WO2018139216A1 - Disc for testing - Google Patents

Disc for testing Download PDF

Info

Publication number
WO2018139216A1
WO2018139216A1 PCT/JP2018/000618 JP2018000618W WO2018139216A1 WO 2018139216 A1 WO2018139216 A1 WO 2018139216A1 JP 2018000618 W JP2018000618 W JP 2018000618W WO 2018139216 A1 WO2018139216 A1 WO 2018139216A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
disk
main body
inspection
cartridge
Prior art date
Application number
PCT/JP2018/000618
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 野上
健樹 山本
謙司 永冨
靖之 祖父江
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2018139216A1 publication Critical patent/WO2018139216A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present disclosure relates to an inspection disk, and more particularly to an inspection disk for inspecting a liquid sample.
  • Patent Document 1 an analysis chip including a first chip and two or more second chips connected to the first chip has been proposed.
  • the shape of the first chip viewed from the thickness direction of the first chip is, for example, a circle.
  • the shape of the second chip viewed from the thickness direction of the second chip is, for example, a fan shape.
  • the first chip includes a specimen injection part and a connection part.
  • the sample injection part is a space into which a sample is injected.
  • the sample injection part has a sample injection hole, and the sample is injected from the sample injection hole to the sample injection part.
  • a specimen refers to a sample that may contain a component to be analyzed. Examples of the specimen include blood, urine, saliva and the like.
  • a second chip is connected to the connection portion. If the second chip is connected to the first chip via the connecting portion, the sample can be sent to the second chip by centrifugal force by rotating the analysis chip.
  • the second chip includes an introduction path and a reagent holding unit.
  • the second chip further includes a mixing channel, a detection unit, a quantification unit, and a discharge unit.
  • the introduction path introduces the sample injected into the sample injection unit into the second chip when the second chip is connected to the connection unit.
  • the specimen that has passed through the introduction path and the reagent that has flowed out of the reagent holding unit are mixed in the mixing channel.
  • the detection unit is connected to the end of the mixing channel opposite to the end connected to the introduction path and the reagent holding unit.
  • An air hole opened to the atmosphere is connected to the detection unit. Accordingly, the specimen and the reagent can be sent from the mixing channel to the detection unit by capillary force in addition to centrifugal force.
  • the discharge part is connected to the air hole. As a result, an extra amount of specimen can be sent to the discharge portion by capillary force in addition to centrifugal force.
  • the air hole not only fulfills its function, but also during the rotation of the analysis chip. There is a concern that the specimen and the reagent may be scattered.
  • An object of the present disclosure is to provide an inspection disk capable of suppressing scattering of a liquid sample when the inspection disk is rotated around the central axis of the inspection disk.
  • the inspection disc includes a well forming disc main body, a cartridge, and a ventilation channel.
  • the well-forming disk body has a front surface and a back surface that are opposite to each other in the thickness direction.
  • the well forming disc body has a first well and a second well.
  • the first well is composed of a recess formed along the thickness direction from the surface side of the well forming disk main body.
  • the second well communicates with the first well.
  • the cartridge has a storage space in which a liquid sample can be stored.
  • the cartridge is fitted into the first well of the well forming disc body.
  • the ventilation channel is formed between the cartridge and the well forming disk main body.
  • the ventilation channel communicates with the outside of the well forming disk main body and the second well.
  • the cartridge preferably has a filter for removing a specific substance from the liquid sample moving from the storage space to the second well.
  • the filter is preferably located between the storage space and the second well.
  • the cartridge preferably includes a case having an opening at the end on the second well side and holding the filter.
  • the filter is disposed so as to close the opening.
  • a space surrounded by the case and the filter constitutes a storage space.
  • the first well and the second well are arranged in this order from the center of the well forming disk main body toward the outer periphery.
  • the well forming disk body preferably further includes a flow path and a connection flow path.
  • the flow path is preferably between the first well and the second well and communicates with the first well and the second well.
  • the connecting channel is preferably adjacent to the channel in the circumferential direction of the well-forming disk body, between the vent channel and the second well, and communicated with the vent channel and the second well. It is preferable that the opening area of the flow path gradually decreases as the distance from the first well increases toward the second well.
  • the well forming disk main body preferably includes a rib that protrudes from the inner wall surface of the recess toward the side surface of the cartridge and faces the bottom surface of the recess.
  • the space between the bottom surface of the recess and the rib constitutes a part of the ventilation channel.
  • the minimum height from the bottom surface of the recess to the rib in the thickness direction of the well forming disk main body prevents the capillary force from acting on the liquid sample in the second well in the ventilation channel. It is preferable that the height is high.
  • the minimum height from the bottom surface of the recess to the rib in the thickness direction of the well forming disk main body is the height from the bottom surface of the second well to the top surface in the thickness direction of the well forming disk main body. It may be larger than the minimum height.
  • a ventilation channel is formed on both sides of the cartridge in the circumferential direction of the well forming disk main body.
  • a ventilation channel may be formed only on one side of the cartridge in the circumferential direction of the well forming disk main body.
  • the volume of the second well is preferably larger than the volume of the storage space.
  • the area of the second well is larger than the area of the first well when viewed from the thickness direction of the well forming disk main body.
  • the ventilation channel is a space formed between a groove provided along the thickness direction of the well forming disk main body on the inner wall surface of the first well of the well forming disk main body and the side surface of the cartridge. May be included.
  • the ventilation channel is a space formed between the inner wall surface of the first well of the well forming disk main body and a groove provided along the thickness direction of the well forming disk main body on the side surface of the cartridge. May be included.
  • An inspection disk according to the present disclosure includes a well forming disk main body having a first well and a second well, and is formed between a side surface of the cartridge and the well forming disk main body and communicates with the outside of the well forming disk main body and the second well.
  • a ventilation channel Therefore, it is possible to suppress scattering of the liquid sample when the inspection disk is rotated around the central axis of the inspection disk.
  • FIG. 1 is a plan view of an inspection disk according to an embodiment of the present disclosure.
  • FIG. 2A is a partially cutaway plan view of the above inspection disk.
  • FIG. 2B is a cross-sectional view taken along the line IIB-IIB of FIG.
  • FIG. 2C is a perspective view in which the inspection disk is partially broken as seen from below.
  • FIG. 3A is a perspective view of the inspection disk.
  • FIG. 3B is a perspective view in which the inspection disk is partially broken as seen from above.
  • FIG. 3C shows the above-described inspection disk, and is an enlarged view of a main part C of FIG. 3B.
  • FIG. 4 is an exploded perspective view of the above inspection disk.
  • FIG. 5A is a perspective view of the inspection disk as seen from above the disk body.
  • FIG. 5A is a perspective view of the inspection disk as seen from above the disk body.
  • FIG. 5B is a perspective view of the above inspection disk as seen from the lower side of the disk body.
  • FIG. 5C is a cross-sectional view taken along the line VC-VC of FIG.
  • FIG. 5D is an enlarged view of the main part of FIG.
  • FIG. 6 is an enlarged plan view of a track in the above-described inspection disk.
  • FIG. 7 is an SEM image (Scanning / Electron / Microscope / Image) of the porous structure constituting the filter in the inspection disk.
  • FIG. 8 is a configuration diagram of a detection apparatus for inspecting a liquid sample using the above-described inspection disk.
  • FIG. 9A is a process sectional view for explaining the manufacturing method of the inspection disk.
  • FIG. 9B is a process sectional view for explaining the manufacturing method of the inspection disk.
  • FIG. 9C is a process cross-sectional view for explaining the manufacturing method of the inspection disc.
  • disk 1 an inspection disk 1 (hereinafter referred to as “disk 1”) for inspecting a liquid sample according to the present embodiment will be described with reference to FIGS. 1 to 9C.
  • the disk 1 includes a disk-shaped well-forming disk main body 2 and a plurality of cartridges 3.
  • the well forming disc main body 2 has a front surface 2A and a back surface 2B that are opposite to each other in the thickness direction.
  • the well forming disc body 2 is preferably disc-shaped.
  • the well forming disk main body 2 has a first well 21 and a second well 22 communicating with the first well 21.
  • the well forming disk main body 2 includes a disk main body 4 and a plate 5 that is more flexible than the disk main body 4.
  • the disc body 4 is preferably disk-shaped.
  • the plate 5 is preferably disc-shaped.
  • the well forming disk main body 2 In the well forming disk main body 2, the disk main body 4 and the plate 5 are joined so as to overlap each other.
  • the well forming disk main body 2 may be referred to as a laminated disk main body 2.
  • the central axis 45 (see FIG. 4) of the disk main body 4 and the central axis 56 (see FIG. 4) of the plate 5 are aligned on a straight line.
  • the center axis 10 (see FIG. 8) of the disk 1 is preferably aligned with the center axis 45 of the disk body 4 and the center axis 56 of the plate 5.
  • the disk main body 4 has a chamber 400 for storing a liquid sample.
  • the disc body 4 has a first surface 41 and a second surface 42 that are opposite to each other in the thickness direction.
  • the plate 5 is joined to the disc body 4 so as to cover the chamber 400 on the first surface 41 side of the disc body 4.
  • the chamber 400 includes a first chamber 401 and a second chamber 402 as shown in FIG. 5B.
  • the first chamber 401 penetrates in the thickness direction of the disc body 4, and the opening on the plate 5 side is closed by the plate 5.
  • the first chamber 401 is open on the side opposite to the plate 5 side in the thickness direction of the disk main body 4.
  • the second chamber 402 is formed on the first surface 41 of the disc body 4, and the side opposite to the plate 5 side in the thickness direction of the disc body 4 is closed. In the second chamber 402, the opening on the plate 5 side is closed by the plate 5.
  • the second chamber 402 is in communication with (connected to) the first chamber 401.
  • the disc body 4 has a channel 403 (see FIGS. 2B, 5B, and 5C) that communicates with the first chamber 401 and the second chamber 402 between the first chamber 401 and the second chamber 402, respectively. Is preferred.
  • the channel 403 is formed on the first surface 41 of the disk main body 4, and the side opposite to the plate 5 side in the thickness direction of the disk main body 4 is closed.
  • the space surrounded by the inner wall surface of the first chamber 401 and the plate 5 in the disk main body 4 constitutes the first well 21 capable of storing a liquid sample. Further, in the laminated disc body 2, the space surrounded by the inner wall surface of the second chamber 402 and the plate 5 in the disc body 4 can store the liquid sample moved from the first well 21. Is configured.
  • a space surrounded by the inner wall surface of the channel 403 and the plate 5 in the disk main body 4 is a flow path 23 (see FIG. 5) through which a liquid sample passes between the first chamber 401 and the second chamber 402. 2C and 3B).
  • the liquid sample contains multiple types of substances.
  • the cartridge 3 includes a filter 35 that removes a specific substance from the liquid sample moving from the first chamber 401 to the second chamber 402.
  • “removing a specific substance” means capturing a specific substance.
  • the filter 35 includes a porous structure 36 (see FIG. 7) that captures a specific first substance from the liquid sample and passes the specific second substance.
  • the cartridge 3 is also referred to as a filter cartridge 3.
  • the filter cartridge 3 is placed in the first chamber 401 of the disc body 4.
  • the filter cartridge 3 is fitted into the first well 21 of the laminated disk main body 2.
  • the disk 1 is used, for example, to examine the infection rate of pathogenic microorganisms (for example, malaria protozoa) to a specimen (for example, red blood cells) in a liquid biological sample (for example, human blood).
  • pathogenic microorganisms for example, malaria protozoa
  • the malaria parasite for example, invades a human body when an mosquito sucks human blood, invades red blood cells in the blood, and parasitizes in red blood cells.
  • the “infection rate” here is ⁇ [number of samples infected with pathogenic microorganisms] / [total number of samples] ⁇ ⁇ 100 [%].
  • the liquid sample includes at least a liquid biological sample.
  • the blood is preferably diluted with a diluent in order to reduce the viscosity.
  • a diluent for example, a buffer solution, an isotonic solution, a culture solution, a surfactant and the like can be used.
  • a fluorescent reagent for staining the nucleic acid of pathogenic microorganisms is disposed in the second well 22 of the laminated disk body 2.
  • the fluorescent reagent is preferably arranged by, for example, a freeze-drying method or a spin coating method.
  • the disc 1 can fluorescently label the nucleic acid of the pathogenic microorganism that is parasitic on the specimen (red blood cells) in the liquid sample moved to the second well 22.
  • the nucleic acid stained with the fluorescent reagent emits fluorescence when excitation light is irradiated from the outside.
  • the fluorescent reagent for staining the nucleic acid of the pathogenic microorganism may be a powder.
  • the filter 35 is configured to pass red blood cells that are specific second substances (specimens) and to capture white blood cells that are specific first substances.
  • the filter 35 is configured to function as a separation unit that separates red blood cells and white blood cells and extracts red blood cells. Therefore, the disk 1 can extract red blood cells from a biological sample.
  • Fluorescent reagents for staining nucleic acids of pathogenic microorganisms are materials that can also stain leukocytes.
  • white blood cells in the liquid sample placed in the first well 21 are captured by the filter 35. Therefore, in the disc 1, it becomes possible to prevent the white blood cells contained in the liquid sample put in the first well 21 from being stained with the fluorescent reagent.
  • the filter cartridge 3 has a storage space 31 in which a liquid sample can be stored.
  • the filter 35 in the filter cartridge 3 is preferably located between the storage space 31 and the second well 22 in the radial direction of the disc body 4.
  • the filter cartridge 3 is placed in the first well 21 of the disk body 4, so that the liquid sample in the storage space 31 of the filter cartridge 3 can be regarded as the liquid sample placed in the first well 21.
  • the filter 35 in the filter cartridge 3 is between the storage space 31 and the second well 22, red blood cells in the liquid sample placed in the storage space 31 are moved to the second well 22 through the filter 35. It becomes possible.
  • the operation of putting the liquid sample into the storage space 31 is preferably performed in a state in which the filter cartridge 3 is fitted in the first well 21 of the laminated disk main body 2.
  • the storage space 31, the filter 35, and the second well 22 are arranged in this order from the center side of the disk body 4 to the outer peripheral side in a state where the filter cartridge 3 is placed in the first well 21. Is preferred.
  • the storage space 31, the filter 35, and the second well 22 are arranged in this order from the center side of the laminated disk main body 2 outward in the radial direction of the laminated disk main body 2.
  • the rotation direction of the disk 1 is clockwise (clockwise) when viewed from the upper side of the disk 1 (the surface 2A side of the laminated disk main body 2).
  • the shape of the laminated disk main body 2 is preferably a disk shape as in the case of optical disks (CD, DVD, etc.).
  • a circular hole 28 is preferably formed in the center of the laminated disk body 2.
  • the diameter of the disk 1 is 120 mm, for example.
  • the laminated disk main body 2 includes the disk-shaped disk main body 4 and the disk-shaped plate 5 joined to the disk main body 4 on the first surface 41 side of the disk main body 4 as described above.
  • a circular hole 48 constituting a part of the hole 28 of the laminated disk main body 2 is formed in the center of the disk main body 4.
  • a circular hole 58 constituting a part of the hole 28 of the laminated disk main body 2 is formed at the center of the plate 5.
  • the plate 5 includes a disk-shaped plate body 50 (see FIG. 3C).
  • the material of the plate body 50 is, for example, a transparent resin.
  • the plate body 50 has a front surface 51 and a back surface 52 that are opposite to each other in the thickness direction.
  • a spiral track 53 (see FIG. 6) for following the beam-like light incident through the back surface 52 of the plate body 50 is formed as in the optical disc. .
  • the track 53 is a groove.
  • the track 53 is formed in a spiral shape from the center to the outer periphery of the plate body 50.
  • Address information is continuously recorded on the track 53.
  • the position can be specified by the address information. Therefore, for example, the position information of the second well 22 in the plane of the disk 1 is specified by the address information.
  • address information is reproduced from the disk 1 by scanning the track 53 with light.
  • the light is excitation light.
  • the wavelength of the excitation light is preferably 400 nm to 410 nm, for example, and more preferably 405 nm.
  • the depth of the track 53 is, for example, 50 nm.
  • the plate 5 further includes a dielectric film 54 (see FIG. 3C) formed on the surface 51 of the plate body 50.
  • the dielectric film 54 is, for example, a ZnS—SiO 2 film.
  • the dielectric film 54 is formed so as to cover the track 53.
  • the dielectric film 54 is configured to reflect a part of the excitation light for tracking and transmit most of the remaining part.
  • the reflectance of the dielectric film 54 with respect to the excitation light is, for example, 5% or more and 20% or less.
  • the reflectance of the dielectric film 54 with respect to the fluorescence is preferably less than or equal to the reflectance of the dielectric film 54 with respect to the excitation light.
  • a reflection surface 55 (see FIG. 3C) that reflects the excitation light incident on the back surface 52 of the plate body 50 is configured by an interface between the dielectric film 54 and the plate body 50.
  • the specimen in the liquid sample sent from the first well 21 to the second well 22 through the filter 35 in the disk 1 is inspected by, for example, a detection device 70 as shown in FIG.
  • the detecting device 70 includes, for example, an optical system similar to an optical pickup device for an optical disc, and the operation thereof is also the same.
  • the optical system of the detection device 70 includes a semiconductor laser 71, a polarization beam splitter 72, an objective lens 73, a dichroic prism 74, a fluorescence detector 75, an anamorphic lens 76, and a reflected excitation light detector 77. ing.
  • the detection device 70 includes a holder 81, an actuator 82, a rotation device 83, a first signal calculation circuit 84, a servo circuit 85, a second signal calculation circuit 86, and image analysis.
  • a device 87 and an image display device 88 are provided.
  • the rotating device 83 is a motor.
  • the rotating device 83 is controlled by a servo circuit 85.
  • the detecting device 70 After the disk 1 is set on the rotating table by the rotating device 83, a predetermined operation is started.
  • the optical system, the holder 81 and the actuator 82 are installed in a housing in the same manner as an existing optical pickup device used for recording / reproducing of a CD or DVD.
  • the housing is movable in the radial direction of the disk 1 by a predetermined guide mechanism.
  • the servo circuit 85 also controls the movement of the housing. Since this control is the same access control as that in the existing CD player or DVD player, detailed description thereof is omitted.
  • the semiconductor laser 71 emits light (excitation light) having a wavelength of about 405 nm.
  • the traveling path of light is indicated by a one-dot chain line.
  • the excitation light emitted from the semiconductor laser 71 is reflected by the polarization beam splitter 72 and enters the objective lens 73.
  • the objective lens 73 has a predetermined numerical aperture (Numerical Aperture) and is configured to properly converge the excitation light on the disk 1. Specifically, the objective lens 73 is configured such that excitation light incident from the polarization beam splitter 72 side converges.
  • the objective lens 73 is driven by the actuator 82 in the focus direction (the thickness direction of the disk 1) and the tracking direction (the radial direction of the disk 1) while being held by the holder 81. That is, the objective lens 73 is driven so as to follow the track 53 (see FIG. 6) in a state where the excitation light is focused on the reflecting surface 55 (see FIG. 3C) of the disk 1. A part of the excitation light focused on the reflection surface 55 is reflected by the reflection surface 55 and most of the excitation light is transmitted through the reflection surface 55.
  • Fluorescence is generated when the excitation light focused by the objective lens 73 is irradiated onto a nucleic acid that is fluorescently labeled in red blood cells.
  • the wavelength of fluorescence is different from the wavelength of excitation light.
  • the fluorescence wavelength is preferably, for example, 440 nm to 490 nm, and more preferably 455 nm.
  • SYTO (registered trademark) Blue can be used as the fluorescent dye. Red blood cells that are not infected with malaria parasites are not fluorescently labeled, and therefore do not generate fluorescence even when irradiated with excitation light. Therefore, the detection apparatus 70 can distinguish between red blood cells infected with malaria parasites and red blood cells not infected by the presence or absence of fluorescence.
  • the dichroic prism 74 is configured to reflect light having a wavelength of about 405 nm and transmit light having a wavelength of about 440 to 600 nm.
  • Excitation light reflected by the reflecting surface 55 passes through the polarization beam splitter 72, is reflected by the dichroic prism 74, and enters the anamorphic lens 76.
  • the anamorphic lens 76 introduces astigmatism into the reflected excitation light incident from the polarization beam splitter 72 side.
  • the reflected excitation light transmitted through the anamorphic lens 76 enters the reflected excitation light detector 77.
  • the reflected excitation light detector 77 has a four-divided sensor for receiving reflected excitation light on the light receiving surface.
  • the detection signal of the reflected excitation light detector 77 is input to the second signal calculation circuit 86.
  • the second signal calculation circuit 86 generates a focus error signal and a tracking error signal from the detection signal of the reflected excitation light detector 77, and also generates a wobble signal (Wobble Signal).
  • the focus error signal is a signal indicating a deviation (focus error) between the focal position of the objective lens 73 and the disk 1.
  • the tracking error signal is a signal indicating a deviation (tracking error) between the spot of the excitation light and the track 53.
  • the wobble signal is a waveform signal corresponding to the meandering shape of the groove defined by the track 53.
  • the focus error signal and the tracking error signal are generated according to the astigmatism method and the one-beam push-pull method.
  • the wobble signal is generated based on the tracking error signal.
  • a wobble signal is generated by extracting a frequency component corresponding to the wobble signal from the tracking error signal.
  • the servo circuit 85 controls the actuator 82 using the focus error signal and tracking error signal output from the second signal calculation circuit 86.
  • the servo circuit 85 controls the rotating device 83 so that the disk 1 is rotated at a predetermined linear velocity using the wobble signal output from the second signal calculation circuit 86.
  • the second signal calculation circuit 86 outputs reproduction data (address information) generated by demodulating the wobble signal to the image analysis device 87.
  • Fluorescence incident on the dichroic prism 74 from the objective lens 73 side passes through the dichroic prism 74 and enters the fluorescence detector 75.
  • the fluorescence detector 75 has a sensor that converts the received fluorescence into a detection signal composed of an electrical signal and outputs the detection signal.
  • the detection signal of the fluorescence detector 75 is input to the first signal calculation circuit 84.
  • the first signal calculation circuit 84 outputs fluorescence luminance information generated by amplifying the detection signal from the fluorescence detector 75 to the image analysis device 87.
  • the image analysis device 87 is configured to display an image of the liquid sample in the second well 22 based on the fluorescence luminance information output from the first signal calculation circuit 84 and the address information output from the second signal calculation circuit 86. Is generated and displayed on the image display device 88.
  • the image analysis device 87 detects red blood cells in the image of the liquid sample in the second well 22 and the nucleic acid of the malaria parasite that is infected with the red blood cells, calculates the infection rate, and displays the calculation result as the image display device 88. To display.
  • the image analysis device 87 can be realized, for example, by causing a personal computer to execute an appropriate program. Further, the image display device 88 can be constituted by a display of a personal computer, for example.
  • a liquid sample is prepared by mixing the blood and a diluent.
  • a liquid sample is put into the storage space 31 of the filter cartridge 3.
  • a biological sample for example, a pipette (Pipette), a syringe (Syringe), a capillary (Capillary) or the like is used.
  • a pipette Pipette
  • a syringe Syringe
  • Capillary capillary
  • the disk 1 is rotated at a predetermined linear velocity for a predetermined rotation time.
  • the detection device 70 rotates the disk 1 around the central axis 25 of the laminated disk main body 2.
  • white blood cells in the liquid sample are captured by the filter 35 of the filter cartridge 3 and do not reach the flow path 23 and the second well 22. Therefore, in the disk 1, the red blood cells contained in the liquid sample can be moved from the first well 21 to the second well 22, and the white blood cells contained in the liquid sample can be captured by the filter 35. .
  • the detection device 70 generates an image of the liquid sample in the second well 22 (here, the liquid sample moved into the second well 22 may be changed from the liquid phase state to the solid phase state).
  • the infection rate is displayed on the image display device 88, and the infection rate is further displayed on the image display device 88.
  • the liquid sample that has moved into the second well 22 may be in a liquid phase state or may be changed from a liquid phase state to a solid phase state when the detection apparatus 70 performs an inspection.
  • the refractive index with respect to the excitation light of the liquid sample is the refractive index with respect to the excitation light of the material of each of the disc-shaped disc body 4, the disc-shaped plate 5, and the joint 6 that joins the disc body 4 and the plate 5. Is preferably about 1.3 to 1.6.
  • the disk 1 includes a filter cartridge 3, and the filter performance can be inspected with the filter cartridge 3 alone.
  • the “filter performance” is the performance of the filter 35 and is the performance of permeating red blood cells and capturing white blood cells.
  • the filter performance can be inspected with the filter cartridge 3 alone, so that the reliability of the filter performance can be improved. Thereby, for example, it is possible to improve the accuracy of the inspection of the infection rate using the disk 1 and the detection device 70.
  • the disk 1 includes a laminated disk body 2 and a plurality (nine) of filter cartridges 3. In FIG. 1, only five filter cartridges 3 of the nine filter cartridges 3 are illustrated.
  • the shape of the laminated disc body 2 is a disc shape.
  • a disk-shaped disk main body 4 and a disk-shaped plate 5 are laminated via a joint 6.
  • a plurality (nine) of chambers 400 corresponding to a plurality of (nine) filter cartridges 3 are formed on the disk body 4 in the laminated disk body 2.
  • the chamber 400 gradually increases in width in the direction along the circumferential direction of the disc body 4 as it moves away from the center of the disc body 4. It is getting narrower gradually.
  • the plurality of chambers 400 are arranged at substantially equal intervals in the circumferential direction of the disc body 4. Therefore, the plurality of first chambers 401, the plurality of channels 403, and the plurality of second chambers 402 are arranged at equal intervals in the circumferential direction of the disc body 4.
  • nine sets of the first well 21, the second well 22, and the flow path 23 between the first well 21 and the second well 22 are formed.
  • the laminated disc body 2 is provided with a first well 21, a flow path 23, and a second well 22 in this order from the center side to the outer peripheral side of the laminated disc body 2.
  • the filter cartridge 3 can be fitted into the first well 21 from the thickness direction of the laminated disk body 2. Therefore, the filter cartridge 3 can be fitted relatively easily as compared with the case where the filter cartridge 3 is fitted from the radial direction of the laminated disk main body 2.
  • a plurality of chambers 400 are arranged radially at equal angular intervals around the central axis 25 of the laminated disk main body 2. Therefore, in the disk 1, a plurality of first wells 21 are arranged radially at equiangular intervals around the central axis 10 of the disk 1. A plurality of second wells 22 are arranged radially at equiangular intervals around the central axis 10 of the disk 1. Thereby, the disk 1 can be used for the inspection of a plurality of liquid samples.
  • a liquid sample is put in each of the storage spaces 31 of the plurality of filter cartridges 3, and the plurality of filter cartridges 3 correspond to each other in the laminated disk body 2 on a one-to-one basis.
  • the disc 1 is rotated around the central axis 25 of the laminated disc main body 2 in a state of being fitted into the disc 21.
  • the first well 21 is a space surrounded by the inner wall surface of the first chamber 401 formed on the first surface 41 of the disc body 4, the plate 5, and the joint portion 6.
  • the first well 21 includes a concave portion 29 (see FIGS. 1 and 2B) formed along the thickness direction of the laminated disk main body 2 on the surface 2A of the laminated disk main body 2.
  • the first chamber 401 is provided near the hole 48 of the disc body 4 in the radial direction of the disc body 4.
  • the shapes of the first chamber 401 and the first well 21 are substantially the same as those of the filter cartridge 3 when viewed from the thickness direction of the laminated disc body 2. As a result, in the disk 1, rattling of the filter cartridge 3 fitted in the first well 21 can be suppressed.
