WO2018123169A1 - 生体物質測定装置および生体物質測定方法 - Google Patents

生体物質測定装置および生体物質測定方法 Download PDF

Info

Publication number
WO2018123169A1
WO2018123169A1 PCT/JP2017/034319 JP2017034319W WO2018123169A1 WO 2018123169 A1 WO2018123169 A1 WO 2018123169A1 JP 2017034319 W JP2017034319 W JP 2017034319W WO 2018123169 A1 WO2018123169 A1 WO 2018123169A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
atr prism
vibration
skin
timing
Prior art date
Application number
PCT/JP2017/034319
Other languages
English (en)
French (fr)
Inventor
健太郎 榎
弘介 篠原
浩一 秋山
新平 小川
大介 藤澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780078201.5A priority Critical patent/CN110087544B/zh
Priority to US16/344,615 priority patent/US11197614B2/en
Priority to DE112017006536.4T priority patent/DE112017006536T5/de
Priority to JP2018558816A priority patent/JP6739550B2/ja
Publication of WO2018123169A1 publication Critical patent/WO2018123169A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1477Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means non-invasive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0228Control of working procedures; Failure detection; Spectral bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/14Generating the spectrum; Monochromators using refracting elements, e.g. prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J2003/425Reflectance

Definitions

  • the present invention relates to a biological material measuring device and a biological material measuring method, and more particularly to a biological material measuring device and a biological material measuring method for measuring a biological material such as sugar existing in a living body using infrared light.
  • Conventional invasive sensors collect blood using a needle and analyze the components of substances in the living body.
  • a non-invasive method is required in order to alleviate patient pain due to puncture.
  • Some non-invasive blood glucose level sensors use infrared light that can directly detect the fingerprint spectrum of sugar, but infrared light cannot be reached deep from the skin surface due to its strong water absorption . For this reason, there is a need for a technique for stably and highly accurately detecting blood sugar levels even when the absorption of sugar in the living body is small.
  • the SN ratio is improved by measurement using an ATR (Attenuated Total Reflection) prism.
  • Infrared light propagating through the ATR prism is repeatedly reflected at the interface between the skin to be measured and the ATR prism.
  • Evanescent light is generated at the reflecting interface and enters the skin to be measured. Since evanescent light is absorbed and scattered by water, sugar, and other biological materials, the intensity of infrared light propagating through the ATR prism is attenuated. Therefore, the greater the number of repetitions of reflection, the more attenuated the intensity of propagating infrared light.
  • a semiconductor quantum cascade as an infrared light source, it is possible to reduce the size so that it can be mounted on a mobile phone.
  • Patent Document 2 describes an apparatus for measuring an infrared absorption spectrum by disposing a measurement object between a prism and an actuator, changing the pressure applied to the measurement object using the actuator.
  • the skin is composed of the epidermis near the surface and the dermis below the epidermis.
  • the epidermis includes a stratum corneum, a granular layer, a spiny layer, and a basal layer in order from the vicinity of the surface.
  • Sugars and other biological substances are present in tissue interstitial fluid in the epidermis, and are considered to be unevenly distributed in the depth direction reflecting the structure of the epidermis.
  • the epidermis structure is distorted.
  • the contact state between the ATR prism and the skin surface changes, so the contact stress that the skin surface receives from the ATR prism changes, so the distribution of tissue interstitial fluid in the epidermis also changes, and the infrared rays absorbed by sugar and other biological materials Variations occur in the intensity of the light evanescent light.
  • Patent Document 2 a material to be measured is brought into close contact with a prism, pressure is periodically applied to the material to be measured, and a modulation signal is taken out in accordance with a change in pressure. It is difficult to change the side pressure periodically.
  • an object of the present invention is to provide a biological material measuring device and a biological material measuring device capable of preventing the measurement accuracy of the amount of biological material in the measured skin from deteriorating due to the contact state between the ATR prism and the measured skin. Is to provide a method.
  • the biological material measuring apparatus of the present invention has an ATR prism that can be brought into close contact with the skin to be measured, and an ATR prism that has the entire absorption wavelength or a part of the wavelength range of the biological material.
  • An infrared light source that radiates infrared light
  • an infrared light detector that detects infrared light emitted from the ATR prism
  • an ATR prism that is mounted in a direction perpendicular to the contact surface between the ATR prism and the skin to be measured.
  • a prism vibration control unit that vibrates the ATR prism, and a control unit that causes the infrared light detector to detect infrared light in synchronization with the vibration.
  • the contact state between the ATR prism and the skin to be measured is obtained by vibrating the ATR prism in a direction perpendicular to the contact surface between the ATR prism and the skin to be measured and detecting infrared light in synchronization with the vibration.
  • FIG. 6 is a diagram illustrating an example of using the portable non-invasive blood sugar level sensor 80 according to Embodiments 1 to 5.
  • FIG. 2 is a diagram illustrating a configuration of a portable non-invasive blood sugar level sensor 80 according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a configuration of a portable non-invasive blood sugar level sensor 80 according to Embodiment 1.
  • FIG. It is a figure which shows the fingerprint spectrum of sugar.
  • 3 is a flowchart showing an operation procedure of blood glucose level sensor 80 in the first embodiment.
  • 6 is a flowchart showing an operation procedure of portable non-invasive blood glucose level sensor 80 in the second embodiment. It is a figure showing the example of measurement timing kxT / 8 and (SIGMA) dSk.
  • FIG. 6 is a diagram showing a configuration of a portable non-invasive blood glucose level sensor 80 according to Embodiment 3.
  • FIG. 2 is a diagram illustrating a configuration of a lock-in amplifier 70.
  • FIG. 10 is a flowchart showing an operation procedure of blood glucose level sensor 80 in the third embodiment. It is a figure which shows the example of the penetration
  • 6 is a diagram illustrating a configuration of a portable non-invasive blood glucose level sensor 80 according to Embodiment 4.
  • FIG. FIG. 10 is a diagram illustrating a configuration of a portable non-invasive blood sugar level sensor 80 according to a fifth embodiment.
  • Embodiment 1 FIG.
  • the measurement apparatus of the present invention is not limited to the measurement of a blood glucose level, and can be applied to the measurement of other biological substances.
  • FIG. 1 is a diagram showing a usage example of the portable non-invasive blood sugar level sensor 80 of the first to fifth embodiments.
  • the head of a portable non-invasive blood sugar level sensor 80 is brought into contact with the thin lips of the subject's keratin to measure the blood sugar level in the subject's body.
  • the site to be measured is preferably a thin horny lip, but is not limited to this, and may be any site other than a thick horny region such as a palm. For example, measurements can be made on the face cheeks, ear lobes, and back of the hand.
  • 2 and 3 are diagrams showing the configuration of the portable non-invasive blood sugar level sensor 80 according to the first embodiment. 2 and 3 are different in the contact state between the non-invasive blood sugar level sensor 80 and the skin 40 to be measured.
  • the non-invasive blood glucose level sensor 80 includes an ATR prism 20, a prism vibration control unit 52, an infrared light source 32, an infrared light detector 30, a control unit 50, And a display 54.
  • the infrared light source 32 radiates infrared light of the whole or part of the absorption wavelength of the biological material to the ATR prism 20.
  • the infrared light detector 30 detects the infrared light emitted from the ATR prism 20.
  • the detected value may be the intensity (power) of light of a certain wavelength, or may be an optical spectrum. Below, it demonstrates as what detects the intensity
  • the control unit 50 controls the prism vibration control unit 52, the infrared light source 32, and the infrared light detector 30.
  • the controller 50 detects the blood glucose concentration in the living body based on the intensity of the infrared light detected by the infrared light detector 30.
  • the ATR prism 20 is mounted on the head of the non-invasive blood sugar level sensor 80.
  • the AT prism 20 is in contact with the skin surface 60 of the skin 40 to be measured.
  • FIG. 4 is a diagram showing a fingerprint spectrum of sugar.
  • the non-invasive blood sugar level sensor 80 When the non-invasive blood sugar level sensor 80 is activated by bringing the ATR prism 20 into contact with the skin surface 60 of the subject, the entire wavelength range of 8.5 ⁇ m to 10 ⁇ m including the fingerprint spectrum of sugar from the infrared light source 32, or Infrared light in a part of the wavelength range is emitted.
  • Incident infrared light 11a emitted from the infrared light source 32 is reflected by the end face 20c of the ATR prism 20 and becomes propagation infrared light 11b.
  • the propagating infrared light 11b passes through the inside of the ATR prism 20 in contact with the skin 40 to be measured while being repeatedly reflected by the end faces 20a and 20b of the ATR prism 20.
  • the propagating infrared light 11b that has passed through the ATR prism 20 is reflected by the end face 20d of the ATR prism 20 and becomes radiant infrared light 11c.
  • the intensity of the radiant infrared light 11 c is detected by the infrared light detector 30.
  • Evanescent light is generated at the interface (end surface 20a) between the ATR prism 20 and the skin 40 to be measured. This evanescent light enters the skin 40 to be measured and is absorbed by sugar.
  • the evanescent light becomes large.
  • the evanescent light that oozes out from the ATR prism 20 to the measured skin 40 side when reflected at the interface (end surface 20a) is absorbed by the biological material in the measured skin 40, thereby reflecting the infrared light reflected by the end surface 20a.
  • the intensity of is attenuated. Therefore, if the amount of biological material is large, the evanescent light is absorbed more, so that the intensity of reflected infrared light is greatly attenuated.
  • the skin is composed of the epidermis near the surface and the dermis below the epidermis.
  • the epidermis includes a stratum corneum, a granular layer, a spiny layer, and a basal layer in order from the vicinity of the surface. Each thickness is about 10 ⁇ m, several ⁇ m, 100 ⁇ m, and several ⁇ m. Cells are generated in the basal layer and stacked in the spiny layer. In the granular layer, moisture (tissue interstitial fluid) does not reach and the cells die. In the stratum corneum, dead cells are hardened. Sugars and other biological materials are present in tissue interstitial fluid in the epidermis. Tissue interstitial fluid increases from the stratum corneum to the spinous layer. Therefore, the intensity of the reflected infrared light also changes according to the penetration length of the evanescent light. Here, the penetration length is also called penetration depth.
  • the spectroscopy using the ATR prism 20 can measure the amount of biological material in the region up to the penetration depth. For example, since the sugar fingerprint spectrum has a wavelength of 8.5 ⁇ m to 10 ⁇ m, the amount of sugar in this region can be detected from the prism surface of the ATR prism 20.
  • the ATR prism 20 has a shape in which a part of a rectangular parallelepiped is cut off.
  • the cross section of the ATR prism has a shape in which two apex angles of a rectangle are cut at a constant angle. The shorter surface whose apex angle is cut is brought into contact with the skin 40 to be measured as a measurement surface.
  • the angle of the end surface 20c of the ATR prism 20 is set so that the propagating infrared light 11b in the ATR prism 20 is reflected by the end surfaces 20a and 20b of the ATR prism 20.
  • the angle of the end surface 20 d of the ATR prism 20 is set so that the radiated infrared light 11 c is directed toward the infrared light detector 30.
  • the angle of the end surface 20 d of the ATR prism 20 is set so that the radiated infrared light 11 c enters the infrared light detector 30 perpendicularly.
  • the infrared light source 32 and the ATR prism 20 are arranged so that the incident angle at which infrared light enters the ATR prism 20 from the infrared light source 32 is kept constant.
  • the end face 20c where the incident infrared light 11a from the infrared light source 32 is incident and the end face 20d where the radiated infrared light 11c is emitted to the infrared light detector 30 are provided with a non-reflective coating.
  • the incident infrared light 11a from the infrared light source 32 may be p-polarized light, and the incident surface 20c and the output surface 20d may be cut so that the incident / exit angle becomes the Brewster angle.
  • a single crystal of zinc sulfide (ZnS) that is transparent in the mid-infrared region and has a relatively low refractive index is used.
  • the material of the ATR prism 20 is not limited to a single crystal of zinc sulfide (ZnS), and may be a known material such as zinc selenide (ZnSe).
  • the contact surface 20a of the ATR prism 20 with the measured skin 40 is coated with a thin film such as SiO 2 or SiN so as not to harm the human body.
  • the infrared light source 32 for example, a broadband quantum cascade laser module is used.
  • the quantum cascade laser is a single light source, has a large output, and has a high signal-to-noise ratio (SNR), so that highly accurate measurement is possible.
  • the quantum cascade laser module is equipped with a lens for collimating the beam.
  • a broadband quantum cascade laser emits infrared light in all or part of the wavelength range 8.5 ⁇ m to 10 ⁇ m where the sugar fingerprint spectrum exists.
  • a thermal light source of the type that heats the filament by passing a current may be used as the infrared light source 32.
  • the temperature can be controlled by the amount of applied current, broadband infrared light according to blackbody radiation is emitted.
  • a plasmon or metamaterial light source provided with a periodic pattern in the heating unit may be used instead of the filament. In this case, since the radiation wavelength range is defined by the surface structure, unnecessary radiation is suppressed, so that the infrared light source 32 is a highly efficient light source.
  • the radiated infrared light 11 c radiated from the ATR prism 20 is received by the infrared light detector 30.
  • the infrared light detector 30 detects the emitted light emitted from the ATR prism 20.
  • the value detected here may be an optical spectrum or a power of a certain wavelength.
