WO2018124320A1 - V2x 통신을 위한 장치 및 데이터 통신 방법 - Google Patents

V2x 통신을 위한 장치 및 데이터 통신 방법 Download PDF

Info

Publication number
WO2018124320A1
WO2018124320A1 PCT/KR2016/015317 KR2016015317W WO2018124320A1 WO 2018124320 A1 WO2018124320 A1 WO 2018124320A1 KR 2016015317 W KR2016015317 W KR 2016015317W WO 2018124320 A1 WO2018124320 A1 WO 2018124320A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
service
safety
communication
transceiver
Prior art date
Application number
PCT/KR2016/015317
Other languages
English (en)
French (fr)
Inventor
백종섭
고우석
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to EP16925382.0A priority Critical patent/EP3565160A4/en
Priority to US16/474,402 priority patent/US11304162B2/en
Priority to PCT/KR2016/015317 priority patent/WO2018124320A1/ko
Publication of WO2018124320A1 publication Critical patent/WO2018124320A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0025Synchronization between nodes synchronizing potentially movable access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to an apparatus and method for V2X communication, and more particularly, to a multi-channel connection method and a data communication method of a V2X device including a plurality of transceivers.
  • V2X Vehicle to Everything
  • a data communication method of a V2X communication device including a plurality of transceivers uses a first transceiver to provide service advertisement information through a control channel (CCH).
  • CCH control channel
  • the interval may include a first time unit and a second time unit.
  • the first time unit includes a safety interval for safety related service communication
  • the second time unit is a non-safety for non-safety related service communication. It may include an interval.
  • the service propagation information may be received during the first time unit or the second time unit.
  • the second time unit may further include a critical safety interval for safety-related service communication of high importance.
  • time-sensitive non-safety related service communication during the second time unit may be performed preferentially.
  • a V2X communication apparatus including a memory configured to store data; RF unit for transmitting and receiving wireless signal; And a processor for controlling the RF unit, the RF unit including a first transceiver for control channel (CCH) communication and a second transceiver for service channel (SCH) communication, wherein the V2X communication device includes: Receiving service advertisement information over the control channel by using a first transceiver; And receiving service data over the service channel based on the service propagation information by using the second transceiver, wherein the control channel connection is performed based on a sync interval and the sync interval May include a first time unit and a second time unit.
  • CCH control channel
  • SCH service channel
  • the first time unit includes a safety interval for safety related service communication
  • the second time unit is a non-safety for non-safety related service communication. It may include an interval.
  • the service propagation information may be received during the first time unit or the second time unit.
  • the second time unit may further include a critical safety interval for safety-related service communication of high importance.
  • time-sensitive non-safety related service communication may be preferentially performed during the second time unit.
  • the present invention by adding an enhanced mode in a multi-channel operation, contention of V2X communication and propagation delay of safety service can be minimized.
  • the present invention by allocating one synchronization interval including the CCH interval and the SCH interval for the CCH connection, it is possible to minimize competition for communication between services.
  • communication competition between services can be minimized.
  • proposing an asynchronous channel access mode it is possible to provide a multi-channel operation method with high resource utilization efficiency.
  • stable communication can be performed by providing a plurality of transceivers for a multi-channel connection and allocating the plurality of transceivers based on channels and services, respectively.
  • FIG. 1 illustrates a reference architecture of an Intelligent Transport System (ITS) station in accordance with an embodiment of the present invention.
  • ITS Intelligent Transport System
  • FIG. 2 illustrates an ITS access layer according to an embodiment of the present invention.
  • FIG. 3 illustrates a conceptual internal architecture of a MAC sublayer for performing MCO (Multi-channel Operation) according to an embodiment of the present invention.
  • FIG. 4 illustrates a relationship between user priority of an EDCA and an access category according to an embodiment of the present invention.
  • FIG. 5 shows a physical layer configuration of a V2X transmission device according to an embodiment of the present invention.
  • FIG. 6 illustrates multi-channel allocations used for ITS system operation in accordance with an embodiment of the present invention.
  • FIG. 7 illustrates a channel coordination mode of a multi-channel operation according to an embodiment of the present invention.
  • FIG. 8 illustrates an enhanced mode that is a channel coordination mode for multi-channel operation according to an embodiment of the present invention.
  • FIG 9 illustrates a channel coordination mode of multi-channel operation based on an enhanced mode according to an embodiment of the present invention.
  • FIG. 10 shows an architecture of a V2X communication device according to an embodiment of the invention.
  • FIG. 11 illustrates a time interval placement method according to an embodiment of the present invention.
  • FIG. 12 illustrates a data communication method of a V2X communication device including a dual transceiver according to an embodiment of the present invention.
  • FIG. 13 illustrates a data communication method of a V2X communication device including a dual transceiver according to an embodiment of the present invention.
  • FIG. 14 illustrates a data communication method of a V2X communication device including a dual transceiver according to an embodiment of the present invention.
  • FIG. 15 illustrates a data communication method of a V2X communication device including a dual transceiver according to an embodiment of the present invention.
  • FIG. 16 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • FIG. 17 illustrates a data communication method of a V2X communication device including a dual transceiver according to another embodiment of the present invention.
  • FIG. 18 illustrates a data communication method of a V2X communication device including a dual transceiver according to another embodiment of the present invention.
  • FIG. 19 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • FIG. 20 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • FIG. 21 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • FIG. 22 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • FIG. 22 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • FIG. 23 illustrates a time interval adjustment method according to an embodiment of the present invention.
  • FIG. 24 illustrates a multi-channel operating method of a V2X device according to an embodiment of the present invention.
  • 25 illustrates parameters of MLMEX-CHSTART.request information according to an embodiment of the present invention.
  • 26 is a block diagram of a V2X communication device according to an embodiment of the present invention.
  • FIG. 27 is a flowchart illustrating a data communication method of a V2X communication device according to an embodiment of the present invention.
  • the present invention relates to a V2X communication device, and the V2X communication device may be included in an intelligent transport system (ITS) system to perform all or some functions of the ITS system.
  • the V2X communication device can communicate with vehicles and vehicles, vehicles and infrastructure, vehicles and bicycles, and mobile devices.
  • the V2X communication device may be abbreviated as a V2X device.
  • the V2X device may correspond to an onboard unit (OBU) of the vehicle or may be included in the OBU.
  • the V2X device may correspond to a road side unit (RSU) of the infrastructure or may be included in the RSU.
  • the V2X communication device may correspond to an ITS station or may be included in an ITS station.
  • the V2X device may operate in a WAVE (Wireless Access In Vehicular Environments) system of IEEE 1609.1-4.
  • WAVE Wireless Access In Vehicular Environments
  • FIG. 1 illustrates a reference architecture of an Intelligent Transport System (ITS) station in accordance with an embodiment of the present invention.
  • ITS Intelligent Transport System
  • two end vehicles / users can communicate a communication network, and this communication can be performed through the functionality of each layer of the architecture of FIG. 1. For example, when a message is communicated between vehicles, data is transmitted through each layer down one layer in a transmitting vehicle and its ITS system, and data is passed through each layer up one layer in a receiving vehicle and its ITS system. Can be delivered.
  • a description of each layer of the architecture of FIG. 1 follows.
  • the application layer may implement and support various use cases.
  • the application may provide road safety, efficient traffic information, and other application information.
  • the facility layer can support the effective realization of the various uses defined in the application layer.
  • the facility layer may perform application support, information support, and session / communication support.
  • the network / transport layer can form a network for vehicle communication between homogeneous / heterogenous networks by using various transport protocols and network protocols.
  • the network / transport layer may provide Internet access and routing using Internet protocols such as TCP / UDP + IPv6.
  • the network / transport layer may configure a vehicle network using a geographical position based protocol such as BTP / GeoNetworking.
  • the access layer may transmit a message / data received from a higher layer through a physical channel.
  • the access layer may include an IEEE 802.11 and / or 802.11p standard based communication technology, an ITS-G5 wireless communication technology based on the physical transmission technology of the IEEE 802.11 and / or 802.11p standard, and satellite / broadband wireless mobile communication.
  • Data communication can be performed / supported based on 2G / 3G / 4G (LTE) / 5G wireless cellular communication technology, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology, and IEEE 1609 WAVE technology.
  • the ITS architecture may further include a management layer and a security layer.
  • FIG. 2 illustrates an ITS access layer according to an embodiment of the present invention.
  • FIG. 2 illustrates the ITS Access Layer of the ITS system shown in FIG. 1 in more detail.
  • the access layer of FIG. 2 may include a data link layer, a physical layer, and layer management.
  • the access layer of FIG. 2 has similar or identical features to the OSI 1 layer (physical layer) and the OSI second layer (data link layer).
  • the data link layer includes a logical link control (LLC) sublayer (LLC sub-layer), a medium access control (MAC) sublayer (MAC sub-layer), and a multi-channel operation (MCO) sublayer. can do.
  • LLC sub-layer logical link control sublayer
  • MAC sub-layer medium access control sublayer
  • MCO multi-channel operation sublayer.
  • the physical layer may include a Physical Layer Convergence Protocol (PLCP) sublayer and a Physical Medium Access (PMD) sublayer.
  • PLCP Physical Layer Convergence Protocol
  • PMD Physical Medium Access
  • the data link layer can convert a noisy physical node between adjacent nodes (or vehicles) into a communication channel free of transmission errors for use by higher network layers.
  • the data link layer has a function of transmitting / transporting / delivering a three-layer protocol, a framing function of dividing the data to be transmitted into packets (or frames) as a transmission unit, and a flow to compensate for the speed difference between the sending side and the receiving side. It performs flow control function, detects transmission error and corrects or retransmits it.
  • the data link layer also provides the ability to assign sequence numbers to packets and ACK signals to avoid confusing packets or ACK signals, and to establish, maintain, short circuit, and transmit data links between network entities. Function to control. Further, such a data link layer may include a logical link control (LLC) sublayer and a medium access control (MAC) sublayer based on the IEEE 802 standard.
  • LLC logical link control
  • MAC medium access control
  • the main function of the LLC sublayer is to enable the use of several different lower MAC sublayer protocols to enable communication regardless of the topology of the network.
  • the MAC sublayer can control the in-vehicle collision / race contention for multiple vehicles (or nodes or vehicles and peripherals) using shared media.
  • the MAC sublayer may format the packet transmitted from the upper layer to match the frame format of the physical network.
  • the MAC sublayer may perform addition and identification functions of the sender address / recipient address, carrier detection, collision detection, and fault detection on the physical medium.
  • the physical layer is the lowest layer in the ITS hierarchy, which defines the interface between the node and the transmission medium, and performs modulation, coding, and mapping of the transport channel to the physical channel for bit transmission between data link layer entities. .
  • the physical layer performs a function of notifying the MAC sublayer whether the radio medium is busy (busy or idle) through carrier sense and clear channel assessment (CCA).
  • CCA carrier sense and clear channel assessment
  • such a physical layer may include a physical layer convergence protocol (PLCP) sublayer and a physical medium access (PMD) sublayer based on the IEEE standard.
  • PLCP physical layer convergence protocol
  • PMD physical medium access
  • the PLCP sublayer serves to connect the data frame with the MAC sublayer.
  • the PLCP sublayer adds a header to the received data so that the MAC sublayer operates regardless of its physical characteristics. Accordingly, the format of the PLCP frame may be defined differently according to different wireless LAN physical layer standards.
  • the main function of the PMD sublayer is to perform transmission to a wireless medium according to a transmission / reception transmission standard after carrier / RF modulation (carrier modulation, or RF modulation) received from the PLCP sublayer.
  • carrier / RF modulation carrier modulation, or RF modulation
  • Layer management is responsible for managing and servicing information related to the operation and security of the access layer.
  • Information and services are delivered and shared in both directions through an interface between management entity and access layer (MI-SAP) and an interface between security entity and access layer (SI-SAP).
  • MI-SAP management entity and access layer
  • SI-SAP security entity and access layer
  • Bidirectional information and service delivery between the access layer and the network / transport layer is performed by IN (or IN-SAP).
  • the MCO sublayer can use a plurality of frequency channels to provide a variety of services, such as safety services and other services other than safety services, such as non-safety services.
  • the MCO sublayer effectively distributes traffic load in one frequency channel to other channels, thereby minimizing collisions and contention in inter-vehicle communications on each frequency channel.
  • the MCO sublayer may perform multi-channel access and operation, which will be described below, based on the configuration received from the higher layer.
  • FIG. 3 illustrates a conceptual internal architecture of a MAC sublayer for performing MCO (Multi-channel Operation) according to an embodiment of the present invention.
  • the architecture of FIG. 3 may correspond to the MCO block of FIG. 2.
  • the MCO structure of FIG. 3 includes channel coordination in which channel access is defined, channel routing defining overall operation of PHY-MAC layers and an operation process of a management frame, and an EDCA (Enhanced) which determines and defines a priority of a transmission frame. Dedicated Channel Access), and a data buffer (or queue) for storing a frame received from a higher layer.
  • the channel coordination block is not shown in FIG. 3, and channel coordination may be performed by the entire MAC sublayer of FIG. 3.
  • Channel Coordination In an embodiment, channel access to a control channel (CCH) and a service channel (SCH) may be controlled. Channel access coordination will be described later.
  • a WSM Wive Short Message
  • CCH control channel
  • SCH service channel
  • WSM Wive Short Message
  • the data buffer may store a data frame received from a higher layer according to a defined access category (AC).
  • AC access category
  • a data buffer may be provided for each AC.
  • the channel routing block can deliver data input from the upper layer to the data buffer.
  • the transmission operation parameters such as channel coordination and channel number, transmission power, and data rate for the frame transmission may be called for the transmission request of the upper layer.
  • EDCA As a method to guarantee QoS in the existing IEEE 802.11e MAC layer, it is divided into four access categories (ACs) according to traffic types, and differentiated priorities are assigned to each category, and different parameters are assigned to each AC. It is a contention-based medium access method that gives more traffic for priority traffic. For data transmission including priority, the EDCA block can assign 8 priorities from 0-7 and map the data arriving at the MAC layer to 4 ACs according to the priorities.
  • FIG. 4 illustrates a relationship between user priority of an EDCA and an access category (AC) according to an embodiment of the present invention.
  • the relationship between the user priority of the EDCA and the AC is shown in FIG. 4.
  • the ranking has a higher priority as the AC number increases. Every AC has its own transmit queue and AC parameters, and the difference in priority between ACs is determined based on the AC parameter values set differently. Differently set AC parameter values are associated with back-off and have different channel access ranks.
  • the parameter values of the corresponding AC use AIFS [AC], CWmin [AC], and CWmax [AC], respectively, where AIFS (Arbitration Inter-Frame Space) checks whether the channel is idle before proceeding. Say the minimum time for. The smaller the value of AIFS [AC] and CWmin [AC], the higher the priority. Therefore, the shorter the channel access delay, the more bandwidth can be used in a given traffic environment.
  • the transmitter creates a new backoff counter.
  • the four AC-specific transmission queues defined in the IEEE 802.11 MAC compete with each other individually for wireless medium access within one station as shown in FIG. Since each AC has independent backoff counters, virtual collisions can occur. If there is more than one AC that has completed backoff at the same time, the data of the highest priority AC is transmitted first, and the other ACs update the backoff counter again by increasing the CW value. This conflict resolution process is called a virtual conflict process.
  • EDCA also provides access to channels for data transmission through Transmission Opportunity (TXOP). If one frame is too long to transmit all during one TXOP, it may be divided into smaller frames and transmitted.
  • TXOP Transmission Opportunity
  • FIG. 5 shows a physical layer configuration of a V2X transmission device according to an embodiment of the present invention.
  • FIG. 5 shows a physical layer signal processing block diagram of IEEE 802.11 or ITS-G5. 5 shows a physical layer configuration according to an embodiment of the present invention, and is not limited to the above-described transmission standard technology.
  • the physical layer processor of FIG. 5 includes a scrambler block 5010, an FEC encoder 5020, an interleaver 5030, a mapper 5040, a pilot insertion block 5050, and an IFFT block.
  • Physical Layer Convergence Protocol (PLCP) sublayer baseband signal processing portion and wave including at least one of: (IFFT; 5060), guard insertion (5070), preamble insertion (5080)
  • Physical Medimu Dependant (PMD) sublayer RF band signal processing portion including at least one of wave shaping 5090, I / Q modulation block 5100, and DAC 5110.
  • the functional description of each block is as follows.
  • the scrambler 5010 may randomize the input bit stream by XORing with a pseudo random binary sequence (PRBS).
  • the FEC encoder 5020 may add redundancy to the transmission data so that an error on the transmission channel may be corrected at the receiving side.
  • the interleaver 5030 may interleave the input data / bit string based on the interleaving rule so as to correspond to a burst error. As an embodiment, when deep fading or erasure is applied to a QAM symbol, since interleaved bits are mapped to each QAM symbol, an error occurs in successive bits among all codeword bits. Can be prevented.
  • the mapper 5040 may allocate the input bit word to one constellation.
  • the pilot insertion block 5050 inserts a reference signal at a predetermined position of the signal block. By using such a reference signal, the receiver can estimate channel distortion phenomena such as channel estimation, frequency offset, and timing offset.
  • the IFFT block 5060 may convert an input signal to improve transmission efficiency and flexibility in consideration of the characteristics of the transport channel and the system structure.
  • the IFFT block 5060 may convert a signal in the frequency domain into a time domain using an inverse FFT operation.
  • IFFT block 5060 may be unused or omitted for single carrier systems.
  • the guard insertion block 5070 may insert guard intervals between adjacent signal blocks to minimize the influence of the delay spread of the transmission channel.
  • the guard insertion block 5070 may insert a cyclic prefix in the guard interval period.
  • the preamble insertion block 5080 may insert a predetermined type of signal, that is, a preamble, into the transmission signal so that the receiver can detect the target signal quickly and efficiently.
  • the preamble insertion block 5080 may define a signal block / signal frame including a plurality of OFDM symbols and insert a preamble symbol at the beginning of the signal block / signal frame.
  • the wave shaping block 5090 may waveform process the input baseband signal based on the channel transmission characteristic.
  • the waveform shaping block 5090 may perform square-root-raised cosine (SRRC) filtering to obtain a baseline of out-of-band emission of the transmission signal.
  • SRRC square-root-raised cosine
  • the waveform shaping block 5090 may be unused or omitted.
  • the I / Q modulator 5100 may perform in-phase and quadrature modulation.
  • the Digital to Analog Converter (DAC) block may convert an input digital signal into an analog signal and output the analog signal. The output analog signal can be transmitted via an output antenna.
  • DAC Digital to Analog Converter
  • Each of the blocks shown and described in FIG. 5 may be omitted or replaced by another block having similar or identical functionality.
  • the blocks in FIG. 5 may be configured in all or in some combinations as needed.
  • FIG. 6 illustrates multi-channel allocations used for ITS system operation in accordance with an embodiment of the present invention.
  • FIG. 6 (a) shows US spectral allocation for ITS and FIG. 6 (b) shows EP spectral allocation for ITS.
  • the United States and Europe have seven frequencies (each frequency bandwidth: 10 MHz) in the 5.9 GHz band (5.855-5.925 GHz). Seven frequencies may include one control channel (CCH) and six service channels (SCH).
  • CCH control channel
  • SCH service channels
  • the CCH is assigned to the channel number 178.
  • the CCH is allocated to the channel number 180.
  • the use of the ITS-G63 band is considered in addition to the upper frequency band at 5.9 GHz in order to provide time-sensitive and large data capacity service. Use is under consideration.
  • the ITS-G63 band is considered in addition to the upper frequency band at 5.9 GHz in order to provide time-sensitive and large data capacity service. Use is under consideration.
  • the control channel represents a radio channel used for management frames and / or WAVE message exchange.
  • the WAVE message may be a WAVE short message (WSM).
  • the service channel is a radio channel used for providing a service and represents any channel other than the control channel.
  • the control channel may be used for communication of Wave Short Message Protocol (WSMP) messages or system management messages such as WAVE Service Advertisement (WSA).
  • WSMP Wave Short Message Protocol
  • WSA WAVE Service Advertisement
  • the SCH may be used for general-purpose application data communication, and the communication of such general application data may be coordinated by service related information such as WSA.
  • the WSA may also be referred to as service propagation information below.
  • the WSA may provide information including an announcement of the availability of an application-service.
  • the WSA message may identify and describe the application service and the channel to which the service is accessible.
  • the WSA may include headers, service information, channel information, and WAVE routing propagation information.
  • the service propagation information for the service connection may be a periodic message.
  • Co-operative Awareness Messages can be periodic messages.
  • CAMs may be broadcast periodically by the facility layer.
  • the CAM may be transmitted by the RSU, and in this case, may be transmitted and received at the RSU interval below.
  • Decentralized Environmental Notification Messages can be event messages. Event messages can be triggered and sent by the detection of an event.
  • the service message may be sent to manage the session.
  • the event message may include a safety message / information.
  • the service message may include non-safety messages / information.
  • FIG. 7 illustrates a channel coordination mode of a multi-channel operation according to an embodiment of the present invention.
  • channel coordination mode of multichannel operation as (a) continuous mode, (b) altering mode, (c) extended mode, and (d) immediate mode.
  • the channel coordination mode may indicate how the V2X device connects to the CCH and SCH.
  • the V2X device can access at least one channel.
  • a single-radio device may monitor the CCH and exchange data on the SCH.
  • Channel intervals must be specified for this purpose, and FIG. 7 shows such channel intervals, or time slot assignments.
  • the radio channel altering may be operated based on a synchronized interval in association with a common time base.
  • the sync interval may include a plurality of time slots.
  • the plurality of time slots may correspond to a CCH interval and an SCH interval.
  • the sync interval may include a CCH interval and a SCH interval.
  • traffic may be exchanged on the CCH.
  • a single-radio device participating in the application-service may switch to the SCH during the SCH interval.
  • Each of the CCH interval and the SCH interval may include a guard interval. Each interval may begin with a guard interval.
  • the exchange of multi-channel operational information and safety related service information may be performed in the CCH during the CCH interval.
  • negotiation for information exchange between the service provider and the user may be performed in the CCH during the CCH interval.
  • the hardware timing operation for channel change of the V2X device may be initiated by a synchronization signal obtained by Universal Time Coordinated (UTC) estimation.
  • UTC Universal Time Coordinated
  • Channel synchronization may be performed every 1 pulse per second (PPS) interval based on UTC.
  • FIG. 7 illustrates a channel coordination method of multi-channel operation (MCO) described in IEEE 1609.4, wherein two MAC layers in one physical layer alternate time to use CCH and different channel modes. Indicates.
  • MCO multi-channel operation
  • Continuous mode is a mode in which each vehicle or all vehicles operate regardless of time division criteria such as time slot / CCH interval / SCH interval in FIG. 6.
  • the V2X device may continuously receive multichannel operational information and safety related service information on a designated CCH or SCH or perform information exchange between a service provider and a user.
  • each vehicle or all vehicles may receive multi-channel operational information and safety-related services / information during the CCH interval or perform negotiation procedures for exchanging information between service providers / users. Can be.
  • each vehicle or all vehicles perform service / information exchange between the service provider and the user during the SCH interval.
  • the V2X device may communicate over the CCH and SCH alternately during the set CCH interval and the SCH interval.
  • (d) Extended Mode In the extended mode, communication of the CCH interval and the SCH interval may be performed like the change mode. However, service / information exchange of the SCH interval may also be performed in the CCH interval. As an embodiment, the V2X device in the extended mode may transmit and receive control information during the CCH interval, and maintain the SCH interval until the exchange of service / information ends when entering the SCH interval.
  • Immediate mode In immediate mode, the communication of the V2X device may be performed as in change mode and / or extended mode. However, when the negotiation for the information exchange is completed during the CCH interval, the V2X device may immediately switch channels to the designated SCH instead of waiting for the end of the CCH interval to start the information exchange. As shown in FIG. 7, extended mode and immediate mode may be used together.
  • information exchange and negotiation for providing management information and service of multiple channels may be performed only in the CCH during the CCH interval.
  • negotiation for receiving safety-related services and information or for exchanging information between service providers and users may also be performed only on the CCH during the CCH interval.
  • a guard interval may be included between the CCH interval and the SCH interval.
  • the guard interval can secure the time required for the communication device to synchronize when changing the frequency and changing the channel.
  • the hardware timer operation upon channel change may be started by a synchronization signal obtained by Coordinated Universal Time (UTC) estimation.
  • UTC Coordinated Universal Time
  • the channel synchronization can be synchronized to the 1PPS (Pulse Per Second) section by using UTC as a reference signal.
  • the sync interval may include a CCH interval and a SCH interval. That is, one synchronization interval may include two time slots, and each of the CCH interval and the SCH interval may correspond to timeslot 0 and timeslot 1.
  • the start of the sync interval may coincide with the start of the common time reference seconds.
  • An integer multiple of the sync interval may be included for 1 second time.
  • FIG. 8 illustrates an enhanced mode that is a channel coordination mode for multi-channel operation according to an embodiment of the present invention.
  • FIG. 8 is a channel coordination mode proposed in the present invention, and is referred to as an enhanced mode in the present specification.
  • the V2X communication device may exchange control signals through the CCH at the SCH interval as well as the CCH interval. That is, the V2X communication device may perform CCH connection / communication and SCH connection / communication on a synchronization interval basis.
  • operational information and safety-related services of multiple channels may be transmitted and received via the CCH during the CCH interval, similar to the modes of IEEE 1609.4.
  • the associated information may be transmitted through the CCH during the SCH interval.
  • Information and services can be transmitted and received.
  • Control signal exchange for the exchange of information between the service provider and the user can also be sent and received during the CCH interval via the CCH, similar to the modes of IEEE 1609.4.
  • the enhanced mode can be transmitted and received during the SCH interval via the CCH. Can be.
  • the control signal includes multi-channel operational information and liaison related service information.
  • the control signal also includes a signal for exchanging information between the service provider and the user.
  • the control signal may include a Service Advertising Message (SAM) transmitted by a provider and an ACK message of a receiver side corresponding thereto.
  • the control signal may include a WAVE Service Advertising Message (WSAM) provided by a provider and an ACK message of a receiver side corresponding thereto.
  • the control signal may include a Request-To-Send (RTS) and a Clear-To-Send (CTS) signal for negotiation between nodes. Nodes may correspond to terminals or vehicles.
  • both the first time slot and the second time slot included in the sync interval may be used as the CCH interval, and at least one time slot included in the subsequent sync interval may be used as the SCH interval. That is, in the enhanced mode, both the first time slot and the second time slot of the sync interval may be referred to as a CCH interval.
  • the enhanced mode may improve the flexibility of channel coordination mode operation by allowing the control signal exchange even in the SCH interval, which was allowed only in the CCH interval of the CCH. In particular, compared with the existing mode operation, it provides the advantage that longer service safety interval can be operated. Specific operating methods and embodiments for the enhanced mode will be further described below.
  • FIG 9 illustrates a channel coordination mode of multi-channel operation based on an enhanced mode according to an embodiment of the present invention.
  • the V2X device may transmit and receive safety related service or control signals through the CCH during the CCH interval and the SCH interval.
  • the V2X device may move to the SCH specified in the next interval and exchange information between the service provider and the user.
  • the control signal exchange for providing safety-related services through the CCH in the CCH interval and the SCH interval and exchanging information between the service provider and the user may be managed in the following manner.
  • the V2X device may transmit and receive a safety-related service or control signal by moving to the CCH when there is a service need or a request without distinguishing the CCH interval / SCH interval interval.
  • the V2X device may communicate by dividing the CCH interval and the SCH interval. That is, the V2X device may perform communication for safety related services in the CCH interval section, and perform communication for exchanging control signals for service provision in the SCH interval section.
  • the V2X device may perform communication by dividing the CCH interval and the SCH interval, but may perform communication without an interval classification for an emergency emergency service.
  • the basic operation of the communication mode is the same as the embodiment of Figure 9 (a).
  • service transmission and reception may be performed through the SCH in the SCH interval. That is, the exchange of service information between the service provider and the user may begin at the SCH interval.
  • the service information exchange may be started at the SCH interval after the CCH interval even though the control signal exchange is completed in the previous SCH interval.
  • the basic operation of the communication mode is the same as the embodiment of Figs. 9 (a) and 9 (b).
  • the V2X device connects to the designated SCH channel instead of waiting for the end of the interval as shown in the embodiment of FIGS. 9 (a) and 9 (b). Service information can be started.
  • 9 (d) and 9 (e) the V2X device exchanges safety related service or control signals via the CCH during the CCH interval and the SCH interval, and the next predetermined interval (e.g., SCH interval).
  • a service may be transmitted and received by accessing a designated SCH during a CCH interval + SCH interval.
  • 9 (d) and 9 (e) are modes in which SCHs and CCHs are alternately connected based on a predetermined interval, similar to the change mode of FIG. 7 (c).
  • FIG. 9 (f) illustrates an asynchronous multi-channel operating method based on enhanced mode.
  • the V2X device may access and communicate with the CCH / SCH regardless of the CCH interval / SCH interval during an async time interval set in the asynchronous multi-channel mode. Since the V2X device in the embodiment of FIG. 9 (f) can access a necessary channel without considering time-slot boundary, the degree of freedom of multi-channel operation is the highest among the embodiments of FIG. 9.
  • the V2X device may transmit and receive multi-channel operation information / safety related services by accessing the CCH regardless of the CCH interval / SCH interval.
  • the V2X device may directly connect to the designated SCH to start service information exchange.
  • the asynchronous time interval may be set to operate based on a common reference time.
  • the asynchronous time interval may be set to a specific value or used without limitation.
  • the asynchronous time interval may be preset as a specific value indicating that no specific time value or duration is defined.
  • FIG. 10 shows an architecture of a V2X communication device according to an embodiment of the invention.
  • the V2X communication device of FIG. 10 includes two transceivers.
  • the two transceivers may operate in a band with similar frequency characteristics (5.4 GHz / 5.9 GHz frequency band).
  • the two transceivers can be controlled by one multi-channel operating method.
  • Two transceivers may be controlled by one MAC layer.
  • Channel access of the two transceivers may be controlled by one MCO as described above.
  • Two transceivers may be used for CCH communication and SCH communication, respectively. That is, one transceiver-1 may be used for exchanging control information and safety related services / information of multiple channels in the CCH or for control signal exchange for exchanging information between a service provider and a user.
  • the other transceiver (tranceiver-2) may be used for service provision and information / data exchange between users in a designated SCH when control signal exchange is completed in the CCH.
  • the CCH communication transceiver may be referred to as a first transceiver
  • the SCH communication transceiver may be referred to as a second transceiver.
  • the above-described embodiment of FIGS. 8 to 9 may be applied to the operation of the first transceiver.
  • the CCH access of the first transceiver may be operated similar to the CCH access of a single transceiver.
  • Service / signals such as Service Advertisement Message (SAM), Control Signal, WAVE Service Advertisement Message (WSAM), or RTS / CTS may be exchanged by using the first transceiver during the CCH interval at the CCH.
  • SAM Service Advertisement Message
  • WSAM WAVE Service Advertisement Message
  • RTS / CTS may be exchanged by using the first transceiver during the CCH interval at the CCH.
  • the exchange of control signals for exchanging operational information and safety-related services / information of multiple channels and exchanging information between service providers and users may be performed using at least one of a CCH interval or an SCH interval in a CCH.
  • the operation of the first transceiver for CCH access is as follows.
  • the first transceiver of the V2X communication device may transmit and receive multi-channel operational information, safety-related services / information, and control signals for exchanging information between service providers and users during the CCH interval.
  • the first transceiver of the V2X communication device can transmit and receive multi-channel operational information and safety-related services / information during the CCH interval in the CCH, and control signals for exchanging information between the service provider and the user during the SCH interval in the CCH. have.
  • the first transceiver may perform communication on the CCH not only at the CCH interval but also at the SCH interval.
  • the first transceiver of the V2X communication device operates based on the method of 2), except for an urgent safety service, which can transmit and receive during the SCH interval of the CCH.
  • a decentralized environment notification message (DEMN) may be delivered during the SCH interval with high priority.
  • the methods 2) to 3) are based on synchronous multichannel operation.
  • safety-related service / information and control signals may be transmitted without time boundary restrictions such as CCH interval / SCH interval. That is, method 4) may be performed based on asynchronous multichannel operation.
  • multi-channel operational information and safety-related services / information may be provided at the SCH interval as well as the CCH interval of the CCH.
  • non-safety related services / information may be provided at the CCH interval as well as at the SCH interval of the CCH.
  • the second transceiver operating in the SCH may access the designated SCH and perform information exchange between the service provider and the user.
  • the V2X device of FIG. 10 may increase channel usage rate and throughput.
  • the V2X device of FIG. 10 may reduce congestion of a specific channel by solving a hidden vehicle (node) problem.
  • FIG. 11 illustrates a time interval placement method according to an embodiment of the present invention.
  • FIG. 11 illustrates a time interval arrangement method for more efficiently providing a service by using a CCH transceiver of the V2X device illustrated in FIG. 10.
  • the first transceiver for the CCH may communicate based on the interval shown in FIG. 11.
  • the time interval arrangement method may be operated based on the channel coordination mode described with reference to FIG. 7. Control signals for the exchange of multichannel operational information and safety-related services / information and information between service providers and users may be transmitted or received during the CCH interval. However, in addition to the embodiment of FIG. 11, a time interval may be arranged based on the enhanced mode described with reference to FIGS. 8 to 9. Description of each Example (a)-(c) of FIG. 11 is as follows.
  • Multi-channel operation information and safety-related services / information may be transmitted and received during the CCH interval of the CCH.
  • Signals / services other than safety, such as control signals for information exchange between service providers and users, may be performed during the SCH interval of the CCH.
  • emergency safety service may be provided even within the SCH interval of the CCH. That is, the basic safety service is provided in the CCH interval of the CCH, but the emergency safety service may be provided even in the SCH interval of the CCH.
  • the control signal preceding the provision of the safety related service which should be provided in a limited time can be transmitted to the beginning of the non-safety interval period. That is, for exchanging control signals for time-sensitive non-safety services among the control signals preceding service provision, a time-sensitive non-safety interval may be assigned to the front of the SCH interval.
  • signals / services other than safety may be provided without discriminating the CCH interval and the SCH interval of the CCH.
  • operational information and safety related services / information of multiple channels may be provided or received during the SCH interval as well as the CCH interval of the CCH.
  • Unsafe signals / services such as control signals for exchanging information between service providers and users, may be provided or received during the CCH interval as well as the SCH interval of the CCH.
  • FIG. 12 illustrates a data communication method of a V2X communication device including a dual transceiver according to an embodiment of the present invention.
  • the first transceiver may perform communication through the CCH
  • the second transceiver may perform communication through the SCH.
  • safety-related services and critical safety-related services may be transmitted and received on the CCH during the CCH interval.
  • the safety-related service may be a periodic safety related service.
  • the control signal for providing a service may be transmitted and received through the CCH during the SCH interval.
  • the number of control signals allowable in the CCH during the SCH interval may be determined based on the number of SCH channels.
  • the maximum allowable number of channels in each SCH interval may be the number of channels idle in the SCH interval window. If all control signals according to the number of SCH channels or idle channels are reserved during the SCH interval, no further control signal exchange may be performed. Alternatively, the communication control signal may be invalidated.
  • the V2X device may immediately access the designated SCH and perform information exchange.
  • the vehicle A and the vehicle B may complete the control signal exchange at the SCH interval and immediately connect to the SCH-a channel to exchange service information.
  • the vehicle C and the vehicle D may complete the control signal exchange after the control signal exchange between the vehicle A and the vehicle B at the SCH interval, and may immediately access the SCH-b channel to exchange service information.
  • Vehicles may perform control signal exchange at an SCH interval using a CCH communication transceiver (first transceiver), and may exchange service information by accessing a specific SCH using a SCH communication transceiver (second transceiver).
  • the user-side V2X device may transmit an ACK signal that the service is completed.
  • ACK signal transmission may be omitted to prevent information exchange congestion.
  • FIG. 13 illustrates a data communication method of a V2X communication device including a dual transceiver according to an embodiment of the present invention.
  • the first transceiver may perform communication through the CCH
  • the second transceiver may perform communication through the SCH.
  • FIG. 13 shows another operation scenario based on the 3) method of the enhanced mode described above.
  • a description overlapping with the description of FIG. 12 is omitted, but the omitted description may also be applied to FIG. 13.
  • the V2X device may immediately access the designated SCH to perform information exchange.
  • the vehicle A and the vehicle B may complete the control signal exchange at the SCH interval and immediately connect to the SCH-a channel to exchange service information.
  • the vehicle C and the vehicle D may complete the control signal exchange after the control signal exchange between the vehicle A and the vehicle B at the SCH interval, and may immediately access the SCH-b channel to exchange service information.
  • an emergency safety service that is, critical safety-related services
  • the embodiment of FIG. 13 may also be applied to the embodiments of FIGS. 11 and 12.
  • the second time slot within the sync interval may include a critical safety interval for communicating a critical safety-related service.
  • Critical safety intervals are intervals for performing high priority safety service related communications.
  • FIG. 14 illustrates a data communication method of a V2X communication device including a dual transceiver according to an embodiment of the present invention.
  • the first transceiver may perform communication through the CCH
  • the second transceiver may perform communication through the SCH.
  • FIG. 14 illustrates an operation scenario based on the third method of the above-described enhanced mode.
  • a description overlapping with the description of FIG. 12 is omitted, but the omitted description may also be applied to FIG. 14.
  • FIG. 14 illustrates an embodiment in a case where an asynchronous time interval is set to a predetermined period. That is, in FIG. 14, the asynchronous time interval may include two synchronous intervals, that is, four time slots.
  • the control signal may be exchanged through the CCH during the CCH interval or the SCH interval in the asynchronous time interval. When the control signal exchange is completed, the V2X device may immediately connect to the designated SCH to perform service information exchange.
  • the start of the asynchronous time interval can be aligned with the start of the common time reference second.
  • the V2X device may immediately connect to a designated SCH to perform information exchange.
  • vehicle A and vehicle B may complete control signal exchange at the CCH interval and immediately connect to the SCH-a channel to exchange service information.
  • vehicle C and the vehicle D may complete control signal exchange at different CCH intervals, and immediately connect to the SCH-b channel to exchange service information.
  • control signal exchange may be performed without CCH interval or SCH interval separation. That is, in FIG. 14, control signals may be exchanged in any time slot within an asynchronous time interval. However, the embodiment of FIG. 14 may be additionally applied to the embodiment of FIGS. 11 to 13. That is, even within a synchronous time interval, control signals may be exchanged within any time slot, such as a CCH interval or an SCH interval, as in the embodiment of FIG.
  • FIG. 15 illustrates a data communication method of a V2X communication device including a dual transceiver according to an embodiment of the present invention.
  • the first transceiver may perform communication through the CCH
  • the second transceiver may perform communication through the SCH.
  • FIG. 15 illustrates another operation scenario based on the first and second operating methods of the above-described enhanced mode.
  • a description overlapping with the description of FIG. 12 is omitted, but the omitted description may also be applied to FIG. 15.
  • the V2X device may immediately access the designated SCH to perform information exchange.
  • the vehicle A and the vehicle B may complete the control signal exchange at the SCH interval and immediately connect to the SCH-a channel to exchange service information.
  • the vehicle C and the vehicle D may complete the control signal exchange after the control signal exchange between the vehicle A and the vehicle B at the SCH interval, and may immediately access the SCH-b channel to exchange service information.
  • control signals for time-sensitive non-safety-related services may be communicated with the highest priority at the SCH interval. That is, time slots for time-sensitive not-safety-related services may be allocated to the front of the SCH interval except for the guard period. That is, by assigning a dedicated time slot for a specific purpose to the SCH interval, it is possible to enable reliable signal / service exchange of time-sensitive services.
  • the length of the additional time slot can be variably set based on the number of allowed control signal exchanges.
  • the V2X communication device may exchange time-sensitive non-safety related service / message / control signals in the forefront of the SCH interval by using the first transceiver.
  • FIG. 16 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • the V2X communication device of FIG. 16 includes two transceivers.
  • the two transceivers can operate in different bands (5.4 GHz / 5.9 GHz and 63 GHz frequency bands) with different frequency characteristics.
  • the two transceivers can be controlled by one multi-channel operating method or independently.
  • the two transceivers may be controlled by at least one MAC layer.
  • Channel access of the two transceivers may be controlled by at least one MCO as described above.
  • the two transceivers can be used for different service transmission and reception in the 5.4 GHz / 5.9 GHz band and the 63 GHz band, respectively.
  • the first transceiver can be used for 5.4 GHz / 5.9 GHz frequency band communication
  • the second transceiver can be used for 63 GHz frequency band communication.
  • FIG. 17 illustrates a data communication method of a V2X device including a dual transceiver according to another embodiment of the present invention.
  • the first transceiver may be used for 5.4 / 5.9 GHz frequency band communication
  • the second transceiver may be used for 63 GHz frequency band communication.
  • the first transceiver can operate with the single transceiver described above and the first transceiver of FIGS. 10-15.
  • the second transceiver may operate as shown in FIG. 17.
  • the second transceiver may continuously perform negotiation and data exchange on one channel. And safety-related services can be delivered after contention. Services and messages may be delivered without time boundary restrictions between CCH intervals and SCH intervals.
  • the second transceiver for 63 GHz communication can perform delivery and reception of large capacity services (eg, sensor data before processing) that must be provided within a limited time. Since the 63 GHz band may not have a CCH channel unlike the 5.4 / 5.9 GHz band, a protocol for exchanging operation information, safety-related services / information, and other services of multiple channels may be required. Can be.
  • large capacity services eg, sensor data before processing
  • Safety-related service / information communication may be performed using at least one of the embodiments described above for a 5.4 / 5.9 GHz channel.
  • the V2X communication device may perform information exchange as soon as control signal exchange between the service provider and the user is completed.
  • the V2X communication device may use the second transceiver to provide a service for the 63 GHz band.
  • the V2X communication device can exchange control signals for service provision for the 63 GHz band in each band by using the first transceiver or the second transceiver.
  • control signal exchange is completed in each band, the V2X communication device may perform data communication for providing a service for the 63 GHz band by using the second transceiver.
  • Safety-related services provided in the 63 GHz band may be communicated in a section where there is no service provision through competition.
  • Negotiation in the present specification may refer to a control signal exchange process for exchanging information between a service provider side device and a user side device.
  • the devices may exchange information necessary for transmitting and receiving service data as a control signal.
  • Devices may transmit and receive service data based on the control signal exchange process, that is, the negotiation process.
  • the control signals exchanged in the negotiation may include a Service Advertising Message (SAM) and an ACK message of a corresponding receiver side.
  • the control signal exchanged in the negotiation may include a WAVE Service Advertising Message (WSAM) provided by the provider and the ACK message of the receiver side corresponding thereto.
  • transmission and reception of Request-To-Send (RTS) and Clear-To-Send (CTS) signals may also be included in the negotiation.
  • transmission and reception of service propagation information may also be included in negotiation.
  • FIG. 18 illustrates a data communication method of a V2X communication device including a dual transceiver according to another embodiment of the present invention.
  • the first transceiver may be used for 5.4 / 5.9 GHz frequency band communication
  • the second transceiver may be used for 63 GHz frequency band communication.
  • the first transceiver may operate in the same manner as the operation of the single transceiver described with reference to FIGS. 7 through 9 or the operation of the first transceiver of the dual transceiver described with reference to FIGS. 10 through 15.
  • the second transceiver may operate as shown in FIG. 18.
  • a safe interval and an unsafe interval may be assigned for 63 GHz band communication.
  • the second transceiver may perform negotiation and data exchange during the non-safe interval. And the second transceiver may exchange safety-related services during the safety interval. As another embodiment, the second transceiver may perform communication based on the operation of the single transceiver described with reference to FIGS. 7 to 9.
  • FIG. 19 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • the V2X communication device of FIG. 19 includes two transceivers.
  • the V2X communication device may include a first transceiver that performs communication according to the IEEE 802.11p protocol and a second transceiver that performs communication according to the LongTerm Evolution (LTE) -V2X transmission protocol.
  • the IEEE 802.11p based first transceiver may be used for 5.9 GHz and 5.4 GHz frequency band communications.
  • the LTE-V2X based second transceiver may be used for 5.9 GHz, 5.4 GHz communication or cellular communication.
  • the LTE-V2X transmission system can provide vehicle-related services using the 5.4 / 5.9 GHz frequency band or the cellular frequency band.
  • the application, facility, transport protocol, networking protocol, and LLC layers may be common.
  • two physical layers may be included in consideration of two transceivers in an access layer that transmits a message or data received from an upper layer to a physical channel.
  • FIG. 20 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • the V2X communication device of FIG. 20 includes three transceivers.
  • the V2X communication device uses 5.9 GHz and 5.4 GHz frequency bands and uses two transceivers based on the IEEE 802.11p protocol and one transceiver based on the IEEE 802.11p protocol. Include.
  • the first transceiver and the second transceiver operating based on IEEE 802.11p may constitute a dual transceiver. Such a dual transceiver may operate as in the embodiment of FIGS. 10 to 15 described above.
  • the triple transceiver of FIG. 20 may have common upper layers (application, facility, transport, network, and LLC). Channel access of the triple transceiver can be controlled by one MCO.
  • the dual transceivers (first and second transceivers) and the single transceiver (third transceiver) may have different antenna properties.
  • the dual transceiver can receive channel information from the RSU by using a time slot or time interval synchronized with the RSU.
  • the first transceiver of the dual transceiver may be dedicated to CCH communication and the second transceiver to SCH communication.
  • CCH communication of the first transceiver may be performed as described above.
  • the second transceiver may perform service / information communication on the designated SCH based on negotiation in the CCH of the first transceiver.
  • the third transceiver may receive channel information from the RSU by using a time slot or time interval synchronized with the RSU.
  • the third transceiver may subsequently perform negotiation and data exchange on a single channel.
  • the third transceiver may perform service and message communication without time boundary restriction between the CCH interval and the SCH interval.
  • the description of the embodiment of the 63 GHz transceiver described above with reference to FIGS. 16 to 18 may be applied to the operation of the third transceiver.
  • FIG. 21 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • the V2X communication device of FIG. 21 includes three transceivers.
  • the V2X communication device uses 5.9 GHz and 5.4 GHz frequency bands and uses two transceivers based on the IEEE 802.11p protocol and 5.9 GHz, 5.4 GHz and cellular frequency bands and is based on the LTE-V2X protocol. It includes one transceiver.
  • the first transceiver and the second transceiver operating based on IEEE 802.11p may constitute a dual transceiver. Such a dual transceiver may operate as in the embodiment of FIGS. 10 to 15 described above.
  • the triple transceiver of FIG. 21 may have common upper layers (application, facility, transport, network, and LLC). Channel access of the triple transceiver can be controlled by one MCO.
  • the dual transceivers (first and second transceivers) and the single transceiver (third transceiver) may have different antenna properties.
  • the dual transceiver can receive channel information from the RSU by using a time slot or time interval synchronized with the RSU.
  • the first transceiver of the dual transceiver may be dedicated to CCH communication and the second transceiver to SCH communication.
  • CCH communication of the first transceiver may be performed as described above.
  • the second transceiver may perform service / information communication on the designated SCH based on negotiation in the CCH of the first transceiver.
  • the third transceiver may receive channel information from the RSU by using the LTE-V2X protocol. For example, if the LTE-V2X protocol supports the IEEE 802.11 module, the third transceiver may receive channel information from the RSU. Alternatively, the third transceiver may perform communication based on the LTE protocol, and in this case, a higher layer may be separately configured for LTE communication.
  • FIG. 22 illustrates an architecture of a V2X communication device according to another embodiment of the present invention.
  • the V2X communication device of FIG. 22 includes three transceivers.
  • the V2X communication device uses a 5.9 GHz and 5.4 GHz frequency bands and a single first transceiver based on the IEEE 802.11p protocol, and a single second based on the IEEE 802.11p protocol. And a single third transceiver that uses the 5.9 GHz, 5.4 GHz, and cellular frequency bands and is based on the LTE-V2X protocol.
  • the second transceiver uses the 63 GHz frequency band and the 5.9 GHz frequency band and may be based on the IEEE 802.11p protocol.
  • the triple transceiver of FIG. 22 may have common upper layers (application, facility, transport, network, and LLC). Channel access of the triple transceiver can be controlled by one MCO. Each single transceiver may have similar or different antenna properties. By way of example, where the second transceiver supports 63 GHz frequency band communication, the first and third transceivers may have similar antenna properties, but the second transceiver may have different antenna properties than the first and third transceivers.
  • the first transceiver can operate based on the MCO method of a single transceiver.
  • the first transceiver may receive channel information from the RSU by using a time slot or time interval synchronized with the RSU.
  • the second transceiver may receive channel information from the RSU by using a time slot or time interval synchronized with the RSU.
  • the third transceiver may subsequently perform negotiation and data exchange on a single channel.
  • the third transceiver may perform service and message communication without time boundary restriction between the CCH interval and the SCH interval.
  • the above description of the embodiment of the 63 GHz transceiver may be applied to the operation of the third transceiver.
  • the third transceiver may receive channel information from the RSU by using the LTE-V2X protocol. For example, if the LTE-V2X protocol supports the IEEE 802.11 module, the third transceiver may receive channel information from the RSU. Alternatively, the third transceiver may perform communication based on the LTE protocol, and in this case, a higher layer may be separately configured for LTE communication.
  • the CCH interval or sync interval may include a safety interval and a non-safety interval. Further discussion of safety intervals and non-safety intervals is given below.
  • Safety intervals may be assigned for multi-channel operational information and safety-related services / information transmission / reception with surrounding vehicles or infrastructure facilities.
  • the safety interval may be assigned in front of the non-safety interval in consideration of its importance relative to other services other than safety.
  • a safety related message among event messages may be transmitted and received at a safety interval.
  • Safety-related messages among the periodic messages may also be transmitted and received at the safety interval.
  • Time slot operation separate from safety-related services and other services can improve safety reliability by avoiding competition with communication signals for non-safety services in providing safety-related services. That is, by avoiding competition between the control signal for the information exchange between the service provider and the user for the non-safety service and the control signal for the safety-related service, it is possible to prevent the delay of safety-related information transmission.
  • Non-safe intervals may be assigned for communication between service providers and users for non-safety services. That is, a non-safe interval may be provided for exchanging control signals for exchanging information between service providers and users.
  • service messages may be transmitted and received at non-safe intervals.
  • Non-safety intervals may be assigned to be located behind safety intervals, taking into account their low importance relative to safety-related services / information.
  • the above-mentioned allocation of time intervals may be predetermined or set to be variable.
  • the inclusion or length of safety intervals and non-safety intervals may be indicated in higher layers such as application layers. That is, the values related to safety intervals and / or non-safety intervals are predefined / set from the upper layer, and the MLMEX extension of the management plane via the MAC sublayer management entity (MLME) extension (MALMEX) Service Access Point (SAP) of the MAC layer. Can be stored in.
  • MLME MAC sublayer management entity
  • MALMEX Service Access Point
  • a method of setting a value for a safety interval and / or a non-safety interval is described below.
  • FIG. 23 illustrates a time interval adjustment method according to an embodiment of the present invention.
  • the CCH interval or sync interval may comprise a safety interval or a non-safety interval.
  • a time slot including a safety interval and a non-safety interval may be referred to as an SN interval.
  • SN interval may be defined as the sum of the safety interval (X) and the non-safety interval (Y).
  • the SN interval may be equal to the synchronization interval minus the guard interval.
  • SN interval sync_interval-guard_interval
  • the safety interval and the non-safety interval may be adaptively defined within the synchronization interval.
  • the ratio of the safety interval and the non-safety interval may be defined and provided as shown in the interval table of FIG. 23 (b).
  • Such an interval table may be defined using at least one of bits, usage, safe intervals (ratios), and non-safety intervals (ratios).
  • the safety interval X and the non-safety interval Y may be calculated as follows using the ratio and the SN interval provided in the table of FIG. 11 (b).
  • Safety interval (X) SN interval ⁇ (Sr / (Sr + Nr))
  • Non-safety Interval SN Interval ⁇ (Nr / (Sr + Nr))
  • Sr represents the safety interval ratio of FIG. 23 (b), and Nr represents the non-safety interval ratio described above.
  • Interval information may indicate whether there is at least one of a safety interval or a non-safety interval within a CCH interval, and a ratio of each interval. The presence of the interval may be indicated by using 0 as the ratio value of one interval.
  • the CCH interval when the value of the interval information is 0000, the CCH interval may include only the safety interval, and when the value of the interval information is 0001, the CCH interval may include only the non-safety interval.
  • Interval information as shown in FIG. 23B may be signaled. That is, the interval degree of FIG. 16 (b) may be included in the header of the signal transmitted in the CCH interval. Interval information may also be referred to as time interval information below.
  • FIG. 24 illustrates a multi-channel operating method of a V2X device according to an embodiment of the present invention.
  • the V2X transmission apparatus may include a MAC sublayer management entity (MLME) and an MLME extension (MLLMEX), which are entities that manage MAC sublayers.
  • the V2X transmission device may include a physical sublayer management entity (PLME) that manages the PHY sublayer.
  • MLME MAC sublayer management entity
  • PLME physical sublayer management entity
  • the MAC sublayer may provide data services such as channel coordination, channel routing, and user priority.
  • the MAC sublayer may coordinate data resources, handle in / out of different layer data, or control user priority.
  • the MLME may provide services such as multi-channel synchronization, channel access.
  • the MLMEX may control the operation of the 802.11 MLME. That is, the MLMEX may control the 802.11 MLME to perform a service / operation described in IEEE 1609.4.
  • the V2X device may perform communication using the methods described above during the assigned channel and the assigned time interval.
  • Channel allocation and time interval information required for enhanced mode operation can be delivered by using MLMEX-CHSTART.request information / command.
  • Channel allocation information and time interval information may be signaled via any method.
  • MLMEX-CHSTART.request information / command may also be referred to herein as channel start information / command.
  • channel allocation information and time interval information required for enhanced mode operation may be transferred from an upper layer to a lower layer by using MLMEX-CHSTART.request information.
  • the upper layer 24010 may transmit MLMEX-CHSTART.request information to the MLMEX 2520, and the MLMEX 2520 may transmit the received information to the MLME / PLME 2230 as PLME-SET.request information.
  • the MLMEX 24020 may transmit the PLME-SET.request to the MLME / PLME 2230 based on the received MLMEX-CHSTART.request information so that the current frequency setting is performed at a specific channel number and time interval.
  • the MLME 1730 may not transmit information to the PLME unless the MLMEX-CHSTART.request is received.
  • 25 illustrates parameters of MLMEX-CHSTART.request information according to an embodiment of the present invention.
  • the MLMEX-CHSTART.request information may include the parameters shown in FIG. 25.
  • the MLMEX-CHSTART.request information may include the parameters of FIG. 25 as a field or field value. Description of the parameters of FIG. 25 is as follows.
  • Channel Identifer The channel to be made available for communications.
  • Time Slot The time slot in which alternating access is to be provided.
  • OperationRateSet If present, can be used as specified in the IEEE 802.11 standard document.
  • EDCA Parameter Set If present, if present, can be used as specified in the IEEE 802.11 standard document.
  • the immediate access parameter may be an integer value and may have a value of 0 to 255. This parameter indicates the duration of the immediate channel access in sync interval. As an example, a value of 255 may represent an indefinite connection. A value of zero may indicate no request. In addition, this parameter also may indicate the duration of the immediate channel access in sync interval if the enhanced mode access is available when the enhanced mode access is available.
  • the enhanced mode access parameter may be an integer value and may have a value of 0 to 2. This parameter may indicate an enhanced mode.
  • the value of the parameter may represent the above-described operating method of the enhanced mode, respectively. For example, if the parameter value is 0, the first operation method of the enhanced mode may be indicated, if the parameter value is 1, the second operation method of the enhanced mode may be indicated, and if the parameter value is 2, the third operation method of the enhanced mode may be indicated. Can be.
  • the time interval value parameter may be an integer value and may have a value of 0 to 15.
  • the time interval value parameter may indicate the table of FIG. 23 (b).
  • the value of the time interval value parameter may be set more simply. For example, if the value of the time interval value parameter is 0 (0000), only safe interval, and if it is 1 (0001), only non-safety interval, 2 (0010) ) May indicate that the safety service and the non-safety service coexist (safety interval + non-safety interval).
  • the ratio can be set, for example, the ratio of the safety service and the non-safety service is 50% (safety (50%) + non-safety (50%), respectively). ))
  • 26 is a block diagram of a V2X communication device according to an embodiment of the present invention.
  • the V2X communication device 26000 may include a memory 2610, a processor 2620, and an RF unit 2630. As described above, the V2X communication device may be an On Board Unit (OBU) or a Road Side Unit (RSU) or may be included in the OBU or RSU.
  • OBU On Board Unit
  • RSU Road Side Unit
  • the RF unit 2630 may be connected to the processor 26020 to transmit / receive a radio signal.
  • the RF unit 2630 may up-convert data received from the processor 26020 into a transmission / reception band to transmit a signal.
  • the RF unit 2630 may include at least one of the sub blocks shown in FIG. 5.
  • the processor 26020 may be connected to the RF unit 2630 to implement a physical layer and / or a MAC layer according to the ITS system or the WAVE system.
  • the processor 2620 may be configured to perform operations according to various embodiments of the present disclosure according to the above-described drawings and descriptions.
  • at least one of a module, data, a program, or software for implementing the operation of the V2X communication device 26000 according to various embodiments of the present disclosure described above may be stored in the memory 26010 and executed by the processor 26020. have.
  • the memory 26010 is connected to the processor 26020 and stores various information for driving the processor 26020.
  • the memory 26010 may be included in the processor 26020 or installed outside the processor 26020 and connected to the processor 26020 by a known means.
  • the RF unit 2630 of the V2X communication device 26000 of FIG. 26 may include at least one transceiver. That is, the RF unit 2630 may include two transceivers as in the embodiments of FIGS. 10, 16, and 19. In addition, the RF unit 2630 may include three transceivers as in the embodiment of FIGS. 20 to 22. Based on the above description of the case of each embodiment, the V2X communication device can operate.
  • FIG. 27 is a flowchart illustrating a data communication method of a V2X communication device according to an embodiment of the present invention.
  • the V2X communication device may receive service propagation information through the control channel (S27010).
  • the control channel is a channel for exchanging system management information or service advertisement information.
  • the V2X communication device may receive service propagation information through the control channel by using the first transceiver.
  • the service advertisement information may include information necessary to receive a service provided.
  • the service propagation information may identify and describe the service and the channel on which the service is provided.
  • the service advertisement information may include at least one of a header, service information, channel information, or routing advertisement information.
  • the channel information of the service propagation information may provide information about the SCH to be accessed for service joining as a channel number.
  • the service information may identify / describe at least one of an attribute, a configuration, and an availability of a provided service.
  • the V2X communication device may receive service data through a service channel in operation S27020.
  • the V2X communication device may access the service channel based on the received service advertisement information.
  • the service channel is a channel for transmitting and receiving application data for providing a service.
  • the V2X communication device may receive the service data through the service channel by using the second transceiver.
  • the V2X communication device can join the service by tuning the second transceiver to the SCH indicated by the channel information included in the above-described service advertisement information.
  • the synchronization interval may include at least one of a CCH interval and a SCH interval.
  • CCH interval and SCH interval may be referred to as a first time unit and a second time unit, respectively.
  • the control channel connection of the first transceiver and the communication through the control channel may be performed based on the synchronization interval, and the synchronization interval may include a first time unit and a second time unit.
  • the first time unit may include a safety interval for safety related service communication
  • the second time unit may include a non-safety interval for non-safety related service communication.
  • the V2X communication device may receive service advertisement information during at least one time unit of the first time unit or the second time unit.
  • the second time unit may include a critical safety interval for safety-related service communication of high importance.
  • time-sensitive non-safety related service communication may be performed preferentially within the second time unit.
  • the time slot for time-sensitive non-safety related service / message / signal communication may be a sub time slot included in the second time unit. Such a sub time slot may be disposed at the front of the second time slot.
  • the present invention can provide flexible multi-channel operation and improve resource usage efficiency in V2X communication.
  • the present invention can provide separate transceivers for control channel communication and service channel communication, thereby reducing communication competition between services and improving transmission reliability.
  • the V2X communication device may correspond to a user device provided with a service.
  • V2X communication devices are not limited to user equipment.
  • the V2X communication device may correspond to a provider device that provides a service.
  • the flowchart of FIG. 27 may be applied as follows.
  • the V2X communication device may connect to the CCH and transmit service propagation information on the CCH.
  • the V2X communication device may be connected to the SCH and transmit service data on the SCH.
  • the V2X communication device as a provider device can always connect to a plurality of channels to perform communication. That is, in the case of a V2X communication device as a provider, the CCH connection and SCH connection steps are omitted, and the V2X device may transmit service data in the SCH while transmitting service propagation information in the CCH.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention is used in the field of providing a series of broadcast signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

V2X 통신 장치의 데이터 통신 방법이 개시된다. 본 발명의 실시예에 따른 복수의 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법은, 제 1 트랜스시버를 사용함으로써, 컨트롤 채널(CCH)을 통해 서비스 선전(advertisement) 정보를 수신하는 단계; 및 제 2 트랜스시버를 사용함으로써, 상기 서비스 선전 정보에 기초하여 서비스 채널(SCH)을 통해 서비스 데이터를 수신하는 단계를 포함하며, 상기 컨트롤 채널 접속은 동기(sync) 인터벌에 기초하여 수행되고, 상기 동기 인터벌은 제 1 타임 유닛 및 제 2 타임 유닛을 포함한다.

Description

V2X 통신을 위한 장치 및 데이터 통신 방법
본 발명은 V2X 통신을 위한 장치 및 방법에 대한 것으로, 특히 복수의 트랜스시버를 포함하는 V2X 장치의 다중 채널 접속 방법 및 데이터 통신 방법에 대한 것이다.
최근 차량(vehicle)은 기계 공학 중심에서 전기, 전자, 통신 기술이 융합된 복합적인 산업 기술의 결과물이 되어 가고 있으며, 이러한 면에서 차량은 스마트카라고도 불린다. 스마트카는 운전자, 차량, 교통 인프라 등을 연결하여 교통 안전/복잡 해소와 같은 전통적인 의미의 차량 기술뿐 아니라 다양한 사용자 맞춤형 이동 서비스를 제공하게 되었다. 이러한 연결성은 V2X(Vehicle to Everything) 통신 기술을 사용하여 구현될 수 있다.
V2X 통신을 통해 다양한 서비스가 제공될 수 있다. 또한, 다양한 서비스를 제공하기 위해 복수의 주파수 대역을 사용하게 되었다. 이러한 환경에서도 차량 통신의 특성상 안전 서비스의 신뢰도 높은 전달 및 제공은 매우 중요한 문제이다. 특히, 다중 채널 접속을 위해 유연하고 효율적인 인터벌 할당 및 그에 따른 멀티 채널 오퍼레이팅 방식이 필요하다.
상술한 기술적 과제를 해결하기 위하여 본 발명의 실시예에 따른 복수의 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법은, 제 1 트랜스시버를 사용함으로써, 컨트롤 채널(CCH)을 통해 서비스 선전(advertisement) 정보를 수신하는 단계; 및 제 2 트랜스시버를 사용함으로써, 상기 서비스 선전 정보에 기초하여 서비스 채널(SCH)을 통해 서비스 데이터를 수신하는 단계를 포함하며, 상기 컨트롤 채널 접속은 동기(sync) 인터벌에 기초하여 수행되고, 상기 동기 인터벌은 제 1 타임 유닛 및 제 2 타임 유닛을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 데이터 통신 방법에 있어서, 상기 제 1 타임 유닛은 안전 관련 서비스 통신을 위한 안전 인터벌을 포함하고, 상기 제 2 타임 유닛은 비-안전 관련 서비스 통신을 위한 비-안전 인터벌을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 데이터 통신 방법에 있어서, 상기 서비스 선전 정보는 상기 제 1 타임 유닛 또는 상기 제 2 타임 유닛 동안 수신될 수 있다.
또한, 본 발명의 실시예에 따른 데이터 통신 방법에 있어서, 상기 제 2 타임 유닛은 중요도가 높은 안전 관련 서비스 통신을 위한 크리티컬 안전 인터벌을 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 데이터 통신 방법에 있어서, 상기 제 2 타임 유닛 동안 시간-민감한 비-안전 관련 서비스 통신은 우선적으로 수행될 수 있다.
상술한 기술적 과제를 해결하기 위한 본 발명의 실시예에 따른 V2X 통신 장치는, 데이터를 저장하는 메모리; 무선 신호를 송수신하는 RF 유닛; 및 상기 RF 유닛을 제어하는 프로세서를 포함하고, 상기 RF 유닛은 컨트롤 채널(CCH) 통신을 위한 제 1 트랜스시버 및 서비스 채널(SCH) 통신을 위한 제 2 트랜스시버를 포함하고, 상기 V2X 통신 장치는, 상기 제 1 트랜스시버를 사용함으로써, 상기 컨트롤 채널을 통해 서비스 선전(advertisement) 정보를 수신하는 단계; 및 상기 제 2 트랜스시버를 사용함으로써, 상기 서비스 선전 정보에 기초하여 상기 서비스 채널을 통해 서비스 데이터를 수신하는 단계를 포함하며, 상기 컨트롤 채널 접속은 동기(sync) 인터벌에 기초하여 수행되고, 상기 동기 인터벌은 제 1 타임 유닛 및 제 2 타임 유닛을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 V2X 통신 장치에 있어서, 상기 제 1 타임 유닛은 안전 관련 서비스 통신을 위한 안전 인터벌을 포함하고, 상기 제 2 타임 유닛은 비-안전 관련 서비스 통신을 위한 비-안전 인터벌을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 V2X 통신 장치에 있어서, 상기 서비스 선전 정보는 상기 제 1 타임 유닛 또는 상기 제 2 타임 유닛 동안 수신될 수 있다.
또한, 본 발명의 실시예에 따른 V2X 통신 장치에 있어서, 상기 제 2 타임 유닛은 중요도가 높은 안전 관련 서비스 통신을 위한 크리티컬 안전 인터벌을 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 V2X 통신 장치에 있어서, 상기 제 2 타임 유닛 동안 시간-민감한 비-안전 관련 서비스 통신은 우선적으로 수행될 수 있다.
본 발명에 따르면 다중 채널 운용(operation) 시 인핸스드(enhanced) 모드를 추가함으로서, V2X 통신의 경쟁(contention) 및 안전 서비스의 전달 지연을 최소화할 수 있다. 본 발명에 따르면 CCH 인터벌 및 SCH 인터벌을 포함하는 하나의 동기 인터벌을 CCH 접속을 위해 할당함으로써, 서비스 간의 통신에 대한 경쟁을 최소화할 수 있다. 또한, 동기 인터벌 내에서 안전 관련 정보 및 서비스 관련 정보를 별도의 타임 슬롯에서 통신함으로써, 서비스 간 통신 경쟁을 최소화할 수 있다. 또한, 비동기식 채널 접속 모드를 제안함으로써, 리소스 활용 효율이 높은 멀티 채널 운용 방법을 제공할 수 있다. 또한, 다중 채널 접속을 위해 복수의 트랜스시버를 구비하고, 복수의 트랜스시버를 각각 채널 및 서비스에 기초하여 할당함으로써 안정적인 통신이 수행될 수 있다. 본 발명의 다른 효과는 이하의 명세서에서 설명한다.
본 발명에 대해 더욱 이해하기 위해 포함되며 본 출원에 포함되고 그 일부를 구성하는 첨부된 도면은 본 발명의 원리를 설명하는 상세한 설명과 함께 본 발명의 실시예를 나타낸다.
도 1은 본 발명의 실시예에 따른 ITS(Intelligent Transport System) 스테이션의 레퍼런스 아키텍처를 나타낸다.
도 2는 본 발명의 실시예에 따른 ITS 액세스 레이어를 나타낸다.
도 3은 본 발명의 실시예에 따른 MCO(다중채널 운용, Multi-channel Operation)를 수행하는 MAC 서브레이어의 컨셉적인(conceptual) 내부 아키택처를 나타낸다.
도 4는 본 발명의 실시예에 따른 EDCA(Enhanced Distributed Channel Access)의 사용자 우선순위와 AC(Access Category)와의 관계를 나타낸다.
도 5는 본 발명의 실시예에 따른 V2X 전송 장치의 피지컬 레이어 구성을 나타낸다.
도 6은 본 발명의 실시예에 따른 ITS 시스템 운용(operation)에 사용되는 다중 채널 배치(allocation)을 나타낸다.
도 7은 본 발명의 실시예에 따른 다중 채널 운용(multi-channel operation)의 채널 코디네이션(channel coordination) 모드를 나타낸다.
도 8은 본 발명의 실시예에 따른 다중 채널 운용을 위한 채널 코디네이션 모드인 인핸스드 모드를 나타낸다.
도 9는 본 발명의 실시예에 따른 인핸스드 모드에 기반한 다중 채널 운용(multi-channel operation)의 채널 코디네이션(channel coordination) 모드를 나타낸다.
도 10은 본 발명의 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 11은 본 발명의 실시예에 따른 타임 인터벌 배치 방법을 나타낸다.
도 12는 본 발명의 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
도 13은 본 발명의 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
도 14는 본 발명의 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
도 15는 본 발명의 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
도 16은 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 17은 본 발명의 다른 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
도 18은 본 발명의 다른 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
도 19는 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 20은 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 21은 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 22는 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 22는 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 23은 본 발명의 실시예에 따른 타임 인터벌 조정 방법을 나타낸다.
도 24는 본 발명의 실시예에 따른 V2X 장치의 멀티 채널 오퍼레이팅 방법을 나타낸다.
도 25는 본 발명의 실시예에 따른 MLMEX-CHSTART.request 정보의 파라미터들을 나타낸다.
도 26은 본 발명의 실시예에 따른 V2X 통신 장치의 블록도를 나타낸다.
도 27은 본 발명의 실시예에 따른 V2X 통신 장치의 데이터 통신 방법을 나타낸 순서도이다.
본 발명의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 본 발명의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 본 발명의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함하지만, 본 발명이 이러한 세부 사항을 모두 필요로 하는 것은 아니다. 본 발명은 이하에서 설명되는 실시예들은 각각 따로 사용되어야 하는 것은 아니다. 복수의 실시예 또는 모든 실시예들이 함께 사용될 수 있으며, 특정 실시예들은 조합으로서 사용될 수도 있다.
본 발명에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
본 발명은 V2X 통신 장치에 대한 것으로, V2X 통신 장치는 ITS(Intelligent Transport System) 시스템에 포함되어, ITS 시스템의 전체 또는 일부 기능들을 수행할 수 있다. V2X 통신 장치는 차량과 차량, 차량과 인프라, 차량과 자전거, 모바일 기기 등과의 통신을 수행할 수 있다. V2X 통신 장치는 V2X 장치라고 약칭될 수도 있다. 실시예로서 V2X 장치는 차량의 온보드유닛(OBU; On Board Unit)에 해당하거나, OBU에 포함될 수도 있다. V2X 장치는 인프라스트럭처의 RSU(Road Side Unit)에 해당하거나, RSU에 포함될 수도 있다. 또는, V2X 통신 장치는 ITS 스테이션에 해당되거나, ITS 스테이션에 포함될 수 있다. 실시예로서, V2X 장치는 IEEE 1609.1~4의 WAVE(Wireless Access In Vehicular Environments) 시스템에서 동작할 수도 있다.
도 1은 본 발명의 실시예에 따른 ITS(Intelligent Transport System) 스테이션의 레퍼런스 아키텍처를 나타낸다.
도 1의 아키텍처에서, 2개의 종단 차량/사용자가 통신 네트워크를 통신할 수 있으며, 이러한 통신은 도 1의 아키텍처의 각 레이어의 기능을 통해 수행될 수 있다. 예를 들어, 차량간 메세지가 통신되는 경우, 송신 차량 및 그의 ITS 시스템에서는 한 레이어씩 아래로 각 레이어을 통과하여 데이터가 전달되고, 수신 차량 및 그의 ITS 시스템에서는 한 레이어씩 위로 각 레이어를 통과하여 데이터가 전달될 수 있다. 도 1의 아키텍처의 각 레이어에 대한 설명은 아래와 같다.
어플리케이션(application) 레이어: 어플리케이션 레이어는 다양한 사용예(use case)를 구현 및 지원할 수 있다. 예를 들면, 어플리케이션은 도로 안전(Road Safety), 효율적 교통 정보(Efficient Traffic Information), 기타 애플리케이션 정보(Other application)를 제공할 수 있다.
퍼실리티(facilities) 레이어: 퍼실리티 레이어는 어플리케이션 레이어에서 정의된 다양한 사용예를 효과적으로 실현할 수 있도록 지원할 수 있다. 예를 들면, 퍼실리티 레이어는 어플리케이션 지원(application support), 정보 지원(information support), 세션/통신 지원(session/communication support)을 수행할 수 있다.
네트워크 및 트랜스포트(Networking & Transport) 레이어: 네트워크/트랜스포트 레이어는 다양한 트랜스포트 프로토콜 및 네트워크 프로토콜을 사용함으로써 동종(homogenous)/이종(heterogenous) 네트워크 간의 차량 통신을 위한 네트워크를 구성할 수 있다. 예를 들면, 네트워크/트랜스포트 레이어는 TCP/UDP+IPv6 등 인터넷 프로토콜을 사용한 인터넷 접속과 라우팅을 제공할 수 있다. 또는, 네트워크/트랜스포트 레이어는 BTP(Basic Transport Protocol)/지오네트워킹(GeoNetworking) 등 지정학적 위치 정보(Geographical position) 기반 프로토콜을 사용하여 차량 네트워크를 구성할 수 있다.
액세스(Access) 레이어: 액세스 레이어는 상위 레이어에서 수신한 메세지/데이터를 물리적 채널을 통해 전송할 수 있다. 예를 들면, 액세스 레이어는 IEEE 802.11 및/또는 802.11p 표준 기반 통신 기술, IEEE 802.11 및/또는 802.11p 표준의 피지컬 전송 기술에 기초하는 ITS-G5 무선 통신 기술, 위성/광대역 무선 이동 통신을 포함하는 2G/3G/4G(LTE)/5G 무선 셀룰러 통신 기술, DVB-T/T2/ATSC 등 광대역 지상파 디지털 방송 기술, GPS 기술, IEEE 1609 WAVE 기술 등에 기초하여 데이터 통신을 수행/지원할 수 있다.
ITS 아키텍처는 추가로 매니지먼트(Management) 레이어 및 시큐리티(security) 레이어를 더 포함할 수 있다.
도 2는 본 발명의 실시예에 따른 ITS 액세스 레이어를 나타낸다.
도 2는 도 1에서 나타낸 ITS 시스템의 액세스 레이어(ITS Access Layer)를 더 상세히 나타낸다. 도 2의 액세스 레이어는 데이터 링크 레이어(Data Link Layer), 피지컬 레이어(Physical Layer) 및 레이어 매니지먼트(Layer Management)를 포함할 수 있다. 도 2의 액세스 레이어는 OSI 1 레이어(피지컬 레이어) 및 OSI 제 2 레이어(데이터 링크 레이어)와 유사 또는 동일한 특징을 갖는다.
데이터 링크 레이어(Data Link Layer)는 LLC(Logical Link Control) 서브레이어(LLC sub-layer), MAC(Medium Access Control) 서브레이어(MAC sub-layer) 및 MCO(Multi-channel operation) 서브레이어를 포함할 수 있다. 피지컬 레이어는 PLCP(Physical Layer Convergence Protocol) 서브레이어 및 PMD(Physical Medium Access) 서브레이어를 포함할 수 있다.
데이터 링크 레이어는 잡음이 있는 인접 노드간 (또는 차량간)의 물리적인 회선을 상위 네트워크계층이 사용할 수 있도록 전송 에러가 없는 통신 채널로 변환시킬 수 있다. 데이터 링크 레이어는 3-레이어 프로토콜을 전송/운반/전달하는 기능, 전송할 데이터를 전송단위로서의 패킷(또는 프레임)으로 나누어 그룹화하는 프레이밍 (Framing) 기능, 보내는 측과 받는 측간의 속도차를 보상하는 흐름제어 (Flow Control) 기능, 전송 오류를 검출하고 이것을 수정 또는 재전송하는 기능 등을 수행한다. 또한, 데이터 링크 레이어는 패킷이나 ACK 신호를 잘못 혼동하는 것을 피하기 위해 패킷과 ACK 신호에 시퀀스 번호(sequence number)를 부여하는 기능, 그리고 네트워크 엔티티 간에 데이터 링크의 설정, 유지, 단락 및 데이타 전송 등을 제어하는 기능을 수행한다. 나아가 이러한 데이터 링크 레이어는 IEEE 802 표준에 근거하여 LLC(logical link control) 서브레이어 및 MAC(medium access control) 서브레이어를 포함할 수 있다.
LLC 서브레이어의 주요 기능은 여러 상이한 하위 MAC 서브레이어 프로토콜을 사용할 수 있게 하여 망의 토폴로지에 관계없는 통신이 가능토록 하는 것이다.
MAC 서브레이어는 여러 차량(또는 노드들 또는 차량과 주변 기기들)들이 공유 매체 사용에 대한 차량 간 충돌/경합 발생을 제어할 수 있다. MAC 서브레이어는 상위 레이어에서 전달된 패킷을 물리적인 네트워크의 프레임 포맷에 맞도록 포매팅할 수 있다. MAC 서브레이어는 송신자 주소/수신자 주소의 부가 및 식별 기능, 반송파 검출, 충돌 감지, 물리 매체 상의 장애 검출을 수행할 수 있다.
피지컬 레이어: 피지컬 레이어는 ITS 계층 구조상의 최하위 계층으로 노드와 전송매체 사이의 인터페이스를 정의하고, 데이터 링크 계층 엔터티 간의 비트 전송을 위해 변조, 코딩, 전송 채널의 물리 채널로의 매핑을 수행할 수 있다. 또한, 피지컬 레이어는 반송파 감지(Carrier Sense), 빈 채널 평가(CCA: Clear Channel Assessment)를 통해 무선매체가 사용 중인지 여부(busy 또는 idle)를 MAC 부계층에게 알려는 기능을 수행한다. 나아가 이러한 피지컬 레이어는 IEEE 표준에 근거하여 PLCP(physical layer convergence protocol) 서브레이어 및 PMD(physical medium access) 서브레이어를 포함할 수 있다.
PLCP 서브레이어는 MAC 서브레이어와 데이터 프레임을 연결하는 역할을 수행한다. PLCP 서브레이어는 수신 데이터에 헤더를 덧붙임으로써 MAC 서브레이어가 물리적 특성에 관계없이 동작하도록 한다. 따라서, PLCP 프레임은 여러 다른 무선 LAN 물리계층 표준에 따라 그 포맷이 다르게 정의될 수 있다.
PMD 서브레이어의 주요 기능은 PLCP 서브레이어로부터 받은 프레임을 캐리어/RF 변조 (carrier modulation, 또는 RF modulation) 후 송수신 전송 관련 표준에 따라 무선매체에 전송을 수행할 수 있다.
레이어 매니지먼트(layer management)는 액세스 계층의 운영 및 보안과 관련된 정보를 관리 및 서비스해 주는 역할을 수행한다. 정보 및 서비스는 MI (interface between management entity and access 계층, 또는 MI-SAP) 와 SI (interface between security entity and access 계층, 또는 SI-SAP)를 통해 양방향으로 전달 및 공유된다. 액세스 계층과 네트워크/트랜스포트 계층간의 양방향 정보 및 서비스 전달은 IN (또는 IN-SAP)에 의해 수행된다.
MCO 서브레이어는 복수의 주파수 채널을 사용하여 안전 서비스(safety service) 및 안전 서비스 이외의 기타 서비스 즉 비-안전 서비스(non-safety service)와 같은 다양한 서비스를 제공할 수 있다. MCO 서브레이어는 특정 주파수 채널에서의 트래픽 가중(traffic load)를 다른 채널로 효과적으로 분산함으로써 각 주파수 채널에서의 차량간 통신 시 충돌/경합을 최소화할 수 있다. MCO 서브레이어는 상위 레이어에서 수신하는 설정에 기초하여 이하에서 설명할 멀티 채널 접속 및 운용(operation)을 수행할 수도 있다.
도 3은 본 발명의 실시예에 따른 MCO(다중채널 운용, Multi-channel Operation)를 수행하는 MAC 서브레이어의 컨셉적인(conceptual) 내부 아키택처를 나타낸다.
실시예로서, 도 3의 아키택처는 도 2의 MCO 블록에 해당할 수도 있다. 도 3의 MCO 구조는 채널 액세스가 정의되는 채널 코디네이션, PHY-MAC 레이어들 간의 전반적인 데이터 및 매니지먼트 프레임의 동작 과정을 정의하는 채널 라우팅, 전송 프레임의 우선순위(priority)를 결정 및 정의하는 EDCA(Enhanced Dedicated Channel Access), 상위 계층에서 수신한 프레임을 저장하는 데이터 버퍼(또는 큐(queue))를 포함할 수 있다. 채널 코디네이션 블록은 도 3에서는 도시되지 않으며, 채널 코디네이션은 도 3의 MAC 서브레이어 전체에 의해 수행될 수도 있다.
채널 코디네이션: 실시예로서 CCH(Control Channel)와 SCH(Service Channel)에 대한 채널 액세스가 컨트롤될 수 있다. 채널 액세스 코디네이션에 대해서는 후술한다. 실시예로서, CCH로(via)는 WSM(Wave Short Message) 및 이 전송될 수 있으며, SCH로는 WSM 및/또는 IP 데이터가 전송될 수 있다.
데이터 버퍼(큐): 데이터 버퍼는 상위 계층으로부터 수신되는 데이터 프레임을 정의된 AC(Access Category)에 따라 저장할 수 있다. 도 3의 실시예에서, AC 별로 데이터 버퍼가 구비될 수 있다.
채널 라우팅(Channel routing): 채널 라우팅 블록은 상위 계층에서 입력되는 데이터를 데이터 버퍼에 전달할 수 있다. 상위 계층의 송신 요구에 대하여 상술한 채널 코디네이션(Channel Coordination) 및 프레임 전송을 위한 채널 번호, 송신 전력 및 데이터율 등의 전송 동작 파라미터를 호출할 수 있다.
EDCA: 기존 IEEE 802.11e MAC 계층에서 QoS를 보장하기 위한 방식으로 트래픽의 종류에 따라 4개의 AC(Access Category)로 구분해 각 카테고리 마다 차별화된 우선순위를 두고, AC 별로 차별화된 파라미터를 할당하여 높은 우선순위의 트래픽에는 더 많은 전송 기회를 주도록 하는 경쟁(contention) 기반 미디엄 액세스 방식이다. 우선순위를 포함하는 데이터 전송을 위해서 EDCA 블록은 0-7까지 8개의 우선순위를 지정하고 우선순위에 따라 MAC 계층에 도착하는 데이터를 4개의 AC로 매핑할 수 있다.
도 4는 본 발명의 실시예에 따른 EDCA의 사용자 우선순위와 AC(Access Category)와의 관계를 나타낸다.
EDCA의 사용자 우선순위와 AC의 관계는 도 4와 같다. 그림에서 순위는 AC 숫자가 커질수록 높은 우선순위를 가지게 된다. 모든 AC는 각각의 전송 큐와 AC 파라 미터를 갖고 AC간 우선순위의 차이는 서로 다르게 설정된 AC 파라미터 값에 기초하여 결정된다. 서로 다르게 설정된 AC 파라미터 값이 백오프 (Back-off)와 연결되어 서로 다른 채널 접근 순위를 가지게 된다. 해당 AC의 파라미터 값은 각각 AIFS[AC], CWmin[AC], CWmax[AC]를 사용하며, 여기서 AIFS(Arbitration Inter-Frame Space)는 전송을 진행하기 전에 채널이 유휴(idle)한지를 확인하기 위한 최소 시간을 말한다. AIFS[AC]와 CWmin[AC]의 값이 작을수록 높은 우선 순위를 가지며, 이에 따라 채널 접근 지연이 짧아져 주어진 트래픽 환경에서 더 많은 대역을 사용할 수 있게 된다.
프레임 전송 도중 스테이션들간의 충돌이 발생 할 경우, 송신기는 새로운 백오프 카운터를 생성한다. IEEE 802.11 MAC에 정의된 4개의 AC별 전송 큐는 도 4에서와 같이 하나의 스테이션 내에서 무선 매체 접근을 위해서 개별적으로 서로 경쟁을 한다. 각각의 AC는 서로 독립적인 백오프 카운터를 가지고 있기 때문에 가상충돌(virtual collision)이 발생할 수 있다. 만약 동시에 백오프를 마친 AC가 두 개 이상 존재한다면 가장 높은 우선순위를 가진 AC의 데이터가 먼저 전송되며, 다른 AC들은 CW 값을 증가시켜 다시 백오프 카운터를 갱신하게 된다. 이러한 충돌 해결 과정을 가상 충돌 처리 과정이라고 한다. 또한, EDCA는 전송 기회 (TXOP; Transmission Opportunity)를 통해서 데이터 전송 시 채널에 접속할 수 있도록 해준다. 만약 하나의 프레임이 너무 길어서 한 번의 TXOP 동안 다 전송할 수 없는 경우 작은 프레임으로 분할하여 전송할 수도 있다.
도 5는 본 발명의 실시예에 따른 V2X 전송 장치의 피지컬 레이어 구성을 나타낸다.
실시예로서, 도 5는 IEEE 802.11 또는 ITS-G5의 피지컬 레이어 신호 처리 블록도를 나타낸다. 다만, 도 5는 본 발명 실시예에 따른 피지컬 레이어 구성을 나타내는 것으로, 상술한 전송 표준 기술에만 한정적으로 적용되는 것은 아니다.
도 5의 피지컬 레이어 프로세서는 스크램블러 블록(scrambler;5010), FEC 인코더(FEC encoder; 5020), 인터리버(interleaver; 5030), 매퍼(mapper;5040), 파일럿 삽입 블록(pilot insertion; 5050), IFFT 블록(IFFT; 5060), 가드 삽입 블록(guard insertion; 5070), 프리앰블 삽입 블록(preamble insertion; 5080) 중 적어도 하나를 포함하는 PLCP(Physical Layer Convergence Protocol) 부계층 기저대역 (baseband) 신호 처리 부분 및 웨이브 쉐이핑(wave shaping; 5090), I/Q 변조 블록(I/Q Modulation; 5100)) 및 DAC(5110) 중 적어도 하나를 포함하는 PMD(Physical Medimu Dependant) 부계층 RF 대역 신호 처리 부분을 포함할 수 있다. 각 블록에 대한 기능 설명은 다음과 같다.
스크램블러(5010)는 입력 비트 스트림을 PRBS (Pseudo Random Binary Sequence)로 XOR시켜서 랜더마이즈(randomize)할 수 있다. FEC 인코더(5020)는 전송 채널상의 오류를 수신측에서 정정할 수 있도록 전송 데이터에 리던던시를 부가할 수 있다. 인터리버(5030)는 버스트(burst) 에러에 대응할 수 있도록 입력 데이터/비트열을 인터리빙 룰에 기초하여 인터리빙할 수 있다. 실시예로서, QAM 심볼에 딥 페이딩(deep fading) 또는 삭제(erasure)가 가해진 경우, 각 QAM 심볼에는 인터리빙된 비트들이 매핑되어 있으므로, 전체 코드워드 비트들 중에서 연속된 비트들에 오류가 발생하는 것을 방지될 수 있다. 맵퍼(5040)는 입력된 비트 워드를 하나의 성상(constellation)에 할당할 수 있다. 파일럿 삽입 블록(5050)은 신호 블록의 정해진 위치에 레퍼런스 신호를 삽입한다. 이러한 레퍼런스 신호를 사용함으로써, 수신기는 채널 추정, 주파수 오프셋 및 타이밍 오프셋 등 채널 왜곡 현상을 추정할 수 있다.
IFFT 블록(5060) 즉 인버스 웨이브폼 변환(Inverse waveform transform) 블럭은 전송채널의 특성과 시스템 구조를 고려하여 전송효율 및 flexibility가 향상되도록 입력 신호를 변환할 수 있다. 실시예로서, OFDM 시스템의 경우 IFFT 블록(5060)은 인버스 FFT 오퍼레이션을 사용하여 주파수 영역의 신호를 시간 영역으로 변환할 수 있다. IFFT 블록(5060)은 싱글 캐리어 시스템의 경우 사용되지 않거나 생략될 수도 있다. 가드 삽입 블록(5070)은 전송 채널의 딜레이 스프레드(delay spread)의 영향을 최소화 하기 위해 인접 신호 블록들 간에 가드 인터벌을 삽입할 수 있다. 실시예로서, OFDM 시스템의 경우 가드 삽입 블록(5070)은 가드 인터벌 구간에 사이클릭 프레픽스(cyclic prefix)를 삽입할 수도 있다. 프리앰블 삽입 블록(5080)은 수신기가 타겟 신호를 빠르고 효율적으로 검출(detection)할 수 있도록 송수신기간 기결정된 타입의 신호 즉 프리앰블을 전송 신호에 삽입할 수 있다. 실시예로서 OFDM 시스템의 경우 프리앰블 삽입 블록(5080)은 복수의 OFDM 심볼을 포함하는 신호 블록/신호 프레임을 정의하고, 신호 블록/신호 프레임의 시작 부분에 프리앰블 심볼을 삽입할 수 있다.
웨이브 쉐이핑 블록(5090)은 채널 전송 특성에 기초하여 입력 베이스밴드 신호를 웨이브폼 프로세싱할 수 있다. 실시예로서, 웨이브폼 쉐이핑 블록(5090)은 전송 신호의 대역외(out-of-band) 에미션(emission)의 기줄을 얻기 위해 SRRC(square-root-raised cosine) 필터링을 수행할 수도 있다. 멀티-캐리어 시스템의 경우 웨이브폼 쉐이핑 블록(5090)은 사용되지 않거나 생략될 수도 있다. I/Q 모듈레이터(5100)는 인페이즈(In-phase) 및 쿼드러처(Quadrature) 변조를 수행할 수 있다. DAC(Digigal to Analog Converter; 5110) 블록은 입력 디지털 신호를 아날로그 신호로 변환하여 출력할 수 있다. 출력 아날로그 신호는 출력 안테나를 통해 전송될 수 있다.
도 5에서 도시되고 설명된 블록들 각각은 생략되거나, 또는 비슷하거나 동일한 기능을 가진 다른 블록에 의해서 대체될 수 있다. 도 5의 블록들은 필요에 따라 전부 또는 일부의 조합으로 구성될 수도 있다.
도 6은 본 발명의 실시예에 따른 ITS 시스템 운용(operation)에 사용되는 다중 채널 배치(allocation)을 나타낸다.
도 6(a)는 ITS를 위한 US 스펙트럼 배치(allocation)을, 도 6(b)는 ITS를 위한 EP 스펙트럼 배치(allocation)을 나타낸다.
도 6에서, 미국 및 유럽은 5.9GHz 대역(5.855~5.925GHz)에서 7개의 주파수(각 주파수 대역폭: 10MHz)를 갖는다. 7개의 주파수는 1개의 CCH(Control Channel) 및 6개의 SCH(Service Channel)을 포함할 수 있다. 도 6(a)에서와 같이 미국의 경우 CCH가 채널 번호 178에 할당되며, 도 6(b)에서와 같이 유럽의 경우 CCH가 채널번호 180에 할당된다.
유럽의 경우 타임-센서티브(time-sensitive)하며 데이터 용량이 큰 서비스 제공을 위해 5.9 GHz를 기준으로 상위 주파수 대역에 추가적으로 ITS-G63 대역의 사용이 고려되고 있으며, 하위 주파수 대역으로 ITS-G5 대역의 사용이 고려되고 있다. 이러한 환경에서 서비스를 다양한 멀티 채널에 적절하게 할당함으로써 고품질의 서비스를 제공하기 위해, 효율적인 멀티채널 운용 방안의 개발이 필요하다.
컨트롤 채널(CCH)은 매니지먼트 프레임 및/또는 WAVE 메세지 교환에 사용되는 라디오 채널을 나타낸다. WAVE 메세지는 WSM(WAVE short message)가 될 수 있다. 서비스 채널(SCH)은 서비스 제공에 사용되는 라디오 채널로, 컨트롤 채널이 아닌 임의의 채널을 나타낸다. 실시예로서, 컨트롤 채널은 WSMP(Wave Short Message Protocol) 메세지의 통신 또는 WSA(WAVE Service Advertisement)와 같은 시스템 매니지먼트 메세지의 통신에 사용될 수 있다. SCH는 범용(general-purpose) 애플리케이션 데이터 통신에 사용될 수 있으며, 이러한 범용 애플리케이션 데이터의 통신은 WSA와 같은 서비스 관련 정보에 의해 코디네이트될 수 있다.
WSA는 이하에서 서비스 선전 정보로 지칭할 수도 있다. WSA는 애플리케이션-서비스의 가용성의 선언(announcement)를 포함하는 정보를 제공할 수 있다. WSA 메세지는 애플리케이션 서비스 및 서비스가 접속가능한(accessible) 채널을 식별(identify) 및 기술(describe)할 수 있다. 실시예로서, WSA는 헤더, 서비스 정보, 채널 정보 및 WAVE 라우팅 선전 정보를 포함할 수 있다.
서비스 접속을 위한 서비스 선전 정보는 주기적(periodic) 메세지가 될 수 있다. 실시예로서, CAM(Co-operative Awareness Messages)는 주기적 메세지가 될 수 있다. CAM들은 퍼실리티 레이어에 의해 주기적으로 방송될 수 있다. 실시예로서, CAM은 RSU에 의해 전송될 수도 있고, 이러한 경우 이하에서 RSU 인터벌에서 송수신될 수도 있다.
DENM(Decentralized Environmental Notification Messages)은 이벤트 메세지가 될 수 있다. 이벤트 메세지는 이벤트의 발견(detection)에 의해 트리거링되어 전송될 수 있다. 서비스 메세지는 세션을 매니징하기 위해 전송될 수 있다. 이하의 실시예에서, 이벤트 메세지는 안전 메세지/정보를 포함할 수 있다. 그리고 서비스 메세지는 비-안전 메세지/정보를 포함할 수 있다.
도 7은 본 발명의 실시예에 따른 다중 채널 운용(multi-channel operation)의 채널 코디네이션(channel coordination) 모드를 나타낸다.
도 7은 다중채널 운영의 채널 코디네이션 모드로서 (a) 연속(continuous) 모드, (b) 변경(altering) 모드, (c) 확장(extended) 모드 및 (d) 즉시(immediate) 모드를 나타낸다. 채널 코디네이션 모드는 V2X 장치가 CCH 및 SCH에 접속하는 방법을 지시할 수 있다.
V2X 장치는 적어도 하나의 채널에 액세스할 수 있다. 실시예로서, 단일-라디오 장치는 CCH를 모니터링하고, SCH에서(via) 데이터를 교환할 수 있다. 이런 목적을 위해 채널 인터벌이 명시되어야 하며, 도 7은 이러한 채널 인터벌 즉 타임 슬롯 할당을 나타낸다. 라디오 채널 변경(altering)은 커먼 타임(common time) 베이스와 연관되어 동기화된 인터벌에 기초하여 운영될 수 있다. 동기(sync) 인터벌은 복수의 타임 슬롯을 포함할 수 있다. 그리고 복수의 타임 슬롯은 CCH 인터벌 및 SCH 인터벌에 해당할 수 있다. 이러한 경우, 동기(sync) 인터벌은 CCH 인터벌 및 SCH 인터벌을 포함할 수 있다. CCH 인터벌 동안, 트래픽은 CCH에서 교환될 수 있다. 애플리케이션-서비스에 참여하는 싱글-라디오 장치는 SCH 인터벌 동안 SCH로 스위칭할 수 있다. CCH 인터벌 및 SCH 인터벌 각각은 가드 인터벌을 포함할 수 있다. 각 인터벌은 가드 인터벌로 시작할 수도 있다.
실시예로서, 다중 채널 운용 정보 및 안전 관련 서비스 정보의 교환은 CCH 인터벌 동안 CCH 에서 수행될 수 있다. 또한, 서비스 제공자 및 사용자 간의 정보 교환을 위한 협상은 CCH 인터벌 동안 CCH 에서 수행될 수 있다. V2X 장치의 채널 변경을 위한 하드웨어 타이밍 동작은 UTC(Universal Time Coordinated) 추정으로 획득한 동기 신호에 의해 개시될 수 있다. 채널 동기는 UTC에 기초하여 1 PPS(Pulse Per second) 구간마다 수행될 수 있다.
실시예로서, 도 7은 IEEE 1609.4에 기술된 다중채널 운영(MCO)의 채널 코디네이션 방법으로서, 하나의 물리 레이어에서 두개의 MAC 레이어가 시간을 분할하여 CCH 및 각기 다른 채널 모드를 번갈아 사용하는 방법을 나타낸다.
(a)&(b) 연속(continuous) 모드: 연속 모드는 각 차량 또는 모든 차량이 도 6의 타임 슬롯/CCH 인터벌/SCH 인터벌과 같은 시분할 기준과 상관없이 동작하는 모드이다. 연속 모드에서, V2X 장치는 지정된 CCH 또는 SCH에서 지속적으로 다중채널의 운용 정보 및 안전 관련 서비스 정보를 수신하거나 서비스 제공자와 사용자 간의 정보 교환을 수행할 수 있다.
(c) 변경(altering) 모드: 변경 모드에서, 각 차량 또는 모든 차량은 CCH 인터벌 동안 다중 채널의 운용 정보 및 안전 관련 서비스/정보를 수신하거나 서비스 제공자/사용자 간의 정보 교환을 위한 협상 과정을 수행할 수 있다. 변경 모드에서, 각 차량 또는 모든 차량은 SCH 인터벌 동안 서비스 제공자와 사용자 간의 서비스/정보 교환을 수행한다. 변경 모드에서, V2X 장치는 설정된 CCH 인터벌과 SCH 인터벌 동안 교대로 CCH 및 SCH를 통해 통신할 수 있다.
(d) 확장(extended) 모드: 확장 모드에서, CCH 인터벌 및 SCH 인터벌의 통신은 변경 모드와 같이 수행될 수 있다. 다만, SCH 인터벌의 서비스/정보 교환은 CCH 인터벌에서도 수행될 수 있다. 실시예로서, 확장 모드에서의 V2X 장치는 CCH 인터벌 동안 컨트롤 정보를 송수신하고, SCH 인터벌에 진입하면 서비스/정보의 교환이 종료될 때까지 SCH 인터벌을 유지할 수 있다.
(e) 즉시(immediate) 모드: 즉시 모드에서 V2X 장치의 통신은 변경 모드 및/또는 확장 모드에서와 같이 수행될 수 있다. 다만, 즉시 모드에서의 V2X 장치는 CCH 인터벌 동안 정보 교환을 위한 협상이 완료되면 CCH 인터벌의 종료를 기다리는 대신 지정된 SCH로 바로 채널을 스위칭하여 정보 교환을 개시할 수 있다. 도 7에서 나타낸 바와 같이, 확장 모드 및 즉시 모드는 함께 사용될 수 있다.
도 7에서 나타낸 채널 코디네이션 모드들의 경우, 다중 채널의 매니지먼트 정보 및 서비스 제공을 위한 정보 교환 및 협상은 CCH 인터벌 동안 CCH에서만 수행될 수 있다. 안전 관련 서비스 및 정보를 수신하거나 서비스 제공자와 사용자 간의 정보 교환을 위한 협상 또한 CCH 인터벌 동안 CCH에서만 수행될 수 있다.
CCH 인터벌과 SCH 인터벌 사이에 가드 인터벌이 포함될 수 있다. 가드 인터벌은 통신 장치가 주파수 변경 및 채널 변경 시 동기에 필요한 시간을 확보해줄 수 있다. 채널 변경시 하드웨어 타이머 동작은 UTC(Coordinated Universal Time) 추정으로 획득한 동기 신호에 의해 시작될 수 있다. 채널 동기는 UTC를 기준 신호로 하여 1PPS(Pulse Per Second) 구간마다 채널 동기를 맞출 수 있다.
실시예로서, 동기 인터벌(Sync Interval)은 CCH 인터벌 및 SCH 인터벌을 포함할 수 있다. 즉, 하나의 동기 인터벌은 2개의 타임 슬롯을 포함할 수 있으며, CCH 인터벌 및 SCH 인터벌 각각은 타임슬롯 0 및 타임슬롯 1에 해당할 수 있다. 동기(Sync) 인터벌의 시작은 커먼 타임 기준 초의 시작과 일치할 수 있다. 1초 시간 동안 정수배의 sync 인터벌이 포함될 수 있다.
이하에서는 효율적인 다중 채널 운용을 위한 새로운 채널 코디네이션 모드인 인핸스드 모드를 제안하고, 이에 대해 설명하도록 한다.
도 8은 본 발명의 실시예에 따른 다중 채널 운용을 위한 채널 코디네이션 모드인 인핸스드 모드를 나타낸다.
도 8은 본 발명에서 제안하는 채널 코디네이션 모드로서, 본 명세서에서는 인핸스드(enhanced) 모드라고 지칭한다. 인핸스드 모드에서, V2X 통신 장치는 CCH 인터벌 뿐 아니라 SCH 인터벌에서도 CCH를 통해 컨트롤 신호를 교환할 수 있다. 즉, V2X 통신 장치는 동기 인터벌 단위로 CCH 접속/통신 및 SCH 접속/통신을 수행할 수 있다.
실시예로서, 다중 채널의 운용 정보 및 안전 관련 서비스는 IEEE 1609.4의 모드들과 유사하게 CCH 인터벌 동안 CCH를 통해(via) 송수신될 수 있으며, 추가로 인핸스드 모드에서는 SCH 인터벌 동안에도 CCH를 통해 관련 정보 및 서비스가 송수신될 수 있다. 서비스 제공자와 사용자 간의 정보 교환을 위한 컨트롤 신호 교환 또한 IEEE 1609.4의 모드들과 유사하게 CCH를 통해(via) CCH 인터벌 동안 송수신될 수 있으며, 추가로 인핸스드 모드에서는 CCH를 통해 SCH 인터벌 동안에도 송수신될 수 있다.
컨트롤 신호는 다중 채널의 운용 정보 및 안련 관련 서비스 정보를 포함한다. 또한, 컨트롤 신호는 서비스 제공자와 사용자 간의 정보 교환을 위한 신호를 포함한다. 실시예로서, 컨트롤 신호는 프로바이더가 전송하는 SAM(Service Advertising Message) 및 그에 해당하는 수신기 측의 ACK 메세지를 포함할 수 있다. 또한, 컨트롤 신호는 프로바이더가 제공하는 WSAM(WAVE Service Advertising Message) 및 그에 해당하는 수신기 측의 ACK 메세지를 포함할 수 있다. 또한, 컨트롤 신호는 노드들 간의 협상을 위한 RTS(Request-To-Send) 및 CTS(Clear-To-Send) 신호를 포함할 수도 있다. 노드들은 터미널 또는 차량에 해당할 수도 있다.
인핸스드 모드의 경우, 싱크 인터벌에 포함된 제 1 타임 슬롯 및 제 2 타임 슬롯이 모두 CCH 인터벌로 사용되고, 후속 싱크 인터벌에 포함된 적어도 하나의 타임 슬롯을 SCH 인터벌로 사용될 수 있다. 즉, 인핸스드 모드의 경우, 싱크 인터벌의 제 1 타임 슬롯 및 제 2 타임 슬롯을 모두 CCH 인터벌이라고 지칭할 수도 있다.
인핸스드 모드는 CCH의 CCH 인터벌에서만 허용되었던 컨트롤 신호 교환을 SCH 인터벌에서도 허용함으로써, 채널 코디네이션 모드 운용의 유연성(flexibility)를 향상시킬 수 있다. 특히 기존 모드 운용과 비교하여 차량 안전 관련 서비스 제공 구간을 더 길게 운용할 수 있는 장점을 제공한다. 인핸스드 모드에 대한 구체적인 운영 방법 및 실시예는 이하에서 추가로 설명한다.
도 9는 본 발명의 실시예에 따른 인핸스드 모드에 기반한 다중 채널 운용(multi-channel operation)의 채널 코디네이션(channel coordination) 모드를 나타낸다.
도 9(a)의 실시예에서, V2X 장치는 CCH 인터벌 및 SCH 인터벌 동안 CCH를 통해 안전 관련 서비스 또는 컨트롤 신호를 송수신할 수 있다. 그리고 V2X 장치는 다음 인터벌에 지정된 SCH 로 이동하여 서비스 제공자 및 사용자 간의 정보 교환을 수행할 수 있다. 이 경우 CCH 인터벌 및 SCH 인터벌에서의 CCH를 통한 안전 관련 서비스 제공 및 서비스 제공자와 사용자 간의 정보 교환을 위한 컨트롤 신호 교환은 아래와 같은 방법으로 매니징될 수 있다.
V2X 장치는 CCH 인터벌/SCH 인터벌 구간의 구분없이 서비스 필요(needs) 또는 요청이 있는 경우 CCH로 이동하여 안전 관련 서비스 또는 컨트롤 신호를 송수신할 수 있다. 또는, V2X 장치는 CCH 인터벌과 SCH 인터벌을 구분하여 통신할 수 있다. 즉, V2X 장치는 CCH 인터벌 구간에는 안전 관련 서비스를 위한 통신을 수행하고, SCH 인터벌 구간에는 서비스 제공을 위한 컨트롤 신호 교환을 위한 통신을 수행할 수 있다. 또한, V2X 장치는 CCH 인터벌과 SCH 인터벌을 구분하여 통신을 수행하되, 긴급한 비상(emergency) 서비스에 대해서는 인터벌 구분없이 통신을 수행할 수도 있다.
도 9(b)의 실시예에서, 통신 모드의 기본 운용은 도 9(a)의 실시예와 같다. 다만, 도 9(b)의 실시예에서, 서비스 송수신은 SCH 인터벌에서 SCH를 통해 수행될 수 있다. 즉, 서비스 제공자와 사용자 간의 서비스 정보 교환은 SCH 인터벌에서 시작될 수 있다. 차량 안전 관련 서비스 제공 및 수신이 중요한 경우, 이전 SCH 인터벌에서 컨트롤 신호 교환이 완료되었어도 서비스 정보 교환은 CCH 인터벌 후의 SCH 인터벌에서 시작될 수 있다.
도 9(c)의 실시예에서, 통신 모드의 기본 운용은 도 9(a) 및 도 9(b)의 실시예와 같다. 다만, 도 9(c)의 실시예에서, V2X 장치는 컨트롤 신호 교환이 완료되면 도 9(a) 및 도 9(b)의 실시예와 같이 해당 인터벌의 종료를 기다리는 대신 바로 지정된 SCH 채널로 접속하여 서비스 정보 송수신을 시작할 수 있다.
도 9(d) 및 도 9(e)의 실시예에서, V2X 장치는 CCH 인터벌 및 SCH 인터벌 동안 CCH를 통해(via) 안전 관련 서비스 또는 컨트롤 신호를 교환하고, 다음 정해진 인터벌(예를 들면 SCH 인터벌 또는 CCH 인터벌+SCH 인터벌) 동안 지정된 SCH에 접속하여 서비스를 송수신할 수 있다. 도 9(d) 및 도 9(e)의 실시예는 정해진 인터벌에 기초하여 SCH 및 CCH를 교대로 접속하는 모드로서, 도 7(c)의 변경 모드와 유사하다.
도 9(f)의 실시예는 인핸스드 모드에 기초하는 비동기(asynchronous) 다중 채널 운영 방법을 나타낸다. 도 9(f)의 실시예에서, V2X 장치는 비동기 다중 채널 모드로 설정되는 비동기 시간 인터벌(async time interval)동안 CCH 인터벌/SCH 인터벌과 상관없이 CCH/SCH에 접속하여 통신할 수 있다. 도 9(f)의 실시예서 V2X 장치는 타임-슬롯 바운더리(boundary)를 고려하지 않고 필요한 채널에 접속할 수 있으므로, 도 9의 실시예들 중 다중 채널 운영의 자유도가 가장 높다.
도 9(f)의 실시예에서, V2X 장치는 CCH 인터벌/SCH 인터벌과 상관없이 CCH에 접속하여 다중 채널 운용 정보/안전 관련 서비스를 송수신할 수 있다. 그리고 V2X 장치는 서비스 제공자와 사용자 간의 서비스 정보 교환을 위한 컨트롤 신호 교환이 완료되면, 지정된 SCH로 바로 접속하여 서비스 정보 교환을 개시할 수 있다. 비동기 시간 인터벌은 커먼(common) 레퍼런스 시간을 기준으로 운영되도록 설정될 수 있다. 비동기 시간 인터벌은 특정 값으로 설정되거나, 또는 제한없이(indifinite) 사용될 수도 있다. 비동기 시간 인터벌은 특정 시간 값 또는 기간의 정함이 없음을 나타내는 특정 값으로서 기설정될 수도 있다.
이하에서는 2개의 트랜스시버(transceiver)를 사용하는 효율적인 다중 채널 운용 방법에 대하여 설명한다.
도 10은 본 발명의 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 10의 V2X 통신 장치는 2개의 트랜스시버를 포함한다.
도 10의 실시예에서, 2개의 트랜스시버는 유사한 주파수 특성을 갖는 대역(5.4GHz/5.9GHz 주파수 대역)에서 동작할 수 있다. 2개의 트랜스시버는 하나의 다중 채널 운용 방법에 의해 제어될 수 있다. 2개의 트랜스시버는 하나의 MAC 레이어에 의해 제어될 수도 있다. 2개의 트랜시버의 채널 액세스는 상술한 바와 같이 하나의 MCO에 의해 제어될 수도 있다.
2개의 트랜스시버는 각각 CCH 통신 및 SCH 통신에 사용될 수 있다. 즉, 1개의 트랜스시버(transceiver-1)는 CCH에서 다중 채널의 운용 정보 및 안전 관련 서비스/정보를 교환하거나 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호 교환을 위해 사용될 수 있다. 그리고 다른 1개의 트랜스시버(tranceiver-2)는 CCH 에서 컨트롤 신호 교환이 완료되면 지정된 SCH에서 서비스 제공 및 사용자 간의 정보/데이터 교환을 위해 사용될 수 있다. 도 10 및 도 10 관련 실시예에서, CCH 통신용 트랜스시버를 제 1 트랜스시버, SCH 통신용 트랜스시버를 제 2 트랜스시버로 지칭할 수도 있다. 특히, CCH 통신에 대해서, 제 1 트랜스시버의 동작은 상술한 도 8 내지 도 9의 실시예가 적용될 수도 있다.
이하에서는 도 10의 V2X 통신 장치의 동작 방법에 대하여 설명한다. 제 1 트랜스시버의 CCH 액세스는 단일 트랜스시버의 CCH 액세스와 유사하게 운용(operate)될 수 있다. SAM(Service Advertisement Message), 컨트롤 신호, WSAM(WAVE Service Advertisement Message), 또는 RTS/CTS와 같은 서비스/신호가 CCH에서 CCH 인터벌동안 제 1 트랜스시버를 사용함으로써 교환될 수 있다.
상술한 바와 같이, 다중 채널의 운용 정보 및 안전 관련 서비스/정보의 교환 및 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호의 교환은 CCH에서 CCH 인터벌 또는 SCH 인터벌 중 적어도 하나를 사용하여 수행될 수 있다. CCH 액세스를 위한 제 1 트랜스시버의 동작은 다음과 같다.
1) V2X 통신 장치의 제 1 트랜스시버는 다중 채널의 운용 정보, 안전 관련 서비스/정보, 및 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호를 CCH에서 CCH 인터벌동안 송수신할 수 있다.
2) V2X 통신 장치의 제 1 트랜스시버는 다중 채널의 운용 정보 및 안전 관련 서비스/정보는 CCH에서 CCH 인터벌 동안 송수신하고, 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호는 CCH에서 SCH 인터벌 동안 송수신할 수 있다. 도 8 내지 도 9와 같은 인핸스드 모드 실시예에서와 같이, 제 1 트랜스시버는 CCH 인터벌뿐만 아니라 SCH 인터벌에서도 CCH에서의 통신을 수행할 수 있다.
3) V2X 통신 장치의 제 1 트랜스시버는 2)의 방법에 기초하여 동작하되, 긴급한 안전 서비스에 대해서는 예외적으로 CCH의 SCH 인터벌 동안 송수신할 수 있다. 예를 들면, DEMN(Decentralized Environment Notification Message)는 높은 우선도를 갖고 SCH 인터벌 동안 전달될 수도 있다.
4) 2)~3)의 방법은 동기식(synchronous) 다중 채널 운용을 기초로 한다. 다만 방법 4)의 경우, 안전 관련 서비스/정보 및 컨트롤 신호는 CCH 인터벌/SCH 인터벌과 같은 시간 경계 제한 없이 전달될 수 있다. 즉 방법 4)는 비동기(asynchronous) 다중 채널 운용을 기반으로 수행될 수 있다. 예를 들면, 다중 채널 운용 정보 및 안전 관련 서비스/정보는 CCH의 CCH 인터벌 뿐 아니라 SCH 인터벌에서도 제공될 수 있다. 유사하게, 비 안전 관련 서비스/정보는 CCH의 SCH 인터벌 뿐아니라 CCH 인터벌에서도 제공될 수 있다.
SCH에서 동작하는 제 2 트랜스시버는 CCH에서 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호 교환이 완료되면 지정된 SCH에 접속하여 서비스 제공자 및 사용자 간의 정보 교환을 수행할 수 있다.
도 10의 V2X 장치의 경우, CCH 전용 트랜스시버를 사용함으로써, 항상 다중채널의 운용 정보 및 안전 관련 서비스/정보를 획득할 수 있는 장점이 있다. 도 10의 V2X 장치는 채널 사용 비율 및 쓰루풋(throughput)을 증가시킬 수 있다. 도 10의 V2X 장치는 히든(hidden) 차량(노드) 문제를 해결함으로써 특정 채널의 혼잡을 저감할 수 있다.
도 11은 본 발명의 실시예에 따른 타임 인터벌 배치 방법을 나타낸다.
도 11은 도 10에서 나타낸 V2X 장치의 CCH용 트랜스시버를 사용하여 서비스를 더 효율적으로 제공하기 위한 타임 인터벌 배치 방법을 나타낸다. CCH 용 제 1 트랜스시버는 도 11에서 나타낸 인터벌에 기초하여 통신할 수 있다.
도 11에서, 타임 인터벌 배치 방법은 도 7에서 설명한 채널 코디네이션 모드를 기초로 운영될 수 있다. 다중채널 운용 정보 및 안전 관련 서비스/정보와 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호는 CCH 인터벌 동안 전달되거나 수신될 수 있다. 다만, 도 11에서 실시예에 추가로, 도 8 내지 도 9에서 설명한 인핸스드 모드에 기반하여 타임 인터벌이 배치될 수도 있다. 도 11의 각 실시예(a)~(c)에 대한 설명은 아래와 같다.
도 11(a): 다중채널 운용 정보 및 안전 관련 서비스/정보는 CCH의 CCH 인터벌 동안 송수신될 수 있다. 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호 등 안전 이외의 신호/서비스는 CCH의 SCH 인터벌 동안 수행될 수 있다.
도 11(b): (a)의 방법에 기초하면서, 긴급 안전 서비스는 CCH의 SCH 인터벌 내에서도 제공될 수 있다. 즉, 기본적인 안전 서비스는 CCH의 CCH 인터벌에서 제공되지만, 긴급 안전 서비스는 CCH의 SCH 인터벌 내에서도 제공될 수 있다.
도 11(c): (a)의 방법에 기초하면서, 제한된 시간 안에 제공이 완료되어야 하는 안전 관련 서비스의 제공에 선행되는 컨트롤 신호는 비-안전 인터벌 구간의 맨 앞에 전송될 수 있다. 즉, 서비스 제공에 선행되는 컨트롤 신호 중 시간-민감(time-sensitive) 비 안전 서비스를 위한 컨트롤 신호 교환을 위해, SCH 인터벌의 제일 앞에 시간-민감 비-안전 인터벌이 할당될 수 있다.
상술한 비동기 다중 채널 운용에 기초하여 안전 이외의 신호/서비스는 CCH의 CCH 인터벌과 SCH 인터벌의 구분 없이 제공될 수 있다. 실시예로서, 다중 채널의 운용 정보 및 안전 관련 서비스/정보는 CCH의 CCH 인터벌뿐만 아니라 SCH 인터벌 동안에도 제공되거나 수신될 수 있다. 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호 등의 비안전 신호/서비스는 CCH의 SCH 인터벌뿐만 아니라 CCH 인터벌 동안에도 제공되거나 수신될 수 있다.
도 12는 본 발명의 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
상술한 바와 같이, 제 1 트랜스시버가 CCH를 통한 통신을 수행하고, 제 2 트랜스시버가 SCH를 통한 통신을 수행할 수 있다.
도 12에서와 같이, 안전-관련 서비스(Safety-related services) 및 크리티컬 안전-관련 서비스(Critical safety-related services)는 CCH 인터벌 동안 CCH를 통해 송수신될 수 있다. 안전-관련 서비스는 주기적(periodic) 안전 관련 서비스가 될 수도 있다. 그리고 서비스 제공을 위한 컨트롤 신호는 SCH 인터벌 동안 CCH를 통해 송수신될 수 있다.
SCH 인터벌 동안 CCH에서 허용가능한 컨트롤 신호의 수는 SCH 채널의 수에 기초하여 결정될 수 있다. 각각의 SCH 인터벌에서 허용가능한 최대 채널들의 수는 SCH 인터벌 윈도우에서 유휴(idle)한 채널의 수가 될 수 있다. SCH 인터벌 동안 SCH 채널 개수 또는 유휴 채널에 따른 컨트롤 신호가 모두 예약된 경우, 더 이상의 컨트롤 신호 교환은 수행되지 않을 수 있다. 또는, 통신 완료된 컨트롤 신호는 무효화될 수도 있다.
도 12의 실시예에서, V2X 장치는 SCH 인터벌 동안 CCH를 통한 컨트롤 신호 교환이 완료되면 즉각 지정된 SCH로 접속하여 정보 교환을 수행할 수 있다. 예를 들면, 차량 A 및 차량 B는 SCH 인터벌에서 컨트롤 신호 교환을 완료하고, 즉시 SCH-a 채널에 접속하여 서비스 정보를 교환할 수 있다. 또한, 차량 C 및 차량 D는 SCH 인터벌에서 차량 A 및 차량 B의 컨트롤 신호 교환 후에 컨트롤 신호 교환을 완료하고, 즉시 SCH-b 채널에 접속하여 서비스 정보를 교환할 수 있다. 차량들은 CCH 통신용 트랜스시버(제 1 트랜스시버)를 사용하여 SCH 인터벌에서 컨트롤 신호 교환을 수행하고, SCH 통신용 트랜스시버(제 2 트랜스시버)를 사용하여 특정 SCH에 접속하여 서비스 정보를 교환할 수 있다.
각 SCH에서 차량 간 서비스 정보 교환이 완료되면, 사용자 측 V2X 장치가 서비스가 완료되었다는 ACK 신호를 전송할 수도 있다. 또는 정보 교환 혼잡을 방지하기 위해 ACK 신호 전송은 생략될 수도 있다.
도 13은 본 발명의 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
상술한 바와 같이, 제 1 트랜스시버가 CCH를 통한 통신을 수행하고, 제 2 트랜스시버가 SCH를 통한 통신을 수행할 수 있다.
도 13은 상술한 인핸스드 모드의 3) 방법에 기초한 다른 운용 시나리오를 나타낸다. 도 13에서, 도 12의 설명과 중복되는 설명은 생략되나, 생략된 설명이 도 13에도 적용될 수 있다.
도 13의 실시예에서, V2X 장치는 SCH 인터벌 동안 CCH를 통한 컨트롤 신호 교환이 완료되면 즉각 지정된 SCH로 접속하여 정보 교환을 수행할 수 있다. 예를 들면, 차량 A 및 차량 B는 SCH 인터벌에서 컨트롤 신호 교환을 완료하고, 즉시 SCH-a 채널에 접속하여 서비스 정보를 교환할 수 있다. 또한, 차량 C 및 차량 D는 SCH 인터벌에서 차량 A 및 차량 B의 컨트롤 신호 교환 후에 컨트롤 신호 교환을 완료하고, 즉시 SCH-b 채널에 접속하여 서비스 정보를 교환할 수 있다.
다만, 도 13의 실시예에서, 긴급 안전 서비스 즉 크리티컬 안전-관련 서비스(critical safety-related services)는 CCH 인터벌 뿐만 아니라 SCH 인터벌에서도 제공될 수 있다. 도 13의 실시예는 도 11 및 도 12의 실시예에서도 적용될 수 있다. 도 13의 실시예에서, 동기 인터벌 내의 두번째 타임 슬롯은 크리티컬 안전-관련 서비스를 통신하기 위한 크리티컬 안전 인터벌을 포함할 수 있다. 크리티컬 안전 인터벌은 우선순위가 높은 안전 서비스 관련 통신 수행을 위한 인터벌이다.
도 14는 본 발명의 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
상술한 바와 같이, 제 1 트랜스시버가 CCH를 통한 통신을 수행하고, 제 2 트랜스시버가 SCH를 통한 통신을 수행할 수 있다.
도 14은 상술한 인핸스드 모드의 제 3 방법에 기초한 운용 시나리오를 나타낸다. 도 14에서, 도 12의 설명과 중복되는 설명은 생략되나, 생략된 설명이 도 14에도 적용될 수 있다.
도 14의 실시예는 비동기 시간 인터벌이 일정 주기로 설정된 경우에 대한 실시예를 나타낸다. 즉, 도 14에서 비동기 시간 인터벌은 2개의 동기 인터벌 즉 4개의 타임 슬롯을 포함할 수 있다. 비동기 시간 인터벌에서 CCH 인터벌 또는 SCH 인터벌 동안 CCH를 통해 컨트롤 신호가 교환될 수 있으며, 컨트롤 신호 교환이 완료되면 V2X 장치는 즉시 지정된 SCH로 접속하여 서비스 정보 교환을 수행할 수 있다. 비동기 시간 인터벌의 시작은 커먼 시간 레퍼런스 초의 시작과 정렬(align)될 수 있다.
도 14의 실시예에서, V2X 장치는 CCH 인터벌 동안 CCH를 통한 컨트롤 신호 교환이 완료되면 즉각 지정된 SCH로 접속하여 정보 교환을 수행할 수 있다. 예를 들면, 차량 A 및 차량 B는 CCH 인터벌에서 컨트롤 신호 교환을 완료하고, 즉시 SCH-a 채널에 접속하여 서비스 정보를 교환할 수 있다. 또한, 차량 C 및 차량 D는 다른 CCH 인터벌에서 컨트롤 신호 교환을 완료하고, 즉시 SCH-b 채널에 접속하여 서비스 정보를 교환할 수 있다.
도 14의 실시예는 컨트롤 신호 교환이 CCH 인터벌 또는 SCH 인터벌 구분없이 수행될 수 있음을 나타낸다. 즉, 도 14에서, 컨트롤 신호는 비동기 타임 인터벌 내에서는 임의의 타임 슬롯 내에서 교환될 수 있다. 다만, 도 14의 실시예는 도 11 내지 도 13의 실시예에도 추가적으로 적용이 가능하다. 즉 동기 타임 인터벌 내에서도, 컨트롤 신호는 도 14의 실시예에서와 같이 CCH 인터벌 또는 SCH 인터벌과 같은 임의의 타임 슬롯 내에서 교환될 수 있다.
도 15는 본 발명의 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
상술한 바와 같이, 제 1 트랜스시버가 CCH를 통한 통신을 수행하고, 제 2 트랜스시버가 SCH를 통한 통신을 수행할 수 있다.
도 15는 상술한 인핸스드 모드의 제 1 및 제 2 동작 방법에 기초한 다른 운용 시나리오를 나타낸다. 도 15에서, 도 12의 설명과 중복되는 설명은 생략되나, 생략된 설명이 도 15에도 적용될 수 있다.
도 15의 실시예에서, V2X 장치는 SCH 인터벌 동안 CCH를 통한 컨트롤 신호 교환이 완료되면 즉각 지정된 SCH로 접속하여 정보 교환을 수행할 수 있다. 예를 들면, 차량 A 및 차량 B는 SCH 인터벌에서 컨트롤 신호 교환을 완료하고, 즉시 SCH-a 채널에 접속하여 서비스 정보를 교환할 수 있다. 또한, 차량 C 및 차량 D는 SCH 인터벌에서 차량 A 및 차량 B의 컨트롤 신호 교환 후에 컨트롤 신호 교환을 완료하고, 즉시 SCH-b 채널에 접속하여 서비스 정보를 교환할 수 있다.
도 15의 실시예에서, 시간-민감한 비-안전 관련 서비스(time-sensitive non-safety-related service)를 위한 컨트롤 신호는 SCH 인터벌에서 최고 우선순위를 갖고 통신될 수 있다. 즉, 비-안전 관련 서비스를 위한 타임 슬롯(time slot for time-sensitive not-safety-related services)이 SCH 인터벌에서 가드 구간을 제외하고 제일 앞에 할당될 수 있다. 즉 특정 목적의 전용(dedicated) 타임 슬롯을 SCH 인터벌에 할당함으로써 타임-센서티브한 서비스의 신뢰도 높은 신호/서비스 교환을 가능하게 할 수 있다. 부가적인 타임 슬롯의 길이는 허용 컨트롤 신호 교환 개수에 기초하여 가변적으로 설정될 수 있다. V2X 통신 장치는 제 1 트랜스시버를 사용함으로써 시간-민감한 비-안전 관련 서비스/메세지/컨트롤 신호를 SCH 인터벌의 제일 앞 구간에 교환할 수 있다.
도 15의 실시예는 상술한 도 11 내지 도 14의 실시예에도 적용될 수 있다.
도 16은 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 16의 V2X 통신 장치는 2개의 트랜스시버를 포함한다.
2개의 트랜스시버는 다른 주파수 특성을 갖는 다른 대역(5.4GHz/5.9GHz 및 63GHz 주파수 대역)에서 동작할 수 있다. 2개의 트랜스시버는 하나의 다중 채널 운용 방법에 의해 제어되거나, 독립적으로 제어될 수 있다. 2개의 트랜스시버는 적어도 하나의 MAC 레이어에 의해 제어될 수도 있다. 2개의 트랜시버의 채널 액세스는 상술한 바와 같이 적어도 하나의 MCO에 의해 제어될 수도 있다.
2개의 트랜스시버는 각각 5.4GHz/5.9GHz 대역 및 63GHz 대역에서 서로 다른 서비스 송수신을 위해 사용될 수 있다. 제 1 트랜스시버가 5.4GHz/5.9GHz 주파수 대역 통신에 사용되고, 제 2 트랜스시버가 63GHz 주파수 대역 통신에 사용될 수 있다.
도 17은 본 발명의 다른 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 장치의 데이터 통신 방법을 나타낸다.
도 16에서 설명한 바와 같이, 제 1 트랜스시버는 5.4/5.9GHz 주파수 대역 통신에 사용되고, 제 2 트랜스시버는 63GHz 주파수 대역 통신에 사용될 수 있다.
제 1 트랜스시버는 상술한 단일 트랜스시버 및 도 10 내지 도 15의 제 1 트랜스시버와 같이 동작할 수 있다. 그리고 제 2 트랜스시버는 도 17과 같이 동작할 수 있다.
제 2 트랜스시버는 하나의 채널에서 협상(negotiation) 및 데이터 교환을 연속하여 수행할 수 있다. 그리고 안전-관련 서비스는 경쟁(contention) 후에 전달될 수 있다. 서비스 및 메세지는 CCH 인터벌 및 SCH 인터벌 간의 타임 바운더리 제한 없이 전달될 수 있다.
63GHz 통신을 위한 제 2 트랜스시버는 제한된 시간 내에 제공되어야 하는 대용량 서비스(예를 들면, 가공 이전의 센서 데이터)의 전달 및 수신을 수행할 수 있다. 63GHz 대역은 5.4/5.9GHz 대역과 달리 CCH 채널이 존재하지 않을 수 있으므로, 다중 채널의 운용 정보, 안전 관련 서비스/정보 및 기타 서비스 교환을 위한 프로토콜이 요구될 수 있으며, 이는 도 17과 같이 구현될 수 있다.
안전 관련 서비스/정보 통신은 5.4/5.9GHz 채널에 대해 상술한 실시예들 중 적어도 하나를 사용하여 수행될 수 있다. 안전 관련 서비스 외의 서비스에 대해서는, V2X 통신 장치는 서비스 제공자 및 사용자 간의 컨트롤 신호 교환이 완료되면 바로 정보 교환을 수행할 수 있다.
도 17에서, V2X 통신 장치는 63 GHz 대역을 위한 서비스를 제공하기 위해 제 2 트랜스시버를 사용할 수 있다. V2X 통신 장치는 제 1 트랜스시버 또는 제 2 트랜스시버를 사용함으로써 각각의 대역에서 63 GHz 대역을 위한 서비스 제공을 위한 컨트롤 신호를 교환할 수 있다. 각각의 대역에서 컨트롤 신호 교환이 완료되면, V2X 통신 장치는 제 2 트랜스시버를 사용함으로써 63 GHz 대역을 위한 서비스 제공을 위한 데이터 통신을 수행할 수 있다. 63 GHz 대역에서 제공되는 안전 관련 서비스는 경쟁을 통해 서비스 제공이 없는 구간에 통신될 수 있다.
본 명세서에서 협상(negotiation)은 서비스 제공자 측 디바이스와 사용자 측 디바이스 간의 정보 교환을 위한 컨트롤 신호 교환 과정을 지칭할 수 있다. 실시예로서, 디바이스들은 서비스 데이터 송수신에 필요한 정보들을 컨트롤 신호로서 교환할 수 있다. 그리고 디바이스들은 이러한 컨트롤 신호 교환 과정 즉 협상 과정에 기초하여 서비스 데이터 송수신을 수행할 수 있다. 실시예로서, 협상에서 교환되는 컨트롤 신호는 SAM(Service Advertising Message) 및 그에 해당하는 수신기 측의 ACK 메세지를 포함할 수 있다. 또한, 협상에서 교환되는 컨트롤 신호는 프로바이더가 제공하는 WSAM(WAVE Service Advertising Message) 및 그에 해당하는 수신기 측의 ACK 메세시를 포함할 수 있다. 다른 실시예로서, RTS(Request-To-Send) 및 CTS(Clear-To-Send) 신호의 송수신 또한 협상에 포함될 수도 있다. 본 발명의 실시예에서, 서비스 선전 정보의 송수신 또한 협상에 포함될 수도 있다.
도 18은 본 발명의 다른 일 실시예에 따른, 듀얼 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법을 나타낸다.
도 16에서 설명한 바와 같이, 제 1 트랜스시버는 5.4/5.9GHz 주파수 대역 통신에 사용되고, 제 2 트랜스시버는 63GHz 주파수 대역 통신에 사용될 수 있다.
제 1 트랜스시버는 도 7 내지 도 9에서 설명한 단일 트랜스시버의 동작 또는 도 10 내지 도 15에서 설명한 듀얼 트랜스시버의 제 1 트랜스시버의 동작과 같이 동작할 수 있다. 그리고 제 2 트랜스시버는 도 17의 실시예에 추가로, 도 18과 같이 동작할 수 있다.
도 18의 실시예에서, 63GHz 대역 통신을 위해 안전 인터벌 및 비안전 인터벌이 할당될 수 있다. 제 2 트랜스시버는 비-안전 인터벌동안 협상 및 데이터 교환을 수행할 수 있다. 그리고 제 2 트랜스시버는 안전 인터벌 동안 안전-관련 서비스를 교환할 수 있다. 다른 실시예로서, 제 2 트랜스시버는 도 7 내지 도 9에서 설명한 단일 트랜스시버의 동작에 기초하여 통신을 수행할 수도 있다.
도 19는 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 19의 V2X 통신 장치는 2개의 트랜스시버를 포함한다.
도 19의 실시예에서, V2X 통신 장치는 IEEE 802.11p 프로토콜에 따른 통신을 수행하는 제 1 트랜스시버 및 LTE(LongTerm Evolution)-V2X 전송 프로토콜에 따른 통신을 수행하는 제 2 트랜스시버를 포함할 수 있다. IEEE 802.11p 기반 제 1 트랜스시버는 5.9 GHz 및 5.4 GHz 주파수 대역 통신을 위해 사용될 수 있다. LTE-V2X 기반 제 2 트랜스시버는 5.9 GHz, 5.4 GHz 통신 또는 셀룰러 통신을 위해 사용될 수 있다. LTE-V2X 전송 시스템은 5.4/5.9GHz 주파수 대역이나 셀룰러 주파수 대역을 사용하여 차량 관련 서비스를 제공할 수 있다.
IEEE 802.11p 및 LTE-V2X 통신을 지원하는 V2X 통신 장치의 경우, 애플리케이션, 퍼실리티, 트랜스포트 프로토콜, 네트워킹 프로토콜, LLC 레이어는 공통될 수 있다. 다만, 상위 계층으로부터 수신하는 메세지나 데이터를 피지컬 채널로 전송하는 액세스 계층에서 2개의 트랜스시버를 고려하여, 2개의 피지컬 레이어가 포함될 수 있다.
도 20은 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 20의 V2X 통신 장치는 3개의 트랜스시버를 포함한다.
도 20의 실시예에서, V2X 통신 장치는 5.9 GHz 및 5.4 GHz 주파수 대역을 사용하며 IEEE 802.11p 프로토콜에 기초하는 2개의 트랜스시버 및 63 GHz 주파수 대역을 사용하며 IEEE 802.11p 프로토콜에 기초하는 1개의 트랜스시버를 포함한다. IEEE 802.11p에 기초하여 동작하는 제 1 트랜스시버 및 제 2 트랜스시버는 듀얼 트랜스시버를 구성할 수 있다. 이러한 듀얼 트랜스시버는 상술한 도 10 내지 도 15의 실시예와 같이 동작할 수 있다.
도 20의 트리플 트랜스시버는 공통의 상위 레이어들(애플리케이션, 퍼실리티, 트랜스포트, 네트워크 및 LLC)를 가질 수 있다. 트리플 트랜스시버의 채널 액세스는 하나의 MCO에 의해 컨트롤될 수 있다. 듀얼 트랜스시버(제 1,2 트랜스시버) 및 싱글 트랜스시버(제 3 트랜스시버)는 상이한 안테나 속성을 가질 수 있다.
듀얼 트랜스시버는 RSU와 동기화된 타임 슬롯 또는 타임 인터벌을 사용함으로써 RSU로부터 채널 정보를 수신할 수 있다. 듀얼 트랜스시버의 제 1 트랜스시버는 CCH 통신에, 제 2 트랜스시버는 SCH 통신에 전용(dedicate)될 수 있다. 제 1 트랜스시버의 CCH 통신은 상술한 바와 같이 수행될 수 있다. 제 2 트랜스시버는 제 1 트랜스시버의 CCH에서의 협상에 기초하여 지정된 SCH에서 서비스/정보 통신을 수행할 수 있다.
제 3 트랜스시버는 RSU와 동기화된 타임 슬롯 또는 타임 인터벌을 사용함으로써 RSU로부터 채널 정보를 수신할 수 있다. 제 3 트랜스시버는 싱글 채널에서 협상 및 데이터 교환을 이어서 수행할 수 있다. 제 3 트랜스시버는 CCH 인터벌 및 SCH 인터벌 간의 시간 경계 제한 없이 서비스 및 메시지 통신을 수행할 수 있다. 도 16 내지 도 18에서 상술한 63 GHz용 트랜스시버의 실시예에 대한 설명이 제 3 트랜스시버의 동작에 적용될 수 있다.
도 21은 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 21의 V2X 통신 장치는 3개의 트랜스시버를 포함한다.
도 21의 실시예에서, V2X 통신 장치는 5.9 GHz 및 5.4 GHz 주파수 대역을 사용하며 IEEE 802.11p 프로토콜에 기초하는 2개의 트랜스시버 및 5.9 GHz, 5.4 GHz 및 셀룰러 주파수 대역을 사용하며 LTE-V2X 프로토콜에 기초하는 1개의 트랜스시버를 포함한다. IEEE 802.11p에 기초하여 동작하는 제 1 트랜스시버 및 제 2 트랜스시버는 듀얼 트랜스시버를 구성할 수 있다. 이러한 듀얼 트랜스시버는 상술한 도 10 내지 도 15의 실시예와 같이 동작할 수 있다.
도 21의 트리플 트랜스시버는 공통의 상위 레이어들(애플리케이션, 퍼실리티, 트랜스포트, 네트워크 및 LLC)를 가질 수 있다. 트리플 트랜스시버의 채널 액세스는 하나의 MCO에 의해 컨트롤될 수 있다. 듀얼 트랜스시버(제 1,2 트랜스시버) 및 싱글 트랜스시버(제 3 트랜스시버)는 상이한 안테나 속성을 가질 수 있다.
듀얼 트랜스시버는 RSU와 동기화된 타임 슬롯 또는 타임 인터벌을 사용함으로써 RSU로부터 채널 정보를 수신할 수 있다. 듀얼 트랜스시버의 제 1 트랜스시버는 CCH 통신에, 제 2 트랜스시버는 SCH 통신에 전용(dedicate)될 수 있다. 제 1 트랜스시버의 CCH 통신은 상술한 바와 같이 수행될 수 있다. 제 2 트랜스시버는 제 1 트랜스시버의 CCH에서의 협상에 기초하여 지정된 SCH에서 서비스/정보 통신을 수행할 수 있다.
제 3 트랜스시버는 LTE-V2X 프로토콜을 사용함으로써 RSU로부터 채널 정보를 수신할 수 있다. 예를 들면, LTE-V2X 프로토콜이 IEEE 802.11 모듈을 지원하는 경우, 제 3 트랜스시버는 RSU로부터 채널 정보를 수신할 수 있다. 또는, 제 3 트랜스시버는 LTE 프로토콜에 기초한 통신을 수행할 수도 있으며, 이 경우 상위 계층도 별도로 LTE 통신을 위해 구성될 수 있다.
도 22는 본 발명의 다른 실시예에 따른 V2X 통신 장치의 아키텍처를 나타낸다.
도 22의 V2X 통신 장치는 3개의 트랜스시버를 포함한다.
도 22의 실시예에서, V2X 통신 장치는 5.9 GHz 및 5.4 GHz 주파수 대역을 사용하며 IEEE 802.11p 프로토콜에 기초하는 싱글 제 1 트랜스시버, 63 GHz 주파수 대역을 사용하며 IEEE 802.11p 프로토콜에 기초하는 싱글 제 2 트랜스시버, 및 5.9 GHz, 5.4 GHz 및 셀룰러 주파수 대역을 사용하며 LTE-V2X 프로토콜에 기초하는 싱글 제 3 트랜스시버를 포함한다. 실시예로서, 제 2 트랜스시버는 63 GHz 주파수 대역 및 5.9 GHz 주파수 대역을 사용하며 IEEE 802.11p 프로토콜에 기초할 수도 있다.
도 22의 트리플 트랜스시버는 공통의 상위 레이어들(애플리케이션, 퍼실리티, 트랜스포트, 네트워크 및 LLC)를 가질 수 있다. 트리플 트랜스시버의 채널 액세스는 하나의 MCO에 의해 컨트롤될 수 있다. 각각의 싱글 트랜스시버들은 유사한 또는 상이한 안테나 속성을 가질 수 있다. 실시예로서, 제 2 트랜스시버가 63 GHz 주파수 대역 통신을 지원하는 경우, 제 1 트랜스시버 및 제 3 트랜스시버는 유사한 안테나 속성을 갖지만 제 2 트랜스시버는 제 1 및 제 3 트랜스시버와 상이한 안테나 속성을 가질 수도 있다.
제 1 트랜스시버는 단일 트랜스시버의 MCO 방법에 기초하여 동작할 수 있다. 제 1 트랜스시버는 RSU와 동기화된 타임 슬롯 또는 타임 인터벌을 사용함으로써 RSU로부터 채널 정보를 수신할 수 있다.
제 2 트랜스시버는 RSU와 동기화된 타임 슬롯 또는 타임 인터벌을 사용함으로써 RSU로부터 채널 정보를 수신할 수 있다. 제 3 트랜스시버는 싱글 채널에서 협상 및 데이터 교환을 이어서 수행할 수 있다. 제 3 트랜스시버는 CCH 인터벌 및 SCH 인터벌 간의 시간 경계 제한 없이 서비스 및 메시지 통신을 수행할 수 있다. 상술한 63 GHz용 트랜스시버의 실시예에 대한 설명이 제 3 트랜스시버의 동작에 적용될 수 있다.
제 3 트랜스시버는 LTE-V2X 프로토콜을 사용함으로써 RSU로부터 채널 정보를 수신할 수 있다. 예를 들면, LTE-V2X 프로토콜이 IEEE 802.11 모듈을 지원하는 경우, 제 3 트랜스시버는 RSU로부터 채널 정보를 수신할 수 있다. 또는, 제 3 트랜스시버는 LTE 프로토콜에 기초한 통신을 수행할 수도 있으며, 이 경우 상위 계층도 별도로 LTE 통신을 위해 구성될 수 있다.
상술한 바와 같이, CCH 인터벌 또는 동기 인터벌은 안전 인터벌 및 비-안전 인터벌을 포함할 수도 있다. 안전 인터벌 및 비-안전 인터벌에 대한 추가적인 설명은 아래와 같다.
(1) 안전 인터벌(Safety Interval)(또는, 안전 타임 슬롯)
안전 인터벌은 주변 차량 또는 인프라 시설과의, 다중 채널의 운용 정보 및 안전(safety) 관련 서비스/정보 송/수신을 위해 할당될 수 있다. 실시예로서, 안전 인터벌은 안전 이외의 기타 서비스에 비해 중요도가 높은 것을 고려하여 비-안전 인터벌 앞으로 할당될 수 있다. 실시예로서, 이벤트 메세지 중 안전 관련 메세지가 안전 인터벌에 송수신될 수 있다. 주기적 메세지 중 안전 관련 메세지도 안전 인터벌에 송수신될 수 있다.
안전 관련 서비스와 다른 서비스와의 구분된 타임 슬롯 운영은 안전 관련 서비스 제공시 비-안전 서비스를 위한 통신 신호와의 경쟁을 피함으로써 안전 신뢰도를 향상시킬 수 있다. 즉, 비-안전 서비스를 위한 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호와 안전 관련 서비스를 위한 컨트롤 신호의 경쟁을 피함으로써, 안전 관련 정보 전달이 지연됨을 방지할 수 있다.
(2) 비-안전 인터벌(Non-safety Interval)(또는 비-안전 타임 슬롯)
비-안전 인터벌은 비-안전 서비스를 위한 서비스 제공자 및 사용자 간의 통신을 위해 할당될 수 있다. 즉, 비-안전 인터벌은 서비스 제공자 및 사용자 간의 정보 교환을 위한 컨트롤 신호를 교환하기 위해 제공될 수 있다. 상술한 메세지들 중 서비스 메세지가 비-안전 인터벌에서 송수신될 수 있다. 비-안전 인터벌은 안전 관련 서비스/정보에 비해 중요도가 낮은 점을 고려하여 안전 인터벌 뒤에 위치하도록 할당될 수 있다.
상술한 타임 인터벌들의 할당은 기결정되거나, 가변으로 설정될 수 있다. 안전 인터벌 및 비-안전 인터블의 포함 여부 또는 길이는 어플리케이션 레이어와 같은 상위 레이어에서 지시될 수 있다. 즉, 안전 인터벌 및/또는 비-안전 인터벌과 관련된 값이 상위 계층으로부터 미리 정의/설정되어 MAC 레이어의 MLMEX(MLME(MAC sublayer Management Entity) extension) SAP(Service Access Point)를 통해 매니지먼트 플레인의 MLMEX extension에 저장될 수 있다. 안전 인터벌 및/또는 비-안전 인터벌에 대한 값의 설정 방법에 대해서 이하에서 설명한다.
도 23은 본 발명의 실시예에 따른 타임 인터벌 조정 방법을 나타낸다.
상술한 실시예에서, CCH 인터벌 또는 동기 인터벌은 안전 인터벌 또는 비-안전 인터벌을 포함할 수 있다. 도 23(a)에서와 같이, 안전 인터벌 및 비-안전 인터벌을 포함하는 타임 슬롯을 SN 인터벌이라고 지칭할 수 있다. SN 인터벌은 안전 인터벌(X) 및 비-안전 인터벌(Y)의 합으로 정의될 수 있다. SN 인터벌은 동기 인터벌에서 가드 인터벌을 뺀 것과 같을 수 있다. (SN interval = sync_interval - guard_interval) 안전 인터벌 및 비-안전 인터벌은 동기 인터벌 내에서 적응적으로 정의될 수 있다.
안전 인터벌 및 비-안전 인터벌의 비율은 도 23(b)의 인터벌 테이블과 같이 정의 및 제공될 수 있다. 이러한 인터벌 테이블은 비트(bits), 사용예(usage), 세이프 인터벌 (비율(ratio)), 비-안전 인터벌(비율(ratio)) 중 적어도 하나를 사용하여 정의될 수 있다.
안전 인터벌(X)과 비-안전 인터벌(Y)은 도 11(b)의 테이블에서 제공되는 비율과 SN 인터벌을 이용하여 아래와 같이 각각 산출될 수 있다.
안전 인터벌(X) = SN 인터벌 × (Sr/(Sr+Nr))
비-안전 인터벌(Y) = SN 인터벌 × (Nr/(Sr+Nr))
Sr은 도 23(b)의 안전 인터벌 비율(ratio)을, Nr은 상술한 비-안전 인터벌 비율을 나타낸다.
도 23(b)의 비트 값들을 인터벌 정보/값이라고 지칭할 수도 있다. 인터벌 정보는 CCH 인터벌 내의 안전 인터벌 또는 비-안전 인터벌 중 적어도 하나의 존재 여부 및 각 인터벌의 비율을 나타낼 수 있다. 한 인터벌의 비율 값으로 0을 사용함으로써 해당 인터벌의 존재 여부가 지시될 수도 있다.
도 23(b)에서, 인터벌 정보의 값이 0000인 경우 CCH 인터벌은 안전 인터벌만을 포함하고, 인터벌 정보의 값이 0001인 경우 CCH 인터벌은 비-안전 인터벌만을 포함할 수 있다. 예를 들어, SN 인터벌이 12μs이고, 인터벌 정보의 값이 0011인 경우, 안전 인터벌은 8μs=12×(2/3)이고, 비-안전 인터블은 4μs=12×(1/3)이 될 수 있다.
도 23(b)와 같은 인터벌 정보는 시그널링될 수 있다. 즉, 도 16(b)의 인터벌 정도는 CCH 인터벌에서 전송되는 신호의 헤더에 포함될 수도 있다. 인터벌 정보는 이하에서 타임 인터벌 정보라고 지칭할 수도 있다.
도 24는 본 발명의 실시예에 따른 V2X 장치의 멀티 채널 오퍼레이팅 방법을 나타낸다.
도 24는 특히, 상술한 인핸스드 모드의 운영 관련 동작을 나타내는 흐름도이다. 도 2에서 도시한 바와 유사하게, V2X 전송 장치는 MAC 서브레이어를 매니징하는 엔터티인 MLME(MAC subLayer Management Entity) 및 MLMEX(MLME Extension)을 포함할 수 있다. 그리고 V2X 전송 장치는 PHY 서브레이어를 매니징하는 PLME(Physical subLayer Management Entity)를 포함할 수 있다.
실시예로서, MAC 서브레이어는 채널 코디네이션, 채널 라우팅 및 사용자 우선도(User priority)와 같은 데이터 서비스를 제공할 수 있다. MAC 서브레이어는 데이터 리소스를 코디네이팅하거나, 상이 레이어 데이터의 인/아웃을 핸들링하거나, 사용자 우선도를 컨트롤할 수 있다. 실시예로서, MLME는 멀티-채널 동기화, 채널 액세스와 같은 서비스를 제공할 수 있다. 실시예로서, MLMEX는 802.11 MLME의 동작을 제어할 수 있다. 즉, MLMEX는 IEEE 1609.4에 기술된 서비스/동작 수행을 위해 802.11 MLME를 제어할 수 있다.
인핸스드 모드에서, V2X 장치는 할당된 채널 및 할당된 타임 인터벌동안 상술한 방법들을 사용하여 통신을 수행할 수 있다. 인핸스드 모드 운용에 필요한 채널 할당 및 타임 인터벌 정보는 MLMEX-CHSTART.request 정보/명령를 사용함으로써 전달될 수 있다. 채널 할당 정보 및 타임 인터벌 정보는 임의의 방법을 통해 시그널링될 수도 있다. MLMEX-CHSTART.request 정보/명령은 본 명세서에서 채널 개시(channel start) 정보/명령으로 지칭할 수도 있다.
도 24에서와 같이, 인핸스드 모드 운용에 필요한 채널 할당 정보 및 타임 인터벌 정보는 MLMEX-CHSTART.request 정보를 사용함으로써 상위 레이어에서 하위 레이어로 전달될 수 있다. 상위 레이어(24010)는 MLMEX-CHSTART.request 정보를 MLMEX(24020)으로 전송하고, MLMEX(24020)는 수신한 정보를 PLME-SET.request 정보로서 MLME/PLME(24030)로 전송할 수 있다. MLMEX(24020)는 수신한 MLMEX-CHSTART.request 정보에 기초하여 특정 채널 넘버 및 타임 인터벌로 현재(current) 주파수 세팅이 되도록 PLME-SET.request를 MLME/PLME(24030)으로 전송할 수 있다. MLME(17030)는 MLMEX-CHSTART.request가 수신되지 않으면 PLME로 정보를 전달하지 않을 수 있다.
도 25는 본 발명의 실시예에 따른 MLMEX-CHSTART.request 정보의 파라미터들을 나타낸다.
실시예로서, MLMEX-CHSTART.request 정보는 도 25에서 나타낸 파라미터들을 포함할 수 있다. MLMEX-CHSTART.request 정보는 도 25의 파라미터들을 필드 또는 필드 값으로서 포함할 수도 있다. 도 25의 파라미터들에 대한 설명은 이하와 같다.
Channel Identifer(채널 식별자) : 통신을 위해 가용하게 될 채널(The channel to be made available for communications).
Time Slot(타임 슬롯): 채널 교환 접속이 제공되는 타임 슬롯(The time slot in which alternating access is to be provided).
OperationRateSet: 존재하는 경우, IEEE 802.11 표준 문서에 명시된 바와 같이 사용될 수 있음.
EDCA Parameter Set: 존재하는 경우, 존재하는 경우, IEEE 802.11 표준 문서에 명시된 바와 같이 사용될 수 있음.
Immediate Access(즉시 접속): 실시예로서, 즉시 접속 파라미터는 정수(interger) 값으로서, 0~255의 값을 가질 수 있다. 이 파라미터는 싱크 인터벌에서 즉시 채널 접속의 기간을 지시할 수 있다(This parameter indicates the duration of the immediate channel access in sync interval). 실시예로서, 255의 값은 무제한(indefinite) 접속을 나타낼 수 있다. 0의 값은 요청이 없음을 나타낼 수도 있다. 또한, 인핸스드 모드 접속이 가능한 경우 싱크 인터벌에서 즉시 채널 접속의 기간을 나타낼 수 있다(This parameter also may indicate the duration of the immediate channel access in sync interval if the enhanced mode access is available).
인핸스드 모드 접속(Enhanced Mode Access): 실시예로서, 인핸스드 모드 접속 파라미터는 정수(interger) 값으로서, 0~2의 값을 가질 수 있다. 이 파라미터는 인핸스드 모드를 지시할 수 있다. 파라미터의 값은 각각 인핸스드 모드의 상술한 동작 방법을 나타낼 수 있다. 예를 들면, 파라미터 값이 0이면 인핸스드 모드의 제 1 동작 방법을, 파라미터 값이 1이면 인핸스드 모드의 제 2 동작 방법을, 파라미터 값이 2이면 인핸스드 모드의 제 3 동작 방법을 지시할 수 있다.
타임 인터벌 값(Time Interval Value): 실시예로서, 타임 인터벌 값 파라미터는 정수(interger) 값으로서, 0~15의 값을 가질 수 있다. 실시예로서, 타임 인터벌 값 파라미터는 도 23(b)의 표를 지시할 수도 있다. 다만, 시그널링 부담을 최소화하기 위해 타임 인터벌 값 파라미터의 값은 더 간단히 설정될 수도 있다. 예를 들면, 타임 인터벌 값 파라미터의 값이 0(0000)인 경우는 안전 인터벌 만(only safe interval), 1(0001)인 경우는 비-안전 인터벌만(only non-safety interval), 2(0010)인 경우는 안전 서비스 및 비 안전 서비스가 공존함(safety interval+non-safety interval)을 나타낼 수 있다. 안전 서비스 및 비 안전 서비스가 공존함을 나타내는 경우, 그 비율은 설정될 수 있으며, 예를 들면, 안전 서비스 및 비 안전 서비스의 비율이 각각 50%(safety(50%)+non-safety(50%))가 될 수도 있다.
도 26은 본 발명의 실시예에 따른 V2X 통신 장치의 블록도를 나타낸다.
도 26에서, V2X 통신 장치(26000)는 메모리(26010), 프로세서(26020) 및 RF 유닛(26030)을 포함할 수 있다. 상술한 바와 같이 V2X 통신 장치는 OBU(On Board Unit) 또는 RSU(Road Side Unit)가 되거나, OBU 또는 RSU에 포함될 수 있다.
RF 유닛(26030)은 프로세서(26020)와 연결되어 무선 신호를 송신/수신할 수 있다. RF 유닛(26030)은 프로세서(26020)로부터 수신된 데이터를 송수신 대역으로 업컨버팅하여 신호를 전송할 수 있다. RF 유닛(26030)은 도 5에 나타낸 서브 블록들 중 적어도 하나를 포함할 수 있다.
프로세서(26020)는 RF 유닛(26030)과 연결되어 ITS 시스템 또는 WAVE 시스템에 따른 물리 계층 및/또는 MAC 계층을 구현할 수 있다. 프로세서(26020)는 상술한 도면 및 설명에 따른 본 발명의 다양한 실시예에 따른 동작을 수행하도록 구성될 수 있다. 또한, 상술한 본 발명의 다양한 실시예에 따른 V2X 통신 장치(26000)의 동작을 구현하는 모듈, 데이터, 프로그램 또는 소프트웨어 중 적어도 하나가 메모리(26010)에 저장되고, 프로세서(26020)에 의하여 실행될 수 있다.
메모리(26010)는 프로세서(26020)와 연결되어, 프로세서(26020)를 구동하기 위한 다양한 정보를 저장한다. 메모리(26010)는 프로세서(26020)의 내부에 포함되거나 또는 프로세서(26020)의 외부에 설치되어 프로세서(26020)와 공지의 수단에 의해 연결될 수 있다.
도 26의 V2X 통신 장치(26000)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예들이 독립적으로 적용되거나 또는 2 이상의 실시예가 함께 적용되도록 구현될 수 있다. 특히, 도 26의 V2X 통신 장치(26000)의 RF 유닛(26030)은 적어도 하나의 트랜스시버를 포함할 수 있다. 즉, RF 유닛(26030)은 도 10, 도 16 및 도 19의 실시예와 같이 2개의 트랜스시버를 포함할 수 있다. 또한, RF 유닛(26030)은 도 20 내지 도 22의 실시예와 같이 3개의 트랜스시버를 포함할 수 있다. 각 실시예의 경우에 대한 상술한 설명에 기초하여 V2X 통신 장치는 동작할 수 있다.
도 27은 본 발명의 실시예에 따른 V2X 통신 장치의 데이터 통신 방법을 나타낸 순서도이다.
V2X 통신 장치는 컨트롤 채널을 통해 서비스 선전 정보를 수신할 수 있다(S27010). 상술한 바와 같이 컨트롤 채널은 시스템 매니지먼트 정보 또는 서비스 선전 정보 교환을 위한 채널이다. V2X 통신 장치는 제 1 트랜스시버를 사용함으로써, 컨트롤 채널을 통해 서비스 선전 정보를 수신할 수 있다. 서비스 선전 정보는 제공되는 서비스를 수신하는데 필요한 정보를 포함할 수 있다.
실시예로서, 서비스 선전 정보는 서비스 및 서비스가 제공되는 채널을 식별 및 기술할 수 있다. 서비스 선전 정보는 헤더, 서비스 정보, 채널 정보 또는 라우팅 선전 정보 중 적어도 하나를 포함할 수도 있다. 서비스 선전 정보의 채널 정보는 서비스 조인을 위해 접속해야 하는 SCH에 대한 정보를 채널 넘버로서 제공할 수도 있다. 서비스 정보는 제공되는 서비스에 대한 속성, 구성, 가용성 중 적어도 하나를 식별/기술할 수 있다.
V2X 통신 장치는 서비스 채널을 통해 서비스 데이터를 수신할 수 있다(S27020). V2X 통신 장치는 수신한 서비스 선전 정보에 기초하여 서비스 채널에 접속할 수 있다. 상술한 바와 같이 서비스 채널은 서비스 제공을 위한 애플리케이션 데이터의 송수신을 위한 채널이다. V2X 통신 장치는 제 2 트랜스시버를 사용함으로써, 서비스 채널을 통해 서비스 데이터를 수신할 수 있다. V2X 통신 장치는 상술한 서비스 선전 정보에 포함된 채널 정보가 지시하는 SCH로 제 2 트랜스시버를 튜닝함으로써 서비스에 조인할 수 있다.
본 발명의 실시예들에서, 동기 인터벌은 CCH 인터벌 및 SCH 인터벌 중 적어도 하나를 포함할 수 있다. 다만, 이러한 CCH 인터벌 및 SCH 인터벌은 각각 제 1 타임 유닛 및 제 2 타임 유닛으로 지칭될 수 있다. 제 1 트랜스시버의 컨트롤 채널 접속 및 컨트롤 채널을 통한 통신은 동기 인터벌에 기초하여 수행되고, 동기 인터벌은 제 1 타임 유닛 및 제 2 타임 유닛을 포함할 수 있다.
제 1 타임 유닛은 안전 관련 서비스 통신을 위한 안전 인터벌을 포함하고, 제 2 타임 유닛은 비-안전 관련 서비스 통신을 위한 비-안전 인터벌을 포함할 수 있다. 실시예에 따라서 V2X 통신 장치는, 제 1 타임 유닛 또는 제 2 타임 유닛 중 적어도 하나의 타임 유닛 동안 서비스 선전 정보를 수신할 수 있다.
도 13에서와 같이, 제 2 타임 유닛은 중요도가 높은 안전 관련 서비스 통신을 위한 크리티컬 안전 인터벌을 포함할 수 있다. 도 15에서와 같이, 시간-민감한 비-안전 관련 서비스 통신은 제 2 타임 유닛 내에서 우선적으로 수행될 수 있다. 시간-민감 비-안전 관련 서비스/메세지/신호 통신을 위한 타임 슬롯이, 제 2 타임 유닛에 포함되는 서브 타임 슬롯이 될 수 있다. 이러한 서브 타임 슬롯이 제 2 타임 슬롯의 제일 앞 부분에 배치될 수 있다.
상술한 실시예들에 따라서 본 발명은 V2X 통신에 있어서 유연한 멀티 채널 운용을 제공하고 리소스 사용 효율을 향상시킬 수 있다. 또한, 본 발명은 컨트롤 채널 통신 및 서비스 채널 통신을 위한 별도의 트랜스시버를 제공함으로써, 서비스간 통신 경쟁을 감소시키고 전송 신뢰도를 향상시킬 수 있다.
상술한 실시예에서, V2X 통신 장치는 서비스를 제공받는 사용자 기기에 해당할 수 있다. 그러나 V2X 통신 장치는 사용자 기기로 제한되는 것은 아니다. V2X 통신 장치는 서비스를 제공하는 프로바이더 기기에 해당할 수도 있다. V2X 통신 장치가 프로바이더 경우, 도 27의 순서도는 아래와 같이 적용될 수 있다.
V2X 통신 장치는 CCH로 접속하고, CCH에서 서비스 선전 정보를 전송할 수 있다. 그리고 V2X 통신 장치는 SCH로 접속하여, SCH에서 서비스 데이터를 전송할 수도 있다. 프로바이더 기기로서의 V2X 통신 장치는 복수의 채널에 항시 접속하여 통신을 수행할 수 있다. 즉, 프로바이더로서의 V2X 통신 장치의 경우 CCH 접속 및 SCH 접속 단계들은 생략되고, V2X 장치는 CCH에서 서비스 선전 정보를 전송하면서 SCH에서 서비스 데이터를 전송할 수도 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.
본 발명은 일련의 방송 신호 제공 분야에서 이용된다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.

Claims (10)

  1. 복수의 트랜스시버를 포함하는 V2X 통신 장치의 데이터 통신 방법에 있어서,
    제 1 트랜스시버를 사용함으로써, 컨트롤 채널(CCH)을 통해 서비스 선전(advertisement) 정보를 수신하는 단계; 및
    제 2 트랜스시버를 사용함으로써, 상기 서비스 선전 정보에 기초하여 서비스 채널(SCH)을 통해 서비스 데이터를 수신하는 단계를 포함하며,
    상기 컨트롤 채널 접속은 동기(sync) 인터벌에 기초하여 수행되고, 상기 동기 인터벌은 제 1 타임 유닛 및 제 2 타임 유닛을 포함하는, 데이터 통신 방법.
  2. 제 1 항에 있어서,
    상기 제 1 타임 유닛은 안전 관련 서비스 통신을 위한 안전 인터벌을 포함하고, 상기 제 2 타임 유닛은 비-안전 관련 서비스 통신을 위한 비-안전 인터벌을 포함하는, 데이터 통신 방법.
  3. 제 2 항에 있어서,
    상기 서비스 선전 정보는 상기 제 1 타임 유닛 또는 상기 제 2 타임 유닛 동안 수신되는, 데이터 통신 방법.
  4. 제 2 항에 있어서,
    상기 제 2 타임 유닛은 중요도가 높은 안전 관련 서비스 통신을 위한 크리티컬 안전 인터벌을 더 포함하는, 데이터 통신 방법.
  5. 제 2 항에 있어서,
    상기 제 2 타임 유닛 동안 시간-민감한 비-안전 관련 서비스 통신은 우선적으로 수행되는, 데이터 통신 방법.
  6. V2X 통신 장치에 있어서,
    데이터를 저장하는 메모리;
    무선 신호를 송수신하는 RF 유닛; 및
    상기 RF 유닛을 제어하는 프로세서를 포함하고,
    상기 RF 유닛은 컨트롤 채널(CCH) 통신을 위한 제 1 트랜스시버 및 서비스 채널(SCH) 통신을 위한 제 2 트랜스시버를 포함하고,
    상기 V2X 통신 장치는,
    상기 제 1 트랜스시버를 사용함으로써, 상기 컨트롤 채널을 통해 서비스 선전(advertisement) 정보를 수신하는 단계; 및
    상기 제 2 트랜스시버를 사용함으로써, 상기 서비스 선전 정보에 기초하여 상기 서비스 채널을 통해 서비스 데이터를 수신하는 단계를 포함하며,
    상기 컨트롤 채널 접속은 동기(sync) 인터벌에 기초하여 수행되고, 상기 동기 인터벌은 제 1 타임 유닛 및 제 2 타임 유닛을 포함하는, V2X 통신 장치.
  7. 제 6 항에 있어서,
    상기 제 1 타임 유닛은 안전 관련 서비스 통신을 위한 안전 인터벌을 포함하고, 상기 제 2 타임 유닛은 비-안전 관련 서비스 통신을 위한 비-안전 인터벌을 포함하는, V2X 통신 장치.
  8. 제 7 항에 있어서,
    상기 서비스 선전 정보는 상기 제 1 타임 유닛 또는 상기 제 2 타임 유닛 동안 수신되는, V2X 통신 장치.
  9. 제 7 항에 있어서,
    상기 제 2 타임 유닛은 중요도가 높은 안전 관련 서비스 통신을 위한 크리티컬 안전 인터벌을 더 포함하는, V2X 통신 장치.
  10. 제 7 항에 있어서,
    상기 제 2 타임 유닛 동안 시간-민감한 비-안전 관련 서비스 통신은 우선적으로 수행되는, V2X 통신 장치.
PCT/KR2016/015317 2016-12-27 2016-12-27 V2x 통신을 위한 장치 및 데이터 통신 방법 WO2018124320A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16925382.0A EP3565160A4 (en) 2016-12-27 2016-12-27 DEVICE FOR V2X COMMUNICATION AND DATA COMMUNICATION PROCEDURE FOR IT
US16/474,402 US11304162B2 (en) 2016-12-27 2016-12-27 V2X communication apparatus and data communication method therefor
PCT/KR2016/015317 WO2018124320A1 (ko) 2016-12-27 2016-12-27 V2x 통신을 위한 장치 및 데이터 통신 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/015317 WO2018124320A1 (ko) 2016-12-27 2016-12-27 V2x 통신을 위한 장치 및 데이터 통신 방법

Publications (1)

Publication Number Publication Date
WO2018124320A1 true WO2018124320A1 (ko) 2018-07-05

Family

ID=62709514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015317 WO2018124320A1 (ko) 2016-12-27 2016-12-27 V2x 통신을 위한 장치 및 데이터 통신 방법

Country Status (3)

Country Link
US (1) US11304162B2 (ko)
EP (1) EP3565160A4 (ko)
WO (1) WO2018124320A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191657A1 (en) * 2019-03-27 2020-10-01 Nec Corporation Sidelink transmission and reception
EP3979540A4 (en) * 2019-05-31 2023-07-05 ZTE Corporation METHOD AND DEVICE FOR SERVICE PROCESSING AND INTERNET OF VEHICLES DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019109005A1 (en) * 2017-11-30 2019-06-06 Intel IP Corporation Multi-access edge computing (mec) translation of radio access technology messages
US11102824B2 (en) * 2018-11-05 2021-08-24 Hyundai Motor Company Method and apparatus for avoiding signal collision by enhanced distributed coordination access in wireless local access network
CN116830536A (zh) * 2021-01-05 2023-09-29 华为技术有限公司 高级驾驶辅助系统中的通信方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110294424A1 (en) * 2010-03-09 2011-12-01 Stmicroelectronics, Inc. Operation procedures for interoperable safety and non-safety communications in wireless environments
US20120093091A1 (en) * 2010-10-17 2012-04-19 Industrial Technology Research Institute Method and system for extended service channel access on demand in an alternating wireless channel access environment
US20150305038A1 (en) * 2012-12-14 2015-10-22 Shanghai Research Centre For Wireless Communications Method for transmitting security information based on vehicular network

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128849A1 (en) * 2009-12-02 2011-06-02 Jianlin Guo Signaling for Safety Message Transmission in Vehicular Communication Networks
US8400987B2 (en) * 2010-04-19 2013-03-19 GM Global Technology Operations LLC Systems and methods for multi-channel medium access control
US9147294B1 (en) * 2014-05-30 2015-09-29 Denso International America, Inc. Apparatus and method for intelligent channel switching to support V2X communication
KR101603436B1 (ko) * 2014-10-16 2016-03-21 경북대학교 산학협력단 차량의 긴급 메시지 브로드캐스팅 방법
US11395352B2 (en) * 2015-06-25 2022-07-19 Intel Corporation Discovery and establishment of communication groups for wireless vehicular communications
US10321353B2 (en) * 2015-09-23 2019-06-11 Electronics And Telecommunications Research Institute Operation methods of communication node supporting direct communications in network
US10687242B2 (en) * 2016-06-30 2020-06-16 Apple Inc. Dynamic offloading of V2X services to DSRC
WO2018074958A1 (en) * 2016-10-21 2018-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Intelligent transport system message control method and arrangement
US10917835B2 (en) * 2016-12-14 2021-02-09 Lg Electronics Inc. Apparatus and method for V2X communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110294424A1 (en) * 2010-03-09 2011-12-01 Stmicroelectronics, Inc. Operation procedures for interoperable safety and non-safety communications in wireless environments
US20120093091A1 (en) * 2010-10-17 2012-04-19 Industrial Technology Research Institute Method and system for extended service channel access on demand in an alternating wireless channel access environment
US20150305038A1 (en) * 2012-12-14 2015-10-22 Shanghai Research Centre For Wireless Communications Method for transmitting security information based on vehicular network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOBAN, MATE ET AL: "Service-actuated Multi-Channel operation for vehicular communications", COMPUTER COMMUNICATIONS, vol. 93, 1 November 2016 (2016-11-01), pages 17 - 26, XP029741263 *
SAHOO, PRASAN KUMAR ET AL.: "SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors", SENSORS, vol. 14, no. 12, 25 November 2014 (2014-11-25), Basel, pages 22230 - 22260, XP055607825 *
See also references of EP3565160A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191657A1 (en) * 2019-03-27 2020-10-01 Nec Corporation Sidelink transmission and reception
EP3979540A4 (en) * 2019-05-31 2023-07-05 ZTE Corporation METHOD AND DEVICE FOR SERVICE PROCESSING AND INTERNET OF VEHICLES DEVICE
US12101697B2 (en) 2019-05-31 2024-09-24 Zte Corporation Service processing method and apparatus, and internet of vehicles device

Also Published As

Publication number Publication date
US11304162B2 (en) 2022-04-12
EP3565160A1 (en) 2019-11-06
EP3565160A4 (en) 2020-08-12
US20190349874A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018110729A1 (ko) V2x 통신을 위한 장치 및 방법
WO2018124320A1 (ko) V2x 통신을 위한 장치 및 데이터 통신 방법
WO2020032698A1 (ko) Nr v2x에서 이종 rat과 관련된 사이드링크 통신이 공존하는 방법 및 장치
WO2017069543A1 (ko) 중첩된 베이직 서비스 세트를 포함하는 고밀도 환경에서의 무선 통신 방법 및 무선 통신 단말
WO2019156266A1 (ko) V2x 통신 장치 및 v2x 통신 장치의 v2x 통신 방법
WO2018182263A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2017030428A1 (ko) 트리거 정보를 이용하는 무선 통신 방법 및 무선 통신 단말
WO2019117369A1 (ko) V2x 통신 장치 및 그의 통신 방법
WO2019009596A1 (ko) 무선랜 시스템에서 채널화된 복수의 채널을 기반으로 프레임을 송신하는 방법 및 이를 이용한 무선 단말
WO2018225883A1 (ko) V2x 통신 장치 및 그의 멀티 채널 운용 방법
WO2023287224A1 (ko) 무선 통신 시스템에서 물리 사이드링크 공유 채널의 송수신 방법 및 그 장치
WO2020085522A1 (ko) V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법
WO2019132081A1 (ko) V2x 통신 장치 및 v2x 통신 장치의 its 메시지 송수신 방법
WO2017074025A1 (ko) 무선랜 시스템에서 데이터를 수신하는 방법 및 이를 이용한 단말
WO2019117367A1 (ko) V2x 통신 장치 및 그의 통신 방법
WO2017164638A1 (ko) 무선랜 시스템에서 상향링크 프레임을 전송하는 방법 및 이를 이용한 무선 단말
WO2016129932A1 (ko) 복수의 채널을 이용하는 무선 통신 방법 및 무선 통신 단말
WO2020204563A1 (ko) 비면허 대역에서 전송을 수행하기 위한 채널 액세스 방법 및 이를 이용하는 장치
WO2017209501A1 (ko) 무선랜 시스템에서 상향링크 프레임의 송신을 위한 방법 및 이를 이용한 무선 단말
WO2016163639A1 (ko) 무선랜에서 매체 보호 방법 및 장치
WO2023003373A2 (ko) Nr v2x에서 간섭 정보를 기반으로 통신을 수행하는 방법 및 장치
WO2023282663A2 (ko) 무선 통신 시스템에서 물리 사이드링크 채널의 스케줄링을 위한 방법 및 그 장치
WO2019050065A1 (ko) 하이브리드 v2x 통신 장치 및 그의 통신 방법
WO2018097371A1 (ko) V2x 통신을 위한 장치 및 방법
WO2019045154A1 (ko) V2x 통신 장치 및 그의 통신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016925382

Country of ref document: EP

Effective date: 20190729