WO2018151297A1 - Method for designing rolled h-shaped steel, rolled h-shaped steel, and method for manufacturing rolled h-shaped steel - Google Patents
Method for designing rolled h-shaped steel, rolled h-shaped steel, and method for manufacturing rolled h-shaped steel Download PDFInfo
- Publication number
- WO2018151297A1 WO2018151297A1 PCT/JP2018/005763 JP2018005763W WO2018151297A1 WO 2018151297 A1 WO2018151297 A1 WO 2018151297A1 JP 2018005763 W JP2018005763 W JP 2018005763W WO 2018151297 A1 WO2018151297 A1 WO 2018151297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rolled
- section steel
- flange
- upper flange
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 227
- 239000010959 steel Substances 0.000 title claims abstract description 227
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000463 material Substances 0.000 claims abstract description 89
- 238000004381 surface treatment Methods 0.000 claims abstract description 48
- 230000014509 gene expression Effects 0.000 claims abstract description 12
- 238000005452 bending Methods 0.000 claims description 72
- 230000002093 peripheral Effects 0.000 claims description 32
- 230000035882 stress Effects 0.000 description 24
- 238000004364 calculation method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005096 rolling process Methods 0.000 description 8
- 239000004567 concrete Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 5
- 239000003351 stiffener Substances 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000009795 derivation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 238000010422 painting Methods 0.000 description 4
- 238000005381 potential energy Methods 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 210000001503 Joints Anatomy 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000004059 degradation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 230000001105 regulatory Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C3/06—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0443—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
- E04C2003/0452—H- or I-shaped
Abstract
Description
本願は、2017年2月17日に日本に出願された特願2017-028465号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a design method for rolled H-section steel, rolled H-section steel, and a method for manufacturing rolled H-section steel.
This application claims priority based on Japanese Patent Application No. 2017-028465 filed in Japan on February 17, 2017, the contents of which are incorporated herein by reference.
(1)本発明の第1の態様に係る圧延H形鋼の設計方法は、上フランジ及び下フランジと、これら上フランジ及び下フランジを連結するウェブとを有しかつ、前記上フランジ、前記下フランジ、及び前記ウェブの外周面が表面処理される圧延H形鋼を設計する方法であって、材軸方向に垂直な断面で見た場合の断面形状における外周長Lpで強軸まわりの断面二次モーメントIxを除した値を表面処理経済性Ix/Lpとし、前記断面形状の面積をSとしたとき、下記(35)式~(38)式を満足すると共に、前記上フランジから前記下フランジまでの高さ寸法Hが700mm以上であり、前記上フランジおよび前記下フランジの各々の幅寸法Wが前記高さ寸法Hの1/5以上かつ1/2以下であり、前記ウェブの板厚twが9mm以上32mm以下であり、前記上フランジ及び前記下フランジの各々の板厚tfが12mm以上40mm以下であるように、前記高さ寸法H、前記幅寸法W、前記板厚tw、および前記板厚tfを設定する。
(2)上記(1)に記載の態様において、以下のように構成してもよい:前記圧延H形鋼が前記材軸方向に延びる梁として用いられかつ、前記圧延H形鋼の前記材軸方向の両端部が固定される条件、前記材軸方向の中間部において、前記圧延H形鋼の幅方向の横移動が拘束される条件、および、前記上フランジに上方から中間荷重が作用しかつ、前記材軸方向の両端部に端荷重が作用する条件下で、下記(12)式~(16)式から算出される梁の弾性横座屈モーメントMcrを用いて、前記梁に横座屈が発生しないように、前記高さ寸法H、前記幅寸法W、前記板厚tw、および前記板厚tfを設定する。
ただし、Vcr:梁の材軸方向の端部に作用するせん断力、Wcr:梁の材軸方向の中間部に作用する中間荷重、βおよびγ:荷重Vcr、Wcrによって下記(1)式及び(2)式から決まる係数、l:梁の材軸方向の長さ、E:ヤング係数、I:下フランジの弱軸まわりの断面二次モーメント、G:せん断弾性係数、J:サン・ブナンのねじり定数、db:上フランジと下フランジとの板厚中心間距離、y:梁の材軸方向の基準となる一端部から梁の材軸方向の任意の点までの長さ、θy:横座屈によって梁に生じるねじり角、θ’y:θyの一階微分、θ”y:θyの二階微分、a:積分のための助変数である。
(3)上記(2)に記載の態様において、前記圧延H形鋼の全塑性モーメントMpを前記弾性横座屈モーメントMcrで除した値の平方根が0.6以下になるように、前記高さ寸法H、前記幅寸法W、前記板厚tw、および前記板厚tfを設定してもよい。 The present invention employs the following in order to solve the above problems.
(1) The design method of the rolled H-section steel according to the first aspect of the present invention includes an upper flange and a lower flange, a web connecting the upper flange and the lower flange, and the upper flange and the lower flange. This is a method of designing a rolled H-section steel whose surface is treated with the flange and the outer peripheral surface of the web, and the outer peripheral length Lp in the cross-sectional shape when viewed in a cross section perpendicular to the material axis direction. When the value obtained by dividing the next moment Ix is the surface treatment economy Ix / Lp, and the area of the cross-sectional shape is S, the following expressions (35) to (38) are satisfied, and the upper flange to the lower flange are satisfied. The height dimension H is 700 mm or more, the width dimension W of each of the upper flange and the lower flange is 1/5 or more and 1/2 or less of the height dimension H, and the thickness tw of the web 9mm or more 3 The height dimension H, the width dimension W, the sheet thickness tw, and the sheet thickness tf are set so that the thickness tf of each of the upper flange and the lower flange is 12 mm or more and 40 mm or less. Set.
(2) In the aspect described in (1) above, the rolling H-section steel may be configured as follows: the rolled H-section steel is used as a beam extending in the material axis direction, and the rolling shaft of the rolled H-section steel A condition in which both ends in the direction are fixed, a condition in which lateral movement in the width direction of the rolled H-section steel is restrained in the intermediate part in the material axis direction, and an intermediate load acts on the upper flange from above and Under the condition that end loads are applied to both ends in the material axis direction, the beam is laterally buckled using the elastic lateral buckling moment M cr of the beam calculated from the following equations (12) to (16). The height dimension H, the width dimension W, the plate thickness tw, and the plate thickness tf are set so as not to occur.
However, V cr : Shear force acting on the end of the beam in the material axis direction, W cr : Intermediate load acting on the intermediate portion of the beam in the material axis direction, β and γ: Loads V cr and W cr ) And coefficients determined from the formula (2), l: length of the beam in the axial direction, E: Young's modulus, I: secondary moment of inertia around the weak axis of the lower flange, G: shear modulus, J: sun · torsional constant of safe, d b: plate thickness center distance between the upper and lower flanges, y: from one end thereof in a timber axis direction of the reference beam to any point of the timber axis direction of the beam length, theta y: Lateral torsion angle caused in the beam by bending, θ 'y: the first derivative of θ y, θ "y: second differential of θ y, a: a parametric for integration.
(3) In the aspect described in the above (2), as the square root of the total plastic moment Mp of the rolled H-shaped steel the elastic Lateral Buckling moment M cr divided by is 0.6 or less, the height The dimension H, the width dimension W, the plate thickness tw, and the plate thickness tf may be set.
H形鋼1は、熱間圧延等により一枚の鋼板から成形された圧延H形鋼(ロールH形鋼)である。すなわち、H形鋼1では、上フランジ21、下フランジ22、及びウェブ23が一体的に形成されている。
なお、複数の鋼板を溶接することにより製作されたビルトH形鋼(上フランジ21、下フランジ22、及びウェブ23が各別の鋼板として製作され、それらが互いに溶接接合されたビルトH形鋼)において、溶接部への繰返作用力による疲労き裂が生じた場合、またはH形鋼の溶接組立精度が悪い場合、設計法の適用精度が低下する虞がある。一方、圧延H形鋼の場合、フランジとウェブが一体となっているため(接合部が存在しないため)、疲労き裂の発生が想定されず、また寸法精度が高いことから、設計法の適用精度が高く保たれる。このような観点から、本発明は圧延H形鋼を対象とする。 As shown in FIG. 1, the H-section steel 1 is mainly used in buildings such as houses, schools, offices, hospital facilities, low-rise buildings, high-rise buildings, or high-rise buildings. It becomes a structural material such as a structure.
The H-section steel 1 is a rolled H-section steel (rolled H-section steel) formed from a single steel sheet by hot rolling or the like. That is, in the H-section steel 1, the upper flange 21, the lower flange 22, and the web 23 are integrally formed.
