WO2018137552A1 - 一种调整Polar码的方法、装置及编译码装置 - Google Patents

一种调整Polar码的方法、装置及编译码装置 Download PDF

Info

Publication number
WO2018137552A1
WO2018137552A1 PCT/CN2018/073267 CN2018073267W WO2018137552A1 WO 2018137552 A1 WO2018137552 A1 WO 2018137552A1 CN 2018073267 W CN2018073267 W CN 2018073267W WO 2018137552 A1 WO2018137552 A1 WO 2018137552A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
information
bits
fixed
information bit
Prior art date
Application number
PCT/CN2018/073267
Other languages
English (en)
French (fr)
Inventor
陈莹
罗禾佳
乔云飞
李榕
杜颖钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018137552A1 publication Critical patent/WO2018137552A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method, an apparatus, and a codec device for encoding a code of a Polar code.
  • the rapid evolution of wireless communication indicates that the future communication system will present more new features and pose new challenges to the original communication technology.
  • the future fifth-generation mobile communication technology (5th-Generation, 5G) poses new challenges to the current Long Term Evolution (LTE) technology.
  • LTE Long Term Evolution
  • channel coding is an important research object for communication technology to meet its needs.
  • the to-be-coded vector includes information bits carrying information and fixed bits carrying a fixed value pre-agreed by the transceiver.
  • the construction process of the Polar code is to estimate the reliability of each polarization channel through different construction algorithms, and preferentially select the polarization channel with high reliability to transmit information bits, so as to improve the reliability of the communication system.
  • the encoding end and the decoding end respectively encode and decode according to the position of the information bits and the position of the fixed bits.
  • Polar codes have low computational complexity in terms of encoding and decoding
  • the coding and decoding methods that pursue lower computational complexity are the constant pursuit of the industry.
  • the embodiment of the present application provides a method, a device, and a coding and decoding device for adjusting a Polar code, and a Polar code encoding and decoding method that achieves lower computational complexity.
  • the embodiment of the present application provides a method for adjusting a Polar code, which includes: acquiring a size K of an information block; determining a position of the K information bits and a position of the fixed bit according to reliability ranking of the N polarized channels; If the position of the first S information bits in the K information bits conforms to a preset condition according to the order of the polarization channel numbers corresponding to the information bits, the K information bits are among the first S-1 information bits.
  • P-1 bit positions are adjusted to fixed bit positions, P-1 bit positions in fixed bit positions are adjusted to position of information bits; Polar code coding or according to adjusted information bit positions and fixed bit positions Decoding.
  • S is an integer greater than 1 and less than K
  • P is an integer greater than 0 less than or equal to S
  • K is an integer greater than 0
  • N is the length of the mother code of the Polar code
  • N is greater than or equal to 2 and is a positive integer of 2 power.
  • the method for adjusting a Polar code provided by the embodiment of the present application, when the positions of the first S information bits in the K information bits meet the preset condition in the order that the polarization channel numbers corresponding to the information bits are small to large,
  • the P-1 bit positions in the first S-1 information bits are adjusted to the positions of the fixed bits, and the P-1 bit positions in the fixed bit positions are adjusted to the position of the information bits, which is reduced in the K information bits.
  • the sparseness of the first S information bits makes the information bit positions of the Polar code encoding or decoding concentrated. Since the previous fixed bit is skipped during the decoding of the Polar code, the decoding starts from the first information bit, and the decoding complexity decreases as the degree of the first information bit increases. Therefore, the embodiment of the present application is adopted.
  • the scheme performs Polar code encoding or decoding, and the decoding complexity is effectively reduced.
  • the preset condition may include: a position of the Sth information bit and a position of the first information bit according to a sequence of the polarization channel number corresponding to the information bit.
  • the ratio of the interval to the mother code length is greater than or equal to the first threshold.
  • P can be equal to S.
  • only the position interval of the information bits at both ends of the first S information bits is calculated to occupy the mother code length ratio, which realizes simple improvement of processing efficiency.
  • the preset condition may include: in order from the smallest to the largest of the polarization channel numbers corresponding to the information bits, the first two of the first information bits to the Sth information bits In the ratio of the position interval of the information bits to the length of the mother code, there is a ratio of the position interval of at least one information bit to the position of the previous information bit to the length of the mother code is greater than or equal to the second threshold.
  • the order of the polarization channel corresponding to the information bit is in the order of small to large, and the Pth information bit is any one of at least one information bit whose ratio of the position of the previous information bit to the length of the mother code is greater than or equal to the second threshold.
  • the information bit corresponding to the polarization channel number is in a sequence from small to large, and the Pth information bit is at least one information that is greater than or equal to a second threshold by a ratio of a position of the previous information bit to a length of the mother code.
  • the information bit of the corresponding polarized channel number in the bit is the largest.
  • the position of two adjacent information bits controls the sparseness of the information bits, and solves the defect that the middle part of the original information bit position is sparse, resulting in high decoding complexity, and the overall decoding complexity of the Polar code is improved.
  • the preset condition includes: each of the information bits from the second information bit to the Sth information bit according to the order of the polarization channel numbers corresponding to the information bits from small to large. And a ratio of a position interval of the first information bit to a mother code length, wherein a ratio of a position interval of the at least one information bit to the first information bit to a length of the mother code is greater than or equal to a third threshold.
  • the order of the polarization channel corresponding to the information bit is in the order of small to large, and the Pth information bit is at least one information bit in which the ratio of the position of the first information bit to the length of the mother code is greater than or equal to the third threshold.
  • the Pth information bits are at least one of a ratio of a position of the first information bit to a length of the mother code that is greater than or equal to a third threshold.
  • the position of each information bit and the first information bit controls the sparseness of the information bits, and solves the defect that the position of the first information bit in the original information bit position is high, resulting in high decoding complexity, and the overall improvement of Polar Code decoding complexity.
  • the preset condition includes any one of the first information bit to the Sth information bit according to the order of the polarization channel number corresponding to the information bit from small to large.
  • the ratio of the positional interval of the bits to the length of the mother code is greater than or equal to the fourth threshold.
  • the order of the polarization channel corresponding to the information bit is in the order of small to large, and the Pth information bit is in any pair of information bits of the at least one pair of information bits whose ratio of the position interval to the length of the mother code is greater than or equal to the fourth threshold.
  • the corresponding polarized channel number is the largest.
  • the information bit corresponding to the polarization channel number is in a small to large order
  • the Pth information bit is any one of at least one pair of information bits whose ratio of the position interval to the mother code length is greater than or equal to the fourth threshold.
  • the position of any two information bits controls the sparseness of the information bits, and solves the defect that the first information bit in the original information bit position leads to high decoding complexity, and the overall decoding complexity of the Polar code is improved. .
  • the preset condition further includes: K being greater than or equal to a preset threshold. Since the K is too small, the reduction of the decoding complexity is not large. Only when K is greater than or equal to the preset threshold, the above-mentioned possible implementation manner is implemented to reduce the decoding complexity and improve the efficiency of the scheme.
  • the position of the P-1 fixed bits in the position of the fixed bit is adjusted to the position of the information bit, which may be implemented as:
  • the sequence number is greater than the fixed bit position of the polarization channel number corresponding to the Pth information bit in the order of the polarization channel number corresponding to the information bit, in the order of the polarization channel reliability from high to low, before the selection
  • the position of the P-1 fixed bits is adjusted to the position of the information bits. In this way, the channel selected as the information bit position from the fixed bits has high reliability, and the coding performance loss is minimized while reducing the decoding complexity.
  • the position of the P-1 fixed bits in the position of the fixed bit is adjusted to the position of the information bit, which may be implemented as:
  • the sequence number is greater than the fixed bit position of the polarization channel number corresponding to the Pth information bit in the order of the polarization channel number corresponding to the information bit, and the pre-P is selected according to the order of the polarization channel number from large to small.
  • the position of 1 fixed bit is adjusted to the position of the information bit. Since the reliability of the polarized channel increases with the increase of its sequence number, the possible implementation not only minimizes the decoding complexity but also minimizes the performance loss of the compiled code, and is also simple to implement.
  • the position of the P-1 fixed bits in the position of the fixed bit is adjusted to the position of the information bit, which may be implemented as:
  • the position number is larger than the position of the fixed bit of the polarization channel number corresponding to the Pth information bit in the order of the polarization channel number corresponding to the information bit, and the position of the P-1 fixed bits before the arbitrarily selected is adjusted to the information bit.
  • the location is simple to implement.
  • the position of the P-1 fixed bits in the position of the fixed bit does not include the position corresponding to the punctured or shortened bit at the time of rate matching.
  • the location interval of two information bits includes: a sequence number difference of a polarization channel corresponding to two information bits; or a fixed bit between two information bits Quantity; or, the number of bits between two information bits.
  • S is equal to two. In this way, only the position of one bit of information is shifted back, which realizes that the decoding performance is not degraded while reducing the decoding complexity.
  • an embodiment of the present application provides an apparatus for adjusting a Polar code, including: an obtaining unit, a determining unit, an adjusting unit, and a coding and decoding unit.
  • the obtaining unit is configured to obtain the size K of the information block, where K is an integer greater than 0, and the determining unit is configured to determine the position of the K information bits and the position of the fixed bit according to the reliability order of the N polarized channels;
  • N is the mother code length of the Polar code, N is greater than or equal to 2 and is a positive integer power of 2;
  • the adjusting unit is configured to: in the order of the polarization channel corresponding to the information bit, from small to large, K information bits
  • the position of the first S information bits conforms to a preset condition, and the P-1 bit positions of the first S-1 information bits are adjusted to the positions of the fixed bits, and the P-1 bit positions in the fixed bit positions are adjusted.
  • the embodiment of the present application provides an apparatus for adjusting a Polar code, where the apparatus for adjusting a Polar code can implement the functions in the foregoing method examples, where the functions can be implemented by hardware, or can be implemented by hardware. .
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the apparatus for adjusting a Polar code includes a processor and a transceiver configured to perform a corresponding function in the above method.
  • the transceiver is located within the device that adjusts the Polar code for communication with other devices.
  • the apparatus for adjusting the Polar code may further include a memory for coupling with the processor, which stores program instructions and data necessary for the apparatus for adjusting the Polar code.
  • the apparatus for adjusting the Polar code provided by the present application is used to perform the foregoing method for adjusting the Polar code.
  • an embodiment of the present application provides a method for encoding a Polar code, including: receiving an information block of size K, where K is an integer greater than 0; determining a position of K information bits according to reliability ranking of the N polarized channels And the position of the fixed bit; wherein N is the mother code length of the Polar code, N is greater than or equal to 2 and is a positive integer power of 2; if the number of polarization channels corresponding to the information bits is from small to large, K
  • the position of the first S information bits in the information bits conforms to a preset condition, and the P-1 bit positions in the first S-1 information bits are adjusted to the positions of the fixed bits, and the P-1 positions in the fixed bit positions are The bit position is adjusted to the position of the information bit, where S is an integer greater than 1 and less than K, and P is an integer greater than 0 less than or equal to S; Polar code encoding the information block according to the adjusted information bit position and the fixed bit position , get the coded block.
  • the method for encoding the Polar code provided by the present application is similar to the specific implementation of the method for adjusting the Polar code, and can achieve the same effect as the method for adjusting the Polar code, and details are not described herein.
  • the embodiment of the present application provides a method for compiling a code of a Polar code, including: receiving a bit to be decoded; determining a position of the K information bits and a position of the fixed bit according to a reliability order of the N polarized channels; K is the number of information bits in the bit to be decoded, N is the mother code length of the Polar code, N is greater than or equal to 2 and is a positive integer power of 2; if the number of polarization channels corresponding to the information bits is small to large In order, the positions of the first S information bits of the K information bits are in accordance with a preset condition, and the P-1 bit positions of the first S-1 information bits are adjusted to the positions of the fixed bits, which are in the position of the fixed bits.
  • the P-1 bit positions are adjusted to the position of the information bits, where S is an integer greater than 1 and less than K, and P is an integer greater than 0 less than or equal to the S; according to the adjusted information bit position and the fixed bit position,
  • the decoded bits are decoded by Polar code to obtain information blocks.
  • the method for decoding the Polar code provided by the present application is similar to the specific implementation of the method for adjusting the Polar code, and can achieve the same effect as the method for adjusting the Polar code, and details are not described herein.
  • an embodiment of the present application provides a Polar code encoding apparatus, including: at least one input end for receiving an information block of size K, K being an integer greater than 0; and a signal processor for using N poles
  • the reliability ranking of the channel determines the position of the K information bits and the position of the fixed bit; wherein N is the mother code length of the Polar code, N is greater than or equal to 2 and is a positive integer power of 2;
  • the order of the polarization channel numbers is from small to large, and the positions of the first S information bits of the K information bits are in accordance with a preset condition, and the P-1 bit positions of the first S-1 information bits are adjusted to fixed bits.
  • Position adjusting the P-1 bit position in the position of the fixed bit to the position of the information bit, where S is an integer greater than 1 and less than K, and P is an integer greater than 0 less than or equal to S; according to the adjusted information bits Position and fixed bit position, Polar code encoding the information block to obtain a coding block; at least one output terminal for outputting the coding block obtained by the signal processor.
  • the Polar code encoding device provided by the present application is similar to the specific implementation of the method for adjusting the Polar code, and can achieve the same effect as the method for adjusting the Polar code, and details are not described herein.
  • the embodiment of the present application provides a Polar code encoding and decoding device, including: at least one input terminal for receiving a bit to be decoded; and a signal processor, configured to determine K according to reliability ranking of the N polarized channels.
  • the sequence of the polarized channel corresponding to the information bit is in the order of small to large, and the positions of the first S information bits in the K information bits conform to the preset condition, and the P-1 bit positions in the first S-1 information bits are adjusted.
  • the P-1 bit position in the position of the fixed bit is adjusted to the position of the information bit, where S is an integer greater than 1 and less than K, and P is an integer greater than 0 less than or equal to the S;
  • the coded block is subjected to Polar code decoding to obtain an information block; and at least one output terminal is used for outputting the information block decoded by the signal processor.
  • the Polar code decoding device provided by the present application is similar to the specific implementation of the method for adjusting the Polar code, and can achieve the same effect as the method for adjusting the Polar code, and details are not described herein.
  • the embodiment of the present application provides a communication device, including: the apparatus for adjusting a Polar code according to the second aspect or the third aspect.
  • the embodiment of the present application provides a communication system, including: a transmitting end communication device used for Polar code encoding, and a receiving end communication device used for Polar code decoding.
  • the transmitting end communication device or the receiving end communication device is the communication device of the sixth aspect.
  • the tenth aspect of the present invention provides a communication system, comprising: the Polar code encoding device according to the sixth aspect, such as the Polar code decoding device of the seventh aspect.
  • the embodiment of the present application provides a computer storage medium, configured to store, as the foregoing apparatus for adjusting a Polar code, a computer software instruction used by a Polar code encoding device or a Polar code decoding device, which is configured to perform the foregoing aspects.
  • an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the method of the above aspect.
  • FIG. 1 is a schematic diagram of reliability distribution of a polarized channel provided by the prior art
  • FIG. 2 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a basic structure of a channel coding and decoding unit of a Polar code according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an apparatus for adjusting a Polar code according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of another apparatus for adjusting a Polar code according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for adjusting a Polar code according to an embodiment of the present application
  • FIG. 6 is a flowchart of a method for encoding a Polar code according to an embodiment of the present application
  • FIG. 7 is a flowchart of a method for decoding a Polar code according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another apparatus for adjusting a Polar code according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another apparatus for adjusting a Polar code according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another apparatus for adjusting a Polar code according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a Polar code encoding apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a Polar code decoding apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another communication system according to an embodiment of the present application.
  • the Polar code is a linear block code whose generating matrix is G N and its encoding process is among them,
  • the vector to be encoded of the Polar code is a binary line vector having a length of the mother code length N.
  • G N is an N ⁇ N matrix
  • B N is an N ⁇ N transposed matrix.
  • B N can be a Bit Reversal matrix; Defined as the Kronecker product of log 2 N matrices F 2 .
  • the addition and multiplication operations mentioned above are addition and multiplication operations on a binary Galois field.
  • B N does not affect the decoding performance, and the present invention is for the coding matrix with Both apply.
  • the polarization channel error probability corresponding to the bit of the sequence number i is obtained by using the construction algorithm of the Polar code.
  • channel capacity estimate I (i) or polarization weight W (i) select The K number whose value is the smallest or the I (i) value is the largest or the W (i) value is the largest, and the bits corresponding to the K numbers are used as The location of the information bits.
  • the rest are fixed bits, or the rest are a combination of fixed bits and parity bits.
  • Figure 1 shows the relative reliability distribution of the polarized channel without the B N operation and the position selection of the information bits when the code length is 512 and the information bit length is 256.
  • the x-axis is the natural number of the polarized channel and the y-axis is the reliability of the polarized channel. It can be seen from Fig. 1 that the reliability of the polarized channel increases with the increase of the channel sequence. Most of the information bits are polarized channels with larger serial numbers, but there are also a few polarized channels with smaller serial numbers. The reliability is higher as the position of the information bits. Therefore, the information bit positions are dispersed in the respective polarized channels, and the position of the information bits relatively far ahead is more sparse.
  • the position of the information bit when the Polar code is compiled and coded refers to the position of the bit carrying the useful information in the codeword when the Polar code is compiled.
  • the position of the information bits when the Polar code is compiled is calculated by the construction algorithm and can be calculated online when the code is compiled.
  • the location of the information bits can also be calculated offline and stored in the codec device.
  • the specific reference is based on the reliability of the polarized channel. According to the reliability of the N polarized channels, the bit position corresponding to the first K polarized channels is selected as the position of the information bits, and the remaining positions are fixed bits. position. If it is CA-polar or PC-polar, the remaining positions are a combination of the fixed bit position and the check bit position.
  • the CA-Polar code is a contiguous Cyclic Redundancy Check (CRC) Polar code, referred to as a CA-Polar code.
  • the PC-Polar code is a Polarity code of a parity check (PC), which is referred to as a PC-Polar code.
  • the remaining positions are the positions of the fixed bits or the remaining positions are the combination of the fixed bit position and the check bit position, which can be configured according to actual needs.
