-MRI contrast properties and longer circulation time than their predecessors obtained only with APTES (100%).
  • the NPs, preferably PEGylated, produced by this method maintain excellent properties of structural and colloidal stability, low cytotoxicity and ease of subsequent functionalization. These results open the door to a new strategy for surface modification of nano particles, with thin layers of silica, which allows the development and optimization of these nano particles for certain applications, both in the diagnosis of cancer and in its therapy, as well as for other cosmetic, industrial, biotechnological, etc. applications, such as but not limited to, catalysis, detoxification, decontamination, purification of biomolecules, cells, etc. NANOPARTICLE OF THE INVENTION
  • a first aspect of the invention relates to a nanoparticle (NP), preferably SPIONs obtained by thermal decomposition, comprising at least two different alkoxy silane derivatives.
  • the NPs are SPIONs.
  • thermal decomposition is understood as the process of synthesis of inorganic nanocrystals or NPs with a controlled size and a homogeneous distribution of NPs through the thermal decomposition of organometallic compounds, in high boiling organic solvents containing surfactants stabilizers
  • the thermal decomposition allows a very high degree of control in the size and difference of sizes in the NPs, which gives rise to a very homogeneous behavior in terms of their physicochemical characteristics. This is important to transfer NPs to clinical practice.
  • alkoxy silane derivatives means chemical compounds derived from silicon that are characterized by the presence of Si-O-C radicals (alkoxy).
  • alkoxy silanes derivatives are understood as any compound having at least one hydrolyzable silicon group, OR, which is crosslinked by "silane polycondensation” in the presence of moisture. More particularly, the present invention is illustrated by the use of the following two “alkoxy silane derivatives” simultaneously: Si (OCH2CH3) 4 (TEOS) and NH2- (CH2) 3-Si (OCH2CH3) 3 (APTES).
  • R is an amino group attached to a C3 group or an alkoxy of the methoxy- or ethoxy type; where m can be 0, 1, 2 or 3; where n represents a natural number between 0 and 3; and where X represents an alkoxide group, preferably a methoxy- or an ethoxk
  • organofunctional or “functional” group is understood as the site where most chemical reactions take place.
  • the double bond in the alkenes and the triple bond in the aiquino are also considered as functional groups.
  • the main functional groups are selected from the list consisting of aliens, alkenes, alkynes, alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides and any combination thereof,
  • the NP of the invention is superficially modified with two alkoxy silane derivatives by a ligand exchange process.
  • ligand exchange is understood as the chemical change that occurs when one ligand X is displaced by another Y, a ligand being a chemically linked molecule to an NP.
  • the NP of the invention is magnetic, and more preferably super-paramagnetic.
  • the magnetic NP consists of one or more of the following components: i) an inorganic core containing one or more of the elements selected from transition metals, including but not limited to iron, cobalt, manganese, copper and magnesium; or ii) an inorganic core composed of an alloy containing elements selected from transition metals, including but not limited to iron, cobalt, manganese, copper and magnesium.
  • the inorganic core of the magnetic NP is selected from the group consisting of iron oxide, cobalt ferrite, manganese ferrite, magnesium ferrite and combinations thereof.
  • the inorganic core of the magnetic NP is iron oxide.
  • the NP obtained by thermal decomposition that is hydrophobic is converted into hydrophilic by a surface modification process based on an exchange of ligand with two alkoxy silane derivatives simultaneously. Therefore, in a preferred embodiment of this aspect of the invention, the NP of the invention is hydrophilic.
  • the alkoxy silane derivatives are selected from the list consisting of: Tetraethylorthosilicate (TEOS), 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-trimethoxysilane (APTMS), 3- mercaptopropyl triethoxysilane (MPTES), 3- mercaptopropyl trimethoxysilane (MPTMS), 3-Glycidoxypropyl triethoxysilane, 3-Glycidoxypropyl trimethoxysilane, 3-Cyanatopropyl triethoxysilane (CPTES), 3-Cianatropropyl trimethoxysilane (CPTMS), 3-Azianapropyl trimethoxypropyl and silylpropyl silylpropyl silylpropyl simethoxyethylpropyl triethoxyethylene w-methoxy polyethylene glycol, or derivatives or analogs
  • the NP of the invention comprises two alkoxy silane derivatives that are selected from: Tetraethylorthosilicate (TEOS) and 3- aminopropyl triethoxysilane (APTES), and more preferably in a proportion of 60% TEOS and 40% APTES or in other proportions close to said proportion 60/40 TEOS / APTES as they are any +/- 20% proportion of said proportion 60/40, such as 40/60 or 80/20 proportions and any other intermediate proportion Between these two values.
  • TEOS Tetraethylorthosilicate
  • APTES 3- aminopropyl triethoxysilane
  • the NPs of the invention are characterized by having an average particle size of less than 50 nm, more preferably less than 30 nm, preferably having an average size between 5 and 25 nm, and even more preferably between 10 and 20 nm.
  • average size or “average diameter” is meant the average diameter of the population of NPs dispersed in an aqueous medium.
  • the average diameter of these systems can be measured by standard procedures known to the person skilled in the art, and which are described, for example, in the examples below.
  • the NPs of the invention are PEGylated. More preferably, with the polyethylene glycol derivative a-Methoxy-w-carboxy PEG. More preferably, PEGylation is performed by an amidation reaction.
  • a second aspect of the invention relates to a composition, hereinafter composition of the invention, comprising the NP of the invention.
  • the composition of the invention is a pharmaceutical composition, more particularly for medical diagnosis in vivo.
  • the composition is a cosmetic composition.
  • the NPs of the invention can have multiple applications, such as, but not limited to, industrial, biotechnological applications, etc.
  • compositions of the present invention can be formulated for administration to an animal, and more preferably to a mammal, including man, in a variety of ways known in the state of the art.
  • the pharmaceutical compositions of the invention include, but are not limited to, any liquid composition (suspension of the system including NPs in water or in water with additives such as viscosizers, pH buffers, etc.) or solid (the system including Lyophilized or atomized NPs forming a powder that can be used to make granules, tablets or capsules) for administration either orally, orally or sublingually, topically, or in liquid or semi-solid form for administration transdermally, ocularly, nasal, vaginal or parenteral.
  • these systems offer the possibility of modulating the in vivo distribution of associated drugs or molecules. They may also be suspensions in biological fluids, such as serum. Aqueous suspensions may be buffered or unbuffered and may have additional active or inactive components. Additional components include salts to modulate ionic strength, preservatives, including, but not limited to, microbial agents, antioxidants, chelators, and the like, and nutrients including glucose, dextrose, vitamins and minerals.
  • compositions may be combined with various inert vehicles or excipients, including but not limited to; binders such as microcrystalline cellulose, gum tragacanth, or gelatin; excipients such as starch or lactose; dispersing agents such as alginic acid or corn starch, etc.
  • binders such as microcrystalline cellulose, gum tragacanth, or gelatin
  • excipients such as starch or lactose
  • dispersing agents such as alginic acid or corn starch, etc.
  • the composition of the invention further comprises at least one biologically active compound or molecule, a therapeutic agent or drug, or a labeling agent.
  • biologically active molecule has a broad meaning and comprises molecules such as high, or more preferably, low molecular weight drugs, polysaccharides, proteins, peptides, lipids, oligonucleotides and nucleic acids, as well as combinations thereof.
  • the biologically active molecule has the function of preventing, alleviating, curing or diagnosing diseases.
  • the biologically active molecule has a cosmetic function.
  • biologically active molecule also includes the terms “active substance”, “active substance”, “pharmaceutically active substance”, “ingredient active, "” therapeutic agent, “” drug, “” agent or molecule for diagnostic purposes in vivo, “or” pharmaceutically active ingredient, “meaning any component that potentially provides a pharmacological activity or other different diagnostic effect, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.It also includes cosmetics, diagnostics as well as industrial ones (enzymes, chelating molecules, etc.).
  • the NPs of the invention may also comprise other biologically active molecules and other agents, for industrial uses, such as enzymes and chelating agents
  • the NP of the invention may comprise more than one distinct biologically active molecule.
  • Said additional active principle or principles may be included in the system for the transport of biologically active molecules of the invention or be part of the pharmaceutical composition of the invention without being part of the transport system.
  • composition of the invention further comprises a pharmaceutically acceptable excipient.
  • the properties of the NP can vary, with different levels of diagnostic capacity in vivo and therapeutic, as well as with different biotechnological, industrial, etc. applications. It is noted that both the nanoparticle of the invention and the pharmaceutical composition of the invention are useful for diagnosis and therapy, in particular for in vivo diagnosis.
  • a third aspect of the invention relates to the use of the NP of the invention or of the composition of the invention, in the preparation of a medicament, or alternatively, to the nanoparticle of the invention or the composition of the invention for its use as a medicine or as a useful agent in diagnosis in vivo.
  • NPs of the invention can serve as active ingredient vehicles.
  • Another preferred embodiment of this aspect of the invention relates to the use of the NP or the composition of the invention in the administration of active ingredients.
  • tissue ischemia or other systems, such as neurodegeneration, inflammation, edema or cancer, in animals or humans by means of magnetic resonance imaging.
  • another preferred embodiment of this aspect of the invention relates to the use of the nanoparticle or the composition of the invention in the in vivo diagnosis by nuclear magnetic resonance.
  • a fourth aspect of the invention relates to a method for the synthesis of NPs of the present invention comprising: 1. Synthesis of hydrophobic NPs, preferably hydrophobic SPIONs.
  • said SPIONs of, for example 10 nm, spherical, monodispersed and hydrophobic can be produced by the "thermal decomposition” method described by Park et al. [Park J. et al. , 2004. Nat. Mater. 3, 891-895]. It is noted that there are different variants of the method of synthesis of SPIONs by "Thermal Decomposition” and that they are based primarily on the use of other organic iron precursors. Although the solvent and the surfactants used can also be changed.
  • NPs preferably SPIONs-derived silicon alkoxysilanes from the NPs of step 1 or other identical or similar NPs with two or more alkoxy- silanes, preferably through a ligand exchange procedure executed simultaneously.
  • the combination of alkoxy silanes of interest is added to the SPIONs suspended in an oily medium.
  • 0.15% (v / v) of TEOS (300 ⁇ _), 0.10% (v / v) APTES (200 ⁇ _), and 0.01% (v / v) acetic acid (20 ⁇ _) were added to 40 mg of SPION-OA suspended in 200 mL of n-hexane. This mixture was stirred orbitally for 72 h at room temperature to allow progressive displacement of oleic acid molecules in the SPION-OA through the 2 alkoxy silane derivatives used (TEOS and APTES).
  • NPs SPION-TEOS / APTES
  • SPION-TEOS / APTES NP-hexane
  • APTES n-hexane
  • NPs were separated with the help of a neodynium magnet and washed three times with 50 mL of n-hexane to remove excess TEOS and APTES and any other unreacted reagents. Finally, the particles were dried at 60 ° C and under vacuum for 48 h, to allow complete condensation of the alkoxy silanes bound to the surface of the NP. 3.
  • a PEGylation of the NPs obtained in step 2) is carried out.
  • step 2 PEGylation of said NPs is carried out.
  • this step can be carried out by suspending the SPION-TEOS / APTES (30 mg) of step 2) in 10 mL of ultrapure water.
  • 2 kDa CH30-PEG-COOH (180 mg), EDC HCI (20 mg) and NHS (12 mg) were mixed in 10 mL of 0.1 M MONTH MONTH (pH 6), and incubated at room temperature to allow the activation of the carboxylic acid groups of the PEG. After the activation time had elapsed, both solutions were mixed and allowed to react for 2-3 hours at room temperature and with magnetic stirring.
  • the NPs were purified by dialysis against ultrapure water using a 12-14 KDa (cut-off) membrane; and optionally 4. Functionalization of the NPs of step 3) or step 2).
  • the SPIONs of step 3 are functionalized, for example, but not limited to cyanine-5.
  • Cy5-NHS ester (2 mg) was dissolved in 200 of DMSO and slowly added to 14 mg of SPION-TEOS / APTES-PEG dissolved in 800 L of 0.25 M PBS pH 8.0. The mixture was allowed to react in the absence of light and with orbital stirring for 4 h at 4 o C to allow the binding of Cy5 to the amino groups on the surface of the NPs.
  • the SPION-TEOS / APTES-PEG-Cy5 NPs were purified using a Sephadex G-25 column and a solution of PBS pH 7.4 as the mobile phase.
  • PEGylated SPION generated by the method described above have better T2-MRI contrast properties and longer circulation time than their predecessors. obtained only with APTES (100%).
  • PEGylated SPIONs produced by this method maintain good properties of structural and colloidal stability, low cytotoxicity and ease of subsequent functionalization.
  • nanosystems such as the NPs of the invention, allow the nanotechnological development of new, promising and intriguing possibilities in diagnosis and medical treatment.
  • the nanodevices used as contrast agents in medical imaging diagnosis (especially in IMR, ultrasound and tomography) have clear advantages over traditional agents in relation to better optical dispersion, better biocompatibility, a decrease in the probability of denaturation and , especially, their ability to bind ligands, which converts them into devices with multiple functions that bind to the target cells, allowing to obtain an image for diagnosis and at the same time transporting medications, allowing a more specific and efficient treatment.
  • Nanotechnology allows the design of multifunctional nanomaterials with a prolonged plasma half-life (thanks to the superficial incorporation of hydrophilic polymer chains), necessary to safely achieve its objective and specifically release the dose of drug vehicle in the desired place, increasing at the same time the bioavailability of the active agent in the target tissue.
  • these NPs can reach the tumor region simply by accumulation or retention (passive transport). This phenomenon is called the increased permeation and retention effect ("EPR" effect), and it is due to the differential characteristics of the tumor environment, where the vascular tissue is altered. This explains why there is a greater accumulation of NPs in the tumor mass, compared to a healthy tissue [Mart ⁇ nez-Soler G.l. et al., 2010. ARS Pharmaceutica 51, Supplement 3, 113-116; N ⁇ ez-Lozano R. et al., 2015. Current Opinion in Biotechnology 35, 135-140].
  • NPs characterized by an extensive plasma half-life can pass through the abnormal structure of blood vessels of pathological tissues (cancer, inflammation, infection).
  • the biological fate of any drug transport colloid can be significantly improved if it has: i) a very small particle size ( ⁇ 100 nm) and a spherical morphology; and, ii) adequate surface electrical and thermodynamic properties (very low electrical charge, and hydrophilicity).
  • the composition of the invention may additionally comprise a detectable label.
  • a "detectable label” refers to any label that can be used to locate the composition in vivo or in vitro. Examples of markers, but not limited to these, would be fluorophores (for example, Cyanine-5), chemical or protein markers that allow the visualization of a polypeptide.
  • the visualization can be done with the naked eye or by an apparatus (such as, but not limited to a microscope) and may involve a source of energy or light. Therefore, another aspect of the invention relates to a diagnostic kit or device, comprising at least one nanoparticle of the invention, or the pharmaceutical composition of the invention.
  • biologically active molecule drug or therapeutic agent, or detectable label
  • biologically active molecules have similar meanings and are used interchangeably in the memory of this invention. They refer to any substance that provides pharmacological activity and is used in the treatment, cure, prevention, mitigation or diagnosis of a disease or that affects the structure or function of the body of man or other animals.
  • biologically active molecules can include from low molecular weight drugs to molecules of the polysaccharide type, proteins, peptides, lipids, oligonucleotides and nucleic acids and combinations thereof. These molecules are well known to the person skilled in the art and include the meaning of a compound that has the characteristics that make it acceptable for use in medicine, for example and without being limited to the active ingredient in a medicine.
  • these molecules can be synthesized by different organic chemistry techniques, or molecular and biochemical biology techniques.
  • the terms used herein are understood as any compound that is administered to a patient for the treatment of a condition and that can more efficiently reach the target tissue when it is attached to the nanoparticle of the invention than when it is administered without the nanoparticle of the invention.
  • the term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect.
  • the therapeutic agent includes, but is not limited to, hydrophilic and hydrophobic compounds. Accordingly, the therapeutic agents contemplated in this invention include but are not limited to drug-like molecules, nucleic acids, proteins, peptides, antibodies, antibody fragments, aptamers and small molecules.
  • a protein therapeutic agent includes but is not limited to peptides, enzymes, structural proteins, receptors, and other circulating or cellular proteins as well as fragments and derivatives thereof whose aberrant expression gives rise to one or more medical conditions.
  • a therapeutic agent also includes chemotherapeutic compounds and radioactive materials. The dosage to obtain a therapeutically effective amount depends on a variety of factors, such as the age, weight, sex, tolerance, etc. of the mammal.
  • the “therapeutically effective amount” refers to the amount of active substance, or its salts, pro-drugs, derivatives or analogs or their combinations, which produce the desired effect and, in general, will be determined, among other causes, by the characteristics of said pro-drugs, derivatives or analogs and the therapeutic effect to be achieved.
  • the “adjuvants” and “pharmaceutically acceptable carriers” that can be used in said compositions are the vehicles known to those skilled in the art.
  • excipient refers to a substance that aids the absorption or distribution or action of any of the active ingredients of the present invention, which stabilizes said active substance or aids in the preparation of the medicament in the sense of giving it consistency or providing flavors that make it more pleasant.
  • the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, dye function, drug protection function such as to isolate it from air and / or moisture, function filling a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, a disintegrating function to facilitate the dissolution of the components and their absorption in the intestine without excluding other types of excipients not mentioned in this paragraph.
  • pharmaceutically acceptable excipient refers to the excipient being allowed and evaluated so as not to cause damage to the organisms to which it is administered.
  • the excipient must be pharmaceutically suitable, that is, a dossier that allows the activity of the active substance or of the active ingredients, that is, that is compatible with the active substance, in this case, the active substance is any of the compounds of the present invention.
  • a “pharmaceutically acceptable carrier” refers to those substances, or combination of substances, known in the pharmaceutical sector used in the preparation of pharmaceutical forms of administration and includes, but are not limited to, solids, liquids, solvents or surfactants.
  • the vehicle like the excipient, is a substance that is used in the medicament to dilute any of the compounds of the present invention to a certain volume or weight.
  • the pharmaceutically acceptable carrier is an inert substance or action analogous to the active ingredients of the present invention.
  • the function of the vehicle is to facilitate the incorporation of other compounds, allow greater dosage and administration or give consistency and form to the pharmaceutical composition.
  • the pharmaceutically acceptable carrier is the diluent.
  • small molecule refers to a chemical compound, for example a peptidomimetic that can be derivatized or any other organic compound of low molecular weight, natural or synthetic. Said small molecules may be therapeutically transported substances or they may be derivatized to facilitate transport.
  • Low molecular weight means compounds whose molecular weight is less than 1000 Daltons, usually between 300 and 700 Daltons.
  • Figure 1 shows a summary scheme of this procedure.
  • the concrete manufacturing protocol of these SPION-TEOS / APTES-PEG NPs is described in the section entitled "METHOD OF THE INVENTION”.
  • First, hydrophobic, spherical and monodispersed 10 nm SPION-OA NPs were synthesized by the method of thermal decomposition of iron oleate [Park J. et al., 2004. Nat. Mater. 3, 891-895].
  • Figure 2A shows an image of transmission electron microscopy (TEM) obtained for a SPION-OA preparation, where it can be seen that they have the desired size, shape and homogeneity.
  • TEM transmission electron microscopy
  • the hydrophobic SPION-OA NPs obtained were converted to hydrophilic by means of a ligand exchange using two alkoxy silane derivatives simultaneously (60% TEOS and 40% APTES).
  • This method displaces the oleic acid ligands of the SPION-OA and covers them with a very thin layer of silicon oxide, generating hydrophilic SPION-TEOS / APTES NPs.
  • this ligand exchange process does not produce apparent morphological changes, nor does it affect the size, or the monodispersity of the resulting particles.
  • the SPION-TEOS / APTES NPs obtained are water soluble. However, the progressive protonation of the amino groups on the surface of these NPs entails the establishment of hydrogen bonds between the particles, causing the progressive formation of aggregates. Although the use of a pH 6.0 buffer solution can slow this phenomenon, its aggregation is inevitable ( Figure 3A and 3B). To solve this problem, partial PEGylation of the SPION-TEOS / APTES NPs was carried out. For this, the covalent binding of a-methoxy-w-carboxylate PEG (2 KDa) molecules to the surface amino groups of these particles was induced by an amidation reaction. The resulting PEGylated SPIONs were easily purified using simple dialysis.
  • the FTIR spectrum of the PEGylated SPIONs had a peak (-1650 cm “1 ) that can be assigned to the carbonyl groups of the amide bond formed with the PEG and the typical bands from the polymer (between 1718 and 837 cm “1 ) covalently bonded to the surface of the SPION-TEOS / APTES NPs ( Figure 4A).
  • the TGA curve obtained for the NPs obtained by thermal decomposition (SPION-OA) showed a weight loss of 69 .5%, corresponding to the considerable amount of oleic acid ligands that line the core of the particle ( Figure 4B).
  • the TGA curve obtained for SPION-TEOS / APTES NPs has a weight loss of 30.9%, much smaller than that obtained with SPION-OA, and usual in particles subjected to silane ligand exchange processes [Cano M. et al., 2017. Nanoscale 9, 812-822; Cano M. et al., 2016. RSC Advances 6, 70374-70382] ( Figure 4B).
  • the TGA curve obtained for PEGylated SPIONs showed a weight loss of 70.8%, which means that there is a 39.9% increase generated by PEG molecules covalently linked through the amines of the precursor SPION-TEOS / APTES NPs ( Figure 4B).
  • FIG. 4C shows the general spectra of XPS or Survey obtained for NPs produced by ligand exchange with 2 alkoxy silane ligands (SPION-TEOS / APTES) and with a single ligand (SPION-APTES).
  • SPION-TEOS / APTES 2 alkoxy silane ligands
  • SPION-APTES single ligand
  • the average thickness (f) can be estimated using the Lambert-Beer equation, described in the following publications for very thin layers [Kallury KMR et al., 1995. Anal. Chem. 67, 3362-3370; Wong AKY et al., 2005. Anal. Bioanal Chem. 383, 187-200; XPS Applications in Thin Films Research. Geng S. et al., 2002. Materials Technology 17 (4)]:
  • / is the Si2p (eV) signal strength obtained for the solid support with silane layer
  • l 0 is the Si2p (eV) signal strength obtained for the solid support without silane layer
  • / is the exhaust depth of the Si2p electrons through the Silane layer (taken as 20 Armstrong in this work) and ⁇ the angle of escape at which electrons are expelled from the surface.
  • the thickness value obtained from this equation for the surfaces of NPs SPION-TEOS / APTES and SPION-APTES were 1.15 and 0.52 nm, respectively.
  • T1 and T2 relaxation times were measured at 0.5 mM Fe (measured by ICP-AES).
  • the average cross-sectional relaxivity (r2) of our PEGylated SPIONs was 156.3 mM- 1 s-1 at 1.5 T and 1 10.7 mM-1 s-1 at 9.4 T.
  • the measure of the longitudinal relaxivity (r1) of the they were 4.76 mM-1 s-1 at 1.5 T and 0.28 mM-1 s-1 at 9.4 T, giving r2 / r1 ratios of 32.8 and 395.3 to said magnetic fields respectively.
  • NPs are retained in renal corpuscles based on their size, these being located in the renal cortex [Choi C.H.C. et al., 201 1. PNAS 108, 6556-6661; Pern ⁇ a M. et al., 2015. Nanoscale 7, 2050-2059] but there is no glomerular accumulation for PEGylated NPs less than 25 nm.
  • the SPION-TEOS / APTES-PEG NPs which have a hydrodynamic size around 25 nm in fetal bovine serum (medium very similar to blood), can be found both in the peritubular capillaries, which anatomically they are both in the medulla and in the renal cortex, and probably also slightly retained in the glomerulus, which is found only in the renal cortex. Therefore, only the decay of the signal observed in the renal medulla would be entirely due to the circulating NPs in blood that shorten the T2 signal when they pass through the peritubular capillaries and return to the circulatory system.
  • Example 4 Ease of subsequent functionalization for adaptation to specific applications.