In addition, the built-in H-section steel manufactured by welding a plurality of steel plates (the built-in H-section steel in which the upper flange 21, the lower flange 22, and the web 23 are manufactured as separate steel plates and welded to each other) However, when a fatigue crack is generated due to repeated acting force on the welded portion, or when the welding assembly accuracy of the H-section steel is poor, the application accuracy of the design method may be reduced. On the other hand, in the case of rolled H-section steel, since the flange and web are integrated (because there are no joints), the occurrence of fatigue cracks is not expected and the dimensional accuracy is high, so the application of the design method High accuracy is maintained. From such a viewpoint, the present invention is directed to rolled H-section steel.
なお、ウェブとフランジとが一体的に成形されたH形鋼1において、ウェブ23と上フランジ21及び下フランジ22との接合点(4ヶ所)には、フィレットと呼ばれる曲線連結部23bが存在する。外周長Lpの算出に際しては、このフィレット23b(曲線連結部)を考慮しても良い。たとえば、H1000×W350×tw12×tf19で表されるH形鋼1において、一ヶ所のフィレットを、曲率半径18mmの4分の1円として仮定して計算した場合の外周長Lpは3345mmである。一方、同じH形鋼において、フィレットが無い場合、すなわち曲線連結部が無く、ウェブとフランジが直角に連結すると仮定した場合の外周長Lpは3376mmと計算される。このように、フィレットの有無により計算される二種類の外周長Lpの違いは1%程度であり、フィレットの有無が計算結果に及ぼす影響は十分に小さいことが分かる。フィレットの曲率半径は、対象とする圧延H形鋼においては、12mmから20mm程度の範囲であることが一般的であるが、以下の説明ではフィレットの曲率半径を18mmとして計算することとする。
ここで、上記の「H1000×W350×tw12×tf19で表されるH形鋼1」とは、後述の高さ寸法H、幅寸法W、ウェブ板厚tw、及びフランジ板厚tfが、それぞれ、1000mm、350mm、12mm、19mmであるH形鋼1を指す。以後の説明においても同様である。 In the H-section steel 1, the total in cross-sectional shape including the upper and lower surfaces 21 a and both left and right end surfaces 21 b of the upper flange 21, the upper and lower surfaces 22 a and left and right end surfaces 22 b of the lower flange 22, and the left and right side surfaces 23 a of the web 23. The extension is defined as the outer peripheral length Lp in the cross-sectional shapes of the upper flange 21, the lower flange 22 and the web 23. And as for H-section steel 1, when this outer periphery length Lp becomes large, the usage-amount (use amount of surface treatment material), such as a fireproof coating material, a coating material, or plating, will also become large.
In the H-section steel 1 in which the web and the flange are integrally formed, curved connection portions 23b called fillets exist at the junction points (four locations) between the web 23, the upper flange 21 and the lower flange 22. . When calculating the outer peripheral length Lp, the fillet 23b (curve connecting portion) may be taken into consideration. For example, in the H-section steel 1 represented by H1000 × W350 × tw12 × tf19, the outer peripheral length Lp is 3345 mm when it is calculated assuming that one fillet is a quarter circle with a curvature radius of 18 mm. On the other hand, in the same H-section steel, when there is no fillet, that is, when there is no curved connecting portion and the web and the flange are connected at a right angle, the outer peripheral length Lp is calculated as 3376 mm. Thus, the difference between the two types of outer peripheral lengths Lp calculated based on the presence or absence of the fillet is about 1%, and it can be seen that the influence of the presence or absence of the fillet on the calculation result is sufficiently small. The curvature radius of the fillet is generally in the range of about 12 mm to 20 mm in the subject rolled H-section steel, but in the following description, the curvature radius of the fillet is assumed to be 18 mm.
Here, the above-mentioned “H-shaped steel 1 represented by H1000 × W350 × tw12 × t19” means that a height dimension H, a width dimension W, a web plate thickness tw, and a flange plate thickness tf, which will be described later, The H-section steel 1 which is 1000 mm, 350 mm, 12 mm, and 19 mm is pointed out. The same applies to the following description.
H形鋼1では、このウェブ23の板厚twが9mm以上32mm以下であり、上フランジ21及び下フランジ22の板厚tfが12mm以上40mm以下である。 In the H-section steel 1, each of the upper flange 21 and the lower flange 22 has a predetermined plate thickness tf (a distance between the upper and lower surfaces 21a or a distance between the upper and lower surfaces 22a in the height direction Z), and the web 23 is It has a predetermined thickness tw (distance between the left and right side surfaces 23a in the width direction X). In addition, the ratio of the plate thickness tf to the plate thickness tw is set to a plate thickness ratio tw / tf.
In the H-section steel 1, the plate thickness tw of the web 23 is 9 mm or more and 32 mm or less, and the plate thickness tf of the upper flange 21 and the lower flange 22 is 12 mm or more and 40 mm or less.
そのため、外周長Lpを小さくして外周面20の表面積を小さくすることで、表面処理費用を低減させることが要求される。 Further, in the H-section steel 1, when the outer peripheral length Lp in the cross-sectional shapes of the upper flange 21, the lower flange 22, and the web 23 is increased, the surface area of the outer peripheral surface 20 on which surface treatment such as coating is performed also increases. In this case, the amount of use of a surface treatment material such as a fireproof coating material, paint or plating is increased, and the amount of work such as painting is also increased, thereby increasing the cost required for the surface treatment.
Therefore, it is required to reduce the surface treatment cost by reducing the outer peripheral length Lp to reduce the surface area of the outer peripheral surface 20.
そこで、仮に、外法一定H形鋼の単価を12万円/tonとすると、材軸方向Yに長さ10mの梁2においては、鋼材費用が約36.5万円(12万円/ton×0.304ton/m×10m)となるのに対して、塗装材料費用が約33.6万円(1万円/m2×3.36m2/m×10m)となる。すなわち、鋼材費用と塗装材料費用とを比較することにより、建築物等のトータルコストダウンのためには、H形鋼1の鋼重だけでなく、その外周面20の表面積もバランスよく削減することが必要となることがわかる。 In general, for example, an outer-method constant H-section steel (H-section steel represented by H900 × W400 × tw19 × tf28) defined in JIS G 3192 has a steel weight per meter of about 304 kg / m, The surface area per meter is about 3.36 m 2 . Further, for example, when the outer peripheral surface of the outer-method constant H-shaped steel is coated with an expensive fire-resistant paint or cold-resistant paint, the material unit price is, for example, 10,000 yen / m 2 .
Therefore, assuming that the unit price of the H-shape steel with constant outer method is 120,000 yen / ton, the steel material cost in the beam 2 having a length of 10 m in the material axis direction Y is about 36,000 yen (120,000 yen / ton). × 0.304 ton / m × 10 m), while the coating material cost is about 336,000 yen (10,000 yen / m 2 × 3.36 m 2 / m × 10 m). That is, by comparing the cost of steel materials and the cost of coating materials, in order to reduce the total cost of buildings, etc., not only the steel weight of the H-section steel 1 but also the surface area of the outer peripheral surface 20 should be reduced in a balanced manner. It is understood that is necessary.
さらに、H形鋼1の断面形状における断面積をSとする(H形鋼1をその材軸方向Yに垂直な断面で見た場合における、上フランジ21、下フランジ22及びウェブ23の断面積の合計をSとする)と、H形鋼1は、断面積Sと高さ寸法Hとの関係で、上述した表面処理経済性Ix/Lpが、下記(35)式~(38)式により規定される関係を満足する。換言すれば、H形鋼1では、高さ寸法H、幅寸法W、板厚tw、及び板厚tfが下記(35)~(38)式を満足する。これにより、表面処理費用を低減させると同時に、単位重量あたりの曲げ剛性を向上させて、H形鋼1における高さ方向Zの過剰なたわみ変形を抑制することが可能となる。 Specifically, as described above, in the H-section steel 1, the height dimension H is 700 mm or more, the width dimension W is 1/5 or more and 1/2 or less of the height dimension H, and the web 23 The plate thickness tw is 9 mm or more and 32 mm or less, and the plate thickness tf of the flange is 12 mm or more and 40 mm or less.
Furthermore, the cross-sectional area in the cross-sectional shape of the H-section steel 1 is S (the cross-sectional areas of the upper flange 21, the lower flange 22 and the web 23 when the H-section steel 1 is viewed in a cross section perpendicular to the material axis direction Y). And the H-section steel 1 has the above-mentioned surface treatment economics Ix / Lp according to the following formulas (35) to (38). Satisfy the specified relationship. In other words, in the H-section steel 1, the height dimension H, the width dimension W, the sheet thickness tw, and the sheet thickness tf satisfy the following expressions (35) to (38). As a result, the surface treatment cost can be reduced, and at the same time, the bending rigidity per unit weight can be improved, and excessive bending deformation in the height direction Z in the H-section steel 1 can be suppressed.