  • the first well 21 and the second well 22 are separated from each other in the radial direction of the laminated disk main body 2, and the first well 21 and the second well 22 communicate with each other through the flow path 23. Is preferred.
  • the opening area of the flow path 23 gradually decreases as the distance from the first well 21 and the approach to the second well 22 increases. Therefore, in the disk 1, it is possible to suppress the generation of bubbles in the liquid sample that has moved from the first well 21 to the second well 22.
  • the chamber 400 in the disk main body 4 includes two second channels 405 (see FIG. 2C) formed on both sides of the channel 403 (hereinafter also referred to as “first channel 403”) in the circumferential direction of the disk main body 4. Have.
  • the depth of the second channel 405 is substantially the same as the depth of the second chamber 402.
  • the second channel 405 communicates with the ventilation flow path 11 (see FIGS. 2A to 2C) in the disk 1.
  • the ventilation channel 11 is a channel for ventilation between the inside of the second well 22 and the outside of the disk 1.
  • a connection flow path 27 that connects the ventilation flow path 11 and the second well 22 is formed between the bottom surface of the second channel 405 of the disk body 4 and the plate 5.
  • the disk 1 has a connecting flow path 27.
  • connection flow path 27 is adjacent to the flow path 23 in the circumferential direction of the laminated disk main body 2, is between the ventilation flow path 11 and the second well 22, and communicates with the ventilation flow path 11 and the second well 22.
  • the ventilation channel 11 is formed between the groove 404 provided along the thickness direction of the laminated disk main body 2 on the inner wall surface of the first well 21 of the laminated disk main body 2 and the side surface of the filter cartridge 3.
  • the ventilation channel 11 is disposed on the inner peripheral side of the disk 1 with respect to the filter 35.
  • ventilation channels 11 are formed on both sides of the filter cartridge 3 in the direction along the circumferential direction of the laminated disk main body 2.
  • the width of the ventilation channel 11 in the direction along the circumferential direction of the laminated disk body 2 is, for example, 500 ⁇ m.
  • the distance between the cartridge 3 and the laminated disk body 2 in the direction along the circumferential direction of the laminated disk body 2 is, for example, 100 ⁇ m or less.
  • variety of the ventilation flow path 11 is 500 micrometers, for example.
  • the disc main body 4 in the disc 1 is integrally provided with a rib 47 (see FIG. 2C) that protrudes from the inner wall surface of the first chamber 401 toward the filter cartridge 3 in the direction along the circumferential direction of the disc main body 4.
  • the rib 47 is separated from the bottom surface of the concave portion 29 (see FIGS. 1 and 2B) of the laminated disk main body 2, and faces the bottom surface.
  • a space surrounded by the rib 47, the bottom surface of the recess 29, and the side surface of the filter cartridge 3 constitutes a part of the ventilation channel 11.
  • the surface of the rib 47 facing the plate 5 and the bottom surface of the second channel 405 are continuously flush with each other.
  • the disc 1 includes a rib 47.
  • the disk 1 is provided with the rib 47, so that the rattling of the filter cartridge 3 can be further suppressed.
  • the bottom surface of the second channel 405 is substantially flush with the bottom surface of the second chamber 402.
  • the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the laminated disk main body 2 is such that capillary force acts on the liquid sample in the second well 22 in the ventilation channel 11. It is preferable that the height is not present.
  • the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the laminated disk body 2 is, for example, the same as the minimum depth of the second chamber 402 and the thickness of the joint portion 6. It is set to the same size (in other words, the distance between the plate 5 and the bottom surface of the second chamber 402).
  • the depth of the second chamber 402 is, for example, 400 ⁇ m over the entire bottom surface of the second chamber 402, and the minimum depth is also 400 ⁇ m.
  • the minimum height is, for example, about 500 ⁇ m.
  • the second well 22 is configured by a bottom surface 221 constituted by a part of the surface of the plate 5 on the disk body 4 side and a surface of the disk body 4 on the plate 5 side of the second chamber 402 (bottom surface of the second chamber 402). And the top surface 222.
  • the bottom surface 221 and the top surface 222 of the second well 22 are located between the front surface 2A and the back surface 2B of the laminated disk main body 2 in the thickness direction of the laminated disk main body 2.
  • the distance between the back surface 2 ⁇ / b> B of the laminated disk body 2 and the top surface 222 in the thickness direction of the laminated disk body 2 is longer than the distance between the back surface 2 ⁇ / b> B and the bottom surface 221 of the laminated disk body 2.
  • the bottom surface 221 of the second well 22 is close to the back surface 2B between the front surface 2A and the back surface 2B of the stacked disk body 2 in the thickness direction of the stacked disk body 2.
  • the depth of the recess 29 is larger than the distance between the bottom surface 221 of the second well 22 and the top surface 222 when viewed in the thickness direction of the laminated disk body 2, and from the bottom surface of the recess 29.
  • the height to the rib 47 is larger than the minimum height.
  • the volume of the second well 22 is preferably larger than the volume of the storage space 31 of the filter cartridge 3.
  • the area of the second chamber 402 is larger than the area of the first chamber 401 when viewed from the thickness direction of the disc body 4.
  • the surface treatment is, for example, a plasma treatment in which the surface of the plate 5 facing the bottom surface of the second chamber 402 is charged with a charge having a polarity opposite to that of red blood cells.
  • the surface treatment is, for example, a plasma treatment in which the surface of the plate 5 facing the bottom surface of the second chamber 402 is charged with a charge having a polarity opposite to that of red blood cells.
  • the thickness of the plate 5 is 0.6 mm, for example.
  • the disk 1 is assumed to have inspection light (excitation light) incident from the back surface 52 side of the plate body 50 in the plate 5. For this reason, in the disk 1, the thickness of the plate 5 is preferably thinner than the thickness of the disk body 4. From the viewpoint of reducing the coma aberration of the beam spot of the excitation light, the thickness of the plate 5 is preferably thinner as the wavelength of the excitation light is shorter.
  • the material of the plate body 50 is preferably a transparent resin.
  • the plate body 50 is formed by injection molding. As a result, holes 58 and tracks 53 (see FIG. 6) are formed in the plate body 50.
  • the material of the plate body 50 is, for example, polycarbonate, but is not limited thereto.
  • the material of the plate body 50 is, for example, polymethyl methacrylate, amorphous polyolefin, polyethylene, ethylene, polypropylene, polyisobutylene, polyethylene terephthalate (PET), unsaturated polyester, fluororesin, polyvinyl chloride, polyvinylidene chloride, polyacetic acid.
  • the material of the disc body 4 is, for example, acrylic resin, but is not limited thereto.
  • the material of the disc body 4 may be the same material as the material of the plate body 50, such as polystyrene or polycarbonate.
  • the material of the plate body 50 and the disk body 4 does not necessarily need to be the same material.
  • the plate body 50 may be a combination of polycarbonate and the disk body 4 may be a combination of polystyrene.
  • the disc body 4 is formed by injection molding. As a result, a hole 48, a chamber 400, and the like are formed in the disc body 4.
  • the disc body 4 preferably contains a fluorescent material that emits fluorescence when excited by the excitation light from the semiconductor laser 71 in the same manner as the fluorescent dye.
  • a fluorescent material that emits fluorescence when excited by the excitation light from the semiconductor laser 71 in the same manner as the fluorescent dye.
  • the wavelength of fluorescence generated from the fluorescent material is, for example, 480 to 600 nm.
  • a phosphor or the like activated by rare earth ions can be employed.
  • inorganic phosphors examples include BAM phosphors (for example, BaMgAl 10 O 17 : Eu 2+ ) and SCA phosphors (for example, (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ ), SMS phosphors (Sr 3 MgSi 2 O 8 : Eu 2+ ), YAG phosphors (eg Y 3 Al 3 O 12 ), CASN phosphors (eg CaAlSiN 3 : Eu), SSE phosphors (Sr 3 SiO 5 : Eu) and the like.
  • BAM phosphors for example, BaMgAl 10 O 17 : Eu 2+
  • SCA phosphors for example, (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+
  • SMS phosphors Sr 3 MgSi 2 O 8 : Eu 2+
  • YAG phosphors eg Y 3 Al 3 O 12
  • CASN phosphors
  • phosphors for three-wavelength fluorescent lamps phosphors for special lamps, phosphors for cold cathode lamps, phosphors for PDP (Plasma Display Panel), and phosphors for LED (Light Emitting Diode)
  • Widely used phosphors such as fluorescent bodies and phosphors for fluorescent lamps can be used.
  • organic phosphors examples include red light emitting phosphors (Eu complex compounds, Sm complex compounds, Pr complex compounds, dicyanomethylene compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, polyalkylthiophene derivatives), Yellow light emitting phosphor (rubrene compound, perimidone derivative), blue light emitting phosphor (perylene compound, pyrene compound, anthracene compound, distyryl derivative, polydialkylfluorene derivative, polyparaphenylene derivative), green light emitting phosphor (coumarin) Compound, Tb complex compound, quinacridone compound) and the like.
  • red light emitting phosphors Eu complex compounds, Sm complex compounds, Pr complex compounds, dicyanomethylene compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, polyalkylthiophene derivatives
  • Yellow light emitting phosphor rubberrene compound
  • These phosphors may be used alone or in combination of two or more of those emitting light of the same color or different color. From the viewpoint of showing good fluorescence emission characteristics in a small amount, it is preferable to use an Eu complex compound of a red emission phosphor as the organic phosphor.
  • the thickness between the first surface 41 and the second surface 42 of the disc body 4 is, for example, 2.0 mm.
  • the depth of the second chamber 402 of the disc body 4 is preferably sufficiently larger than the size of the specimen.
  • the depth of the second chamber 402 is, for example, 400 ⁇ m.
  • the disc main body 4 protrudes from the gate trace 411 formed on the first surface 41 and the second surface 42 and overlaps the gate trace 411 in the thickness direction of the disc main body 4.
  • a protrusion 421 is, for example, the bottom surface of the concave portion 410 formed on the first surface 41 of the disc body 4.
  • the area of the protrusion 421 is larger than the area of the gate mark 411 when viewed from the thickness direction of the disk body 4.
  • the gate trace 411 can be identified by observation with a polarizing microscope, for example, even when visual confirmation is not possible.
  • the entire tip surface of the protrusion 421 is a rough surface portion 431 having a larger surface roughness than the portion of the second surface 42 other than the protrusion 421.
  • the surface roughness for example, an arithmetic average roughness Ra defined in JIS B 0601-2001 (ISO 4287-1997) can be employed.
  • the surface roughness can be measured by a three-dimensional shape measuring apparatus such as AFM (Atomic Force Microscope).
  • the thickness between the first surface 41 and the second surface 42 is, for example, 2.0 mm as described above.
  • the protrusion height of the protrusion 421 from the second surface 42 is, for example, 0.5 mm.
  • the thickness between the 1st surface 41 and the front end surface of the protrusion 421 is 2.5 mm, for example.
  • the arithmetic average roughness Ra of the rough surface portion 431 is preferably about 100 nm to 200 nm, for example.
  • the disk body 4 includes a plurality of chambers 400, and the plurality of chambers 400 are arranged in the circumferential direction of the disk body 4.
  • the gate trace 411 is located on the outer peripheral side of the disc body 4 with respect to each of the plurality of chambers 400 with respect to the chamber 400.
  • the plurality of chambers 400 are preferably arranged so as to have two or more rotational symmetries around the central axis 45 of the disc body 4.
  • the disc body 4 has nine gate marks 411 formed on the first surface 41 and has nine protrusions 421 protruding from the second surface 42.
  • Each of the nine protrusions 421 has a rectangular shape whose longitudinal direction is a direction orthogonal to the radial direction of the disk main body 4 when viewed from the thickness direction of the disk main body 4.
  • the front end surfaces of the nine protrusions 421 are rough surface portions 431.
  • the like can be written on the rough surface portion 431 with a pen, pencil, or the like. Further, in the disc body 4, different letters A to I are formed in the vicinity of the nine rough surface portions 431 in order to distinguish the nine rough surface portions 431. The letters A to I protrude from the second surface 42 of the disc body 4. The letters A to I are formed when the disc body 4 is formed.
  • the plate 5 and the disc body 4 are joined together by, for example, a joining portion 6 made of an adhesive.
  • the adhesive is, for example, an acrylate adhesive.
  • the plate 5 is joined to the disc body 4 on the first surface 41 side of the disc body 4. This makes it possible to reduce the thickness of the joint portion 6 interposed between the plate 5 and the disc body 4. Further, in the disk 1, it is possible to suppress the occurrence of voids or the like at the joint 6 in the outer peripheral portion of the laminated disk main body 2. As a result, the disc 1 can improve the bondability between the plate 5 and the disc body 4 at the outer peripheral portion of the disc 1.
  • the filter 35 in the filter cartridge 3 includes a porous structure 36 (see FIG. 7).
  • the porous structure 36 is configured so that, for example, a specific second substance (red blood cells) can pass through without passing a specific first substance (white blood cells).
  • the porous structure 36 is formed of a plurality of fibrous substances 361, for example, as shown in the SEM image diagram shown in FIG. More specifically, the porous structure 36 is formed by a plurality of fibrous substances 361 entangled with each other, and a large number of voids 362 are formed.
  • the gap 362 is between the adjacent fibrous materials 361.
  • a plurality of fibrous substances 361 are curved and entangled with each other.
  • the fibrous substance 361 is made of, for example, silicon oxide.
  • the fibrous substance 361 is made of amorphous silicon dioxide.
  • the thickness (fiber diameter) of the fibrous substance 361 is, for example, about 0.01 ⁇ m to 1 ⁇ m.
  • the fibrous substance 361 may be branched.
  • the void 362 is, for example, a size that allows red blood cells to pass through and capture white blood cells in the porous structure 36.
  • the gap 362 is preferably larger than the red blood cells, but is not necessarily larger than the red blood cells. This is because red blood cells are deformable and can pass through voids 362 that are smaller than themselves.
  • the gap 362 is smaller than the capture target such as leukocytes. This is because leukocytes are less deformable than erythrocytes.
  • the filter cartridge 3 includes a case 30 that holds the filter 35.
  • the case 30 has substantially the same shape as the first well 21 when viewed from the thickness direction of the laminated disk main body 2.
  • the case 30 has a shape in which the width gradually increases with increasing distance from the center of the laminated disk body 2 in the radial direction of the laminated disk body 2 when viewed from the thickness direction of the laminated disk body 2.
  • the case 30 has an opening 320 (see FIG. 2C) on one surface of the second chamber 402 side.
  • the filter 35 is disposed so as to close the opening 320 of the case 30.
  • the filter 35 is fixed to the case 30 with, for example, an adhesive.
  • a space surrounded by the case 30 and the filter 35 constitutes a liquid sample storage space 31.
  • the filter cartridge 3 has a liquid sample injection hole 33.
  • the filter performance of the filter 35 is inspected.
  • One type of leak test can be performed. In the leak test, for example, the pressure loss of the filter 35 is measured. The pressure loss of the filter 35 is obtained, for example, by measuring the total pressure difference between the upstream side and the downstream side when the test clean air is passed through the filter 35 with a manometer. More specifically, the pressure loss at the filter 35 when the clean air for testing at a predetermined pressure is introduced from the injection hole 33 into the case 30 is measured.
  • the injection hole 33 is preferably at a position far from the opening 320 on the upper wall of the case 30.
  • the shape of the storage space 31 of the filter cartridge 3 is U-shaped as shown in FIG. 1 when viewed from the thickness direction of the disk 1.
  • the injection hole 33 is provided so as to communicate with the first end of the U-shaped storage space 31 in the case 30 and the vent hole 38 is provided so as to communicate with the second end. .
  • the shape of the vent 38 is, for example, a circle.
  • the vent hole 38 is preferably smaller from the viewpoint of preventing leakage of the liquid sample, and is preferably smaller than the injection hole 33.
  • the thickness of the porous structure 36 can be measured by a laser displacement meter or the like before the filter 35 including the porous structure 36 is fixed to the case 30.
  • the thickness of the porous structure 36 which is one of the factors that determine the filter performance, can be inspected with a laser displacement meter or the like.
  • the disk body 4 formed by injection molding and the plate 5 are joined.
  • the forming process of the disc body 4 includes a first process, a second process, a third process, and a fourth process.
  • a first mold 91 and a second mold 92 are prepared, and a cavity 93 surrounded by the first mold 91 and the second mold 92 is formed.
  • the first mold 91 has a circular first recess 911 for forming a cavity on one surface 910, and a second recess 912 for forming a cavity is formed on the bottom surface of the first recess 911.
  • the diameter of the first recess 911 is substantially the same as the diameter of the disc body 4.
  • the depth of the first recess 911 is substantially the same as the thickness between the first surface 41 and the second surface 42 of the disc body 4.
  • An appropriate draft angle is provided on the inner side surface of the first recess 911.
  • the depth of the second recess 912 is substantially the same as the protrusion height of the protrusion 421 of the disc body 4.
  • the bottom surface of the second recess 912 is rougher than the bottom surface of the first recess 911.
  • the bottom surface of the second recess 912 of the first mold 91 is roughened by, for example, sandblasting.
  • the bottom surface of the second recess 912 serves as a template for the rough surface portion 431 of the protrusion 421 of the disc body 4.
  • the second mold 92 covers the opening of the first recess 911 of the first mold 91.
  • a molten molding resin material for example, an acrylic resin containing a phosphor, a polycarbonate containing a phosphor, or the like
  • a molten molding resin material for example, an acrylic resin containing a phosphor, a polycarbonate containing a phosphor, or the like
  • the resin molded body 40 that is the base of the disc body 4 is formed (see FIG. 9B).
  • Gate 921 is preferably a pinpoint gate. Thereby, a post-process such as polishing becomes unnecessary.
  • the disc body 4 having the gate marks 411 is formed by separating the second mold 92 from the first mold 91 and the resin molded body 40.
  • a part of the disc body 4 that is in contact with the bottom surface of the first recess 911 of the first mold 91 is pushed by a plurality (nine) of ejector pins 94 to push the disc body 4 into the first mold.
  • the mold is released from the mold 91 (see FIG. 9C).
  • the disc body 4 is formed with a recess 44 (see FIGS. 5A and 5C) at a portion where the ejector pin 94 has been hit.
  • the residual stress of the disc body 4 can be reduced and the occurrence of sink marks can be suppressed.
  • the disk main body 4 which is a resin molded body, protrudes from the gate mark 411 formed on the first surface 41 and the second surface 42, and protrudes 421 that overlaps the gate mark 411 in the thickness direction of the disk main body 4. And having. Then, at least a part of the front end surface of the protrusion 421 is a rough surface portion 431 having a larger surface roughness than that of the second surface 42 other than the protrusion 421. Thereby, in the disk 1, the residual stress of the disk main body 4 can be reduced by having the protrusion 421. Further, by providing the rough surface portion 431, it is possible to reduce the mold release resistance of the protrusion 421. Therefore, the disc 1 can suppress warping of the disc body 4 that is a resin molded body.
  • the presence or absence of malaria protozoa is detected accurately during the incubation period without subjective symptoms by confirming the presence or absence of malaria protozoa in red blood cells. It becomes possible to do.
  • the ventilation channel 11 may be formed only on one side of the cartridge 3 in the circumferential direction of the well forming disk main body 2.
  • the ventilation channel 11 is formed between the inner wall surface of the first well 21 of the well forming disk main body 2 and a groove provided in the side surface of the cartridge 3 along the thickness direction of the well forming disk main body 2. Space may be included.
  • the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the well forming disk main body 2 is such that the capillary in the vent channel 11 is a capillary with respect to the liquid sample in the second well 22.
  • the height may be such that the force works.
  • the disc 1 has a minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the well forming disc body 2 such that the bottom surface of the second well 22 in the thickness direction of the well forming disc body 2. It is preferable that the height from 221 to the top surface 222 is larger than the minimum height.
  • the disk 1 may be subjected to a hydrophobic treatment on the inner surface of the ventilation channel 11.
  • a SAM Self-Assembled Monolayer
  • the SAM for imparting hydrophobicity can be formed, for example, by applying OTS (Octadecyltrichlorosilane) or the like by a dip coating method or the like.
  • the inner wall surface of the second well 22 may be subjected to a hydrophilic treatment.
  • a hydrophilic treatment for example, a surfactant represented by Triton X (registered trademark) or a polymer compound having a hydrophilic group such as a hydroxyl group, a sulfonic acid group, or a carboxyl group is applied.
  • examples of the hydrophilic treatment include oxygen plasma treatment and corona discharge treatment.
  • the plurality of first wells 21 are arranged so as to have n-fold rotational symmetry about the central axis 45 of the disk main body 4 when an integer n of 2 or more is used. Is preferred.
  • the plurality of second wells 22 are arranged to have n-fold rotational symmetry about the central axis 45 of the disk main body 4 when an integer n of 2 or more is used. It is preferable.
  • the method of joining the plate 5 and the disc body 4 is not limited to an adhesive, and examples thereof include welding (thermal welding, ultrasonic welding, vibration welding, spin welding, laser welding), plasma bonding, surface activated bonding, and the like. It may be adopted.
  • the liquid sample put in the storage space 31 of the filter cartridge 3 may contain a staining solution for staining the nucleic acid of the pathogenic microorganism.
  • a staining solution for example, Giemsa staining, acridine orange staining, Wright staining, Jenner staining, Leishmann staining, Romanovsky staining, and the like can be employed.
  • An appropriate staining solution may be used as the staining solution according to the type of pathogenic microorganism and the staining method.
  • the use of the disk 1 is not limited to this, and for example, it can be used for DNA testing, protein testing, and the like.
  • the disk 1 includes a well forming disk main body 2, a cartridge 3, and a ventilation channel 11.
  • the well forming disc main body 2 has a front surface 2A and a back surface 2B that are opposite to each other in the thickness direction.
  • the well forming disk main body 2 has a first well 21 and a second well 22.
  • the first well 21 includes a concave portion 29 formed along the thickness direction from the surface 2A side of the well forming disc main body 2.
  • the second well 22 communicates with the first well 21.
  • the cartridge 3 has a storage space 31 in which a liquid sample can be stored.
  • the cartridge 3 is fitted into the first well 21 of the well forming disk main body 2.
  • the ventilation channel 11 is formed between the side surface of the cartridge 3 and the well forming disk main body 2.
  • the ventilation channel 11 communicates with the outside of the well forming disk main body 2 and the second well 22.
  • the well-formed disk main body 2 having the first well 21 and the second well 22, and the outer surface of the well-formed disk main body 2 formed between the side surface of the cartridge 3 and the well-formed disk main body 2.
  • the air flow path 11 communicating with the second well 22 it is possible to suppress scattering of the liquid sample when the disk 1 is rotated around the central axis 10 of the disk 1.
  • the disc 1 according to the second aspect has the filter 35 in which the cartridge 3 removes a specific substance from the liquid sample moving from the storage space 31 to the second well 22 in the first aspect.
  • the filter 35 is located between the storage space 31 and the second well 22.
  • a specific substance in the liquid sample placed in the storage space 31 moves to the second well 22.
  • the filter performance of the filter 35 of the cartridge 3 can be inspected before the cartridge 3 is fitted into the first well 21. As a result, the reliability of the filter performance can be improved in the disk 1, so that the reliability of the disk 1 can be improved.
  • the cartridge 3 preferably includes a case 30.
  • the case 30 has an opening 320 at the end on the second well 22 side and holds the filter 35.
  • the filter 35 is preferably disposed so as to close the opening 320 of the case 30.
  • a space surrounded by the case 30 and the filter 35 constitutes a storage space 31.
  • the disk 1 can further increase the volume of the storage space 31 of the cartridge 3.
  • the first well 21 and the second well 22 are arranged in this order from the center side of the well forming disc main body 2 toward the outer peripheral side. Are lined up. Thereby, the disk 1 can move the liquid sample in the storage space 31 of the cartridge 3 to the second well 22 by the centrifugal force acting on the liquid sample when the disk 1 is rotated.
  • the well forming disk main body 2 further includes a flow path 23 and a connection flow path 27.
  • the flow path 23 is between the first well 21 and the second well 22 and communicates with the first well 21 and the second well 22.
  • the connection flow path 27 is adjacent to the flow path 23 in the circumferential direction of the well forming disk main body 2, between the ventilation flow path 11 and the second well 22, and communicates with the ventilation flow path 11 and the second well 22.
  • the opening area of the channel 23 gradually decreases as the distance from the first well 21 approaches the second well 22. Thereby, the disk 1 can suppress the generation of bubbles in the liquid sample moved from the storage space 31 to the second well 22.
  • the well forming disk main body 2 includes a rib 47 that protrudes from the inner wall surface of the recess 29 toward the side surface of the cartridge 3 and faces the bottom surface of the recess 29.
  • a space between the bottom surface of the recess 29 and the rib 47 constitutes a part of the ventilation channel 11. Accordingly, the disk 1 can suppress the liquid sample moving from the storage space 31 to the second well 22 from being scattered outside the disk 1 through the ventilation channel 11.
  • the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the well forming disc main body 2 is the second height in the ventilation channel 11.
  • the height is such that no capillary force acts on the liquid sample in the well 22.
  • the disk 1 can suppress the liquid sample in the second well 22 from moving to the ventilation channel 11.
  • the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the well forming disk main body 2 is the thickness of the well forming disk main body 2. It is higher than the minimum height from the bottom surface 221 to the top surface 222 of the second well 22 in the vertical direction. Accordingly, the disk 1 can suppress the capillary force from acting on the liquid sample in the second well 22 in the ventilation channel 11 and moving to the ventilation channel 11.
  • the ventilation channel 11 is formed on both sides of the cartridge 3 in the circumferential direction of the well forming disk main body 2. Thereby, the disc 1 can suppress the liquid sample from being scattered from the ventilation channel 11 regardless of the rotation direction of the disc 1.
  • the ventilation channel 11 is formed only on one side of the cartridge 3 in the circumferential direction of the well forming disk main body 2.
  • the disk 1 when the disk 1 is used by being rotated to the side where the ventilation channel 11 is formed when viewed from the cartridge 3 in the circumferential direction of the well forming disc main body 2, the liquid sample is scattered from the ventilation channel 11. Can be suppressed.
  • the cartridge 3 when the rotation direction of the disk 1 is schematically indicated by an arrow, the cartridge 3 only needs to have the ventilation channel 11 on the side where the arrowhead is located.
  • the volume of the second well 22 is larger than the volume of the storage space 31 in any one of the first to tenth aspects.
  • the area of the second well 22 is larger than the area of the first well 21 when viewed from the thickness direction of the well forming disk main body 2. Is also big. Thereby, in the disk 1, when the liquid sample is moved from the storage space 31 of the cartridge 3 to the second well 22, the liquid sample can be spread in the second well 22 to a wider range than the first well 21. It becomes.
  • the ventilation channel 11 is formed on the inner wall surface of the first well 21 of the well forming disc main body 2 with the thickness of the well forming disc main body 2.
  • a space formed between the groove 404 provided along the vertical direction and the side surface of the cartridge 3 is included.
  • the ventilation channel 11 can be formed by fitting the cartridge 3 into the first well 21 of the well forming disk main body 2.
  • the ventilation channel 11 is formed with a well on the inner wall surface of the first well 21 of the well forming disk main body 2 and the side surface of the cartridge 3. It includes a space formed between the grooves provided along the thickness direction of the disc body 2.
  • the ventilation channel 11 can be formed by fitting the cartridge 3 into the first well 21 of the well forming disk main body 2.
  • the disc of the present disclosure and the manufacturing method thereof are industrially useful because the scattering of the liquid sample can be suppressed when the test disc is rotated around the central axis of the test disc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided is a disc for testing which is capable of suppressing the scattering of a liquid specimen when the disc for testing is rotated around the center axis of the disc for testing. This disc (1) for testing is equipped with a well-forming disc body (2), a cartridge (3), and a ventilation channel (11). The well-forming disc body (2) has a first well (21) and a second well (22). The second well (22) is connected to the first well (21), and is separated from a surface (2A) and a rear surface in the thickness direction of the well-forming disc body (2). The cartridge (3) has a storage space (31) capable of storing a liquid specimen, and is fitted into the first well (21) of the well-forming disc body (2). The ventilation channel (11) is formed between the lateral surface of the cartridge (3) and the well-forming disc body (2). The ventilation channel (11) is connected to the second well (22) and to the exterior of the well-forming disc body (2).