Abstract

The invention relates to a nanoparticle obtained by means of thermal decomposition, comprising at least two alkoxy-silane derivatives. The invention also relates to a composition, the uses thereof and a synthesis method.

Description

Nanopartículas modificadas con derivados alcoxi-silanos  Nanoparticles modified with alkoxy silane derivatives
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se encuentra dentro del campo de la medicina (Nanomedicina), de la química y de la bioquímica, y se refiere a una nanopartícula superparamagnética, preferiblemente de óxido de hierro (SPION) obtenida por descomposición térmica, modificada superficialmente mediante un intercambio de ligando con dos derivados alcoxi-silanos de manera simultanea. La presente invención se refiere también a las composiciones, al procedimiento de modificación de la nanopartícula y a sus usos. The present invention is within the field of medicine (Nanomedicine), chemistry and biochemistry, and refers to a superparamagnetic nanoparticle, preferably iron oxide (SPION) obtained by thermal decomposition, superficially modified by an exchange of linking with two alkoxy silane derivatives simultaneously. The present invention also relates to the compositions, the method of modifying the nanoparticle and its uses.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El fenómeno de la resonancia magnética nuclear (RMN) sucede debido a que los núcleos de distintos átomos absorben diferentes energías en el dominio de radiofrecuencia, resonando a concretas frecuencias cuando el campo magnético aplicado se cambia periódicamente. El hidrógeno es uno de los elementos más apropiados para el fenómeno de la resonancia magnética nuclear, y es el elemento más común contenido en el cuerpo humano. Por estos motivos, la imagen por resonancia magnética es capaz de proporcionar imágenes de gran resolución de tejidos blandos con información anatómica detallada. Las imágenes se obtienen situando al sujeto en un campo magnético y observando las interacciones entre los espines magnéticos de los protones de agua del sujeto y la radiofrecuencia de radiación aplicada. La imagen se resuelve aplicando gradientes de campo magnético ortogonales que en última instancia codifican espacialmente las tres coordenadas de cada píxel de la imagen. Los espines magnéticos de la muestra liberan la energía adquirida durante la excitación, como un campo magnético oscilante de forma exponencialmente decreciente que induce una pequeña corriente en una bobina receptora. Dos parámetros, llamados tiempos de relajación del protón, son de una importancia fundamental en la generación de la imagen: T1 (tiempo de relajación longitudinal) y T2 (tiempo de relajación transversal). T1 o tiempo de relajación de espín-red representa la transferencia de energía entre los espines del protón observado y la red circundante, y T2 o tiempo de relajación espín-espín es la transferencia de energía entre diferentes espines o protones. Un parámetro adicional, llamado tiempo de relajación T2*, resulta también necesario para describir apropiadamente el decaimiento total de la inducción magnética. Este decaimiento incluye, tanto el decaimiento del T2, como los procesos adicionales de desfase causados por la inevitable falta de homogeneidad en el campo magnético que producen, variaciones en la susceptibilidad magnética local. Por esta razón, T2* es siempre más breve que T2. La señal de resonancia magnética (MR) detectada incluye, por tanto, una combinación de tiempos de relajación T1 , T2 y T2*, así como la contribución de la densidad del protón. The phenomenon of nuclear magnetic resonance (NMR) occurs because the nuclei of different atoms absorb different energies in the radiofrequency domain, resonating at specific frequencies when the applied magnetic field is changed periodically. Hydrogen is one of the most appropriate elements for the phenomenon of nuclear magnetic resonance, and is the most common element contained in the human body. For these reasons, magnetic resonance imaging is capable of providing high resolution images of soft tissues with detailed anatomical information. The images are obtained by placing the subject in a magnetic field and observing the interactions between the magnetic spins of the subject's water protons and the radiofrequency of radiation applied. The image is solved by applying orthogonal magnetic field gradients that ultimately encode spatially the three coordinates of each pixel in the image. The magnetic spins in the sample release the energy acquired during excitation, such as an exponentially decreasing oscillating magnetic field that induces a small current in a receiving coil. Two parameters, called proton relaxation times, are of fundamental importance in the generation of the image: T1 (longitudinal relaxation time) and T2 (transverse relaxation time). T1 or spin-net relaxation time represents the transfer of energy between the spins of the observed proton and the surrounding network, and T2 or spin-spin relaxation time is the transfer of energy between different spins or protons. An additional parameter, called relaxation time T2 *, is also necessary to properly describe the total decay of the magnetic induction. This decay includes both the decay of T2 and the additional phase-out processes caused by the inevitable lack of homogeneity in the magnetic field they produce, variations in local magnetic susceptibility. For this reason, T2 * is always shorter than T2. The detected magnetic resonance (MR) signal includes, by both, a combination of relaxation times T1, T2 and T2 *, as well as the contribution of proton density.
Una ventaja de esta técnica es que no emplea radiación ionizante, aportando imágenes de gran calidad sin exponer al paciente a ningún tipo de radiación perjudicial. Sin embargo, los contrastes de RMN endógenos e inherentes son, en muchos casos, insuficientes para resolver adecuadamente pequeñas lesiones anatómicas o caracterizar adecuadamente la fisiología de los tejidos. Por esta razón, se han desarrollado series específicas de agentes exógenos para potenciar los componentes T1 , T2 o T2* de la imagen, respectivamente. Aunque se han realizado importantes avances en agentes potenciadores de T1 y T2, se sabe mucho menos sobre la investigación de la potenciación de T2*, que podría hacer posible la imagen de la perfusión tisular y tumoral con una resolución y sensibilidad muy aumentadas. An advantage of this technique is that it does not use ionizing radiation, providing high quality images without exposing the patient to any type of harmful radiation. However, endogenous and inherent NMR contrasts are, in many cases, insufficient to adequately resolve small anatomical lesions or properly characterize tissue physiology. For this reason, specific series of exogenous agents have been developed to enhance the T1, T2 or T2 * components of the image, respectively. Although significant advances have been made in T1 and T2 enhancing agents, much less is known about the investigation of T2 * potentiation, which could make possible the image of tissue and tumor perfusion with greatly increased resolution and sensitivity.
Los agentes de contraste para la imagen por resonancia magnética (IMR) se dividen en dos clases generales de materiales activos magnéticamente: Materiales paramagnéticos y superparamagnéticos o ferromagnéticos. Los agentes de contraste paramagnéticos incluyen sustancias basadas en pequeños quelatos de gadolinio (III) (Gd-DTPA, Gd-DTPA-BMA, Gd- DOTA, Gd-D03A) [E. Toth et al. , 2001. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, 45], y los agentes de contraste superparamagnéticos se basan en nanopartículas (NPs) con núcleo de óxido de hierro (Fe304, Fe203) de tamaño muy reducido (<10 nm, USPIO-ultrasmall superparamagnetic ¡ron oxide particles) o reducido (<100 nm, SPIO-superparamagnetic ¡ron oxide) [Kharissova O.V. et al., 2013. RSC Advances 3, 22648-22682]. The contrast agents for magnetic resonance imaging (IMR) are divided into two general classes of magnetically active materials: Paramagnetic and superparamagnetic or ferromagnetic materials. Paramagnetic contrast agents include substances based on small gadolinium (III) chelates (Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-D03A) [E. Toth et al. , 2001. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, 45], and superparamagnetic contrast agents are based on nanoparticles (NPs) with iron oxide core (Fe 3 0 4 , Fe 2 0 3 ) very small (<10 nm, USPIO-ultrasmall superparamagnetic ¡ron oxide particles) or reduced (<100 nm, SPIO-superparamagnetic ¡ron oxide) [Kharissova OV et al., 2013. RSC Advances 3, 22648-22682 ].
Los agentes paramagnéticos inducen un aumento en la intensidad de imagen RM en secuencias ponderadas en T1 (potenciación de contraste positiva), y los agentes superparamagnéticos inducen un descenso en la señal de resonancia magnética en secuencias ponderadas en T2 (potenciación de contraste negativa). La sensibilidad y especificidad de ambos tipos de agentes es muy distinta. Mientras que los quelatos de gadolinio tienen una relajatividad que requiere concentraciones milimolares del compuesto en el tejido objetivo, las NPs superparamagnéticas, debido a su mayor peso molecular, son efectivas en rangos micromolares o nanomolares. Paramagnetic agents induce an increase in MR image intensity in T1-weighted sequences (positive contrast enhancement), and superparamagnetic agents induce a decrease in the magnetic resonance signal in T2-weighted sequences (negative contrast enhancement). The sensitivity and specificity of both types of agents is very different. While gadolinium chelates have a relaxivity that requires millimolar concentrations of the compound in the target tissue, superparamagnetic NPs, due to their greater molecular weight, are effective in micromolar or nanomolar ranges.
Los materiales nanoestructurados superparamagnéticos fueron desarrollados como agente de contraste para IRM ya que su estructura a nanoescala modificaba profundamente el tiempo de relajación de los protones potenciando de este modo la sensibilidad del diagnóstico IRM. Además mediante modificaciones en la superficie de las NPs con vectores específicos biológicamente activos, como anticuerpos monoclonales o policlonales o sistemas avidina- biotina, puede incrementarse también la especificidad del diagnóstico IRM. La calidad de las partículas usadas como agente de contraste de IRM está determinada por las propiedades magnéticas del núcleo del material, la distribución del tamaño de la partícula, la superficie de carga de la partícula, la estabilidad en disolventes casi neutrales o suero fisiológico, así como las propiedades químicas y funcionales de moléculas inmovilizadas en la superficie. Además, el comportamiento farmacocinético constituye un determinante importante en aplicaciones de imagen por resonancia magnética, ya que el agente idealmente debería permanecer en el tejido diana solo durante el examen IRM, y ser rápidamente eliminado después, sin acumularse en ninguna parte del cuerpo. Superparamagnetic nanostructured materials were developed as a contrast agent for MRI since their nanoscale structure profoundly modified the relaxation time of protons, thereby enhancing the sensitivity of MRI diagnosis. Furthermore, by modifications on the surface of the NPs with specific biologically active vectors, such as monoclonal or polyclonal antibodies or avidin-biotin systems, the specificity of the MRI diagnosis can also be increased. The quality of the particles used as an MRI contrast agent is determined by the magnetic properties of the core of the material, the particle size distribution, the particle's loading surface, stability in almost neutral solvents or physiological serum, as well. as the chemical and functional properties of immobilized molecules on the surface. In addition, pharmacokinetic behavior is an important determinant in magnetic resonance imaging applications, since the agent should ideally remain in the target tissue only during the MRI exam, and be quickly removed afterwards, without accumulating anywhere in the body.
Los productos comerciales se sintetizan por coprecipitación (tamaño del núcleo de 5-10 nm) en medio acuoso. Este método de síntesis simple y sostenible produce NPs magnéticas no tóxicas (MNP) de pequeño tamaño (<10nm), que se pueden mantener fácilmente en suspensión coloidal, pero que presentan distribuciones significativamente grandes (>20%). El tamaño hidrodinámico y la naturaleza química del recubrimiento influyen en la distribución de MNP y por tanto en el órgano o tejido de acumulación. Las nanopartículas SPIO recubiertas de dextrano (Feridex) y Carboxydextrano (Resovist®) con tamaños hidrodinámicos superiores a 100 nm han sido utilizadas para imagen de hígado, mientras que las nanopartículas USPIO con tamaños hidrodinámicos inferiores a 50 nm han sido utilizadas para angiografías y aplicaciones de permeabilidad de tumores. Sin embargo, los recubrimientos de dextrano o carboxydextrano dan lugar a una unión significativa y no específica por absorción de esas partículas a las superficies vasculares y de tejidos, limitando la eliminación efectiva de estas partículas una vez que el estudio por imagen se ha realizado siendo requeridos tiempos de espera relativamente largos hasta una completa eliminación y eventual readministración. Por estos motivos la producción y caracterización de NPs magnéticas con escasa adherencia tisular y vascular que favorezcan una rápida eliminación y una baja acumulación tisular presentan actualmente una gran relevancia. Commercial products are synthesized by coprecipitation (core size of 5-10 nm) in aqueous medium. This method of simple and sustainable synthesis produces non-toxic magnetic NPs (MNP) of small size (<10nm), which can be easily maintained in colloidal suspension, but have significantly large distributions (> 20%). The hydrodynamic size and chemical nature of the coating influence the distribution of NPM and therefore the organ or tissue accumulation. SPIO nanoparticles coated with dextran (Feridex) and Carboxydextran (Resovist®) with hydrodynamic sizes greater than 100 nm have been used for liver imaging, while USPIO nanoparticles with hydrodynamic sizes less than 50 nm have been used for angiographies and applications of tumor permeability. However, dextran or carboxydextran coatings result in a significant and non-specific binding by absorption of these particles to vascular and tissue surfaces, limiting the effective removal of these particles once the imaging study has been performed being required. relatively long waiting times until complete elimination and eventual readministration. For these reasons, the production and characterization of magnetic NPs with poor tissue and vascular adhesion that favor rapid elimination and low tissue accumulation are currently of great relevance.
Los procedimientos de elaboración de agentes de contraste de tipo T2 están descritos en la literatura. The procedures for making contrast agents of type T2 are described in the literature.
Un protocolo apropiado para producir NPs magnéticas de óxido de hierro comprende la coprecipitación de sales férricas y ferrosas en un medio alcalino en ausencia o presencia de surfactantes. Las NPs así obtenidas tienen un núcleo con un diámetro comprendido entre 1 y 50 nm. An appropriate protocol for producing magnetic iron oxide NPs comprises coprecipitation of ferric and ferrous salts in an alkaline medium in the absence or presence of surfactants. The NPs thus obtained have a core with a diameter between 1 and 50 nm.
El recubrimiento de las NPs magnéticas con polímeros biocompatibles o copolímeros se lleva a cabo a través de unión covalente por activación de las NPs con carbodiimida. Las NPs con una estructura de núcleo con recubrimiento tienen un diámetro hidrodinámico comprendido entre 1 y 150 nm. El superparamagnetismo es una propiedad física que sólo se presenta en NPs de MFe204 (M=Fe, Co, Mn) con tamaños inferiores a 20-30 nm. La obtención eficiente de este tipo de NPs inorgánicas con un tamaño, forma, homogeneidad y cristalinidad adecuada se consigue empleando métodos de síntesis basados en la descomposición térmica de sus precursores orgánicos de hierro, y requieren del uso de disolventes orgánicos, surfactantes y temperaturas elevadas. Sin embargo, las NPs superparamagnéticas de óxido de hierro (SPIONs, Superparamagnetic ¡ron oxide nanoparticles) generadas por estos métodos son hidrofóbicas, al estar recubiertas de ligandos surfactantes, y por tanto estables en disolventes apolares. The coating of the magnetic NPs with biocompatible polymers or copolymers is carried out through covalent bonding by activation of the NPs with carbodiimide. NPs with a coated core structure have a hydrodynamic diameter between 1 and 150 nm. Superparamagnetism is a physical property that only occurs in NPs of MFe 2 0 4 (M = Fe, Co, Mn) with sizes below 20-30 nm. The efficient obtaining of this type of inorganic NPs with an adequate size, shape, homogeneity and crystallinity is achieved using synthesis methods based on the thermal decomposition of their organic iron precursors, and require the use of organic solvents, surfactants and elevated temperatures. However, the superparamagnetic iron oxide NPs (SPIONs, Superparamagnetic ron oxide nanoparticles) generated by these methods are hydrophobic, being coated with surfactant ligands, and therefore stable in apolar solvents.
Con objeto de utilizar estas SPIONs hidrofóbicas en cualquier aplicación industrial y clínica es necesario hacerlas hidrofílicas, especialmente en aquellos casos en los que su uso tenga lugar necesariamente en medios acuosos (como son las orientadas a biología, biotecnología y biomedicina). Uno de los métodos más empleados para cambiar la solubilidad de estas NPs son los de "Intercambio de Ligando", los cuales se basan en la sustitución de los ligandos hidrofóbicos de su superficie por otros ligandos que poseen un extremo reactivo con la superficie de la partícula y otro extremo con grupos hidrofílicos [De Palma et al., 2007. Chem. Mater. 19, 1821-1831]. Generalmente, este método se lleva a cabo añadiendo un exceso del nuevo ligando a una disolución muy diluida de la NPs en un determinado disolvente orgánico, lo que provoca un desplazamiento del ligando hidrofóbico original por gradiente de concentración. Algunos de los ligandos más usados para el intercambio de ligando suelen contener grupos ácido carboxílico (ej. Citrato) [Lattuada M. et al., 2007. Langmuir 23, 2158- 2168], fosfonato o bifosfonato [Sandiford L. et al., 2013. ACS Nano 7, 500-512], alcohol (ej. Dextrano) [López-Cruz A. et al., 2009, J. Mater. Chem. 19, 6870-6876], o catecol (ej. Dopamina) [Lak. A. et al., 2013. Nanoscale 5, 11447-1 1455], etc. en uno de sus extremos, los cuales permiten al nuevo ligando quedar adsorbido químicamente sobre la superficie de la partícula formando una capa protectora. Sin embargo, la estabilidad acuosa de las SPIONs resultantes con estos ligandos es bastante limitada en el tiempo, especialmente en medios biológicos, debido principalmente a que esta "adsorción química" es una unión no covalente y los ligandos son fácilmente desorbidos de la superficie de la partícula en función de su constante de disociación (es decir, desplazados progresivamente por otras moléculas del medio que les rodea). Además, las SPIONs obtenidas de esta manera pueden perder cualquier funcionalización a la que hayan sido sometidas durante el proceso de síntesis, ya que este tipo de unión no covalente puede verse afectada (comprometida) por las condiciones en las que tiene lugar la reacción y/o en los procesos requeridos para su purificación (especialmente en el caso del uso de columnas Sephadex®), que induzcan la separación de moléculas asociadas a la partícula, necesarias para su correcta función (clínica, biotecnológica, industrial, etc.). BREVE DESCRIPCIÓN DE LA INVENCIÓN In order to use these hydrophobic SPIONs in any industrial and clinical application it is necessary to make them hydrophilic, especially in those cases in which their use necessarily takes place in aqueous media (such as those oriented to biology, biotechnology and biomedicine). One of the most used methods to change the solubility of these NPs are those of "Ligand Exchange", which are based on the replacement of hydrophobic ligands on their surface with other ligands that have a reactive end with the surface of the particle and another extreme with hydrophilic groups [De Palma et al., 2007. Chem. Mater. 19, 1821-1831]. Generally, this method is carried out by adding an excess of the new ligand to a very dilute solution of the NPs in a certain organic solvent, which causes a displacement of the original hydrophobic ligand by concentration gradient. Some of the most commonly used ligand exchange ligands usually contain carboxylic acid groups (eg Citrate) [Lattuada M. et al., 2007. Langmuir 23, 2158-2168], phosphonate or bisphosphonate [Sandiford L. et al., 2013. ACS Nano 7, 500-512], alcohol (eg Dextrano) [López-Cruz A. et al., 2009, J. Mater. Chem. 19, 6870-6876], or catechol (eg Dopamine) [Lak. A. et al., 2013. Nanoscale 5, 11447-1 1455], etc. at one of its ends, which allow the new ligand to be chemically adsorbed on the surface of the particle forming a protective layer. However, the aqueous stability of the resulting SPIONs with these ligands is quite limited over time, especially in biological media, mainly because this "chemical adsorption" is a non-covalent bond and the ligands are easily desorbed from the surface of the particle as a function of its dissociation constant (that is, progressively displaced by other molecules in the surrounding environment). In addition, the SPIONs obtained in this way can lose any functionalization to which they have been subjected during the synthesis process, since this type of non-covalent binding can be affected (compromised) by the conditions in which the reaction takes place and / or in the processes required for purification (especially in the case of the use of Sephadex® columns), which induce the separation of molecules associated with the particle, necessary for its correct function (clinical, biotechnological, industrial, etc.). BRIEF DESCRIPTION OF THE INVENTION