△印は、「ASTM A6/A6M-10a Annex A2 lists the dimensions of some shape profiles,ASTM International」に示される従来のH形鋼を表す。
◇印は、「BS 4-1Structural steel sections, Part1,British Standard,(2005)」に示される従来のH形鋼である。
□印は、「内法一定H形鋼、JISハンドブック 鉄鋼II,日本規格協会,(2015)」に示される従来のH形鋼である。
○印は、「外法一定H形鋼、JISハンドブック 鉄鋼II,日本規格協会,(2015)」に示される従来のH形鋼である。 Here, all of the existing standards are shown for the conventional H-section steel in FIGS. 4 to 7 as △, ◇, □, and ○ marks, respectively.
A triangle represents a conventional H-section steel indicated in “ASTM A6 / A6M-10a Annex A2 lists the dimensions of some shape profiles, ASTM International”.
The ◇ marks are conventional H-section steels shown in “BS 4-1 Structural steel sections, Part 1, British Standard, (2005)”.
The □ mark is a conventional H-section steel shown in “Constant H-section Steel, JIS Handbook, Steel II, Japanese Standards Association, (2015)”.
A circle indicates a conventional H-section steel shown in “Constant H-section steel, JIS Handbook, Steel II, Japanese Standards Association, (2015)”.
例えば、H1500×W350×tw19×tf40、H1500×W400×tw22×tf40、及びH1500×W500×tw16×tf36のH形鋼の場合、k≒8(かつk<8)であり、F=345として、後述する実施例と同じ方法で計算すると、座屈補剛間隔LbがH(=1500mm)の15倍を超えるまで横座屈が生じないことが確認できる。 In addition, the H-section steel 1 avoids a decrease in yield strength due to occurrence of lateral buckling, avoids a decrease in energy absorption performance during an earthquake, and prevents the web from wavy or twisted during rolling. From this viewpoint, the width dimension W of the H-section steel 1 is set to 1/5 or more of the height dimension H, and k ≦ 8 in the above expressions (35) to (37). For example, the surface treatment economics Ix / Lp of H-section steel 1 represented by H1200 × W160 × tw7 × tf16 is relatively high, that is, the value of k in FIG. 5 is relatively large and k> 8. In this H-section steel 1, even if calculation based on the design method of the present invention described later is performed, a sufficiently high bending strength cannot be obtained (in the case of calculation under the same conditions as the examples described later, Lateral buckling occurs in a range where the bending stiffening interval Lb is shorter than about 15 times the length of H, and the design yield strength for the total plastic moment Mp obtained by the product of the total plastic section modulus Zxp around the strong axis and the steel F value The ratio drops to about 75%), and there is a risk that sufficient earthquake resistance cannot be ensured. Based on such examination, an upper limit value of k ≦ 8 is set.
For example, in the case of H-shaped steel of H1500 × W350 × tw19 × tf40, H1500 × W400 × tw22 × tf40, and H1500 × W500 × tw16 × tf36, k≈8 (and k <8), and F = 345, When calculated by the same method as in Examples described later, it can be confirmed that the lateral buckling does not occur until the buckling stiffening interval Lb exceeds 15 times H (= 1500 mm).
ここで、実施例1は、高さ寸法H=1150mm、幅寸法W=300mm、ウェブ板厚tw=32mm、フランジ板厚tf=40mmであり、上記(35)式~(38)を満たす(H1150×W300×tw32×tf40)。
実施例2は、高さ寸法H=1100mm、幅寸法W=280mm、ウェブ板厚tw=16mm、フランジ板厚tf=30mmであり、上記(35)式~(38)を満たす(H1100×W280×tw16×tf30)。
実施例3は、高さ寸法H=1000mm、幅寸法W=250mm、ウェブ板厚tw=12mm、フランジ板厚tf=16mmであり、上記(35)式~(38)を満たす(H1000×W250×tw12×tf16)。
実施例4は、高さ寸法H=950mm、幅寸法W=250mm、ウェブ板厚tw=11mm、フランジ板厚tf=25mmであり、上記(35)式~(38)を満たす(H950×W250×tw11×tf25)。
実施例5は、高さ寸法H=850mm、幅寸法W=200mm、ウェブ板厚tw=10mm、フランジ板厚tf=16mmであり、上記(35)式~(37)を満たす(H850×W200×tw10×tf16)。 In addition, in FIG. 6, the Example of H-section steel 1 is enumerated and enumerated by * mark.
Here, in Example 1, the height dimension H = 1150 mm, the width dimension W = 300 mm, the web plate thickness tw = 32 mm, and the flange plate thickness tf = 40 mm, which satisfy the above expressions (35) to (38) (H1150 * W300 * tw32 * tf40).
In Example 2, the height dimension H = 1100 mm, the width dimension W = 280 mm, the web plate thickness tw = 16 mm, and the flange plate thickness tf = 30 mm, which satisfy the above expressions (35) to (38) (H1100 × W280 × tw16 × tf30).
In Example 3, the height dimension H = 1000 mm, the width dimension W = 250 mm, the web plate thickness tw = 12 mm, and the flange plate thickness tf = 16 mm, which satisfy the above expressions (35) to (38) (H1000 × W250 × tw12 × tf16).
In Example 4, the height dimension H = 950 mm, the width dimension W = 250 mm, the web plate thickness tw = 11 mm, and the flange plate thickness tf = 25 mm, which satisfy the above expressions (35) to (38) (H950 × W250 × tw11 × tf25).
In Example 5, the height dimension H = 850 mm, the width dimension W = 200 mm, the web plate thickness tw = 10 mm, and the flange plate thickness tf = 16 mm, which satisfy the above expressions (35) to (37) (H850 × W200 × tw10 × tf16).
また、Ix/Lpの下限は例えば35であってもよいが、Ix/Lpが50を下回ると表面処理経済性Ix/Lpが小さくなり過ぎるため、表面処理費用を低減させると同時に曲げ剛性を向上させる観点からは、Ix/Lpの下限は50であることが好ましい。
なお、H/Sの上限値は、0.065(H/S≦0.065)であることが好ましく、0.060(H/S≦0.060)であることがより好ましい。 In addition, as shown in FIG. 7, the H-section steel 1 preferably satisfies H / S ≧ 0.015 and Ix / Lp ≧ 50 in the above equation (35). When the value of H / S is less than 0.015, for example, a special ultra-thick H-shaped steel having a flange plate thickness exceeding 60 mm is used, and used for the floor structure of a building to which the present invention is applied. Because it is difficult to be done. Moreover, in such a case, H becomes as small as 500 mm or less, and it becomes a pillar use of a building.
The lower limit of Ix / Lp may be 35, for example, but if Ix / Lp is less than 50, the surface treatment economics Ix / Lp becomes too small, so that the surface treatment cost is reduced and the bending rigidity is improved. From the viewpoint of making it possible, the lower limit of Ix / Lp is preferably 50.
The upper limit of H / S is preferably 0.065 (H / S ≦ 0.065), and more preferably 0.060 (H / S ≦ 0.060).
なお、ここでは、全塑性モーメントMpの値がほぼ同じになるように断面寸法を設定しているため、G列、I列の値はほぼ同じになっている。また、J列には後述する本発明の設計法に基づき計算した設計耐力Mcn(本発明に基づく計算結果)を、K列にはH900×W400×tw22×tf40の全塑性モーメントMp(表1においては、この値をMpoと定義)に対する各H形鋼の設計耐力Mcnの比を、L列には従来設計法に基づき計算した設計耐力Mcc(従来技術に基づく計算結果)を、M列には全塑性モーメントMpoに対する各H形鋼の設計耐力Mccの比を、それぞれ示している。 FIG. 10 is a graph of the calculation results shown in Table 1. Columns A to I in Table 1 show the cross-sectional specifications of each H-section steel. In the A row, the cross-sectional area S is shown, and in the B row, the ratio of the cross-sectional area of other H-section steels to the cross-sectional area of H900 × W400 × tw22 × tf40, which is an H-section steel as a basis for performance comparison. The outer circumferential length Lp is shown in row C, and the ratio of the outer circumferential length of other H-section steels to the outer circumferential length Lp of the basic H-section steel (H900 × W400 × tw22 × tf40) is shown in row D. Row E shows the cross-sectional secondary moment Ix around the strong axis, and row F shows the ratio of the cross-sectional secondary moments of other H-section steels to the basic cross-section secondary moment Ix of the H-section steel. The G column shows the total plastic section modulus Zxp around the strong axis, the H column shows the steel F value, and the I column shows the total plastic moment Mp obtained by the product of Zxp and F.