  • This embodiment of the present application does not specifically limit this.
  • the specific process for determining the position of the fixed bit and the check bit position is performed in the specific embodiment of the present application. It is not limited and will not be described here.
  • the description of the code to be encoded includes only information bits and fixed bits. It is not intended to be a specific limitation of what is included in the encoding vector. For a scenario in which a check bit is included in the vector to be encoded, reference may be made to the specific process in the embodiment of the present application, and the method for encoding/decoding the Polar code described in the embodiment of the present application includes a check bit in the vector to be encoded. Specific plans will not be repeated.
  • the "Polar code encoding/decoding” or “Polar code encoding code” referred to in the embodiments of the present application refers to Polar code encoding or Polar code decoding.
  • the reliability of the polarized channel is a parameter for evaluating the polarization performance, and may include an error probability, a channel capacity, and may also include a polarization weight. It should be noted that any parameter that can be used to reflect the reliability of the polarized channel can be used as an evaluation parameter for the reliability of the polarized channel.
  • the reliability of the polarized channel can be calculated using density evolution, Gaussian approximation, or linear fitting.
  • the reliability order of each polarized channel may also be pre-configured.
  • the reliability sequence of the polarized channel is determined according to the reliability order of the pre-configured polarized channels. For example, a sorting sequence for offline storage that reflects the order of polarization channel reliability, based on the sorting sequence, can directly determine the level of polarization channel reliability.
  • a method for calculating the polarization weight of a polarized channel is briefly described here.
  • the formula for calculating the polarization weights of the i-th (i ⁇ ⁇ 0, 1, ..., N-1 ⁇ ) polarized channels is as follows Show:
  • B j is a binary representation of i.
  • the industry defines the complexity of the Polar code decoding as: (L*N*log 2 (N)+L*(N-1))+K*2*L*log 2 (2*L).
  • L represents the decoding path
  • N represents the mother code length
  • K represents the number of information bits.
  • the first few fixed bits are generally skipped during decoding, and decoding is started from the first information bit. This operation simplifies decoding, and the simplified decoding calculation is complicated.
  • the degree is: ratio*(L*N*log 2 (N)+L*(N-1))+K*2*L*log 2 (2*L).
  • ratio is the ratio of the bits to be encoded to the bits to be encoded in the vector to be encoded, starting from the first information bit.
  • the bits to be coded represent the information bits and fixed bits in the vector to be encoded, and the total number is the mother code length.
  • the basic principle of the present application is: by moving the position of the previous one or more information bits backward, so that the ratio of the bits to be encoded to the bits to be encoded in the vector to be encoded is reduced from the first information bit. , thereby reducing the complexity of the Polar code decoding. That is to say, when decoding, it skips the fixed bit that has just started, and is decoded from the first information bit, and the fixed bit that is skipped by moving the position of the previous one or more information bits backwards. The more, the complexity of the decoding of the Polar code can be reduced.
  • Polar code is a channel coding technology used in various communication systems to improve data transmission reliability and ensure communication quality.
  • the channel coding technique is applied to a channel coding unit in a communication system, and the location of the channel coding unit in the communication system is as shown in the architecture of the communication system illustrated in FIG.
  • the source generated by the transmitting device 201 during communication is sequentially transmitted by the source encoding unit 2011, the channel encoding unit 2012, and the digital modulation unit 2013, and then transmitted to the receiving end via the channel 202.
  • Device 203 Then, inside the receiving device 203, a digital sink unit 2031, a channel decoding unit 2032, and a source decoding unit 2033 are sequentially obtained to obtain a sink.
  • the architecture of the communication system in FIG. 2 does not constitute a limitation of the communication system, and may include more or less units than illustrated, or combine some units, or different unit arrangements, and no longer One by one.
  • the Polar code first obtains the position of the information bit and the position of the fixed bit by constructing an algorithm or reading an offline constructed structure sequence according to the code length and the information bit length. Then, at the time of encoding, the obtained information bit position and the fixed bit position are used, and the vector to be encoded is obtained according to the information block to be encoded.
  • Coding vector Coding with Polar code coding matrix to obtain coded codeword Or in decoding, using the obtained information bit position and fixed bit position, according to the received Polar code data to be decoded (data encoding obtained And decoding the information block according to the Polar code coding matrix.
  • some scenarios need to perform rate matching to achieve the target code length after encoding.
  • Vector to be encoded Coding with Polar code coding matrix to obtain the mother codeword of Polar code After the mother codeword After rate matching, the rate matching codeword is obtained.
  • the position of the information bits and the position of the fixed bits can be represented in various ways. The following are listed here, but are not specific definitions of the position of the information bits and the position of the fixed bits when the Polar code is compiled.
  • the position of the information bits and the position of the fixed bits when the Polar code is compiled may be implemented by any of the following representation methods:
  • the position of the information bits and the position of the fixed bits when the Polar code is compiled by the bit position sequence, and the sequence of the defined bit positions includes the sequence numbers of the N polarized channels arranged in the highest to the lowest of the polarization channel reliability.
  • bit positions indicated by the first K polarized channel numbers in the bit position sequence are information bit positions, and the rest are fixed bit positions.
  • the mother code length N is 8
  • the information bit number K is 3
  • the bit position sequence According to the bit position sequence, the information bit position is obtained as ⁇ 8, 7, 4 ⁇ , and the fixed bit position is ⁇ 6, 5, 3, 2, 1 ⁇ .
  • the position of the information bit and the position of the fixed bit when the Polar code is compiled by the bit position sequence, and the defined bit position sequence includes the attribute indication of the N polarized channels arranged by the polarization channel number from large to small, the attribute The indication is used to indicate that the bit position corresponding to the polarized channel is the position of the information bit or the position of the fixed bit.
  • the mother code length N is 8
  • the information bit number K is 3
  • the bit position sequence 1 indicates the information bit position
  • 0 indicates a fixed bit position
  • the information bit position is ⁇ 8, 7, 4 ⁇
  • the fixed bit position is ⁇ 6, 5, 3, 2, 1 ⁇ .
  • Representation method 3 which indicates the position of the information bits and the position of the fixed bits when the Polar code is compiled by the construction sequence.
  • defining the construction sequence includes arranging the sequence numbers of the polarization channels corresponding to the K information bits by the polarization channel reliability from high to low, and obtaining the fixed bit positions according to the construction sequence.
  • the sequence numbers of the polarization channels corresponding to the K information bits included in the sequence may be configured, and may be arranged in a small to large order according to the polarization channel number, which is not specifically limited in this application. .
  • the mother code length N is 8
  • the information bit number K is 3, and the construction sequence is ⁇ 8, 7, 4 ⁇
  • the information bit position is obtained as ⁇ 8, 7, 4 ⁇ , fixed.
  • the bit position is ⁇ 6, 5, 3, 2, 1 ⁇ .
  • the method 4 indicates that the position of the information bit and the position of the fixed bit when the Polar code is compiled by the information bit index set.
  • the definition information bit index set includes the sequence numbers of the polarization channels corresponding to the K information bits arranged by the polarization channel number from small to large, and the fixed bit positions are obtained according to the definition information bit index set.
  • the information bit position is obtained as ⁇ 4, 7, 8 ⁇
  • the fixed bit position is ⁇ 1, 2, 3, 5, 6 ⁇ .
  • the method for adjusting the Polar code provided by the present application is applied to the communication system architecture as shown in FIG. 2. Further, the method for adjusting the Polar code provided by the present application is specifically applied to the channel coding unit 2012 or the channel decoding unit 2032 in the communication system shown in FIG. 2. In particular, the method for adjusting a Polar code provided by the present application is applied to the channel coding unit or the channel decoding unit of FIG. 3 for adjusting information bit positions and fixed bit positions obtained according to planned channel reliability, and the adjusted The information bit position and the fixed bit position input coding module or decoding module are encoded or decoded.
  • the scheme for adjusting the information bit position and the fixed bit position in the embodiment of the present application may be applicable to the encoding process, and may also be applied to the decoding process, and thus is sometimes collectively referred to as a compiled code method and a codec device.
  • an embodiment of the present application provides an apparatus 40 for adjusting a Polar code.
  • 4 shows an apparatus 40 for adjusting a Polar code associated with various embodiments of the present application.
  • the apparatus 40 for adjusting the Polar code may be deployed in the channel coding unit 2012 or the channel decoding unit 2032 in the communication system architecture shown in FIG. 2, or may replace the channel coding unit 2012 or the channel decoding unit 2032, respectively.
  • the apparatus 40 for adjusting the Polar code may include a processor 401 and a memory 402.
  • the apparatus 40 for adjusting the Polar code may further include a communication interface 403 and a communication bus 404. It can be understood that when the processor 401 and the memory 402 are integrated, they are not necessarily connected through a communication bus.
  • the memory 402 may be a volatile memory such as a random-access memory (RAM) or a non-volatile memory such as a read-only memory. , ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); or a combination of the above types of memory for storing the relevant methods of the present application Applications, and configuration files.
  • RAM random-access memory
  • non-volatile memory such as a read-only memory. , ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); or a combination of the above types of memory for storing the relevant methods of the present application Applications, and configuration files.
  • the processor 401 is a control center of the device 40 for adjusting the Polar code, and may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or configured to implement the present invention. Applying one or more integrated circuits of an embodiment, such as one or more microprocessors (digital singnal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs) .
  • the processor 401 can perform various functions of the apparatus 40 for adjusting the Polar code by running or executing software programs and/or modules stored in the memory 402, as well as invoking data stored in the memory 402.
  • the communication interface 403 uses a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), and wireless local area network (Wireless Local Area Networks, WLAN) and so on.
  • the communication interface 403 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the communication bus 404 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 4a, but it does not mean that there is only one bus or one type of bus.
  • the device structure illustrated in Figure 4 or Figure 4a does not constitute a limitation to the apparatus 40 for adjusting the Polar code, and may include more or fewer components than those illustrated, or some components may be combined, or different component arrangements.
  • the processor 401 operates or executes software programs and/or modules stored in the memory 402, and calls data stored in the memory 402, specifically for:
  • K is an integer greater than 0; determining the position of the K information bits and the position of the fixed bit according to the reliability ranking of the N polarized channels; wherein N is the mother code length of the Polar code, where N is If it is greater than 2 and is an integer power of 2; if the position of the first S information bits in the K information bits conforms to a preset condition according to the order of the polarization channel numbers corresponding to the information bits, the pre-S- The P-1 bit positions of one information bit are adjusted to the position of the fixed bit, and the P-1 bit positions in the position of the fixed bit are adjusted to the position of the information bit; wherein S is an integer greater than 1 and smaller than K, P is an integer greater than 0 less than or equal to S; Polar code encoding or decoding is performed according to the adjusted information bit position and the fixed bit position.
  • the embodiment of the present application provides a method for adjusting a Polar code.
  • the Polar code encoding and decoding method provided by the embodiment of the present application may include:
  • the apparatus for adjusting the Polar code acquires the size K of the information block.
  • K is an integer greater than zero.
  • the unique K value is determined by the code length and code rate of the communication scenario or communication requirement.
  • An information block refers to information that the encoder waits for channel coding, or that the decoder waits for information obtained through channel decoding.
  • S501 may be performed by the communication port 403 in the Polar code encoding and decoding device 40 shown in FIG. 4 or FIG. 4a to acquire the size K of the information block.
  • the apparatus for adjusting the Polar code determines the positions of the K information bits and the positions of the fixed bits according to the reliability order of the N polarized channels.
  • N is the mother code length of the Polar code, and according to the characteristics of the Polar code, N is greater than or equal to 2 and is a positive integer power of 2.
  • the unique N value is determined by the code length and code rate of the communication scenario or communication requirement.
  • S502 can be executed by the processor 401 in the Polar code encoding and decoding device 40 shown in FIG. 4 or FIG. 4a.
  • the apparatus for adjusting the Polar code is sorted according to the reliability of the N polarized channels, and the bit positions corresponding to the top K polarized channels with high reliability among the N polarized channels are determined as the positions of the K information bits, according to actual conditions.
  • the communication requirement and coding scheme determines the position of the remaining polarized channel as a fixed bit, or determines the combination of the remaining polarized channel as the position of the fixed bit and the position of the check bit.
  • the apparatus for adjusting the Polar code determines the position of the K information bits and the position of the fixed bits according to the reliability order of the N polarized channels, and according to the foregoing content, the position and the fixed bits of the information bits in the Polar code encoding code.
  • the representation of the location is represented as a sequence of bit positions or a sequence of constructs or a set of information bit indices, which are not described here.
  • the reliability of the polarized channel can be measured by dimensions such as error probability, channel capacity, and polarization weight, and will not be described herein.
  • the reliability of the polarized channel may be pre-configured with a polarization channel reliability ranking sequence, which is not described herein.
  • the method and the parameter for the reliability of the polarization channel can be determined according to actual requirements, which is not specifically limited in this embodiment of the present application.
  • 64 polarization channels are sorted according to their reliability from high to low: 64, 63, 62, 60, 56, 48, 61, 32, 59, 58, 55, 54, 47, 52, 46, 31, 44, 30, 57, 40, 28, 53, 24, 51, 45, 50, 16, 43, 29, 42, 39, 27, 38, 26, 23, 36, 22, 49, 15, 20, 14, 41, 12, 37, 25, 8, 35, 21, 34, 19, 13, 18, 11, 10, 7, 6, 33, 4, 17, 9, 5, 3, 2, 1.
  • the apparatus for adjusting the Polar code determines the bit position corresponding to the first 15 polarized channels as the information bit in the order of the reliability of the 64 polarized channels in S502, as the position corresponding to the position of the information bit.
  • the serial number of the channel includes 64, 63, 62, 60, 56, 48, 61, 32, 59, 58, 55, 54, 47, 52, 46, and the serial number of the polarized channel corresponding to the position of the fixed bit includes 31. 44, 30, 57, 40, 28, 53, 24, 51, 45, 50, 16, 43, 29, 42, 39, 27, 38, 26, 23, 36, 22, 49, 15, 20, 14, 41, 12, 37, 25, 8, 35, 21, 34, 19, 13, 18, 11, 10, 7, 6, 33, 4, 17, 9, 5, 3, 2, 1.
  • the apparatus for adjusting the Polar code is determined in S502 according to the order of reliability of the 64 polarized channels from high to low.
  • the position of the information bits and the position of the fixed bits are represented by the following four representations:
  • Representation method 3 expressed as a construction sequence ⁇ 64, 63, 62, 60, 56, 48, 61, 32, 59, 58, 55, 54, 47, 52, 46 ⁇ .
  • Representation method 4 is represented as a set of information bit indices ⁇ 32, 46, 47, 48, 52, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64 ⁇ .
  • the maximum mother code length is 64, and the corresponding reliability is ranked from low to high: 0, 1, 2, 4, 8, 16, 32, 3, 5, 9, 6, 17, 10, 18, 12, 33, 20, 34, 24, 36, 7, 11, 40, 19, 13, 48, 14, 21, 35, 26, 37, 25, 22, 38, 41, 28, 42, 49, 44, 50, 15, 52, 23, 56, 27, 39, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63.
  • the sort sequence with the sequence number less than 32 is taken from the above sorting sequence, and the order of the polarization channel reliability from low to high is obtained when the mother code length bit is 32: 0, 1, 2, 4, 8 , 16, 3, 5, 9, 6, 17, 10, 18, 12, 20, 24, 7, 11, 19, 13, 14, 21, 26, 25, 22, 28, 15, 23, 27, 29 30, 31.
  • the apparatus for adjusting the Polar code determines the bit position corresponding to the first 15 polarized channels as the information bit in the order of the reliability of the 32 polarized channels in S502, as the position corresponding to the position of the information bit.
  • the serial number of the channel includes 31, 30, 29, 27, 23, 15, 28, 22, 25, 26, 21, 14, 13, 19, and 11, and the serial number of the polarized channel corresponding to the position of the fixed bit includes 7. 24, 20, 12, 18, 10, 17, 6, 9, 5, 3, 16, 8, 4, 2, 1, 0.
  • the apparatus for adjusting the Polar code is determined in S502 according to the order of reliability of the 32 polarized channels from high to low.
  • the position of the information bits and the position of the fixed bits are represented by the following four representations:
  • Representation method 3 is represented as a construction sequence ⁇ 31, 30, 29, 27, 23, 15, 28, 22, 25, 26, 21, 14, 13, 19, 11 ⁇ .
  • Representation method 4 is represented as a set of information bit indices ⁇ 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31 ⁇ .
  • the device that adjusts the Polar code has the first S-1 information bits.
  • the P-1 bit position in the adjustment is adjusted to the position of the fixed bit, and the P-1 bit position in the position of the fixed bit is adjusted to the position of the information bit.
  • S is an integer greater than 1 and less than K
  • P is an integer greater than 0 less than or equal to S.
  • the specific values of S and P may be determined according to actual requirements.
  • the values of S and P are not specifically limited in this embodiment. The smaller the values of S and P are, the smaller the number of adjusted information bit positions is, and the smaller the loss of coding performance is. The larger the value of S and P is, the more the number of adjusted information bit positions is, and the more the translation complexity of Polar is reduced.
  • the value of S can be selected by combining the mother code length N and the code rate.
  • the value of S can be defined as log 2 (N)-4. According to this rule, when the mother code length N is 64, S can be 2, and when the mother code length N is 128, S can be 3.
  • S503 can be executed by the processor 401 in the apparatus for adjusting the Polar code shown in FIG. 4 or FIG. 4a.
  • the device for adjusting the Polar code in S503 is in the order of the number of the polarized channel corresponding to the information bit, and the pre-S -
  • the P-1 bit positions in one information bit are adjusted to the position of the fixed bit, and the specific implementation means for adjusting the P-1 bit position in the position of the fixed bit to the position of the information bit is also different, and specifically includes the following Several ways to achieve:
  • the first implementation means, if the position of the information bit and the position of the fixed bit when the Polar code is compiled by the bit position sequence, the bit position sequence includes the sequence numbers of the N polarized channels arranged according to the reliability of the polarization channel from high to low.
  • the apparatus for adjusting the Polar code in S503 adjusts the P-1 bit positions of the first S-1 information bits to the position of the fixed bit according to the order of the polarization channel numbers corresponding to the information bits, and fixes the fixed bits.
  • the P-1 bit position in the position is adjusted to the position of the information bit, and specifically includes:
  • the sequence number of the polarized channel corresponding to the first K information bits in the bit position sequence is changed from the first S-1 polarized channel number from small to large to the NK bit in the bit position sequence, and the bit position sequence is
  • the P-1 polarized channel numbers in the sequence numbers of the NK polarized channels are moved to the first K bits in the bit position sequence, and the polarized channel numbers in the shifted bit position sequence are according to the reliability of the polarized channel from high to low. arrangement.
  • the sequence of bit positions in the representation method 1 The serial number in the sequence is shifted from the first to the first polarized channel number (32) to the last 49 bits in the bit position sequence, and the bit position sequence is One of the 49 polarized channel numbers in the middle and the last polarized channel number (for example, 57) is moved to the first 15 bits in the bit position sequence, and the polarized channel number in the shifted bit position sequence is determined by the polarization channel reliability. High to low
  • the second implementation means, if the position of the information bit and the position of the fixed bit when the Polar code is compiled by the bit position sequence, the bit position sequence is defined to include the attributes of the N polarized channels arranged by the polarization channel number from large to small. Instructing, the apparatus for adjusting the Polar code in S503 adjusts the P-1 bit positions of the first S-1 information bits to the fixed bit position according to the order of the polarization channel numbers corresponding to the information bits, and fixes the position The position of the P-1 bits in the position of the bit is adjusted to the position of the information bit, and specifically includes:
  • the third implementation means, if the position of the information bit and the position of the fixed bit when the Polar code is compiled by the structure sequence, the device for adjusting the Polar code in S503 is in the order of the polarization channel corresponding to the information bit, in the order of small to large
  • the position of the P-1 bits in the first S-1 information bits is adjusted to the position of the fixed bit
  • the position of the P-1 bits in the position of the fixed bit is adjusted to the position of the information bit, which specifically includes:
  • the fourth implementation means, if the information bit position and the position of the fixed bit are indicated by the information bit index set, the apparatus for adjusting the Polar code in S503 is in the order of the polarization channel number corresponding to the information bit. Adjusting the P-1 bit positions of the first S-1 information bits to the position of the fixed bit, and adjusting the P-1 bit positions in the fixed bit position to the position of the information bit, specifically including:
  • the first S-1 polarized channel numbers in the information bit index set are deleted, and the S-1 polarized channel numbers in the uncontained information bit index set are added to the information bit index set.
  • the information bit index set in method 4 will be represented ⁇ 32, 46, 47, 48, 52, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64 ⁇ , the first polarization channel number is deleted, and one polarization channel number (for example, 57) in the uncontained structure sequence is added to the information bit index set, and the adjusted information bit index is added.
  • the set is ⁇ 46,47,48,52,54,55,56,57,58,59,60,61,62,63,64 ⁇ .
  • the content of the preset condition may be determined according to actual needs, and the content of the preset condition reflects the position of the first S information bits in the K information bits according to the order of the polarization channel numbers corresponding to the information bits from small to large. More sparse. Among them, the sparsity is defined as a large interval of positions, or a ratio of position intervals to the length of the mother code is large. It should be noted that the content of the preset condition is not specifically limited in the embodiment of the present application. Optionally, the embodiment of the present application provides specific content of the following preset conditions:
  • the content 1 and the preset condition include: the order of the position of the Sth information bit and the position of the first information bit occupying the length of the mother code is greater than or equal to the first threshold according to the order of the polarization channel numbers corresponding to the information bits. .
  • the value of the first threshold is determined according to actual requirements, which is not specifically limited in this embodiment of the present application.
  • the first threshold may be 0.1.
  • P may be equal to S.
  • P can be any positive integer less than S.
  • the location interval of the two information bit positions may be a difference between the polarization channel numbers corresponding to the two information bits, or may be a fixed number of bits between the two information bits, or may be two The number of bits between the information bits.
  • the location interval of the two information bit positions may also be defined according to actual requirements. The specific content of the location interval of the two information bit positions is not specifically limited in this embodiment of the present application.
  • I 1 and I 2 respectively represent polarization channel numbers corresponding to the first information bit and the second information bit, and the position interval between the first information bit and the second information bit is calculated to be the length of the mother code.
  • the ratio is
  • the preset condition includes the order of the polarization channel numbers corresponding to the information bits being small to large, and the position interval of the adjacent two information bits from the first information bit to the S information bits is in the mother code length ratio. There is a ratio of a position interval of at least one information bit to a previous information bit to a length of the mother code that is greater than or equal to a second threshold.
  • the value of the second threshold may be determined according to actual requirements, which is not specifically limited in this embodiment of the present application. When the value of the second threshold is smaller, the number of adjustments in the actual Polar code encoding process is more frequent, but the decoding complexity is reduced. When the value of the second threshold is smaller, the decoding complexity is reduced more, but the number of adjustments in the actual Polar code encoding process is not much.
  • the second threshold may be 0.1.
  • the polarization channel number corresponding to the information bit is in a small to large order, and the Pth information bit is a ratio of the position of the previous information bit to the length of the mother code is greater than or equal to the second. Any one of at least one information bit of the threshold.
  • the sequence of the polarized channel corresponding to the information bit is in a small to large order, and the ratio of the Pth information bit to the position of the previous information bit is greater than or equal to the length of the mother code.
  • the preset condition includes: the order of the polarization channel corresponding to the information bit is from small to large, and each information bit from the second information bit to the Sth information bit is separated from the position of the first information bit.
  • the mother code length ratio there is a ratio of a position interval of at least one information bit to a first information bit to a length of the mother code that is greater than or equal to a third threshold.
  • the value of the third threshold may be determined according to actual requirements, which is not specifically limited in this embodiment of the present application. When the value of the third threshold is smaller, the number of adjustments in the actual Polar code encoding process is more frequent, but the decoding complexity is reduced. When the value of the third threshold is smaller, the decoding complexity is reduced more, but the number of adjustments in the actual Polar code encoding process is not much.
  • the third threshold may be 0.1.
  • the polarization channel number corresponding to the information bit is in a small to large order, and the Pth information bit is a ratio of the position of the first information bit to the length of the mother code is greater than or equal to the first Any one of at least one information bit of the three thresholds.
  • the polarization channel number corresponding to the information bit is in a small to large order, and the Pth information bit is a ratio of the position of the first information bit to the length of the mother code is greater than or equal to the first The information bit of the at least one information bit of the three thresholds having the largest polarization channel number.
  • the preset condition includes: in the order that the polarization channel number corresponding to the information bit is from small to large, the position interval of any two information bits from the first information bit to the S information bit is in the mother code length ratio, There is a ratio of the positional interval of at least one pair of information bits to the length of the mother code being greater than or equal to a fourth threshold.
  • the value of the fourth threshold may be determined according to actual requirements, which is not specifically limited in this embodiment of the present application. When the value of the fourth threshold is smaller, the number of adjustments in the actual Polar code encoding process is more frequent, but the decoding complexity is reduced. When the value of the fourth threshold is smaller, the decoding complexity is reduced more, but the number of adjustments in the actual Polar code encoding process is not much.
  • the fourth threshold may be 0.1.
  • the polarization channel number corresponding to the information bit is in a sequence from small to large, and the Pth information bit is at least one pair of information that the ratio of the position interval to the length of the mother code is greater than or equal to the fourth threshold. Any information bit of any pair of bits of information bits.
  • the polarization channel number corresponding to the information bit is in a sequence from small to large, and the P-th information bit is at least one pair of the position interval of the mother code length being greater than or equal to the fourth threshold.
  • the information bit with the largest number of corresponding polarization channel numbers in the information bits is in a sequence from small to large, and the P-th information bit is at least one pair of the position interval of the mother code length being greater than or equal to the fourth threshold.
  • first threshold, the second threshold, the third threshold, and the fourth threshold involved in the above four contents may be the same or different, and the embodiment of the present application does not specifically limit this.
  • the content of the above four preset conditions is only an example description, and is not a specific limitation on the content of the preset condition.
  • the preset condition may further include: K is greater than or equal to a preset threshold.
  • the value of the preset threshold may be set according to actual requirements, which is not specifically limited in this embodiment of the present application.
  • the solution for selecting the position of the P-1 fixed bits may specifically include the following solutions:
  • the position of the fixed bit of the polarization channel number corresponding to the Pth information bit in the order that the sequence number is greater than the information channel corresponding to the polarization bit number is from high to low, according to the reliability of the polarization channel from high to low.
  • the position of the previous P-1 fixed bits is adjusted to the position of the information bits.
  • the position of the fixed bit of the polarization channel number corresponding to the Pth information bit in the order that the sequence number is greater than the information bit corresponding to the polarization channel number is from small to large, according to the order of the polarization channel number from large to small.
  • the position of the P-1 fixed bits before the selection is adjusted to the position of the information bits.
  • the position of the pre-P-1 fixed bits is arbitrarily selected from the positions of the fixed bits of the polarization channel number corresponding to the Pth information bit in the order that the sequence number is greater than the polarization channel number corresponding to the information bit. Adjust to the position of the information bits.
  • the Polar code encoding and decoding device performs rate matching when performing the Polar code encoding and decoding, the encoded bits will be punctured at the time of rate matching, and P-1 in the fixed bit position in S503.
  • the position of the fixed bit is adjusted to the position of the information bit, the position of the selected P-1 fixed bits does not include the position corresponding to the puncturing or shortening bit.
  • the apparatus for adjusting the Polar code performs Polar code encoding or decoding according to the adjusted information bit position and the fixed bit position.
  • S504 can be executed by the processor 401 in the apparatus 40 for adjusting the Polar code shown in FIG.
  • the apparatus for adjusting the Polar code performs Polar code encoding on the information block according to the adjusted information bit position, the fixed bit position, and the Polar code encoding matrix to obtain an encoded codeword.
  • the apparatus for adjusting the Polar code performs the Polar code decoding on the received data to be decoded according to the adjusted information bit position and the fixed bit position and the Polar code encoding matrix, to obtain the information block transmitted by the opposite end.
  • the Polar code encoding and decoding process it will not be described here.
  • the information obtained in S502 is obtained.
  • the information bit position and the fixed bit position of the Polar code encoding code need not be adjusted, and the Polar code encoding code is directly performed according to the information bit position and the fixed bit position obtained in S502.
  • the method for adjusting a Polar code provided by the embodiment of the present application, when the positions of the first S information bits in the K information bits meet the preset condition in the order that the polarization channel numbers corresponding to the information bits are small to large,
  • the P-1 bit positions in the first S-1 information bits are adjusted to the positions of the fixed bits, and the P-1 bit positions in the fixed bit positions are adjusted to the position of the information bits, which is reduced in the K information bits.
  • the sparseness of the first S information bits makes the information bit positions of the Polar code encoding or decoding concentrated. Since the previous fixed bit is skipped during the decoding of the Polar code, the decoding starts from the first information bit, and the decoding complexity decreases as the degree of the first information bit increases. Therefore, the embodiment of the present application is adopted.
  • the scheme performs Polar code encoding or decoding, and the decoding complexity is effectively reduced.
  • the embodiment of the present application further provides a Polar code encoding method, which is applied to a Polar code encoding device.
  • the specific process of the Polar code encoding method is the same as the encoding process in the method of adjusting the Polar code illustrated in FIG. As shown in FIG. 6, the method may include:
  • the Polar code encoding apparatus receives the information block of size K.
  • K is an integer greater than zero.
  • the Polar code encoding apparatus determines the positions of the K information bits and the positions of the fixed bits according to the reliability order of the N polarized channels.
  • N is the mother code length of the Polar code
  • N is greater than or equal to 2 and is a positive integer power of 2.
  • the Polar code encoding device will be in the first S-1 information bits.
  • the P-1 bit positions are adjusted to the positions of the fixed bits, and the P-1 bit positions in the fixed bit positions are adjusted to the positions of the information bits.
  • S is an integer greater than 1 and less than K
  • P is an integer greater than 0 less than or equal to S.
  • the Polar code encoding apparatus performs Polar code encoding on the information block according to the adjusted information bit position and the fixed bit position to obtain a coded block.
  • the specific process of the Polar code coding method illustrated in FIG. 6 is the same as the coding process in the method for adjusting the Polar code illustrated in FIG. 5.
  • the Polar code encoding method illustrated in FIG. 6 can also achieve the same effect as the method for adjusting the Polar code illustrated in FIG. 5, and details are not described herein again.
  • the embodiment of the present application further provides a Polar code decoding method, which is applied to a Polar code decoding apparatus.
  • the specific process of the Polar code decoding method is the same as the decoding process in the method of adjusting the Polar code illustrated in FIG. As shown in FIG. 7, the method may include:
  • the Polar code decoding code device receives the bit to be decoded.
  • the Polar code decoding apparatus determines the positions of the K information bits and the positions of the fixed bits according to the reliability order of the N polarized channels.
  • N is the mother code length of the Polar code, and N is greater than or equal to 2 and is a positive integer power of 2.
  • the Polar code decoding device sets the first S-1 information bits.
  • the P-1 bit position in the adjustment is adjusted to the position of the fixed bit, and the P-1 bit position in the position of the fixed bit is adjusted to the position of the information bit.
  • S is an integer greater than 1 and less than K
  • P is an integer greater than 0 less than or equal to S.
  • the Polar code decoding apparatus performs Polar code encoding on the information block according to the adjusted information bit position and the fixed bit position to obtain a coded block.
  • the specific process of the Polar code decoding method illustrated in FIG. 7 is the same as the decoding process in the method for adjusting the Polar code illustrated in FIG. 5, and the specific implementation may refer to the processes of S501 to S504, and the process is not performed here. One by one.
  • the method for decoding the Polar code illustrated in FIG. 7 can also achieve the same effect as the method for adjusting the Polar code illustrated in FIG. 5, and details are not described herein again.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of the workflow of the device for adjusting the Polar code, the Polar code encoding device, and the Polar code decoding device.
  • the device for adjusting the Polar code, the Polar code encoding device, and the Polar code decoding device include hardware structures and/or software modules corresponding to each function in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the algorithmic steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module of the device for adjusting the Polar code, the Polar code encoding device, and the Polar code decoding device according to the foregoing method.
  • each functional module may be divided according to each function, or two or two may be divided. More than one function is integrated in one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the modules in the embodiment of the present application is schematic, and only one logical function is divided, and the actual implementation may have another division manner.
  • FIG. 8 shows a possible composition diagram of the apparatus for adjusting the Polar code involved in the above and the embodiments, as shown in FIG. 8, the apparatus for adjusting the Polar code.
  • 40 may include an obtaining unit 801, a determining unit 802, an adjusting unit 803, and a encoding and decoding unit 804.
  • the obtaining unit 801 is configured to execute S501 of the device for adjusting the Polar code in the method for adjusting the Polar code shown in FIG. 5 .
  • the determining unit 802 is configured to execute S502 of the apparatus for adjusting the Polar code in the method of adjusting the Polar code shown in FIG. 5.
  • the adjusting unit 803 is configured to execute S503 performed by the apparatus for adjusting the Polar code in the method for adjusting the Polar code shown in FIG. 5.
  • the encoding and decoding unit 804 is configured to execute S504 of the apparatus for adjusting the Polar code in the method of adjusting the Polar code shown in FIG. 5.
  • the apparatus 40 for adjusting the Polar code provided in the embodiment of the present application is configured to perform the method for adjusting the Polar code illustrated in FIG. 5 above, so that the same effect as the above method of adjusting the Polar code can be achieved.
  • FIG. 9 shows another possible composition diagram of the apparatus for adjusting the Polar code involved in the above embodiment.
  • the apparatus 40 for adjusting a Polar code includes a processing module 901.
  • the processing module 901 is configured to control and manage the actions of the apparatus 40 for adjusting the Polar code, for example, the processing module 901 is configured to perform S501 to S504 performed by the apparatus for adjusting the Polar code in FIG. 5, and/or for the techniques described herein. Other processes.
  • the apparatus 40 for adjusting the Polar code may further include a storage module 902 for storing program codes and data of the apparatus 40 for adjusting the Polar code.
  • the processing module 901 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure. Processing module 901 can also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the storage module 902 can be a memory.
  • the apparatus for adjusting the Polar code in FIG. 9 in the embodiment of the present application may be the apparatus for adjusting the Polar code shown in FIG. 4.
  • the processor and the memory involved in the embodiments of the present application may be physically separate modules or may be integrated.
  • the apparatus 40 for adjusting the Polar code may further include a communication module 903 for communicating with other network entities.
  • the communication module 903 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the processing module 901 is a processor
  • the storage module 902 is a memory
  • the communication module 903 is a communication interface
  • the apparatus for adjusting the Polar code in FIG. 9 in the embodiment of the present application may be the apparatus for adjusting the Polar code shown in FIG. 4a.
  • the apparatus for adjusting the Polar code involved in the present application may be referred to as a codec device, and the codec device may be referred to as an encoding device, or may be a decoding device, or a device integrated with an encoding device and a decoding device. .
  • the codec device to which the present application relates may further include a transceiver (not shown) for receiving or transmitting data.
  • the codec device referred to in this application may be any device having a wireless communication function, such as an access point, a site, a user equipment, a base station, and the like.
  • FIG. 11 shows a possible composition diagram of the Polar code encoding apparatus involved in the above embodiment.
  • the Polar code encoding apparatus 110 includes at least one input terminal 1101, a signal processor 1102, and at least one output terminal 1103.
  • the Polar code encoding device 110 may be an integrated chip that implements or executes various exemplary logical blocks, modules and circuits described in connection with the present disclosure.
  • At least one input terminal 1101 performs S601 in the Polar code encoding method shown in FIG. 6.
  • the signal processor 1102 performs S602, S603, and S604 in the Polar code encoding method shown in FIG.
  • At least one output terminal 1103 is configured to output the coded block obtained in S604 of the Polar code encoding method shown in FIG. 6.
  • the Polar code encoding apparatus 110 provided in the embodiment of the present application is configured to perform the Polar code encoding method illustrated in FIG. 6 above, and thus the same effect as the above-described Polar code encoding method can be achieved.
  • FIG. 12 shows a possible composition diagram of the Polar code decoding apparatus involved in the above embodiment.
  • the Polar code decoding apparatus 120 includes at least one input terminal 1201, a signal processor 1202, and at least one output terminal 1203.
  • the Polar code decoding device 120 can be an integrated chip that can implement or execute various exemplary logical blocks, modules and circuits described in connection with the present disclosure.
  • At least one input terminal 1201 performs S701 in the Polar code decoding method shown in FIG.
  • the signal processor 1202 performs S702, S703, and S704 in the Polar code decoding method shown in FIG.
  • the at least one output terminal 1203 is configured to output the information block obtained in S704 in the Polar code decoding method shown in FIG. It should be noted that all the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the Polar code decoding apparatus 120 provided in the embodiment of the present application is configured to perform the Polar code encoding method illustrated in FIG. 7 above, and thus can achieve the same effect as the above-described Polar code decoding method.
  • the embodiment of the present application provides a communication device 130.
  • the communication device 130 may include the apparatus 40 for adjusting a Polar code as shown in any of the above embodiments.
  • Communication device 130 may be used for Polar code encoding, or communication device 130 may be used for Polar code decoding.
  • the embodiment of the present application provides a communication system 14, as shown in FIG. 14, the communication system 140 may include a transmitting end communication device 1401 that performs Polar code encoding, and a receiving end communication device 1402 that performs Polar code decoding. .
  • the transmitting end communication device 1401 and the receiving end communication device 1402 are the communication device 130 shown in the above embodiment.
  • the embodiment of the present application provides another communication device 140.
  • the communication system 140 may include the Polar code encoding device 110 and the Polar code decoding device 120 as shown in any of the above embodiments.
  • the Polar communication device or the communication system provided by the embodiment of the present application is configured to perform the above method for adjusting the Polar code, so that the same effect as the above method of adjusting the Polar code can be achieved.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof, and when implemented using software, may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions in accordance with embodiments of the present application are generated in whole or in part when the computer loads and executes the computer program instructions.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer program instructions can be wired from a website site, computer, server or data center (for example, coaxial cable, optical fiber, Digital Subscriber Line (DSL), or wireless (eg, infrared, wireless, microwave, etc.) transmission to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a Digital Video Disc (DVD)), or a semiconductor medium (eg, an SSD).
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present application may be embodied in the form of a software product in the form of a software product in essence or in the form of a contribution to the prior art, and the software product is stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Optical Communication System (AREA)