Description

検査用ディスクInspection disk
 本開示は、検査用ディスクに関し、より詳細には、液体試料を検査するための検査用ディスクに関する。 The present disclosure relates to an inspection disk, and more particularly to an inspection disk for inspecting a liquid sample.
 従来、液体試料の検査用ディスクとして、例えば、第1のチップと、第1のチップに接続される2つ以上の第2チップと、を備える分析チップが提案されている(特許文献1)。 Conventionally, as a liquid sample inspection disk, for example, an analysis chip including a first chip and two or more second chips connected to the first chip has been proposed (Patent Document 1).
 特許文献1に記載された分析チップでは、第1のチップの厚み方向から見た第1のチップの形状は、例えば、円形である。また、第2のチップの厚み方向から見た第2のチップの形状は、例えば、扇形である。 In the analysis chip described in Patent Document 1, the shape of the first chip viewed from the thickness direction of the first chip is, for example, a circle. The shape of the second chip viewed from the thickness direction of the second chip is, for example, a fan shape.
 第1のチップは、検体注入部及び接続部を備えている。検体注入部は、検体が注入される空間である。検体注入部は、検体注入孔を有しており、検体注入孔から検体注入部へ検体が注入される。検体は、分析対象となる成分を含み得る試料を指す。検体の例としては、血液、尿、唾液等が挙げられる。接続部には、第2のチップが接続される。接続部を介して第2のチップを第1のチップに接続すれば、分析チップを回転させることによって、遠心力によって第2のチップへ検体を送液することができる。 The first chip includes a specimen injection part and a connection part. The sample injection part is a space into which a sample is injected. The sample injection part has a sample injection hole, and the sample is injected from the sample injection hole to the sample injection part. A specimen refers to a sample that may contain a component to be analyzed. Examples of the specimen include blood, urine, saliva and the like. A second chip is connected to the connection portion. If the second chip is connected to the first chip via the connecting portion, the sample can be sent to the second chip by centrifugal force by rotating the analysis chip.
 第2のチップは、導入路及び試薬保持部を備えている。第2のチップは、さらに混合流路、検出部、定量部及び排出部を備えている。導入路は、第2のチップが接続部に接続された場合に、検体注入部へと注入された検体を第2のチップへ導入する。導入路を通過した検体と試薬保持部から流出した試薬とが混合流路において混合される。検出部は、混合流路において導入路及び試薬保持部と連結されている一端とは反対側の端部に連結されている。検出部には、大気開放された空気孔が連結されている。これにより、遠心力に加えて毛細管力によって、検体及び試薬を混合流路から検出部へと送液することができる。排出部は、空気孔に連結されている。これにより、遠心力に加えて毛細管力によって、余分な量の検体を排出部へと送液することができる。 The second chip includes an introduction path and a reagent holding unit. The second chip further includes a mixing channel, a detection unit, a quantification unit, and a discharge unit. The introduction path introduces the sample injected into the sample injection unit into the second chip when the second chip is connected to the connection unit. The specimen that has passed through the introduction path and the reagent that has flowed out of the reagent holding unit are mixed in the mixing channel. The detection unit is connected to the end of the mixing channel opposite to the end connected to the introduction path and the reagent holding unit. An air hole opened to the atmosphere is connected to the detection unit. Accordingly, the specimen and the reagent can be sent from the mixing channel to the detection unit by capillary force in addition to centrifugal force. The discharge part is connected to the air hole. As a result, an extra amount of specimen can be sent to the discharge portion by capillary force in addition to centrifugal force.
特開2014-232023号公報JP 2014-232023 A
 特許文献1に記載された分析チップでは、例えば、第1のチップと第2のチップとの接続箇所でリークが発生すると、空気孔がその機能を果たさないだけでなく、分析チップの回転中に検体及び試薬が飛散してしまう懸念がある。 In the analysis chip described in Patent Document 1, for example, when a leak occurs at the connection point between the first chip and the second chip, the air hole not only fulfills its function, but also during the rotation of the analysis chip. There is a concern that the specimen and the reagent may be scattered.
 本開示の目的は、検査用ディスクの中心軸のまわりで検査用ディスクを回転させたときに液体試料の飛散を抑制することが可能な検査用ディスクを提供することにある。 An object of the present disclosure is to provide an inspection disk capable of suppressing scattering of a liquid sample when the inspection disk is rotated around the central axis of the inspection disk.
 本開示の一態様に係る検査用ディスクは、ウェル形成ディスク本体と、カートリッジと、通気流路と、を備える。ウェル形成ディスク本体は、厚さ方向において互いに反対側にある表面及び裏面を有する。ウェル形成ディスク本体は、第1ウェル及び第2ウェルを有する。第1ウェルは、ウェル形成ディスク本体の表面側から厚さ方向に沿って形成された凹部からなる。第2ウェルは、第1ウェルに連通している。カートリッジは、液体試料を収納可能な収納空間を有する。カートリッジは、ウェル形成ディスク本体の第1ウェルに嵌め込まれる。通気流路は、カートリッジとウェル形成ディスク本体との間に形成される。通気流路は、ウェル形成ディスク本体の外部と第2ウェルとに連通する。 The inspection disc according to an aspect of the present disclosure includes a well forming disc main body, a cartridge, and a ventilation channel. The well-forming disk body has a front surface and a back surface that are opposite to each other in the thickness direction. The well forming disc body has a first well and a second well. The first well is composed of a recess formed along the thickness direction from the surface side of the well forming disk main body. The second well communicates with the first well. The cartridge has a storage space in which a liquid sample can be stored. The cartridge is fitted into the first well of the well forming disc body. The ventilation channel is formed between the cartridge and the well forming disk main body. The ventilation channel communicates with the outside of the well forming disk main body and the second well.
 この検査用ディスクにおいて、カートリッジが、収納空間から第2ウェルへ移動する液体試料から特定の物質を除去するフィルタを有するのが好ましい。ここで、フィルタが、収納空間と第2ウェルとの間にあるのが好ましい。 In this test disk, the cartridge preferably has a filter for removing a specific substance from the liquid sample moving from the storage space to the second well. Here, the filter is preferably located between the storage space and the second well.
 この検査用ディスクにおいて、カートリッジは、第2ウェル側の端に開口を有しフィルタを保持するケースを備えるのが好ましい。ここで、フィルタが、開口を塞ぐように配置されているのが好ましい。カートリッジでは、ケースとフィルタとで囲まれた空間が収納空間を構成しているのが好ましい。 In this test disk, the cartridge preferably includes a case having an opening at the end on the second well side and holding the filter. Here, it is preferable that the filter is disposed so as to close the opening. In the cartridge, it is preferable that a space surrounded by the case and the filter constitutes a storage space.
 この検査用ディスクにおいて、第1ウェル及び第2ウェルが、ウェル形成ディスク本体の中心から外周に向かってこの順に並んでいるのが好ましい。 In this inspection disk, it is preferable that the first well and the second well are arranged in this order from the center of the well forming disk main body toward the outer periphery.
 この検査用ディスクにおいて、ウェル形成ディスク本体は、流路と、連結流路と、を更に有するのが好ましい。流路は、第1ウェルと第2ウェルとの間にあって第1ウェルと第2ウェルとに連通しているのが好ましい。連結流路は、ウェル形成ディスク本体の周方向において流路の隣で、通気流路と第2ウェルとの間にあり通気流路及び第2ウェルに連通しているのが好ましい。流路の開口面積は、第1ウェルから離れて第2ウェルに近づくにつれて徐々に小さくなっているのが好ましい。 In this inspection disk, the well forming disk body preferably further includes a flow path and a connection flow path. The flow path is preferably between the first well and the second well and communicates with the first well and the second well. The connecting channel is preferably adjacent to the channel in the circumferential direction of the well-forming disk body, between the vent channel and the second well, and communicated with the vent channel and the second well. It is preferable that the opening area of the flow path gradually decreases as the distance from the first well increases toward the second well.
 この検査用ディスクにおいて、ウェル形成ディスク本体は、凹部の内壁面からカートリッジの側面に向かって突出して凹部の底面に対向するリブを備えるのが好ましい。ここで、凹部の底面とリブとの間の空間が通気流路の一部を構成しているのが好ましい。 In this inspection disk, the well forming disk main body preferably includes a rib that protrudes from the inner wall surface of the recess toward the side surface of the cartridge and faces the bottom surface of the recess. Here, it is preferable that the space between the bottom surface of the recess and the rib constitutes a part of the ventilation channel.
 この検査用ディスクにおいて、ウェル形成ディスク本体の厚さ方向における凹部の底面からリブまでの高さの最小高さが、通気流路において第2ウェル内の液体試料に対して毛細管力が働かないような高さであるのが好ましい。 In this test disk, the minimum height from the bottom surface of the recess to the rib in the thickness direction of the well forming disk main body prevents the capillary force from acting on the liquid sample in the second well in the ventilation channel. It is preferable that the height is high.
 検査用ディスクにおいて、ウェル形成ディスク本体の厚さ方向における凹部の底面からリブまでの高さの最小高さが、ウェル形成ディスク本体の厚さ方向における第2ウェルの底面から天面までの高さの最小高さよりも大きくてもよい。 In the inspection disk, the minimum height from the bottom surface of the recess to the rib in the thickness direction of the well forming disk main body is the height from the bottom surface of the second well to the top surface in the thickness direction of the well forming disk main body. It may be larger than the minimum height.
 検査用ディスクにおいて、ウェル形成ディスク本体の周方向においてカートリッジの両側に通気流路が形成されているのが好ましい。 In the test disk, it is preferable that a ventilation channel is formed on both sides of the cartridge in the circumferential direction of the well forming disk main body.
 検査用ディスクにおいて、ウェル形成ディスク本体の周方向においてカートリッジの片側のみに通気流路が形成されていてもよい。 In the test disk, a ventilation channel may be formed only on one side of the cartridge in the circumferential direction of the well forming disk main body.
 検査用ディスクにおいて、第2ウェルの容積が収納空間の容積よりも大きいのが好ましい。 In the test disk, the volume of the second well is preferably larger than the volume of the storage space.
 この検査用ディスクにおいて、前記ウェル形成ディスク本体の厚さ方向から見て、第2ウェルの面積が第1ウェルの面積よりも大きいのが好ましい。 In this inspection disk, it is preferable that the area of the second well is larger than the area of the first well when viewed from the thickness direction of the well forming disk main body.
 この検査用ディスクにおいて、通気流路は、ウェル形成ディスク本体の第1ウェルの内壁面においてウェル形成ディスク本体の厚さ方向に沿って設けられた溝とカートリッジの側面との間に形成される空間を含んでもよい。 In this inspection disk, the ventilation channel is a space formed between a groove provided along the thickness direction of the well forming disk main body on the inner wall surface of the first well of the well forming disk main body and the side surface of the cartridge. May be included.
 検査用ディスクでは、通気流路は、ウェル形成ディスク本体の第1ウェルの内壁面と、カートリッジの側面においてウェル形成ディスク本体の厚さ方向に沿って設けられた溝との間に形成される空間を含んでもよい。 In the inspection disk, the ventilation channel is a space formed between the inner wall surface of the first well of the well forming disk main body and a groove provided along the thickness direction of the well forming disk main body on the side surface of the cartridge. May be included.
 本開示の検査用ディスクは、第1ウェル及び第2ウェルを有するウェル形成ディスク本体と、カートリッジの側面とウェル形成ディスク本体との間に形成されウェル形成ディスク本体の外部と第2ウェルとに連通する通気流路と、を備える。そのため、検査用ディスクの中心軸のまわりで検査用ディスクを回転させたときに液体試料の飛散を抑制することが可能となる。 An inspection disk according to the present disclosure includes a well forming disk main body having a first well and a second well, and is formed between a side surface of the cartridge and the well forming disk main body and communicates with the outside of the well forming disk main body and the second well. A ventilation channel. Therefore, it is possible to suppress scattering of the liquid sample when the inspection disk is rotated around the central axis of the inspection disk.
図1は、本開示の一実施形態に係る検査用ディスクの平面図である。FIG. 1 is a plan view of an inspection disk according to an embodiment of the present disclosure. 図2Aは、同上の検査用ディスクの一部破断した平面図である。FIG. 2A is a partially cutaway plan view of the above inspection disk. 図2Bは、同上の検査用ディスクを示し、図2AのIIB-IIB断面図である。FIG. 2B is a cross-sectional view taken along the line IIB-IIB of FIG. 図2Cは、同上の検査用ディスクを下側から見て一部破断した斜視図である。FIG. 2C is a perspective view in which the inspection disk is partially broken as seen from below. 図3Aは、同上の検査用ディスクの斜視図である。FIG. 3A is a perspective view of the inspection disk. 図3Bは、同上の検査用ディスクを上側から見て一部破断した斜視図である。FIG. 3B is a perspective view in which the inspection disk is partially broken as seen from above. 図3Cは、同上の検査用ディスクを示し、図3Bの要部Cの拡大図である。FIG. 3C shows the above-described inspection disk, and is an enlarged view of a main part C of FIG. 3B. 図4は、同上の検査用ディスクの分解斜視図である。FIG. 4 is an exploded perspective view of the above inspection disk. 図5Aは、同上の検査用ディスクにおけるディスク本体の上側から見た斜視図である。FIG. 5A is a perspective view of the inspection disk as seen from above the disk body. 図5Bは、同上の検査用ディスクにおけるディスク本体の下側から見た斜視図である。FIG. 5B is a perspective view of the above inspection disk as seen from the lower side of the disk body. 図5Cは、同上の検査用ディスクを示し、図5AのVC-VC断面図である。FIG. 5C is a cross-sectional view taken along the line VC-VC of FIG. 図5Dは、同上の検査用ディスクを示し、図5Cの要部拡大図である。FIG. 5D is an enlarged view of the main part of FIG. 図6は、同上の検査用ディスクにおけるトラックの拡大平面図である。FIG. 6 is an enlarged plan view of a track in the above-described inspection disk. 図7は、同上の検査用ディスクにおけるフィルタを構成する多孔質構造体のSEM像(Scanning Electron Microscope Image)図である。FIG. 7 is an SEM image (Scanning / Electron / Microscope / Image) of the porous structure constituting the filter in the inspection disk. 図8は、同上の検査用ディスクを利用して液体試料の検査を行う検出装置の構成図である。FIG. 8 is a configuration diagram of a detection apparatus for inspecting a liquid sample using the above-described inspection disk. 図9Aは、同上の検査用ディスクの製造方法を説明するための工程断面図である。FIG. 9A is a process sectional view for explaining the manufacturing method of the inspection disk. 図9Bは、同上の検査用ディスクの製造方法を説明するための工程断面図である。FIG. 9B is a process sectional view for explaining the manufacturing method of the inspection disk. 図9Cは、同上の検査用ディスクの製造方法を説明するための工程断面図である。FIG. 9C is a process cross-sectional view for explaining the manufacturing method of the inspection disc.
 下記の実施形態において説明する各図は、模式的な図であり、図中において各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 Each figure described in the following embodiment is a schematic diagram, and the ratio of the size and thickness of each component in the figure does not necessarily reflect the actual dimensional ratio.
 (実施形態)
 以下では、本実施形態の液体試料を検査するための検査用ディスク1(以下、「ディスク1」という)について、図1~9Cに基づいて説明する。
(Embodiment)
Hereinafter, an inspection disk 1 (hereinafter referred to as “disk 1”) for inspecting a liquid sample according to the present embodiment will be described with reference to FIGS. 1 to 9C.
 ディスク1は、円盤状のウェル形成ディスク本体2と、複数のカートリッジ3と、を備える。ウェル形成ディスク本体2は、厚さ方向において互いに反対側にある表面2A及び裏面2Bを有する。ウェル形成ディスク本体2は、円盤状であるのが好ましい。ウェル形成ディスク本体2は、第1ウェル21及び第1ウェル21に連通する第2ウェル22を有する。ウェル形成ディスク本体2は、図3A~図3C及び図4に示すように、ディスク本体4と、ディスク本体4よりも柔軟なプレート5と、を備える。ディスク本体4は、円盤状であるのが好ましい。また、プレート5は、円盤状であるのが好ましい。 The disk 1 includes a disk-shaped well-forming disk main body 2 and a plurality of cartridges 3. The well forming disc main body 2 has a front surface 2A and a back surface 2B that are opposite to each other in the thickness direction. The well forming disc body 2 is preferably disc-shaped. The well forming disk main body 2 has a first well 21 and a second well 22 communicating with the first well 21. As shown in FIGS. 3A to 3C and 4, the well forming disk main body 2 includes a disk main body 4 and a plate 5 that is more flexible than the disk main body 4. The disc body 4 is preferably disk-shaped. The plate 5 is preferably disc-shaped.
 ウェル形成ディスク本体2では、ディスク本体4とプレート5とが互いに重なるようにして接合されている。以下、ウェル形成ディスク本体2を積層ディスク本体2ということもある。積層ディスク本体2では、ディスク本体4の中心軸45(図4参照)とプレート5の中心軸56(図4参照)とを一直線上に揃えてある。ディスク1の中心軸10(図8参照)は、ディスク本体4の中心軸45及びプレート5の中心軸56と一直線上に揃えてあるのが好ましい。 In the well forming disk main body 2, the disk main body 4 and the plate 5 are joined so as to overlap each other. Hereinafter, the well forming disk main body 2 may be referred to as a laminated disk main body 2. In the laminated disk main body 2, the central axis 45 (see FIG. 4) of the disk main body 4 and the central axis 56 (see FIG. 4) of the plate 5 are aligned on a straight line. The center axis 10 (see FIG. 8) of the disk 1 is preferably aligned with the center axis 45 of the disk body 4 and the center axis 56 of the plate 5.
 ディスク本体4は、液体試料を入れるチャンバー400を有する。ディスク本体4は、厚さ方向において互いに反対側にある第1面41及び第2面42を有する。プレート5は、ディスク本体4の第1面41側においてチャンバー400を覆うようにディスク本体4に接合されている。チャンバー400は、図5Bに示すように、第1チャンバー401と、第2チャンバー402と、を有する。第1チャンバー401は、ディスク本体4の厚さ方向に貫通しており、プレート5側の開口をプレート5により塞がれている。これにより、積層ディスク本体2では、第1チャンバー401は、ディスク本体4の厚さ方向においてプレート5側とは反対側が開放されている。第2チャンバー402は、ディスク本体4の第1面41に形成されており、ディスク本体4の厚さ方向においてプレート5側とは反対側が閉塞されている。また、第2チャンバー402は、プレート5側の開口をプレート5により塞がれている。第2チャンバー402は、第1チャンバー401と連通している(繋がっている)。ここにおいて、ディスク本体4は、第1チャンバー401と第2チャンバー402との間に、第1チャンバー401及び第2チャンバー402それぞれに連通するチャネル403(図2B、図5B及び図5C参照)を有するのが好ましい。チャネル403は、ディスク本体4の第1面41に形成されており、ディスク本体4の厚さ方向においてプレート5側とは反対側が閉塞されている。 The disk main body 4 has a chamber 400 for storing a liquid sample. The disc body 4 has a first surface 41 and a second surface 42 that are opposite to each other in the thickness direction. The plate 5 is joined to the disc body 4 so as to cover the chamber 400 on the first surface 41 side of the disc body 4. The chamber 400 includes a first chamber 401 and a second chamber 402 as shown in FIG. 5B. The first chamber 401 penetrates in the thickness direction of the disc body 4, and the opening on the plate 5 side is closed by the plate 5. As a result, in the laminated disk main body 2, the first chamber 401 is open on the side opposite to the plate 5 side in the thickness direction of the disk main body 4. The second chamber 402 is formed on the first surface 41 of the disc body 4, and the side opposite to the plate 5 side in the thickness direction of the disc body 4 is closed. In the second chamber 402, the opening on the plate 5 side is closed by the plate 5. The second chamber 402 is in communication with (connected to) the first chamber 401. Here, the disc body 4 has a channel 403 (see FIGS. 2B, 5B, and 5C) that communicates with the first chamber 401 and the second chamber 402 between the first chamber 401 and the second chamber 402, respectively. Is preferred. The channel 403 is formed on the first surface 41 of the disk main body 4, and the side opposite to the plate 5 side in the thickness direction of the disk main body 4 is closed.
 積層ディスク本体2では、ディスク本体4における第1チャンバー401の内壁面とプレート5とで囲まれた空間が、液体試料を溜めることが可能な第1ウェル21を構成している。また、積層ディスク本体2では、ディスク本体4における第2チャンバー402の内壁面とプレート5とで囲まれた空間が、第1ウェル21から移動させた液体試料を溜めることが可能な第2ウェル22を構成している。また、積層ディスク本体2では、ディスク本体4におけるチャネル403の内壁面とプレート5とで囲まれた空間が、第1チャンバー401と第2チャンバー402との間で液体試料を通す流路23(図2C及び3B参照)を構成している。 In the laminated disk main body 2, the space surrounded by the inner wall surface of the first chamber 401 and the plate 5 in the disk main body 4 constitutes the first well 21 capable of storing a liquid sample. Further, in the laminated disc body 2, the space surrounded by the inner wall surface of the second chamber 402 and the plate 5 in the disc body 4 can store the liquid sample moved from the first well 21. Is configured. In the laminated disk main body 2, a space surrounded by the inner wall surface of the channel 403 and the plate 5 in the disk main body 4 is a flow path 23 (see FIG. 5) through which a liquid sample passes between the first chamber 401 and the second chamber 402. 2C and 3B).
 液体試料は、複数種類の物質を含んでいる。カートリッジ3は、第1チャンバー401から第2チャンバー402へ移動する液体試料から特定の物質を除去するフィルタ35を有する。ここで、「特定の物質を除去する」とは、特定の物質を捕捉することを意味する。要するに、フィルタ35は、液体試料から特定の第1物質を捕捉し特定の第2物質を通す多孔質構造体36(図7参照)を含む。以下、カートリッジ3をフィルタカートリッジ3ともいう。フィルタカートリッジ3は、ディスク本体4の第1チャンバー401に入れられる。ここにおいて、ディスク1では、フィルタカートリッジ3は、積層ディスク本体2の第1ウェル21に嵌め込まれる。 The liquid sample contains multiple types of substances. The cartridge 3 includes a filter 35 that removes a specific substance from the liquid sample moving from the first chamber 401 to the second chamber 402. Here, “removing a specific substance” means capturing a specific substance. In short, the filter 35 includes a porous structure 36 (see FIG. 7) that captures a specific first substance from the liquid sample and passes the specific second substance. Hereinafter, the cartridge 3 is also referred to as a filter cartridge 3. The filter cartridge 3 is placed in the first chamber 401 of the disc body 4. Here, in the disk 1, the filter cartridge 3 is fitted into the first well 21 of the laminated disk main body 2.
 ディスク1は、例えば、液状の生体試料(例えば、人の血液)中の検体(例えば、赤血球)への病原性微生物(例えば、マラリアの原虫)の感染率を検査するために用いられる。マラリアの原虫は、例えば、ハマダラ蚊が人の血を吸ったときに人の体内に侵入し、血液中において赤血球に侵入し、赤血球中に寄生する。ここでいう「感染率」は、{[病原性微生物の感染している検体の数]/[検体の全数]}×100〔%〕である。液体試料は、少なくとも、液状の生体試料を含む。液体試料は、例えば、生体試料が血液である場合、粘性を低下させるために、血液を希釈液により希釈してあるのが好ましい。希釈液としては、生体試料に含まれる血液細胞(赤血球、白血球)を変性させない液を用いる。希釈液としては、例えば、緩衝液、等張液、培養液、界面活性剤等を用いることができる。 The disk 1 is used, for example, to examine the infection rate of pathogenic microorganisms (for example, malaria protozoa) to a specimen (for example, red blood cells) in a liquid biological sample (for example, human blood). The malaria parasite, for example, invades a human body when an mosquito sucks human blood, invades red blood cells in the blood, and parasitizes in red blood cells. The “infection rate” here is {[number of samples infected with pathogenic microorganisms] / [total number of samples]} × 100 [%]. The liquid sample includes at least a liquid biological sample. In the liquid sample, for example, when the biological sample is blood, the blood is preferably diluted with a diluent in order to reduce the viscosity. As the diluted solution, a solution that does not denature blood cells (erythrocytes, leukocytes) contained in the biological sample is used. As the diluent, for example, a buffer solution, an isotonic solution, a culture solution, a surfactant and the like can be used.
 ディスク1では、病原性微生物の核酸を染色するための蛍光試薬(蛍光色素)が、積層ディスク本体2の第2ウェル22に配置されているのが好ましい。蛍光試薬は、例えば、凍結乾燥法、スピンコート法などにより配置されているのが好ましい。これにより、ディスク1では、第2ウェル22へ移動した液体試料中の検体(赤血球)に寄生している病原性微生物の核酸を蛍光標識することが可能となる。蛍光試薬により染色された核酸は、外部から励起光が照射されたときに蛍光を発する。病原性微生物の核酸を染色するための蛍光試薬は、粉末でもよい。 In the disk 1, it is preferable that a fluorescent reagent (fluorescent dye) for staining the nucleic acid of pathogenic microorganisms is disposed in the second well 22 of the laminated disk body 2. The fluorescent reagent is preferably arranged by, for example, a freeze-drying method or a spin coating method. Thereby, the disc 1 can fluorescently label the nucleic acid of the pathogenic microorganism that is parasitic on the specimen (red blood cells) in the liquid sample moved to the second well 22. The nucleic acid stained with the fluorescent reagent emits fluorescence when excitation light is irradiated from the outside. The fluorescent reagent for staining the nucleic acid of the pathogenic microorganism may be a powder.
 ディスク1では、フィルタ35が、特定の第2物質(検体)である赤血球を通し、かつ、特定の第1物質である白血球を捕捉するように構成されている。言い換えれば、フィルタ35は、赤血球と白血球とを分離し赤血球を抽出する分離部として機能するように構成されている。したがって、ディスク1では、生体試料から赤血球を抽出することが可能となる。 In the disk 1, the filter 35 is configured to pass red blood cells that are specific second substances (specimens) and to capture white blood cells that are specific first substances. In other words, the filter 35 is configured to function as a separation unit that separates red blood cells and white blood cells and extracts red blood cells. Therefore, the disk 1 can extract red blood cells from a biological sample.
 病原性微生物の核酸を染色するための蛍光試薬は、白血球も染色することができる材料である。しかしながら、ディスク1では、第1ウェル21に入れられた液体試料中の白血球がフィルタ35に捕捉される。よって、ディスク1では、第1ウェル21へ入れられた液体試料に含まれている白血球が蛍光試薬により染色されるのを防ぐことが可能となる。 Fluorescent reagents for staining nucleic acids of pathogenic microorganisms are materials that can also stain leukocytes. However, in the disk 1, white blood cells in the liquid sample placed in the first well 21 are captured by the filter 35. Therefore, in the disc 1, it becomes possible to prevent the white blood cells contained in the liquid sample put in the first well 21 from being stained with the fluorescent reagent.
 ディスク1において、フィルタカートリッジ3は、液体試料を収納可能な収納空間31を有する。ここで、フィルタカートリッジ3におけるフィルタ35は、ディスク本体4の径方向において収納空間31と第2ウェル22との間にあるのが好ましい。ディスク1では、フィルタカートリッジ3がディスク本体4の第1ウェル21に入れられるので、フィルタカートリッジ3の収納空間31にある液体試料を、第1ウェル21内に入れた液体試料とみなすことができる。ディスク1では、フィルタカートリッジ3におけるフィルタ35が収納空間31と第2ウェル22との間にあることにより、収納空間31に入れた液体試料中の赤血球を、フィルタ35を通して第2ウェル22へ移動させることが可能となる。収納空間31に液体試料を入れる作業は、フィルタカートリッジ3が積層ディスク本体2の第1ウェル21に嵌め込まれた状態で行うのが好ましい。 In the disk 1, the filter cartridge 3 has a storage space 31 in which a liquid sample can be stored. Here, the filter 35 in the filter cartridge 3 is preferably located between the storage space 31 and the second well 22 in the radial direction of the disc body 4. In the disk 1, the filter cartridge 3 is placed in the first well 21 of the disk body 4, so that the liquid sample in the storage space 31 of the filter cartridge 3 can be regarded as the liquid sample placed in the first well 21. In the disk 1, since the filter 35 in the filter cartridge 3 is between the storage space 31 and the second well 22, red blood cells in the liquid sample placed in the storage space 31 are moved to the second well 22 through the filter 35. It becomes possible. The operation of putting the liquid sample into the storage space 31 is preferably performed in a state in which the filter cartridge 3 is fitted in the first well 21 of the laminated disk main body 2.
 ディスク1では、フィルタカートリッジ3が第1ウェル21に入れられた状態において、収納空間31、フィルタ35及び第2ウェル22が、ディスク本体4の中心側から外周側に向かってこの順に並んでいるのが好ましい。要するに、ディスク1では、積層ディスク本体2の中心側から積層ディスク本体2の径方向外向きにおいて、収納空間31、フィルタ35及び第2ウェル22が、この順に並んでいるのが好ましい。これにより、ディスク1をディスク1の中心軸のまわりで回転させたときに液体試料に作用する遠心力により、収納空間31中の液体試料を、フィルタ35を通して第2ウェル22へ移動させることが可能となる。第2ウェル22内において、液体試料には、遠心力の他に、表面張力等も作用する。ディスク1の回転方向は、ディスク1の上側(積層ディスク本体2の表面2A側)から見て、時計回り(右回り)の方向である。 In the disk 1, the storage space 31, the filter 35, and the second well 22 are arranged in this order from the center side of the disk body 4 to the outer peripheral side in a state where the filter cartridge 3 is placed in the first well 21. Is preferred. In short, in the disk 1, it is preferable that the storage space 31, the filter 35, and the second well 22 are arranged in this order from the center side of the laminated disk main body 2 outward in the radial direction of the laminated disk main body 2. Thereby, the liquid sample in the storage space 31 can be moved to the second well 22 through the filter 35 by the centrifugal force acting on the liquid sample when the disk 1 is rotated around the central axis of the disk 1. It becomes. In the second well 22, surface tension or the like acts on the liquid sample in addition to centrifugal force. The rotation direction of the disk 1 is clockwise (clockwise) when viewed from the upper side of the disk 1 (the surface 2A side of the laminated disk main body 2).
 積層ディスク本体2の形状は、光ディスク(CD、DVD等)と同様、円盤状であるのが好ましい。積層ディスク本体2の中央には、円形状の孔28が形成されているのが好ましい。ディスク1の直径は、例えば、120mmである。 The shape of the laminated disk main body 2 is preferably a disk shape as in the case of optical disks (CD, DVD, etc.). A circular hole 28 is preferably formed in the center of the laminated disk body 2. The diameter of the disk 1 is 120 mm, for example.