Here, since the cross-sectional dimensions are set so that the values of the total plastic moment Mp are substantially the same, the values in the G column and the I column are substantially the same. The column J is the design strength Mcn (calculated based on the present invention) calculated based on the design method of the present invention, which will be described later, and the column K is the total plastic moment Mp of H900 × W400 × tw22 × tf40 (in Table 1). Is the ratio of the design strength Mcn of each H-section steel to the Mpo), the L column is the design strength Mcc calculated based on the conventional design method (calculated based on the prior art), and the M column is The ratio of the design yield strength Mcc of each H-section steel to the total plastic moment Mpo is shown.
一方、本発明の設計法とは、同書に示される弾性横座屈モーメントの導出式を後述する下記(12)式に置き換えて、従来設計法と同様に耐力係数を1.0として計算したものである。なお、本発明の設計法において下記(12)式を利用する際は、図13に示す水平荷重による逆対称曲げを受ける梁(実線)に、鉛直荷重が重ねて作用した場合(破線)を対象として計算している。
また、座屈補剛長さLbは何れの場合も20mとし、鋼材F値は何れの場合も325N/mm2としている。 The above-mentioned conventional design method is calculated based on the calculation of the H-shaped cross section shown in the steel structure limit state design guideline and explanation of the Architectural Institute of Japan, with a yield coefficient of 1.0.
On the other hand, the design method of the present invention is calculated by replacing the derivation formula of the elastic lateral buckling moment shown in the same book with the following equation (12) and calculating the proof stress coefficient as 1.0 as in the conventional design method. is there. In addition, when the following formula (12) is used in the design method of the present invention, a case where a vertical load acts on a beam (solid line) subjected to an antisymmetric bending due to a horizontal load shown in FIG. 13 (broken line) is an object. It is calculated as.
The buckling stiffening length Lb is 20 m in any case, and the steel material F value is 325 N / mm 2 in any case.
(a)両材端が柱に剛接合され、中間が横補剛されていない梁:klb=0.75×lb
(b)一端が柱に剛接合され、他端が横座屈補剛材によって横補剛されている梁の区間、両端が横座屈補剛材によって横補剛されている梁の区間、および母屋、胴縁などの曲げ材:klb=0.75×lb
(c)単純梁:klb=lb The cases for the lateral buckling length k l b are as follows.
(A) A beam in which the ends of both members are rigidly joined to the column and the middle is not laterally stiffened: k l b = 0.75 × l b
(B) A beam section in which one end is rigidly joined to a column and the other end is laterally stiffened by a lateral buckling stiffener, a beam section in which both ends are laterally stiffened by a lateral buckling stiffener, and a purlin , Bending materials such as trunk edges: k l b = 0.75 × l b
(C) Simple beam: k l b = l b
(a)横座屈補剛区間内で曲げモーメントが直線的に変化する場合:下記(1.b)式
(b)横座屈補剛区間内で中間曲げモーメントが最大となる場合:Cb=1.0
(c)中間に横座屈補剛支点をもたない単純梁:
(i)等分布荷重が作用する場合:Cb=1.3
(ii)中央集中荷重が作用する場合:Cb=1.36 It is as follows for the case classification moment coefficient C b.
(A) When the bending moment changes linearly in the lateral buckling stiffening section: (b) Equation (b) below When the intermediate bending moment is maximum in the lateral buckling stiffening section: C b = 1 .0
(C) Simple beam with no lateral buckling stiffening fulcrum in the middle:
(I) When uniformly distributed load is applied: C b = 1.3
(Ii) When central concentrated load is applied: C b = 1.36
そして、横座屈細長比λbの値と、弾性限界細長比eλbおよび塑性限界細長比pλbとの大小関係の場合分け、および、各場合における横座屈限界耐力Mc(公称耐力)は以下のようになる。
(a)λb≦pλb :Mc=Mp
(b)pλb<λb≦eλb :下記(1.c)式
(c)λb>eλb :下記(1.d)式 M 2 / M 1 in the above formula (1.b) represents the bending moment ratio of both ends of the material or the lateral buckling stiffening end.
Then, the value of the abscissa屈細length ratio lambda b, divided if the magnitude relationship between the elastic limit slenderness e lambda b and plastic limit slenderness ratio p lambda b, and, Lateral in each case屈限field strength M c (nominal yield strength) Is as follows.
(A) λ b ≦ p λ b : M c = M p
(B) p λ b <λ b ≦ e λ b : Formula (1.c) below (c) λ b > e λ b : Formula (1.d) below
(a)横座屈補剛区間内で曲げモーメントが直線的に変化する場合:下記(1.f)式
(b)横座屈補剛区間内で中間曲げモーメントが最大となる場合:pλb=0.3 Further, the elastic limit slenderness ratio e λ b is 1 / √0.6. The plastic limit slenderness ratio p λ b is classified as follows.
(A) When the bending moment changes linearly within the lateral buckling stiffening section: (b) When the intermediate bending moment becomes maximum within the lateral buckling stiffening section: p λ b = 0.3
図10に示すように、従来設計法のもとでは、幅寸法Wに対して高さ寸法Hを相対的に大きくすることで、曲げ剛性(∝強軸まわりの断面二次モーメントIx)を増大させて、また、鋼材重量(∝断面積S)を減少させることができる一方で、曲げ耐力(∝「強軸まわりの断面係数Zxp」と「許容曲げ応力度fc」との積で与えられる「許容曲げ耐力」)は低下する傾向にあることがわかる。これは、強軸まわりの断面係数Zxは、Zx=Ix/(H/2)として表されることから、Ixが同じであれば、Hが大きくなるとZxが小さくなる傾向にあること(理由1)と、許容曲げ応力度fcは、梁2に発生する横座屈を考慮して低減させる必要があり、高さ寸法Hが相対的に大きくなるほど、横座屈が発生しやすくなること(理由2)によるものである。 The horizontal axis of the graph shown in FIG. 10 indicates four types of H-section steel, and the vertical axis indicates the ratio of the cross-sectional area S (value shown in the B column of Table 1) and the ratio of the outer peripheral length (in the D column of Table 1). Value), cross-sectional secondary moment ratio around the strong axis (value shown in column F of Table 1), design yield ratio based on the design method of the present invention (value shown in column K of Table 1), and conventional design The ratios of design proof strength based on the law (values shown in column M in Table 1) can be compared.
As shown in FIG. 10, under the conventional design method, the bending dimension (secondary moment Ix around the strong axis) is increased by increasing the height dimension H relative to the width dimension W. In addition, the steel material weight (∝ cross-sectional area S) can be reduced, while the bending strength (∝ given by the product of “the section modulus Zxp around the strong axis” and “allowable bending stress degree fc” is given. It can be seen that the “allowable bending strength” tends to decrease. This is because the section modulus Zx around the strong axis is expressed as Zx = Ix / (H / 2). Therefore, if Ix is the same, Zx tends to decrease as H increases (reason 1). ) And the allowable bending stress fc need to be reduced in consideration of the lateral buckling that occurs in the beam 2, and as the height dimension H is relatively increased, lateral buckling is more likely to occur (reason 2). Is due to.
梁2の上フランジ21は、その中心線0-0´上でX方向の変位(横移動)が拘束されているものとする。梁2の端部2aの幾何学的境界条件は、横座屈変形を近似する級数の端末条件によって規定される。なお、梁2は、横座屈によって0-0´を既定の回転軸とする曲げねじりが生じるとともに、二次の微小変形としてたわみが生じる。この解析では、上フランジ21、下フランジ22及びウェブ23を平板として扱って、横座屈に対する梁2の強さは、上フランジ21及び下フランジ22の面内の曲げ剛性と、上フランジ21、下フランジ22及びウェブ23のねじり剛性に支配されるものとする。 <Geometric boundary conditions>
The upper flange 21 of the beam 2 is assumed to be restrained from displacement (lateral movement) in the X direction on its center line 0-0 ′. The geometric boundary condition of the end 2a of the beam 2 is defined by a series of terminal conditions approximating lateral buckling deformation. The beam 2 undergoes bending torsion with 0-0 'as a predetermined rotation axis due to lateral buckling, and also bends as a secondary minor deformation. In this analysis, the upper flange 21, the lower flange 22 and the web 23 are treated as flat plates. The strength of the beam 2 against lateral buckling is determined by the bending rigidity in the plane of the upper flange 21 and the lower flange 22, the upper flange 21, and the lower flange. It is assumed that it is governed by the torsional rigidity of the flange 22 and the web 23.