Con el objetivo de mejorar las propiedades de contraste T2-MRI y el tiempo en circulación de las SPIONs, y al mismo tiempo mantener una excelente estabilidad estructural y coloidal de las NPs, se propuso la modificación superficial de las SPIONs obtenidas por descomposición térmica con al menos dos derivados alcoxi-silano simultáneamente. En particular, la presente invención describe cómo el uso de una combinación de 60 % de Si(OCH2CH3)4 (TEOS) y 40 % de NH2-(CH2)3-Si(OCH2CH3)3 (APTES), para la modificación superficial de estas SPIONs hidrofóbicas, y su posterior PEGilación, permite generar partículas con mejores propiedades de contraste T2-MRI que sus antecesoras obtenidas sólo con APTES (100%). Las SPIONs PEGiladas producidas por este método mantienen buenas propiedades de estabilidad estructural y coloidal, baja citotoxicidad y facilidad de funcionalización posterior. Estos resultados ejemplifican el punto anterior (la utilidad y potencial de usar mezclas de alcoxi- silanos para proporcionar nuevas propiedades físico químicas a las NPs, manteniendo e incluso mejorando su estabilidad coloidal y estructural) y abren la puerta a una nueva estrategia para la modificación superficial de SPIONs, con capas delgadas de sílica, para el desarrollo y optimización de estas NPs para un alto número de aplicaciones, tanto en diagnóstico de cáncer como en su terapia. In order to improve the T2-MRI contrast properties and the circulation time of the SPIONs, and at the same time maintain excellent structural and colloidal stability of the NPs, the surface modification of the SPIONs obtained by thermal decomposition was proposed with the minus two alkoxy silane derivatives simultaneously. In particular, the present invention describes how the use of a combination of 60% Si (OCH2CH3) 4 (TEOS) and 40% NH2- (CH2) 3-Si (OCH2CH3) 3 (APTES), for surface modification of These hydrophobic SPIONs, and their subsequent PEGylation, allow to generate particles with better T2-MRI contrast properties than their predecessors obtained only with APTES (100%). PEGylated SPIONs produced by this method maintain good properties of structural and colloidal stability, low cytotoxicity and ease of subsequent functionalization. These results exemplify the previous point (the usefulness and potential of using mixtures of alkoxy silanes to provide new physical chemical properties to NPs, maintaining and even improving their colloidal and structural stability) and open the door to a new strategy for surface modification. of SPIONs, with thin layers of silica, for the development and optimization of these NPs for a high number of applications, both in cancer diagnosis and in their therapy.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Ilustración esquemática de la síntesis de SPIONs estables estructural y coloidalmente. Tanto las moléculas como las NPs no estas dibujadas a escala. Figure 1. Schematic illustration of the synthesis of structural and colloidal stable SPIONs. Both molecules and NPs are not drawn to scale.
Figura 2. Imágenes de TEM de las NPs (A) SPION-OA, (B) SPION-TEOS/APTES y (C) SPION-TEOS/APTES-PEG. Figure 2. TEM images of the NPs (A) SPION-OA, (B) SPION-TEOS / APTES and (C) SPION-TEOS / APTES-PEG.
Figura 3. Estabilidad coloidal de NPs SPION-TEOS/APTES en disolución tampón MES a pH 6.0 (A) y de SPION-TEOS/APTES-PEG en agua (C). (B) Variación del tamaño hidrodinámico de las NPs SPION-TEOS/APTES en agua o 0.25 M PBS (pH 7.4) o 0.05 M MES (pH 6.0) o 30 mg/mL BSA en 0.25 M PBS (pH 7.4) con el tiempo durante 5 días. (D) Igual que (B) para las NPs SPION-TEOS/APTES-PEG con el tiempo durante 7 días. Figure 3. Colloidal stability of SPION-TEOS / APTES NPs in MES buffer solution at pH 6.0 (A) and SPION-TEOS / APTES-PEG in water (C). (B) Variation of the hydrodynamic size of the SPION-TEOS / APTES NPs in water or 0.25 M PBS (pH 7.4) or 0.05 M MES (pH 6.0) or 30 mg / mL BSA at 0.25 M PBS (pH 7.4) over time For 5 days. (D) Same as (B) for SPION-TEOS / APTES-PEG NPs over time for 7 days.
Figura 4. (A) FTIR y (B) TGA de las NPs SPION-OA (negro), SPION-TEOS/APTES (azul) y SPION-TEOS/APTES-PEG (rojo). (C) XPS de NPs SPION-APTES (negro) y SPION- TEOS/APTES (rojo). (D) Variación del Zeta-potencial en función del pH para NPs SPION- APTES-PEG (negro) y SPION-TEOS/APTES-PEG (rojo). Figura 5. (A) Análisis VSM de las NPs SPION-OA (negro), SPION-APTES (azul) y SPION- APTES-PEG (rojo). (B) Imágenes de phantom de MRI mostrando el contraste positivo (T1) y negativo (T2) producido por las NPs SPION-TEOS/APTES-PEG y/o las SPION-APTES-PEG a las concentraciones indicadas a un campo magnético de 9.4 T. Figure 4. (A) FTIR and (B) TGA of the SPION-OA (black), SPION-TEOS / APTES (blue) and SPION-TEOS / APTES-PEG NPs (red). (C) XPS of NPs SPION-APTES (black) and SPION-TEOS / APTES (red). (D) Zeta-potential variation as a function of pH for NPs SPION-APTES-PEG (black) and SPION-TEOS / APTES-PEG (red). Figure 5. (A) VSM analysis of the SPION-OA (black), SPION-APTES (blue) and SPION-APTES-PEG (red) NPs. (B) MRI phantom images showing the positive (T1) and negative (T2) contrast produced by the SPION-TEOS / APTES-PEG NPs and / or the SPION-APTES-PEG at the indicated concentrations at a magnetic field of 9.4 T.
Figura 6. Citotoxicidad de las células HepG2 tratadas con las NPs SPION-APTES/TEOS-PEG. (A) Imágenes representativas de la línea celular HepG2 tratada con las concentraciones indicadas de NPs SPION-APTES/TEOS-PEG durante 48 horas y mostrando las células totales (tinción azul) y las células muertas (tinción amarilla). Escala = 0.05 cm. (B) Número total de células en cultivo tratadas con las concentraciones indicadas de NPs durante 24 y 48 horas. (C) Número total de células muertas en cultivo analizadas en B. (D) Porcentaje de células muertas en las mismas células analizadas en B. Figure 6. Cytotoxicity of HepG2 cells treated with SPION-APTES / TEOS-PEG NPs. (A) Representative images of the HepG2 cell line treated with the indicated concentrations of SPION-APTES / TEOS-PEG NPs for 48 hours and showing the total cells (blue staining) and dead cells (yellow staining). Scale = 0.05 cm. (B) Total number of cells in culture treated with the indicated concentrations of NPs for 24 and 48 hours. (C) Total number of dead cells in culture analyzed in B. (D) Percentage of dead cells in the same cells analyzed in B.
Figura 7. (A-L) Imágenes T2W representativas obtenidas a partir de los ratones antes y después de la administración intravenosa de 9-11 mg Fe Kg-1 de SPION-APTES-PEG (A-F) y SPION-APTES/TEOS-PEG (G-L) a los tiempos indicados. Las dos imágenes trasversales del animal en cada tiempo muestran determinados órganos. (M-N) Ratios del tiempo de relajatividad T2 en los diferentes tejidos medidos a partir de los mapas de MRI tras la inyección intravenosa de NPs SPION-APTES-PEG (M) y SPION-APTES/TEOS-PEG (N). (O) Ratio del tiempo de relajatividad T2 en la médula renal - músculo a los tiempos indicados tras la administración i.v. de NPs SPION-APTES-PEG y SPION-APTES/TEOS-PEG. Figure 8. Imágenes T2W representativas, con código de colores, obtenidas antes y después de la administración i.v. de 9-11 mg Fe- Kg-1 en ratones tanto de NPs SPION-APTES-PEG (A) como SPION-TEOS/APTES-PEG (B) a los tiempos indicados. (C) Ejemplo de imagen T2W resaltando las diferentes áreas medidas en el riñon (ROIs). Figura 9. (A) Espectro UV-visible de NPs SPION-TEOS/APTES-PEG-Cy5 (rosa), SPION- TEOS/APTES-PEG (rojo), SPION-TEOS/APTES (azul) y un blanco como muestra control (negro) tratado con ninhidrina. (B) Ilustración esquemática de las funcionalización de las NPs SPION-TEOS/APTES-PEG con Cy5-NHS éster. (C) Espectro UV-visible de absorción de las NPs SPION-TEOS/APTES-PEG-Cy5 (rosa), SPION-TEOS/APTES-PEG (rojo) y Cy5 libre (verde). (D) Imagen de phantom de Fluorescencia mostrando la emisión de las NPs SPION- TEOS/APTES-PEG antes y después de funcionalizadar con Cy5 (Aex = 600 nm y Aem = 700 nm). Figure 7. (AL) Representative T2W images obtained from mice before and after intravenous administration of 9-11 mg Fe Kg-1 of SPION-APTES-PEG (AF) and SPION-APTES / TEOS-PEG (GL ) at the indicated times. The two transverse images of the animal at each time show certain organs. (MN) T2 relaxation time ratios in the different tissues measured from the MRI maps after intravenous injection of NPs SPION-APTES-PEG (M) and SPION-APTES / TEOS-PEG (N). (O) Ratio of T2 relaxivity time in the renal medulla - muscle at the times indicated after the iv administration of NPs SPION-APTES-PEG and SPION-APTES / TEOS-PEG. Figure 8. Representative T2W images, with color coding, obtained before and after iv administration of 9-11 mg Fe-Kg-1 in mice of both SPION-APTES-PEG (A) and SPION-TEOS / APTES- NPs PEG (B) at the indicated times. (C) Example of T2W image highlighting the different areas measured in the kidney (ROIs). Figure 9. (A) UV-visible spectrum of NPs SPION-TEOS / APTES-PEG-Cy5 (pink), SPION-TEOS / APTES-PEG (red), SPION-TEOS / APTES (blue) and a blank as control sample (black) treated with ninhydrin. (B) Schematic illustration of the functionalization of the SPION-TEOS / APTES-PEG NPs with Cy5-NHS ester. (C) UV-visible absorption spectrum of the SPION-TEOS / APTES-PEG-Cy5 NPs (pink), SPION-TEOS / APTES-PEG (red) and free Cy5 (green). (D) Fluorescence phantom image showing the emission of SPION-TEOS / APTES-PEG NPs before and after functionalizing with Cy5 (Aex = 600 nm and Aem = 700 nm).
Figura 10. Representación de algunos derivados alcoxi-silanos que pueden ser utilizados para la modificación química de distintas superficies. Figure 10. Representation of some alkoxy silane derivatives that can be used for chemical modification of different surfaces.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los autores de la presente invención han desarrollado un método para la solubilización en agua de nano partículas, preferiblemente SPIONs obtenidas por descomposición térmica, que se basa en un intercambio de ligando con al menos dos derivados alcoxi-silanos simultáneamente en una proporción determinada como por ejemplo, pero sin que represente una limitación, 60% TEOS y 40% APTES, y su preferible posterior PEGilación mediante una reacción de amidación con un derivado de polietilenglicol (a-Metoxi-w-carboxi PEG). Las nano partículas, preferiblemente PEGiladas, generadas de esta forma presentan mejores propiedades de contraste T2-MRI y mayor tiempo en circulación que sus antecesoras obtenidas sólo con APTES (100%). Las NPs, preferiblemente PEGiladas, producidas por este método mantienen excelentes propiedades de estabilidad estructural y coloidal, baja citotoxicidad y facilidad de funcionalización posterior. Estos resultados abren la puerta a una nueva estrategia para la modificación superficial de nano partículas, con capas delgadas de sílica, la cual permite el desarrollo y optimización de estas nano partículas para determinadas aplicaciones, tanto en el diagnóstico de cáncer como en su terapia, así como para otras aplicaciones cosméticas, industriales, biotecnológicas, etc., como por ejemplo pero sin limitarnos a, catálisis, detoxificación, descontaminación, purificación biomoléculas, células, etc. NANOPARTÍCULA DE LA INVENCIÓN The authors of the present invention have developed a method for water solubilization of nano particles, preferably SPIONs obtained by thermal decomposition, which is based on an exchange of ligand with at least two alkoxy silane derivatives simultaneously in a determined proportion such as for example , but without representing a limitation, 60% TEOS and 40% APTES, and its preferable subsequent PEGylation by an amidation reaction with a polyethylene glycol derivative (a-Methoxy-w-carboxy PEG). Nano particles, preferably PEGylated, generated in this way have better T2-MRI contrast properties and longer circulation time than their predecessors obtained only with APTES (100%). The NPs, preferably PEGylated, produced by this method maintain excellent properties of structural and colloidal stability, low cytotoxicity and ease of subsequent functionalization. These results open the door to a new strategy for surface modification of nano particles, with thin layers of silica, which allows the development and optimization of these nano particles for certain applications, both in the diagnosis of cancer and in its therapy, as well as for other cosmetic, industrial, biotechnological, etc. applications, such as but not limited to, catalysis, detoxification, decontamination, purification of biomolecules, cells, etc. NANOPARTICLE OF THE INVENTION
Por tanto, un primer aspecto de la invención se refiere a una nanopartícula (NP), preferiblemente SPIONs obtenidos por descomposición térmica, que comprende al menos dos derivados alcoxi-silanos diferentes. Las NPs pueden ser de cualquier nanomaterial inorgánico, preferiblemente obtenido por "descomposición térmica", como por ejemplo, pero sin limitarnos a, NPs magnéticas (ejemplo, MFe204 con M=Fe, Co, Mn), fluorescentes (ejemplo, Quantum dots), fosforescentes (ejemplo, tierras raras: NaYbF4), de metales nobles (Oro, Plata, Platino, etc.), etc. Preferiblemente, las NPs son SPIONs. En esta memoria se entiende por "descomposición térmica" al procedimiento de síntesis de nanocristales o NPs inorgánicas con un tamaño controlado y una distribución homogénea de NPs a través de la descomposición térmica de compuestos organometálicos, en disolventes orgánicos de alto punto de ebullición que contienen tensioactivos estabilizadores. La descomposición térmica permite un elevadísimo grado de control en el tamaño y diferencia de tamaños en las NPs, lo que da lugar a un comportamiento muy homogéneo en cuanto a sus características fisicoquímicas. Esto es importante para trasladar las NPs a la práctica clínica. Therefore, a first aspect of the invention relates to a nanoparticle (NP), preferably SPIONs obtained by thermal decomposition, comprising at least two different alkoxy silane derivatives. The NPs can be of any inorganic nanomaterial, preferably obtained by "thermal decomposition", such as, but not limited to, magnetic NPs (eg, MFe 2 0 4 with M = Fe, Co, Mn), fluorescent (eg, Quantum dots), phosphorescent (eg, rare earths: NaYbF 4 ), of noble metals (Gold, Silver, Platinum, etc.), etc. Preferably, the NPs are SPIONs. In this report, "thermal decomposition" is understood as the process of synthesis of inorganic nanocrystals or NPs with a controlled size and a homogeneous distribution of NPs through the thermal decomposition of organometallic compounds, in high boiling organic solvents containing surfactants stabilizers The thermal decomposition allows a very high degree of control in the size and difference of sizes in the NPs, which gives rise to a very homogeneous behavior in terms of their physicochemical characteristics. This is important to transfer NPs to clinical practice.
En esta memoria se entiende por "derivados alcoxi-silanos" a los compuestos químicos derivados del silicio que se caracterizan por la presencia de radicales Si-O-C (alcoxi). Preferiblemente, se entienden como derivados alcoxi-silanos cualquier compuesto que tenga al menos un grupo silicio hidrolizable, OR, que se retícula mediante "policondensación del silano" en presencia de humedad. Más particularmente, la presente invención se ilustra a través de la utilización de los siguientes dos "derivados alcoxi-silanos" simultáneamente: Si(OCH2CH3)4 (TEOS) y NH2-(CH2)3-Si(OCH2CH3)3 (APTES). In this specification, "alkoxy silane derivatives" means chemical compounds derived from silicon that are characterized by the presence of Si-O-C radicals (alkoxy). Preferably, alkoxy silanes derivatives are understood as any compound having at least one hydrolyzable silicon group, OR, which is crosslinked by "silane polycondensation" in the presence of moisture. More particularly, the present invention is illustrated by the use of the following two "alkoxy silane derivatives" simultaneously: Si (OCH2CH3) 4 (TEOS) and NH2- (CH2) 3-Si (OCH2CH3) 3 (APTES).
De forma no limitante una posible formula de derivados alcoxi-silanos útiles en la presente invención se ilustra a continuación: Non-limitingly, a possible formula of alkoxy silane derivatives useful in the present invention is illustrated below:
RmSiX(4-n) donde R es un grupo químico seleccionado de la lista que consiste en: un grupo alquilo, alquenos, alquinos, aromáticos, alcóxidos, organofuncionales o cualquier combinación de los mismos; preferiblemente R es un grupo organofuncional o funcional, preferiblemente un grupo amino, unido a un grupo alquilo C1 a C20, más preferiblemente C1 a C10, más preferiblemente C1 a C6, más preferiblemente C1 a C3, más preferiblemente C2. Preferiblemente R es un grupo amino unido a un grupo C3 o a un alcoxi del tipo metoxi- o etoxi; donde m puede ser 0, 1 , 2 ó 3; donde n representa un número natural entre 0 y 3; y donde X representa un grupo alcóxido, preferiblemente un metoxi- o un etoxk RmSiX (4-n) where R is a chemical group selected from the list consisting of: an alkyl, alkene, alkyne, aromatic, alkoxides, organofunctional or any combination thereof; preferably R is an organofunctional or functional group, preferably an amino group, attached to a C1 to C20 alkyl group, more preferably C1 to C10, more preferably C1 to C6, more preferably C1 to C3, more preferably C2. Preferably R is an amino group attached to a C3 group or an alkoxy of the methoxy- or ethoxy type; where m can be 0, 1, 2 or 3; where n represents a natural number between 0 and 3; and where X represents an alkoxide group, preferably a methoxy- or an ethoxk
En la presente invención se entiende por grupo "organofuncional" o "funcional" al sitio en que la mayoría de las reacciones químicas tienen lugar. Al respecto el doble enlace en los aíquenos y el triple enlace en ios aiquino se consideran también como grupos funcionales. Los principales grupos funcionales se seleccionan de la lista que consiste en aléanos, aíquenos, aíquinos, alcoholes, éteres, aldehidos, cetonas, ácidos carboxilicos, ésteres, aminas, amidas y cualquier combinación de los mismos, In the present invention, "organofunctional" or "functional" group is understood as the site where most chemical reactions take place. In this regard, the double bond in the alkenes and the triple bond in the aiquino are also considered as functional groups. The main functional groups are selected from the list consisting of aliens, alkenes, alkynes, alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides and any combination thereof,
En una realización preferida de este aspecto de la invención, la NP de invención se modifica superficialmente con dos derivados alcoxi-silanos mediante un procedimiento de intercambio de ligando. En esta memoria se entiende por "intercambio ligando" al cambio químico que ocurre cuando un ligando X es desplazado por otro Y, siendo un ligando una molécula unida químicamente a una NP. In a preferred embodiment of this aspect of the invention, the NP of the invention is superficially modified with two alkoxy silane derivatives by a ligand exchange process. In this report, "ligand exchange" is understood as the chemical change that occurs when one ligand X is displaced by another Y, a ligand being a chemically linked molecule to an NP.
En una realización preferida de este aspecto de la invención, la NP de la invención es magnética, y más preferiblemente super-paramagnética. In a preferred embodiment of this aspect of the invention, the NP of the invention is magnetic, and more preferably super-paramagnetic.