Abstract

一种调整Polar码的方法、装置及编译码装置,实现更低计算复杂度的Polar码编译码方法。具体方法为:获取信息块的大小K;按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置;根据调整后的信息比特位置和固定比特位置,对信息块进行Polar码编码或译码。

Description

一种调整Polar码的方法、装置及编译码装置
本申请要求于2017年01月25日提交中国专利局、申请号为201710061303.8、申请名称为“一种调整Polar码的方法、装置及编译码装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种Polar码编译码方法、装置及编译码装置。
背景技术
无线通信的快速演进,预示着未来通信系统将呈现出更多新的特点,也对原有的通信技术提出了新的挑战。例如,未来的第五代移动通信技术(5th-Generation,5G)对当前的长期演进(Long Term Evolution,LTE)技术提出了新的挑战。而信道编码作为最基本的无线接入技术,是历代通信技术满足其需求的重要研究对象。
在香农理论提出后,业界一直致力于寻找能够达到香农极限同时具有相对较低复杂度的编译码方法。Turbo码和低密度奇偶校验(Low Density Parity Check,LDPC)码成为主流研究方向,已经在LTE和WiMAX中得到了很好的应用。但这两种码由于自身编译码的特点,不能满足5G通信在支持短包、更宽码率、更高可靠度以及更低复杂度等多方面的需求。而唯一一种能够被严格证明“达到”信道容量的信道编码方法--极化码(Polar Codes),由于其在不同码长下的性能远优于Turbo码和LDPC码,以及Polar码在编译码方面具有较低的计算复杂度,在5G中具有很大的发展和应用前景。
Polar码的编码过程中,待编码向量中包括携带信息的信息比特以及携带收发端预先约定的固定值的固定比特。Polar码的构造过程是通过不同的构造算法,对每个极化信道可靠度进行估计,并优先选择可靠度高的极化信道传送信息比特,以提高通信系统的可靠性。编码端和译码端分别按照信息比特的位置及固定比特的位置进行编码和译码。
虽然,Polar码在编译码方面已经具有较低的计算复杂度,但是追求更低计算复杂度的编译码方法是业界不断的追求。
发明内容
本申请实施例提供一种调整Polar码的方法、装置及编译码装置,实现更低计算复杂度的Polar码编译码方法。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种调整Polar码的方法,具体包括:获取信息块的大小K;按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将K个信息比特中前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特 的位置;根据调整后的信息比特位置和固定比特位置,进行Polar码编码或译码。其中,S为大于1小于K的整数,P为大于0小于或等于S的整数;K为大于0的整数,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂。
本申请实施例提供的调整Polar码的方法,通过在按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件时,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,降低了K个信息比特中的前S个信息比特的稀疏程度,使得Polar码编码或译码时的信息比特位置集中。由于Polar码译码时跳过前面的固定比特,从第一个信息比特开始译码,译码复杂度随着第一个信息比特位靠后程度的增加而降低,因此,采用本申请实施例的方案进行Polar码编码或译码,译码复杂度有效降低。
结合第一方面,在一种可能的实现方式中,预设条件可以包括按照信息比特对应的极化信道序号由小到大的顺序,第S个信息比特的位置与第1个信息比特的位置间隔占母码长度比例大于或等于第一阈值。此时,P可以等于S。在该实现方式中,仅需计算前S个信息比特中两端的信息比特的位置间隔占母码长度比例,实现简单提高了处理效率。
结合第一方面,在一种可能的实现方式中,预设条件可以包括按照信息比特对应的极化信道序号由小到大的顺序,第1个信息比特至第S个信息比特中相邻两个信息比特的位置间隔占母码长度比例中,存在至少一个信息比特与其前一个信息比特的位置间隔占母码长度的比例大于或等于第二阈值。信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与前一个信息比特的位置间隔占母码长度的比例大于或等于第二阈值的至少一个信息比特中任一个。可选的,信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与前一个信息比特的位置间隔占母码长度的比例大于或等于第二阈值的至少一个信息比特中对应的极化信道序号最大的信息比特。由两个相邻的信息比特的位置控制信息比特的稀疏程度,解决原始的信息比特位置中间部分稀疏导致译码复杂度高的缺陷,整体提高了Polar码译码复杂度。
结合第一方面,在一种可能的实现方式中,预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第2个信息比特至第S个信息比特中每个信息比特,与第1个信息比特的位置间隔占母码长度比例中,存在至少一个信息比特与第1个信息比特的位置间隔占母码长度的比例大于或等于第三阈值。信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与第1个信息比特的位置间隔占母码长度的比例大于或等于第三阈值的至少一个信息比特中任一个。可选的,信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与第1个信息比特的位置间隔占母码长度的比例大于或等于第三阈值的至少一个信息比特中对应的极化信道序号最大的信息比特。由每个信息比特与第1个信息比特的位置,控制信息比特的稀疏程度,解决原始的信息比特位置中第1个信息比特的位置靠前导致译码复杂度高的缺陷,整体提高了Polar码译码复杂度。
结合第一方面,在一种可能的实现方式中,预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第1个信息比特至第S个信息比特中任意两个信息比特 的位置间隔占母码长度比例中,存在至少一对信息比特的位置间隔占母码长度的比例大于或等于第四阈值。信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为位置间隔占母码长度的比例大于或等于第四阈值的至少一对信息比特中任一对信息比特中的对应的极化信道序号大者。可选的,信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为为位置间隔占母码长度的比例大于或等于第四阈值的至少一对信息比特中任一对信息比特中的对应的极化信道序号最大的信息比特。由任意两个信息比特的位置,控制信息比特的稀疏程度,解决原始的信息比特位置中第1个信息比特的位置靠前导致译码复杂度高的缺陷,整体提高了Polar码译码复杂度。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,预设条件还包括:K大于或等于预设门限。由于K过于小时,译码复杂度的降低空间不大,仅在K大于或等于预设门限时,才进行上述可能的实现方式降低译码复杂度,提高了方案的效率。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,将固定比特的位置中P-1个固定比特的位置调整为信息比特的位置,具体可以实现为:从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,按照极化信道可靠度由高到低的顺序,选择前P-1个固定比特的位置调整为信息比特的位置。这样一来,从固定比特中选择的作为信息比特位置的信道,可靠度高,实现了在降低译码复杂度的同时,使得编译码性能损失最小。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,将固定比特的位置中P-1个固定比特的位置调整为信息比特的位置,具体可以实现为:从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,按照极化信道序号由大到小的顺序,选择前P-1个固定比特的位置调整为信息比特的位置。由于极化信道的可靠度随其序号的增加而增加,因此,该可能的实现方式,不仅实现了在降低译码复杂度的同时,使得编译码性能损失最小,同时还实现简单。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,将固定比特的位置中P-1个固定比特的位置调整为信息比特的位置,具体可以实现为:从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,任意选择前P-1个固定比特的位置调整为信息比特的位置,实现简单。
进一步的,若Polar码编译码过程中包括速率匹配,固定比特的位置中P-1个固定比特的位置不包括速率匹配时打孔或缩短的比特对应的位置。
结合第一方面或上述任一种可能的实现方式,两个信息比特的位置间隔,包括:两个信息比特对应的极化信道的序号差值;或者,两个信息比特之间的固定比特的数量;或者,两个信息比特之间比特的数量。
结合第一方面或上述任一种可能的实现方式,S等于2。这样一来,仅将一位信息比特的位置后移,实现了在降低译码复杂度的同时,编译码性能无损。
第二方面,本申请实施例提供了一种调整Polar码的装置,包括:获取单元、确定单元、调整单元及编译码单元。其中,获取单元用于获取信息块的大小K,K为大 于0的整数;确定单元,用于按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂;调整单元,用于若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置;其中,S为大于1小于K的整数,P为大于0小于或等于S的整数;编译码单元,用于根据调整后的信息比特位置和固定比特位置,进行Polar码编码或译码。
第三方面,本申请实施例提供了一种调整Polar码的装置,该调整Polar码的装置可以实现上述方法示例中的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
结合第三方面,在一种可能的实现方式中,该调整Polar码的装置的结构中包括处理器和收发器,该处理器被配置为执行上述方法中相应的功能。该收发器位于该调整Polar码的装置内,用于与其他设备之间的通信。该调整Polar码的装置还可以包括存储器,该存储器用于与处理器耦合,其保存该调整Polar码的装置必要的程序指令和数据。
本申请提供的调整Polar码的装置,用于执行上述调整Polar码的方法,与上述调整Polar码的方法的具体实现相同,可以达到与上述调整Polar码的方法相同的效果,此处不再进行赘述。
第四方面,本申请实施例提供一种Polar码编码方法,包括:接收大小为K的信息块,K为大于0的整数;按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂;若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,其中,S为大于1小于K的整数,P为大于0小于或等于S的整数;根据调整后的信息比特位置和固定比特位置,对信息块进行Polar码编码,得到编码块。
本申请提供的Polar码编码方法,与上述调整Polar码的方法的具体实现相似,可以达到与上述调整Polar码的方法相同的效果,此处不再进行赘述。
第五方面,本申请实施例提供一种Polar码编译码方法,包括:接收待译码比特;按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,K为待译码比特中信息比特的数量,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂;若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,其中,S为大于1小于K的整数,P为大于0小于或等于所述S的整数;根据调整后的信息比特位置和固定比特位置,对待译码比特进行Polar码译码得到信息块。
本申请提供的Polar码译码方法,与上述调整Polar码的方法的具体实现相似,可以达到与上述调整Polar码的方法相同的效果,此处不再进行赘述。
第六方面,本申请实施例提供一种Polar码编码装置,包括:至少一个输入端,用于接收大小为K的信息块,K为大于0的整数;信号处理器,用于按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂;若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,其中,S为大于1小于K的整数,P为大于0小于或等于S的整数;根据调整后的信息比特位置和固定比特位置,对信息块进行Polar码编码,得到编码块;至少一个输出端,用于输出信号处理器编码得到的编码块。
本申请提供的Polar码编码装置,与上述调整Polar码的方法的具体实现相似,可以达到与上述调整Polar码的方法相同的效果,此处不再进行赘述。
第七方面,本申请实施例提供一种Polar码编译码装置,包括:至少一个输入端,用于接收待译码比特;信号处理器,用于按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,K为待译码比特中信息比特的数量,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂;若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,其中,S为大于1小于K的整数,P为大于0小于或等于所述S的整数;根据调整后的信息比特位置和固定比特位置,对待译码比特进行Polar码译码得到信息块;至少一个输出端,用于输出信号处理器译码得到的信息块。
本申请提供的Polar码译码装置,与上述调整Polar码的方法的具体实现相似,可以达到与上述调整Polar码的方法相同的效果,此处不再进行赘述。
第八方面,本申请实施例提供一种通信设备,包括:如上述第二方面或第三方面的调整Polar码的装置。
第九方面,本申请实施例提供一种通信系统,包括:用于Polar码编码的发送端通信设备,及用于Polar码译码的接收端通信设备。其中,发送端通信设备或者接收端通信设备为上述第六方面的通信设备。
第十方面,本申请实施例提供一种通信系统,包括:如上述第六方面的Polar码编码装置,如上述第七方面的Polar码译码装置。
第十方面,本申请实施例提供了一种计算机存储介质,用于储存为上述调整Polar码的装置或者Polar码编码装置或者Polar码译码装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方面的方法。
上述第八方面至第十一方面提供的方案,用于实现上述第一方面提供的调整Polar码的方法,其具体实现与第一方面相同,因此可以与第一方面达到相同的有益效果,此处不再进行赘述。
附图说明
图1为现有技术提供的一种极化信道的可靠度分布示意图;
图2为本申请实施例提供的一种通信系统架构的示意图;
图3为本申请实施例提供的一种Polar码的信道编译码单元的基本结构示意图;
图4为本申请实施例提供的一种调整Polar码的装置的组成示意图;
图4a为本申请实施例提供的另一种调整Polar码的装置的组成示意图;
图5为本申请实施例提供的一种调整Polar码的方法的流程图;
图6为本申请实施例提供的一种Polar码编码方法的流程图;
图7为本申请实施例提供的一种Polar码译码方法的流程图;
图8为本申请实施例提供的另一种调整Polar码的装置的组成示意图;
图9为本申请实施例提供的再一种调整Polar码的装置的组成示意图;
图10为本申请实施例提供的又一种调整Polar码的装置的组成示意图;
图11为本申请实施例提供的一种Polar码编码装置的组成示意图;
图12为本申请实施例提供的一种Polar码译码装置的组成示意图;
图13为本申请实施例提供的一种通信设备的组成示意图;
图14为本申请实施例提供的一种通信系统的组成示意图;
图15为本申请实施例提供的另一种通信系统的组成示意图。
具体实施方式
Polar码是一种线性块码,其生成矩阵为G N,其编码过程为
Figure PCTCN2018073267-appb-000001
其中,
Figure PCTCN2018073267-appb-000002
为Polar码的待编码向量,是一个二进制的行矢量,长度为母码码长N。G N是一个N×N的矩阵,且
Figure PCTCN2018073267-appb-000003
Figure PCTCN2018073267-appb-000004
B N是一个N×N的转置矩阵。例如B N可以为Bit Reversal矩阵;
Figure PCTCN2018073267-appb-000005
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积。以上涉及的加法、乘法操作均为二进制伽罗华域(Galois Field)上的加法、乘法操作。B N不会对译码性能造成影响,本发明对于编码矩阵为
Figure PCTCN2018073267-appb-000006
Figure PCTCN2018073267-appb-000007
都适用。
Polar码的编码过程中,
Figure PCTCN2018073267-appb-000008
中的一部分比特用来携带信息,称为信息比特,另外的一部分比特置为收发端预先约定的固定值,称之为固定比特。通常,利用Polar码的构造算法得到序号i的比特对应的极化信道错误概率
Figure PCTCN2018073267-appb-000009
或信道容量估计I (i)或极化权重W (i),选择
Figure PCTCN2018073267-appb-000010
值最小或I (i)值最大或W (i)值最大的K个序号,将这K个序号对应的比特,作为
Figure PCTCN2018073267-appb-000011
中信息比特的位置。
Figure PCTCN2018073267-appb-000012
中除信息比特之外,其余为固定比特,或者其余为固定比特和校验比特的组合。
图1给出了码长为512,信息比特长度为256时,不带B N操作的极化信道的相对可靠度分布,以及信息比特的位置选择。在图1中,x轴为极化信道的自然序号,y轴为极化信道的可靠度。从图1可知,极化信道的可靠度随着信道序列的增加有增大的趋势,大部分的信息比特的位置是序号比较大的极化信道,但也有少数序号比较小的极化信道由于可靠度较高作为信息比特的位置。因此,信息比特位置分散在各个极化信道中,且位置相对靠前的信息比特位置更加稀疏。