 積層ディスク本体2は、上述のように、円盤状のディスク本体4と、ディスク本体4の第1面41側においてディスク本体4に接合された円盤状のプレート5と、を備える。ここにおいて、ディスク本体4の中央には、積層ディスク本体2の孔28の一部を構成する円形状の孔48が形成されている。また、プレート5の中央には、積層ディスク本体2の孔28の一部を構成する円形状の孔58が形成されている。また、プレート5は、円盤状のプレート本体50(図3C参照)を備える。プレート本体50の材質は、例えば、透明な樹脂である。プレート本体50は、厚さ方向において互いに反対側にある表面51及び裏面52を有する。プレート本体50の表面51には、光ディスクと同様に、プレート本体50の裏面52を通して入射したビーム状の光を追従させるための螺旋状のトラック53(図6参照)が形成されているのが好ましい。トラック53は、溝である。トラック53は、プレート本体50の中央部から外周部まで螺旋状に形成されている。トラック53にはアドレス情報が連続的に記録されている。これにより、プレート本体50では、アドレス情報によって位置が特定できるようになっている。したがって、例えば、ディスク1の面内における第2ウェル22の位置情報は、アドレス情報により特定される。ディスク1は、CDやDVDと同様、トラック53が光により走査されることにより、アドレス情報が再生される。光は、励起光である。励起光の波長は、例えば、400nm~410nmであるのが好ましく、405nmであるのがより好ましい。トラック53の深さは、例えば、50nmである。 The laminated disk main body 2 includes the disk-shaped disk main body 4 and the disk-shaped plate 5 joined to the disk main body 4 on the first surface 41 side of the disk main body 4 as described above. Here, a circular hole 48 constituting a part of the hole 28 of the laminated disk main body 2 is formed in the center of the disk main body 4. A circular hole 58 constituting a part of the hole 28 of the laminated disk main body 2 is formed at the center of the plate 5. The plate 5 includes a disk-shaped plate body 50 (see FIG. 3C). The material of the plate body 50 is, for example, a transparent resin. The plate body 50 has a front surface 51 and a back surface 52 that are opposite to each other in the thickness direction. On the front surface 51 of the plate body 50, it is preferable that a spiral track 53 (see FIG. 6) for following the beam-like light incident through the back surface 52 of the plate body 50 is formed as in the optical disc. . The track 53 is a groove. The track 53 is formed in a spiral shape from the center to the outer periphery of the plate body 50. Address information is continuously recorded on the track 53. Thereby, in the plate body 50, the position can be specified by the address information. Therefore, for example, the position information of the second well 22 in the plane of the disk 1 is specified by the address information. As in the case of CDs and DVDs, address information is reproduced from the disk 1 by scanning the track 53 with light. The light is excitation light. The wavelength of the excitation light is preferably 400 nm to 410 nm, for example, and more preferably 405 nm. The depth of the track 53 is, for example, 50 nm.
 プレート5は、プレート本体50の表面51上に形成された誘電体膜54(図3C参照)を更に備えている。誘電体膜54は、例えば、ZnS-SiO膜である。誘電体膜54は、トラック53を覆うように形成されている。誘電体膜54は、トラッキングのために励起光の一部を反射し、残りのほとんどを透過させるように構成されている。励起光に対する誘電体膜54の反射率は、例えば、5%以上20%以下である。上述の蛍光に対する誘電体膜54の反射率は、例えば、上述の励起光に対する誘電体膜54の反射率以下であるのが好ましい。ディスク1では、プレート本体50の裏面52に入射した励起光を反射する反射面55(図3C参照)が、誘電体膜54とプレート本体50との界面により構成される。 The plate 5 further includes a dielectric film 54 (see FIG. 3C) formed on the surface 51 of the plate body 50. The dielectric film 54 is, for example, a ZnS—SiO 2 film. The dielectric film 54 is formed so as to cover the track 53. The dielectric film 54 is configured to reflect a part of the excitation light for tracking and transmit most of the remaining part. The reflectance of the dielectric film 54 with respect to the excitation light is, for example, 5% or more and 20% or less. For example, the reflectance of the dielectric film 54 with respect to the fluorescence is preferably less than or equal to the reflectance of the dielectric film 54 with respect to the excitation light. In the disk 1, a reflection surface 55 (see FIG. 3C) that reflects the excitation light incident on the back surface 52 of the plate body 50 is configured by an interface between the dielectric film 54 and the plate body 50.
 ディスク1において第1ウェル21からフィルタ35を通して第2ウェル22へ送られた液体試料中の検体は、例えば、図8に示すような検出装置70によって検査される。 The specimen in the liquid sample sent from the first well 21 to the second well 22 through the filter 35 in the disk 1 is inspected by, for example, a detection device 70 as shown in FIG.
 検出装置70は、例えば、光ディスク用の光ピックアップ装置と同様の光学系を備えており、その動作も同様である。検出装置70の光学系は、半導体レーザ71と、偏光ビームスプリッタ72と、対物レンズ73と、ダイクロイックプリズム74と、蛍光検出器75と、アナモフィックレンズ76と、反射励起光検出器77と、を備えている。 The detecting device 70 includes, for example, an optical system similar to an optical pickup device for an optical disc, and the operation thereof is also the same. The optical system of the detection device 70 includes a semiconductor laser 71, a polarization beam splitter 72, an objective lens 73, a dichroic prism 74, a fluorescence detector 75, an anamorphic lens 76, and a reflected excitation light detector 77. ing.
 検出装置70は、上述の光学系の他、ホルダ81と、アクチュエータ82と、回転装置83と、第1の信号演算回路84と、サーボ回路85と、第2の信号演算回路86と、画像解析装置87と、画像表示装置88と、を備えている。回転装置83は、モータである。回転装置83は、サーボ回路85によって制御される。 In addition to the optical system described above, the detection device 70 includes a holder 81, an actuator 82, a rotation device 83, a first signal calculation circuit 84, a servo circuit 85, a second signal calculation circuit 86, and image analysis. A device 87 and an image display device 88 are provided. The rotating device 83 is a motor. The rotating device 83 is controlled by a servo circuit 85.
 検出装置70では、回転装置83により回転するテーブルにディスク1がセットされた後に、所定動作が開始される。 In the detecting device 70, after the disk 1 is set on the rotating table by the rotating device 83, a predetermined operation is started.
 光学系、ホルダ81及びアクチュエータ82は、CDやDVDの記録/再生に用いる既存の光ピックアップ装置と同様、ハウジングに設置される。また、このハウジングは、所定のガイド機構によって、ディスク1の径方向に移動可能となっている。サーボ回路85は、ハウジングの移動の制御も行う。この制御は、既存のCDプレーヤやDVDプレーヤにおける制御と同様のアクセス制御なので、その詳細な説明は省略する。 The optical system, the holder 81 and the actuator 82 are installed in a housing in the same manner as an existing optical pickup device used for recording / reproducing of a CD or DVD. The housing is movable in the radial direction of the disk 1 by a predetermined guide mechanism. The servo circuit 85 also controls the movement of the housing. Since this control is the same access control as that in the existing CD player or DVD player, detailed description thereof is omitted.
 半導体レーザ71は、波長405nm程度の光(励起光)を出射する。図8には、光の進行経路を一点鎖線で示してある。半導体レーザ71から出射された励起光は、偏光ビームスプリッタ72によって反射され、対物レンズ73に入射する。 The semiconductor laser 71 emits light (excitation light) having a wavelength of about 405 nm. In FIG. 8, the traveling path of light is indicated by a one-dot chain line. The excitation light emitted from the semiconductor laser 71 is reflected by the polarization beam splitter 72 and enters the objective lens 73.
 対物レンズ73は、所定の開口数(Numerical Aperture)を有し、励起光をディスク1に対して適正に収束させるよう構成されている。具体的には、対物レンズ73は、偏光ビームスプリッタ72側から入射する励起光が収束するよう構成されている。 The objective lens 73 has a predetermined numerical aperture (Numerical Aperture) and is configured to properly converge the excitation light on the disk 1. Specifically, the objective lens 73 is configured such that excitation light incident from the polarization beam splitter 72 side converges.
 対物レンズ73は、ホルダ81に保持された状態で、アクチュエータ82により、フォーカス方向(ディスク1の厚さ方向)とトラッキング方向(ディスク1の径方向)に駆動される。すなわち、対物レンズ73は、励起光がディスク1の反射面55(図3C参照)に合焦された状態でトラック53(図6参照)を追従するように駆動される。反射面55に合焦された励起光は、一部が反射面55によって反射され、大部分が反射面55を透過する。 The objective lens 73 is driven by the actuator 82 in the focus direction (the thickness direction of the disk 1) and the tracking direction (the radial direction of the disk 1) while being held by the holder 81. That is, the objective lens 73 is driven so as to follow the track 53 (see FIG. 6) in a state where the excitation light is focused on the reflecting surface 55 (see FIG. 3C) of the disk 1. A part of the excitation light focused on the reflection surface 55 is reflected by the reflection surface 55 and most of the excitation light is transmitted through the reflection surface 55.
 対物レンズ73によって収束された励起光が赤血球において蛍光標識された核酸に照射されると、蛍光が発生する。蛍光の波長は、励起光の波長と異なる。蛍光の波長は、例えば、440nm~490nmであるのが好ましく、455nmであるのがより好ましい。蛍光色素としては、例えば、SYTO(登録商標)Blue等を用いることができる。マラリアの原虫が感染していない赤血球は、蛍光標識されていないので、励起光を照射されても蛍光を発生しない。したがって、検出装置70では、マラリアの原虫が感染している赤血球と感染していない赤血球とを蛍光の有無で区別することができる。 Fluorescence is generated when the excitation light focused by the objective lens 73 is irradiated onto a nucleic acid that is fluorescently labeled in red blood cells. The wavelength of fluorescence is different from the wavelength of excitation light. The fluorescence wavelength is preferably, for example, 440 nm to 490 nm, and more preferably 455 nm. For example, SYTO (registered trademark) Blue can be used as the fluorescent dye. Red blood cells that are not infected with malaria parasites are not fluorescently labeled, and therefore do not generate fluorescence even when irradiated with excitation light. Therefore, the detection apparatus 70 can distinguish between red blood cells infected with malaria parasites and red blood cells not infected by the presence or absence of fluorescence.
 ダイクロイックプリズム74は、波長405nm程度の光を反射し、波長440~600nm程度の光を透過するよう構成されている。 The dichroic prism 74 is configured to reflect light having a wavelength of about 405 nm and transmit light having a wavelength of about 440 to 600 nm.
 反射面55によって反射された励起光(以下、「反射励起光」という)は、偏光ビームスプリッタ72を透過し、ダイクロイックプリズム74によって反射され、アナモフィックレンズ76に入射する。 Excitation light reflected by the reflecting surface 55 (hereinafter referred to as “reflected excitation light”) passes through the polarization beam splitter 72, is reflected by the dichroic prism 74, and enters the anamorphic lens 76.
 アナモフィックレンズ76は、偏光ビームスプリッタ72側から入射する反射励起光に非点収差を導入する。アナモフィックレンズ76を透過した反射励起光は、反射励起光検出器77に入射する。反射励起光検出器77は、受光面上に反射励起光を受光するための4分割センサを有している。反射励起光検出器77の検出信号は、第2の信号演算回路86に入力される。 The anamorphic lens 76 introduces astigmatism into the reflected excitation light incident from the polarization beam splitter 72 side. The reflected excitation light transmitted through the anamorphic lens 76 enters the reflected excitation light detector 77. The reflected excitation light detector 77 has a four-divided sensor for receiving reflected excitation light on the light receiving surface. The detection signal of the reflected excitation light detector 77 is input to the second signal calculation circuit 86.
 第2の信号演算回路86は、反射励起光検出器77の検出信号から、フォーカスエラー信号及びトラッキングエラー信号を生成し、かつ、ウォブル信号(Wobble Signal)を生成する。フォーカスエラー信号は、対物レンズ73の焦点位置とディスク1とのずれ(焦点誤差)を示す信号である。トラッキングエラー信号は、励起光のスポットとトラック53とのずれ(トラッキング誤差)を示す信号である。ウォブル信号は、トラック53により規定されるグルーブの蛇行形状に応じた波形信号である。フォーカスエラー信号及びトラッキングエラー信号は、非点収差法と1ビームプッシュプル法に従って生成される。ウォブル信号は、トラッキングエラー信号に基づいて生成される。具体的には、トラッキングエラー信号から、ウォブル信号に応じた周波数成分を抽出することにより、ウォブル信号が生成される。サーボ回路85は、第2の信号演算回路86から出力されたフォーカスエラー信号及びトラッキングエラー信号を用いて、アクチュエータ82を制御する。また、サーボ回路85は、第2の信号演算回路86から出力されたウォブル信号を用いて、所定の線速度でディスク1が回転されるように回転装置83を制御する。 The second signal calculation circuit 86 generates a focus error signal and a tracking error signal from the detection signal of the reflected excitation light detector 77, and also generates a wobble signal (Wobble Signal). The focus error signal is a signal indicating a deviation (focus error) between the focal position of the objective lens 73 and the disk 1. The tracking error signal is a signal indicating a deviation (tracking error) between the spot of the excitation light and the track 53. The wobble signal is a waveform signal corresponding to the meandering shape of the groove defined by the track 53. The focus error signal and the tracking error signal are generated according to the astigmatism method and the one-beam push-pull method. The wobble signal is generated based on the tracking error signal. Specifically, a wobble signal is generated by extracting a frequency component corresponding to the wobble signal from the tracking error signal. The servo circuit 85 controls the actuator 82 using the focus error signal and tracking error signal output from the second signal calculation circuit 86. The servo circuit 85 controls the rotating device 83 so that the disk 1 is rotated at a predetermined linear velocity using the wobble signal output from the second signal calculation circuit 86.
 また、第2の信号演算回路86は、ウォブル信号を復調して生成した再生データ(アドレス情報)を画像解析装置87に出力する。 Also, the second signal calculation circuit 86 outputs reproduction data (address information) generated by demodulating the wobble signal to the image analysis device 87.
 対物レンズ73側からダイクロイックプリズム74に入射する蛍光は、ダイクロイックプリズム74を透過し、蛍光検出器75に入射する。蛍光検出器75は、受光した蛍光を電気信号からなる検出信号に変換して出力するセンサを有している。蛍光検出器75の検出信号は、第1の信号演算回路84に入力される。 Fluorescence incident on the dichroic prism 74 from the objective lens 73 side passes through the dichroic prism 74 and enters the fluorescence detector 75. The fluorescence detector 75 has a sensor that converts the received fluorescence into a detection signal composed of an electrical signal and outputs the detection signal. The detection signal of the fluorescence detector 75 is input to the first signal calculation circuit 84.
 第1の信号演算回路84は、蛍光検出器75からの検出信号を増幅して生成した蛍光輝度情報を画像解析装置87に出力する。 The first signal calculation circuit 84 outputs fluorescence luminance information generated by amplifying the detection signal from the fluorescence detector 75 to the image analysis device 87.
 画像解析装置87は、第1の信号演算回路84から出力される蛍光輝度情報と、第2の信号演算回路86から出力されるアドレス情報と、に基づいて第2ウェル22内の液体試料の画像を生成して画像表示装置88に表示させる。また、画像解析装置87は、第2ウェル22内の液体試料の画像における赤血球及び赤血球に感染しているマラリア原虫の核酸を検出して、感染率を演算し、その演算結果を画像表示装置88に表示させる。画像解析装置87は、例えば、パーソナルコンピュータに適宜のプログラムを実行させることにより実現できる。また、画像表示装置88は、例えば、パーソナルコンピュータのディスプレイにより構成できる。 The image analysis device 87 is configured to display an image of the liquid sample in the second well 22 based on the fluorescence luminance information output from the first signal calculation circuit 84 and the address information output from the second signal calculation circuit 86. Is generated and displayed on the image display device 88. The image analysis device 87 detects red blood cells in the image of the liquid sample in the second well 22 and the nucleic acid of the malaria parasite that is infected with the red blood cells, calculates the infection rate, and displays the calculation result as the image display device 88. To display. The image analysis device 87 can be realized, for example, by causing a personal computer to execute an appropriate program. Further, the image display device 88 can be constituted by a display of a personal computer, for example.
 ディスク1及び検出装置70を用いて赤血球の検査を行う例の手順について、簡単に説明する。 The procedure of an example of examining red blood cells using the disk 1 and the detection device 70 will be briefly described.
 患者から採血された血液(生体試料)を準備してから、血液と希釈液とを混合することで液体試料を調製する。 After preparing blood (biological sample) collected from a patient, a liquid sample is prepared by mixing the blood and a diluent.
 その後、フィルタカートリッジ3の収納空間31に液体試料を入れる。収納空間31に生体試料を入れるときには、例えば、ピペット(Pipette)、シリンジ(Syringe)、毛細管(Capillary)等を用いる。ここでは、フィルタカートリッジ3を積層ディスク本体2の第1ウェル21に嵌め込んだ状態において液体試料を収納空間31に入れるのが好ましい。 Thereafter, a liquid sample is put into the storage space 31 of the filter cartridge 3. When putting a biological sample in the storage space 31, for example, a pipette (Pipette), a syringe (Syringe), a capillary (Capillary) or the like is used. Here, it is preferable to put the liquid sample into the storage space 31 in a state where the filter cartridge 3 is fitted in the first well 21 of the laminated disk main body 2.
 その後、検出装置70において、ディスク1を所定の線速度で所定の回転時間だけ回転させる。検出装置70は、積層ディスク本体2の中心軸25を中心としてディスク1を回転させる。このとき、液体試料中の白血球は、フィルタカートリッジ3のフィルタ35に捕捉され、流路23及び第2ウェル22へは到達しない。よって、ディスク1では、液体試料に含まれている赤血球を第1ウェル21から第2ウェル22へ移動させることができ、かつ、液体試料に含まれている白血球をフィルタ35で捕捉することができる。 Thereafter, in the detection device 70, the disk 1 is rotated at a predetermined linear velocity for a predetermined rotation time. The detection device 70 rotates the disk 1 around the central axis 25 of the laminated disk main body 2. At this time, white blood cells in the liquid sample are captured by the filter 35 of the filter cartridge 3 and do not reach the flow path 23 and the second well 22. Therefore, in the disk 1, the red blood cells contained in the liquid sample can be moved from the first well 21 to the second well 22, and the white blood cells contained in the liquid sample can be captured by the filter 35. .
 その後、検出装置70において、第2ウェル22内の液体試料(ここで、第2ウェル22内に移動した液体試料は液相状態から固相状態に変化していてもよい)の画像を生成して、画像表示装置88に表示させ、更に感染率を画像表示装置88に表示させる。これにより、医師等が顕微鏡を利用して検査を行う場合と比べて、検査時間を短縮することが可能となる。第2ウェル22内に移動した液体試料は、検出装置70において検査を行う場合に、液相状態でもよいし、液相状態から固相状態に変化していてもよい。一方、液体試料の励起光に対する屈折率は、円盤状のディスク本体4、円盤状のプレート5、及びディスク本体4とプレート5とを接合している接合部6それぞれの材料の励起光に対する屈折率に近いほうが好ましく、1.3~1.6程度である。 Thereafter, the detection device 70 generates an image of the liquid sample in the second well 22 (here, the liquid sample moved into the second well 22 may be changed from the liquid phase state to the solid phase state). The infection rate is displayed on the image display device 88, and the infection rate is further displayed on the image display device 88. Thereby, compared with the case where a doctor etc. test | inspect using a microscope, it becomes possible to shorten test | inspection time. The liquid sample that has moved into the second well 22 may be in a liquid phase state or may be changed from a liquid phase state to a solid phase state when the detection apparatus 70 performs an inspection. On the other hand, the refractive index with respect to the excitation light of the liquid sample is the refractive index with respect to the excitation light of the material of each of the disc-shaped disc body 4, the disc-shaped plate 5, and the joint 6 that joins the disc body 4 and the plate 5. Is preferably about 1.3 to 1.6.
 ディスク1は、フィルタカートリッジ3を備えており、フィルタカートリッジ3単体でフィルタ性能の検査を行うことができる。ここにおいて、「フィルタ性能」とは、フィルタ35の性能であり、赤血球を透過し白血球を捕捉する性能である。ディスク1では、フィルタカートリッジ3単体でフィルタ性能の検査を行うことができることにより、フィルタ性能の信頼性の向上を図ることが可能となる。これにより、例えば、ディスク1及び検出装置70を用いた感染率の検査の精度を向上させることが可能となる。 The disk 1 includes a filter cartridge 3, and the filter performance can be inspected with the filter cartridge 3 alone. Here, the “filter performance” is the performance of the filter 35 and is the performance of permeating red blood cells and capturing white blood cells. In the disk 1, the filter performance can be inspected with the filter cartridge 3 alone, so that the reliability of the filter performance can be improved. Thereby, for example, it is possible to improve the accuracy of the inspection of the infection rate using the disk 1 and the detection device 70.
 ディスク1の各構成要素については、以下に、詳細に説明する。 Each component of the disk 1 will be described in detail below.
 ディスク1は、積層ディスク本体2と、複数(9つ)のフィルタカートリッジ3と、を備える。図1では、9つのフィルタカートリッジ3のうち5つのフィルタカートリッジ3のみを図示してある。 The disk 1 includes a laminated disk body 2 and a plurality (nine) of filter cartridges 3. In FIG. 1, only five filter cartridges 3 of the nine filter cartridges 3 are illustrated.
 積層ディスク本体2の形状は、円盤状である。積層ディスク本体2は、円盤状のディスク本体4と、円盤状のプレート5とが、接合部6を介して積層されている。 The shape of the laminated disc body 2 is a disc shape. In the laminated disk main body 2, a disk-shaped disk main body 4 and a disk-shaped plate 5 are laminated via a joint 6.
 積層ディスク本体2におけるディスク本体4には、複数(9つ)のフィルタカートリッジ3に一対一に対応する複数(9つ)のチャンバー400が形成されている。チャンバー400は、ディスク本体4の厚さ方向から見て、ディスク本体4の中心から離れるにつれてディスク本体4の周方向に沿った方向の幅が徐々に大きくなっており、外周側の端において幅が徐々に狭くなっている。ここにおいて、複数のチャンバー400は、ディスク本体4の周方向に略等間隔で並んでいる。したがって、複数の第1チャンバー401、複数のチャネル403及び複数の第2チャンバー402それぞれは、ディスク本体4の周方向において等間隔で並んでいる。積層ディスク本体2には、第1ウェル21と、第2ウェル22と、第1ウェル21と第2ウェル22との間にある流路23と、のセットが9セット形成される。 A plurality (nine) of chambers 400 corresponding to a plurality of (nine) filter cartridges 3 are formed on the disk body 4 in the laminated disk body 2. As viewed from the thickness direction of the disc body 4, the chamber 400 gradually increases in width in the direction along the circumferential direction of the disc body 4 as it moves away from the center of the disc body 4. It is getting narrower gradually. Here, the plurality of chambers 400 are arranged at substantially equal intervals in the circumferential direction of the disc body 4. Therefore, the plurality of first chambers 401, the plurality of channels 403, and the plurality of second chambers 402 are arranged at equal intervals in the circumferential direction of the disc body 4. In the laminated disk main body 2, nine sets of the first well 21, the second well 22, and the flow path 23 between the first well 21 and the second well 22 are formed.
 積層ディスク本体2には、積層ディスク本体2の中心側から外周側に向かって、第1ウェル21、流路23及び第2ウェル22がこの順で設けられている。ディスク1では、フィルタカートリッジ3を第1ウェル21に積層ディスク本体2の厚さ方向から嵌め込むことができる。そのため、フィルタカートリッジ3を積層ディスク本体2の径方向から嵌め込む場合に比べて、比較的容易に嵌め込むことが可能となる。 The laminated disc body 2 is provided with a first well 21, a flow path 23, and a second well 22 in this order from the center side to the outer peripheral side of the laminated disc body 2. In the disk 1, the filter cartridge 3 can be fitted into the first well 21 from the thickness direction of the laminated disk body 2. Therefore, the filter cartridge 3 can be fitted relatively easily as compared with the case where the filter cartridge 3 is fitted from the radial direction of the laminated disk main body 2.
 ディスク1では、複数のチャンバー400が、積層ディスク本体2の中心軸25を中心に等角度間隔で放射状に配列されている。よって、ディスク1では、複数の第1ウェル21がディスク1の中心軸10を中心に等角度間隔で放射状に配列されている。また、複数の第2ウェル22がディスク1の中心軸10を中心に等角度間隔で放射状に配列されている。これにより、ディスク1は、複数の液体試料の検査に利用することができる。また、ディスク1を利用した赤血球の検査方法では、複数のフィルタカートリッジ3の収納空間31それぞれに液体試料を入れ、かつ、複数のフィルタカートリッジ3を積層ディスク本体2において一対一で対応する第1ウェル21に嵌め込んだ状態で、ディスク1を、積層ディスク本体2の中心軸25を中心として回転させる。これにより、検査方法では、複数の液体試料それぞれから赤血球を互いに異なる第2ウェル22へ抽出することが可能となり、検査時間の短縮化を図ることが可能となる。 In the disk 1, a plurality of chambers 400 are arranged radially at equal angular intervals around the central axis 25 of the laminated disk main body 2. Therefore, in the disk 1, a plurality of first wells 21 are arranged radially at equiangular intervals around the central axis 10 of the disk 1. A plurality of second wells 22 are arranged radially at equiangular intervals around the central axis 10 of the disk 1. Thereby, the disk 1 can be used for the inspection of a plurality of liquid samples. In the method for examining red blood cells using the disk 1, a liquid sample is put in each of the storage spaces 31 of the plurality of filter cartridges 3, and the plurality of filter cartridges 3 correspond to each other in the laminated disk body 2 on a one-to-one basis. The disc 1 is rotated around the central axis 25 of the laminated disc main body 2 in a state of being fitted into the disc 21. Thus, in the inspection method, it is possible to extract red blood cells from each of the plurality of liquid samples to different second wells 22 and shorten the inspection time.
 第1ウェル21は、ディスク本体4の第1面41に形成された第1チャンバー401の内壁面と、プレート5と、接合部6と、で囲まれた空間である。言い換えれば、第1ウェル21は、積層ディスク本体2の表面2Aにおいて積層ディスク本体2の厚さ方向に沿って形成された凹部29(図1及び2B参照)からなる。第1チャンバー401は、ディスク本体4の径方向において、ディスク本体4の孔48付近に設けられている。第1チャンバー401及び第1ウェル21の形状は、積層ディスク本体2の厚さ方向から見てフィルタカートリッジ3と略同じである。これにより、ディスク1では、第1ウェル21に嵌め込まれたフィルタカートリッジ3のがたつきを抑制することが可能となる。 The first well 21 is a space surrounded by the inner wall surface of the first chamber 401 formed on the first surface 41 of the disc body 4, the plate 5, and the joint portion 6. In other words, the first well 21 includes a concave portion 29 (see FIGS. 1 and 2B) formed along the thickness direction of the laminated disk main body 2 on the surface 2A of the laminated disk main body 2. The first chamber 401 is provided near the hole 48 of the disc body 4 in the radial direction of the disc body 4. The shapes of the first chamber 401 and the first well 21 are substantially the same as those of the filter cartridge 3 when viewed from the thickness direction of the laminated disc body 2. As a result, in the disk 1, rattling of the filter cartridge 3 fitted in the first well 21 can be suppressed.
 積層ディスク本体2では、第1ウェル21と第2ウェル22とが積層ディスク本体2の径方向において離れており、第1ウェル21と第2ウェル22とが流路23を介して連通しているのが好ましい。 In the laminated disk main body 2, the first well 21 and the second well 22 are separated from each other in the radial direction of the laminated disk main body 2, and the first well 21 and the second well 22 communicate with each other through the flow path 23. Is preferred.
 流路23の開口面積は、第1ウェル21から離れて第2ウェル22に近づくにつれて徐々に小さくなっているのが好ましい。これにより、ディスク1では、第1ウェル21から第2ウェル22へ移動した液体試料中に気泡が発生するのを抑制することが可能となる。 It is preferable that the opening area of the flow path 23 gradually decreases as the distance from the first well 21 and the approach to the second well 22 increases. Thereby, in the disk 1, it is possible to suppress the generation of bubbles in the liquid sample that has moved from the first well 21 to the second well 22.