De acuerdo con una realización de la invención, la NP magnética consiste en uno o más de los siguientes componentes: i) un núcleo inorgánico que contiene uno o más de los elementos seleccionados entre metales de transición, incluyendo pero no limitado a hierro, cobalto, manganeso, cobre y magnesio; o ii) un núcleo inorgánico compuesto por una aleación que contenga elementos seleccionados entre metales de transición, incluyendo pero no limitado a hierro, cobalto, manganeso, cobre y magnesio. According to an embodiment of the invention, the magnetic NP consists of one or more of the following components: i) an inorganic core containing one or more of the elements selected from transition metals, including but not limited to iron, cobalt, manganese, copper and magnesium; or ii) an inorganic core composed of an alloy containing elements selected from transition metals, including but not limited to iron, cobalt, manganese, copper and magnesium.
En una realización particular de la invención el núcleo inorgánico de la NP magnética es seleccionado del grupo formado por óxido de hierro, ferrita de cobalto, ferrita de manganeso, ferrita de magnesio y sus combinaciones. En una realización más particular de la invención, el núcleo inorgánico de la NP magnética es óxido de hierro. In a particular embodiment of the invention the inorganic core of the magnetic NP is selected from the group consisting of iron oxide, cobalt ferrite, manganese ferrite, magnesium ferrite and combinations thereof. In a more particular embodiment of the invention, the inorganic core of the magnetic NP is iron oxide.
La NP obtenida por descomposición térmica que es hidrofóbica es convertida en hidrofílica por un proceso de modificación superficial basado en un intercambio de ligando con dos derivados alcoxi-silanos simultáneamente. Por tanto, en una realización preferida de este aspecto de la invención, la NP de la invención es hidrofílica. The NP obtained by thermal decomposition that is hydrophobic is converted into hydrophilic by a surface modification process based on an exchange of ligand with two alkoxy silane derivatives simultaneously. Therefore, in a preferred embodiment of this aspect of the invention, the NP of the invention is hydrophilic.
En otra realización preferida de este aspecto de la invención, los derivados alcoxi-silanos se seleccionan de la lista que consiste en: Tetraetilortosilicato (TEOS), 3-aminopropil-trietoxisilano (APTES), 3-aminopropil-trimetoxisilano (APTMS), 3-mercaptopropil trietoxisilano (MPTES), 3- mercaptopropil trimetoxisilano (MPTMS), 3-Glicidoxipropil trietoxisilano, 3-Glicidoxipropil trimetoxisilano, 3-Cianatopropil trieoxisilano (CPTES), 3-Cianatropropil trimetoxisilano (CPTMS), 3-Azidatopropil trietoxisilano, 3-Azidatopropil trimetoxisilano, trimetoxi PEG silanos y a-silano-w-metoxi polietilenglicol, o derivados o análogos. En otra realización más preferida de este aspecto, la NP de la invención comprende dos derivados alcoxi-silanos que se seleccionan de entre: Tetraetilortosilicato (TEOS) y 3- aminopropil-trietoxisilano (APTES), y más preferiblemente en una proporción 60% TEOS y 40% APTES o en otras proporciones próximas a dicha proporción 60/40 TEOS/APTES tal y como son cualquier proporción +/- 20% de dicha proporción 60/40, tales como proporciones 40/60 ó 80/20 y cualquier otra proporción intermedia entre estos dos valores. In another preferred embodiment of this aspect of the invention, the alkoxy silane derivatives are selected from the list consisting of: Tetraethylorthosilicate (TEOS), 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-trimethoxysilane (APTMS), 3- mercaptopropyl triethoxysilane (MPTES), 3- mercaptopropyl trimethoxysilane (MPTMS), 3-Glycidoxypropyl triethoxysilane, 3-Glycidoxypropyl trimethoxysilane, 3-Cyanatopropyl triethoxysilane (CPTES), 3-Cianatropropyl trimethoxysilane (CPTMS), 3-Azianapropyl trimethoxypropyl and silylpropyl silylpropyl silylpropyl simethoxyethylpropyl triethoxyethylene w-methoxy polyethylene glycol, or derivatives or analogs. In another more preferred embodiment of this aspect, the NP of the invention comprises two alkoxy silane derivatives that are selected from: Tetraethylorthosilicate (TEOS) and 3- aminopropyl triethoxysilane (APTES), and more preferably in a proportion of 60% TEOS and 40% APTES or in other proportions close to said proportion 60/40 TEOS / APTES as they are any +/- 20% proportion of said proportion 60/40, such as 40/60 or 80/20 proportions and any other intermediate proportion Between these two values.
Preferiblemente, las NPs de la invención se caracterizan por presentar un tamaño medio de partículas inferior a 50 nm, más preferiblemente inferior a 30 nm, preferentemente tienen un tamaño medio comprendido entre 5 y 25 nm, y aún más preferentemente entre 10 y 20 nm. Preferably, the NPs of the invention are characterized by having an average particle size of less than 50 nm, more preferably less than 30 nm, preferably having an average size between 5 and 25 nm, and even more preferably between 10 and 20 nm.
Por "tamaño medio", o "diámetro medio" se entiende el diámetro promedio de la población de NPs dispersa en un medio acuoso. El diámetro medio de estos sistemas se puede medir por procedimientos estándar conocidos por el experto en la materia, y que se describen, por ejemplo, en los ejemplos más abajo. By "average size", or "average diameter" is meant the average diameter of the population of NPs dispersed in an aqueous medium. The average diameter of these systems can be measured by standard procedures known to the person skilled in the art, and which are described, for example, in the examples below.
Existen varios procedimientos para mejorar la solubilidad de las NPs. El control en la solubilización es difícil de conseguir para que las NPs permanezcan suficientemente estables en el tiempo. A la NP en la que se ha hecho el intercambio de ligando con los alcoxi-silanos, todavía se le puede incrementar la estabilidad coloidal (evita la formación de agregados). Por tanto, necesita incorporar grupos que mejoren la solubilidad. De esta forma, en una realización preferida, las NPs de la invención están PEGiladas. Más preferiblemente, con el derivado de polietilenglicol a-Methoxy-w-carboxy PEG. Más preferiblemente, la PEGilación se realiza mediante una reacción de amidación. There are several procedures to improve the solubility of NPs. Control in solubilization is difficult to achieve so that NPs remain sufficiently stable over time. The NP in which the exchange of ligand with the alkoxy silanes has been made, the colloidal stability can still be increased (prevents the formation of aggregates). Therefore, you need to incorporate groups that improve solubility. Thus, in a preferred embodiment, the NPs of the invention are PEGylated. More preferably, with the polyethylene glycol derivative a-Methoxy-w-carboxy PEG. More preferably, PEGylation is performed by an amidation reaction.
COMPOSICIÓN DE LA INVENCIÓN COMPOSITION OF THE INVENTION
Un segundo aspecto de la invención se refiere a una composición, de ahora en adelante composición de la invención, que comprende la NP de la invención. En una realización preferida de este aspecto de la invención, la composición de la invención es una composición farmacéutica, más particularmente para el diagnóstico médico in vivo. En otra realización preferida, la composición es una composición cosmética. Las NPs de la invención pueden tener múltiples aplicaciones, como por ejemplo, pero sin limitarnos a, aplicaciones industriales, biotecnológicas, etc. A second aspect of the invention relates to a composition, hereinafter composition of the invention, comprising the NP of the invention. In a preferred embodiment of this aspect of the invention, the composition of the invention is a pharmaceutical composition, more particularly for medical diagnosis in vivo. In another preferred embodiment, the composition is a cosmetic composition. The NPs of the invention can have multiple applications, such as, but not limited to, industrial, biotechnological applications, etc.
Las composiciones farmacéuticas de la presente invención pueden formularse para su administración a un animal, y más preferiblemente a un mamífero, incluyendo al hombre, en una variedad de formas conocidas en el estado de la técnica. Así, las composiciones farmacéuticas de la invención incluyen, pero sin limitarse a, cualquier composición líquida (suspensión del sistema incluyendo las NPs en agua o en agua con aditivos tales como viscosizantes, tampones de pH, etc.) o sólida (el sistema incluyendo las NPs liofilizadas o atomizadas formando un polvo que se puede utilizar para elaborar granulados, comprimidos o cápsulas) para su administración bien por vía oral, bucal o sublingual, bien tópica, o bien en forma líquida o semisólida para su administración por vía transdérmica, ocular, nasal, vaginal o bien parenteral. En el caso de las vías no parenterales el contacto de las NPs con la piel o mucosas podrá mejorarse dotando a las partículas de una importante carga positiva, lo que favorecerá su interacción con las citadas superficies cargadas negativamente. En el caso de las vías parenterales, más en concreto para la administración intravenosa, estos sistemas ofrecen la posibilidad de modular la distribución in vivo de los fármacos o moléculas que puedan llevar asociadas. Pueden ser también suspensiones en fluidos biológicos, tales como el suero. Las suspensiones acuosas pueden estar tamponadas o no tamponadas y pueden tener componentes activos o inactivos adicionales. Los componentes adicionales incluyen sales para modular la fuerza iónica, conservantes, incluyendo, pero sin limitarse a, agentes microbianos, antioxidantes, quelantes, y similares, y nutrientes incluyendo glucosa, dextrosa, vitaminas y minerales. Las composiciones pueden combinarse con varios vehículos o excipientes inertes, incluyendo pero sin limitarse a; aglutinantes tales como celulosa micro-cristalina, goma tragacanto, o gelatina; excipientes tales como almidón o lactosa; agentes dispersantes tales como ácido algínico o almidón de maíz, etc. The pharmaceutical compositions of the present invention can be formulated for administration to an animal, and more preferably to a mammal, including man, in a variety of ways known in the state of the art. Thus, the pharmaceutical compositions of the invention include, but are not limited to, any liquid composition (suspension of the system including NPs in water or in water with additives such as viscosizers, pH buffers, etc.) or solid (the system including Lyophilized or atomized NPs forming a powder that can be used to make granules, tablets or capsules) for administration either orally, orally or sublingually, topically, or in liquid or semi-solid form for administration transdermally, ocularly, nasal, vaginal or parenteral. In the case of non-parenteral pathways, the contact of the NPs with the skin or mucous membranes can be improved by giving the particles a significant positive charge, which will favor their interaction with the aforementioned negatively charged surfaces. In the case of parenteral routes, more specifically for intravenous administration, these systems offer the possibility of modulating the in vivo distribution of associated drugs or molecules. They may also be suspensions in biological fluids, such as serum. Aqueous suspensions may be buffered or unbuffered and may have additional active or inactive components. Additional components include salts to modulate ionic strength, preservatives, including, but not limited to, microbial agents, antioxidants, chelators, and the like, and nutrients including glucose, dextrose, vitamins and minerals. The compositions may be combined with various inert vehicles or excipients, including but not limited to; binders such as microcrystalline cellulose, gum tragacanth, or gelatin; excipients such as starch or lactose; dispersing agents such as alginic acid or corn starch, etc.
En una realización preferida de este aspecto de la invención, la composición de la invención además comprende al menos un compuesto o molécula biológicamente activa, un agente terapéutico o fármaco, o un agente marcador. In a preferred embodiment of this aspect of the invention, the composition of the invention further comprises at least one biologically active compound or molecule, a therapeutic agent or drug, or a labeling agent.
La expresión "molécula biológicamente activa" tiene un sentido amplio y comprende moléculas tales como fármacos de alto, o más preferentemente, de bajo peso molecular, polisacáridos, proteínas, péptidos, lípidos, oligonucleótidos y ácidos nucleicos, así como combinaciones de las mismas. En una variante de la invención la molécula biológicamente activa tiene como función prevenir, paliar, curar o diagnosticar enfermedades. En otra variante de la invención la molécula biológicamente activa tiene una función cosmética. En esta memoria el término "molécula biológicamente activa" incluye también los términos "principio activo", "substancia activa", "substancia farmacéuticamente activa", "ingrediente activo", "agente terapéutico", "fármaco", "agente o molécula con fines diagnósticos in vivo", o "ingrediente farmacéuticamente activo", es decir, significa cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento, o prevención de una enfermedad, o que afecta a la estructura o función del cuerpo del hombre u otros animales. Incluye también a los cosméticos, diagnósticos así como los industriales (enzimas, moléculas quelantes, etc.). The term "biologically active molecule" has a broad meaning and comprises molecules such as high, or more preferably, low molecular weight drugs, polysaccharides, proteins, peptides, lipids, oligonucleotides and nucleic acids, as well as combinations thereof. In a variant of the invention, the biologically active molecule has the function of preventing, alleviating, curing or diagnosing diseases. In another variant of the invention the biologically active molecule has a cosmetic function. In this report the term "biologically active molecule" also includes the terms "active substance", "active substance", "pharmaceutically active substance", "ingredient active, "" therapeutic agent, "" drug, "" agent or molecule for diagnostic purposes in vivo, "or" pharmaceutically active ingredient, "meaning any component that potentially provides a pharmacological activity or other different diagnostic effect, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.It also includes cosmetics, diagnostics as well as industrial ones (enzymes, chelating molecules, etc.).
Las NPs de la invención también pueden comprender otras moléculas biológicamente activas y otros agentes, para usos industriales, como por ejemplo enzimas y agentes quelantes The NPs of the invention may also comprise other biologically active molecules and other agents, for industrial uses, such as enzymes and chelating agents
Adicionalmente, la NP de la invención puede comprender más de una molécula biológicamente activa distinta. Additionally, the NP of the invention may comprise more than one distinct biologically active molecule.
Dicho principio o principios activos adicionales pueden estar incluidos en el sistema para el transporte de moléculas biológicamente activas de la invención o formar parte de la composición farmacéutica de la invención sin ser parte del sistema de transporte. Said additional active principle or principles may be included in the system for the transport of biologically active molecules of the invention or be part of the pharmaceutical composition of the invention without being part of the transport system.
En una realización preferida de este aspecto de la invención, la composición de la invención además comprende un excipiente farmacéuticamente aceptable. In a preferred embodiment of this aspect of the invention, the composition of the invention further comprises a pharmaceutically acceptable excipient.
USO DE LA NANOPARTÍCULA DE LA INVENCIÓN Y DE LA COMPOSICIÓN DE LA INVENCIÓN USE OF THE NANOPARTICLE OF THE INVENTION AND THE COMPOSITION OF THE INVENTION
En función de la capa de silano y su composición, las propiedades de la NP pueden variar, con distintos niveles de capacidad diagnóstica in vivo y terapéutica, así como con distintas aplicaciones biotecnológicas, industriales, etc. Se hace notar que tanto la nanopartícula de la invención y como la composición farmacéutica de la invención son útiles para el diagnósitico y la terapia, en particular para el diagnóstico in vivo. Depending on the silane layer and its composition, the properties of the NP can vary, with different levels of diagnostic capacity in vivo and therapeutic, as well as with different biotechnological, industrial, etc. applications. It is noted that both the nanoparticle of the invention and the pharmaceutical composition of the invention are useful for diagnosis and therapy, in particular for in vivo diagnosis.
Así, un tercer aspecto de la invención se refiere al uso de la NP de la invención o de la composición de la invención, en la elaboración de un medicamento, o alternativamente, a la nanopartícula de la invención o la composición de la invención para su uso como medicamento o como agente útil en el diagnóstico in vivo. Thus, a third aspect of the invention relates to the use of the NP of the invention or of the composition of the invention, in the preparation of a medicament, or alternatively, to the nanoparticle of the invention or the composition of the invention for its use as a medicine or as a useful agent in diagnosis in vivo.
Adicionalmente, las NPs de la invención pueden servir como vehículos de principios activos. Additionally, the NPs of the invention can serve as active ingredient vehicles.
Por tanto, otra realización preferida de este aspecto de la invención se refiere al uso de la NP o de la composición de la invención en la administración de principios activos. Therefore, another preferred embodiment of this aspect of the invention relates to the use of the NP or the composition of the invention in the administration of active ingredients.
Además, puede servir para realizar mediciones de la perfusión en el tejido normal y en patologías que afectan al sistema vascular, como la isquemia tisular, o a otros sistemas, como neurodegeneración, inflamación, edema o cáncer, en animales o humanos por medio de resonancia magnética. In addition, it can be used to perform perfusion measurements in normal tissue and in pathologies that affect the vascular system, such as tissue ischemia, or other systems, such as neurodegeneration, inflammation, edema or cancer, in animals or humans by means of magnetic resonance imaging.
Por tanto, otra realización preferida de este aspecto de la invención se refiere al uso de la nanopartícula o de la composición de la invención en el dignóstico in vivo por resonancia magnética nuclear. Therefore, another preferred embodiment of this aspect of the invention relates to the use of the nanoparticle or the composition of the invention in the in vivo diagnosis by nuclear magnetic resonance.
MÉTODO DE LA INVENCIÓN METHOD OF THE INVENTION
Un cuarto aspecto de la invención se refiere a un método para la síntesis de las NPs de la presente invención que comprende: 1. Síntesis de NPs hidrofóbicas, preferiblemente SPIONs hidrofóbicas. A fourth aspect of the invention relates to a method for the synthesis of NPs of the present invention comprising: 1. Synthesis of hydrophobic NPs, preferably hydrophobic SPIONs.
A modo meramente ilustrativo se hace notar que dichas SPIONs de, por ejemplo 10 nm, esféricas, monodispersas e hidrofóbicas, se pueden producir por el método de "descomposición térmica" descrito por Park et al. [Park J. et al. , 2004. Nat. Mater. 3, 891-895]. Se hace notar que existen distintas variantes del método de síntesis de SPIONs por "Descomposición Térmica" y que se basan fundamentalmente en el uso de otros precursores orgánicos de hierro. Aunque también pueden cambiar el disolvente y los surfactantes usados. By way of illustration only it is noted that said SPIONs of, for example 10 nm, spherical, monodispersed and hydrophobic, can be produced by the "thermal decomposition" method described by Park et al. [Park J. et al. , 2004. Nat. Mater. 3, 891-895]. It is noted that there are different variants of the method of synthesis of SPIONs by "Thermal Decomposition" and that they are based primarily on the use of other organic iron precursors. Although the solvent and the surfactants used can also be changed.
Una lista de dichos posibles precursores orgánicos de hierro sería por ejemplo la siguiente: A list of such possible organic iron precursors would be for example the following:
-complejos de hierro con ácidos grasos (en nuestro caso, usamos el "Oleato de hierro (III)"), -Acetilacetonato de hierro (III), - iron complexes with fatty acids (in our case, we use "Iron Oleate (III)"), - Iron (III) Acetylacetonate,
-Carboxilato de hierro (III), - Iron (III) carboxylate,
-Complejo de Colinacitrato-hierro (III), -Colinacitrate-iron complex (III),
-complejo de cupferrón-hierro(lll), y -complex-iron complex (lll), and