梁2の中間部2bで0-0´上に中間荷重として鉛直等分布荷重Wcrが作用するものとする。また、梁2の右側の端部2aに曲げモーメントMcr及びせん断力Vcrが作用し、梁2の左側の端部2aにこれらとつり合う曲げモーメントM及びせん断力Vが作用するものとする。このとき、McrとVcr及びWcrとの関係は、力のつり合い条件より、それぞれ、下記(1)式、(2)式で表すことができる。 <Mechanical boundary conditions>
It is assumed that a vertically evenly distributed load W cr acts as an intermediate load on 0-0 ′ at the intermediate portion 2b of the beam 2. Further, it is assumed that a bending moment M cr and a shearing force V cr act on the right end 2 a of the beam 2, and a bending moment M and a shearing force V that balance these act on the left end 2 a of the beam 2. At this time, the relationship between M cr , V cr, and W cr can be expressed by the following equations (1) and (2), respectively, based on the force balance condition.
横座屈を線形座屈問題として扱うために、横座屈による梁2の各部の変形を材軸方向の座標値(つまり、梁2の左側の端部2aから梁2の材軸方向の任意の点までの長さ)yの連続関数として表しておく。このとき、横座屈によって梁2に生じる横断面のねじり角θyは、図9A~図9Cに示すように、材軸方向Yになだらかに連続するはずである。 <Generalized displacement>
In order to treat the lateral buckling as a linear buckling problem, the deformation of each part of the beam 2 due to the lateral buckling is a coordinate value in the material axis direction (that is, an arbitrary point in the material axis direction of the beam 2 from the left end 2a of the beam 2). It is expressed as a continuous function of length y). At this time, the torsion angle θ y of the cross section generated in the beam 2 due to the lateral buckling should be smoothly continuous in the material axis direction Y as shown in FIGS. 9A to 9C.
梁2に横座屈が生じるとき、この系の全ポテンシャルエネルギーΠは、下記(6)式で与えられる。 <Potential energy>
When lateral buckling occurs in the beam 2, the total potential energy の of this system is given by the following equation (6).
材軸方向Yの両端部2a,2aが固定支持された梁2に許容される任意のθyは、有限級数によって任意の精度で近似することができる。 <Approximation of lateral buckling deformation>
Arbitrary θ y allowed for the beam 2 in which both ends 2a, 2a in the material axis direction Y are fixedly supported can be approximated with arbitrary accuracy by a finite series.
対称座屈を解く場合はkを1とし、上記(10)式を梁2の長さlの1/2の部分に適用する。 Here, a n is the undetermined coefficients of the n items. When solving the asymmetric buckling, k is set to 2.
When solving the symmetric buckling, k is set to 1 and the above equation (10) is applied to a half of the length l of the beam 2.
最小ポテンシャルエネルギーの原理より、下記(11)式に、上記(7)式及び(8)式を代入し、さらに上記(1)式~(5)式を代入することで、弾性横座屈モーメントの基本式として、下記(12)式を得られる。 <Derivation of elastic lateral buckling moment>
From the principle of minimum potential energy, substituting the above formulas (7) and (8) into the following formula (11) and further substituting the above formulas (1) to (5), the elastic lateral buckling moment The following equation (12) can be obtained as a basic equation.
上記(9)式又は(10)式の級数によってθyを近似する場合について、弾性横座屈モーメントの解析解を求める。未定係数列(an)に関して上記(12)式を最小にするための必要条件は、下記(17)式から求められ、これらの微分を行うことで下記(18)式を得られる。なお、下記(18)式中のfnmは下記(19)式で表わされる。 <Minimum conditions>
An analytical solution of the elastic lateral buckling moment is obtained for the case where θ y is approximated by the series of the above equation (9) or (10). Undetermined coefficient sequence (a n) requirements to minimize equation (12) with respect to is determined from the following equation (17), we obtained the following equation (18) by performing these differential. In addition, f nm in the following formula (18) is represented by the following formula (19).
上記(17)式が未定係数a1、a2、… 、anの少なくとも1つに対してゼロ以外の値を与えるとき、座屈の可能性が生じる。このため、上記(17)式の係数行列の行列式はゼロでなければならない。すなわち、下記(25)式のN次方程式を解くことで、弾性横座屈モーメントの解析解を得ることができる。 <Analysis solution>
The (17) equation is undetermined coefficients a 1, a 2, ..., when providing a value other than zero for at least one a n, the possibility of buckling occurs. For this reason, the determinant of the coefficient matrix of the above equation (17) must be zero. That is, an analytical solution of the elastic lateral buckling moment can be obtained by solving the Nth order equation of the following equation (25).
換言すれば、上述した従来設計法と同様に耐力係数を1.0として、本発明の設計法により計算した設計耐力Mcnが、全塑性モーメントMpより著しく小さくならない範囲で、より具体的には、全塑性モーメントMpを下記(12)式~(16)式から算出した弾性横座屈モーメントMcrで除した値の平方根が0.6以下(√(Mp/Mcr)≦0.6)となるように、表面処理経済性Ix/Lpの上限値を決定し、この上限値以下になるように、H形鋼1の各寸法(高さ寸法H、幅寸法W、ウェブ板厚tw、およびフランジ板厚tf)を設定することが好ましい。この場合の一例として、座屈補剛間隔LbがHの15倍程度である場合のMcnについて、Mcn/Mp≧0.95を満足するように、表面処理経済性Ix/Lpの上限値を決定することが挙げられる。 At this time, the minimum positive value in the actual solution of the equation (26) is the primary elastic lateral buckling moment of the beam 2. The H-section steel 1 is used as a beam 2 extending in the material axis direction Y, and both end portions 2a and 2a in the material axis direction Y are fixed, and in the intermediate portion 2b in the material axis direction Y, the width direction of the beam 2 Under the conditions in which the lateral movement of X is constrained, an intermediate load acts on the upper flange 21 from above, and end loads act on both ends 2a, 2a of the beam 2 in the material axis direction, (16) based on the elastic Lateral buckling moment M cr of the beam 2, which is calculated from the formula, such does not occur Lateral buckling the beam 2, the upper limit of the surface treatment economics Ix / Lp is determined is preferred.
In other words, assuming that the proof stress coefficient is 1.0 as in the conventional design method described above, more specifically, the design proof strength Mcn calculated by the design method of the present invention is not significantly smaller than the total plastic moment Mp. The square root of the value obtained by dividing the total plastic moment Mp by the elastic lateral buckling moment M cr calculated from the following equations (12) to (16) is 0.6 or less (√ (Mp / M cr ) ≦ 0.6). Thus, the upper limit value of the surface treatment economics Ix / Lp is determined, and each dimension of the H-section steel 1 (height dimension H, width dimension W, web plate thickness tw, and flange is set to be equal to or less than the upper limit value. It is preferable to set the plate thickness tf). As an example of this case, the upper limit value of the surface treatment economics Ix / Lp is determined so that Mcn / Mp ≧ 0.95 is satisfied for Mcn when the buckling stiffening interval Lb is about 15 times H. To do.
また、lは、梁2の材軸方向Yの長さ、Eは、ヤング係数、Iは、下フランジ22の弱軸まわりの断面二次モーメント、Gは、せん断弾性係数、Jは、サン・ブナンのねじり定数、dbは、上フランジ21と下フランジ22との板厚中心間距離、yは梁の材軸方向の基準となる一端部から梁の材軸方向の任意の点までの長さである。θyは、横座屈によって梁2に生じるねじり角である。θ’yはθyの一階微分、θ”yはθyの二階微分を表す。aは積分のための助変数である。 Here, β and γ are coefficients determined from the following equations (1) and (2) according to the presupposed load conditions V cr and W cr . V cr is a shearing force acting on the end 2 a of the beam 2 in the material axial direction Y, and W cr is an intermediate load acting on the intermediate portion 2 b of the beam 2 in the material axial direction Y.
1 is the length of the beam 2 in the material axis direction Y, E is the Young's modulus, I is the secondary moment of inertia about the weak axis of the lower flange 22, G is the shear elastic modulus, J is the sun torsional constant of safe, d b is the thickness center distance between the upper flange 21 and lower flange 22, y is from one end portion serving as a timber axis direction of the reference beam to any point of the timber axis beam length That's it. θ y is a torsion angle generated in the beam 2 by lateral buckling. theta 'y is the first derivative of θ y, θ "y is .a representing the second derivative of theta y are auxiliary variables for integration.
ここに示す事例は、従来設計法と本発明の設計法との比較を行うために、耐力係数を1.0としているが、耐力係数は実情に合わせて適切に設定することができる。なお、本発明の設計法では、弾性横座屈モーメントの導出式を上記(12)式で与えているが、実際の部材設計では、鋼材の降伏や初期不整の影響等を考慮したうえで、弾性横座屈モーメントを設計耐力に変換する必要がある。ここでは、上述のとおり日本建築学会の鋼構造限界状態設計指針・同解説に準ずる例を示すが、本書に示す弾性横座屈モーメントから設計耐力への変換計算は、他の設計指針や設計基準に従ってもよい。また、H形鋼梁に作用する曲げモーメントは、図13に示す水平荷重による逆対象曲げを受ける梁(実線)に、鉛直荷重が作用した場合(破線)を対象として計算するが、図11A~図11Dに示す他の荷重ケースにおいても同様の効果が得られる。 Table 2 shows Examples 1 to 5 and shows a comparison with the conventional design method in the design strength of the bending material to be the beam 2. The calculation of the design strength of the bending material performed here is as follows. For the conventional design method, the yield strength coefficient is set to 1. based on the calculation of the H-shaped cross section shown in the steel structure limit state design guideline and explanation of the Architectural Institute of Japan. Calculate as 0. In the calculation of the embodiment based on the design method of the present invention, the derivation formula of the elastic lateral buckling moment shown in the same book is replaced with the above equation (12), and the proof stress coefficient is 1.0 as in the conventional design method. did.
In the example shown here, in order to compare the conventional design method with the design method of the present invention, the proof stress coefficient is set to 1.0, but the proof stress coefficient can be appropriately set according to the actual situation. In the design method of the present invention, the derivation formula of the elastic lateral buckling moment is given by the above formula (12). However, in the actual member design, the elasticity of the steel material is considered after taking into account the influence of the yield of the steel material and initial imperfections. It is necessary to convert the lateral buckling moment into the design strength. Here, as described above, an example based on the Japan Institute of Architectural Steel Structural Limit State Design Guidelines and explanations is shown, but the conversion calculation from the elastic lateral buckling moment shown in this document to the design strength is in accordance with other design guidelines and design standards. Also good. The bending moment acting on the H-shaped steel beam is calculated for the case where a vertical load is applied (broken line) to the beam subjected to the reverse bending due to the horizontal load shown in FIG. 13 (broken line). Similar effects can be obtained in other load cases shown in FIG. 11D.
また、表2のE列~G列には本発明の設計法に基づき計算した結果(本発明に基づく計算結果)を、H列~J列には従来設計法に基づき計算した結果(従来技術に基づく計算結果)を、K列およびL列には本発明の設計法と従来設計法との比較を示している。E列には、本発明の設計法に基づき計算した横座屈補剛無しとできる座屈長さ(Lon)を、H列には従来設計法に基づき計算した横座屈補剛無しとできる座屈長さ(Loc)を、K列に両者の比較を示している。
K列に示される数値から、本発明の設計法に基づくことで座屈補剛を無しとできる長さを4倍以上にできることが分かる。また、K列に示される数値から、従来設計法において仮に実施例に示す表面処理経済性の高い圧延H形鋼を製造した場合、構造経済性を保つことができず、すなわち多くの横座屈補剛材を設置する必要が生じるため、このような表面処理経済性の高い圧延H形鋼が従来利用されなかったことが示される。
E列の示す値(Lon)は、本発明の設計法において、横座屈補剛を設置せずに、全塑性モーメント(Mp)を発揮できる限界座屈長さ(Lon)である。そのため、全塑性モーメントMpに対するMcnの比は、G列に示すとおり全て1.0となる。同数値が1.0の場合、鋼材F値が低減されず、その鋼材F値をそのまま横座屈に対する短期許容応力度として利用できる。一方、I列に示す設計耐力Mccは、従来設計法に基づき、本発明の設計法と同じ限界座屈長さ(Lon)に設定し、横補剛材を設けない場合の設計耐力を計算したものである。設計耐力Mccの全塑性モーメントMpに対する比は、J列に示すとおり、最大でも0.52であり、最小は0.28まで低下する。この数値が低いことからも、従来設計法では、実施例に示される表面処理経済性の高い圧延H形鋼が製造されないことが重ねて理解できる。
なお、L列に示す値は、Lonにおける設計耐力の比較を示すものである、本発明の設計法に基づく設計耐力が従来設計法の1.9倍から3.8倍に及ぶことが分かる。 Table 2 shows the secondary moment of inertia around the strong axis (Ix), the plastic section modulus around the strong axis (Zxp), the design strength of the steel (F), and the total plastic moment expressed by the product of Zxp and F. (Mp) is shown in columns A to D, respectively. Note that F in Table 2 is a design reference strength (a value called a steel material F value) determined based on the yield point of the steel material. In addition, you may use the yield strength of steel materials as F. In the embodiment, although the F and 325N / mm 2 ~ 385N / mm 2, the present invention has to provide a resilient buckling moment, the value of the F value can be used widely.
In Table 2, columns E to G are calculated based on the design method of the present invention (calculation results based on the present invention), and columns H to J are calculated based on the conventional design method (conventional technology). Comparison results between the design method of the present invention and the conventional design method are shown in the K and L columns. The row E is the buckling length (Lon) that can be obtained without the lateral buckling stiffening calculated based on the design method of the present invention, and the row H is the buckling that can be done without the lateral buckling stiffening calculated based on the conventional design method. The length (Loc) is compared in the K column.
It can be seen from the numerical values shown in the K column that the length capable of eliminating buckling stiffening can be increased by four times or more based on the design method of the present invention. In addition, from the numerical values shown in the K column, when the rolled H-section steel with high surface treatment economy shown in the examples in the conventional design method is manufactured, the structural economy cannot be maintained, that is, many lateral buckling compensations. Since it is necessary to install a rigid material, it is shown that such a rolled H-section steel with high surface treatment economy has not been used conventionally.
The value (Lon) indicated by the E column is the limit buckling length (Lon) that can exhibit the total plastic moment (Mp) without installing lateral buckling stiffening in the design method of the present invention. Therefore, the ratio of Mcn to the total plastic moment Mp is 1.0 as shown in the G column. When the same numerical value is 1.0, the steel material F value is not reduced, and the steel material F value can be used as it is as a short-term allowable stress degree for lateral buckling. On the other hand, the design strength Mcc shown in row I was set to the same limit buckling length (Lon) as the design method of the present invention based on the conventional design method, and the design strength in the case where no lateral stiffener was provided was calculated. Is. The ratio of the design proof stress Mcc to the total plastic moment Mp is 0.52 at the maximum as shown in the J column, and the minimum decreases to 0.28. From this low value, it can be understood that the conventional design method does not produce the rolled H-section steel with high surface treatment economy shown in the examples.
The values shown in the L column indicate a comparison of design strength in Lon. It can be seen that the design strength based on the design method of the present invention ranges from 1.9 times to 3.8 times that of the conventional design method.
既に示した各実施例に対して、ウェブ板厚twおよびフランジ板厚tfを一定とし、従来技術、すなわちkが6.1未満になるように、H形鋼の高さ寸法Hおよび幅寸法Wを設定した。すなわち、実施例1に対する比較例1としてH1050×W404×tw32×tf40を、実施例2に対する比較例2としてH1000×W369×tw16×tf30を、実施例3に対する比較例3としてH900×W352×tw12×tf16を、実施例4に対する比較例4としてH900×W291×tw11×tf25を、実施例5に対する比較例5としてH800×W243×tw10×tf16を設定している。
表3のA列~C列には、順に強軸まわりの断面二次モーメント(Ix)、塑性断面係数(Zxp)、および鋼材F値(F)を示す。そして、ZxpとFとの積として算出される全塑性モーメント(Mp)をD列に、断面積(S)をE列に、外周長(Lp)をF列に示している。
実施例と比較例を比較するためには、横座屈の設計耐力が必要になるが、ここでは、座屈長さLbが高さ寸法Hの15倍になるときの設計耐力(M15)に基づき行っている。圧延H形鋼の設計耐力(M15)は表2で示す条件と同じであり、それぞれの計算結果はH列に示すとおりである。なお、G列には、設計耐力(M15)の全塑性耐力(Mp)に対する比率を示している。G列に示すように、実施例においてはFの低減はない一方、比較例においては0.45から0.76の比率でFが低減していることがわかる。 In Table 2, the present invention was compared with the prior art with respect to the design method after making the examples constant. In Table 3, the significance of the present invention will be described through determining the rolled H-section steel in the range defined as the prior art in FIG. 6 for each of the Examples and making a specific comparison with them.
For each of the examples already shown, the height dimension H and the width dimension W of the H-section steel so that the web thickness tw and the flange thickness tf are constant and the prior art, that is, k is less than 6.1. It was set. That is, H1050 × W404 × tw32 × tw40 as Comparative Example 1 for Example 1, H1000 × W369 × tw16 × tf30 as Comparative Example 2 for Example 2, and H900 × W352 × tw12 × as Comparative Example 3 for Example 3. As tf16, H900 × W291 × tw11 × tf25 is set as Comparative Example 4 with respect to Example 4, and H800 × W243 × tw10 × tf16 is set as Comparative Example 5 with respect to Example 5.