  • the infrared light detector 30 may include an array of uncooled infrared sensors that detect light of different wavelengths.
  • the uncooled infrared sensor may include a wavelength selective absorber using plasmon resonance on the surface of the light receiving unit.
  • an uncooled infrared sensor thermal infrared sensor
  • a pyroelectric sensor or a sensor including a bolometer, a thermopile, or an SOI (silicon on insulator) diode can be used.
  • the structure of the skin 40 to be measured is distorted, or the thickness of water, oil or fat between the ATR prism 20 and the skin surface 60 changes, and evanescent.
  • the place where the light reaches changes.
  • the force of pressing the ATR prism 20 increases or decreases the thickness of the stratum corneum, and evanescent light may or may not reach the granular layer or the spiny layer.
  • the ATR prism 20 is vibrated using the prism vibration control unit 52. While the ATR prism 20 is vibrated, infrared light is emitted from the infrared light source 32, and the infrared light is detected by the infrared light detector 30. At this time, the prism vibration control unit 52 and the infrared light detector 30 are synchronously controlled by the control unit 50.
  • the prism vibration control unit 52 is attached to the ATR prism 20 and vibrates the ATR prism 20 in a direction perpendicular to the skin surface 60 which is a contact surface between the ATR prism 20 and the skin 40 to be measured.
  • the prism vibration control unit 52 vibrates the ATR prism 20 by, for example, displacement or expansion / contraction according to a signal from the control unit 50.
  • the prism vibration control unit 52 may be configured by, for example, a piezoelectric actuator.
  • the control unit 50 causes the infrared light detector 30 to detect infrared light in synchronization with the vibration of the ATR prism 20.
  • FIG. 3 shows a state in which the ATR prism 20 is pushed into the skin surface 60 by the prism vibration control unit 52 vibrating the ATR prism 20.
  • the ATR prism 20 is in contact with the skin surface 60, but the degree of pushing into the skin surface 60 is different between the state of FIG. 2 and the state of FIG. 3.
  • the ATR prism 20 is in contact with the skin surface 60 during one period of vibration of the ATR prism 20.
  • the ATR prism 20 is not pushed in the direction of the skin 40 to be measured, and the most pressure is applied to the skin surface 60 that is a contact surface between the ATR prism 20 and the skin 40 to be measured.
  • the state that does not act will be referred to as a weak contact state.
  • the ATR prism 20 is pushed most greatly toward the skin 40 to be measured, and the skin that is the contact surface between the ATR prism 20 and the skin 40 to be measured.
  • the state in which the pressure is most strongly applied to the surface 60 is referred to as a strong contact state.
  • the ATR prism 20 repeats a vibration operation in which the state transition of the weak contact state in FIG. 3 ⁇ the strong contact state in FIG. 4 ⁇ the weak contact state in FIG.
  • the amplitude of vibration that is, the indentation distance difference between the weak contact state and the strong contact state may be several mm or less.
  • the infrared light detector 30 detects the radiated infrared light 11 c emitted from the ATR prism 20 in synchronization with the operation of the prism vibration control unit 52.
  • the radiation infrared light 11c detected by the infrared light detector 30 is mixed with a spectrum signal, an external environment, and an electric noise signal of the detector itself.
  • noise will be caused, the signal-to-noise ratio S / N of the measured value will deteriorate, and the penetration length of the evanescent light will also increase. It will be shorter.
  • the radiant infrared light 11c is detected by the infrared light detector 30 a plurality of times at equal intervals during one period of vibration.
  • the infrared light detector 30 detects the emitted infrared light 11c by the infrared light detector 30 twice at equal intervals in one cycle.
  • the two detection timings are the timing when the weak contact state in FIG. 3 and the timing when the strong contact state in FIG. 4 are obtained.
  • control unit 50 sets S (a) as the intensity of the radiant infrared light 11c detected by the infrared light detector 30 in the weak contact state in FIG. 3, and red in the strong contact state in FIG.
  • the control unit 50 obtains a plurality of dS by a plurality of measurements, and calculates the total ⁇ dS.
  • FIG. 5 is a flowchart showing an operation procedure of blood glucose level sensor 80 in the first embodiment.
  • step S100 the infrared light source 32 outputs infrared light.
  • step S101 the ATR prism 20 is brought into contact with the skin surface 60 of the subject.
  • step S102 the control unit 50 sets the acquisition limit number N.
  • step S103 the control unit 50 starts the vibration of the ATR prism 20 by starting the vibration of the prism vibration control unit 52.
  • steps S100 to S103 may be switched.
  • steps S104 and S105 the infrared light detector 30 detects S (a) and S (b) in synchronization with the vibration of the ATR prism 20.
  • the control unit 50 causes the infrared light detector 30 to detect the intensity of the radiated infrared light 11 c and outputs the intensity to the control unit 50 in the weak contact state.
  • the controller 50 sets the intensity of the acquired radiant infrared light 11c as S (a).
  • step 105 the control unit 50 causes the infrared light detector 30 to detect the intensity of the radiated infrared light 11 c and outputs the intensity to the control unit 50 in the strong contact state.
  • the controller 50 sets the acquired intensity of the radiant infrared light 11 to S (b).
  • step S104 and step S105 may be switched in order.
  • the ATR prism 20 In order to calculate the amount of sugar in the measured skin 40, when the ATR prism 20 and the measured skin 40 are brought into contact with each other by hand before the ATR prism 20 is vibrated, the ATR prism 20 is prepared. It is difficult to make the size of the gap between the skin and the skin 40 to be measured constant at every measurement. That is, it is difficult to accurately create the initial weak contact state by human hands. Therefore, S (a) and S (b) vary from measurement to measurement, but by taking the difference between S (a) and S (b), a value that is not affected by variation from measurement to measurement is obtained. Obtainable. That is, dS can reflect the amount of sugar in the measured skin 40 with high accuracy.
  • step S107 the control unit 50 compares the dS acquisition count n so far with the acquisition limit count N set in step S103. If acquisition number n is smaller than acquisition limit number N, the process returns to step S104, and the processes of steps S104 to S107 are repeated. When the acquisition number n becomes equal to the acquisition limit number N, the process proceeds to step S108.
  • step S108 the control unit 50 calculates the total ⁇ dS of all the stored dS.
  • the reason for obtaining the total ⁇ dS is to smooth the measurement error.
  • the average value ⁇ dS / N may be obtained by further dividing the total ⁇ dS by the acquisition limit number N.
  • step S109 the control unit 50 displays the calculated value of ⁇ dS on the display 54.
  • the acquisition limit number N in step 103 can be freely determined by the user or the designer. By increasing the acquisition limit number N, the signal-to-noise ratio S / N of ⁇ dS obtained in step 108 is improved. On the other hand, the time required for measurement also increases.
  • the infrared light emitted from the ATR prism 20 can be detected in synchronization with the vibration of the ATR prism 20.
  • the amount of the biological substance in the skin 40 to be measured is accurately measured. can do.
  • the biological material measuring apparatus (80) and biological material measuring method of Embodiment 1 have the following features.
  • the biological material measuring device (80) has an ATR prism (20) that can be brought into close contact with the skin to be measured (40), and the entire or part of the absorption wavelength of the biological material to the ATR prism (20). Attached to the infrared light source (32) that emits infrared light in the wavelength range, the infrared light detector (30) that detects infrared light emitted from the ATR prism (20), and the ATR prism (20) A prism vibration control unit (52) that vibrates the ATR prism (20) in a direction perpendicular to the contact surface between the ATR prism (20) and the skin to be measured (40), and an infrared light detector ( 30) and a control unit (50) for detecting infrared light.
  • the prism vibration control unit (32) periodically vibrates the ATR prism (20).
  • the control unit (50) causes the infrared light detector (30) to detect infrared light twice or more during one period of vibration of the ATR prism (20).
  • the control unit (50) is configured such that the pressure is not most applied to the contact surface between the ATR prism (20) and the skin to be measured (40) during one period of vibration. Infrared light is detected at the timing of the weak contact state, and the strong contact state in which pressure is most strongly applied to the contact surface between the ATR prism (20) and the skin to be measured (40) during one cycle of vibration. Infrared light is detected at the timing.
  • the control unit (50) is detected at the detection value of the infrared light detected at the timing of the weak contact state during one cycle of vibration and at the timing of the strong contact state during one cycle of vibration. The difference from the detected value of infrared light is calculated.
  • the amount of the biological substance can be measured without being affected by the variation in the contact state between the ATR prism (20) and the skin to be measured (40) for each measurement.
  • the control unit (50) calculates a plurality of differences over a plurality of cycles, and calculates the total or average of the calculated plurality of differences.
  • the biological material measuring method includes a step in which the infrared light source (32) emits infrared light in the whole or part of the absorption wavelength of the biological material, and the ATR prism (20) is measured.
  • the detector (30) is in one cycle of vibration Detecting infrared light emitted from the ATR prism (20) at the timing of the strong contact state where the pressure is most applied to the contact surface between the ATR prism (20) and the skin to be measured (40), and vibration. The difference between the detection value of the infrared light detected at the timing of the weak contact state during
  • FIG. The configuration of the non-invasive blood glucose level sensor 80 of the second embodiment is the same as the configuration of the non-invasive blood glucose level sensor of the first embodiment except for the function of the control unit 50.
  • the second embodiment is different from the first embodiment in that the number of detections of the radiant infrared light 11c in the infrared light detector 30 during one period of vibration of the ATR prism 20 is more than two. is there.
  • the infrared light detector 30 detects the intensity of the radiated infrared light 11c eight times at regular intervals during one period of vibration of the ATR prism 20, for example.
  • the vibration amplitude of the ATR prism 20 is d
  • the vibration period is T
  • the number of samplings during one period is eight.
  • the sampling frequency may be less than 8 if it is desired to measure more coarsely, and may be greater than 8 if it is desired to measure more finely, but the sampling interval is equal.
  • FIG. 6 is a flowchart showing an operation procedure of the portable non-invasive blood glucose level sensor 80 according to the second embodiment.
  • steps S200 to S203 are the same as steps S100 to S103 of the first embodiment, description thereof will not be repeated.
  • the infrared light detector 30 detects S0 to S7 in synchronization with the vibration.
  • the control unit 50 causes the infrared light detector 30 to detect the intensity of the radiated infrared light 11 c and outputs the intensity to the control unit 50 in the weak contact state.
  • the control unit 50 sets the intensity of the acquired radiant infrared light 11c to S0.
  • the measurement start timing may be a weak contact state or a strong contact state, but in FIG. 6, the weak contact state is the start timing.
  • step S205 the control unit 50 causes the infrared light detector 30 to detect the radiated infrared light 11c and output it to the control unit 50 every time T / 8 cycles elapse from step S204.
  • the control unit 50 sets the intensity of the sequentially acquired radiant infrared light 11c as S1, S2, S3, S4, S5, S6, and S7.
  • the difference between dS2 and dS1 is based on the amount of sugar at the depth of the skin surface 60 corresponding to the penetration depth of epanescent light at the timing of T / 8 from the timing of the weak adhesion state and the timing of the weak adhesion state.
  • This value represents a difference from the amount of sugar at the depth of the skin surface 60 corresponding to the penetration length of the epanescent light at the timing of 2T / 8.
  • step S207 the control unit 50 compares the number n of acquisitions of each dSi (i to 7) so far with the number N of acquisition limits set in step S203. If acquisition number n is smaller than acquisition limit number N, the process returns to step S204, and the processes of steps S204 to 207 are repeated. When the acquisition number n becomes equal to the acquisition limit number N, the process proceeds to step S208.
  • step S208 the control unit 50 calculates the sum ⁇ dS1, ⁇ dS2, ⁇ dS3, ⁇ dS4, ⁇ dS5, ⁇ dS6, and ⁇ dS7 of all the stored dS1, dS2, dS3, dS4, dS5, dS6, and dS7.
  • ⁇ dS1 is the sum of dS1 in N measurements.
  • the reason for obtaining the total ⁇ dS is to smooth the measurement error.
  • the average values ⁇ dS1 / N to ⁇ dS7 / N may be obtained by further dividing the total ⁇ dS1 to ⁇ dS7 by the acquisition limit number N.
  • step S209 the control unit 50 displays the calculated values of ⁇ dS1, ⁇ dS2, ⁇ dS3, ⁇ dS4, ⁇ dS5, ⁇ dS6, and ⁇ dS7 on the display 54.
  • FIG. 7 is a diagram illustrating an example of measurement timing k ⁇ T / 8 and ⁇ dSk.
  • the horizontal axis represents the measurement timing, that is, the detection timing of the radiated infrared light 11 c by the infrared light detector 30 when the ATR prism 20 is vibrated at the period T.
  • the vertical axis represents the total ⁇ dSk at each timing k ⁇ T / 8.
  • the control unit 50 can convert the measurement timing of FIG. 7 into a vertical pushing distance of the ATR prism 20 with respect to the skin 40 to be measured. This is converted into a vertical distance of the skin 40 to be measured. That is, when the measurement timing is 0, T / 8, 2T / 8, 3T / 8, 4T / 8, 5T / 8, 6T / 8, and 7T / 8, the ATR prism 20 is pushed in the vertical direction with respect to the skin 40 to be measured. , D / 4, d / 2, 3d / 4, d, 3d / 4, d / 2, d / 4.
  • FIG. 8 is a diagram in which the measurement timing on the horizontal axis in FIG. 7 is changed to the pushing distance of the ATR prism 20 in the vertical direction with respect to the skin 40 to be measured.
  • the value of ⁇ dSk takes a minimum value at the measurement timing T / 2 and the indentation distance d, and is then turned back.
  • the second embodiment it is possible to obtain information on the sugar distribution for each depth from the skin surface.
  • the biological material measurement apparatus (80) and biological material measurement method of Embodiment 2 have the following features.
  • the control unit (50) causes the infrared light detector (30) to detect infrared light at three or more times during one period of vibration of the ATR prism (20).
  • the distribution of the biological material in the vertical direction can be measured from the surface of the skin to be measured (40).
  • the control unit (50) has the most pressure acting on the contact surface between the ATR prism (20) and the skin to be measured (40) during one period of vibration in the infrared light detector (30). Infrared light is detected at the timing of the weak adhesion state, the detection value of the infrared light detected at the timing of the weak adhesion state during one cycle of vibration, and the timing of three or more times during one cycle of vibration. The difference with the detection value of the infrared light detected at each timing other than the timing of the weak contact state is calculated as a difference at each timing.
  • the control unit (50) calculates a plurality of differences at each timing over a plurality of cycles, and calculates the sum or average of the calculated differences at each timing.
  • the control unit (50) converts the detection timing of the infrared light into a vertical pressing distance of the ATR prism (20) with respect to the measured skin (40).
  • the control unit (50) causes the infrared light detector (30) to detect infrared light at equal time intervals during one period.
  • the biological material measuring method is such that the infrared light source (32) emits infrared light in the whole or part of the absorption wavelength of the biological material, and the ATR prism (20) is measured.
  • the infrared light emitted from the infrared light source (32) is received in contact with the skin (40), and the inside of the ATR prism (20) is transmitted while repeating the reflection of the infrared light.
  • infrared detector ( 0) is a step of detecting infrared light emitted from the ATR prism (20) at two or more times other than the weak contact state during one cycle of vibration, and a weak contact state during one cycle of vibration. And calculating a difference between the detected value of the infrared light detected at the timing and the detected value of the infrared light detected at each of the two or more times other than the weakly adhered state.
  • the distribution of the biological material in the vertical direction can be measured from the surface of the skin to be measured (40).
  • FIG. 9 is a diagram illustrating a configuration of a portable non-invasive blood glucose level sensor 80 according to the third embodiment.
  • the blood glucose level sensor 80 includes an infrared light source 32, an ATR prism 20, an infrared light detector 30, a prism vibration control unit 52, a control unit 50, and a lock-in amplifier 70. Prepare.
  • the configuration of the blood glucose level sensor 80 of the third embodiment is different from the configuration of the blood glucose level sensor 80 of the first or second embodiment in that the blood glucose level sensor 80 of the third embodiment includes a lock-in amplifier 70. is there.
  • a measurement signal indicating the intensity of the radiant infrared light 11 c detected by the infrared light detector 30 is input to the lock-in amplifier 70.
  • This measurement signal is a weak signal. When a weak signal is detected, it is greatly affected by noise, so it is necessary to remove the noise.
  • a band pass filter can be used as a method for removing noise. If the element used in the bandpass filter changes, the center frequency changes and affects the amplitude of the signal. Therefore, the bandpass filter is not suitable for detecting a weak signal.
  • a frequency conversion technique using the lock-in amplifier 70 is used to detect a measurement signal that is a minute signal buried in noise.
  • PSD Phase Sensitive Detector
  • the signal obtained by removing the noise from the lock-in amplifier 70 is a direct current, only a low-pass filter can be used as a band limiting filter. The low-pass filter does not affect the value of the DC signal, only the cut-off frequency of the low-pass filter fluctuates even if the element being used fluctuates.
  • FIG. 10 is a diagram showing the configuration of lock-in amplifier 70.
  • the lock-in amplifier 70 includes a preamplifier 81, a waveform shaping circuit 82, a phase circuit 83, a PSD 84, and an LPF (Low-Pass Filter) 85.
  • the lock-in amplifier 70 receives a measurement signal S (t) representing the intensity of the radiant infrared light 11c.
  • S (t) Asin ( ⁇ t + a).
  • 2 ⁇ f.
  • R (t) Asin ( ⁇ t + b).
  • the preamplifier 81 amplifies the measurement signal S (t) to a desired voltage.
  • the waveform shaping circuit 82 shapes the reference signal R (t) into a rectangular wave.
  • the phase circuit 83 adjusts the phase difference between the rectangular-wave reference signal R ′ (t) and the measurement signal S (t). Specifically, the phase circuit 83 adjusts the phase difference (ab) between the reference signal R ′ (t) and the measurement signal S (t) to “0”.
  • the LPF 85 outputs the DC component of the measurement signal S (t) by removing the AC component from the output signal of the PSD 84 and taking out the DC component. As a result, only the target signal buried in the noise can be extracted as the maximum value for the direct current.
  • FIG. 11 is a flowchart showing an operation procedure of blood glucose level sensor 80 in the third embodiment.
  • the infrared light emitted from the infrared light source is repeatedly reflected in the ATR prism and enters the infrared light detector, but the signal detected by the infrared light detector may be a weak signal, so a high signal It is necessary to obtain a signal with a noise ratio SN.
  • step S300 the infrared light source 32 outputs infrared light.
  • step S301 the ATR prism 20 is brought into contact with the skin surface 60 of the subject.
  • step S302 the control unit 50 sets the displacement frequency f of the ATR prism 20.
  • step S303 the control unit 50 starts the vibration at the frequency f of the displacement of the ATR prism 20 by starting the vibration at the frequency f of the prism vibration control unit 52.
  • the vibration of the ATR prism 20 may be an operation width that does not move away from the skin surface 60 of the subject to be measured in the vertical movement of the vibration.
  • the ATR prism 20 moves back and forth between the weak contact state in FIG. Any operation that does not move away from the skin surface 60 of the subject to be measured in the vertical movement of the vibration.
  • step S304 the control unit 50 causes the infrared light detector 30 to detect the intensity of the radiated infrared light 11c at a predetermined interval, and outputs it to the control unit 50.
  • the control unit 50 generates a measurement signal S (t) that represents the intensity of the acquired radiation infrared light 11.
  • step S306 the preamplifier 81 of the lock-in amplifier 70 amplifies the measurement signal S (t) representing the intensity of the radiated infrared light 11c output from the infrared light detector 30 at a predetermined interval to a desired voltage.
  • the waveform shaping circuit 82 of the lock-in amplifier 70 shapes the reference signal R (t) into a rectangular wave.
  • the phase circuit 83 of the lock-in amplifier 70 adjusts the phase difference between the rectangular wave reference signal R ′ (t) and the measurement signal S (t) to “0”.
  • the PSD 84 of the lock-in amplifier 70 performs multiplication (multiplication) of the signal waveform of the measurement signal S (t) and the reference signal R ′ (t). By adjusting the phase difference to “0” by the phase circuit 83, the PSD 84 outputs the maximum DC component and the AC component having the double frequency.
  • step S307 the LPF 85 of the lock-in amplifier 70 outputs the DC component of the measurement signal S (t) by removing the AC component from the output signal of the PSD 84 and extracting the DC component.
  • the measurement signal S (t) is represented by Asin ( ⁇ t + a), A / 2 is output.
  • the maximum DC value of the target signal can be obtained, and the measurement accuracy can be increased.
  • the biological material measurement apparatus (80) of Embodiment 3 has the following features.
  • the biological material measuring device (80) further includes a lock-in amplifier (70) to which the signal output from the infrared light detector (30) is input.
  • the signal output from the infrared light detector (30) has a minute size buried in noise, it can be detected.
  • the control unit (50) controls the prism vibration control unit (52) so that the ATR prism (20) vibrates at the same frequency as the frequency of the reference signal input to the lock-in amplifier (70).
  • the lock-in amplifier (70) outputs the maximum DC value of the signal output from the infrared light detector (30), the measurement accuracy can be increased.
  • Embodiment 4 As described in the above embodiment, evanescent light is generated on the reflecting boundary surface and enters the skin to be measured. At that time, since the evanescent light is absorbed and scattered by water, sugar, and other biological substances, the intensity of the infrared light propagating through the ATR prism 20 is attenuated.
  • the penetration length dp of the evanescent light is expressed by the following equation depending on the refractive index n1 of the prism, the refractive index n2 of the object to be measured, the incident angle ⁇ , and the wavelength ⁇ used.
  • FIG. 12 is a diagram showing an example of the penetration length of evanescent light with respect to the incident angle of infrared light at certain refractive indexes n1 and n2.
  • the penetration length of the evanescent light reaches a maximum value at an incident angle of 40 °.
  • the penetration length of the evanescent light changes greatly.
  • FIG. 13 is a diagram illustrating a configuration of a portable non-invasive blood sugar level sensor 80 according to the fourth embodiment.
  • the blood glucose level sensor 80 in FIG. 13 is different from the blood glucose level sensor 80 in the first embodiment in FIG. 2 in that the blood glucose level sensor 80 in FIG. 13 includes angle adjustment units 90a and 90b.
  • the angle adjusting unit 90 a is provided between the infrared light source 32 and the ATR prism 20.
  • the angle adjustment unit 90a is configured by a mirror or a lens.
  • the angle adjustment unit 90 a adjusts the incident angle of infrared light to the ATR prism 20.
  • the angle adjusting unit 90 b is provided between the ATR prism 20 and the infrared light detector 30.
  • the angle adjustment unit 90b is configured by a mirror or a lens.
  • the angle adjustment unit 90 b adjusts the traveling direction of the infrared light so that the infrared light emitted from the ATR prism 20 is directed to the infrared light detector 30.
  • the angle adjusting unit 90a sets the incident angle around ⁇ 0 within a range in which the penetration length can be secured. Change periodically. As a result, the incident angle to the ATR prism 20 vibrates with a constant width, and the penetration length of the evanescent light periodically changes from large to small to large.
  • the angle adjustment unit 90b adjusts the angle of light emitted from the ATR prism 20 in synchronization with the angle adjustment unit 90a.
  • the angle of the end surface 20d of the ATR prism 20 is set so that the radiated infrared light 11c is perpendicularly incident on the infrared light detector 30 when the angle adjusting unit 90a is not present.
  • the adjustment of the incident angle of the infrared light by the angle adjusting unit 90a changes the emission angle of the infrared light emitted from the ATR prism 20, but the infrared light emitted from the ATR prism 20 by the angle adjusting unit 90b is changed.
  • the traveling direction By adjusting the traveling direction, the emitted infrared light 11c can be incident on the infrared light detector 30 perpendicularly. It can be determined in advance how much the angle adjustment amount of the angle adjustment unit 90b should be relative to the amount of adjustment of the incident angle by the angle adjustment unit 90a.
  • the angle adjustment unit 90 a performs infrared light incident on the ATR prism 20 so that the incident angle of infrared light on the ATR prism 20 periodically changes from 38 ° ⁇ 41 ° ⁇ 38 °.
  • the angle of the incident light is periodically adjusted.
  • Infrared light emitted from the ATR prism 20 is synchronized with the angle adjusting unit 90a so that the infrared light emitted from the ATR prism 20 is perpendicularly incident on the infrared light detector 30.
  • the traveling direction of the is periodically adjusted.
  • the angle adjustment cycle of the angle adjustment unit 90a and the angle adjustment unit 90b matches the vibration cycle of the prism vibration control unit 52 in the first embodiment.
  • the prism vibration control unit 52 repeats the strong contact state and the weak contact state.
  • the angle adjusting unit 90a has a maximum incident angle of infrared light to the ATR prism 20 in a weak contact state during one cycle of vibration, and is in a strong contact state during one cycle of vibration.
  • the incident angle of the infrared light to the ATR prism 20 is adjusted so that the incident angle of the infrared light to the ATR prism 20 is minimized.
  • evanescent light penetrates deeper into the object to be measured in the strong contact state, and evanescent light penetrates more shallowly in the weak contact state.
  • the present embodiment by changing the incident angle of the infrared light to the ATR prism 20, as in the method of vibrating the ATR prism 20 in the first embodiment, The intensity of infrared light and the intensity of infrared light in a weakly adhered state can be obtained. Thereby, also in the present embodiment, the amount of the biological substance in the skin 40 to be measured can be accurately measured, as in the first embodiment.
  • the biological material measurement device (80) of the fourth embodiment includes the following features.
  • the biological material measuring device (80) is provided between the infrared light source (32) and the ATR prism (20), and is a first for adjusting the incident angle of the infrared light to the ATR prism (20). And an angle adjusting unit (90a), and provided between the ATR prism (20) and the infrared light detector (30) for adjusting the traveling direction of the infrared light emitted from the ATR prism (20). 2 angle adjusters (90b).
  • the biological material measuring device (80) includes an angle adjusting unit (90a) provided between the infrared light source (32) and the ATR prism (20).
  • the angle adjustment unit (90a) has a maximum incident angle of infrared light on the ATR prism (20) in a weak contact state during one cycle of vibration, and a strong contact state during one cycle of vibration.
  • the incident angle of the infrared light to the ATR prism (20) is adjusted so that the incident angle of the infrared light to the ATR prism (20) is minimized.
  • FIG. FIG. 14 is a diagram illustrating a configuration of a portable noninvasive blood sugar level sensor 80 according to the fifth embodiment.
  • the blood glucose level sensor 80 of FIG. 14 is different from the blood glucose level sensor 80 of Embodiment 3 of FIG. 9 in that the blood glucose level sensor 80 of FIG. 14 includes angle adjustment units 90a and 90b.
  • the angle adjusting unit 90a and the angle adjusting unit 90b are arranged in the same manner as described in the fourth embodiment and operate in the same manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

赤外光源(32)は、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光をATRプリズム(20)へ放射する。ATRプリズム(20)は、被測定皮膚(40)に密着可能である。プリズム振動制御部(52)は、ATRプリズム(20)に装着され、ATRプリズム(20)と被測定皮膚(40)との接触面に垂直方向にATRプリズム(20)を振動させる。制御部(50)は、ATRプリズム(20)の振動に同期して赤外光検出器(30)に赤外光を検出させる。

Description

生体物質測定装置および生体物質測定方法
 本発明は、生体物質測定装置および生体物質測定方法に関し、特に、赤外光を用いて生体内に存在する糖などの生体物質を測定する生体物質測定装置および生体物質測定方法に関する。
 従来の侵襲型センサは、針を用いて採血を行い、生体中の物質の成分を解析する。特に、日常的に利用されている血糖値センサについては、穿刺による患者の苦痛緩和のため、非侵襲方式が求められている。非侵襲の血糖値センサとして、糖の指紋スペクトルを直接検出することができる赤外光を利用するものがあるが、赤外光は水の吸収が強いため皮膚表面から深くまで到達することができない。このため、生体中の糖による吸収が小さくても血糖値を安定的にかつ高精度に検出する技術が求められている。
 このような要求に対して、たとえば、特許文献1に記載の装置では、ATR(Attenuated Total Reflection)プリズムを用いた測定によりSN比を向上させている。ATRプリズムを伝搬する赤外光は、被測定皮膚とATRプリズムの境界面で反射を繰り返す。反射する境界面ではエバネッセント光が発生して被測定皮膚に侵入する。エバネッセント光が水、糖、およびその他生体物質によって吸収および散乱するため、ATRプリズムを伝搬する赤外光の強度が減衰する。したがって、反射を繰り返す回数が多くなる程、伝搬する赤外光の強度が減衰する。この文献では、赤外光源として半導体の量子カスケードを用いることによって、携帯電話に搭載できる程度の小型化を可能としている。
 特許文献2には、プリズムとアクチュエータの間に被測定物を配置し、アクチュエータを用いて被測定物にかける圧力を変化させ、赤外吸収スペクトルを測定する装置が記載されている。
特開2003-42952号公報 特開2003-35661号公報
 皮膚は、表面付近の表皮と、表皮の下の真皮とによって構成される。表皮は、表面付近から順に角質層、顆粒層、有棘層、および基底層を含む。糖、およびその他生体物質は表皮中の組織間質液中に存在しており、表皮の構造を反映して深さ方向に不均一に分布しているものと考えられている。
 ATRプリズムと皮膚表面との接触によって、表皮が応力を受けると、表皮の構造にゆがみが生じる。ATRプリズムと皮膚表面との接触状態が変わると、皮膚表面がATRプリズムから受ける接触応力が変わるため、表皮内の組織間質液の分布も変化し、糖およびその他生体物質に吸収される赤外光のエバネッセント光の強度にばらつきが生じてしまう。
 特許文献2では、被測定材料をプリズムに密着させて被測定材料に圧力を周期的に印加させて圧力変化に応じて変調信号を取り出しているが、生体が被測定物の場合は被測定材料側の圧力を周期的に変化させることは困難である。
 それゆえに、本発明の目的は、ATRプリズムと被測定皮膚間の接触状態によって、被測定皮膚内の生体物質の量の測定精度が劣化しないようにすることができる生体物質測定装置および生体物質測定方法を提供することである。
 上記課題を解決するために、本発明の生体物質測定装置は、被測定皮膚に密着させることが可能なATRプリズムと、ATRプリズムへ、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光を放射する赤外光源と、ATRプリズムから出射された赤外光を検出する赤外光検出器と、ATRプリズムに装着され、ATRプリズムと被測定皮膚との接触面に垂直方向にATRプリズムを振動させるプリズム振動制御部と、振動に同期して赤外光検出器に赤外光を検出させる制御部とを備える。
 本発明によれば、ATRプリズムと被測定皮膚との接触面に垂直方向にATRプリズムを振動させ、振動に同期して赤外光を検出することによって、ATRプリズムと被測定皮膚間の接触状態によって、被測定皮膚内の生体物質の量の測定精度が劣化しないようにすることができる。
実施の形態1~5の携帯型の非侵襲の血糖値センサ80の使用例を表わす図である。 実施の形態1の携帯型の非侵襲の血糖値センサ80の構成を表わす図である。 実施の形態1の携帯型の非侵襲の血糖値センサ80の構成を表わす図である。 糖の指紋スペクトルを示す図である。 実施の形態1における血糖値センサ80の動作手順を表わすフローチャートである。 実施の形態2における携帯型の非侵襲の血糖値センサ80の動作手順を表わすフローチャートである。 測定タイミングk×T/8と、ΣdSkの例を表わす図である。 図7の横軸の測定タイミングをATRプリズム20の皮膚表面60への押込み距離に変えた図である。 実施の形態3の携帯型の非侵襲の血糖値センサ80の構成を示す図である。 ロックインアンプ70の構成を表わす図である。 実施の形態3における血糖値センサ80の動作手順を表わすフローチャートである。 ある屈折率n1とn2における赤外光の入射角に対するエバネッセント光の侵入長の例を示す図である。 実施の形態4の携帯型の非侵襲の血糖値センサ80の構成を表わす図である。 実施の形態5の携帯型の非侵襲の血糖値センサ80の構成を表わす図である。
 以下、本発明の実施の形態について図面を用いて説明する。
 実施の形態1.
 以下、測定対象として血糖値を例に挙げて説明するが、本発明の測定装置は血糖値の測定に限定するものではなく、他の生体物質の測定にも適用することができる。
 図1は、実施の形態1~5の携帯型の非侵襲の血糖値センサ80の使用例を表わす図である。
 図1に示すように、携帯型の非侵襲の血糖値センサ80のヘッドを被験者の角質の薄い唇に接触させて被験者の生体内の血糖値を測定する。被測定部位は角質の薄い唇が望ましいが、これに限定されるものではなく、手のひらのような角質の厚い部位以外であればよい。たとえば、顔の頬、耳たぶ、手の甲でも測定が可能である。
 図2および図3は、実施の形態1の携帯型の非侵襲の血糖値センサ80の構成を表わす図である。図2と図3とでは、非侵襲の血糖値センサ80と被測定皮膚40との接触状態が異なる。
 図2および図3に示すように、非侵襲の血糖値センサ80は、ATRプリズム20と、プリズム振動制御部52と、赤外光源32と、赤外光検出器30と、制御部50と、ディスプレイ54とを備える。
 赤外光源32は、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光をATRプリズム20に放射する。
 赤外光検出器30は、ATRプリズム20から出射された赤外光を検出する。ここで、検出される値は、ある波長の光の強度(パワー)であってもよく、あるいは光スペクトルであってもよい。以下では、ある波長の強度が検出されるものとして説明する。
 制御部50は、プリズム振動制御部52、赤外光源32、および赤外光検出器30を制御する。制御部50は、赤外光検出器30によって検出された赤外光の強度に基づいて、生体中の血糖値の濃度を検出する。
 非侵襲の血糖値センサ80のヘッドには、ATRプリズム20が搭載されている。ATプリズム20は、被測定皮膚40の皮膚表面60と接触している。
 図4は、糖の指紋スペクトルを示す図である。
 ATRプリズム20を被験者の皮膚表面60に接触させて非侵襲の血糖値センサ80を起動すると、赤外光源32から糖の指紋スペクトルが含まれる波長範囲8.5μm~10μmの全部の波長域、あるいはその一部の波長域の赤外光が放射される。赤外光源32から出射された入射赤外光11aは、ATRプリズム20の端面20cで反射し、伝搬赤外光11bとなる。伝搬赤外光11bは、被測定皮膚40に接触したATRプリズム20の内部を、ATRプリズム20の端面20aおよび20bで反射を繰り返しながら透過する。ATRプリズム20内を透過した伝搬赤外光11bは、ATRプリズム20の端面20dで反射し、放射赤外光11cとなる。放射赤外光11cの強度が赤外光検出器30によって検出される。
 ATRプリズム20と被測定皮膚40との界面(端面20a)では、エバネッセント光が発生する。このエバネッセント光が被測定皮膚40内に侵入し、糖に吸収される。
 被測定皮膚40とATRプリズム20の屈折率差が小さいとエバネッセント光が大きくなる。また、界面(端面20a)で反射するときATRプリズム20から被測定皮膚40側に染み出したエバネッセント光が被測定皮膚40内の生体物質により吸収されることによって、端面20aで反射した赤外光の強度が減衰する。よって、生体物質が多いとエバネッセント光がより多くの吸収を受けるため、反射した赤外光の強度の減衰も大きくなる。
 皮膚は、表面付近の表皮と、表皮の下の真皮とによって構成される。表皮は、表面付近から順に角質層、顆粒層、有棘層、および基底層を含む。それぞれの厚みは、10μm、数μm、100μm、数μm程度である。基底層において細胞が生成されて、有棘層に細胞が積み上げられる。顆粒層では水分(組織間質液)が届かなくなるため細胞が死に絶える。角質層では、死んだ細胞が硬化した状態になっている。糖およびその他の生体物質は、表皮中の組織間質液中に存在している。組織間質液は、角質層から有棘層にかけて増加する。それゆえ、エバネッセント光の侵入長に応じて、反射した赤外光の強度も変化する。ここで、侵入長は、侵入深さともいう。
 エバネッセント光は、界面から被測定皮膚40の方向に指数関数的に減衰し、その侵入長は波長程度である。よって、ATRプリズム20を用いた分光では侵入長までの領域の生体物質の量を測定することができる。例えば、糖の指紋スペクトルは波長が8.5μm~10μmなので、ATRプリズム20のプリズム面からこの程度の領域の糖の量を検出することができる。
 ATRプリズム20は、直方体の一部が削られた形状を有する。ATRプリズムの断面は、長方形の2つの頂角を一定角度で削った形状を有する。頂角が削られた短い方の面が測定面として被測定皮膚40に接触される。ATRプリズム20の端面20cの角度は、ATRプリズム20の端面20aおよび20bにおいて、ATRプリズム20内の伝搬赤外光11bが反射するように設定される。また、ATRプリズム20の端面20dの角度は、放射赤外光11cが赤外光検出器30に向かうように設定される。たとえば、ATRプリズム20の端面20dの角度は、放射赤外光11cが赤外光検出器30に垂直に入射されるように設定される。
 赤外光源32とATRプリズム20は、赤外光源32からATRプリズム20に赤外光が入射する入射角が一定に保つように配置されている。赤外光源32からの入射赤外光11aが入射する端面20cおよび赤外光検出器30へ放射赤外光11cが出射する端面20dは、無反射コーティングが施されている。あるいは、赤外光源32からの入射赤外光11aをp偏光にして、入射/出射角がブリュスター角になるように入射面20cおよび出射面20dが削られているものとしてもよい。
 ATRプリズム20の材料として、中赤外領域で透明であり、かつ屈折率が比較的小さな硫化亜鉛(ZnS)の単結晶を用いる。なお、ATRプリズム20の材料は、硫化亜鉛(ZnS)の単結晶に限定されず、セレン化亜鉛(ZnSe)のような公知の材料であってもよい。ATRプリズム20の被測定皮膚40との接触面20aには、人体に害を与えないようにSiO2やSiNなどの薄膜がコーティングされている。
 赤外光源32として、たとえば広帯域の量子カスケードレーザモジュールを用いる。量子カスケードレーザは、単一光源であり、出力が大きく、SN比(Signal-to-Noise ratio)が高いため、高精度な測定が可能となる。量子カスケードレーザモジュールには、ビームをコリメートするためのレンズが搭載される。広帯域の量子カスケードレーザは、糖の指紋スペクトルが存在する波長範囲8.5μm~10μmの全ての波長域、あるいは一部の波長域の赤外光を放射する。
 広帯域の量子カスケードレーザ以外に、赤外光源32としてフィラメントに電流を流して加熱するタイプの熱光源を用いてもよい。この場合、印加する電流の量によって温度が制御可能であるため黒体放射に従った広帯域な赤外線が放射される。あるいは、赤外光源32として、フィラメントではなく、加熱部に周期パターンを設けたプラズモンまたはメタマテリアル光源を用いてもよい。この場合、放射波長域は、表面構造で規定されるため不要な放射が抑制されるので、赤外光源32は、高効率な光源となる。
 ATRプリズム20から放射された放射赤外光11cは、赤外光検出器30で受光される。赤外光検出器30は、ATRプリズム20から放出された出射光を検出する。ここで検出される値は光スペクトルでも、ある波長のパワーであっても良いものとする。赤外光検出器30は、それぞれ異なる波長の光を検出する非冷却赤外線センサのアレイを含むものとしてもよい。非冷却赤外線センサは、受光部表面にプラズモン共鳴を利用した波長選択型吸収体を含むものとしてもよい。非冷却赤外線センサ(熱型の赤外線センサ)として、焦電型のもの、あるいは、ボロメータ、サーモパイル、またはSOI(silicon on insulator)型ダイオードを含むものを用いることができる。
 ATRプリズム20と被検者の皮膚表面60との接触状態によって、被測定皮膚40の構造にゆがみが発生、あるいはATRプリズム20と皮膚表面60との間の水、油脂などの厚みが変わり、エバネッセント光が到達する場所が変化する。たとえばATRプリズム20を押し当てる力により、角質層の厚みが増減し、エバネッセント光が顆粒層や有棘層へ到達したりしなかったりする。
 そこで、本実施の形態では、プリズム振動制御部52を用いて、ATRプリズム20を振動させる。ATRプリズム20を振動させながら、赤外光源32から赤外光を放出し、赤外光検出器30によって、赤外光を検出する。この時、プリズム振動制御部52と赤外光検出器30は、制御部50によって同期制御される。
 プリズム振動制御部52は、ATRプリズム20に装着され、ATRプリズム20と被測定皮膚40との接触面である皮膚表面60に垂直方向にATRプリズム20を振動させる。プリズム振動制御部52は、たとえば、制御部50からの信号に従って、変位または伸縮することによって、ATRプリズム20を振動させる。プリズム振動制御部52は、たとえば、圧電アクチュエータなどによって構成されるものとしてもよい。制御部50は、ATRプリズム20の振動に同期して赤外光検出器30に赤外光を検出させる。
 図3では、プリズム振動制御部52がATRプリズム20を振動させることによって、ATRプリズム20が皮膚表面60に押し込まれている様子が示されている。
 図2の状態と図3の状態のいずれにおいても、ATRプリズム20が皮膚表面60に接しているが、図2の状態と図3の状態では、皮膚表面60への押し込みの程度が異なる。
 図2に示すように、ATRプリズム20の振動の1周期の間、ATRプリズム20が皮膚表面60と接触している。ATRプリズム20の振動の1周期の間において、ATRプリズム20が被測定皮膚40の方向へ押し込まれておらず、ATRプリズム20と被測定皮膚40との接触面である皮膚表面60に最も圧力が作用していない状態を弱密着状態ということにする。
 図3に示すように、ATRプリズム20の振動の1周期の間で、ATRプリズム20が被測定皮膚40の方向へ最も大きく押し込まれ、ATRプリズム20と被測定皮膚40との接触面である皮膚表面60に最も強く圧力が作用している状態を強密着状態ということにする。
 プリズム振動制御部52によって、ATRプリズム20は、図3の弱密着状態→図4の強密着状態→図3の弱密着状態の状態遷移を1周期とした振動動作を繰り返す。ここで、振動の振幅、すなわち弱密着状態と強密着状態の押込み距離差は、数mm以下で良い。
 赤外光検出器30は、プリズム振動制御部52の動作と同期してATRプリズム20から放出された放射赤外光11cを検出する。通常、赤外光検出器30で検出される放射赤外光11cは、スペクトル信号、外部環境および検出器自体の電気雑音信号が混入する。さらに、接触状態のATRプリズム20と被験者の皮膚表面60との間に隙間があると、ノイズの原因となり、測定値の信号雑音比S/Nが劣化してしまうとともに、エバネッセント光の侵入長も短くなってしまう。
 そこで、1周期の振動の間に等間隔に複数回、赤外光検出器30によって放射赤外光11cを検出する。本実施の形態では、赤外光検出器30は、1周期に等間隔で2回、赤外光検出器30で放射赤外光11cを検出する。ここで、2回の検出タイミングは、高い検出感度を得るために、図3の弱密着状態となるタイミングと、図4の強密着状態となるタイミングとする。
 そして、制御部50は、図3の弱密着状態のときに赤外光検出器30で検出された放射赤外光11cの強度をS(a)とし、図4の強密着状態のときに赤外光検出器30で検出された放射赤外光11cの強度をS(b)とし、差分dS(=S(a)-S(b))を算出する。制御部50は、複数回の測定によって、複数個のdSを求め、その合計ΣdSを算出する。
 図5は、実施の形態1における血糖値センサ80の動作手順を表わすフローチャートである。
 ステップS100において、赤外光源32が赤外光を出力する。
 ステップS101において、ATRプリズム20を被験者の皮膚表面60に接触させる。
 ステップS102において、制御部50が、取得限度回数Nを設定する。
 ステップS103において、制御部50は、プリズム振動制御部52の振動を開始させることによって、ATRプリズム20の振動を開始させる。
 上記のステップS100~S103の処理順番が入れ替わっても良い。
 ステップS104およびS105において、ATRプリズム20の振動に同期して、赤外光検出器30が、S(a)とS(b)とを検出する。ステップS104では、制御部50は、弱密着状態において、赤外光検出器30に放射赤外光11cの強度を検出させ、制御部50へ出力させる。制御部50は、取得した放射赤外光11cの強度をS(a)とする。ステップ105では、制御部50は、強密着状態において、赤外光検出器30に放射赤外光11cの強度を検出させ、制御部50へ出力させる。制御部50は、取得した放射赤外光11の強度をS(b)とする。ここで、ステップS104とステップS105は順序を入れ替えてもよい。
 ステップS106において、制御部50は、dS=S(a)-S(b)を算出して、保存する。被測定皮膚40内の糖の量を算出するために、ATRプリズム20を振動させる前に、人手によってATRプリズム20と被測定皮膚40とを接触させて測定の準備がなされる場合、ATRプリズム20と被測定皮膚40との間の隙間の大きさなどを測定の度に一定とすることが困難である。つまり、人手によって、初期状態の弱密着状態を正確に作出することは困難である。したがって、S(a)とS(b)は、測定ごとにばらついた値となるが、S(a)とS(b)の差分をとることよって、測定ごとのばらつきの影響を受けない値を得ることができる。つまり、dSは、被測定皮膚40における糖の量を高精度に反映することができる。
 ステップS107において、制御部50は、ここまでのdSの取得回数nとステップS103で設定した取得限度回数Nを比較する。取得回数nが取得限度回数Nよりも小さければ、処理がステップS104に戻り、ステップS104~107の処理が繰り返される。取得回数nが取得限度回数Nと等しくなった時に、処理がステップS108に進む。
 ステップS108において、制御部50は、保存している全てのdSの合計ΣdSを算出する。合計ΣdSを求めるのは、測定誤差を平滑化するためである。合計ΣdSをさらに取得限度回数Nで除算することによって、平均値ΣdS/Nを求めることとしてもよい。
 ステップS109において、制御部50は、ディスプレイ54に算出したΣdSの値を表示する。
 ここで、ステップ103の取得限度回数Nは、ユーザもしくは設計者が自由に決定することができ、取得限度回数Nを増やすことによって、ステップ108で得られるΣdSの信号雑音比S/Nが良くなる一方で、測定にかかる時間も増加することになる。
 以上のように、本実施の形態によれば、ATRプリズム20の振動に同期して、ATRプリズム20から放射された赤外光を検出することができる。ATRプリズム20と被測定皮膚40とが強密着状態における赤外光の強度と弱密着状態における赤外光の強度の差分を求めることによって、被測定皮膚40内の生体物質の量を精度よく測定することができる。
 (付記)
 実施の形態1の生体物質測定装置(80)および生体物質測定方法は、以下の特徴を備える。
 (1) 生体物質測定装置(80)は、被測定皮膚(40)に密着させることが可能なATRプリズム(20)と、ATRプリズム(20)へ、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光を放射する赤外光源(32)と、ATRプリズム(20)から出射された赤外光を検出する赤外光検出器(30)と、ATRプリズム(20)に装着され、ATRプリズム(20)と被測定皮膚(40)との接触面に垂直方向にATRプリズム(20)を振動させるプリズム振動制御部(52)と、振動に同期して赤外光検出器(30)に赤外光を検出させる制御部(50)とを備える。
 これによって、被測定皮膚(40)内の生体物質の量を精度よく測定することができる。
 (2) プリズム振動制御部(32)は、周期的にATRプリズム(20)を振動させる。制御部(50)は、赤外光検出器(30)に、ATRプリズム(20)の振動の1周期の間に2回以上赤外光を検出させる。
 これによって、高い検出感度を得ることができる。
 (3)制御部(50)は、赤外光検出器(30に、振動の1周期の間でATRプリズム(20)と被測定皮膚(40)との接触面に最も圧力が作用していない弱密着状態のタイミングで赤外光を検出させるとともに、振動の1周期の間でATRプリズム(20)と被測定皮膚(40)との接触面に最も強く圧力が作用している強密着状態のタイミングで赤外光を検出させる。
 これによって、さらに高い検出感度を得ることができる。
 (4) 制御部(50)は、振動の1周期の間の弱密着状態のタイミングで検出された赤外光の検出値と、振動の1周期の間の強密着状態のタイミングで検出された赤外光の検出値との差分を算出する。
 これによって、測定ごとのATRプリズム(20)と被測定皮膚(40)の密着状態のばらつきの影響を受けずに、生体物質の量を測定できる。
 (5) 制御部(50)は、複数の周期にわたって、差分を複数個算出し、算出された複数個の差分の合計または平均を算出する。
 これによって、測定値に含まれるノイズ成分を除去できる。
 (6) 生体物質測定方法は、赤外光源(32)が、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光を放射するステップと、ATRプリズム(20)が、被測定皮膚(40)に接触した状態で、赤外光源(32)から放出された赤外光を受けて、赤外光をATRプリズム(20)の内部を透過させた後、外部へ出射するステップと、ATRプリズム(20)と被測定皮膚(40)との接触面に垂直方向にATRプリズム(20)を振動させるステップと、赤外光検出器(30)が、振動の1周期の間でATRプリズム(20)と被測定皮膚(40)との接触面に最も圧力が作用していない弱密着状態のタイミングでATRプリズム(20)から出射された赤外光を検出するステップと、赤外光検出器(30)が、振動の1周期の間でATRプリズム(20)と被測定皮膚(40)との接触面に最も圧力が作用している強密着状態のタイミングでATRプリズム(20)から出射された赤外光を検出するステップと、振動の1周期の間の弱密着状態のタイミングで検出された赤外光の検出値と、振動の1周期の間の強密着状態のタイミングで検出された赤外光の検出値との差分を算出するステップとを備える。
 これによって、被測定皮膚(40)内の生体物質の量を精度よく測定することができる。
 実施の形態2.
 実施の形態2の非侵襲の血糖値センサ80の構成は、実施の形態1の非侵襲の血糖値センサの構成と、制御部50の機能を除いて同様である。
 実施の形態2が実施の形態1と相違する点は、ATRプリズム20の1周期の振動の間の赤外光検出器30における放射赤外光11cの検出回数を2回よりも多くした点である。本実施の形態では、赤外光検出器30は、たとえば、ATRプリズム20の1周期の振動の間に等間隔に8回、放射赤外光11cの強度を検出する。
 ATRプリズム20の振動の振幅をd、振動の周期をT、1周期の間のサンプリング回数を8回とする。サンプリング回数はより粗く測定したい場合は8回よりも少なくし、より細かく測定したい場合は8回よりも多くしても良いが、サンプリング間隔は、等間隔とする。
 図6は、実施の形態2における携帯型の非侵襲の血糖値センサ80の動作手順を表わすフローチャートである。
 ステップS200~S203は、実施の形態1のステップS100~S103と同様であるので、説明を繰り返さない。
 ステップS204およびS205において、振動に同期して、赤外光検出器30が、S0~S7を検出する。ステップS204では、制御部50は、弱密着状態において、赤外光検出器30に放射赤外光11cの強度を検出させ、制御部50へ出力させる。制御部50は、取得した放射赤外光11cの強度をS0とする。なお、測定の開始タイミングは弱密着状態でも強密着状態でも良いが、図6では、弱密着状態を開始タイミングとしている。
 ステップS205において、制御部50は、ステップS204からT/8周期経過する毎に赤外光検出器30に放射赤外光11cを検出させ、制御部50へ出力させる。制御部50は、順次取得した放射赤外光11cの強度をS1、S2、S3、S4、S5、S6、S7とする。
 ステップS206において、制御部50は、ステップS204で取得したS0と、ステップS205で取得したS1~S7の値との差分dS1(=S0-S1)、dS2(=S0-S2)、dS3(=S0-S3)、dS4(=S0-S4)、dS5(=S0-S5)、dS6(=S0-S6)、dS7(=S0-S7)を算出して、保存する。このように、dS1~dS7を求めるのは、被測定皮膚40内の皮膚表面60からの深さごとの糖の分布を知るためである。たとえば、dS2とdS1との差は、弱密着状態のタイミングからT/8のタイミングでのエパネッセント光の侵入長に対応する皮膚表面60の深さでの糖の量と、弱密着状態のタイミングから2T/8のタイミングでのエパネッセント光の侵入長に対応する皮膚表面60の深さでの糖の量との差を表わす値となる。
 ステップS207において、制御部50は、ここまでの各dSi(i~7)の取得回数nとステップS203で設定した取得限度回数Nを比較する。取得回数nが取得限度回数Nよりも小さければ、処理がステップS204に戻り、ステップS204~207の処理が繰り返される。取得回数nが取得限度回数Nと等しくなった時に、処理がステップS208に進む。
 ステップS208において、制御部50は、保存している全てのdS1、dS2、dS3、dS4、dS5、dS6、dS7の合計ΣdS1、ΣdS2、ΣdS3、ΣdS4、ΣdS5、ΣdS6、ΣdS7を算出する。たとえば、ΣdS1はN回の測定におけるdS1の合計となる。合計ΣdSを求めるのは、測定誤差を平滑化するためである。合計ΣdS1~ΣdS7をさらに取得限度回数Nで除算することによって、平均値ΣdS1/N~ΣdS7/Nを求めることとしてもよい。
 ステップS209において、制御部50は、ディスプレイ54に算出したΣdS1、ΣdS2、ΣdS3、ΣdS4、ΣdS5、ΣdS6、ΣdS7の値を表示する。
 図7は、測定タイミングk×T/8と、ΣdSkの例を表わす図である。
 図7において、横軸は測定タイミング、すなわち、ATRプリズム20を周期Tで振動させたときの赤外光検出器30による放射赤外光11cの検出タイミングを示す。縦軸は、それぞれのタイミングk×T/8における合計ΣdSkを示す。
 予めATRプリズム20の振動振幅dは判明しているので、制御部50は、図7の測定タイミングをATRプリズム20の被測定皮膚40に対する垂直方向の押込み距離に変換することができる。被測定皮膚40の垂直方向の距離に変換する。つまり、測定タイミング0、T/8、2T/8、3T/8、4T/8、5T/8、6T/8、7T/8が、ATRプリズム20の被測定皮膚40に対する垂直方向の押込み距離0、d/4、d/2、3d/4、d、3d/4、d/2、d/4に変換される。
 図8は、図7の横軸の測定タイミングをATRプリズム20の被測定皮膚40に対する垂直方向への押込み距離に変えた図である。
 図7、図8に示されるように、ΣdSkの値は、測定タイミングT/2、押込み距離dにおいて極小値をとり、その後折り返される。
 以上のように、実施の形態2では、皮膚表面からの深さごとの糖の分布に関する情報を得ることができる。
 (付記)
 実施の形態2の生体物質測定装置(80)および生体物質測定方法は、以下の特徴を備える。
 (1) 制御部(50)は、赤外光検出器(30)に、ATRプリズム(20)の振動の1周期の間で3回以上のタイミングで赤外光を検出させる。
 これによって、被測定皮膚(40)の表面から垂直方向の生体物質の分布を測定することができる。
 (2) 制御部(50)は、赤外光検出器(30)に、振動の1周期の間でATRプリズム(20)と被測定皮膚(40)との接触面に最も圧力が作用していない弱密着状態のタイミングで赤外光を検出させ、振動の1周期の間の弱密着状態のタイミングで検出された赤外光の検出値と、振動の1周期の間の3回以上のタイミングのうち弱密着状態のタイミング以外の各タイミングで検出された赤外光の検出値との差分を各タイミングでの差分として算出する。
 これによって、被測定皮膚(40)の表面から垂直方向の生体物質の分布を細かく測定することができる。
 (3) 制御部(50)は、複数の周期にわたって、各タイミングでの差分を複数個算出し、算出された複数個の各タイミングの差分の合計または平均を算出する。
 これによって、測定値に含まれるノイズ成分を除去できる。
 (4) 制御部(50)は、赤外光の検出タイミングをATRプリズム(20)の被測定皮膚(40)に対する垂直方向の押込み距離に変換する。
 これによって、被測定皮膚(40)の表面から垂直方向の複数の距離ごとの生体物質の量を測定することができる。
 (5) 制御部(50)は、赤外光検出器(30)に、1周期の間で等しい時間間隔で赤外光を検出させる。
 これによって、被測定皮膚(40)の表面から垂直方向に一定の間隔ごとに存在する生体物質の量を測定することができる。
 (6) 生体物質測定方法は、赤外光源(32)が、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光を放射するステップと、ATRプリズム(20)が、被測定皮膚(40)に接触した状態で、赤外光源(32)から放出された赤外光を受けて、赤外光を反射を繰り返させながらATRプリズム(20)の内部を透過させた後、外部へ出射するステップと、ATRプリズム(20)と被測定皮膚(40)との接触面に垂直方向にATRプリズム(20)を振動させるステップと、赤外光検出器(30)が、振動の1周期の間でATRプリズム(20)と被測定皮膚(40)との接触面に最も圧力が作用していない弱密着状態のタイミングでATRプリズム(20)から出射された赤外光を検出するステップと、赤外光検出器(30)が、振動の1周期の間で弱密着状態以外の2回以上のタイミングでATRプリズム(20)から出射された赤外光を検出するステップと、振動の1周期の間の弱密着状態のタイミングで検出された赤外光の検出値と、弱密着状態以外の2回以上のタイミングのうちの各タイミングで検出された赤外光の検出値との差分を算出するステップとを備える。
 これによって、被測定皮膚(40)の表面から垂直方向の生体物質の分布を測定することができる。
 実施の形態3.
 図9は、実施の形態3の携帯型の非侵襲の血糖値センサ80の構成を示す図である。
 図9に示すように、血糖値センサ80は、赤外光源32と、ATRプリズム20と、赤外光検出器30と、プリズム振動制御部52と、制御部50と、ロックインアンプ70とを備える。
 実施の形態3の血糖値センサ80の構成が、実施の形態1または2の血糖値センサ80の構成と相違する点は、実施の形態3の血糖値センサ80がロックインアンプ70を備える点である。
 赤外光検出器30で検出された放射赤外光11cの強度を表わす測定信号は、ロックインアンプ70に入力される。この測定信号は、微弱な信号である。微弱な信号を検出する場合に、雑音に大きく影響されるため、雑音を取り除く必要がある。雑音の除去の方法としては、バンドパスフィルタを使うことが挙げられる。バンドパスフィルタに使用している素子が変動すると中心周波数が変動してしまい、信号の振幅に影響を与えてしまうため、バンドパスフィルタは、微弱な信号を検出するには適していない。
 本実施の形態では、雑音に埋もれている微小信号である測定信号を検出するために、ロックインアンプ70による周波数変換技術を利用する。周波数変換技術では、PSD(Phase Sensitive Detector)を利用し、雑音に埋もれた信号の中から、目的の微弱な信号を取り出す。ロックインアンプ70の雑音除去により得られる信号は直流であるため、帯域制限のフィルタがローパスフィルタのみですむ。ローパスフィルタは、使用している素子が変動しても、ローパスフィルタの遮断周波数が変動するのみで、直流信号の値には影響を及ぼさない。
 図10は、ロックインアンプ70の構成を表わす図である。
 ロックインアンプ70は、プリアンプ81と、波形整形回路82と、位相回路83と、PSD84と、LPF(Low-Pass Filter)85とを備える。
 ロックインアンプ70には、放射赤外光11cの強度を表わす測定信号S(t)が入力される。ATRプリズム20の振動数をfとしたときに、S(t)=Asin(ωt+a)で表される。ただし、ω=2πfである。また、ロックインアンプ70には、参照信号R(t)が入力される。R(t)=Asin(ωt+b)で表される。
 プリアンプ81は、測定信号S(t)を所望の電圧に増幅する。
 波形整形回路82は、参照信号R(t)を矩形波に整形する。位相回路83は、矩形波の参照信号R′(t)と測定信号S(t)との間の位相差を調整する。具体的には、位相回路83は、参照信号R′(t)と測定信号S(t)との間の位相差(a-b)を「0」に調整する。
 PSD84は、測定信号S(t)と参照信号R′(t)の信号波形の乗算(掛け算)を行う。a=bに調整することによって、PSD84によって、最大の直流成分A/2×cos(b-a)(=A/2)と、2倍の振動数の交流成分A/2×cos(2ωt+a+b)(=A/2×cos(2ωt+2a))が得られる。
 LPF85は、PSD84の出力信号から交流成分を除去して直流成分を取り出すことによって、測定信号S(t)の直流成分を出力する。これによって、雑音に埋もれた目的の信号のみを直流分の最大値として取り出すことができる。
 図11は、実施の形態3における血糖値センサ80の動作手順を表わすフローチャートである。
 赤外光源から出射された赤外光はATRプリズム内で反射を繰り返し、赤外光検出器に入射するが、赤外光検出器で検出される信号は微弱信号の場合があるため、高い信号雑音比SNの信号を得る必要がある。
 ステップS300において、赤外光源32が赤外光を出力する。
 ステップS301において、ATRプリズム20を被験者の皮膚表面60に接触させる。
 ステップS302において、制御部50は、ATRプリズム20の変位の振動数fを設定する。
 ステップS303において、制御部50は、プリズム振動制御部52の振動数fでの振動を開始させることによって、ATRプリズム20の変位の振動数fでの振動を開始させる。
 この時、ATRプリズム20の振動は振動の上下動作において、測定対象である被験者の皮膚表面60から離れない動作幅であれば良く、例えば図3の弱密着状態と図4の強密着状態を行き来するような動作であれば良い。
 ステップS304において、制御部50は、赤外光検出器30に、所定の間隔で放射赤外光11cの強度を検出させて、制御部50へ出力させる。制御部50は、取得した放射赤外光11の強度を表わす測定信号S(t)を生成する。
 ステップS305において、制御部50は、振動数fの参照信号R(t)=Asin(ωt+b)をロックインアンプ70に出力する。
 ステップS306において、ロックインアンプ70のプリアンプ81は、赤外光検出器30から所定の間隔で出力される放射赤外光11cの強度を表わす測定信号S(t)を所望の電圧に増幅する。ロックインアンプ70の波形整形回路82は、参照信号R(t)を矩形波に整形する。ロックインアンプ70の位相回路83は、矩形波の参照信号R′(t)と測定信号S(t)との間の位相差を「0」に調整する。ロックインアンプ70のPSD84は、測定信号S(t)と参照信号R′(t)の信号波形の乗算(掛け算)を行う。位相回路83によって位相差を「0」に調整することによって、PSD84は、最大の直流成分と、2倍の振動数の交流成分を出力する。
 ステップS307において、ロックインアンプ70のLPF85は、PSD84の出力信号から交流成分を除去して直流成分を取り出すことによって、測定信号S(t)の直流成分を出力する。測定信号S(t)がAsin(ωt+a)で表される場合には、A/2が出力される。
 以上のように、本実施の形態によれば、目的の信号の最大の直流値が得られ、測定精度を上げることが可能となる。
 (付記)
 実施の形態3の生体物質測定装置(80)は、以下の特徴を備える。
 (1) 生体物質測定装置(80)は、赤外光検出器(30)から出力された信号が入力されるロックインアンプ(70)をさらに備える。
 これによって、赤外光検出器(30)から出力された信号が、ノイズに埋もれた微小な大きさであっても、検出することができる。
 (2) 制御部(50)は、ロックインアンプ(70)に入力される参照信号の周波数と同じ周波数でATRプリズム(20)が振動するようにプリズム振動制御部(52)を制御する。
 これによって、ロックインアンプ(70)は、赤外光検出器(30)から出力された信号の最大の直流値を出力するので、測定精度を上げることができる。
 実施の形態4.
 上述の実施形態で説明したように、反射する境界面ではエバネッセント光が発生して被測定皮膚に侵入する。その際、エバネッセント光が水、糖、およびその他生体物質によって吸収および散乱するため、ATRプリズム20を伝搬する赤外光の強度が減衰する。このエバネッセント光の侵入長dpは、プリズムの屈折率n1、被測定物の屈折率n2、入射角θ、使用波長λによって、以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 図12は、ある屈折率n1とn2における赤外光の入射角に対するエバネッセント光の侵入長の例を示す図である。
 図12に示すように、入射角40°で、エバネッセント光の侵入長が極大値となる。入射角を少し変えるだけで、エバネッセント光の侵入長が大きく変化する。
 図13は、実施の形態4の携帯型の非侵襲の血糖値センサ80の構成を表わす図である。図13の血糖値センサ80が、図2の実施の形態1の血糖値センサ80と相違する点は、図13の血糖値センサ80が、角度調整部90aおよび90bを備える点である。
 角度調整部90aは、赤外光源32とATRプリズム20の間に設けられる。角度調整部90aは、ミラーまたはレンズで構成される。角度調整部90aは、ATRプリズム20への赤外光の入射角を調整する。
 角度調整部90bは、ATRプリズム20と赤外光検出器30の間に設けられる。角度調整部90bは、ミラーまたはレンズで構成される。角度調整部90bは、ATRプリズム20から出射された赤外光が赤外光検出器30に向かうように、赤外光の進行方向を調整する。
 エバネッセント光の侵入長が極大値となるATRプリズム20への赤外光の入射角をθ0としたときに、角度調整部90aは、侵入長が担保できる範囲内で、入射角をθ0を中心に周期的に変化させる。これによって、ATRプリズム20への入射角が一定の幅で振動し、エバネッセント光の侵入長が大→小→大と周期的に変化する。角度調整部90bは、角度調整部90aに同期して、ATRプリズム20からの出射光の角度を調整する。
 ATRプリズム20の端面20dの角度は、角度調整部90aが存在しないときに、放射赤外光11cが赤外光検出器30に垂直に入射されるように設定されている。角度調整部90aによる赤外光の入射角の調整によって、ATRプリズム20から出射される赤外光の出射角が変化するが、角度調整部90bによって、ATRプリズム20から出射された赤外光の進行方向を調整することによって、放射赤外光11cが赤外光検出器30に垂直に入射されるようにすることができる。角度調整部90aによる入射角の調整量に対して、角度調整部90bの角度の調整量をどれだけにすべきかは、予め求めておくことができる。
 図12の例では、ATRプリズム20への赤外光の入射角が、38°→41°→38°と周期的に変化するように、角度調整部90aは、ATRプリズム20への赤外光の入射光の角度を周期的に調整する。ATRプリズム20から出射された赤外光が赤外光検出器30に垂直に入射するように、角度調整部90bが、角度調整部90aと同期して、ATRプリズム20から出射された赤外光の進行方向を周期的に調整する。
 角度調整部90aおよび角度調整部90bの角度の調整周期は、実施の形態1におけるプリズム振動制御部52の振動周期と一致する。
 実施の形態1によると、プリズム振動制御部52は、強密着状態と弱密着状態とを繰り返す。本実施の形態では、角度調整部90aは、振動の1周期の間の弱密着状態において、ATRプリズム20への赤外光の入射角が最大となり、振動の1周期の間の強密着状態において、ATRプリズム20への赤外光の入射角が最小となるように、ATRプリズム20への赤外光の入射角を調整する。これによって、強密着状態では、エバネッセント光が被測定物により深く侵入し、弱密着状態ではエバネッセント光がより浅く侵入する。
 以上のように、本実施の形態によれば、ATRプリズム20への赤外光の入射角を変化させることによって、実施の形態1におけるATRプリズム20を振動させる方法と同様に、強密着状態における赤外光の強度と弱密着状態における赤外光の強度を求めることができる。これにより、本実施の形態でも、実施の形態1と同様に、被測定皮膚40内の生体物質の量を精度よく測定することができる。
 (付記)
 実施の形態4の生体物質測定装置(80)は、以下の特徴を備える。
 (1)生体物質測定装置(80)は、赤外光源(32)とATRプリズム(20)の間に設けられ、ATRプリズム(20)への赤外光の入射角を調整するための第1の角度調整部(90a)と、ATRプリズム(20)と赤外光検出器(30)の間に設けられ、ATRプリズム(20)から出射された赤外光の進行方向を調整するための第2の角度調整部(90b)とを備える。
 これによって、被測定皮膚(40)内の生体物質の量を精度よく測定することができる。
 (2) 生体物質測定装置(80)は、赤外光源(32)とATRプリズム(20)の間に設けられた角度調整部(90a)を備える。角度調整部(90a)は、振動の1周期の間の弱密着状態において、ATRプリズム(20)への赤外光の入射角が最大なり、かつ振動の1周期の間の強密着状態において、ATRプリズム(20)への赤外光の入射角が最小となるように、ATRプリズム(20)への赤外光の入射角を調整する。
 これによって、さらに高い検出感度を得ることができる。
 実施の形態5.
 図14は、実施の形態5の携帯型の非侵襲の血糖値センサ80の構成を表わす図である。図14の血糖値センサ80が、図9の実施の形態3の血糖値センサ80と相違する点は、図14の血糖値センサ80が、角度調整部90aおよび90bを備える点である。
 角度調整部90aおよび角度調整部90bは、実施の形態4で説明したものと同様に配置され、同様に動作する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 11a 入射赤外光、11b 伝搬赤外光、11c 放射赤外光、20 ATRプリズム、20a,20b,20c,20d ATRプリズム端面、30 赤外光検出器、32 赤外光源、40 被測定皮膚、50 制御部、52 プリズム振動制御部、54 ディスプレイ、60 皮膚表面、80 血糖値センサ、81 プレアンプ、82 波形整形回路、83 位相回路、84 PSD、85 LPF、90a,90b 角度調整部。

Claims (16)

  1.  被測定皮膚に密着させることが可能なATRプリズムと、
     前記ATRプリズムへ、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光を放射する赤外光源と、
     前記ATRプリズムから出射された赤外光を検出する赤外光検出器と、
     前記ATRプリズムに装着され、前記ATRプリズムと前記被測定皮膚との接触面に垂直方向に前記ATRプリズムを振動させるプリズム振動制御部と、
     前記振動に同期して前記赤外光検出器に前記赤外光を検出させる制御部とを備えた、生体物質測定装置。
  2.  前記プリズム振動制御部は、周期的に前記ATRプリズムを振動させ、
     前記制御部は、前記赤外光検出器に、前記ATRプリズムの振動の1周期の間に2回以上赤外光を検出させる、請求項1に記載の生体物質測定装置。
  3.  前記制御部は、前記赤外光検出器に、前記振動の1周期の間で前記ATRプリズムと前記被測定皮膚との接触面に最も圧力が作用していない弱密着状態のタイミングで前記赤外光を検出させるとともに、前記振動の1周期の間で前記ATRプリズムと前記被測定皮膚との接触面に最も強く圧力が作用している強密着状態のタイミングで前記赤外光を検出させる、請求項2記載の生体物質測定装置。
  4.  前記制御部は、前記振動の1周期の間の前記弱密着状態のタイミングで検出された前記赤外光の検出値と、前記振動の1周期の間の前記強密着状態のタイミングで検出された前記赤外光の検出値との差分を算出する、請求項3に記載の生体物質測定装置。
  5.  前記制御部は、複数の前記周期にわたって、前記差分を複数個算出し、前記算出された複数個の差分の合計または平均を算出する、請求項4記載の生体物質測定装置。
  6.  前記制御部は、前記赤外光検出器に、前記ATRプリズムの振動の1周期の間で3回以上のタイミングで前記赤外光を検出させる、請求項2記載の生体物質測定装置。
  7.  前記制御部は、前記赤外光検出器に、前記振動の1周期の間で前記ATRプリズムと前記被測定皮膚との接触面に最も圧力が作用していない弱密着状態のタイミングで前記赤外光を検出させ、前記振動の1周期の間の前記弱密着状態のタイミングで検出された前記赤外光の検出値と、前記振動の1周期の間の前記3回以上のタイミングのうち前記弱密着状態のタイミング以外の各タイミングで検出された前記赤外光の検出値との差分を各タイミングでの差分として算出する、請求項6に記載の生体物質測定装置。
  8.  前記制御部は、複数の前記周期にわたって、前記各タイミングでの差分を複数個算出し、前記算出された複数個の各タイミングの差分の合計または平均を算出する、請求項7記載の生体物質測定装置。
  9.  前記制御部は、前記赤外光の検出タイミングを前記ATRプリズムの前記被測定皮膚に対する前記垂直方向の押込み距離に変換する、請求項7または8に記載の生体物質測定装置。
  10.  前記制御部は、前記赤外光検出器に、前記1周期の間で等しい時間間隔で前記赤外光を検出させる、請求項6~9のいずれか1項に記載の生体物質測定装置。
  11.  前記赤外光検出器から出力された信号が入力されるロックインアンプを、さらに備えた、請求項1記載の生体物質測定装置。
  12.  前記制御部は、前記ロックインアンプに入力される参照信号の周波数と同じ周波数で前記ATRプリズムが振動するように前記プリズム振動制御部を制御する、請求項11に記載の生体物質測定装置。
  13.  前記赤外光源と前記ATRプリズムの間に設けられ、前記ATRプリズムへの前記赤外光の入射角を調整するための第1の角度調整部と、
     前記ATRプリズムと前記赤外光検出器の間に設けられ、前記ATRプリズムから出射された前記赤外光の進行方向を調整するための第2の角度調整部とを備えた、請求項1に記載の生体物質測定装置。
  14.  前記赤外光源と前記ATRプリズムの間に設けられた角度調整部を備え、
     前記角度調整部は、前記振動の1周期の間の前記弱密着状態において、前記ATRプリズムへの前記赤外光の入射角が最大なり、かつ前記振動の1周期の間の前記強密着状態において、前記ATRプリズムへの前記赤外光の入射角が最小となるように、前記ATRプリズムへの前記赤外光の入射角を調整する、請求項3記載の生体物質測定装置。
  15.  赤外光源が、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光を放射するステップと、
     ATRプリズムが、被測定皮膚に接触した状態で、赤外光源から放出された赤外光を受けて、前記赤外光を前記ATRプリズムの内部を透過させた後、外部へ出射するステップと、
     前記ATRプリズムと前記被測定皮膚との接触面に垂直方向に前記ATRプリズムを振動させるステップと、
     赤外光検出器が、前記振動の1周期の間で前記ATRプリズムと前記被測定皮膚との接触面に最も圧力が作用していない弱密着状態のタイミングで前記ATRプリズムから出射された前記赤外光を検出するステップと、
     前記赤外光検出器が、前記振動の1周期の間で前記ATRプリズムと前記被測定皮膚との接触面に最も圧力が作用している強密着状態のタイミングで前記ATRプリズムから出射された前記赤外光を検出するステップと、
     前記振動の1周期の間の前記弱密着状態のタイミングで検出された前記赤外光の検出値と、前記振動の1周期の間の前記強密着状態のタイミングで検出された前記赤外光の検出値との差分を算出するステップとを備えた、生体物質測定方法。
  16.  赤外光源が、生体物質の吸収波長の全域、あるいは一部の波長域の赤外光を放射するステップと、
     ATRプリズムが、被測定皮膚に接触した状態で、前記赤外光源から放出された赤外光を受けて、前記赤外光を反射を繰り返させながら前記ATRプリズムの内部を透過させた後、外部へ出射するステップと、
     前記ATRプリズムと前記被測定皮膚との接触面に垂直方向に前記ATRプリズムを振動させるステップと、
     赤外光検出器が、前記振動の1周期の間で前記ATRプリズムと前記被測定皮膚との接触面に最も圧力が作用していない弱密着状態のタイミングで前記ATRプリズムから出射された前記赤外光を検出するステップと、
     前記赤外光検出器が、前記振動の1周期の間で前記弱密着状態以外の2回以上のタイミングで前記ATRプリズムから出射された前記赤外光を検出するステップと、
     前記振動の1周期の間の前記弱密着状態のタイミングで検出された前記赤外光の検出値と、前記弱密着状態以外の2回以上のタイミングのうちの各タイミングで検出された前記赤外光の検出値との差分を算出するステップとを備えた、生体物質測定方法。
PCT/JP2017/034319 2016-12-26 2017-09-22 生体物質測定装置および生体物質測定方法 WO2018123169A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780078201.5A CN110087544B (zh) 2016-12-26 2017-09-22 生物体物质测定装置以及生物体物质测定方法
US16/344,615 US11197614B2 (en) 2016-12-26 2017-09-22 Biological material measuring apparatus and method of measuring biological material
DE112017006536.4T DE112017006536T5 (de) 2016-12-26 2017-09-22 Messgerät für biologische materialien und verfahren zur messung von biologischem material
JP2018558816A JP6739550B2 (ja) 2016-12-26 2017-09-22 生体物質測定装置および生体物質測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251325 2016-12-26
JP2016251325 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123169A1 true WO2018123169A1 (ja) 2018-07-05

Family

ID=62710962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034319 WO2018123169A1 (ja) 2016-12-26 2017-09-22 生体物質測定装置および生体物質測定方法

Country Status (5)

Country Link
US (1) US11197614B2 (ja)
JP (1) JP6739550B2 (ja)
CN (1) CN110087544B (ja)
DE (1) DE112017006536T5 (ja)
WO (1) WO2018123169A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158348A1 (ja) * 2019-01-31 2020-08-06 国立大学法人東北大学 血糖値測定装置および血糖値測定方法
JP6786027B1 (ja) * 2020-03-04 2020-11-18 三菱電機株式会社 生体成分測定装置
WO2021131126A1 (ja) * 2019-12-23 2021-07-01 三菱電機株式会社 生体成分測定装置
CN113349768A (zh) * 2020-02-20 2021-09-07 株式会社理光 测定装置以及生物体信息测定装置
JP6956930B1 (ja) * 2021-03-23 2021-11-02 三菱電機株式会社 生体成分測定装置および生体成分測定方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155842A (ja) * 1997-11-27 1999-06-15 Horiba Ltd 生体接触圧を一定にした生体計測装置
JP2003035661A (ja) * 2001-07-23 2003-02-07 Konica Corp 減衰全反射法による赤外吸収スペクトルの測定方法及び装置
JP2003098076A (ja) * 2001-09-27 2003-04-03 Konica Corp 赤外吸収スペクトル測定方法及び装置
JP2004163311A (ja) * 2002-11-14 2004-06-10 Konica Minolta Holdings Inc 赤外吸収スペクトル測定方法及び装置
JP2008061698A (ja) * 2006-09-05 2008-03-21 Ushio Inc 血糖値測定装置
JP2009183636A (ja) * 2008-02-08 2009-08-20 Gifu Univ 生体データ測定装置
WO2015167417A1 (en) * 2014-04-08 2015-11-05 Pandata Research Llc Optical measurement system having an integrated internal reflection element and array detector
JP2015198689A (ja) * 2014-04-04 2015-11-12 セイコーエプソン株式会社 生体計測装置および生体計測方法
WO2016060150A1 (ja) * 2014-10-15 2016-04-21 コニカミノルタ株式会社 分子間粘弾性相互作用測定方法及び分子間粘弾性相互作用測定装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075031A (ja) 1983-09-30 1985-04-27 アロカ株式会社 レ−ザ光による生化学成分分析装置
JPH0690112B2 (ja) 1988-11-21 1994-11-14 日本電信電話株式会社 後方散乱光測定装置
JP3770707B2 (ja) * 1997-08-26 2006-04-26 松下電器産業株式会社 減衰全反射測定装置およびそれを用いた特定成分の測定方法
JPH11241991A (ja) * 1998-02-25 1999-09-07 Mitsubishi Electric Corp 高感度atr分析法およびそれに用いるプリズム
JP3399836B2 (ja) * 1998-05-21 2003-04-21 富士写真フイルム株式会社 表面プラズモンセンサー
JP2001091452A (ja) * 1999-09-27 2001-04-06 Shimadzu Corp Atrマッピング測定装置
DE10010707C2 (de) * 2000-03-04 2002-01-10 Philips Corp Intellectual Pty Piezoelektrischer Aktuator
FR2817963B1 (fr) * 2000-12-13 2004-08-06 Inst Optique Theorique Et Appl Dispositif d'imagerie par plasmon d'une surface metallique et procede d'utilisation du dispositif
JP2003042952A (ja) 2001-07-31 2003-02-13 Japan Science & Technology Corp 赤外分子振動解析装置、生体データ測定システムおよび生体データ測定方法
JP2003270131A (ja) * 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd 特定成分の濃度測定方法
JP2005188999A (ja) 2003-12-24 2005-07-14 Matsushita Electric Ind Co Ltd 特定成分の濃度測定装置、特定成分の濃度測定方法
WO2005100951A1 (ja) * 2004-04-07 2005-10-27 Nihon University 硬さ測定システムの動作中心周波数選択方法、動作中心周波数選択装置及び硬さ測定システム
JP4515927B2 (ja) * 2005-01-25 2010-08-04 日本分光株式会社 全反射測定装置
WO2007034681A1 (ja) 2005-09-07 2007-03-29 National University Corporation Nagoya University 分光方法及び分光装置
JP2007244736A (ja) * 2006-03-17 2007-09-27 Toshiba Corp 生体成分測定装置及び生体成分測定方法
CN101466307A (zh) * 2006-06-12 2009-06-24 三菱电机株式会社 测量成分浓度的系统及方法
JP4784755B2 (ja) * 2006-09-14 2011-10-05 株式会社島津製作所 Atr自動密着装置
CN101441175B (zh) * 2007-11-19 2011-01-12 中国科学院理化技术研究所 基于激光扫描共聚焦显微系统的表面等离子共振检测装置
CN101477046B (zh) * 2009-01-09 2011-09-14 清华大学 基于表面等离子体共振传感的细胞分层检测方法及系统
JP2012191969A (ja) 2011-03-14 2012-10-11 Shinshu Univ 生体情報測定装置
CN102507444B (zh) * 2011-11-28 2014-04-30 南京大学 一种用于dna分析衰减全反射表面增强红外光谱仪辅助光学装置
JP5998780B2 (ja) * 2012-09-14 2016-09-28 カシオ計算機株式会社 生体情報通知装置、生体情報通知方法及び生体情報通知プログラム
TWI487893B (zh) * 2013-03-19 2015-06-11 Univ Chang Gung Surface plasmon resonance measurement system
CN104207756B (zh) * 2013-06-03 2018-02-23 飞比特公司 可佩戴心率监视器
US9366626B2 (en) * 2013-06-20 2016-06-14 Thermo Scientific Portable Instruments Inc. Method and apparatus for the application of force to a sample for detection using an electromechanical means
CA2912270A1 (en) * 2013-07-30 2015-02-05 Gordon Black Quantifying neutrophil concentration in blood
EP3026426A1 (en) * 2014-11-26 2016-06-01 Universität Stuttgart A measuring probe, an apparatus and a method for label free attenuated reflection infrared spectroscopy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155842A (ja) * 1997-11-27 1999-06-15 Horiba Ltd 生体接触圧を一定にした生体計測装置
JP2003035661A (ja) * 2001-07-23 2003-02-07 Konica Corp 減衰全反射法による赤外吸収スペクトルの測定方法及び装置
JP2003098076A (ja) * 2001-09-27 2003-04-03 Konica Corp 赤外吸収スペクトル測定方法及び装置
JP2004163311A (ja) * 2002-11-14 2004-06-10 Konica Minolta Holdings Inc 赤外吸収スペクトル測定方法及び装置
JP2008061698A (ja) * 2006-09-05 2008-03-21 Ushio Inc 血糖値測定装置
JP2009183636A (ja) * 2008-02-08 2009-08-20 Gifu Univ 生体データ測定装置
JP2015198689A (ja) * 2014-04-04 2015-11-12 セイコーエプソン株式会社 生体計測装置および生体計測方法
WO2015167417A1 (en) * 2014-04-08 2015-11-05 Pandata Research Llc Optical measurement system having an integrated internal reflection element and array detector
WO2016060150A1 (ja) * 2014-10-15 2016-04-21 コニカミノルタ株式会社 分子間粘弾性相互作用測定方法及び分子間粘弾性相互作用測定装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158348A1 (ja) * 2019-01-31 2020-08-06 国立大学法人東北大学 血糖値測定装置および血糖値測定方法
CN113260849A (zh) * 2019-01-31 2021-08-13 国立大学法人东北大学 血糖值测定装置及血糖值测定方法
JPWO2020158348A1 (ja) * 2019-01-31 2021-12-02 国立大学法人東北大学 血糖値測定装置および血糖値測定方法
EP3919891A4 (en) * 2019-01-31 2022-06-22 Tohoku University DEVICE AND METHOD FOR MEASURING GLYCEMIA LEVELS
WO2021131126A1 (ja) * 2019-12-23 2021-07-01 三菱電機株式会社 生体成分測定装置
JPWO2021131126A1 (ja) * 2019-12-23 2021-12-23 三菱電機株式会社 生体成分測定装置
CN113349768A (zh) * 2020-02-20 2021-09-07 株式会社理光 测定装置以及生物体信息测定装置
JP6786027B1 (ja) * 2020-03-04 2020-11-18 三菱電機株式会社 生体成分測定装置
WO2021176583A1 (ja) * 2020-03-04 2021-09-10 三菱電機株式会社 生体成分測定装置
JP6956930B1 (ja) * 2021-03-23 2021-11-02 三菱電機株式会社 生体成分測定装置および生体成分測定方法
WO2022201301A1 (ja) * 2021-03-23 2022-09-29 三菱電機株式会社 生体成分測定装置および生体成分測定方法
US12044615B2 (en) 2021-03-23 2024-07-23 Mitsubishi Electric Corporation Biological component measurement device and biological component measurement method

Also Published As

Publication number Publication date
DE112017006536T5 (de) 2019-10-10
CN110087544B (zh) 2022-03-15
US20200060549A1 (en) 2020-02-27
CN110087544A (zh) 2019-08-02
JP6739550B2 (ja) 2020-08-12
JPWO2018123169A1 (ja) 2019-10-31
US11197614B2 (en) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2018123169A1 (ja) 生体物質測定装置および生体物質測定方法
JP2022174754A (ja) 物質を分析するための装置及び方法
KR102634764B1 (ko) 재료 분석을 위한 장치 및 방법
CN112955075B (zh) 用于分析物质的设备和方法
TWI468688B (zh) 決定分析物濃度的光學感應器
JP4264125B2 (ja) 生体情報測定装置及びその制御方法
EP1965692A2 (en) System for non-invasive measurement of blood glucose concentration
JP6425861B1 (ja) 生体物質測定装置
KR20200075512A (ko) 다중 센서를 이용한 비침습식 생체정보 측위 기반 보정 시스템 및 방법
US20160018327A1 (en) Differential OCT Analysis System
WO2011152747A1 (en) Photoacoustic material analysis
JP2020163188A (ja) 生体物質測定装置
US20220369963A1 (en) Biological information measuring device and biological information measuring method
RU2435514C1 (ru) Способ фотоакустического анализа материалов и устройство для его реализации
JP7533074B2 (ja) 生体情報測定装置、及び生体情報測定方法
JP6570716B2 (ja) 生体物質測定装置
RU2813964C2 (ru) Устройство и способ анализа вещества
JP7439456B2 (ja) 生体情報測定装置、及び生体情報測定方法
EP4230131A1 (en) Wearable device and method for detecting an analyte in tissue of a human or animal subject
JP2021051078A (ja) 物質を分析するための装置及び方法
JP2019154905A (ja) 光音響計測装置および光音響計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558816

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17886546

Country of ref document: EP

Kind code of ref document: A1