-pentacarbonilo de hierro. Por otro lado, existen otros métodos de Síntesis que generen SPIONs hidrofóbicas distintos al método de Descomposición Térmica o cualquiera de sus variantes. En este sentido, dichas metodologías se incluyen en la presente memoria. -Pentacarbonyl iron. On the other hand, there are other methods of Synthesis that generate hydrophobic SPIONs other than the Thermal Decomposition method or any of its variants. In this sense, these methodologies are included herein.
2. Síntesis de NPs, preferiblemente SPIONs-derivados de alcoxisilanos de silicios a partir de las NPs del paso 1 o de otras NPs idénticas o similares con dos o más alcoxi- silanos, preferiblemente a través de un procedimiento de intercambio de ligando ejecutado simultáneamente. 2. Synthesis of NPs, preferably SPIONs-derived silicon alkoxysilanes from the NPs of step 1 or other identical or similar NPs with two or more alkoxy- silanes, preferably through a ligand exchange procedure executed simultaneously.
Preferiblemente para la síntesis de estas partículas se añade la combinación de alcoxi-silanos de interés a las SPIONs suspendidas en un medio oleoso. Por ejemplo, 0.15 % (v/v) de TEOS (300 μΙ_), 0.10 % (v/v) APTES (200 μΙ_), y 0.01 % (v/v) de ácido acético (20 μΙ_) se le añadieron a 40 mg of SPION-OA suspendidas en 200 mL de n-hexano. Esta mezcla se agitó orbitalmente durante 72 h a temperatura ambiente para permitir el desplazamiento progresivo de las moléculas de ácido oleico en las SPION-OA por los 2 derivados alcoxi-silano usados (TEOS y APTES). Las NPs resultantes (SPION-TEOS/APTES) son insolubles en n-hexano y por tanto precipitan cuando el proceso de intercambio de ligando se ha completado. Estas NPs se separaron con la ayuda de un imán de neodinio y se lavaron tres veces con 50 mL de n-hexano para eliminar el exceso de TEOS y APTES y de cualquier otro reactivo sin reaccionar. Finalmente, las partículas se secaron a 60 °C y al vacío durante 48 h, para permitir la completa condensación de los alcoxi-silanos ligados a la superficie de la NP. 3. Opcionalmente, se lleva a cabo una PEGilación de las NPs obtenidas en el paso 2). Preferably for the synthesis of these particles the combination of alkoxy silanes of interest is added to the SPIONs suspended in an oily medium. For example, 0.15% (v / v) of TEOS (300 μΙ_), 0.10% (v / v) APTES (200 μΙ_), and 0.01% (v / v) acetic acid (20 μΙ_) were added to 40 mg of SPION-OA suspended in 200 mL of n-hexane. This mixture was stirred orbitally for 72 h at room temperature to allow progressive displacement of oleic acid molecules in the SPION-OA through the 2 alkoxy silane derivatives used (TEOS and APTES). The resulting NPs (SPION-TEOS / APTES) are insoluble in n-hexane and therefore precipitate when the ligand exchange process is complete. These NPs were separated with the help of a neodynium magnet and washed three times with 50 mL of n-hexane to remove excess TEOS and APTES and any other unreacted reagents. Finally, the particles were dried at 60 ° C and under vacuum for 48 h, to allow complete condensation of the alkoxy silanes bound to the surface of the NP. 3. Optionally, a PEGylation of the NPs obtained in step 2) is carried out.
A modo meramente ilustrativo, una vez sintetizadas las SPIONs del paso 2) se procede a la PEGilación de dichas NPs. A modo meramente ilustrativo este paso se puede llevar a cabo suspendiendo las SPION-TEOS/APTES (30 mg) del paso 2) en 10 mL de agua ultrapura. Por otro lado, se mezclaron 2 kDa CH30-PEG-COOH (180 mg), EDC HCI (20 mg) y NHS (12 mg) en 10 mL de MES 0.1 M MES (pH 6), y se incubaron a temperatura ambiente para permitir la activación de los grupos ácido carboxílico del PEG. Una vez transcurrido el tiempo de activación, se mezclaron ambas disoluciones y se dejaron reaccionar durante 2-3 horas a temperatura ambiente y con agitación magnética. Después, las NPs se purificaron mediante diálisis frente a agua ultrapura usando una membrana de 12-14 KDa (cut-off); y opcionalmente 4. Funcionalización de las NPs del paso 3) o del paso 2). By way of illustration only, once the SPIONs of step 2) have been synthesized, PEGylation of said NPs is carried out. By way of illustration only, this step can be carried out by suspending the SPION-TEOS / APTES (30 mg) of step 2) in 10 mL of ultrapure water. On the other hand, 2 kDa CH30-PEG-COOH (180 mg), EDC HCI (20 mg) and NHS (12 mg) were mixed in 10 mL of 0.1 M MONTH MONTH (pH 6), and incubated at room temperature to allow the activation of the carboxylic acid groups of the PEG. After the activation time had elapsed, both solutions were mixed and allowed to react for 2-3 hours at room temperature and with magnetic stirring. Then, the NPs were purified by dialysis against ultrapure water using a 12-14 KDa (cut-off) membrane; and optionally 4. Functionalization of the NPs of step 3) or step 2).
A modo meramente ilustrativo, una vez sintetizadas las SPIONs del paso 3) se procede a su funcionalización, por ejemplo, pero sin limitarnos a, cianina-5. Así, se disolvieron Cy5-NHS éster (2 mg) en 200 de DMSO y se añadieron lentamente a 14 mg of SPION-TEOS/APTES- PEG disueltas en 800 L de PBS 0.25 M pH 8.0. La mezcla se dejó reaccionar en ausencia de luz y con agitación orbital durante 4 h a 4o C para permitir la unión del Cy5 a los grupos amino de la superficie de las NPs. Después, las NPs SPION-TEOS/APTES-PEG-Cy5 se purificaron usando una columna Sephadex G-25 y una disolución de PBS pH 7.4 como fase móvil. By way of illustration only, once the SPIONs of step 3) have been synthesized, they are functionalized, for example, but not limited to cyanine-5. Thus, Cy5-NHS ester (2 mg) was dissolved in 200 of DMSO and slowly added to 14 mg of SPION-TEOS / APTES-PEG dissolved in 800 L of 0.25 M PBS pH 8.0. The mixture was allowed to react in the absence of light and with orbital stirring for 4 h at 4 o C to allow the binding of Cy5 to the amino groups on the surface of the NPs. Then, the SPION-TEOS / APTES-PEG-Cy5 NPs were purified using a Sephadex G-25 column and a solution of PBS pH 7.4 as the mobile phase.
Los inventores de la presente invención, muestran en los ejemplos incluidos en la presente memoria que las SPION PEGiladas generadas por el método descrito anteriormente presentan mejores propiedades de contraste T2-MRI y mayor tiempo en circulación que sus antecesoras obtenidas sólo con APTES (100%). Además, las SPIONs PEGiladas producidas por este método mantienen buenas propiedades de estabilidad estructural y coloidal, baja citotoxicidad y facilidad de funcionalización posterior. The inventors of the present invention show in the examples included herein that PEGylated SPION generated by the method described above have better T2-MRI contrast properties and longer circulation time than their predecessors. obtained only with APTES (100%). In addition, PEGylated SPIONs produced by this method maintain good properties of structural and colloidal stability, low cytotoxicity and ease of subsequent functionalization.
KIT O DISPOSITIVO Y USOS Algunos nanosistemas, como las NPs de la invención, permiten el desarrollo nanotecnológico de nuevas, prometodoras y fascinantes posibilidades en el diagnóstico y tratamiento médico. Los nanodispositivos utilizados como agentes de contraste en el diagnóstico médico por imagen (especialmente, en IMR, ecografía y tomografía) tienen claras ventajas sobre los agentes tradicionales en relación a una mejor dispersión óptica, una mejor biocompatibilidad, una disminución en la probabilidad de desnaturalización y, especialmente, su capacidad de unirse a ligandos, lo cual los convierte en dispositivos con múltiples funciones que se unen a las células diana, permitiendo obtener una imagen para el diagnóstico y al mismo tiempo transportar medicamentos, permitiendo un tratamiento más específico y eficiente. KIT OR DEVICE AND USES Some nanosystems, such as the NPs of the invention, allow the nanotechnological development of new, promising and fascinating possibilities in diagnosis and medical treatment. The nanodevices used as contrast agents in medical imaging diagnosis (especially in IMR, ultrasound and tomography) have clear advantages over traditional agents in relation to better optical dispersion, better biocompatibility, a decrease in the probability of denaturation and , especially, their ability to bind ligands, which converts them into devices with multiple functions that bind to the target cells, allowing to obtain an image for diagnosis and at the same time transporting medications, allowing a more specific and efficient treatment.
La nanotecnología permite el diseño de nanomateriales multifuncionales con una semivida plasmática prolongada (gracias a la incorporación superficial de cadenas poliméricas hidrófilas), necesaria para alcanzar de forma segura su objetivo y liberar específicamente la dosis de fármaco vehiculizada en el lugar deseado, aumentando al mismo tiempo la biodisponibilidad del agente activo en el tejido diana. En cuanto al tratamiento del cáncer, estas NPs pueden alcanzar la región tumoral simplemente por acumulación o retención (transporte pasivo). Este fenómeno se denomina efecto de permeación y retención aumentada (efecto "EPR"), y es debido a las características diferenciales del entorno tumoral, donde el tejido vascular se encuentra alterado. Esto explica por qué se da una mayor acumulación de NPs en la masa tumoral, en comparación con un tejido sano [Martínez-Soler G.l. et al., 2010. ARS Pharmaceutica 51 , Suplemento 3, 113-116; Núñez-Lozano R. et al., 2015. Current Opinión in Biotechnology 35, 135-140]. Nanotechnology allows the design of multifunctional nanomaterials with a prolonged plasma half-life (thanks to the superficial incorporation of hydrophilic polymer chains), necessary to safely achieve its objective and specifically release the dose of drug vehicle in the desired place, increasing at the same time the bioavailability of the active agent in the target tissue. Regarding cancer treatment, these NPs can reach the tumor region simply by accumulation or retention (passive transport). This phenomenon is called the increased permeation and retention effect ("EPR" effect), and it is due to the differential characteristics of the tumor environment, where the vascular tissue is altered. This explains why there is a greater accumulation of NPs in the tumor mass, compared to a healthy tissue [Martínez-Soler G.l. et al., 2010. ARS Pharmaceutica 51, Supplement 3, 113-116; Núñez-Lozano R. et al., 2015. Current Opinion in Biotechnology 35, 135-140].
Las NPs caracterizadas por una extensa semivida plasmática pueden atravesar la estructura anormal de los vasos sanguíneos de tejidos patológicos (cáncer, inflamación, infección). El destino biológico de todo coloide transportador de fármacos se puede mejorar notablemente si tiene: i) un tamaño de partícula muy pequeño (< 100 nm) y una morfología esférica; y, ii) unas adecuadas propiedades eléctricas y termodinámicas superficiales (muy baja carga eléctrica, e hidrofilia). NPs characterized by an extensive plasma half-life can pass through the abnormal structure of blood vessels of pathological tissues (cancer, inflammation, infection). The biological fate of any drug transport colloid can be significantly improved if it has: i) a very small particle size (<100 nm) and a spherical morphology; and, ii) adequate surface electrical and thermodynamic properties (very low electrical charge, and hydrophilicity).
La composición de la invención, adicionalmente puede comprender un marcador detectable. Un "marcador detectable" se refiere a cualquier marcador que se puede usar para localizar la composición in vivo o in vitro. Ejemplos de marcadores, pero sin limitarse a estos, serian fluoróforos (por ejemplo, Cianina-5), marcadores químicos o proteicos que permiten la visualización de un polipéptido. La visualización puede realizarse a simple vista o mediante un aparato (como por ejemplo, pero sin limitarse a un microscopio) y puede implicar una fuente de energía o de luz. Por tanto, otro aspecto de la invención se refiere a un kit o dispositivo de diagnóstico, que comprende al menos una nanopartícula de la invención, o la composición farmacéutica de la invención. The composition of the invention may additionally comprise a detectable label. A "detectable label" refers to any label that can be used to locate the composition in vivo or in vitro. Examples of markers, but not limited to these, would be fluorophores (for example, Cyanine-5), chemical or protein markers that allow the visualization of a polypeptide. The visualization can be done with the naked eye or by an apparatus (such as, but not limited to a microscope) and may involve a source of energy or light. Therefore, another aspect of the invention relates to a diagnostic kit or device, comprising at least one nanoparticle of the invention, or the pharmaceutical composition of the invention.
Los términos molécula biológicamente activa, fármaco o agente terapéutico, o marcador detectable, tienen significados análogos y se utilizan indistintamente en la memoria de esta invención. Se refieren a cualquier sustancia que proporcione actividad farmacológica y se emplee en el tratamiento, cura, prevención, mitigación o diagnóstico de una enfermedad o que afecte a la estructura o función del cuerpo del hombre u otros animales. Estas moléculas biológicamente activas pueden incluir desde fármacos de bajo peso molecular hasta moléculas del tipo de polisacáridos, proteínas, péptidos, lípidos, oligonucleótidos y ácidos nucléicos y combinaciones de las mismas. Estas moléculas, son bien conocidas para el experto en la materia e incluye el significado de un compuesto que tiene las características que lo hacen aceptables para su uso en medicina, por ejemplo y sin limitarse al principio activo en un medicamento. Por lo tanto, por ejemplo y sin limitarse a, estas moléculas pueden ser sintetizadas por diferentes técnicas de química orgánica, o técnicas de biología molecular y bioquímica. Los términos aquí utilizados se entienden como cualquier compuesto que es administrado a un paciente para el tratamiento de una afección y que puede llegar más eficientemente al tejido diana cuando está unido a la nanopartícula de la invención que cuando es administrado sin la nanopartícula de la invención. El término incluye aquellos componentes que promueven un cambio químico en la elaboración del fármaco y están presentes en el mismo de una forma modificada prevista que proporciona la actividad específica o el efecto. The terms biologically active molecule, drug or therapeutic agent, or detectable label, have similar meanings and are used interchangeably in the memory of this invention. They refer to any substance that provides pharmacological activity and is used in the treatment, cure, prevention, mitigation or diagnosis of a disease or that affects the structure or function of the body of man or other animals. These biologically active molecules can include from low molecular weight drugs to molecules of the polysaccharide type, proteins, peptides, lipids, oligonucleotides and nucleic acids and combinations thereof. These molecules are well known to the person skilled in the art and include the meaning of a compound that has the characteristics that make it acceptable for use in medicine, for example and without being limited to the active ingredient in a medicine. Therefore, for example and without being limited to, these molecules can be synthesized by different organic chemistry techniques, or molecular and biochemical biology techniques. The terms used herein are understood as any compound that is administered to a patient for the treatment of a condition and that can more efficiently reach the target tissue when it is attached to the nanoparticle of the invention than when it is administered without the nanoparticle of the invention. The term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect.
El agente terapéutico incluye, pero no está limitado, a compuestos hidrofílicos y hidrofóbicos. Según esto, los agentes terapéuticos contemplados en esta invención incluyen aunque no se limitan a moléculas tipo fármaco, ácidos nucléicos, proteínas, péptidos, anticuerpos, fragmentos de anticuerpos, aptámeros y moléculas pequeñas. Un agente terapéutico proteico incluye pero sin limitar a péptidos, enzimas, proteínas estructurales, receptores, y otras proteínas circulantes o celulares así como fragmentos y derivados de los mismos cuya expresión aberrante dan pie a uno o más afecciones médicas. Un agente terapéutico también incluye compuestos quimioterapéuticos y materiales radioactivos. La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como por ejemplo, la edad, peso, sexo, tolerancia, etc.del mamífero. La "cantidad terapéuticamente efectiva" se refiere a la cantidad de principio activo, o de sus sales, pro-fármacos, derivados o análogos o de sus combinaciones, que produzcan el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de dichos pro-fármacos, derivados o análogos y el efecto terapéutico a conseguir. Los "adyuvantes" y "vehículos farmacéuticamente aceptables" que pueden ser utilizados en dichas composiciones son los vehículos conocidos por los técnicos en la materia. The therapeutic agent includes, but is not limited to, hydrophilic and hydrophobic compounds. Accordingly, the therapeutic agents contemplated in this invention include but are not limited to drug-like molecules, nucleic acids, proteins, peptides, antibodies, antibody fragments, aptamers and small molecules. A protein therapeutic agent includes but is not limited to peptides, enzymes, structural proteins, receptors, and other circulating or cellular proteins as well as fragments and derivatives thereof whose aberrant expression gives rise to one or more medical conditions. A therapeutic agent also includes chemotherapeutic compounds and radioactive materials. The dosage to obtain a therapeutically effective amount depends on a variety of factors, such as the age, weight, sex, tolerance, etc. of the mammal. The "therapeutically effective amount" refers to the amount of active substance, or its salts, pro-drugs, derivatives or analogs or their combinations, which produce the desired effect and, in general, will be determined, among other causes, by the characteristics of said pro-drugs, derivatives or analogs and the therapeutic effect to be achieved. . The "adjuvants" and "pharmaceutically acceptable carriers" that can be used in said compositions are the vehicles known to those skilled in the art.
El término "excipiente" hace referencia a una sustancia que ayuda a la absorción o distribución o acción de cualquiera de los principios activos de la presente invención, que estabiliza dicha sustancia activa o ayuda a la preparación del medicamento en el sentido de darle consistencia o aportar sabores que lo hagan más agradable. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos como por ejemplo almidones, azúcares o celulosas, función de endulzar, función de colorante, función de protección del medicamento como por ejemplo para aislarlo del aire y/o la humedad, función de relleno de una pastilla, capsula o cualquier otra forma de presentación como por ejemplo el fosfato de calcio dibásico, función desintegradora para facilitar la disolución del os componentes y su absorción en el intestino sin excluir otro tipo de excipientes no mencionados en este párrafo. The term "excipient" refers to a substance that aids the absorption or distribution or action of any of the active ingredients of the present invention, which stabilizes said active substance or aids in the preparation of the medicament in the sense of giving it consistency or providing flavors that make it more pleasant. Thus, the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, dye function, drug protection function such as to isolate it from air and / or moisture, function filling a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, a disintegrating function to facilitate the dissolution of the components and their absorption in the intestine without excluding other types of excipients not mentioned in this paragraph.
El término excipiente "farmacéuticamente aceptable" hace referencia a que el excipiente este permitido y evaluado de modo que no cause daño a los organismos a los que se administra. The term "pharmaceutically acceptable" excipient refers to the excipient being allowed and evaluated so as not to cause damage to the organisms to which it is administered.
Además, el excipiente debe ser farmacéuticamente adecuado, es decir, un expediente que permita la actividad del principio activo o de los principios activos, es decir, que sea compatible con el principio activo, en este caso, el principio activo es cualquiera de los compuestos de la presente invención. In addition, the excipient must be pharmaceutically suitable, that is, a dossier that allows the activity of the active substance or of the active ingredients, that is, that is compatible with the active substance, in this case, the active substance is any of the compounds of the present invention.