Columns A to C in Table 3 show the secondary moment of inertia (Ix), the plastic section modulus (Zxp), and the steel material F value (F) around the strong axis in this order. The total plastic moment (Mp) calculated as the product of Zxp and F is shown in the D column, the cross-sectional area (S) is shown in the E column, and the outer peripheral length (Lp) is shown in the F column.
In order to compare the example and the comparative example, the design strength of lateral buckling is required. Here, based on the design strength (M15) when the buckling length Lb is 15 times the height dimension H. Is going. The design yield strength (M15) of the rolled H-section steel is the same as the conditions shown in Table 2, and the respective calculation results are as shown in the H column. The G column shows the ratio of the design strength (M15) to the total plastic strength (Mp). As shown in the G column, it can be seen that F does not decrease in the example, but F decreases in the ratio of 0.45 to 0.76 in the comparative example.
K列およびL列の値から、断面積(S)は0.90から0.94の範囲で、また外周長(Lp)は0.93から0.98の範囲で低下していることが分かる。
また、M列の値から設計耐力(M15)は1.05から2.29の範囲で増大していることが分かる。性能については総合的な評価を行う必要があるが、たとえばI列からM列に示す各値のうち、大きい方が望ましい値であるIxとZxpを分子に、小さい方が望ましい値であるSとLpを分母において導出した参考値をN列に示している。
この指標に基づくと従来技術に対して1.21から2.50の倍率の範囲で性能が向上しているといえる。 The superiority of the embodiment over the comparative example can be confirmed by the values from the I column to the N column. Each column shows a relative value of each value of the example when each value of the comparative example is 1. The Ix values in the examples are all 1.00 because the dimensions are determined so that Ix in the comparative example matches the examples. From the values in the J column, it can be seen that the relative value of the example in Zxp of the example decreases in the range of 0.93 to 0.96. This is because the height dimension (H) of the example is larger than that of the comparative example.
From the values in the K and L rows, it can be seen that the cross-sectional area (S) decreases in the range of 0.90 to 0.94, and the outer peripheral length (Lp) decreases in the range of 0.93 to 0.98. .
Further, it can be seen from the values in the M row that the design yield strength (M15) increases in the range of 1.05 to 2.29. The performance needs to be comprehensively evaluated. For example, among the values shown in the I column to the M column, Ix and Zxp, which are the larger values, are the numerator, and S, which is the smaller value, is the desirable value. Reference values derived from Lp in the denominator are shown in the N column.
Based on this index, it can be said that the performance is improved in the magnification range of 1.21 to 2.50 over the prior art.
2 :梁
2a :端部
2b :中間部
20 :外周面
21 :上フランジ
21a :上下両面
21b :左右両端面
22 :下フランジ
22a :上下両面
22b :左右両端面
23 :ウェブ
23a :左右両側面
23b :曲線連結部(フィレット)
25 :シヤコネクタ
3 :柱
30 :ダイアフラム
4 :床スラブ
X :幅方向
Y :材軸方向
Z :高さ方向 1: Rolled H-section steel 2: Beam 2a: End 2b: Intermediate part 20: Outer peripheral surface 21: Upper flange 21a: Upper and lower both surfaces 21b: Left and right both end surfaces 22: Lower flange 22a: Upper and lower both surfaces 22b: Left and right both end surfaces 23: Web 23a: Left and right side surfaces 23b: Curve connecting portion (fillet)
25: Shear connector 3: Column 30: Diaphragm 4: Floor slab X: Width direction Y: Material axis direction Z: Height direction
Claims (5)
- 上フランジ及び下フランジと、これら上フランジ及び下フランジを連結するウェブとを有しかつ、前記上フランジ、前記下フランジ、及び前記ウェブの外周面が表面処理される圧延H形鋼を設計する方法であって、
材軸方向に垂直な断面で見た場合の断面形状における外周長Lpで強軸まわりの断面二次モーメントIxを除した値を表面処理経済性Ix/Lpとし、前記断面形状の面積をSとしたとき、下記(35)式~(38)式を満足すると共に、前記上フランジから前記下フランジまでの高さ寸法Hが700mm以上であり、前記上フランジおよび前記下フランジの各々の幅寸法Wが前記高さ寸法Hの1/5以上かつ1/2以下であり、前記ウェブの板厚twが9mm以上32mm以下であり、前記上フランジ及び前記下フランジの各々の板厚tfが12mm以上40mm以下であるように、前記高さ寸法H、前記幅寸法W、前記板厚tw、および前記板厚tfを設定する
ことを特徴とする、圧延H形鋼の設計方法。
The value obtained by dividing the cross-sectional secondary moment Ix around the strong axis by the outer peripheral length Lp in the cross-sectional shape when viewed in a cross-section perpendicular to the material axis direction is the surface treatment economic Ix / Lp, and the area of the cross-sectional shape is S When satisfying the following expressions (35) to (38), the height dimension H from the upper flange to the lower flange is 700 mm or more, and the width dimension W of each of the upper flange and the lower flange Is 1/5 or more and 1/2 or less of the height dimension H, the thickness tw of the web is 9 mm or more and 32 mm or less, and the thickness tf of each of the upper flange and the lower flange is 12 mm or more and 40 mm. The method for designing rolled H-section steel, wherein the height dimension H, the width dimension W, the plate thickness tw, and the plate thickness tf are set as follows.
- 前記圧延H形鋼が前記材軸方向に延びる梁として用いられかつ、前記圧延H形鋼の前記材軸方向の両端部が固定される条件、前記材軸方向の中間部において、前記圧延H形鋼の幅方向の横移動が拘束される条件、および、前記上フランジに上方から中間荷重が作用しかつ、前記材軸方向の両端部に端荷重が作用する条件下で、下記(12)式~(16)式から算出される梁の弾性横座屈モーメントMcrを用いて、前記梁に横座屈が発生しないように、前記高さ寸法H、前記幅寸法W、前記板厚tw、および前記板厚tfを設定する
ことを特徴とする、請求項1に記載の圧延H形鋼の設計方法。
ただし、Vcr:梁の材軸方向の端部に作用するせん断力、Wcr:梁の材軸方向の中間部に作用する中間荷重、βおよびγ:荷重Vcr、Wcrによって下記(1)式及び(2)式から決まる係数、l:梁の材軸方向の長さ、E:ヤング係数、I:下フランジの弱軸まわりの断面二次モーメント、G:せん断弾性係数、J:サン・ブナンのねじり定数、db:上フランジと下フランジとの板厚中心間距離、y:梁の材軸方向の基準となる一端部から梁の材軸方向の任意の点までの長さ、θy:横座屈によって梁に生じるねじり角、θ’y:θyの一階微分、θ”y:θyの二階微分、a:積分のための助変数である。
However, V cr : Shear force acting on the end of the beam in the material axis direction, W cr : Intermediate load acting on the intermediate portion of the beam in the material axis direction, β and γ: Loads V cr and W cr ) And coefficients determined from the formula (2), l: length of the beam in the axial direction, E: Young's modulus, I: secondary moment of inertia around the weak axis of the lower flange, G: shear modulus, J: sun · torsional constant of safe, d b: plate thickness center distance between the upper and lower flanges, y: from one end thereof in a timber axis direction of the reference beam to any point of the timber axis direction of the beam length, theta y: Lateral torsion angle caused in the beam by bending, θ 'y: the first derivative of θ y, θ "y: second differential of θ y, a: a parametric for integration.
- 前記圧延H形鋼の全塑性モーメントMpを前記弾性横座屈モーメントMcrで除した値の平方根が0.6以下になるように、前記高さ寸法H、前記幅寸法W、前記板厚tw、および前記板厚tfを設定する
ことを特徴とする、請求項2に記載の圧延H形鋼の設計方法。 Wherein as the square root of the value of the full plastic moment Mp divided by the elastic Lateral Buckling moment M cr rolled H-shaped steel is 0.6 or less, the height H, the width W, the thickness tw, The method for designing a rolled H-section steel according to claim 2, wherein the thickness tf is set. - 上フランジ及び下フランジと;
これら上フランジ及び下フランジを連結するウェブと;
を備える圧延H形鋼であって、
前記上フランジ、前記下フランジ、及び前記ウェブの外周面が表面処理され;
前記上フランジから前記下フランジまでの高さ寸法Hが700mm以上であり;
前記上フランジおよび前記下フランジの各々の幅寸法Wが前記高さ寸法Hの1/5以上かつ1/2以下であり;
前記ウェブの板厚twが9mm以上32mm以下であり;
前記上フランジ及び前記下フランジの各々の板厚tfが12mm以上40mm以下であり;
材軸方向に垂直な断面で見た場合の断面形状における外周長Lpで強軸まわりの断面二次モーメントIxを除した値を表面処理経済性Ix/Lpとし、前記断面形状の面積をSとしたとき、前記高さ寸法H、前記幅寸法W、前記板厚tw、および前記板厚tfが下記(35)式~(38)式を満足する;
ことを特徴とする圧延H形鋼。
A web connecting these upper and lower flanges;
A rolled H-section steel comprising
The upper flange, the lower flange, and the outer peripheral surface of the web are surface treated;
A height dimension H from the upper flange to the lower flange is 700 mm or more;
The width dimension W of each of the upper flange and the lower flange is not less than 1/5 and not more than 1/2 of the height dimension H;
The thickness tw of the web is 9 mm or more and 32 mm or less;
A plate thickness tf of each of the upper flange and the lower flange is 12 mm or more and 40 mm or less;
The value obtained by dividing the cross-sectional secondary moment Ix around the strong axis by the outer peripheral length Lp in the cross-sectional shape when viewed in a cross-section perpendicular to the material axis direction is the surface treatment economic Ix / Lp, and the area of the cross-sectional shape is S Then, the height dimension H, the width dimension W, the plate thickness tw, and the plate thickness tf satisfy the following formulas (35) to (38);
A rolled H-section steel characterized by that.
- 請求項1~3のいずれか一項に記載の圧延H形鋼の設計方法によって設定された前記高さ寸法H、前記幅寸法W、前記板厚tw、および前記板厚tfの前記圧延H形鋼を製造する、圧延H形鋼の製造方法。 The rolled H-shape having the height dimension H, the width dimension W, the sheet thickness tw, and the sheet thickness tf set by the method for designing rolled H-section steel according to any one of claims 1 to 3. A method for producing rolled H-section steel, which produces steel.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017028465 | 2017-02-17 | ||
JP2017-028465 | 2017-02-17 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201906915RA SG11201906915RA (en) | 2017-02-17 | 2018-02-19 | Method of designing rolled h-section steel, rolled h-section steel, and method of manufacturing rolled h-section steel |
KR1020197023205A KR20190099082A (en) | 2017-02-17 | 2018-02-19 | Design Method of Rolled H Shape Steel, Rolled H Shape Steel, and Manufacturing Method of Rolled H Shape Steel |
EP18754414.3A EP3584384A1 (en) | 2017-02-17 | 2018-02-19 | Method for designing rolled h-shaped steel, rolled h-shaped steel, and method for manufacturing rolled h-shaped steel |
JP2018532471A JP6451905B1 (en) | 2017-02-17 | 2018-02-19 | Method for designing rolled H-section steel and rolled H-section steel |
US16/482,688 US20200308832A1 (en) | 2017-02-17 | 2018-02-19 | Method of designing rolled h-section steel, rolled h-section steel, and method of manufacturing rolled h-section steel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018151297A1 true WO2018151297A1 (en) | 2018-08-23 |
Family
ID=63169481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005763 WO2018151297A1 (en) | 2017-02-17 | 2018-02-19 | Method for designing rolled h-shaped steel, rolled h-shaped steel, and method for manufacturing rolled h-shaped steel |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200308832A1 (en) |
EP (1) | EP3584384A1 (en) |
JP (1) | JP6451905B1 (en) |
KR (1) | KR20190099082A (en) |
SG (1) | SG11201906915RA (en) |
WO (1) | WO2018151297A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008175056A (en) | 1997-09-06 | 2008-07-31 | Mark Amos Aschheim | Moment-resistant structure, sustainer and method for construction |
CN103437425A (en) * | 2013-08-27 | 2013-12-11 | 陕西建科兴业钢结构有限公司 | Connecting joint of prefabricated hollow steel-reinforced concrete column and steel beam and construction method |
JP2014109149A (en) * | 2012-12-03 | 2014-06-12 | Nippon Steel & Sumitomo Metal | Rolled h-shaped steel |
JP2016023446A (en) | 2014-07-17 | 2016-02-08 | 新日鐵住金株式会社 | Design method for steel beam |
JP2017028465A (en) | 2015-07-21 | 2017-02-02 | キヤノン株式会社 | Information processing device, information processing system, and information processing device control method and program |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3212955B2 (en) * | 1997-12-10 | 2001-09-25 | 株式会社日本触媒 | Surface treatment agent, embedded object, and method for preventing adhesion |
-
2018
- 2018-02-19 EP EP18754414.3A patent/EP3584384A1/en not_active Withdrawn
- 2018-02-19 US US16/482,688 patent/US20200308832A1/en not_active Abandoned
- 2018-02-19 SG SG11201906915RA patent/SG11201906915RA/en unknown
- 2018-02-19 JP JP2018532471A patent/JP6451905B1/en active Active
- 2018-02-19 WO PCT/JP2018/005763 patent/WO2018151297A1/en unknown
- 2018-02-19 KR KR1020197023205A patent/KR20190099082A/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008175056A (en) | 1997-09-06 | 2008-07-31 | Mark Amos Aschheim | Moment-resistant structure, sustainer and method for construction |
JP2014109149A (en) * | 2012-12-03 | 2014-06-12 | Nippon Steel & Sumitomo Metal | Rolled h-shaped steel |
CN103437425A (en) * | 2013-08-27 | 2013-12-11 | 陕西建科兴业钢结构有限公司 | Connecting joint of prefabricated hollow steel-reinforced concrete column and steel beam and construction method |
JP2016023446A (en) | 2014-07-17 | 2016-02-08 | 新日鐵住金株式会社 | Design method for steel beam |
JP2017028465A (en) | 2015-07-21 | 2017-02-02 | キヤノン株式会社 | Information processing device, information processing system, and information processing device control method and program |
Non-Patent Citations (2)
Title |
---|
"BS 4-1 Structural steel sections", BRITISH STANDARD, 2005 |
"fixed inner dimension H-shapes, JIS handbook, Ferrous materials & metallurgy", vol. 2, 2015, JAPANESE STANDARDS ASSOCIATION, article "fixed outer dimension H-shapes" |
Also Published As
Publication number | Publication date |
---|---|
US20200308832A1 (en) | 2020-10-01 |
KR20190099082A (en) | 2019-08-23 |
EP3584384A1 (en) | 2019-12-25 |
JPWO2018151297A1 (en) | 2019-02-21 |
JP6451905B1 (en) | 2019-01-16 |
SG11201906915RA (en) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6340276B2 (en) | Steel beam design method | |
WO2018151297A1 (en) | Method for designing rolled h-shaped steel, rolled h-shaped steel, and method for manufacturing rolled h-shaped steel | |
JP4677059B2 (en) | Rolled H-section steel | |
WO2018151298A1 (en) | Analysis method, design method, production method, and program | |
JP6003591B2 (en) | Rolled H-section steel | |
Horne | Frame instability and the plastic design of rigid frames | |
JP6652161B2 (en) | Beam joint structure and method for calculating rotational rigidity of beam joint structure | |
US20130014457A1 (en) | Reinforcement structure of rectangular flat metal plate | |
JP2018154996A (en) | Design method for composite beam and composite beam | |
JP2007169968A (en) | Bond stress calculating method, stud shear force calculating method, designing method, and steel plate reinforced concrete structure | |
JP2018131883A (en) | Floor structure | |
WO2010116660A1 (en) | Anisotropic reinforcing metal plate | |
Elbanna et al. | Buckling enhancement of longitudinally and vertically stiffened plate girders, J | |
ELamary | Ultimate shear strength of composite welded steel-aluminium beam subjected to shear load | |
JP2017214771A (en) | Connection load bearing capacity evaluation method for column-beam connection structure, design method for column-beam connection structure, and column-beam connection structure | |
Hancock | Finite strip buckling and nonlinear analyses and distortional buckling analysis of thin-walled structural members | |
Plaut et al. | Lateral-torsional deformations of C-section and Z-section beams with continuous bracing | |
Heinisuo | Elastic theory of layered beams | |
Yamashita et al. | Inelastic buckling strength and ductility of steel latticed plates for shear | |
Mehri et al. | End-warping bracings during the construction of steel bridges | |
Nijgh et al. | An optimisation strategy for the (in-and out-of-plane) resistance of steel beams in demountable composite floor systems | |
JP2019056220A (en) | Steel beam design method used for floor structure, floor structure | |
JP2022052974A (en) | Beam joint structure and design method for beam joint structure | |
JP2018204425A (en) | Steel beam with floor slab and design method therefor | |
Dar et al. | Theoretical design of innovative cold formed steel beam sections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018532471 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18754414 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197023205 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018754414 Country of ref document: EP Effective date: 20190917 |