 ディスク本体4におけるチャンバー400は、ディスク本体4の周方向においてチャネル403(以下、「第1チャネル403」ともいう)の両側に1つずつ形成された2つの第2チャネル405(図2C参照)を有する。第2チャネル405の深さは、第2チャンバー402の深さと略同じである。第2チャネル405は、ディスク1における通気流路11(図2A~図2C参照)に連通している。通気流路11は、第2ウェル22内とディスク1の外部との通気用の流路である。ディスク1では、ディスク本体4の第2チャネル405の底面とプレート5との間に、通気流路11と第2ウェル22とを連通させる連結流路27が形成されている。要するに、ディスク1は、連結流路27を有する。連結流路27は、積層ディスク本体2の周方向において流路23の隣で、通気流路11と第2ウェル22との間にあり通気流路11及び第2ウェル22に連通している。通気流路11は、積層ディスク本体2の第1ウェル21の内壁面において積層ディスク本体2の厚さ方向に沿って設けられた溝404とフィルタカートリッジ3の側面との間に形成される。通気流路11は、フィルタ35よりディスク1の内周側に配置されている。ディスク1では、フィルタカートリッジ3における積層ディスク本体2の周方向に沿った方向の両側それぞれに通気流路11が形成される。これにより、ディスク1では、収納空間31から第2ウェル22へ液体試料を移動させたときに第2ウェル22内に気泡が発生するのを抑制することが可能となる。よって、ディスク1では、検出装置70により光を照射したときにノイズの原因となる気泡の発生を抑制できるので、検出装置70による検査の精度を向上させることが可能となる。ディスク1では、積層ディスク本体2の周方向に沿った方向における通気流路11の幅は、例えば、500μmである。ディスク1では、積層ディスク本体2の周方向に沿った方向におけるカートリッジ3と積層ディスク本体2との間隔は、例えば、100μm以下である。また、通気流路11の幅は、例えば、500μmである。 The chamber 400 in the disk main body 4 includes two second channels 405 (see FIG. 2C) formed on both sides of the channel 403 (hereinafter also referred to as “first channel 403”) in the circumferential direction of the disk main body 4. Have. The depth of the second channel 405 is substantially the same as the depth of the second chamber 402. The second channel 405 communicates with the ventilation flow path 11 (see FIGS. 2A to 2C) in the disk 1. The ventilation channel 11 is a channel for ventilation between the inside of the second well 22 and the outside of the disk 1. In the disk 1, a connection flow path 27 that connects the ventilation flow path 11 and the second well 22 is formed between the bottom surface of the second channel 405 of the disk body 4 and the plate 5. In short, the disk 1 has a connecting flow path 27. The connection flow path 27 is adjacent to the flow path 23 in the circumferential direction of the laminated disk main body 2, is between the ventilation flow path 11 and the second well 22, and communicates with the ventilation flow path 11 and the second well 22. The ventilation channel 11 is formed between the groove 404 provided along the thickness direction of the laminated disk main body 2 on the inner wall surface of the first well 21 of the laminated disk main body 2 and the side surface of the filter cartridge 3. The ventilation channel 11 is disposed on the inner peripheral side of the disk 1 with respect to the filter 35. In the disk 1, ventilation channels 11 are formed on both sides of the filter cartridge 3 in the direction along the circumferential direction of the laminated disk main body 2. Thereby, in the disk 1, it is possible to suppress the generation of bubbles in the second well 22 when the liquid sample is moved from the storage space 31 to the second well 22. Therefore, in the disk 1, since generation | occurrence | production of the bubble which causes a noise when light is irradiated by the detection apparatus 70 can be suppressed, it becomes possible to improve the precision of the test | inspection by the detection apparatus 70. FIG. In the disk 1, the width of the ventilation channel 11 in the direction along the circumferential direction of the laminated disk body 2 is, for example, 500 μm. In the disk 1, the distance between the cartridge 3 and the laminated disk body 2 in the direction along the circumferential direction of the laminated disk body 2 is, for example, 100 μm or less. Moreover, the width | variety of the ventilation flow path 11 is 500 micrometers, for example.
 ディスク1におけるディスク本体4は、第1チャンバー401の内壁面からディスク本体4の周方向に沿った方向においてフィルタカートリッジ3に向かって突出したリブ47(図2C参照)を一体に備えている。リブ47は、積層ディスク本体2の凹部29(図1及び図2B参照)の底面から離れており、この底面に対向している。リブ47と凹部29の底面とフィルタカートリッジ3の側面とで囲まれた空間は、通気流路11の一部を構成している。ここにおいて、ディスク本体4では、リブ47におけるプレート5との対向面と第2チャネル405の底面とが連続して略面一となっている。ディスク1は、リブ47を備える。このことにより、収納空間31から第2ウェル22へ移動する液体試料が通気流路11を通してディスク1の外へ飛散するのを抑制することが可能となる。また、ディスク1は、リブ47を備えることにより、フィルタカートリッジ3のがたつきを、より抑制することが可能となる。第2チャネル405の底面は、第2チャンバー402の底面と連続して略面一となっている。 The disc main body 4 in the disc 1 is integrally provided with a rib 47 (see FIG. 2C) that protrudes from the inner wall surface of the first chamber 401 toward the filter cartridge 3 in the direction along the circumferential direction of the disc main body 4. The rib 47 is separated from the bottom surface of the concave portion 29 (see FIGS. 1 and 2B) of the laminated disk main body 2, and faces the bottom surface. A space surrounded by the rib 47, the bottom surface of the recess 29, and the side surface of the filter cartridge 3 constitutes a part of the ventilation channel 11. Here, in the disc main body 4, the surface of the rib 47 facing the plate 5 and the bottom surface of the second channel 405 are continuously flush with each other. The disc 1 includes a rib 47. Accordingly, it is possible to suppress the liquid sample moving from the storage space 31 to the second well 22 from being scattered outside the disk 1 through the ventilation channel 11. Further, the disk 1 is provided with the rib 47, so that the rattling of the filter cartridge 3 can be further suppressed. The bottom surface of the second channel 405 is substantially flush with the bottom surface of the second chamber 402.
 ディスク1では、積層ディスク本体2の厚さ方向における凹部29の底面からリブ47までの高さの最小高さが、通気流路11において第2ウェル22内の液体試料に対して毛細管力が働かないような高さであるのが好ましい。ディスク1では、積層ディスク本体2の厚さ方向における凹部29の底面からリブ47までの高さの最小高さは、例えば、第2チャンバー402の最小深さと、接合部6の厚さと、を合わせた寸法(言い換えれば、プレート5と第2チャンバー402の底面との距離)と同じに設定してある。ここにおいて、第2チャンバー402の深さは、例えば、第2チャンバー402の底面の全域で400μmであり、最小深さも400μmである。上記の最小高さは、例えば、500μm程度である。第2ウェル22は、プレート5のディスク本体4側の面の一部により構成される底面221と、ディスク本体4の第2チャンバー402のプレート5側の面(第2チャンバー402の底面)により構成される天面222と、を有する。第2ウェル22の底面221及び天面222は、積層ディスク本体2の厚さ方向において、積層ディスク本体2の表面2Aと裏面2Bとの間に位置する。ここで、ディスク1では、積層ディスク本体2の厚さ方向において、積層ディスク本体2の裏面2Bと天面222との距離が、積層ディスク本体2の裏面2Bと底面221との距離よりも長い。また、第2ウェル22の底面221は、積層ディスク本体2の厚さ方向において、積層ディスク本体2の表面2Aと裏面2Bとの間で裏面2Bに近い。ディスク1では、積層ディスク本体2の厚さ方向で見たときに、凹部29の深さが、第2ウェル22の底面221と天面222との距離よりも大きく、かつ、凹部29の底面からリブ47までの高さの最小高さよりも大きい。 In the disk 1, the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the laminated disk main body 2 is such that capillary force acts on the liquid sample in the second well 22 in the ventilation channel 11. It is preferable that the height is not present. In the disk 1, the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the laminated disk body 2 is, for example, the same as the minimum depth of the second chamber 402 and the thickness of the joint portion 6. It is set to the same size (in other words, the distance between the plate 5 and the bottom surface of the second chamber 402). Here, the depth of the second chamber 402 is, for example, 400 μm over the entire bottom surface of the second chamber 402, and the minimum depth is also 400 μm. The minimum height is, for example, about 500 μm. The second well 22 is configured by a bottom surface 221 constituted by a part of the surface of the plate 5 on the disk body 4 side and a surface of the disk body 4 on the plate 5 side of the second chamber 402 (bottom surface of the second chamber 402). And the top surface 222. The bottom surface 221 and the top surface 222 of the second well 22 are located between the front surface 2A and the back surface 2B of the laminated disk main body 2 in the thickness direction of the laminated disk main body 2. Here, in the disk 1, the distance between the back surface 2 </ b> B of the laminated disk body 2 and the top surface 222 in the thickness direction of the laminated disk body 2 is longer than the distance between the back surface 2 </ b> B and the bottom surface 221 of the laminated disk body 2. Further, the bottom surface 221 of the second well 22 is close to the back surface 2B between the front surface 2A and the back surface 2B of the stacked disk body 2 in the thickness direction of the stacked disk body 2. In the disk 1, the depth of the recess 29 is larger than the distance between the bottom surface 221 of the second well 22 and the top surface 222 when viewed in the thickness direction of the laminated disk body 2, and from the bottom surface of the recess 29. The height to the rib 47 is larger than the minimum height.
 積層ディスク本体2では、第2ウェル22の容積がフィルタカートリッジ3の収納空間31の容積よりも大きいのが好ましい。これにより、ディスク1では、フィルタカートリッジ3の収納空間31から第2ウェル22へ液体試料を移動させたときに、液体試料を第2ウェル22内に収めることができる(液体試料が第2ウェル22から溢れるのを防止することができる)。 In the laminated disk body 2, the volume of the second well 22 is preferably larger than the volume of the storage space 31 of the filter cartridge 3. Thereby, in the disk 1, when the liquid sample is moved from the storage space 31 of the filter cartridge 3 to the second well 22, the liquid sample can be stored in the second well 22 (the liquid sample is stored in the second well 22). Can be prevented from overflowing).
 ディスク本体4の厚さ方向から見て第2チャンバー402の面積が第1チャンバー401の面積よりも大きいのが好ましい。これにより、ディスク1では、第1ウェル21から第2ウェル22へ液体試料を移動させたときに、液体試料を第2ウェル22内において第1ウェル21よりも広い範囲に広げることが可能となる。よって、ディスク1は、ディスク1の厚さ方向において赤血球が重なるのを抑制することが可能となり、検出装置70による検査の精度を向上させることが可能となる。 It is preferable that the area of the second chamber 402 is larger than the area of the first chamber 401 when viewed from the thickness direction of the disc body 4. Thereby, in the disk 1, when the liquid sample is moved from the first well 21 to the second well 22, the liquid sample can be spread in the second well 22 to a wider range than the first well 21. . Therefore, the disk 1 can suppress red blood cells from overlapping in the thickness direction of the disk 1, and the accuracy of the inspection by the detection device 70 can be improved.
 ディスク1では、第2ウェル22の底面221に適宜の表面処理が施されているのが好ましい。ここにおいて、表面処理としては、例えば、プレート5における第2チャンバー402の底面との対向面に、赤血球の電荷と逆極性の電荷を持たせるプラズマ処理等である。これにより、ディスク1では、収納空間31から第2ウェル22へ移動した赤血球がプレート5の厚さ方向において重なるのを抑制することが可能となり、プレート5上のより広い範囲に赤血球を単層化することが可能となる。言い換えれば、プレート5上における赤血球の被覆率を高め、かつプレート5の厚さ方向に赤血球が重なるのを抑制することが可能となる。 In the disk 1, it is preferable that an appropriate surface treatment is performed on the bottom surface 221 of the second well 22. Here, the surface treatment is, for example, a plasma treatment in which the surface of the plate 5 facing the bottom surface of the second chamber 402 is charged with a charge having a polarity opposite to that of red blood cells. As a result, in the disk 1, it is possible to suppress the red blood cells that have moved from the storage space 31 to the second well 22 from overlapping in the thickness direction of the plate 5, and the red blood cells are monolayered over a wider area on the plate 5. It becomes possible to do. In other words, it is possible to increase the coverage of red blood cells on the plate 5 and to suppress red blood cells from overlapping in the thickness direction of the plate 5.
 プレート5の厚さは、例えば、0.6mmである。ディスク1は、プレート5におけるプレート本体50の裏面52側から検査用の光(励起光)を入射させることを想定している。このため、ディスク1では、プレート5の厚さがディスク本体4の厚さよりも薄いのが好ましい。プレート5の厚さは、励起光のビームスポットのコマ収差を低減する観点から、励起光の波長が短いほど薄いのが好ましい。 The thickness of the plate 5 is 0.6 mm, for example. The disk 1 is assumed to have inspection light (excitation light) incident from the back surface 52 side of the plate body 50 in the plate 5. For this reason, in the disk 1, the thickness of the plate 5 is preferably thinner than the thickness of the disk body 4. From the viewpoint of reducing the coma aberration of the beam spot of the excitation light, the thickness of the plate 5 is preferably thinner as the wavelength of the excitation light is shorter.
 プレート本体50の材質は、透明な樹脂であるのが好ましい。プレート本体50は、射出成形によって形成されている。これにより、プレート本体50には、孔58、トラック53(図6参照)が形成されている。プレート本体50の材質は、例えば、ポリカーボネートであるが、これに限らない。プレート本体50の材質は、例えば、ポリメチルメタクリレート、非晶質ポリオレフィン、ポリエチレン、エチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート(PET)、不飽和ポリエステル、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、シリコーン樹脂、ポリフェニレンオキサイド及びポリスルホン等でもよい。 The material of the plate body 50 is preferably a transparent resin. The plate body 50 is formed by injection molding. As a result, holes 58 and tracks 53 (see FIG. 6) are formed in the plate body 50. The material of the plate body 50 is, for example, polycarbonate, but is not limited thereto. The material of the plate body 50 is, for example, polymethyl methacrylate, amorphous polyolefin, polyethylene, ethylene, polypropylene, polyisobutylene, polyethylene terephthalate (PET), unsaturated polyester, fluororesin, polyvinyl chloride, polyvinylidene chloride, polyacetic acid. Vinyl, polyvinyl alcohol, polyvinyl acetal, acrylic resin, polyacrylonitrile, polystyrene, acetal resin, polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene styrene copolymer, silicone resin Polyphenylene oxide and polysulfone may be used.
 ディスク本体4の材質は、例えば、アクリル樹脂であるが、これに限らない。ディスク本体4の材質は、例えば、ポリスチレン、ポリカーボネート等のプレート本体50の材質と同じ材質でもよい。ただし、プレート本体50とディスク本体4の材質は必ずしも同じ材質を採用する必要はなく、例えば、プレート本体50がポリカーボネート、ディスク本体4がポリスチレンという組み合わせでもよい。ディスク本体4は、射出成形によって形成されている。これにより、ディスク本体4には、孔48、チャンバー400等が形成されている。 The material of the disc body 4 is, for example, acrylic resin, but is not limited thereto. The material of the disc body 4 may be the same material as the material of the plate body 50, such as polystyrene or polycarbonate. However, the material of the plate body 50 and the disk body 4 does not necessarily need to be the same material. For example, the plate body 50 may be a combination of polycarbonate and the disk body 4 may be a combination of polystyrene. The disc body 4 is formed by injection molding. As a result, a hole 48, a chamber 400, and the like are formed in the disc body 4.
 ディスク本体4は、蛍光色素と同様に半導体レーザ71からの励起光によって励起されて蛍光を発する蛍光材を含有させてあるのが好ましい。これにより、ディスク1では、検出装置70により赤血球の検査を行うときに、画像において赤血球の背景画像を明るくすることが可能となり、赤血球の輪郭を画像認識しやすくなり、検査の精度を向上させることが可能となる。蛍光材から発生する蛍光の波長は、例えば、480~600nmである。このような蛍光材としては、希土類イオンで付活された蛍光体等を採用することができる。 The disc body 4 preferably contains a fluorescent material that emits fluorescence when excited by the excitation light from the semiconductor laser 71 in the same manner as the fluorescent dye. As a result, in the disc 1, when the red blood cell is inspected by the detection device 70, the background image of the red blood cell can be brightened in the image, the contour of the red blood cell can be easily recognized, and the inspection accuracy is improved. Is possible. The wavelength of fluorescence generated from the fluorescent material is, for example, 480 to 600 nm. As such a fluorescent material, a phosphor or the like activated by rare earth ions can be employed.
 無機系の蛍光体の例として、BAM系の蛍光体(例えば、BaMgAl1017:Eu2+)、SCA系の蛍光体(例えば(Sr,Ba,Ca)(POCl:Eu2+)、SMS系の蛍光体(SrMgSi:Eu2+)、YAG系の蛍光体(例えばYAl12)、CASN系蛍光体(例えばCaAlSiN:Eu)、SSE系蛍光体(SrSiO:Eu)等が挙げられる。上記の蛍光体は必ずしも上記組成と完全一致する必要はなく、添加物が含まれていたり、組成比が異なったりしてもよい。また、上記の蛍光体以外にも、3波長形蛍光ランプ用蛍光体、特殊ランプ用蛍光体、冷陰極ランプ用蛍光体、PDP(Plasma Display Panel)用蛍光体、LED(Light Emitting Diode)用蛍光体、蛍光灯用蛍光体、等の広く用いられている蛍光体を使用することができる。また、有機系の蛍光体の例として、赤色発光蛍光体(Eu錯体化合物、Sm錯体化合物、Pr錯体化合物、ジシアノメチレン系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、ポリアルキルチオフェン誘導体)、黄色発光蛍光体(ルブレン系化合物、ペリミドン誘導体)、青色発光蛍光体(ペリレン系化合物、ピレン系化合物、アントラセン系化合物、ジスチリル誘導体、ポリジアルキルフルオレン誘導体、ポリパラフェニレン誘導体)、緑色発光蛍光体(クマリン系化合物、Tb錯体化合物、キナクリドン化合物)等が挙げられる。 Examples of inorganic phosphors include BAM phosphors (for example, BaMgAl 10 O 17 : Eu 2+ ) and SCA phosphors (for example, (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ ), SMS phosphors (Sr 3 MgSi 2 O 8 : Eu 2+ ), YAG phosphors (eg Y 3 Al 3 O 12 ), CASN phosphors (eg CaAlSiN 3 : Eu), SSE phosphors (Sr 3 SiO 5 : Eu) and the like. The above-described phosphor does not necessarily need to completely match the above composition, and additives may be included or the composition ratio may be different. Besides the above phosphors, phosphors for three-wavelength fluorescent lamps, phosphors for special lamps, phosphors for cold cathode lamps, phosphors for PDP (Plasma Display Panel), and phosphors for LED (Light Emitting Diode) Widely used phosphors such as fluorescent bodies and phosphors for fluorescent lamps can be used. Examples of organic phosphors include red light emitting phosphors (Eu complex compounds, Sm complex compounds, Pr complex compounds, dicyanomethylene compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, polyalkylthiophene derivatives), Yellow light emitting phosphor (rubrene compound, perimidone derivative), blue light emitting phosphor (perylene compound, pyrene compound, anthracene compound, distyryl derivative, polydialkylfluorene derivative, polyparaphenylene derivative), green light emitting phosphor (coumarin) Compound, Tb complex compound, quinacridone compound) and the like.
 これらの蛍光体は、1種を単独で用いてもよいし、同色系ないしは異なる色調に発光するものの2種以上を併用してもよい。少量配合で良好な蛍光発光特性を示す観点から、有機系の蛍光体としては、赤色発光蛍光体のEu錯体化合物を用いることが好ましい。 These phosphors may be used alone or in combination of two or more of those emitting light of the same color or different color. From the viewpoint of showing good fluorescence emission characteristics in a small amount, it is preferable to use an Eu complex compound of a red emission phosphor as the organic phosphor.
 ディスク本体4の第1面41と第2面42との間の厚さは、例えば、2.0mmである。ここにおいて、ディスク本体4の第2チャンバー402の深さは、検体のサイズよりも十分に大きいのが好ましい。第2チャンバー402の深さは、例えば、400μmである。 The thickness between the first surface 41 and the second surface 42 of the disc body 4 is, for example, 2.0 mm. Here, the depth of the second chamber 402 of the disc body 4 is preferably sufficiently larger than the size of the specimen. The depth of the second chamber 402 is, for example, 400 μm.
 ところで、ディスク本体4は、図5A~図5Dに示すように、第1面41に形成されたゲート跡411と、第2面42から突出し、ディスク本体4の厚さ方向においてゲート跡411に重なる突部421と、を有する。ゲート跡411は、一例として、ディスク本体4の第1面41に形成された凹部410の底面である。ディスク本体4では、ディスク本体4の厚さ方向から見て突部421の面積がゲート跡411の面積よりも大きいのが好ましい。ゲート跡411については、目視での確認ができない場合でも、例えば、偏光顕微鏡による観察により特定することが可能である。 Incidentally, as shown in FIGS. 5A to 5D, the disc main body 4 protrudes from the gate trace 411 formed on the first surface 41 and the second surface 42 and overlaps the gate trace 411 in the thickness direction of the disc main body 4. And a protrusion 421. The gate mark 411 is, for example, the bottom surface of the concave portion 410 formed on the first surface 41 of the disc body 4. In the disk body 4, it is preferable that the area of the protrusion 421 is larger than the area of the gate mark 411 when viewed from the thickness direction of the disk body 4. The gate trace 411 can be identified by observation with a polarizing microscope, for example, even when visual confirmation is not possible.
 ディスク本体4では、突部421の先端面の全体が、第2面42における突部421以外の部位と比べて表面粗さの大きな粗面部431であるのが好ましい。ここにおいて、表面粗さについては、例えば、JIS B 0601-2001(ISO 4287-1997)で規定されている算術平均粗さRaを採用することができる。表面粗さの測定は、例えば、AFM(Atomic Force Microscope)等の3次元形状測定装置により行うことができる。 In the disc main body 4, it is preferable that the entire tip surface of the protrusion 421 is a rough surface portion 431 having a larger surface roughness than the portion of the second surface 42 other than the protrusion 421. Here, for the surface roughness, for example, an arithmetic average roughness Ra defined in JIS B 0601-2001 (ISO 4287-1997) can be employed. The surface roughness can be measured by a three-dimensional shape measuring apparatus such as AFM (Atomic Force Microscope).
 ディスク本体4の厚さについて、第1面41と第2面42との間の厚さは、上述のように、例えば、2.0mmである。これに対し、第2面42からの突部421の突出高さは、例えば、0.5mmである。また、第1面41と突部421の先端面との間の厚さは、例えば、2.5mmである。この場合、粗面部431の算術平均粗さRaは、例えば、100nm~200nm程度であるのが好ましい。 As for the thickness of the disc body 4, the thickness between the first surface 41 and the second surface 42 is, for example, 2.0 mm as described above. On the other hand, the protrusion height of the protrusion 421 from the second surface 42 is, for example, 0.5 mm. Moreover, the thickness between the 1st surface 41 and the front end surface of the protrusion 421 is 2.5 mm, for example. In this case, the arithmetic average roughness Ra of the rough surface portion 431 is preferably about 100 nm to 200 nm, for example.
 ディスク1では、上述のように、ディスク本体4がチャンバー400を複数備え、複数のチャンバー400がディスク本体4の周方向に並んでいるのが好ましい。ここにおいて、ディスク1では、ゲート跡411が複数のチャンバー400の各々に対してチャンバー400よりもディスク本体4の外周側にあるのが好ましい。ディスク本体4では、複数のチャンバー400が、ディスク本体4の中心軸45を中心として2回以上の回転対称性を有するように配置されているのが好ましい。 In the disk 1, as described above, it is preferable that the disk body 4 includes a plurality of chambers 400, and the plurality of chambers 400 are arranged in the circumferential direction of the disk body 4. Here, in the disc 1, it is preferable that the gate trace 411 is located on the outer peripheral side of the disc body 4 with respect to each of the plurality of chambers 400 with respect to the chamber 400. In the disc body 4, the plurality of chambers 400 are preferably arranged so as to have two or more rotational symmetries around the central axis 45 of the disc body 4.
 上述の説明から分かるように、ディスク本体4は、第1面41に9つのゲート跡411が形成され、第2面42から突出する9つの突部421を備えている。9つの突部421の各々は、ディスク本体4の厚さ方向から見てディスク本体4の径方向に直交する方向を長手方向とする長方形状である。ディスク本体4では、9つの突部421の各々の先端面が粗面部431である。これにより、例えば、ディスク1を使って検査を行う人(例えば、医者等)は、9つのチャンバー400に入れる液体試料を区別する情報(例えば、血液を提供した被験者を区別するための検体情報)等をペン、鉛筆等で粗面部431に記入することが可能となる。また、ディスク本体4では、9つの粗面部431を区別するために、9つの粗面部431の近傍に互いに異なる文字A~Iが形成されている。文字A~Iは、ディスク本体4の第2面42から突出している。文字A~Iは、ディスク本体4の成形時に形成されている。 As can be seen from the above description, the disc body 4 has nine gate marks 411 formed on the first surface 41 and has nine protrusions 421 protruding from the second surface 42. Each of the nine protrusions 421 has a rectangular shape whose longitudinal direction is a direction orthogonal to the radial direction of the disk main body 4 when viewed from the thickness direction of the disk main body 4. In the disc body 4, the front end surfaces of the nine protrusions 421 are rough surface portions 431. Thereby, for example, a person (for example, a doctor or the like) who performs an examination using the disk 1 discriminates the liquid sample put into the nine chambers 400 (for example, specimen information for discriminating the subject who provided blood). Or the like can be written on the rough surface portion 431 with a pen, pencil, or the like. Further, in the disc body 4, different letters A to I are formed in the vicinity of the nine rough surface portions 431 in order to distinguish the nine rough surface portions 431. The letters A to I protrude from the second surface 42 of the disc body 4. The letters A to I are formed when the disc body 4 is formed.
 プレート5とディスク本体4とは、例えば、接着剤からなる接合部6により接合されている。接着剤は、例えば、アクリレート系の接着剤である。 The plate 5 and the disc body 4 are joined together by, for example, a joining portion 6 made of an adhesive. The adhesive is, for example, an acrylate adhesive.
 プレート5は、ディスク本体4の第1面41側でディスク本体4に接合されている。これにより、プレート5とディスク本体4との間に介在させる接合部6の厚さを薄くすることが可能となる。また、ディスク1では、積層ディスク本体2の外周部において、接合部6にボイド等が発生するのを抑制することが可能となる。これにより、ディスク1は、ディスク1の外周部におけるプレート5とディスク本体4との接合性を向上させることが可能となる。 The plate 5 is joined to the disc body 4 on the first surface 41 side of the disc body 4. This makes it possible to reduce the thickness of the joint portion 6 interposed between the plate 5 and the disc body 4. Further, in the disk 1, it is possible to suppress the occurrence of voids or the like at the joint 6 in the outer peripheral portion of the laminated disk main body 2. As a result, the disc 1 can improve the bondability between the plate 5 and the disc body 4 at the outer peripheral portion of the disc 1.
 フィルタカートリッジ3におけるフィルタ35は、多孔質構造体36(図7参照)を含んでいる。多孔質構造体36は、例えば、特定の第1物質(白血球)を通過させず特定の第2物質(赤血球)を通過させることができるように構成されている。多孔質構造体36は、例えば、図7に示すSEM像図のように、複数の繊維状物質361により形成されている。より詳細には、多孔質構造体36は、複数の繊維状物質361が互いに絡み合って形成されており、多数の空隙362が形成されている。空隙362は、隣り合う繊維状物質361間にある。多孔質構造体36は、複数の繊維状物質361がそれぞれ湾曲して絡み合っている。繊維状物質361は、例えば、酸化シリコンからなる。より詳細には、繊維状物質361は、アモルファス状の二酸化シリコンからなる。繊維状物質361の太さ(繊維径)は、例えば、0.01μm~1μm程度である。繊維状物質361は、枝分かれしていてもよい。空隙362は、例えば、多孔質構造体36において、赤血球を通し、かつ、白血球を捕捉できるような大きさである。ここで、空隙362は、赤血球よりも大きいのが好ましいが、必ずしも赤血球よりも大きい必要はない。これは、赤血球が、変形能を有し、自身よりも小さな空隙362を通ることが可能であるからである。また、空隙362は、白血球等の捕捉対象物よりも小さい。これは、白血球は、赤血球よりも変形能が小さいからである。 The filter 35 in the filter cartridge 3 includes a porous structure 36 (see FIG. 7). The porous structure 36 is configured so that, for example, a specific second substance (red blood cells) can pass through without passing a specific first substance (white blood cells). The porous structure 36 is formed of a plurality of fibrous substances 361, for example, as shown in the SEM image diagram shown in FIG. More specifically, the porous structure 36 is formed by a plurality of fibrous substances 361 entangled with each other, and a large number of voids 362 are formed. The gap 362 is between the adjacent fibrous materials 361. In the porous structure 36, a plurality of fibrous substances 361 are curved and entangled with each other. The fibrous substance 361 is made of, for example, silicon oxide. More specifically, the fibrous substance 361 is made of amorphous silicon dioxide. The thickness (fiber diameter) of the fibrous substance 361 is, for example, about 0.01 μm to 1 μm. The fibrous substance 361 may be branched. The void 362 is, for example, a size that allows red blood cells to pass through and capture white blood cells in the porous structure 36. Here, the gap 362 is preferably larger than the red blood cells, but is not necessarily larger than the red blood cells. This is because red blood cells are deformable and can pass through voids 362 that are smaller than themselves. In addition, the gap 362 is smaller than the capture target such as leukocytes. This is because leukocytes are less deformable than erythrocytes.
 フィルタカートリッジ3は、フィルタ35を保持するケース30を備えている。ケース30は、積層ディスク本体2の厚さ方向から見て第1ウェル21と略同じ形状である。ケース30は、積層ディスク本体2の厚さ方向から見て、積層ディスク本体2の径方向において積層ディスク本体2の中心から離れるにつれて幅が徐々に広くなる形状である。ケース30は、第2チャンバー402側の一面に開口320(図2C参照)を有する。フィルタカートリッジ3では、フィルタ35がケース30の開口320を塞ぐように配置されている。フィルタ35は、ケース30に対して、例えば、接着剤により固定されている。フィルタカートリッジ3では、ケース30とフィルタ35とで囲まれた空間が液体試料の収納空間31を構成している。 The filter cartridge 3 includes a case 30 that holds the filter 35. The case 30 has substantially the same shape as the first well 21 when viewed from the thickness direction of the laminated disk main body 2. The case 30 has a shape in which the width gradually increases with increasing distance from the center of the laminated disk body 2 in the radial direction of the laminated disk body 2 when viewed from the thickness direction of the laminated disk body 2. The case 30 has an opening 320 (see FIG. 2C) on one surface of the second chamber 402 side. In the filter cartridge 3, the filter 35 is disposed so as to close the opening 320 of the case 30. The filter 35 is fixed to the case 30 with, for example, an adhesive. In the filter cartridge 3, a space surrounded by the case 30 and the filter 35 constitutes a liquid sample storage space 31.
 フィルタカートリッジ3は、液体試料の注入孔33を有する。これにより、フィルタカートリッジ3の収納空間31に液体試料が入っておらず、かつ、フィルタカートリッジ3を積層ディスク本体2の第1ウェル21に嵌め込んでいないときに、フィルタ35のフィルタ性能の検査の一種としてリーク試験を行うことが可能となる。リーク試験では、例えば、フィルタ35の圧力損失を測定する。フィルタ35の圧力損失は、例えば、試験用清浄空気をフィルタ35に流通させたときの上流側と下流側との全圧差をマノメータによって測定することよって得られる。より詳細には、注入孔33から所定圧力の試験用清浄空気をケース30内へ導入したときのフィルタ35での圧力損失を測定する。これにより、ディスク1では、フィルタカートリッジ3を積層ディスク本体2の第1ウェル21に嵌め込む前に、フィルタ35のフィルタ性能を検査することができる。注入孔33は、ケース30の上壁において開口320から遠い位置にあるのが好ましい。 The filter cartridge 3 has a liquid sample injection hole 33. As a result, when the liquid sample is not contained in the storage space 31 of the filter cartridge 3 and the filter cartridge 3 is not fitted in the first well 21 of the laminated disk main body 2, the filter performance of the filter 35 is inspected. One type of leak test can be performed. In the leak test, for example, the pressure loss of the filter 35 is measured. The pressure loss of the filter 35 is obtained, for example, by measuring the total pressure difference between the upstream side and the downstream side when the test clean air is passed through the filter 35 with a manometer. More specifically, the pressure loss at the filter 35 when the clean air for testing at a predetermined pressure is introduced from the injection hole 33 into the case 30 is measured. Thereby, in the disk 1, the filter performance of the filter 35 can be inspected before the filter cartridge 3 is fitted into the first well 21 of the laminated disk main body 2. The injection hole 33 is preferably at a position far from the opening 320 on the upper wall of the case 30.