Un "vehículo farmacéuticamente aceptable" se refiere a aquellas sustancias, o combinación de sustancias, conocidas en el sector farmacéutico utilizadas en la elaboración de formas farmacéuticas de administración e incluye, pero sin limitarse, sólidos, líquidos, disolventes o tensioactivos. A "pharmaceutically acceptable carrier" refers to those substances, or combination of substances, known in the pharmaceutical sector used in the preparation of pharmaceutical forms of administration and includes, but are not limited to, solids, liquids, solvents or surfactants.
El vehículo, al igual que el excipiente, es una sustancia que se emplea en el medicamento para diluir cualquiera de los compuestos de la presente invención hasta un volumen o peso determinado. El vehículo farmacéuticamente aceptable es una sustancia inerte o de acción análoga a los principios activos de la presente invención. La función del vehículo es facilitar la incorporación de otros compuestos, permitir una mayor dosificación y administración o dar consistencia y forma a la composición farmacéutica. Cuando la forma de presentación es líquida, el vehículo farmacéuticamente aceptable es el diluyente. El término "molécula pequeña" se refiere a un compuesto químico, por ejemplo un peptidomimético que se puede derivatizar o cualquier otro compuesto orgánico de bajo peso molecular, natural o sintético. Dichas moléculas pequeñas pueden ser sustancias terapéuticamente transportadas o pueden ser derivatizadas para facilitar el transporte. Se entiende por "peso molecular bajo" compuestos cuyo peso molecular es menor de 1000 Daltons, normalmente entre 300 y 700 Daltons. The vehicle, like the excipient, is a substance that is used in the medicament to dilute any of the compounds of the present invention to a certain volume or weight. The pharmaceutically acceptable carrier is an inert substance or action analogous to the active ingredients of the present invention. The function of the vehicle is to facilitate the incorporation of other compounds, allow greater dosage and administration or give consistency and form to the pharmaceutical composition. When the form of presentation is liquid, the pharmaceutically acceptable carrier is the diluent. The term "small molecule" refers to a chemical compound, for example a peptidomimetic that can be derivatized or any other organic compound of low molecular weight, natural or synthetic. Said small molecules may be therapeutically transported substances or they may be derivatized to facilitate transport. "Low molecular weight" means compounds whose molecular weight is less than 1000 Daltons, usually between 300 and 700 Daltons.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention.
Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
EJEMPLOS DE LA INVENCIÓN Para llevar a cabo el procedimiento de la presente invención se lleva a cabo un método para la solubilización en agua de las SPIONs obtenidas por descomposición térmica, que se basa en un intercambio de ligando con dos derivados alcoxi-silanos simultáneamente en una proporción determinada (60 % TEOS y 40 % APTES) y su posterior PEGilacion mediante una reacción de amidación con un derivado de polietilenglicol (a-Methoxy-w-carboxy PEG). EXAMPLES OF THE INVENTION To carry out the process of the present invention, a method for water solubilization of SPIONs obtained by thermal decomposition is carried out, which is based on an exchange of ligand with two alkoxy silane derivatives simultaneously in one determined proportion (60% TEOS and 40% APTES) and its subsequent PEGylation through an amidation reaction with a polyethylene glycol derivative (a-Methoxy-w-carboxy PEG).
Ejemplo 1. Síntesis y Caracterización de las NPs: SPION-OA, SPION-TEOS/APTES yExample 1. Synthesis and Characterization of NPs: SPION-OA, SPION-TEOS / APTES and
SPION-TEOS/APTES-PEG SPION-TEOS / APTES-PEG
La Figura 1 muestra un esquema resumen de este procedimiento. El protocolo de fabricación concreto de estas NPs SPION-TEOS/APTES-PEG se describe en el apartado titulado "MÉTODO DE LA INVENCIÓN". En primer lugar, NPs SPION-OA de 10 nm hidrofóbicas, esféricas y monodispersas se sintetizaron mediante el método de descomposición térmica del oleato de Hierro [Park J. et al., 2004. Nat. Mater. 3, 891-895]. La Figura 2A muestra una imagen de microscopía electrónica de transmisión (TEM) obtenida para una preparación de SPION-OA, donde se puede observar que presentan el tamaño, forma y homogeneidad deseada. Una vez purificadas, como se describe en esta invención, las NPs SPION-OA hidrofóbicas obtenidas se convirtieron en hidrofílicas por medio de un intercambio de ligando empleando dos derivados alcoxi-silano de manera simultanea (60 % de TEOS y 40 % de APTES). Este método desplaza los ligados de ácido oleico de las SPION-OA y las recubre con una capa muy delgada de óxido de silicio, generando NPs SPION-TEOS/APTES hidrofílicas. Como puede observarse en la imagen TEM de las NPs obtenidas (Figura 2B) este proceso de intercambio de ligando no produce cambios morfológicos aparentes, ni afecta al tamaño, ni a la monodispersidad de las partículas resultantes. Figure 1 shows a summary scheme of this procedure. The concrete manufacturing protocol of these SPION-TEOS / APTES-PEG NPs is described in the section entitled "METHOD OF THE INVENTION". First, hydrophobic, spherical and monodispersed 10 nm SPION-OA NPs were synthesized by the method of thermal decomposition of iron oleate [Park J. et al., 2004. Nat. Mater. 3, 891-895]. Figure 2A shows an image of transmission electron microscopy (TEM) obtained for a SPION-OA preparation, where it can be seen that they have the desired size, shape and homogeneity. Once purified, as described in this invention, the hydrophobic SPION-OA NPs obtained were converted to hydrophilic by means of a ligand exchange using two alkoxy silane derivatives simultaneously (60% TEOS and 40% APTES). This method displaces the oleic acid ligands of the SPION-OA and covers them with a very thin layer of silicon oxide, generating hydrophilic SPION-TEOS / APTES NPs. As can be seen in the TEM image of the NPs obtained (Figure 2B) this ligand exchange process does not produce apparent morphological changes, nor does it affect the size, or the monodispersity of the resulting particles.
Las NPs SPION-TEOS/APTES obtenidas son solubles en agua. Sin embargo, la progresiva protonación de los grupos amino en la superficie de estas NPs conlleva el establecimiento de enlaces de hidrógeno entre las partículas, provocando la formación progresiva de agregados. Aunque el uso de una disolución tamponadora de pH 6.0 puede ralentizar este fenómeno, su agregación es inevitable (Figura 3A y 3B). Para solventar este problema, se llevó a cabo la PEGilación parcial de las NPs SPION-TEOS/APTES. Para esto, se indujo la unión covalente de moléculas de a-metoxi-w-carboxilato PEG (2 KDa) a los grupos amino de la superficie de estas partículas, mediante una reacción de amidación. Las SPIONs PEGiladas resultantes fueron fácilmente purificadas usando una simple diálisis. Imágenes de TEM de las NPs obtenidas (Figura 2C) demuestran que este proceso de PEGilación no produce cambios morfológicos, ni afecta al tamaño, ni a la monodispersidad de las partículas resultantes. Por otro lado, la estabilidad coloidal de las NPs SPION-TEOS/APTES-PEG aumentaba drásticamente en comparación con la de sus NPs precursoras (Figura 3C y 3D). The SPION-TEOS / APTES NPs obtained are water soluble. However, the progressive protonation of the amino groups on the surface of these NPs entails the establishment of hydrogen bonds between the particles, causing the progressive formation of aggregates. Although the use of a pH 6.0 buffer solution can slow this phenomenon, its aggregation is inevitable (Figure 3A and 3B). To solve this problem, partial PEGylation of the SPION-TEOS / APTES NPs was carried out. For this, the covalent binding of a-methoxy-w-carboxylate PEG (2 KDa) molecules to the surface amino groups of these particles was induced by an amidation reaction. The resulting PEGylated SPIONs were easily purified using simple dialysis. TEM images of the NPs obtained (Figure 2C) demonstrate that this PEGylation process does not produce morphological changes, nor does it affect the size, or the monodispersity of the resulting particles. On the other hand, the colloidal stability of the SPION-TEOS / APTES-PEG NPs increased dramatically compared to that of their precursor NPs (Figure 3C and 3D).
A continuación, se llevó a cabo una caracterización físico-química completa de las SPIONs PEGiladas y de sus precursoras (SPION-OA y SPION-TEOS/APTES). En primer lugar, para confirmar el recubrimiento con Sílica y la posterior PEGilación se emplearon las técnicas analíticas de espectroscopia infrarroja por transformada de fourier (FTIR) y análisis Termogravimétrico (TGA). El espectro de FTIR de las NPs precursoras hidrofóbicas (SPION- OA) mostraba las bandas características de vibración Fe-0 del núcleo de magnetita (585 cm"1), de extensión C-H (2926 y 2852 cm"1) y de vibración del carboxilato (1710 y 1459 cm-1) procedentes de las moléculas de ácido oleico que recubren la SPION (Figura 4A). El espectro FTIR de las NPs SPION-TEOS/APTES resultantes del intercambio de ligando presentaba una banda nueva y ancha correspondiente a los enlaces Fe-O-Si (800-1200 cm"1) y la característica de flexión N-H de las aminas primarias (1637 y 1540 cm"1), confirmando que el intercambio de ligando con la mezcla de alcoxi-silanos mencionada se realizó con éxito (Figura 4A). El espectro de FTIR de las SPIONs PEGiladas presentaba un pico (-1650 cm"1) que puede ser asignado a los grupos carbonilo del enlace amida formado con el PEG y las bandas típicas procedentes del polímero (entre 1718 y 837 cm"1) unido covalentemente a a la superficie de las NPs SPION-TEOS/APTES (Figura 4A). Por otro lado, la curva de TGA obtenida para las NPs obtenidas por descomposición térmica (SPION-OA) mostraba una pérdida de peso de 69.5 %, correspondiente a la considerable cantidad de ligandos de ácido oleico que recubren al núcleo de la partícula (Figura 4B). La curva de TGA obtenida para las NPs SPION-TEOS/APTES presenta una pérdida de peso de 30.9 %, mucho menor que el obtenido con SPION-OA, y habitual en partículas sometidas a procesos de intercambio de ligando con silanos [Cano M. et al., 2017. Nanoscale 9, 812-822; Cano M. et al., 2016. RSC Advances 6, 70374-70382] (Figura 4B). La curva de TGA obtenida para las SPIONs PEGiladas mostraba una pérdida de peso de 70.8 %, lo que significa que hay un incremento del 39.9 % generado por las moléculas de PEG unidas covalentemente a través de los aminos de las NPs SPION-TEOS/APTES precursoras (Figura 4B). Este valor es muy similar al obtenido en el caso de las NPs SPION-APTES-PEG [Cano M. et al. 2017, Nanoscale 9, 812-822], lo que indica que la reacción de PEGilación tuvo un rendimiento equivalente. Si consideramos que la masa teórica de una SPION de Fe304 de 10 nm diámetro es de -2.7- 10"18 g, y teniendo en cuenta la pérdida de peso generada por las moléculas del polímero estabilizante, se puede estimar que cada SPION está recubierta por unas 860 moléculas de PEG de 2KDa. Esto equivale a una densidad superficial de -2.73 moléculas de PEG por nm2, que es según la bibliografía un valor apropiado para la estabilización de SPIONs en ambientes fisiológicos [Amstad E. et al., 2009. Small 5, 1334; Liu D. et al., 201 1. Adv. Funct. Mater. 21 , 1498-1504; Pernía M. et al., 2015. Nanoscale 7, 2050- 2059; Cano M. et al., 2017. Nanoscale 9, 812-822]. Los resultados de FTIR y TGA para las NPs SPION-TEOS/APTES no sólo confirman que la reacción de intercambio de ligando usando 2 derivados alcoxi-silano simultáneamente (60 % TEOS y 40 % TEOS) se produce con éxito, sino que además nos indican que la capa de Sílica producida es ligeramente mayor que para las NPs SPION-APTES obtenidas usando un único alcoxi-silano (100 % APTES). Para conseguir un análisis cuantitativo más exacto de la estructura de la capa de sílica producida tanto en SPION-TEOS/APTES como en SPION- APTES NPs, se llevaron a cabo las medidas de Espectroscopia Fotoelectronica de rayos X (XPS). En la Figura 4C se muestran los espectros generales de XPS o Survey obtenidos para NPs producidas por intercambio de ligando con 2 ligandos alcoxi-silano (SPION-TEOS/APTES) y con un único ligado (SPION-APTES). En ambos casos, se pueden observar los átomos característicos, tales como silicio (Si2s y Si2p) y nitrógeno (N1 s), de la capa de silicio generada sobre la superficie de las SPIONs. Además, como la intensidad de la señal de Si2p es exponencialmente proporcional al espesor de la capa de silicio, el espesor medio (f) puede ser estimado usando la ecuación de Lambert-Beer, descrita en la siguientes publicaciones para capas muy delgadas [Kallury K.M.R. et al., 1995. Anal. Chem. 67, 3362-3370; Wong A.K.Y. et al., 2005. Anal. Bioanal. Chem. 383, 187-200; XPS Applications in Thin Films Research. Geng S. et al., 2002. Materials Technology 17(4)]: Next, a complete physical-chemical characterization of the PEGylated SPIONs and their precursors (SPION-OA and SPION-TEOS / APTES) was carried out. First, to confirm the coating with silica and subsequent PEGylation, the analytical techniques of fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used. The FTIR spectrum of hydrophobic precursor NPs (SPION-OA) showed the characteristic Fe-0 vibration bands of the magnetite core (585 cm "1 ), of CH extension (2926 and 2852 cm "1 ) and of carboxylate vibration (1710 and 1459 cm-1) from the oleic acid molecules that cover the SPION (Figure 4A). The FTIR spectrum of the SPION-TEOS NPs / APTES resulting from the ligand exchange had a new and wide band corresponding to the Fe-O-Si bonds (800-1200 cm "1 ) and the NH flexural characteristic of the primary amines (1637 and 1540 cm " 1 ), confirming that The ligand exchange with the aforementioned alkoxy silane mixture was successful (Figure 4A). The FTIR spectrum of the PEGylated SPIONs had a peak (-1650 cm "1 ) that can be assigned to the carbonyl groups of the amide bond formed with the PEG and the typical bands from the polymer (between 1718 and 837 cm "1 ) covalently bonded to the surface of the SPION-TEOS / APTES NPs (Figure 4A). On the other hand, the TGA curve obtained for the NPs obtained by thermal decomposition (SPION-OA) showed a weight loss of 69 .5%, corresponding to the considerable amount of oleic acid ligands that line the core of the particle (Figure 4B). The TGA curve obtained for SPION-TEOS / APTES NPs has a weight loss of 30.9%, much smaller than that obtained with SPION-OA, and usual in particles subjected to silane ligand exchange processes [Cano M. et al., 2017. Nanoscale 9, 812-822; Cano M. et al., 2016. RSC Advances 6, 70374-70382] (Figure 4B). The TGA curve obtained for PEGylated SPIONs showed a weight loss of 70.8%, which means that there is a 39.9% increase generated by PEG molecules covalently linked through the amines of the precursor SPION-TEOS / APTES NPs (Figure 4B). This value is very similar to that obtained in the case of SPION-APTES-PEG NPs [Cano M. et al. 2017, Nanoscale 9, 812-822], which indicates that the PEGylation reaction had an equivalent yield. If we consider that the theoretical mass of a SPION of Fe 3 0 4 of 10 nm diameter is -2.7-10 "18 g, and taking into account the weight loss generated by the stabilizing polymer molecules, it can be estimated that each SPION it is covered by about 860 PEG molecules of 2KDa. This is equivalent to a surface density of -2.73 PEG molecules per nm 2 , which is according to the literature an appropriate value for the stabilization of SPIONs in physiological environments [Amstad E. et al. , 2009. Small 5, 1334; Liu D. et al., 201 1. Adv. Funct. Mater. 21, 1498-1504; Pernía M. et al., 2015. Nanoscale 7, 2050-2059; Cano M. et al., 2017. Nanoscale 9, 812-822] The results of FTIR and TGA for SPION-TEOS / APTES NPs not only confirm that the ligand exchange reaction using 2 alkoxy silane derivatives simultaneously (60% TEOS and 40 % TEOS) is produced successfully, but they also indicate that the layer of silica produced is slightly larger than for SPION-APTE NPs S obtained using a single alkoxy silane (100% APTES). To achieve a more accurate quantitative analysis of the structure of the silica layer produced in both SPION-TEOS / APTES and SPION-APTES NPs, X-ray Photoelectronic Spectroscopy (XPS) measurements were carried out. Figure 4C shows the general spectra of XPS or Survey obtained for NPs produced by ligand exchange with 2 alkoxy silane ligands (SPION-TEOS / APTES) and with a single ligand (SPION-APTES). In both cases, the characteristic atoms, such as silicon (Si2s and Si2p) and nitrogen (N1s), of the silicon layer generated on the surface of the SPIONs can be observed. In addition, since the intensity of the Si2p signal is exponentially proportional to the thickness of the silicon layer, the average thickness (f) can be estimated using the Lambert-Beer equation, described in the following publications for very thin layers [Kallury KMR et al., 1995. Anal. Chem. 67, 3362-3370; Wong AKY et al., 2005. Anal. Bioanal Chem. 383, 187-200; XPS Applications in Thin Films Research. Geng S. et al., 2002. Materials Technology 17 (4)]:
/ = I0 [exp(— t/l sinQ)] / = I 0 [exp (- t / l sinQ)]
Donde / es la intensidad de señal Si2p (eV) obtenida para el soporte sólido con capa de silano, l0 es la intensidad de señal Si2p (eV) obtenida para el soporte sólido sin capa de silano, / es la profundidad de escape de los electrones Si2p a través de la capa de Silano (tomada como 20 Armstrong en este trabajo) y Θ el ángulo de escape al cual los electrones son expulsados de la superficie. El valor de espesor obtenido a partir de esta ecuación para las superficies de NPs SPION-TEOS/APTES y de SPION-APTES fueron 1.15 y 0.52 nm, respectivamente. Estos resultados confirman que usando la combinación TEOS/APTES propuesta en este trabajo se obtiene una capa de silano más gruesa que cuando se emplea sólo APTES. Por otro lado, la intensidad de señal N1s no decrece para la superficie de SPION-TEOS/APTES, indicando que hay una cantidad similar de grupos aminos que con SPION-APTES. Where / is the Si2p (eV) signal strength obtained for the solid support with silane layer, l 0 is the Si2p (eV) signal strength obtained for the solid support without silane layer, / is the exhaust depth of the Si2p electrons through the Silane layer (taken as 20 Armstrong in this work) and Θ the angle of escape at which electrons are expelled from the surface. The thickness value obtained from this equation for the surfaces of NPs SPION-TEOS / APTES and SPION-APTES were 1.15 and 0.52 nm, respectively. These results confirm that using the TEOS / APTES combination proposed in this work, a thicker silane layer is obtained than when only APTES is used. On the other hand, the signal strength N1s does not decrease for the surface of SPION-TEOS / APTES, indicating that there is a similar number of amino groups than with SPION-APTES.
Debido a que los grupos amino en superficie contribuyen a la carga superficial de las NPs resultantes, se midió el potencial-zeta de las partículas de SPION-TEOS/APTES PEGiladas a diferentes valores de pH (Figura 4D). Se puede observar que estas SPIONs presentan un comportamiento similar al que se observa para las SPION-APTES-PEG (es decir, su carga superficial va cambiando de positiva a negativa conforme se incrementa el pH) y muestran un punto isoeléctrico (IEP) de -7.2, el cual se considera ideal para NPs empleadas en aplicaciones biológicas [Cano M. et al., 2017. Nanoscale 9, 812-822]. Because the surface amino groups contribute to the surface charge of the resulting NPs, the zeta potential of the PEGylated SPION-TEOS / APTES particles was measured at different pH values (Figure 4D). It can be seen that these SPIONs have a behavior similar to that observed for SPION-APTES-PEG (that is, their surface charge changes from positive to negative as the pH increases) and show an isoelectric point (IEP) of - 7.2, which is considered ideal for NPs used in biological applications [Cano M. et al., 2017. Nanoscale 9, 812-822].
Para completar la caracterización físico-química de las SPIONs PEGiladas y de sus precursores se analizaron también sus propiedades superparamagnéticas mediante la técnica de Magnetometría de muestra vibratoria (en inglés, vibrating sample magnetometry, VSM). La representación gráfica de los valores Magnetización (M) frente al campo magnético aplicado (H) a 300 °K mostraba la ausencia de coercitividad y remanencia en todas las muestras, confirmando su comportamiento superparamagnético (Figura 5A). Nuestros análisis revelaron que los valores de saturación de la magnetización de las NPs SPION-TEOS/APTES-PEG era de 21.31 emu-g'1, un valor ligeramente menor que los obtenidos para SPION-OA y SPION- TEOS/APTES (18.78 y 28.68 emu g"1). Estas variaciones eran debidas al diferente recubrimiento orgánico que presentaba cada uno de los núcleos de SPION analizados. En cualquier caso, el valor de magnetización de las NPs SPION-TEOS/APTES-PEG fue similar al que se obtuvo con las NPs SPION-APTES-PEG, y por lo tanto apropiado también para su uso en separación e imagen por resonancia magnética [Na H.B. et al., 2009. Adv. Mater. 21 , 2133- 2148]. To complete the physicochemical characterization of the PEGylated SPIONs and their precursors, their superparamagnetic properties were also analyzed using the vibrating sample magnetometry (VSM) technique. The graphic representation of the Magnetization values (M) against the applied magnetic field (H) at 300 ° K showed the absence of coercivity and remanence in all samples, confirming their superparamagnetic behavior (Figure 5A). Our analyzes revealed that the saturation values of the magnetization of the SPION-TEOS / APTES-PEG NPs were 21.31 emu-g '1 , a value slightly lower than those obtained for SPION-OA and SPION- TEOS / APTES (18.78 and 28.68 emu g "1 ). These variations were due to the different organic coating presented by each of the SPION nuclei analyzed. In any case, the magnetization value of the SPION-TEOS / APTES-PEG NPs It was similar to that obtained with SPION-APTES-PEG NPs, and therefore also suitable for use in magnetic resonance imaging and separation [Na HB et al., 2009. Adv. Mater. 21, 2133-2848] .
Ejemplo 2. Estudios de citotoxicidad Example 2. Cytotoxicity studies
La biocompatibidad celular supone un factor importante a considerar en el desarrollo de las NPs de uso biomédico por lo que analizamos la citotoxicidad de nuestras NPs SPION- TEOS/APTES-PEG. Para ello usamos la línea celular humana HepG2 de carcinoma hepático, la cual constituye un modelo adecuado para los ensayos de citotoxicidad en estudios farmacéuticos. Además, estas células representan un buen ejemplo de diana susceptible de sufrir efectos secundarios in vivo puesto que la mayoría de las NPs son secuestradas de forma masiva por el hígado al administrarse por vía intravenosa [Blanco E. et al., 2015. Nature Biotech. 33, 941-951]. Cellular biocompatibility is an important factor to consider in the development of NPs for biomedical use, so we analyze the cytotoxicity of our SPION-TEOS / APTES-PEG NPs. To do this, we use the HepG2 human cell carcinoma cell line, which is a suitable model for cytotoxicity tests in pharmaceutical studies. In addition, these cells represent a good example of a target susceptible to side effects in vivo since most NPs are massively sequestered by the liver when administered intravenously [Blanco E. et al., 2015. Nature Biotech. 33, 941-951].
Cuantificamos la citotoxicidad mediante la proliferación celular basándonos en la integridad de la membrana (la cual usamos como marcador de muerte celular) de las células HepG2 expuestas a concentraciones crecientes de NPs SPION-TEOS/APTES-PEG durante 24 y 48 horas. Para ello, usamos dos marcadores fluorescentes con diferente permeabilidad plasmática, Hoechst 33342 para teñir los núcleos de las células totales (tinción azul en la Figura 6A) y ioduro de propidio para teñir las células muertas (tinción amarilla en la Figura 6A), el cual sólo puede penetrar en el interior de las células cuando la integridad de su membrana está comprometida) [Jan E. et al., 2008. ACS Nano 2, 928-938]. La exposición de las células a concentraciones de NPs SPION-TEOS/APTES-PEG por debajo de 100 μg Fe-mL- 1 no tuvo efecto en la proliferación en comparación con las muestras control, y sólo cuando el tratamiento de estas NPs alcanzó los 200 μg Fe mL-1 se apreció un efecto negativo en la proliferación celular, lo cual fue particularmente evidente tras 48 horas (Figura 6B). En consonancia con lo anterior, sólo en esta última concentración se observaron células muertas por encima de los valores del grupo control (Figura 6C), aunque éstas sólo supusieron un 23.9 % de las células totales. En el resto de las concentraciones de tratamiento el porcentaje de células muertas fue muy similar al de las células control (Figura 6D). Como ya se comprobó previamente con las NPs SPION-APTES-PEG [Cano M. et al. 2017, Nanoscale 9, 812-822], estos resultados demostraron que las NPs SPION-TEOS/APTES-PEG tampoco eran citotóxicas incluso a concentraciones de hierro de 100 μg. mL-1 , lo cual corrobora su potencial uso en aplicaciones biomédicas [Singh N. et al., 2010. Nano Reviews 1 , 1-15] Ejemplo 3. Estudios de MRI (in vitro e in vivo) We quantify cytotoxicity through cell proliferation based on the integrity of the membrane (which we use as a marker of cell death) of HepG2 cells exposed to increasing concentrations of SPION-TEOS / APTES-PEG NPs for 24 and 48 hours. For this, we use two fluorescent markers with different plasma permeability, Hoechst 33342 to stain the nuclei of the total cells (blue staining in Figure 6A) and propidium iodide to stain the dead cells (yellow staining in Figure 6A), which it can only penetrate inside the cells when the integrity of its membrane is compromised) [Jan E. et al., 2008. ACS Nano 2, 928-938]. Exposure of the cells to concentrations of SPION-TEOS / APTES-PEG NPs below 100 μg Fe-mL-1 had no effect on proliferation compared to control samples, and only when the treatment of these NPs reached 200 μg Fe mL-1 showed a negative effect on cell proliferation, which was particularly evident after 48 hours (Figure 6B). In line with the above, only in this last concentration dead cells were observed above the values of the control group (Figure 6C), although these only accounted for 23.9% of the total cells. In the rest of the treatment concentrations the percentage of dead cells was very similar to that of the control cells (Figure 6D). As previously verified with the SPION-APTES-PEG NPs [Cano M. et al. 2017, Nanoscale 9, 812-822], these results demonstrated that SPION-TEOS / APTES-PEG NPs were also not cytotoxic even at iron concentrations of 100 μg. mL-1, which corroborates its potential use in biomedical applications [Singh N. et al., 2010. Nano Reviews 1, 1-15] Example 3. MRI studies (in vitro and in vivo)
Evaluamos el potencial de las NPs SPION-TEOS/APTES-PEG como agentes de contrate para MRI. Para ello analizamos los tiempos de relajatividad longitudinal (T1) y transversal (T2) a campo magnético bajo (1.5 T) y alto (9.4 T), usando un relaxómetro y un escáner MRI preclínico respectivamente (Tabla 1). We evaluate the potential of SPION-TEOS / APTES-PEG NPs as contracting agents for MRI. For this, we analyze the times of longitudinal (T1) and transverse (T2) relaxation at a low (1.5 T) and high (9.4 T) magnetic field, using a relaxometer and a preclinical MRI scanner respectively (Table 1).
Tabla 1. Propiedades de relajatividad de las NPs SPION-TEOS/APTES-PEG a campo bajo (1.5 T) y alto (9.4 T). Table 1. Relaxation properties of SPION-TEOS / APTES-PEG NPs at low (1.5 T) and high (9.4 T) fields.
Figure imgf000024_0001
Figure imgf000024_0001
*Los tiempos de relajación longitudinal (T1) y transversal (T2) se midieron a 0.5 mM Fe (medido por ICP-AES). * Longitudinal (T1) and transverse (T2) relaxation times were measured at 0.5 mM Fe (measured by ICP-AES).
El promedio de la relajatividad transversal (r2) de nuestras SPIONs PEGiladas fue 156.3 mM- 1 s-1 a 1.5 T y 1 10.7 mM-1 s-1 a 9.4 T. Además, la medida de la relajatividad longitudinal (r1) de las mismas fue 4.76 mM-1 s-1 a 1.5 T y 0.28 mM-1 s-1 a 9.4 T, dando unos ratios r2/r1 de 32.8 y 395.3 a dichos campos magnéticos respectivamente. Estos valores altos indicaron que las NPs SPION-TEOS/APTES-PEG ofrecían un buen contraste T2 para MRI tanto en condiciones preclínicas (alto campo magnético) como para condiciones clínicas (bajo campo magnético) [Pernía M. et al., 2015. Nanoscale 7, 2050-2059; Cano M. et al., 2016. RSC Advances 6, 70374-70382; Weissleider R. et al., 2010. People's Medical Publishing House - USA Global Medical Publisher 1-1357]. Para verificar esto llevamos a cabo un phantom de MRI a campo alto usando diferentes concentraciones de NPs SPION-TEOS/APTES-PEG y SPION-APTES- PEG disueltas en agua (Figura 5B). Éste confirmó que el contraste negativo (T2) ya era evidente en las concentraciones de NPs más bajas comparándolo con el control (agua) y que este contraste era muy elevado en las concentraciones crecientes (imagen T2W en Figura 5B). También se observó que el contraste T2 obtenido para las NPs SPION-TEOS/APTES-PEG era mayor que el mismo obtenido con las SPION-APTES-PEG para una misma concentración de hierro, lo cual concuerda con sus valores r2/r1 a campo alto (Tabla 1). Por otro lado, como era de esperar, nuestras NPs no mostraron ningún contraste positivo (T1) comparando con el agua control (imagen T1W en Figura 5B). The average cross-sectional relaxivity (r2) of our PEGylated SPIONs was 156.3 mM- 1 s-1 at 1.5 T and 1 10.7 mM-1 s-1 at 9.4 T. In addition, the measure of the longitudinal relaxivity (r1) of the they were 4.76 mM-1 s-1 at 1.5 T and 0.28 mM-1 s-1 at 9.4 T, giving r2 / r1 ratios of 32.8 and 395.3 to said magnetic fields respectively. These high values indicated that SPION-TEOS / APTES-PEG NPs offered a good T2 contrast for MRI both in preclinical conditions (high magnetic field) and for clinical conditions (under magnetic field) [Pernía M. et al., 2015. Nanoscale 7, 2050-2059; Cano M. et al., 2016. RSC Advances 6, 70374-70382; Weissleider R. et al, 2010. People 's Medical Publishing House. - USA Global Medical Publisher 1-1357]. To verify this we carried out a high-field MRI phantom using different concentrations of SPION-TEOS / APTES-PEG and SPION-APTES-PEG NPs dissolved in water (Figure 5B). This confirmed that the negative contrast (T2) was already evident in the lower NP concentrations compared to the control (water) and that this contrast was very high in increasing concentrations (T2W image in Figure 5B). It was also observed that the T2 contrast obtained for the SPION-TEOS / APTES-PEG NPs was greater than the same obtained with the SPION-APTES-PEG for the same iron concentration, which is consistent with their high field r2 / r1 values (Table 1). On the other hand, as expected, our NPs did not show any positive contrast (T1) compared to the control water (image T1W in Figure 5B).
Inyectamos NPs SPION-TEOS/APTES-PEG por vía intravenosa en ratones BALB/c. De forma general, cualquier NP administrada sistémicamente en animales se queda retenida en el hígado y en el bazo en gran proporción [Blanco E. et al., 2015. Nature Biotech. 33, 941-951 ; Kettiger H. et al., 2013. Int. J. Nanomedicine 8, 3255-3269; Albanese A. et al., 2012. Annu. Rev. Biomed. Eng. 14, 1-16]. Por tanto, teniendo en consideración esta observación, determinamos si nuestras SPIONs PEGiladas ofrecían un contrate negativo T2 in vivo. Este experimento demostró que dichos órganos se oscurecían en gran medida tras la inyección de las NPs (Figura 7 G-L). Comparando el decaimiento de la señal T2 en el hígado tras la administración de las NPs SPION-TEOS/APTES-PEG (Figura 7 G-L) y SPION-APTES-PEG (Figura 7 A-F), las primeras NPs oscurecieron el hígado con mucha más intensidad. La cuantificación de los cambios en T2 confirmaron que el hígado experimentó un decaimiento de la señal mucho más exacerbado incluso tras una hora post-administración (Figura 7N) ratificando que el híbrido silanizado tiene un contraste T2-MRI mucho mejor, por lo que potencialmente es mejor agente de contraste in vivo. We injected SPION-TEOS / APTES-PEG NPs intravenously into BALB / c mice. In general, any NP administered systemically in animals is retained in the liver and spleen in large proportion [Blanco E. et al., 2015. Nature Biotech. 33, 941-951; Kettiger H. et al., 2013. Int. J. Nanomedicine 8, 3255-3269; Albanese A. et al., 2012. Annu. Rev. Biomed. Eng. 14, 1-16]. Therefore, considering this observation, we determined whether our PEGylated SPIONs offered a negative T2 contract in vivo. This experiment showed that these organs became very dark after the injection of the NPs (Figure 7 GL). Comparing the decay of the T2 signal in the liver after administration of the SPION-TEOS / APTES-PEG NPs (Figure 7 GL) and SPION-APTES-PEG (Figure 7 AF), the first NPs darkened the liver much more intensely . The quantification of the changes in T2 confirmed that the liver experienced a much more exacerbated signal decay even after one hour post-administration (Figure 7N) confirming that the silanized hybrid has a much better T2-MRI contrast, so it is potentially Best contrast agent in vivo.
En cuanto a la distribución renal, en publicaciones anteriores se ha demostrado que las NPs son retenidas en los corpúsculos renales en función de su tamaño, siendo éstos localizados en la corteza renal [Choi C.H.C. et al., 201 1. PNAS 108, 6556-6661 ; Pernía M. et al., 2015. Nanoscale 7, 2050-2059] pero no existe acumulación glomerular para NPs PEGiladas menores de 25 nm. Teniendo esto en cuenta, las NPs SPION-TEOS/APTES-PEG, las cuales tienen un tamaño hidrodinámico en torno a 25 nm en suero fetal bovino (medio muy similar al de la sangre), se pueden encontrar tanto en los capilares peritubulares, que anatómicamente están tanto en la médula como en la corteza renal, y probablemente también ligeramente retenidos en el glomérulo, que se encuentra sólo en la corteza renal. Por lo tanto, sólo el decaimiento de la señal observado en la médula renal sería enteramente debido a las NPs circulantes en sangre que acortan la señal T2 cuando pasan por los capilares peritubulares y retornan al sistema circulatorio. En otras palabras, el decaimiento de la señal observada en la médula renal se podría utilizar como indicador de la presencia de nuestras NPs en circulación. Por esta razón, durante la cuantificación de la T2 que se llevó a cabo en estos experimentos, se seleccionaron unas ROIs (del inglés Regions of interest) en el riñon que diferenciaban la corteza de la médula renal. De esta manera excluíamos una probable acumulación de nuestras NPs en los glomérulos (corteza renal). También excluimos la pelvis renal, cuyo decaimiento de T2 correspondía a las NPs excretadas en la orina, ya que esta es la zona donde el riñon concentra la orina antes de ser acumulada en la vejiga a través de los uréteres (Figura 8 C). As for the renal distribution, in previous publications it has been shown that NPs are retained in renal corpuscles based on their size, these being located in the renal cortex [Choi C.H.C. et al., 201 1. PNAS 108, 6556-6661; Pernía M. et al., 2015. Nanoscale 7, 2050-2059] but there is no glomerular accumulation for PEGylated NPs less than 25 nm. With this in mind, the SPION-TEOS / APTES-PEG NPs, which have a hydrodynamic size around 25 nm in fetal bovine serum (medium very similar to blood), can be found both in the peritubular capillaries, which anatomically they are both in the medulla and in the renal cortex, and probably also slightly retained in the glomerulus, which is found only in the renal cortex. Therefore, only the decay of the signal observed in the renal medulla would be entirely due to the circulating NPs in blood that shorten the T2 signal when they pass through the peritubular capillaries and return to the circulatory system. In other words, the decay of the signal observed in the renal medulla could be used as an indicator of the presence of our NPs in circulation. For this reason, during the quantification of T2 that was carried out in these experiments, ROIs (Regions of interest) were selected in the kidney that differentiated the cortex from the renal medulla. In this way we excluded a probable accumulation of our NPs in the glomeruli (renal cortex). We also excluded the renal pelvis, whose T2 decay corresponded to the NPs excreted in the urine, since this is the area where the kidney concentrates the urine before being accumulated in the bladder through the ureters (Figure 8 C).
Siguiendo esta propuesta, las NPs SPION-TEOS/APTES-PEG se encontraban en circulación incluso a las 4 horas de su administración intravenosa (Figura 7 G-L, N y 8 B). El contraste T2 en la médula renal no se recuperó hasta sus valores normales ni a las 48 horas post-inyección, la cual fue la última medida realizada, indicando que, a ese momento, las NPs estaban todavía en circulación. En comparación con las medidas del ratio T2 en la médula renal tras la administración de las NPs SPION-APTES-PEG no mostraron un decaimiento de la T2 significativo, lo cual indica que su tiempo en circulación era más limitado (Figura 7M). Esto se confirmó en las correspondientes imágenes T2 (Figura 7 A-F y 8 A). Following this proposal, the SPION-TEOS / APTES-PEG NPs were in circulation even at 4 hours after intravenous administration (Figure 7 GL, N and 8 B). The T2 contrast in the renal medulla did not recover until its normal values or at 48 hours post-injection, which was the last measurement taken, indicating that, at that time, the NPs were still in circulation. Compared to the measurements of the T2 ratio in the renal medulla after administration of the SPION-APTES-PEG NPs, they did not show a decline in T2. significant, which indicates that its circulation time was more limited (Figure 7M). This was confirmed in the corresponding T2 images (Figure 7 AF and 8 A).
En conclusión, todos estos resultados comparativos sugieren que el híbrido silanizado mejora no sólo el contraste T2 in vivo para MRI sino también el tiempo en circulación, lo cual es clave para permitir el acceso de las NPs al tumor una vez administradas por vía intravenosa. In conclusion, all these comparative results suggest that the silanized hybrid improves not only the T2 contrast in vivo for MRI but also the time in circulation, which is key to allowing NPs access to the tumor once administered intravenously.
Ejemplo 4. Facilidad de funcionalizacion posterior para su adaptación a aplicaciones específicas. Example 4. Ease of subsequent functionalization for adaptation to specific applications.
Finalmente, evaluamos que las SPION PEGilagas generadas por este método (SPION- TEOS/APTES-PEG), además de las mejoras anteriormente citadas con respecto a las NPs SPION-APTES-PEG [M. Cano et al., 2017. Nanoscale 9, 812-822], seguían manteniendo la capacidad de ser fácilmente funcionalizadas a través de los grupos aminos todavía disponibles en su superficie. Para ello, se llevó a cabo funcionalización de nuestras NPs SPION- TEOS/APTES-PEG con un marcador fluorescente comercial (Cy5-NHS) activado con un grupo N-hidroxisuccinimida (Figura 9B). Una vez purificadas las NPs SPION-TEOS/APTES-PEG- Cy5, el test de Ninhidrina mostró una clara reducción de la cantidad de grupos aminos libres en comparación con su NP precursora (línea rosa en Figura 9A). Además, estos análisis también revelaron la aparición de un nuevo pico de absorción a -650 nm que corresponde a la longitud de onda de máxima absorción del Cy5. Para confirmar la unión eficiente del fluoróforo a las NPs SPION-TEOS/APTES-PEG se compararon los espectros de absorción del Cy5 libre (línea verde) y de las NPs PEGiladas antes (línea roja) y después de la funcionalización (línea rosa en Figura 9C). De acuerdo con esto, la imagen de phantom de Fluorescencia (Aex = 600 nm y Aem = 700 nm) mostró que sólo las NPs SPION-TEOS/APTES-PEG-Cy5 presentan emisión (Figura 9D). Estos resultados demuestran que las NPs PEGiladas obtenidas con nuestro método (usando TEOS y APTES simultáneamente) pueden ser fácilmente funcionalizadas, lo que permite la posibilidad de añadir propiedades de interés clínico a éstas, y, en este ejemplo concreto, como agente de imagen multimodal (MRI/Óptica). Finally, we evaluate that the SPION PEGilagas generated by this method (SPION-TEOS / APTES-PEG), in addition to the aforementioned improvements with respect to the SPION-APTES-PEG NPs [M. Cano et al., 2017. Nanoscale 9, 812-822], continued to maintain the ability to be easily functionalized through the amino groups still available on their surface. For this, functionalization of our SPION-TEOS / APTES-PEG NPs was carried out with a commercial fluorescent marker (Cy5-NHS) activated with an N-hydroxysuccinimide group (Figure 9B). Once the SPION-TEOS / APTES-PEG-Cy5 NPs were purified, the Ninhydrin test showed a clear reduction in the amount of free amino groups compared to their precursor NP (pink line in Figure 9A). In addition, these analyzes also revealed the appearance of a new absorption peak at -650 nm corresponding to the maximum absorption wavelength of Cy5. To confirm the efficient binding of fluorophore to SPION-TEOS / APTES-PEG NPs, the absorption spectra of free Cy5 (green line) and PEGylated NPs were compared before (red line) and after functionalization (pink line in Figure 9C). Accordingly, the Fluorescence phantom image (Aex = 600 nm and Aem = 700 nm) showed that only SPION-TEOS / APTES-PEG-Cy5 NPs show emission (Figure 9D). These results demonstrate that PEGylated NPs obtained with our method (using TEOS and APTES simultaneously) can be easily functionalized, which allows the possibility of adding properties of clinical interest to them, and, in this specific example, as a multimodal imaging agent ( MRI / Optics).

Claims

REIVINDICACIONES
1. - Una nanopartícula que comprende: 1. - A nanoparticle comprising:
- un núcleo hidrofóbico, preferiblemente de óxido de hierro; y - a hydrophobic core, preferably of iron oxide; Y
- una superficie funcionalizada con al menos dos derivados alcoxi-silanos diferentes de formula I: - a functionalized surface with at least two different alkoxy silane derivatives of formula I:
RmSiX(4-n) (formula I); donde R es un grupo químico seleccionado de la lista que consiste en un grupo alquilo, alquenos, alquinos, aromáticos, alcóxidos, organofuncionales o cualquier combinación de los mismos; donde m puede ser 0, 1 , 2 ó 3; donde n representa un número natural entre 0 y 3; y donde X representa un grupo alcoxido, preferiblemente un metoxi- o un etoxk RmSiX (4-n) (formula I); where R is a chemical group selected from the list consisting of an alkyl, alkenes, alkynes, aromatic, alkoxides, organofunctional or any combination thereof; where m can be 0, 1, 2 or 3; where n represents a natural number between 0 and 3; and where X represents an alkoxy group, preferably a methoxy- or an ethoxk
2. - La nanopartícula según la reivindicación anterior, donde la nanopartícula se funcionaliza con los derivados alcoxi-silanos mediante un procedimiento de intercambio de ligando. 2. - The nanoparticle according to the preceding claim, wherein the nanoparticle is functionalized with the alkoxy silane derivatives by means of a ligand exchange procedure.
3. - La nanopartícula según cualquiera de las reivindicaciones 1-2, donde la nanopartícula es un SPION. 3. - The nanoparticle according to any of claims 1-2, wherein the nanoparticle is a SPION.
4.- La nanopartícula según cualquiera de las reivindicaciones 1-3, donde los derivados alcoxi- silanos se seleccionan de la lista que consiste en: Tetraetilortosilicato (TEOS), 3-aminopropil- trietoxisilano (APTES), 3-aminopropil-trimetoxisilano (APTMS), 3-mercaptopropil trietoxisilano (MPTES), 3-mercaptopropil trimetoxisilano (MPTMS), 3-Glicidoxipropil trietoxisilano, 3- Glicidoxipropil trimetoxisilano, 3-Cianatopropil trieoxisilano (CPTES), 3-Cianatropropil trimetoxisilano (CPTMS), 3-Azidatopropil trietoxisilano, 3-Azidatopropil trimetoxisilano, trimetoxi PEG silanos y a-silano-w-metoxi polietilenglicol, o cualquiera de sus sales, isómeros, derivados o análogos, o cualquiera de sus combinaciones. 4. The nanoparticle according to any of claims 1-3, wherein the alkoxy silane derivatives are selected from the list consisting of: Tetraethylorthosilicate (TEOS), 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-trimethoxysilane (APTMS ), 3-mercaptopropyl triethoxysilane (MPTES), 3-mercaptopropyl trimethoxysilane (MPTMS), 3-Glycidoxypropyl triethoxysilane, 3- Glycidoxypropyl trimethoxysilane, 3-Cyanatopropyl trieoxysilane (CPTES), 3-Cyanatopropyl triethoxyethyl (3-Cystoxyaproxyl) -Azidatopropyl trimethoxysilane, trimethoxy PEG silanes and a-silane-w-methoxy polyethylene glycol, or any of its salts, isomers, derivatives or analogs, or any combination thereof.
5.- La nanopartícula según la reivindicación 4, donde la nanopartícula comprende dos derivados alcoxi-silanos que se seleccionan de entre la lista que consiste en: a) Tetraetilortosilicato (TEOS) y 3-AminoPropil-TriEtoxiSilano (APTES), o b) Tetraetilortosilicato (TEOS) y 3-mercaptopropil trimetoxisilano, o c) Tetraetilortosilicato (TEOS) y a-silano-w-metoxi polietilenglicol. 5. The nanoparticle according to claim 4, wherein the nanoparticle comprises two alkoxy silane derivatives that are selected from the list consisting of: a) Tetraethylorthosilicate (TEOS) and 3-AminoPropyl-TriEthoxySilane (APTES), or b) Tetraethylorthosilicate (TEOS) and 3-mercaptopropyl trimethoxysilane, oc) Tetraethyl orthosilicate (TEOS) and a-silane-w-methoxy polyethylene glycol.
6. - La nanopartícula según la reivindicación 5, donde la nanopartícula comprende dos derivados alcoxi-silanos que son tetraetilortosilicato (TEOS) y 3-aminopropil-trietoxisilano6. - The nanoparticle according to claim 5, wherein the nanoparticle comprises two alkoxy silanes derivatives which are tetraethylorthosilicate (TEOS) and 3-aminopropyl-triethoxysilane
(APTES). (APTES).
7. - La nanopartícula según la reivindicación 6, donde la concentración de TEOS se encuentra en un rango de concentración, sobre el total de los alcoxi-silanos, de entre 40 y 80% y APTES, sobre el total de los alcoxi-silanos, en un rango de concentración de entre 20 y 60%. 7. - The nanoparticle according to claim 6, wherein the concentration of TEOS is in a concentration range, on the total of the alkoxy silanes, between 40 and 80% and APTES, on the total of the alkoxy silanes, in a concentration range of between 20 and 60%.
8. - La nanopartícula según cualquiera de las reivindicaciones 1-7, donde las nanopartículas están PEGiladas. 8. - The nanoparticle according to any of claims 1-7, wherein the nanoparticles are PEGylated.
9.- La nanopartícula según la reivindicación 8, donde las nanopartículas están PEGiladas con el derivado de polietilenglicol a-Methoxy-w-carboxy PEG. 9. The nanoparticle according to claim 8, wherein the nanoparticles are PEGylated with the polyethylene glycol derivative a-Methoxy-w-carboxy PEG.
10. -. Una composición que comprende la nanopartícula tal y como se define en cualquiera de las reivindicaciones 1-9. 10. -. A composition comprising the nanoparticle as defined in any of claims 1-9.
1 1. - La composición según la reivindicación anterior, donde la composición es una composición farmacéutica. 1. The composition according to the preceding claim, wherein the composition is a pharmaceutical composition.
12. - La composición según cualquiera de las reivindicaciones 10 a 1 1 , donde la composición además comprende al menos un compuesto o molécula biológicamente activa, un agente terapéutico o fármaco, o un agente marcador. 12. - The composition according to any of claims 10 to 1 1, wherein the composition further comprises at least one biologically active compound or molecule, a therapeutic agent or drug, or a labeling agent.
13.- La composición según la reivindicación anterior, donde el agente marcador es un agente de contraste. 13. The composition according to the preceding claim, wherein the marker agent is a contrast agent.
14. - Uso de la nanopartícula según cualquiera de las reivindicaciones 1-9 o de la composición según cualquiera de las reivindicaciones 10 a 13, en la elaboración de un medicamento. 14. - Use of the nanoparticle according to any of claims 1-9 or of the composition according to any of claims 10 to 13, in the preparation of a medicament.
15. - Uso de la nanopartícula según cualquiera de las reivindicaciones 1-9 o de la composición según cualquiera de las reivindicaciones 10 a 13, en la elaboración de una composición farmacéutica para el diagnóstico in vivo por resonancia magnética. 15. - Use of the nanoparticle according to any of claims 1-9 or of the composition according to any of claims 10 to 13, in the preparation of a pharmaceutical composition for in vivo diagnosis by magnetic resonance.
16. - Un método para la síntesis de una nanopartículas que comprende 16. - A method for the synthesis of a nanoparticles comprising
1. Síntesis de nanopartículas hidrofóbicas, preferiblemente SPIONs hidrofóbicas sintetizadas por descomposición térmica; 1. Synthesis of hydrophobic nanoparticles, preferably hydrophobic SPIONs synthesized by thermal decomposition;
2. Funcionalización con dos derivados alcoxi-silanos de formula I, tal y como se ha definido esta fórmula en la reivindicación 1 , de las nanopartículas del paso 1), a través de un procedimiento de intercambio de ligando ejecutado simultáneamente; 2. Functionalization with two alkoxy silane derivatives of formula I, as this formula has been defined in claim 1, of the nanoparticles of step 1), through a simultaneously executed ligand exchange procedure;
3. Opcionalmente, se lleva a cabo una PEGilación de las nanopartículas obtenidas en el paso 2); y opcionalmente 3. Optionally, a PEGylation of the nanoparticles obtained in step 2) is carried out; and optionally
4. Se lleva a cabo una funcionalización de las nanopartículas del paso 3) o del paso 2). 4. A functionalization of the nanoparticles of step 3) or step 2) is carried out.
17. El método según la reivindicación 16, donde las nanopartículas hidrofóbicas del paso 1) son SPIONs hidrofóbicas sintetizadas por descomposición térmica y donde el procedimiento de intercambio de ligando se lleva a cabo con dos derivados de alcoxisilanos de formula I seleccionados de la lista que consiste en Tetraetilortosilicato (TEOS), 3-aminopropil- trietoxisilano (APTES), 3-aminopropil-trimetoxisilano (APTMS), 3-mercaptopropil trietoxisilano (MPTES), 3-mercaptopropil trimetoxisilano (MPTMS), 3-Glicidoxipropil trietoxisilano, 3- Glicidoxipropil trimetoxisilano, 3-Cianatopropil trieoxisilano (CPTES), 3-Cianatropropil trimetoxisilano (CPTMS), 3-Azidatopropil trietoxisilano, 3-Azidatopropil trimetoxisilano, trimetoxi PEG silanos y a-silano-w-metoxi polietilenglicol, o cualquiera de sus sales, isómeros, derivados o análogos, o cualquiera de sus combinaciones. 17. The method according to claim 16, wherein the hydrophobic nanoparticles of step 1) are hydrophobic SPIONs synthesized by thermal decomposition and wherein the ligand exchange process is carried out with two derivatives of formula I alkoxysilanes selected from the list consisting in Tetraethylorthosilicate (TEOS), 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-trimethoxysilane (APTMS), 3-mercaptopropyl triethoxysilane (MPTES), 3-mercaptopropyl trimethoxysilane (MPTMS), 3-mercaptopropyl trimethoxysilane, 3-triethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyaxiside 3-Cyanatopropyl trieoxysilane (CPTES), 3-Cianatropropyl trimethoxysilane (CPTMS), 3-Azidatopropyl triethoxysilane, 3-Azidatopropyl trimethoxysilane, trimethoxy PEG silanes and a-silane-w-methoxy polyethylene glycols, or any of its analogues, , or any of its combinations.
18. El método según la reivindicación anterior, donde el procedimiento de intercambio de ligando se lleva a cabo con dos derivados de alcoxisilanos de formula I seleccionados de la lista que consiste en APTES y TEOS. 18. The method according to the preceding claim, wherein the ligand exchange process is carried out with two alkoxysilane derivatives of formula I selected from the list consisting of APTES and TEOS.
19. El método según cualquiera de las reivindicaciones 16 a 18, donde se lleva a cabo una PEGilación de las nanopartículas obtenidas en el paso 2), preferiblemente con el derivado de polietilenglicol a-Methoxy-w-carboxy PEG 19. The method according to any of claims 16 to 18, wherein a PEGylation of the nanoparticles obtained in step 2) is carried out, preferably with the polyethylene glycol derivative a-Methoxy-w-carboxy PEG
PCT/ES2018/070130 2017-02-21 2018-02-21 Nanoparticles modified with alkoxy-silane derivatives WO2018154165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201730221 2017-02-21
ES201730221 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018154165A1 true WO2018154165A1 (en) 2018-08-30

Family

ID=63252438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070130 WO2018154165A1 (en) 2017-02-21 2018-02-21 Nanoparticles modified with alkoxy-silane derivatives

Country Status (1)

Country Link
WO (1) WO2018154165A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044926A4 (en) * 2019-10-14 2023-11-15 Actorius Innovations and Research Co. Non-hemolytic compositions and methods of use for recovering disease causing toxic constituents in the blood

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100008862A1 (en) * 2008-07-10 2010-01-14 Aihua Fu Fluorescent magnetic nanoprobes, methods of making, and methods of use
US20100111859A1 (en) * 2007-02-07 2010-05-06 Oskar Axelsson Visualization of Biological Material by the Use of Coated Contrast Agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111859A1 (en) * 2007-02-07 2010-05-06 Oskar Axelsson Visualization of Biological Material by the Use of Coated Contrast Agents
US20100008862A1 (en) * 2008-07-10 2010-01-14 Aihua Fu Fluorescent magnetic nanoprobes, methods of making, and methods of use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CANO MANUEL ET AL.: "Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications", NANOSCALE, vol. 9, no. 2, 2017, pages 812 - 822, XP055539238, ISSN: 2040-3372 *
CANO MANUEL ET AL.: "Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry", CHEMICAL COMMUNICATIONS, vol. 51, no. 17, 28 February 2015 (2015-02-28), pages 3620 - 3622, XP055539237, ISSN: 1364-548X *
CANO MANUEL ET AL.: "Synthesis and characterization of multifunctional superparamagnetic iron oxide nanoparticles (SPION)/C60 nanocomposites assembles by fullerene-amine click chemistry", ROYAL SOCIETY OF CHEMISTRY ADVANCES, vol. 6, no. 74, 2016, pages 70374 - 70382, XP055539231, ISSN: 2046-2069 *
DIGIGOW REINALDO G. ET AL.: "Preparation and characterization of functional silica hybrid magnetic nanoparticles", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 362, August 2014 (2014-08-01), pages 72 - 79, XP055153385, ISSN: 0304-8853 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044926A4 (en) * 2019-10-14 2023-11-15 Actorius Innovations and Research Co. Non-hemolytic compositions and methods of use for recovering disease causing toxic constituents in the blood

Similar Documents

Publication Publication Date Title
Dadfar et al. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications
Mao et al. Functional nanoparticles for magnetic resonance imaging
Yang et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging
Zhen et al. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging
Felton et al. Magnetic nanoparticles as contrast agents in biomedical imaging: recent advances in iron-and manganese-based magnetic nanoparticles
ES2731649T3 (en) Ultrafine nanoparticles with functionalized polyorganosiloxane matrix and including metal complexes; its procedure for obtaining and its applications in medical imaging
Cormode et al. Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality
Sulek et al. Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents
Lee et al. Amphiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging
Hu et al. Integrin α2β1 targeted GdVO4: Eu ultrathin nanosheet for multimodal PET/MR imaging
WO2013110828A1 (en) Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (mri) of magnetic susceptibility (t2*)
Tran et al. Fattigation-platform theranostic nanoparticles for cancer therapy
Wei et al. Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging
Demin et al. Smart design of a pH-responsive system based on pHLIP-modified magnetite nanoparticles for tumor MRI
Li et al. Targeted CT/MR dual mode imaging of human hepatocellular carcinoma using lactobionic acid-modified polyethyleneimine-entrapped gold nanoparticles
Xu et al. Bioresponsive upconversion nanostructure for combinatorial bioimaging and chemo-photothermal synergistic therapy
Zhang et al. Gadolinium-hybridized mesoporous organosilica nanoparticles with high magnetic resonance imaging performance for targeted drug delivery
Wang et al. Trifunctional polymeric nanocomposites incorporated with Fe3O4/iodine-containing rare earth complex for computed X-ray tomography, magnetic resonance, and optical imaging
Xin et al. Stearic acid-grafted chitooligosaccharide nanomicelle system with biocleavable gadolinium chelates as a multifunctional agent for tumor imaging and drug delivery
Xu et al. Synthesis of heteronanostructures for multimodality molecular imaging-guided photothermal therapy
Dong et al. Targeted MRI and chemotherapy of ovarian cancer with clinic available nano-drug based nanoprobe
Dai et al. Fabrication of AS1411 aptamer functionalized Gd 2 O 3-based molecular magnetic resonance imaging (mMRI) nanoprobe for renal carcinoma cell imaging
WO2018154165A1 (en) Nanoparticles modified with alkoxy-silane derivatives
Guleria et al. Biomedical applications of magnetic nanomaterials
Liu et al. A high-performance imaging probe with NIR luminescence and synergistically enhanced T 1–T 2 relaxivity for in vivo hepatic tumor targeting and multimodal imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756677

Country of ref document: EP

Kind code of ref document: A1