具体的,上述Polar码编译码时信息比特的位置,是指Polar码编译码时携带有用 信息的比特在码字中的位置。Polar码编译码时信息比特的位置由构造算法计算得出,可以在编译码时在线计算。信息比特的位置也可以离线计算好后存储在编译码装置中。具体的参考依据是极化信道的可靠度,根据N个极化信道的可靠度从高到底,选择前K个极化信道对应的比特位置作为信息比特的位置,则其余的位置为固定比特的位置。如果是CA-polar或者PC-polar,其余的位置为固定比特的位置和校验比特位置的组合。CA-Polar码是级联循环冗余校验(Cyclic Redundancy Check,CRC)的Polar码,简称CA-Polar码。PC-Polar码是级联奇偶校验(parity check,PC)的Polar码,简称PC-Polar码。
需要说明的是,对于Polar码编码/译码时确定信息比特位置后,其余的位置是固定比特的位置还是其余的位置为固定比特的位置和校验比特位置的组合,可以根据实际需求配置,本申请实施例对此不进行具体限定。当Polar码编码/译码时确定信息比特位置后,其余的位置为固定比特的位置和校验比特位置的组合时,对于确定固定比特的位置和校验比特位置的具体过程,本申请实施例不进行限定,在此不再赘述。
还需要说明的是,本申请实施例全文中在描述Polar码编码或译码时,为了描述简便,以待编码向量中仅包括信息比特及固定比特为例进行描述。并不是对待编码向量中包括的内容的具体限定。对于待编码向量中包括校验比特的场景,可参考本申请实施例的具体过程,得出本申请实施例所描述的Polar码编码/译码方法在待编码向量中包括校验比特的场景中具体方案,不再一一赘述。本申请实施例中所称的“Polar码编码/译码”或者“Polar码编译码”,均是指Polar码编码或者Polar码译码。
其中,极化信道的可靠度是评估极化性能的参数,可以包括错误概率、信道容量,还可以包括极化权重等。需要说明的是,凡是可以用于反应极化信道可靠度的参数,均可以作为极化信道的可靠度的评估参数。可以利用密度进化、高斯近似或者线性拟合的方法计算极化信道的可靠度。
当然,也可以预先配置各个极化信道的可靠度顺序,在进行本发明方案时,根据预先配置的极化信道的可靠度顺序,确定极化信道的可靠性高低顺序。例如,离线存储的一个用于体现极化信道可靠度顺序的排序序列,基于该排序序列可以直接确定极化信道可靠度的高低。
此处简要对极化信道的极化权重计算方法进行描述。示例性的,对于码长为N(N=2 n)的Polar码,计算第i(i∈{0,1,……,N-1})个极化信道的极化权重的公式如下所示:
Figure PCTCN2018073267-appb-000013
其中,
Figure PCTCN2018073267-appb-000014
B j∈{0,1},j∈{0,1,…n-1},B j为i的二进制表示。
示例性的,以N=8为例,则n=log 28=3,对于
Figure PCTCN2018073267-appb-000015
极化权重W 3的计算过程如下:
Figure PCTCN2018073267-appb-000016
目前,业界将Polar码译码的复杂度定义为:(L*N*log 2(N)+L*(N-1))+K*2*L*log 2(2*L)。其中L表示译码路径,N表示母码码长,K表示信息比特数。为了减少Polar的译码复杂度,在译码的时候一般都会跳过开头的几位固定比特,从第一个信息比特开始译码,通过该操作简化了译码,简化后的 译码计算复杂度为:ratio*(L*N*log 2(N)+L*(N-1))+K*2*L*log 2(2*L)。其中,ratio表示从第一位信息比特开始,待编码比特占待编码向量中所有待编码比特的比例。待编码比特表示待编码向量中的信息比特和固定比特,总数为母码长度。
基于此,本申请的基本原理是:通过将前面一位或多位信息比特的位置向后移动,使得从第一位信息比特开始,待编码比特占待编码向量中所有待编码比特的比例降低,从而降低了Polar码译码的复杂度。也就是说,译码的时候是跳过刚开始的固定比特,从第一个信息比特开始译码的,通过将前面一位或多位信息比特的位置向后移动,被跳过的固定比特越多,因而能够降低Polar码译码的复杂度。
Polar码是应用于各类通信系统中,用于提高数据传输可靠性,保证通信质量的信道编码技术。信道编码技术应用于通信系统中的信道编码单元中,信道编码单元在通信系统中的位置,如图2示意的通信系统的架构所示。如图2所示,通信时发送端设备201生成的信源,在发送端设备201内部,依次经过信源编码单元2011、信道编码单元2012、数字调制单元2013后,经信道202传输至接收端设备203。然后在接收端设备203内部,依次经过数字解调单元2031、信道译码单元2032、信源译码单元2033得到信宿。
需要说明的是,图2中通信系统的架构,并不构成通信系统的限定,可以包括比图示更多或更少的单元,或者组合某些单元,或者不同的单元布置,此处不再一一赘述。
如图3所示,示意了Polar码的信道编码单元或者译码单元的基本结构。下面结合图3描述Polar码的信道编码过程及译码过程。如图3所示,Polar码在编码或者译码前,先根据码长和信息比特长度通过构造算法计算或者读取离线构造好的构造序列获得信息比特的位置及固定比特的位置。然后在编码时,采用得到的信息比特位置及固定比特位置,根据待编码的信息块得到待编码向量
Figure PCTCN2018073267-appb-000017
待编码向量
Figure PCTCN2018073267-appb-000018
与Polar码编码矩阵编码得到编码码字
Figure PCTCN2018073267-appb-000019
或者在译码时,采用得到的信息比特位置及固定比特位置,根据接收到的Polar码的待译码数据(数据编码的得到
Figure PCTCN2018073267-appb-000020
)并根据Polar码编码矩阵译码得到信息块。
可选的,根据实际需要,有些场景在编码之后,还需要进行速率匹配实现目标码长。在待编码向量
Figure PCTCN2018073267-appb-000021
与Polar码编码矩阵编码得到Polar码的母码码字
Figure PCTCN2018073267-appb-000022
之后,母码码字
Figure PCTCN2018073267-appb-000023
经过速率匹配,得到速率匹配码字
Figure PCTCN2018073267-appb-000024
其中,在实际应用中,Polar码编译码时,信息比特的位置及固定比特的位置,可以有多种表示方式。此处列举如下几种,但并不是对Polar码编译码时信息比特的位置及固定比特的位置的具体限定。
示例性的,Polar码编译码时信息比特的位置及固定比特的位置可以通过下述表示方法中的任一种实现:
表示方法1、通过比特位置序列表示Polar码编译码时信息比特的位置及固定比特的位置,定义比特位置序列包括按极化信道可靠度由高到低排列的N个极化信道的序号。
在表示方法1中,比特位置序列中前K个极化信道序号指示的比特位置为信息比特位置,其余为固定比特位置。
示例性的,假设母码长度N为8,信息比特位数K为3,比特位置序列
Figure PCTCN2018073267-appb-000025
Figure PCTCN2018073267-appb-000026
根据该比特位置序列,得到信息比特位置为{8,7,4},固定比特位置为{6,5,3,2,1}。
表示方法2、通过比特位置序列表示Polar码编译码时信息比特的位置及固定比特的位置,定义比特位置序列包括按极化信道序号由大到小排列的N个极化信道的属性指示,属性指示用于指示极化信道对应的比特位置是信息比特的位置或者固定比特的位置。
示例性的,假设母码长度N为8,信息比特位数K为3,比特位置序列
Figure PCTCN2018073267-appb-000027
Figure PCTCN2018073267-appb-000028
1指示信息比特位置,0指示固定比特位置,根据该比特位置序列,得到信息比特位置为{8,7,4},固定比特位置为{6,5,3,2,1}。
需要说明的是,上述示例只是举例对比特位置序列进行描述,并不是对其内容及形式的具体限定。
表示方法3、通过构造序列表示Polar码编译码时信息比特的位置及固定比特的位置。
在表示方法3中,定义构造序列包括按极化信道可靠度由高到低排列K个信息比特对应的极化信道的序号,根据构造序列得到固定比特位置。
可选的,在表示方法3中,构造序列中包括的K个信息比特对应的极化信道的序号,可以,也可以按极化信道序号由小到大排列,本申请对此不进行具体限定。
示例性的,假设母码长度N为8,信息比特位数K为3,构造序列为{8,7,4},根据该构造序列,得到信息比特位置为{8,7,4},固定比特位置为{6,5,3,2,1}。
表示方法4、通过信息比特索引集合表示Polar码编译码时信息比特的位置及固定比特的位置。
在表示方法4中,定义信息比特索引集合包括按极化信道序号由小到大排列K个信息比特对应的极化信道的序号,根据定义信息比特索引集合得到固定比特位置。
示例性的,假设母码长度N为8,信息比特位数K为3,信息比特索引集合为{4,7,8},根据该构造序列,得到信息比特位置为{4,7,8},固定比特位置为{1,2,3,5,6}。
需要说明的是,上面示意了四种Polar码编译码时信息比特的位置及固定比特的位置的表示方法,但并不是对此的具体限定。在实际应用中,凡是可以用于表示Polar码编译码时信息比特的位置及固定比特的位置的方法,均可以应用于本申请的实现中。
本申请提供的调整Polar码的方法,应用于如图2所示的通信系统架构中。进一步的,本申请提供的调整Polar码的方法,具体应用于如图2所示的通信系统中的信道编码单元2012或信道译码单元2032。特别的,本申请提供的调整Polar码的方法,应用于图3的信道编码单元或者信道译码单元中,用于调整按照计划信道可靠度得到的信息比特位置及固定比特位置,将调整后的信息比特位置及固定比特位置输入编码模块或者译码模块进行编码或译码。本申请实施例的调整信息比特位置及固定比特位置的方案可以适用于编码过程中,也可以适用于译码过程中,因此有时候统称为编译码方法、编译码装置。
下面将结合附图对本申请实施例的实施方式进行详细描述。
一方面,本申请实施例提供一种调整Polar码的装置40。图4示出的是与本申请 各实施例相关的一种调整Polar码的装置40。该调整Polar码的装置40,可以部署在图2所示的通信系统架构中的信道编码单元2012或信道译码单元2032中,或者也可以分别替换信道编码单元2012或信道译码单元2032。
如图4所示,调整Polar码的装置40可以包括:处理器401、存储器402,可选的,如图4a所示,调整Polar码的装置40还可以包括通信接口403及通信总线404。可以理解,当处理器401和存储器402是集成在一起的时候,并不一定通过通信总线连接。
下面结合图4对调整Polar码的装置40的各个构成部件进行具体的介绍:
存储器402,可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);或者上述种类的存储器的组合,用于存储可实现本申请方法的相关应用程序、以及配置文件。
处理器401是调整Polar码的装置40的控制中心,可以是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(英文全称:digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。处理器401可以通过运行或执行存储在存储器402内的软件程序和/或模块,以及调用存储在存储器402内的数据,执行调整Polar码的装置40的各种功能。
进一步的,通信接口403,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口403可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线404,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图4a中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图4或图4a中示出的设备结构并不构成对调整Polar码的装置40的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
具体的,处理器401通过运行或执行存储在存储器402内的软件程序和/或模块,以及调用存储在存储器402内的数据,具体用于:
获取信息块的大小K,K为大于0的整数;按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,N为Polar码的母码长度,N为大于2的且为2的整数次幂;若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置;其中,S为大于1小于K的整数,P为大于0小于或等于S的整数;根据 调整后的信息比特位置和固定比特位置,进行Polar码编码或译码。
另一方面,本申请实施例提供一种调整Polar码的方法。如图5所示,本申请实施例提供的Polar码编译码方法可以包括:
S501、调整Polar码的装置获取信息块的大小K。
其中,K为大于0的整数。在Polar码编译码中,由通信场景或通信需求的码长和码率决定了唯一的K的取值。信息块(information block)是指编码端等待信道编码的信息,或者,译码端等待通过信道译码得到的信息。
具体的,可以由图4或图4a所示的Polar码编译码装置40中的通信端口403执行S501,获取信息块的大小K。
S502、调整Polar码的装置按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置。
其中,N为Polar码的母码长度,根据Polar码的特性,N大于或等于2且为2的正整数次幂。在Polar码编译码中,由通信场景或通信需求的码长和码率决定了唯一的N的取值。
具体的,可以由图4或图4a所示的Polar码编译码装置40中的处理器401执行S502。
具体的,调整Polar码的装置按照N个极化信道的可靠度排序,确定N个极化信道中可靠度高的前K个极化信道对应的比特位置作为K个信息比特的位置,根据实际通信需求及编码方案,确定其余的极化信道作为固定比特的位置,或者,确定其余的极化信道作为固定比特的位置与校验比特的位置的组合。
进一步的,调整Polar码的装置按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置,可以按照本文前述内容中,Polar码编译码中信息比特的位置与固定比特的位置的表示方法表示为比特位置序列或者构造序列或者信息比特索引集合,此处不再进行赘述。
具体的,如前所述,极化信道的可靠度可以通过错误概率、信道容量、极化权重等维度衡量,此处不再进行赘述。或者,如前所述,极化信道的可靠度可以预先配置极化信道可靠度排序序列,此处不再进行赘述。当然,在实际应用中,可以根据实际需求确定体现极化信道可靠度的方法及参数,本申请实施例对此不进行具体限定。
示例性的,假设母码长度N为64,信息比特长度K为15,64个极化信道按其可靠度由高到底的序号排序为:64、63、62、60、56、48、61、32、59、58、55、54、47、52、46、31、44、30、57、40、28、53、24、51、45、50、16、43、29、42、39、27、38、26、23、36、22、49、15、20、14、41、12、37、25、8、35、21、34、19、13、18、11、10、7、6、33、4、17、9、5、3、2、1。
基于此,调整Polar码的装置在S502中按照64个极化信道的可靠度由高到低的顺序,确定前15个极化信道对应的比特位置作为信息比特,作为信息比特的位置对应的极化信道的序号包括64、63、62、60、56、48、61、32、59、58、55、54、47、52、46,作为固定比特的位置对应的极化信道的序号包括31、44、30、57、40、28、53、24、51、45、50、16、43、29、42、39、27、38、26、23、36、22、49、15、20、14、41、12、37、25、8、35、21、34、19、13、18、11、10、7、6、33、4、17、9、5、3、 2、1。
根据前述的四种Polar码编译码中信息比特的位置与固定比特的位置的表示方法,将调整Polar码的装置在S502中按照64个极化信道的可靠度由高到低的顺序确定的15个信息比特的位置和固定比特的位置通过下述四种表示方法表示:
表示方法1、表示为比特位置序列
Figure PCTCN2018073267-appb-000029
Figure PCTCN2018073267-appb-000030
表示方法2、表示为比特位置序列
Figure PCTCN2018073267-appb-000031
Figure PCTCN2018073267-appb-000032
表示方法3、表示为构造序列{64,63,62,60,56,48,61,32,59,58,55,54,47,52,46}。
表示方法4、表示为信息比特索引集合{32,46,47,48,52,54,55,56,58,59,60,61,62,63,64}。
示例性的,通过离线存储一个最大母码下的极化信道可靠度高低排序序列,例如最大母码长度为64,对应的可靠度从低到高的排序为:0、1、2、4、8、16、32、3、5、9、6、17、10、18、12、33、20、34、24、36、7、11、40、19、13、48、14、21、35、26、37、25、22、38、41、28、42、49、44、50、15、52、23、56、27、39、29、43、30、45、51、46、53、54、57、58、60、31、47、55、59、61、62、63。若母码长度为32,则从上述排序序列中取序号小于32的排序序列,得到母码长度位32时极化信道可靠度从低到高排序序列为:0、1、2、4、8、16、3、5、9、6、17、10、18、12、20、24、7、11、19、13、14、21、26、25、22、28、15、23、27、29、30、31。
基于此,调整Polar码的装置在S502中按照32个极化信道的可靠度由高到低的顺序,确定前15个极化信道对应的比特位置作为信息比特,作为信息比特的位置对应的极化信道的序号包括31、30、29、27、23、15、28、22、25、26、21、14、13、19、11,作为固定比特的位置对应的极化信道的序号包括7、24、20、12、18、10、17、6、9、5、3、16、8、4、2、1、0。
根据前述的四种Polar码编译码中信息比特的位置与固定比特的位置的表示方法,将调整Polar码的装置在S502中按照32个极化信道的可靠度由高到低的顺序确定的15个信息比特的位置和固定比特的位置通过下述四种表示方法表示:
表示方法1、表示为比特位置序列
Figure PCTCN2018073267-appb-000033
Figure PCTCN2018073267-appb-000034
表示方法2、表示为比特位置序列
Figure PCTCN2018073267-appb-000035
Figure PCTCN2018073267-appb-000036
表示方法3、表示为构造序列{31,30,29,27,23,15,28,22,25,26,21,14,13,19,11}。
表示方法4、表示为信息比特索引集合{11,13,14,15,19,21,22,23,25,26,27,28,29,30,31}。
S503、若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,调整Polar码的装置将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置。
其中,S为大于1小于K的整数,P为大于0小于或等于S的整数。具体的,可以根据实际需求确定S及P的具体取值,本申请实施例对于S及P的取值不进行具体限定。S和P的取值越小,调整的信息比特位置数量越少,对编码性能的损失越小。S和P的取值越大,调整的信息比特位置数量越多,Polar译码复杂度降低越多。
可选的,S的取值可以综合母码码长N和码率进行选择。示例性的,S的取值可以定义为log 2(N)-4。按照此规则,母码长度N为64时,S可以为2,母码长度N为128时,S可以为3。
需要说明的是,上述示例只是通过举例的形式,示意一种综合母码码长N和码率选择S取值的方案,并不是对S取值的确定方法的限定。
具体的,可以由图4或图4a所示的调整Polar码的装置中的处理器401执行S503。
具体的,当Polar码编译码中信息比特的位置与固定比特的位置的表示方法不同时,S503中调整Polar码的装置按照信息比特对应的极化信道序号由小到大的顺序,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置的具体实现手段也不同,具体可以包括如下几种实现手段:
第一种实现手段、若通过比特位置序列表示Polar码编译码时信息比特的位置及固定比特的位置,比特位置序列包括按极化信道可靠度由高到低排列的N个极化信道的序号,S503中调整Polar码的装置按照信息比特对应的极化信道序号由小到大的顺序,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,具体包括:
将比特位置序列内前K个信息比特对应的极化信道的序号中,序号由小到大的前S-1个极化信道序号后移至比特位置序列中后N-K位,将比特位置序列中后N-K个极化信道的序号中P-1个极化信道序号移至比特位置序列内前K位内,移动后的比特位置序列中的极化信道序号按极化信道可靠度由高到低排列。
示例性的,假设S=P=2,以S502中的示意为基础,对表示方法1中的比特位置序列
Figure PCTCN2018073267-appb-000037
中的序号由小到大的前1个极化信道序号(32)后移至比特位置序列中后49位,将比特位置序列
Figure PCTCN2018073267-appb-000038
中后49个极化信道的序号中1个极化信道序号(例如57)移至比特位置序列内前15位内,移动后的比特位置序列中的极化信道序号按极化信道可靠度由高到低排列如
Figure PCTCN2018073267-appb-000039
Figure PCTCN2018073267-appb-000040
第二种实现手段、若通过比特位置序列表示Polar码编译码时信息比特的位置及 固定比特的位置,定义比特位置序列包括按极化信道序号由大到小排列的N个极化信道的属性指示,S503中调整Polar码的装置按照信息比特对应的极化信道序号由小到大的顺序,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,具体包括:
将比特位置序列内前S-1个信息比特对应的极化信道的属性指示修改为指示固定比特的位置,将比特位置序列内S-1个固定比特对应的极化信道的属性指示修改为指示信息比特的位置。
示例性的,假设S=P=2,以S502中的示意为基础,对表示方法2中的比特位置序列
Figure PCTCN2018073267-appb-000041
中前1个信息比特对应的极化信道的属性指示修改为指示固定比特的位置,将比特位置序列内1个固定比特对应的极化信道(例如57)的属性指示修改为指示信息比特的位置,调整后的比特位置序列
Figure PCTCN2018073267-appb-000042
Figure PCTCN2018073267-appb-000043
第三种实现手段、若通过构造序列表示Polar码编译码时信息比特的位置及固定比特的位置,S503中调整Polar码的装置按照信息比特对应的极化信道序号由小到大的顺序,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,具体包括:
将构造序列中按极化信道序号从小到大的前S-1个极化信道序号删除,将未包含的构造序列中的S-1个极化信道序号加入构造序列中极化信道可靠性排序的对应位置。
示例性的,假设S=P=2,以S502中的示意为基础,将表示方法3中的构造序列{64,63,62,60,56,48,61,32,59,58,55,54,47,52,46}中按极化信道序号从小到大的前1个极化信道序号删除,将未包含的构造序列中的1个极化信道序号(例如57)加入构造序列中极化信道可靠性排序的对应位置,调整后的构造序列为{64,63,62,60,56,48,61,59,58,55,54,47,52,46,57}。
第四种实现手段、若通过信息比特索引集合表示Polar码编译码时信息比特的位置及固定比特的位置,S503中调整Polar码的装置按照信息比特对应的极化信道序号由小到大的顺序,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,具体包括:
将信息比特索引集合中前S-1个极化信道序号删除,将未包含的信息比特索引集合中的S-1个极化信道序号加入信息比特索引集合。
示例性的,假设S=P=2,以S502中的示意为基础,将表示方法4中的信息比特索引集合{32,46,47,48,52,54,55,56,58,59,60,61,62,63,64}中前1个极化信道序号删除,将未包含的构造序列中的1个极化信道序号(例如57)加入信息比特索引集合,调整后的信息比特索引集合为{46,47,48,52,54,55,56,57,58,59,60,61,62,63,64}。
需要说明的是,上述四种实现手段,只是通过举例的形式,对应于上述的四种Polar码编译码时信息比特的位置及固定比特的位置的表示方法,描述了S503的具体实现手段,并不是对S503的执行手段的具体限定。当Polar码编译码时信息比特的位置及固 定比特的位置变化时,S503的具体实现手段也要随之变化,此处不再一一赘述。
需要说明的是,本申请实施例中示例的极化信道的可靠度的排序只是举例描述,对于极化信道的可靠度排序的获取方式不进行具体限定。
具体的,可以根据实际需求确定预设条件的内容,预设条件的内容反映了按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置较稀疏。其中,稀疏定义为位置间隔大,或者位置间隔占母码长度的比例大。需要说明的是本申请实施例对于预设条件的内容不进行具体限定。可选的,本申请实施例提供下面几种预设条件的具体内容:
内容1、预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第S个信息比特的位置与第1个信息比特的位置间隔占母码长度比例大于或等于第一阈值。
其中,第一阈值的取值,可以根据实际需求确定,本申请实施例对此不进行具体限定。当第一阈值的取值越小,在实际的Polar码编译码过程中调整的次数越频繁,但译码复杂度降低越小。当第一阈值的取值越小,译码复杂度降低越大,但在实际的Polar码编译码过程中调整的次数不多。可选的,第一阈值可以为0.1。
可选的,在内容1中,P可以等于S。或者,P可以为小于S任一正整数。
可选的,两个信息比特位置的位置间隔可以为两个信息比特对应的极化信道序号的差值,或者,也可以为两个信息比特之间的固定比特数量,或者,也可以为两个信息比特之间的比特数量。当然,两个信息比特位置的位置间隔也可以根据实际需求定义两个信息比特位置的位置间隔的具体内容,本申请实施例对此不进行具体限定。
示例性的,假设I 1、I 2分别表示第一个信息比特与第二个信息比特对应的极化信道序号,计算第一个信息比特与第二个信息比特的位置间隔占母码长度的比例为
Figure PCTCN2018073267-appb-000044
内容2、预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第1个信息比特至第S个信息比特中相邻两个信息比特的位置间隔占母码长度比例中,存在至少一个信息比特与其前一个信息比特的位置间隔占母码长度的比例大于或等于第二阈值。
其中,第二阈值的取值,可以根据实际需求确定,本申请实施例对此不进行具体限定。当第二阈值的取值越小,在实际的Polar码编译码过程中调整的次数越频繁,但译码复杂度降低越小。当第二阈值的取值越小,译码复杂度降低越大,但在实际的Polar码编译码过程中调整的次数不多。可选的,第二阈值可以为0.1。
可选的,在内容2中,信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与前一个信息比特的位置间隔占母码长度的比例大于或等于第二阈值的至少一个信息比特中任一个。
可选的,在内容2中,信息比特对应的极化信道序号由小到大的顺序中,所述第P个信息比特为与前一个信息比特的位置间隔占母码长度的比例大于或等于第二阈值的至少一个信息比特中对应的极化信道序号最大的信息比特。
内容3、预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第2个信息比特至第S个信息比特中每个信息比特,与第1个信息比特的位置间隔占母码长度比例中,存在至少一个信息比特与第1个信息比特的位置间隔占母码长度的比例 大于或等于第三阈值。
其中,第三阈值的取值,可以根据实际需求确定,本申请实施例对此不进行具体限定。当第三阈值的取值越小,在实际的Polar码编译码过程中调整的次数越频繁,但译码复杂度降低越小。当第三阈值的取值越小,译码复杂度降低越大,但在实际的Polar码编译码过程中调整的次数不多。可选的,第三阈值可以为0.1。
可选的,在内容3中,信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与第1个信息比特的位置间隔占母码长度的比例大于或等于第三阈值的至少一个信息比特中任一个。
可选的,在内容3中,信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与第1个信息比特的位置间隔占母码长度的比例大于或等于第三阈值的至少一个信息比特中对应的极化信道序号最大的信息比特。
内容4、预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第1个信息比特至第S个信息比特中任意两个信息比特的位置间隔占母码长度比例中,存在至少一对信息比特的位置间隔占母码长度的比例大于或等于第四阈值。
其中,第四阈值的取值,可以根据实际需求确定,本申请实施例对此不进行具体限定。当第四阈值的取值越小,在实际的Polar码编译码过程中调整的次数越频繁,但译码复杂度降低越小。当第四阈值的取值越小,译码复杂度降低越大,但在实际的Polar码编译码过程中调整的次数不多。可选的,第四阈值可以为0.1。
可选的,在内容4中,信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为位置间隔占母码长度的比例大于或等于第四阈值的至少一对信息比特中任一对信息比特的序号大的信息比特。
可选的,在内容4中,信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为的位置间隔占母码长度的比例大于或等于第四阈值的至少一对信息比特中对应的极化信道序号最大的信息比特。
需要说明的是,上述四种内容中涉及的第一阈值、第二阈值、第三阈值及第四阈值,可以相同,也可以不同,本申请实施例对此不进行具体限定。上述四种预设条件的内容,只是举例描述,并不是对预设条件内容的具体限定。
进一步可选的,当Polar码的母码长度过小时,S503中即使调整了信息比特位置和固定比特位置,对于译码复杂度的降低也不明显,为了提高编译码效率,在上述四种内容的基础上,预设条件还可以包括:K大于或等于预设门限。其中,对于预设门限的取值,可以根据实际需求设定,本申请实施例对此不进行具体限定。
可选的,在503中将固定比特的位置中P-1个固定比特的位置调整为信息比特的位置时,选择P-1个固定比特的位置的方案具体可以包括如下几种方案:
方案1、从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,按照极化信道可靠度由高到低的顺序,选择前P-1个固定比特的位置调整为信息比特的位置。
方案2、从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,按照极化信道序号由大到小的顺序,选择前P-1个固定比特的位置调整为信息比特的位置。
方案3、从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,任意选择前P-1个固定比特的位置调整为信息比特的位置。
需要说明的是,若Polar码编译码装置在进行Polar码编译码时进行了速率匹配,在速率匹配时,会对编码后的比特进行打孔,S503中将固定比特的位置中P-1个固定比特的位置调整为信息比特的位置时,选择的P-1个固定比特的位置不包括打孔或缩短比特对应的位置。
S504、调整Polar码的装置根据调整后的信息比特位置和固定比特位置,进行Polar码编码或译码。
其中,可以由图4所示的调整Polar码的装置40中的处理器401执行S504。
具体的,在S504中,调整Polar码的装置根据调整后的信息比特位置和固定比特位置及Polar码编码矩阵,对信息块进行Polar码编码,得到编码码字。或者,在S504中,调整Polar码的装置根据调整后的信息比特位置和固定比特位置及Polar码编码矩阵,对接收到的待译码数据进行Polar码译码,得到对端传输的信息块。对于Polar码编译码过程,此处不再进行赘述。
进一步可选的,在S502之后,若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置不符合预设条件,则S502中得到的Polar码编译码的信息比特位置和固定比特位置无需调整,直接根据S502中得到的信息比特位置和固定比特位置,进行Polar码编译码。
本申请实施例提供的调整Polar码的方法,通过在按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件时,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,降低了K个信息比特中的前S个信息比特的稀疏程度,使得Polar码编码或译码时的信息比特位置集中。由于Polar码译码时跳过前面的固定比特,从第一个信息比特开始译码,译码复杂度随着第一个信息比特位靠后程度的增加而降低,因此,采用本申请实施例的方案进行Polar码编码或译码,译码复杂度有效降低。
另一方面,本申请实施例还提供一种Polar码编码方法,应用于Polar码编码装置。该Polar码编码方法的具体过程,与图5示意的调整Polar码的方法中的编码过程相同。如图6所示,该方法可以包括:
S601、Polar码编码装置接收大小为K的信息块。
其中,K为大于0的整数。
S602、Polar码编码装置按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置。
其中,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂。
S603、若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,Polar码编码装置将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置。
其中,S为大于1小于K的整数,P为大于0小于或等于S的整数。
S604、Polar码编码装置根据调整后的信息比特位置和固定比特位置,对信息块进行Polar码编码,得到编码块。
需要说明的是,图6示意的Polar码编码方法的具体过程,与图5示意的调整Polar码的方法中的编码过程相同,具体实现可以参考S501至S504的过程,此处不再进行一一赘述。图6示意的Polar码编码方法也可以达到图5示意的调整Polar码的方法相同的效果,此处不再赘述。
另一方面,本申请实施例还提供一种Polar码译码方法,应用于Polar码译码装置。该Polar码译码方法的具体过程,与图5示意的调整Polar码的方法中的译码过程相同。如图7所示,该方法可以包括:
S701、Polar码译码码装置接收待译码比特。
S702、Polar码译码装置按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置。
其中,K为大于0的整数,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂。
S703、若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,Polar码译码装置将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置。
其中,S为大于1小于K的整数,P为大于0小于或等于S的整数。
S704、Polar码译码装置根据调整后的信息比特位置和固定比特位置,对信息块进行Polar码编码,得到编码块。
需要说明的是,图7示意的Polar码译码方法的具体过程,与图5示意的调整Polar码的方法中的译码过程相同,具体实现可以参考S501至S504的过程,此处不再进行一一赘述。图7示意的Polar码译码方法也可以达到图5示意的调整Polar码的方法相同的效果,此处不再赘述。
上述主要从调整Polar码的装置、Polar码编码装置、Polar码译码装置的工作流程的角度对本申请实施例提供的方案进行了介绍。可以理解的是,调整Polar码的装置、Polar码编码装置、Polar码译码装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对调整Polar码的装置、Polar码编码装置、Polar码译码装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的 划分方式。
在采用对应各个功能划分各个功能模块的情况下,图8示出了上述和实施例中涉及的调整Polar码的装置的一种可能的组成示意图,如图8所示,该调整Polar码的装置40可以包括:获取单元801、确定单元802、调整单元803、编译码单元804。
其中,获取单元801,用于执行图5所示的调整Polar码的方法中的调整Polar码的装置执行的S501。确定单元802,用于执行图5所示的调整Polar码的法中调整Polar码的装置执行的S502。调整单元803,用于执行图5所示的调整Polar码的方法中调整Polar码的装置执行的S503。编译码单元804,用于执行图5所示的调整Polar码的方法中调整Polar码的装置执行的S504。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的调整Polar码的装置40,用于执行上述图5示意的调整Polar码的方法,因此可以达到与上述调整Polar码的方法相同的效果。
在采用集成的单元的情况下,图9示出了上述实施例中所涉及的调整Polar码的装置的另一种可能的组成示意图。如图9所示,该调整Polar码的装置40包括:处理模块901。
处理模块901用于对调整Polar码的装置40的动作进行控制管理,例如,处理模块901用于执行图5中调整Polar码的装置执行的S501至S504,和/或用于本文所描述的技术的其它过程。调整Polar码的装置40还可以包括存储模块902,用于存储调整Polar码的装置40的程序代码和数据。
其中,处理模块901可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理模块901也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。存储模块902可以是存储器。
当处理模块901为处理器,存储模块902为存储器时,本申请实施例中图9所涉及的调整Polar码的装置可以为图4所示的调整Polar码的装置。本申请实施例所涉及的处理器和存储器,可以是物理上独立的不同模块,也可以是集成在一起的。
进一步的,如图10所示,调整Polar码的装置40还可以包括通信模块903,用于与其他网络实体的通信。通信模块903可以是收发器、收发电路或通信接口等。当处理模块901为处理器,存储模块902为存储器,通信模块903为通信接口时,本申请实施例中图9所涉及的调整Polar码的装置可以为图4a所示的调整Polar码的装置。
本申请所涉及的调整Polar码的装置,可以称之为编译码装置,该编译码装置可以是指编码装置,也可以是指译码装置,或者是编码装置和译码装置集成在一起的装置。本申请涉及的编译码装置还可以进一步包括收发器(图中未示出),用于接收或发送数据。本申请涉及的编译码装置可以是任何具有无线通信功能的设备,例如接入点、站点、用户设备、基站等。
进一步的,在采用集成的单元的情况下,图11示出了上述实施例中所涉及的Polar码编码装置的一种可能的组成示意图。如图11所示,该Polar码编码装置110包括:至少一个输入端1101,信号处理器1102,至少一个输出端1103。
其中,Polar码编码装置110可以为一个集成芯片,其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。至少一个输入端1101执行图6所示的Polar码编码方法中的S601。信号处理器1102执行图6所示的Polar码编码方法中的S602、S603和S604。至少一个输出端1103用于输出图6所示的Polar码编码方法中S604得到的编码块。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的Polar码编码装置110,用于执行上述图6示意的Polar码编码方法,因此可以达到与上述Polar码编码方法相同的效果。
进一步的,在采用集成的单元的情况下,图12示出了上述实施例中所涉及的Polar码译码装置的一种可能的组成示意图。如图12所示,该Polar码译码装置120包括:至少一个输入端1201,信号处理器1202,至少一个输出端1203。
其中,Polar码译码装置120可以为一个集成芯片,其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。至少一个输入端1201执行图7所示的Polar码译码方法中的S701。信号处理器1202执行图7所示的Polar码译码方法中的S702、S703和S704。至少一个输出端1203用于输出图7所示的Polar码译码方法中S704得到的信息块。需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的Polar码译码装置120,用于执行上述图7示意的Polar码编码方法,因此可以达到与上述Polar码译码方法相同的效果。
再一方面,本申请实施例提供一种通信设备130,如图13所示,通信设备130可以包括如上述任一实施例所示的调整Polar码的装置40。通信设备130可以用于Polar码编码,或者,通信设备130可以用于Polar码译码。
又一方面,本申请实施例提供一种通信系统14,如图14所示,该通信系统140可以包括进行Polar码编码的发送端通信设备1401,及进行Polar码译码的接收端通信设备1402。其中,发送端通信设备1401及接收端通信设备1402为上述实施例所示的通信设备130。
再一方面,本申请实施例提供另一种通信设备140,如图15所示,通信系统140可以包括如上述任一实施例所示的Polar码编码装置110及Polar码译码装置120。
本申请实施例提供的Polar通信设备或者通信系统,用于执行上述调整Polar码的方法,因此可以达到与上述调整Polar码的方法相同的效果。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算 机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字化视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如SSD)。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种调整Polar码的方法,其特征在于,包括:
    获取信息块的大小K,所述K为大于0的整数;
    按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,所述N为Polar码的母码长度,所述N大于或等于2的且为2的正整数次幂;
    若按照信息比特对应的极化信道序号由小到大的顺序,所述K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置;其中,所述S为大于1小于K的整数,所述P为大于0小于或等于S的整数;
    根据调整后的所述信息比特位置和固定比特位置,进行Polar码编码或译码。
  2. 根据权利要求1所述的方法,其特征在于,所述预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第S个信息比特的位置与第1个信息比特的位置间隔占母码长度比例大于或等于第一阈值;所述P等于所述S。
  3. 根据权利要求1所述的方法,其特征在于,
    所述预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第1个信息比特至第S个信息比特中相邻两个信息比特的位置间隔占母码长度比例中,存在至少一个信息比特与其前一个信息比特的位置间隔占母码长度的比例大于或等于第二阈值;
    所述信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与前一个信息比特的位置间隔占母码长度的比例大于或等于所述第二阈值的至少一个信息比特中任一个。
  4. 根据权利要求3所述的方法,其特征在于,所述信息比特对应的极化信道序号由小到大的顺序中,所述第P个信息比特为与前一个信息比特的位置间隔占母码长度的比例大于或等于所述第二阈值的至少一个信息比特中对应的极化信道序号最大的信息比特。
  5. 根据权利要求1所述的方法,其特征在于,
    所述预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第2个信息比特至第S个信息比特中每个信息比特,与第1个信息比特的位置间隔占母码长度比例中,存在至少一个信息比特与所述第1个信息比特的位置间隔占母码长度的比例大于或等于第三阈值;
    所述信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与所述第1个信息比特的位置间隔占母码长度的比例大于或等于所述第三阈值的至少一个信息比特中任一个。
  6. 根据权利要求4所述的方法,其特征在于,所述信息比特对应的极化信道序号由小到大的顺序中,所述第P个信息比特为与所述第1个信息比特的位置间隔占母码长度的比例大于或等于所述第三阈值的至少一个信息比特中对应的极化信道序号最大的信息比特。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述预设条件还包括:所述K大于或等于预设门限。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述将固定比特的位置中P-1个固定比特的位置调整为信息比特的位置,包括:
    从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,按照极化信道可靠度由高到低的顺序,选择前P-1个固定比特的位置调整为信息比特的位置;
    或者,
    从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,按照极化信道序号由大到小的顺序,选择前P-1个固定比特的位置调整为信息比特的位置;
    或者,
    从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,任意选择前P-1个固定比特的位置调整为信息比特的位置。
  9. 根据权利要求8所述的方法,其特征在于,所述固定比特的位置中P-1个固定比特的位置不包括速率匹配时打孔或缩短的比特对应的位置。
  10. 根据权利要求2-9任一项所述的方法,其特征在于,两个信息比特的位置间隔,包括:
    两个信息比特对应的极化信道的序号差值;
    或者,
    两个信息比特之间的固定比特的数量;
    或者,
    两个信息比特之间比特的数量。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,S等于2。
  12. 一种调整Polar码的装置,其特征在于,包括:
    获取单元,用于获取信息块的大小K,所述K为大于0的整数;
    确定单元,用于按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,所述N为Polar码的母码长度,所述N大于或等于2且为2的正整数次幂;
    调整单元,用于若按照信息比特对应的极化信道序号由小到大的顺序,所述K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置;其中,S为大于1小于K的整数,P为大于0小于或等于S的整数;
    编译码单元,用于根据调整后的信息比特位置和固定比特位置,进行Polar码编码或译码。
  13. 根据权利要求12所述的装置,其特征在于,所述预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第S个信息比特的位置与第1个信息比特的位置间隔占母码长度比例大于或等于第一阈值;所述P等于所述S。
  14. 根据权利要求12所述的装置,其特征在于,
    所述预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第1个信 息比特至第S个信息比特中相邻两个信息比特的位置间隔占母码长度比例中,存在至少一个信息比特与其前一个信息比特的位置间隔占母码长度的比例大于或等于第二阈值;
    所述信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与前一个信息比特的位置间隔占母码长度的比例大于或等于所述第二阈值的至少一个信息比特中任一个。
  15. 根据权利要求14所述的装置,其特征在于,所述信息比特对应的极化信道序号由小到大的顺序中,所述第P个信息比特为与前一个信息比特的位置间隔占母码长度的比例大于或等于所述第二阈值的至少一个信息比特中对应的极化信道序号最大的信息比特。
  16. 根据权利要求12所述的装置,其特征在于,
    所述预设条件包括按照信息比特对应的极化信道序号由小到大的顺序,第2个信息比特至第S个信息比特中每个信息比特,与第1个信息比特的位置间隔占母码长度比例中,存在至少一个信息比特与所述第1个信息比特的位置间隔占母码长度的比例大于或等于第三阈值;
    所述信息比特对应的极化信道序号由小到大的顺序中,第P个信息比特为与所述第1个信息比特的位置间隔占母码长度的比例大于或等于所述第三阈值的至少一个信息比特中任一个。
  17. 根据权利要求15所述的装置,其特征在于,所述信息比特对应的极化信道序号由小到大的顺序中,所述第P个信息比特为与所述第1个信息比特的位置间隔占母码长度的比例大于或等于所述第二阈值的至少一个信息比特中对应的极化信道序号最大的信息比特。
  18. 根据权利要求13-17任一项所述的装置,其特征在于,所述预设条件还包括:所述K大于或等于预设门限。
  19. 根据权利要求12-18任一项所述的装置,其特征在于,所述调整单元具体用于:
    从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,按照极化信道可靠度由高到低的顺序,选择前P-1个固定比特的位置调整为信息比特的位置;
    或者,
    从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,按照极化信道序号由大到小的顺序,选择前P-1个固定比特的位置调整为信息比特的位置;
    或者,
    从序号大于信息比特对应的极化信道序号由小到大的顺序中第P个信息比特对应的极化信道序号的固定比特的位置中,任意选择前P-1个固定比特的位置调整为信息比特的位置。
  20. 根据权利要求19所述的装置,其特征在于,所述固定比特的位置中P-1个固定比特的位置不包括打孔比特对应的位置。
  21. 根据权利要求13-20任一项所述的装置,其特征在于,两个信息比特的位置间隔,包括:
    两个信息比特对应的极化信道的序号差值;
    或者,
    两个信息比特之间的固定比特的数量;
    或者,
    两个信息比特之间比特的数量。
  22. 根据权利要求12-21任一项所述的装置,其特征在于,S等于2。
  23. 一种调整Polar码的装置,其特征在于,包括处理器及存储器;所述存储器用于存储计算机执行指令,当所述Polar码编译码装置运行时,处理器调用所述存储器存储的计算机执行指令,执行下述步骤:
    获取信息块的大小K,所述K为大于0的整数;
    按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,所述N为Polar码的母码长度,所述N大于或等于2且为2的正整数次幂;
    若按照信息比特对应的极化信道序号由小到大的顺序,所述K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置;其中,所述S为大于1小于K的整数,所述P为大于0小于或等于所述S的整数;
    根据调整后的所述信息比特位置和固定比特位置,进行Polar码编码或译码。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
  25. 一种Polar码编码装置,其特征在于,包括:
    至少一个输入端,用于接收大小为K的信息块,所述K为大于0的整数;
    信号处理器,用于按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,所述N为Polar码的母码长度,所述N大于或等于2且为2的正整数次幂;若按照信息比特对应的极化信道序号由小到大的顺序,所述K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,其中,所述S为大于1小于K的整数,所述P为大于0小于或等于所述S的整数;根据调整后的信息比特位置和固定比特位置,对所述信息块进行Polar码编码,得到编码块;
    至少一个输出端,用于输出所述信号处理器编码得到的所述编码块。
  26. 一种Polar码译码方法,其特征在于,包括:
    接收待译码比特;
    按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,K为待译码比特中信息比特的数量,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂;
    若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,其中,S 为大于1小于K的整数,P为大于0小于或等于所述S的整数;
    根据调整后的信息比特位置和固定比特位置,对待译码比特进行Polar码译码得到信息块。
  27. 一种Polar码译码装置,其特征在于,包括:
    至少一个输入端,用于接收待译码比特;
    信号处理器,用于按照N个极化信道的可靠度排序确定K个信息比特的位置及固定比特的位置;其中,K为待译码比特中信息比特的数量,N为Polar码的母码长度,N大于或等于2且为2的正整数次幂;若按照信息比特对应的极化信道序号由小到大的顺序,K个信息比特中的前S个信息比特的位置符合预设条件,将前S-1个信息比特中的P-1个比特位置调整为固定比特的位置,将固定比特的位置中的P-1个比特位置调整为信息比特的位置,其中,S为大于1小于K的整数,P为大于0小于或等于所述S的整数;根据调整后的信息比特位置和固定比特位置,对待译码比特进行Polar码译码得到信息块;
    至少一个输出端,用于输出信号处理器译码得到的信息块。
PCT/CN2018/073267 2017-01-25 2018-01-18 一种调整Polar码的方法、装置及编译码装置 WO2018137552A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061303.8 2017-01-25
CN201710061303.8A CN108347300B (zh) 2017-01-25 2017-01-25 一种调整Polar码的方法、装置及编译码装置

Publications (1)

Publication Number Publication Date
WO2018137552A1 true WO2018137552A1 (zh) 2018-08-02

Family

ID=62963380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073267 WO2018137552A1 (zh) 2017-01-25 2018-01-18 一种调整Polar码的方法、装置及编译码装置

Country Status (2)

Country Link
CN (1) CN108347300B (zh)
WO (1) WO2018137552A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10659194B2 (en) 2017-08-02 2020-05-19 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus in wireless communications
CN114070330A (zh) 2017-08-02 2022-02-18 华为技术有限公司 一种Polar码编码方法及装置
CN113541878B (zh) * 2020-04-14 2022-10-28 华为技术有限公司 一种数据处理方法、装置及设备
JP2023540584A (ja) * 2020-09-07 2023-09-25 華為技術有限公司 通信方法及び装置
CN112511184A (zh) * 2020-12-09 2021-03-16 广州市科信网络系统工程有限公司 一种无线通信系统及其通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539393A (zh) * 2015-01-07 2015-04-22 北京邮电大学 一种基于极化码的信源编码方法
US20160241355A1 (en) * 2015-02-13 2016-08-18 Samsung Electronics Co., Ltd. Apparatus and method of constructing polar code

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9176927B2 (en) * 2011-11-08 2015-11-03 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and systems for decoding polar codes
CN108650057B (zh) * 2012-10-17 2023-10-13 华为技术有限公司 一种编译码的方法、装置及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539393A (zh) * 2015-01-07 2015-04-22 北京邮电大学 一种基于极化码的信源编码方法
US20160241355A1 (en) * 2015-02-13 2016-08-18 Samsung Electronics Co., Ltd. Apparatus and method of constructing polar code

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Details of the Polar Code Design", 3GPP TSG RAN WG1 MEETING #87 R1-1611254, 10 November 2016 (2016-11-10), XP051189033, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/> *

Also Published As

Publication number Publication date
CN108347300A (zh) 2018-07-31
CN108347300B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2018137552A1 (zh) 一种调整Polar码的方法、装置及编译码装置
JP7026763B2 (ja) レートマッチング方法、符号化装置、および通信装置
WO2018019073A1 (zh) 编码方法、设备和装置
WO2018166423A1 (zh) 极化码编码的方法和装置
WO2017193716A1 (zh) 一种极化码的编码和速率匹配方法、装置及设备
WO2014173133A1 (zh) 极性码的译码方法和译码装置
WO2013152605A1 (zh) 极性码的译码方法和译码装置
US10680645B2 (en) System and method for data storage, transfer, synchronization, and security using codeword probability estimation
JP2020504508A (ja) Polar符号構築に用いる装置及び方法
TWI794260B (zh) 確定傳輸塊大小的方法、裝置及設備
WO2019015592A1 (zh) 一种Polar码编码方法及装置
WO2018171401A1 (zh) 一种信息处理方法、装置及设备
CN109962753B (zh) 一种速率匹配和极化码编码的方法和设备
CN111446969B (zh) 一种级联crc码的极化码编码方法及装置
KR102520788B1 (ko) 채널 상태 정보 인코딩 방법 및 장치, 저장 매체 및 프로세서
WO2018157853A1 (zh) 用于确定Polar码编解码的方法、装置和设备
WO2019056941A1 (zh) 译码方法及设备、译码器
WO2019019852A1 (zh) 一种Polar码编码方法及装置
WO2019015653A1 (zh) 一种Polar码编码方法及装置
WO2019024842A1 (zh) 一种Polar码编码方法及装置
WO2019024815A1 (zh) 分段编码方法及装置
WO2020147527A1 (zh) 一种极化编译码方法及装置
WO2018171764A1 (zh) 一种构造极化码序列的方法及装置
WO2018171777A1 (zh) 一种构造编码序列的方法,装置
WO2020000490A1 (zh) 一种极化码译码方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744613

Country of ref document: EP

Kind code of ref document: A1