 また、フィルタカートリッジ3の収納空間31の形状は、ディスク1の厚さ方向から見て、図1に示すように、U字形状である。フィルタカートリッジ3では、ケース30においてU字形状の収納空間31の第1端に連通するように注入孔33が設けられ、第2端に連通するように通気孔38が設けられていることが望ましい。これにより、フィルタカートリッジ3の収納空間31に液体試料を注入する際に、収納空間31内部に存在していた空気をフィルタ35以外の部分からも逃がすことが可能となるために、スムーズに液体試料を注入することができる。通気孔38の形状は、例えば、円形である。通気孔38は、液体試料の漏れを防ぐ観点から小さいほうが好ましく、注入孔33よりも小さいのが好ましい。 The shape of the storage space 31 of the filter cartridge 3 is U-shaped as shown in FIG. 1 when viewed from the thickness direction of the disk 1. In the filter cartridge 3, it is desirable that the injection hole 33 is provided so as to communicate with the first end of the U-shaped storage space 31 in the case 30 and the vent hole 38 is provided so as to communicate with the second end. . Thereby, when the liquid sample is injected into the storage space 31 of the filter cartridge 3, the air existing in the storage space 31 can be released from the portion other than the filter 35, so that the liquid sample can be smoothly supplied. Can be injected. The shape of the vent 38 is, for example, a circle. The vent hole 38 is preferably smaller from the viewpoint of preventing leakage of the liquid sample, and is preferably smaller than the injection hole 33.
 フィルタカートリッジ3の製造時には、多孔質構造体36を含むフィルタ35をケース30に固定する前に、多孔質構造体36の厚さをレーザ変位計等によって測定することができる。フィルタカートリッジ3では、その製造時に、フィルタ性能を決める要因の一つである多孔質構造体36の厚さをレーザ変位計等により検査することができる。 When the filter cartridge 3 is manufactured, the thickness of the porous structure 36 can be measured by a laser displacement meter or the like before the filter 35 including the porous structure 36 is fixed to the case 30. When the filter cartridge 3 is manufactured, the thickness of the porous structure 36, which is one of the factors that determine the filter performance, can be inspected with a laser displacement meter or the like.
 次に、ディスク1の製造方法の一例について説明する。 Next, an example of a method for manufacturing the disk 1 will be described.
 ディスク1の製造方法では、射出成形により成形したディスク本体4と、プレート5と、を接合する。 In the manufacturing method of the disk 1, the disk body 4 formed by injection molding and the plate 5 are joined.
 ここにおいて、ディスク本体4の成形工程は、第1工程と、第2工程と、第3工程と、第4工程と、を有する。 Here, the forming process of the disc body 4 includes a first process, a second process, a third process, and a fourth process.
 第1工程では、図9Aに示すように、第1金型91と第2金型92とを準備して、第1金型91と第2金型92とで囲まれたキャビティ93を形成する。ここにおいて、第1金型91は、一面910にキャビティ形成用の円形状の第1凹部911を有し第1凹部911の底面にキャビティ形成用の第2凹部912が形成されている。第1凹部911の直径は、ディスク本体4の直径と略同じである。第1凹部911の深さは、ディスク本体4の第1面41と第2面42との間の厚さと略同じである。第1凹部911の内側面には、適宜の抜き勾配が設けられている。第2凹部912の深さは、ディスク本体4の突部421の突出高さと略同じである。第2凹部912の底面が第1凹部911の底面よりも粗面である。第1金型91の第2凹部912の底面は、例えばサンドブラスト加工によって粗面化されている。ここにおいて、第2凹部912の底面は、ディスク本体4の突部421の粗面部431のテンプレートになる。第2金型92は、第1金型91の第1凹部911の開口を覆う。 In the first step, as shown in FIG. 9A, a first mold 91 and a second mold 92 are prepared, and a cavity 93 surrounded by the first mold 91 and the second mold 92 is formed. . Here, the first mold 91 has a circular first recess 911 for forming a cavity on one surface 910, and a second recess 912 for forming a cavity is formed on the bottom surface of the first recess 911. The diameter of the first recess 911 is substantially the same as the diameter of the disc body 4. The depth of the first recess 911 is substantially the same as the thickness between the first surface 41 and the second surface 42 of the disc body 4. An appropriate draft angle is provided on the inner side surface of the first recess 911. The depth of the second recess 912 is substantially the same as the protrusion height of the protrusion 421 of the disc body 4. The bottom surface of the second recess 912 is rougher than the bottom surface of the first recess 911. The bottom surface of the second recess 912 of the first mold 91 is roughened by, for example, sandblasting. Here, the bottom surface of the second recess 912 serves as a template for the rough surface portion 431 of the protrusion 421 of the disc body 4. The second mold 92 covers the opening of the first recess 911 of the first mold 91.
 第2工程では、溶融した成形樹脂材料(例えば、蛍光体を含有させたアクリル樹脂、蛍光体を含有させたポリカーボネート等)を、第2金型92において第2凹部912の底面の投影領域にあるゲート921を通してキャビティ93に注入して硬化させることによりディスク本体4の元になる樹脂成形体40を形成する(図9B参照)。ゲート921は、ピンポイントゲートであるのが好ましい。これにより、研磨等の後工程が不要となる。 In the second step, a molten molding resin material (for example, an acrylic resin containing a phosphor, a polycarbonate containing a phosphor, or the like) is present in the projection region on the bottom surface of the second recess 912 in the second mold 92. By injecting into the cavity 93 through the gate 921 and curing, the resin molded body 40 that is the base of the disc body 4 is formed (see FIG. 9B). Gate 921 is preferably a pinpoint gate. Thereby, a post-process such as polishing becomes unnecessary.
 第3工程では、第2金型92を第1金型91及び樹脂成形体40から離すことによりゲート跡411を有するディスク本体4を形成する。 In the third step, the disc body 4 having the gate marks 411 is formed by separating the second mold 92 from the first mold 91 and the resin molded body 40.
 第4工程では、ディスク本体4のうち第1金型91の第1凹部911の底面に接している部位の一部を、複数(9つ)のエジェクタピン94により押してディスク本体4を第1金型91から離型させる(図9C参照)。ディスク本体4には、エジェクタピン94の当たっていた部位に凹部44(図5A及び5C参照)が形成される。 In the fourth step, a part of the disc body 4 that is in contact with the bottom surface of the first recess 911 of the first mold 91 is pushed by a plurality (nine) of ejector pins 94 to push the disc body 4 into the first mold. The mold is released from the mold 91 (see FIG. 9C). The disc body 4 is formed with a recess 44 (see FIGS. 5A and 5C) at a portion where the ejector pin 94 has been hit.
 ディスク本体4の成形工程では、ディスク本体4の残留応力を低減でき、また、ひけの発生を抑制することが可能となる。 In the molding process of the disc body 4, the residual stress of the disc body 4 can be reduced and the occurrence of sink marks can be suppressed.
 ディスク1では、樹脂成形体であるディスク本体4が、第1面41に形成されたゲート跡411と、第2面42から突出し、ディスク本体4の厚さ方向においてゲート跡411に重なる突部421と、を有する。そして、突部421の先端面の少なくとも一部が、第2面42における突部421以外の部位と比べて表面粗さの大きな粗面部431である。これにより、ディスク1では、突部421を有することにより、ディスク本体4の残留応力を低減することが可能となる。また、粗面部431を有することにより、突部421の離型抵抗を軽減することが可能となる。よって、ディスク1は、樹脂成形体であるディスク本体4の反りを抑制することが可能となる。 In the disk 1, the disk main body 4, which is a resin molded body, protrudes from the gate mark 411 formed on the first surface 41 and the second surface 42, and protrudes 421 that overlaps the gate mark 411 in the thickness direction of the disk main body 4. And having. Then, at least a part of the front end surface of the protrusion 421 is a rough surface portion 431 having a larger surface roughness than that of the second surface 42 other than the protrusion 421. Thereby, in the disk 1, the residual stress of the disk main body 4 can be reduced by having the protrusion 421. Further, by providing the rough surface portion 431, it is possible to reduce the mold release resistance of the protrusion 421. Therefore, the disc 1 can suppress warping of the disc body 4 that is a resin molded body.
 以上説明したディスク1及び検出装置70を用いた検査方法では、赤血球へのマラリアの原虫の感染の有無を確認することにより、自覚症状のない潜伏期間においてマラリアの原虫の感染の有無を精度よく検査することが可能となる。 In the inspection method using the disc 1 and the detection device 70 described above, the presence or absence of malaria protozoa is detected accurately during the incubation period without subjective symptoms by confirming the presence or absence of malaria protozoa in red blood cells. It becomes possible to do.
 上記の実施形態は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。 The above embodiment is only one of various embodiments of the present invention. The above-described embodiment can be variously changed according to the design or the like as long as the object of the present invention can be achieved.
 例えば、ディスク1では、ウェル形成ディスク本体2の周方向においてカートリッジ3の片側のみに通気流路11が形成されていてもよい。 For example, in the disk 1, the ventilation channel 11 may be formed only on one side of the cartridge 3 in the circumferential direction of the well forming disk main body 2.
 また、通気流路11は、ウェル形成ディスク本体2の第1ウェル21の内壁面と、カートリッジ3の側面においてウェル形成ディスク本体2の厚さ方向に沿って設けられた溝との間に形成される空間を含んでもよい。 The ventilation channel 11 is formed between the inner wall surface of the first well 21 of the well forming disk main body 2 and a groove provided in the side surface of the cartridge 3 along the thickness direction of the well forming disk main body 2. Space may be included.
 また、ディスク1では、ウェル形成ディスク本体2の厚さ方向における凹部29の底面からリブ47までの高さの最小高さが、通気流路11において第2ウェル22内の液体試料に対して毛細管力が働くような高さであってもよい。この場合、ディスク1は、ウェル形成ディスク本体2の厚さ方向における凹部29の底面からリブ47までの高さの最小高さが、ウェル形成ディスク本体2の厚さ方向における第2ウェル22の底面221から天面222までの高さの最小高さよりも大きいのが好ましい。 Further, in the disk 1, the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the well forming disk main body 2 is such that the capillary in the vent channel 11 is a capillary with respect to the liquid sample in the second well 22. The height may be such that the force works. In this case, the disc 1 has a minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the well forming disc body 2 such that the bottom surface of the second well 22 in the thickness direction of the well forming disc body 2. It is preferable that the height from 221 to the top surface 222 is larger than the minimum height.
 また、ディスク1は、通気流路11の内面に疎水処理が施されていてもよい。例えば、ディスク1では、通気流路11の内面に、疎水性をもたせるためのSAM(Self-Assembled Monolayer)が形成されていてもよい。疎水性をもせせるためのSAMは、例えば、OTS(Octadecyltrichlorosilane)等をディップコート法等によって塗布することで形成できる。 Further, the disk 1 may be subjected to a hydrophobic treatment on the inner surface of the ventilation channel 11. For example, in the disk 1, a SAM (Self-Assembled Monolayer) for imparting hydrophobicity may be formed on the inner surface of the ventilation channel 11. The SAM for imparting hydrophobicity can be formed, for example, by applying OTS (Octadecyltrichlorosilane) or the like by a dip coating method or the like.
 また、ディスク1は、第2ウェル22の内壁面に親水化処理が施されていてもよい。親水化処理としては、例えば、TritonX(登録商標)に代表される界面活性剤や、水酸基、スルホン酸基、カルボキシル基等の親水基を持つ高分子化合物を塗布する処理がある。また、親水化処理としては、酸素プラズマ処理、コロナ放電処理等もある。 Further, in the disk 1, the inner wall surface of the second well 22 may be subjected to a hydrophilic treatment. As the hydrophilic treatment, for example, a surfactant represented by Triton X (registered trademark) or a polymer compound having a hydrophilic group such as a hydroxyl group, a sulfonic acid group, or a carboxyl group is applied. Further, examples of the hydrophilic treatment include oxygen plasma treatment and corona discharge treatment.
 また、ウェル形成ディスク本体2では、複数の第1ウェル21が、2以上の整数nを用いた場合にディスク本体4の中心軸45を中心としてn回回転対称性を有するように配置されているのが好ましい。同様に、ウェル形成ディスク本体2では、複数の第2ウェル22が、2以上の整数nを用いた場合にディスク本体4の中心軸45を中心としてn回回転対称性を有するように配置されているのが好ましい。 Further, in the well forming disk main body 2, the plurality of first wells 21 are arranged so as to have n-fold rotational symmetry about the central axis 45 of the disk main body 4 when an integer n of 2 or more is used. Is preferred. Similarly, in the well forming disk main body 2, the plurality of second wells 22 are arranged to have n-fold rotational symmetry about the central axis 45 of the disk main body 4 when an integer n of 2 or more is used. It is preferable.
 プレート5とディスク本体4との接合の方法は、接着剤には限られず、例えば、溶着(熱溶着、超音波溶着、振動溶着、スピン溶着、レーザ溶着)、プラズマ接合、表面活性化接合等を採用してもよい。 The method of joining the plate 5 and the disc body 4 is not limited to an adhesive, and examples thereof include welding (thermal welding, ultrasonic welding, vibration welding, spin welding, laser welding), plasma bonding, surface activated bonding, and the like. It may be adopted.
 また、フィルタカートリッジ3の収納空間31に入れる液体試料は、病原性微生物の核酸を染色する染色液を含んでいてもよい。この場合、積層ディスク本体2には、核酸を染色させるための蛍光試薬を配置しなくてもよい。染色液を利用した染色方法としては、例えば、ギムザ染色、アクリジンオレンジ染色、ライト染色、ジェンナー染色、リーシュマン染色、ロマノフスキー染色等を採用することができる。染色液は、病原性微生物の種類及び染色方法に応じて適宜の染色液を用いればよい。 Further, the liquid sample put in the storage space 31 of the filter cartridge 3 may contain a staining solution for staining the nucleic acid of the pathogenic microorganism. In this case, it is not necessary to arrange a fluorescent reagent for staining nucleic acid in the laminated disk main body 2. As a staining method using a staining solution, for example, Giemsa staining, acridine orange staining, Wright staining, Jenner staining, Leishmann staining, Romanovsky staining, and the like can be employed. An appropriate staining solution may be used as the staining solution according to the type of pathogenic microorganism and the staining method.
 ディスク1を赤血球の検査に用いる例について説明したが、ディスク1の用途はこれに限定されず、例えば、DNA検査、蛋白質検査等にも用いることが可能である。 Although the example in which the disk 1 is used for testing red blood cells has been described, the use of the disk 1 is not limited to this, and for example, it can be used for DNA testing, protein testing, and the like.
 上述の実施形態から明らかなように、第1の態様に係るディスク1は、ウェル形成ディスク本体2と、カートリッジ3と、通気流路11と、を備える。ウェル形成ディスク本体2は、厚さ方向において互いに反対側にある表面2A及び裏面2Bを有する。ウェル形成ディスク本体2は、第1ウェル21及び第2ウェル22を有する。第1ウェル21は、ウェル形成ディスク本体2の表面2A側から厚さ方向に沿って形成された凹部29からなる。第2ウェル22は、第1ウェル21に連通している。カートリッジ3は、液体試料を収納可能な収納空間31を有する。カートリッジ3は、ウェル形成ディスク本体2の第1ウェル21に嵌め込まれる。通気流路11は、カートリッジ3の側面とウェル形成ディスク本体2との間に形成される。通気流路11は、ウェル形成ディスク本体2の外部と第2ウェル22とに連通する。 As is clear from the above-described embodiment, the disk 1 according to the first aspect includes a well forming disk main body 2, a cartridge 3, and a ventilation channel 11. The well forming disc main body 2 has a front surface 2A and a back surface 2B that are opposite to each other in the thickness direction. The well forming disk main body 2 has a first well 21 and a second well 22. The first well 21 includes a concave portion 29 formed along the thickness direction from the surface 2A side of the well forming disc main body 2. The second well 22 communicates with the first well 21. The cartridge 3 has a storage space 31 in which a liquid sample can be stored. The cartridge 3 is fitted into the first well 21 of the well forming disk main body 2. The ventilation channel 11 is formed between the side surface of the cartridge 3 and the well forming disk main body 2. The ventilation channel 11 communicates with the outside of the well forming disk main body 2 and the second well 22.
 以上の構成により、ディスク1では、第1ウェル21及び第2ウェル22を有するウェル形成ディスク本体2と、カートリッジ3の側面とウェル形成ディスク本体2との間に形成されウェル形成ディスク本体2の外部と第2ウェル22とに連通する通気流路11と、を備えるので、ディスク1の中心軸10のまわりでディスク1を回転させたときに液体試料の飛散を抑制することが可能となる。 With the above configuration, in the disk 1, the well-formed disk main body 2 having the first well 21 and the second well 22, and the outer surface of the well-formed disk main body 2 formed between the side surface of the cartridge 3 and the well-formed disk main body 2. And the air flow path 11 communicating with the second well 22, it is possible to suppress scattering of the liquid sample when the disk 1 is rotated around the central axis 10 of the disk 1.
 第2の態様に係るディスク1は、第1の態様において、カートリッジ3が、収納空間31から第2ウェル22へ移動する液体試料から特定の物質を除去するフィルタ35を有する。ここで、フィルタ35が、収納空間31と第2ウェル22との間にある。これにより、ディスク1は、カートリッジ3の有するフィルタ35が収納空間31と第2ウェル22との間にあるので、収納空間31に入れた液体試料中の特定の物質が第2ウェル22へ移動するのを抑制することが可能となる。また、ディスク1では、カートリッジ3を第1ウェル21に嵌め込む前にカートリッジ3の有するフィルタ35のフィルタ性能を検査することができる。これにより、ディスク1では、フィルタ性能の信頼性の向上を図れるので、ディスク1の信頼性の向上を図ることが可能となる。 The disc 1 according to the second aspect has the filter 35 in which the cartridge 3 removes a specific substance from the liquid sample moving from the storage space 31 to the second well 22 in the first aspect. Here, the filter 35 is located between the storage space 31 and the second well 22. Thereby, in the disk 1, since the filter 35 of the cartridge 3 is between the storage space 31 and the second well 22, a specific substance in the liquid sample placed in the storage space 31 moves to the second well 22. Can be suppressed. In the disk 1, the filter performance of the filter 35 of the cartridge 3 can be inspected before the cartridge 3 is fitted into the first well 21. As a result, the reliability of the filter performance can be improved in the disk 1, so that the reliability of the disk 1 can be improved.
 第3の態様に係るディスク1では、第2の態様において、カートリッジ3は、ケース30を備えるのが好ましい。ケース30は、第2ウェル22側の端に開口320を有しフィルタ35を保持する。ここで、フィルタ35が、ケース30の開口320を塞ぐように配置されているのが好ましい。カートリッジ3では、ケース30とフィルタ35とで囲まれた空間が収納空間31を構成している。これにより、ディスク1は、カートリッジ3の収納空間31の容積をより大きくすることが可能となる。 In the disc 1 according to the third aspect, in the second aspect, the cartridge 3 preferably includes a case 30. The case 30 has an opening 320 at the end on the second well 22 side and holds the filter 35. Here, the filter 35 is preferably disposed so as to close the opening 320 of the case 30. In the cartridge 3, a space surrounded by the case 30 and the filter 35 constitutes a storage space 31. As a result, the disk 1 can further increase the volume of the storage space 31 of the cartridge 3.
 第4の態様に係るディスク1では、第1から第3のいずれか一つの態様において、第1ウェル21及び第2ウェル22が、ウェル形成ディスク本体2の中心側から外周側に向かってこの順に並んでいる。これにより、ディスク1は、ディスク1を回転させたときに液体試料に作用する遠心力により、カートリッジ3の収納空間31中の液体試料を、第2ウェル22へ移動させることが可能となる。 In the disc 1 according to the fourth aspect, in any one of the first to third aspects, the first well 21 and the second well 22 are arranged in this order from the center side of the well forming disc main body 2 toward the outer peripheral side. Are lined up. Thereby, the disk 1 can move the liquid sample in the storage space 31 of the cartridge 3 to the second well 22 by the centrifugal force acting on the liquid sample when the disk 1 is rotated.
 第5の態様に係るディスク1では、第1から第4のいずれか一つの態様において、ウェル形成ディスク本体2は、流路23と、連結流路27と、を更に有する。流路23は、第1ウェル21と第2ウェル22との間にあって第1ウェル21と第2ウェル22とに連通している。連結流路27は、ウェル形成ディスク本体2の周方向において流路23の隣で、通気流路11と第2ウェル22との間にあり通気流路11及び第2ウェル22に連通している。流路23の開口面積は、第1ウェル21から離れて第2ウェル22に近づくにつれて徐々に小さくなっている。これにより、ディスク1は、収納空間31から第2ウェル22へ移動した液体試料中に気泡が発生するのを抑制することが可能となる。 In the disk 1 according to the fifth aspect, in any one of the first to fourth aspects, the well forming disk main body 2 further includes a flow path 23 and a connection flow path 27. The flow path 23 is between the first well 21 and the second well 22 and communicates with the first well 21 and the second well 22. The connection flow path 27 is adjacent to the flow path 23 in the circumferential direction of the well forming disk main body 2, between the ventilation flow path 11 and the second well 22, and communicates with the ventilation flow path 11 and the second well 22. . The opening area of the channel 23 gradually decreases as the distance from the first well 21 approaches the second well 22. Thereby, the disk 1 can suppress the generation of bubbles in the liquid sample moved from the storage space 31 to the second well 22.
 第6の態様に係るディスク1では、第5の態様において、ウェル形成ディスク本体2は、凹部29の内壁面からカートリッジ3の側面に向かって突出して凹部29の底面に対向するリブ47を備える。凹部29の底面とリブ47との間の空間が通気流路11の一部を構成している。これにより、ディスク1は、収納空間31から第2ウェル22へ移動する液体試料が通気流路11を通してディスク1の外へ飛散するのを抑制することが可能となる。 In the disk 1 according to the sixth aspect, in the fifth aspect, the well forming disk main body 2 includes a rib 47 that protrudes from the inner wall surface of the recess 29 toward the side surface of the cartridge 3 and faces the bottom surface of the recess 29. A space between the bottom surface of the recess 29 and the rib 47 constitutes a part of the ventilation channel 11. Accordingly, the disk 1 can suppress the liquid sample moving from the storage space 31 to the second well 22 from being scattered outside the disk 1 through the ventilation channel 11.
 第7の態様に係るディスク1では、第6の態様において、ウェル形成ディスク本体2の厚さ方向における凹部29の底面からリブ47までの高さの最小高さが、通気流路11において第2ウェル22内の液体試料に対して毛細管力が働かない高さである。これにより、ディスク1は、第2ウェル22内の液体試料が通気流路11へ移動するのを抑制することが可能となる。 In the disc 1 according to the seventh aspect, in the sixth aspect, the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the well forming disc main body 2 is the second height in the ventilation channel 11. The height is such that no capillary force acts on the liquid sample in the well 22. Thereby, the disk 1 can suppress the liquid sample in the second well 22 from moving to the ventilation channel 11.
 第8の態様に係るディスク1では、第6の態様において、ウェル形成ディスク本体2の厚さ方向における凹部29の底面からリブ47までの高さの最小高さが、ウェル形成ディスク本体2の厚さ方向における第2ウェル22の底面221から天面222までの高さの最小高さよりも高い。これにより、ディスク1は、通気流路11において第2ウェル22内の液体試料に対して毛細管力が働いて通気流路11へ移動するのを抑制することが可能となる。 In the disk 1 according to the eighth aspect, in the sixth aspect, the minimum height from the bottom surface of the recess 29 to the rib 47 in the thickness direction of the well forming disk main body 2 is the thickness of the well forming disk main body 2. It is higher than the minimum height from the bottom surface 221 to the top surface 222 of the second well 22 in the vertical direction. Accordingly, the disk 1 can suppress the capillary force from acting on the liquid sample in the second well 22 in the ventilation channel 11 and moving to the ventilation channel 11.
 第9の態様に係るディスク1では、第1から第8のいずれか一つの態様において、ウェル形成ディスク本体2の周方向においてカートリッジ3の両側に通気流路11が形成されている。これにより、ディスク1は、ディスク1の回転方向に関係なく通気流路11から液体試料が飛散するのを抑制することが可能となる。 In the disk 1 according to the ninth aspect, in any one of the first to eighth aspects, the ventilation channel 11 is formed on both sides of the cartridge 3 in the circumferential direction of the well forming disk main body 2. Thereby, the disc 1 can suppress the liquid sample from being scattered from the ventilation channel 11 regardless of the rotation direction of the disc 1.
 第10の態様に係るディスク1では、第1から第8のいずれか一つの態様において、ウェル形成ディスク本体2の周方向においてカートリッジ3の片側のみに通気流路11が形成されている。これにより、ディスク1は、ウェル形成ディスク本体2の周方向においてカートリッジ3から見て通気流路11が形成されている側へ回転させて使用する場合に通気流路11から液体試料が飛散するのを抑制することが可能となる。要するに、ディスク1の回転方向を矢印で模式的に示したときに、カートリッジ3は、矢印の矢先のある側に通気流路11が形成されていればよい。 In the disk 1 according to the tenth aspect, in any one of the first to eighth aspects, the ventilation channel 11 is formed only on one side of the cartridge 3 in the circumferential direction of the well forming disk main body 2. As a result, when the disk 1 is used by being rotated to the side where the ventilation channel 11 is formed when viewed from the cartridge 3 in the circumferential direction of the well forming disc main body 2, the liquid sample is scattered from the ventilation channel 11. Can be suppressed. In short, when the rotation direction of the disk 1 is schematically indicated by an arrow, the cartridge 3 only needs to have the ventilation channel 11 on the side where the arrowhead is located.
 第11の態様に係るディスク1では、第1から第10のいずれか一つの態様において、第2ウェル22の容積が収納空間31の容積よりも大きい。これにより、ディスク1では、カートリッジ3の収納空間31から第2ウェル22へ液体試料を移動させたときに、液体試料を第2ウェル22内により確実に収めることが可能となる。 In the disc 1 according to the eleventh aspect, the volume of the second well 22 is larger than the volume of the storage space 31 in any one of the first to tenth aspects. Thereby, in the disk 1, when the liquid sample is moved from the storage space 31 of the cartridge 3 to the second well 22, the liquid sample can be reliably stored in the second well 22.
 第12の態様に係るディスク1では、第1から第11のいずれか一つの態様において、ウェル形成ディスク本体2の厚さ方向から見て、第2ウェル22の面積が第1ウェル21の面積よりも大きい。これにより、ディスク1では、カートリッジ3の収納空間31から第2ウェル22へ液体試料を移動させたときに、液体試料を第2ウェル22内において第1ウェル21よりも広い範囲に広げることが可能となる。 In the disc 1 according to the twelfth aspect, in any one of the first to eleventh aspects, the area of the second well 22 is larger than the area of the first well 21 when viewed from the thickness direction of the well forming disk main body 2. Is also big. Thereby, in the disk 1, when the liquid sample is moved from the storage space 31 of the cartridge 3 to the second well 22, the liquid sample can be spread in the second well 22 to a wider range than the first well 21. It becomes.
 第13の態様に係るディスク1では、第1から第12のいずれか一つの態様において、通気流路11は、ウェル形成ディスク本体2の第1ウェル21の内壁面においてウェル形成ディスク本体2の厚さ方向に沿って設けられた溝404とカートリッジ3の側面との間に形成される空間を含む。これにより、ディスク1では、ウェル形成ディスク本体2の第1ウェル21にカートリッジ3を嵌め込むことにより通気流路11を形成することが可能となる。 In the disc 1 according to the thirteenth aspect, in any one of the first to twelfth aspects, the ventilation channel 11 is formed on the inner wall surface of the first well 21 of the well forming disc main body 2 with the thickness of the well forming disc main body 2. A space formed between the groove 404 provided along the vertical direction and the side surface of the cartridge 3 is included. As a result, in the disk 1, the ventilation channel 11 can be formed by fitting the cartridge 3 into the first well 21 of the well forming disk main body 2.
 第14の態様に係るディスク1では、第1乃至12のいずれか一つの態様において、通気流路11は、ウェル形成ディスク本体2の第1ウェル21の内壁面と、カートリッジ3の側面においてウェル形成ディスク本体2の厚さ方向に沿って設けられた溝との間に形成される空間を含む。これにより、ディスク1では、ウェル形成ディスク本体2の第1ウェル21にカートリッジ3を嵌め込むことにより通気流路11を形成することが可能となる。 In the disk 1 according to the fourteenth aspect, in any one of the first to twelfth aspects, the ventilation channel 11 is formed with a well on the inner wall surface of the first well 21 of the well forming disk main body 2 and the side surface of the cartridge 3. It includes a space formed between the grooves provided along the thickness direction of the disc body 2. As a result, in the disk 1, the ventilation channel 11 can be formed by fitting the cartridge 3 into the first well 21 of the well forming disk main body 2.
 本開示のディスク及びその製造方法は、検査用ディスクの中心軸のまわりで検査用ディスクを回転させたときに液体試料の飛散を抑制することができ、産業上有用である。 The disc of the present disclosure and the manufacturing method thereof are industrially useful because the scattering of the liquid sample can be suppressed when the test disc is rotated around the central axis of the test disc.
 1 ディスク(検査用ディスク)
 10,25,45,56 中心軸
 11 通気流路
 2 ウェル形成ディスク本体(積層ディスク本体)
 2A,51 表面
 2B,52 裏面
 21 第1ウェル
 22 第2ウェル
 221 底面
 222 天面
 23 流路
 27 連結流路
 29,410 凹部
 3 カートリッジ(フィルタカートリッジ)
 30 ケース
 31 収納空間
 35 フィルタ
 47 リブ
 320 開口
 404 溝
 91 第1金型
 911 第1凹部
 92 第2金型
 912 第2凹部
1 disc (inspection disc)
10, 25, 45, 56 Central axis 11 Ventilation flow path 2 Well forming disk body (laminated disk body)
2A, 51 Front surface 2B, 52 Back surface 21 First well 22 Second well 221 Bottom surface 222 Top surface 23 Channel 27 Connection channel 29,410 Recess 3 Cartridge (filter cartridge)
30 Case 31 Storage space 35 Filter 47 Rib 320 Opening 404 Groove 91 First mold 911 First recess 92 Second mold 912 Second recess

Claims (14)

  1.  厚さ方向において互いに反対側にある表面及び裏面を有し、前記表面側から前記厚さ方向に沿って形成された凹部からなる第1ウェル及び前記第1ウェルに連通している第2ウェルを有するウェル形成ディスク本体と、
     液体試料を収納可能な収納空間を有し、前記ウェル形成ディスク本体の前記第1ウェルに嵌め込まれるカートリッジと、
     前記カートリッジと前記ウェル形成ディスク本体との間に形成され、前記ウェル形成ディスク本体の外部と前記第2ウェルとに連通する通気流路と、を備える
     ことを特徴とする検査用ディスク。
    A first well having a front surface and a back surface opposite to each other in the thickness direction, and formed of a recess formed along the thickness direction from the front surface side; and a second well communicating with the first well A well-forming disc body having,
    A cartridge having a storage space in which a liquid sample can be stored, and being fitted into the first well of the well-forming disk body;
    An inspection disk, comprising: a vent channel formed between the cartridge and the well forming disk main body and communicating with the outside of the well forming disk main body and the second well.
  2.  前記カートリッジが、前記収納空間から前記第2ウェルへ移動する前記液体試料から特定の物質を除去するフィルタを有し、
     前記フィルタが、前記収納空間と前記第2ウェルとの間にある
     ことを特徴とする請求項1記載の検査用ディスク。
    The cartridge has a filter for removing a specific substance from the liquid sample moving from the storage space to the second well;
    The inspection disk according to claim 1, wherein the filter is between the storage space and the second well.
  3.  前記カートリッジは、前記第2ウェルに対向する端部に開口を有し、かつ前記フィルタを保持するケースを備え、
     前記フィルタが、前記開口を塞ぐように配置されており、
     前記カートリッジでは、前記ケースと前記フィルタとで囲まれた空間が前記収納空間を構成している
     ことを特徴とする請求項2記載の検査用ディスク。
    The cartridge has an opening at an end facing the second well, and a case for holding the filter.
    The filter is arranged to close the opening;
    3. The inspection disk according to claim 2, wherein in the cartridge, a space surrounded by the case and the filter constitutes the storage space.
  4.  前記第1ウェル及び前記第2ウェルが、前記ウェル形成ディスク本体の中心から外周に向かう方向に、この順に並んでいる
     ことを特徴とする請求項1から3のいずれか一項に記載の検査用ディスク。
    4. The inspection according to claim 1, wherein the first well and the second well are arranged in this order in a direction from the center of the well forming disk main body to the outer periphery. 5. disk.
  5.  前記ウェル形成ディスク本体は、前記第1ウェルと前記第2ウェルとの間にあって前記第1ウェルと第2ウェルとに連通している流路と、前記ウェル形成ディスク本体の周方向において前記流路に近接して、前記通気流路と前記第2ウェルとの間にあり前記通気流路及び前記第2ウェルに連通した連結流路と、を更に有し、
     前記流路の開口面積は、前記第1ウェルから離れて前記第2ウェルに近づくにつれて徐々に小さくなっている
     ことを特徴とする請求項1から4のいずれか一項に記載の検査用ディスク。
    The well forming disk main body includes a flow path that is between the first well and the second well and communicates with the first well and the second well, and the flow path in a circumferential direction of the well forming disk main body. And a connection channel that is between the vent channel and the second well and communicates with the vent channel and the second well,
    The inspection disk according to any one of claims 1 to 4, wherein an opening area of the flow path gradually decreases as the distance from the first well increases and the second well is approached.
  6.  前記ウェル形成ディスク本体は、前記凹部の内壁面から前記カートリッジの前記側面に向かって突出して前記凹部の底面に対向するリブを備え、
     前記凹部の底面と前記リブとの間の空間が前記通気流路の一部を構成している
     ことを特徴とする請求項5記載の検査用ディスク。
    The well forming disk main body includes a rib that protrudes from the inner wall surface of the recess toward the side surface of the cartridge and faces the bottom surface of the recess.
    The inspection disk according to claim 5, wherein a space between a bottom surface of the concave portion and the rib forms a part of the ventilation channel.
  7.  前記ウェル形成ディスク本体の前記厚さ方向における前記凹部の前記底面から前記リブまでの高さの最小高さが、前記通気流路において前記第2ウェル内の前記液体試料に対して毛細管力が働かないような高さである
     ことを特徴とする請求項6記載の検査用ディスク。
    The minimum height from the bottom surface of the recess to the rib in the thickness direction of the well forming disk main body is such that a capillary force acts on the liquid sample in the second well in the ventilation channel. The inspection disk according to claim 6, wherein the inspection disk has a height that does not exist.
  8.  前記ウェル形成ディスク本体の前記厚さ方向における前記凹部の前記底面から前記リブまでの高さの最小高さが、前記ウェル形成ディスク本体の厚さ方向における前記第2ウェルの底面から天面までの高さの最小高さよりも大きい
     ことを特徴とする請求項6記載の検査用ディスク。
    The minimum height from the bottom surface of the recess to the rib in the thickness direction of the well forming disk main body is from the bottom surface to the top surface of the second well in the thickness direction of the well forming disk main body. The inspection disk according to claim 6, wherein the inspection disk is larger than a minimum height.
  9.  前記ウェル形成ディスク本体の周方向において前記カートリッジの両側に前記通気流路が形成されている
     ことを特徴とする請求項1から8のいずれか一項に記載の検査用ディスク。
    The test disk according to claim 1, wherein the ventilation channel is formed on both sides of the cartridge in a circumferential direction of the well forming disk main body.
  10.  前記ウェル形成ディスク本体の周方向において前記カートリッジの片側のみに前記通気流路が形成されている
     ことを特徴とする請求項1から8のいずれか一項に記載の検査用ディスク。
    9. The inspection disk according to claim 1, wherein the ventilation channel is formed only on one side of the cartridge in a circumferential direction of the well forming disk main body.
  11.  前記第2ウェルの容積が前記収納空間の容積よりも大きい
     ことを特徴とする請求項1から10のいずれか一項に記載の検査用ディスク。
    11. The inspection disk according to claim 1, wherein a volume of the second well is larger than a volume of the storage space.
  12.  前記ウェル形成ディスク本体の前記厚さ方向から見て、前記第2ウェルの面積が前記第1ウェルの面積よりも大きい
     ことを特徴とする請求項1から11のいずれか一項に記載の検査用ディスク。
    12. The inspection according to claim 1, wherein an area of the second well is larger than an area of the first well when viewed from the thickness direction of the well forming disk main body. disk.
  13.  前記通気流路は、前記ウェル形成ディスク本体の前記第1ウェルの内壁面において前記ウェル形成ディスク本体の前記厚さ方向に沿って設けられた溝と前記カートリッジとの間に形成される空間を含む
     ことを特徴とする請求項1から12のいずれか一項に記載の検査用ディスク。
    The vent flow path includes a space formed between a groove provided in the inner wall surface of the first well of the well forming disk main body along the thickness direction of the well forming disk main body and the cartridge. The inspection disk according to claim 1, wherein the inspection disk is a disk.
  14.  前記通気流路は、前記ウェル形成ディスク本体の前記第1ウェルの内壁面と、前記カートリッジにおいて前記ウェル形成ディスク本体の厚さ方向に沿って設けられた溝との間に形成される空間を含む
     ことを特徴とする請求項1から12のいずれか一項に記載の検査用ディスク。
    The air flow path includes a space formed between an inner wall surface of the first well of the well forming disk main body and a groove provided in the cartridge along the thickness direction of the well forming disk main body. The inspection disk according to claim 1, wherein the inspection disk is a disk.
PCT/JP2018/000618 2017-01-27 2018-01-12 Disc for testing WO2018139216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017013362A JP2020056577A (en) 2017-01-27 2017-01-27 Inspection disk
JP2017-013362 2017-01-27

Publications (1)

Publication Number Publication Date
WO2018139216A1 true WO2018139216A1 (en) 2018-08-02

Family

ID=62978276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000618 WO2018139216A1 (en) 2017-01-27 2018-01-12 Disc for testing

Country Status (2)

Country Link
JP (1) JP2020056577A (en)
WO (1) WO2018139216A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200923A (en) * 2005-01-18 2006-08-03 Hitachi High-Technologies Corp Chemical analyzer and chemical analyzing cartridge
JP2007304053A (en) * 2006-05-15 2007-11-22 Hitachi High-Technologies Corp Chemical analyzer
WO2012147636A1 (en) * 2011-04-25 2012-11-01 富士紡ホールディングス株式会社 Test reagent container
JP2014232023A (en) * 2013-05-28 2014-12-11 シャープ株式会社 Analysis chip
WO2017154750A1 (en) * 2016-03-11 2017-09-14 パナソニック株式会社 Disk for liquid sample inspection and filter cartridge used in same, disk body, measurement plate, sample detection plate, fluorescence detection system, and fluorescence detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200923A (en) * 2005-01-18 2006-08-03 Hitachi High-Technologies Corp Chemical analyzer and chemical analyzing cartridge
JP2007304053A (en) * 2006-05-15 2007-11-22 Hitachi High-Technologies Corp Chemical analyzer
WO2012147636A1 (en) * 2011-04-25 2012-11-01 富士紡ホールディングス株式会社 Test reagent container
JP2014232023A (en) * 2013-05-28 2014-12-11 シャープ株式会社 Analysis chip
WO2017154750A1 (en) * 2016-03-11 2017-09-14 パナソニック株式会社 Disk for liquid sample inspection and filter cartridge used in same, disk body, measurement plate, sample detection plate, fluorescence detection system, and fluorescence detection method

Also Published As

Publication number Publication date
JP2020056577A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6229174B2 (en) Diagnostic kit and method of use thereof
WO2017154750A1 (en) Disk for liquid sample inspection and filter cartridge used in same, disk body, measurement plate, sample detection plate, fluorescence detection system, and fluorescence detection method
US8097450B2 (en) Thin film chemical analysis apparatus and analysis method using the same
KR101003351B1 (en) Digital bio disc dbd, dbd driver apparatus, and assay method using the same
US10060850B2 (en) Particle detection using reflective surface
US8932538B2 (en) Apparatus for analyzing sample
JP6455790B2 (en) Discrimination method using sample detection plate
US9267940B2 (en) Disc-like assay chip
JPWO2005088280A1 (en) Optical measuring device and optical measuring method
WO2015029375A1 (en) Detection plate
JP7086868B2 (en) Image-based sample analysis
WO2018139216A1 (en) Disc for testing
CN116438438A (en) Method and apparatus for flow-based single particle and/or single molecule analysis
WO2018139215A1 (en) Disc and method for producing same
JPWO2014097991A1 (en) Rare cell detection device, rare cell detection method, rare cell observation system, and device for cell deployment
JP2018119916A (en) Inspection disk
JP2019078527A (en) Liquid sample inspection disk and filter cartridge and disk body used therefor
JP2019078528A (en) Liquid sample inspection disk and disk body
JP2020134458A (en) Calibration method and detection device
JP4237169B2 (en) Analysis substrate
JP4781827B2 (en) Analysis method and analyzer
WO2018139242A1 (en) Image analysis system, image analysis method, and program
US20190018026A1 (en) Super-resolution far-field scanning optical microscope
JP2019174301A (en) Method for determining temperature, method for inspecting sample, temperature determination system, and sample inspection system
JP2007285854A (en) Plate for biological sample discrimination, and biological sample discriminating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP