WO2018119594A1 - Method, system, and device for vibration regulation and industrial robot - Google Patents

Method, system, and device for vibration regulation and industrial robot Download PDF

Info

Publication number
WO2018119594A1
WO2018119594A1 PCT/CN2016/112164 CN2016112164W WO2018119594A1 WO 2018119594 A1 WO2018119594 A1 WO 2018119594A1 CN 2016112164 W CN2016112164 W CN 2016112164W WO 2018119594 A1 WO2018119594 A1 WO 2018119594A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
acceleration
value
vibration
industrial robot
Prior art date
Application number
PCT/CN2016/112164
Other languages
French (fr)
Chinese (zh)
Inventor
张鹏飞
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2016/112164 priority Critical patent/WO2018119594A1/en
Publication of WO2018119594A1 publication Critical patent/WO2018119594A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis

Abstract

A method, system, device for vibration regulation and an industrial robot (10). The industrial robot (10) comprises: a robot body (11); an accelerometer (12) deployed in the robot body (11) and used for acquiring in real-time an acceleration value of the robot body (11); a controller (13) connected to the accelerometer (12) and used for receiving the acceleration value of the robot body (11) acquired in real-time by the accelerometer (12), determining a relation between the acceleration value of the robot body (11) and a preset acceleration threshold, regulating the acceleration of the robot body (11) on the basis of the determination result, thus adjusting the amplitude of vibration of the robot body (11). The regulation of the vibration of the industrial robot (10) is allowed without increasing the weight of the robot body (11).

Description

一种振动调节方法、系统、装置及工业机器人Vibration adjusting method, system, device and industrial robot 【技术领域】[Technical Field]
本发明涉及工业机器人技术领域,特别是涉及一种振动调节方法、系统、装置及工业机器人。The present invention relates to the field of industrial robot technology, and in particular to a vibration adjustment method, system, device and industrial robot.
【背景技术】【Background technique】
工业机器人是由电机驱动的运动装置。根据构型,一般可分为串联型机器人和并联型机器人,其中串联型机器人由于控制算法更通用,应用场景更丰富,因而在工业领域中得到了大规模的应用。但是,串联型机器人机构本身刚性较差,在工作过程中普遍存在振动问题,进而影响工业机器人的工作精度。Industrial robots are motion devices that are driven by motors. According to the configuration, it can be generally divided into a series type robot and a parallel type robot. Among them, the series type robot has a large-scale application in the industrial field because the control algorithm is more versatile and the application scenario is more abundant. However, the tandem robot mechanism itself has poor rigidity, and vibration problems are common in the working process, which in turn affects the working precision of the industrial robot.
现有工业机器人振动抑制的方法常见的有两种:一种是通过增大机器人本体重量来提高刚度,进而抑制机器人在工作过程中的振动。但是通过这种方式所产生的抑振效果不明显,而且还使得机器人本体更加笨重;另一种是通过调节驱动参数来抑制振动,但由于目前的串联型机器人一般采用半闭环结构,工具中心点无运动反馈,从而使得对驱动参数的调节比较盲目,并不能达到很好的效果。There are two common methods for vibration suppression of existing industrial robots: one is to increase the weight of the robot body to increase the stiffness, thereby suppressing the vibration of the robot during the working process. However, the vibration suppression effect produced by this method is not obvious, and the robot body is more cumbersome; the other is to suppress the vibration by adjusting the driving parameters, but since the current series robot generally adopts a semi-closed loop structure, the tool center point There is no motion feedback, so the adjustment of the driving parameters is blind and does not achieve good results.
因此,如何在不增加本体重量的情况下抑制机器人本身的振动是亟需解决的技术问题。Therefore, how to suppress the vibration of the robot itself without increasing the weight of the body is an urgent technical problem to be solved.
【发明内容】[Summary of the Invention]
本发明主要解决的技术问题是提供一种振动调节方法、系统、装置及工业机器人,能够在不增加本体重量的情况下抑制机器人本身的振动。The technical problem to be solved by the present invention is to provide a vibration adjusting method, system, device and industrial robot capable of suppressing vibration of the robot itself without increasing the weight of the body.
为解决上述技术问题,本发明采用的技术方案是:提供一种工业机器人,包括:机器人本体;加速度传感器,部署于所述机器人本体中,用于实时获取所述机器人本体的加速度值;控制器,与所述加速度传感器连接,用于接收所述加速度传感器所实时获取的所述机器人本体的加速度值,判断所述机器人本体的所述加速度值与预设加速度阈值的关系,并根据判断结果对所述机器人本体的加速度进行调节,以调整所述机器人本体的振动幅值。In order to solve the above technical problem, the technical solution adopted by the present invention is: providing an industrial robot, comprising: a robot body; an acceleration sensor, deployed in the robot body, for acquiring an acceleration value of the robot body in real time; And connecting to the acceleration sensor, configured to receive an acceleration value of the robot body acquired by the acceleration sensor in real time, determine a relationship between the acceleration value of the robot body and a preset acceleration threshold, and according to the determination result The acceleration of the robot body is adjusted to adjust the vibration amplitude of the robot body.
进一步地,所述工业机器人还包括驱动器;所述驱动器与所述控制器、所述机器人本体连接,通过所述控制器对所述驱动器的驱动参数的调节,以实现 所述对所述机器人本体的加速度的调节。Further, the industrial robot further includes a driver; the driver is connected to the controller and the robot body, and the driving parameter of the driver is adjusted by the controller to implement The adjustment of the acceleration of the robot body.
具体地,所述驱动器的驱动参数指所述机器人本体的刚度值,和/或加加速度值。Specifically, the driving parameter of the driver refers to a stiffness value of the robot body, and/or a jerk value.
进一步地,所述控制器根据判断结果对所述机器人本体的加速度进行调节包括:当所述判断结果为加速度值不小于所述预设加速度阈值时,减小所述机器人本体的刚度值和/或加加速度值;当所述加速度值小于所述预设加速度阈值时,增大所述机器人本体的刚度值和/或加加速度值。Further, the adjusting, by the controller, the acceleration of the robot body according to the determination result includes: when the determination result is that the acceleration value is not less than the preset acceleration threshold, reducing a stiffness value of the robot body and/or Or a jerk value; when the acceleration value is less than the preset acceleration threshold, increasing a stiffness value and/or a jerk value of the robot body.
进一步地,所述工业机器人为六轴工业机器人,所述加速度传感器具体部署于所述柳州工业机器人的第六轴法兰内。Further, the industrial robot is a six-axis industrial robot, and the acceleration sensor is specifically deployed in a sixth shaft flange of the Liuzhou industrial robot.
具体地,所述加速度传感器具体获取所述机器人本体的工具中心点的加速度。Specifically, the acceleration sensor specifically acquires an acceleration of a tool center point of the robot body.
进一步地,所述工业机器人还包括部署于所述机器人本体内部的电源线、信号线;所述加速度传感器进一步连接所述电源线、信号线。Further, the industrial robot further includes a power line and a signal line disposed inside the robot body; and the acceleration sensor further connects the power line and the signal line.
为解决上述技术问题,本发明采用另一的技术方案是:提供一种工业机器人的振动调节方法,包括:实时获取机器人本体的加速度值;判断所述加速度值与预设加速度阈值的关系;根据判断结果调节当前状态下的驱动参数,以调整所述机器人本体的振动幅值。In order to solve the above technical problem, the present invention adopts another technical solution to provide a vibration adjustment method for an industrial robot, comprising: acquiring an acceleration value of the robot body in real time; and determining a relationship between the acceleration value and a preset acceleration threshold; The judgment result adjusts the driving parameters in the current state to adjust the vibration amplitude of the robot body.
具体地,所述驱动参数指所述机器人本体的刚度值,和/或加加速度值。Specifically, the driving parameter refers to a stiffness value of the robot body, and/or a jerk value.
进一步地,所述根据判断结果调节当前状态下的加速度,包括:当所述判断结果为加速度值不小于所述预设加速度阈值时,减小所述机器人本体的刚度值和/或加加速度值,使所述振动幅度小于所述振动阈值;当所述加速度值小于所述预设加速度阈值时,增大所述机器人本体的刚度值和/或加加速度值,并保证所述振动幅度小于所述振动阈值。Further, the adjusting the acceleration in the current state according to the determination result includes: when the determination result is that the acceleration value is not less than the preset acceleration threshold, reducing the stiffness value and/or the jerk value of the robot body And causing the vibration amplitude to be smaller than the vibration threshold; when the acceleration value is less than the preset acceleration threshold, increasing a stiffness value and/or a jerk value of the robot body, and ensuring that the vibration amplitude is less than The vibration threshold is described.
为解决上述技术问题,本发明采用再一的技术方案是:提供一种工业机器人的振动调节系统,包括:加速度传感器,用于实时获取机器人本体的加速度值;控制器,与所述加速度传感器连接,用于判断所述加速度值与预设加速度阈值的关系,根据判断结果调节当前状态下的驱动参数,以调整所述机器人本体的振动幅值。In order to solve the above technical problem, the present invention adopts another technical solution to provide a vibration adjustment system for an industrial robot, comprising: an acceleration sensor for acquiring an acceleration value of the robot body in real time; and a controller connected to the acceleration sensor And determining a relationship between the acceleration value and a preset acceleration threshold, and adjusting a driving parameter in a current state according to the determination result to adjust a vibration amplitude of the robot body.
具体地,所述驱动参数指所述机器人本体的刚度值,和/或加加速度值。Specifically, the driving parameter refers to a stiffness value of the robot body, and/or a jerk value.
进一步地,所述控制器在所述判断结果为加速度值不小于所述预设加速度阈值时,减小所述机器人本体的刚度值和/或加加速度值;所述控制器在所述加 速度值小于所述预设加速度阈值时,增大所述机器人本体的刚度值和/或加加速度值。Further, the controller reduces a stiffness value and/or a jerk value of the robot body when the determination result is that the acceleration value is not less than the preset acceleration threshold; the controller is in the adding When the speed value is less than the preset acceleration threshold, the stiffness value and/or the jerk value of the robot body is increased.
为解决上述技术问题,本发明采用又一的技术方案是:提供一种工业机器人的振动调节装置,包括:获取模块,用于实时获取机器人本体的加速度值;判断模块,用于判断所述加速度值与预设加速度阈值的关系;调节模块,用于根据所述判断模块的判断结果调节当前状态下的驱动参数,以调整所述机器人本体的振动幅值。In order to solve the above technical problem, the present invention adopts another technical solution to provide a vibration adjusting device for an industrial robot, comprising: an acquiring module for acquiring an acceleration value of the robot body in real time; and a determining module for determining the acceleration The relationship between the value and the preset acceleration threshold; the adjustment module is configured to adjust the driving parameter in the current state according to the determination result of the determining module to adjust the vibration amplitude of the robot body.
本发明的有益效果是:区别于现有技术的情况,本发明通过在机器人本体中部署加速度传感器,从而能够实时获取机器人的加速度,由于加速度在一定程度上反应了机器人的振动幅值,因此本发明实现了在不增加机器人本体重量的情况下,通过改变机器人的加速度来对机器人振动幅值进行调节。同时,由于加速度传感器成本低、技术成熟,且能准确反应机器人本体的加速度值,从而使得对工业机器人振动的调节更有针对性,也更准确、方便。The invention has the beneficial effects that the invention can acquire the acceleration of the robot in real time by deploying the acceleration sensor in the robot body, and the acceleration reflects the vibration amplitude of the robot to a certain extent, so the present invention is different from the prior art. The invention realizes that the vibration amplitude of the robot is adjusted by changing the acceleration of the robot without increasing the weight of the robot body. At the same time, because the acceleration sensor has low cost, mature technology, and can accurately reflect the acceleration value of the robot body, the adjustment of the vibration of the industrial robot is more targeted, more accurate and convenient.
【附图说明】[Description of the Drawings]
图1是本发明工业机器人一实施例的结构示意图;1 is a schematic structural view of an embodiment of an industrial robot according to the present invention;
图2是本发明工业机器人的振动调节方法一实施例的流程示意图;2 is a schematic flow chart of an embodiment of a vibration adjustment method for an industrial robot according to the present invention;
图3是本发明工业机器人的振动调节系统一实施例的结构示意图;3 is a schematic structural view of an embodiment of a vibration adjusting system of an industrial robot according to the present invention;
图4是本发明工业机器人的振动调节装置一实施例的框架示意图。Fig. 4 is a schematic view showing the frame of an embodiment of the vibration adjusting device of the industrial robot of the present invention.
【具体实施方式】【detailed description】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
本发明实施例公开了一种振动调节方法、系统、装置及工业机器人,能够在不增加本体重量的情况下抑制机器人本身的振动。以下分别进行详细描述。The embodiment of the invention discloses a vibration adjusting method, system, device and industrial robot, which can suppress the vibration of the robot itself without increasing the weight of the body. The details are described below separately.
请参阅图1,图1是本发明工业机器人10一实施例的结构示意图。其中,工业机器人10按照机械结构分,可分为直角坐标机器人、SCARA机器人、关节型机器人、并联机器人等,不同行业根据不同的使用要求所采用的工业机器人不同。目前市场中主要为关节型工业机器人。本实施例中工业机器人10主要 包括:机器人本体11、加速度传感器12以及控制器13。Please refer to FIG. 1. FIG. 1 is a schematic structural view of an embodiment of an industrial robot 10 according to the present invention. Among them, the industrial robot 10 can be divided into a Cartesian coordinate robot, a SCARA robot, an articulated robot, a parallel robot, etc. according to the mechanical structure, and different industrial robots are used according to different use requirements. Currently, the market is mainly articulated industrial robots. The industrial robot 10 in this embodiment is mainly The robot body 11, the acceleration sensor 12, and the controller 13 are included.
其中,机器人本体11是工业机器人10机体结构和机械传动系统,也是机器人的支承基础和执行机构。例如关节型机器人的机器人本体11主要包括:传动部件、机身及行走机构、臂部、腕部、手部等。由于工业机器人10工作环境和工作性质的特殊性,机器人本体11常采用的材料有碳素结构钢和合金结构钢、铝、铝合金及其他轻合金材料、纤维增强合金、陶瓷、纤维增强复合材料、粘弹性大阻尼材料等,以满足重量轻、刚度大、大阻尼等特点。The robot body 11 is an industrial robot 10 body structure and a mechanical transmission system, and is also a support base and an actuator of the robot. For example, the robot body 11 of the articulated robot mainly includes a transmission member, a body and a traveling mechanism, an arm portion, a wrist portion, a hand portion, and the like. Due to the special working environment and working nature of the industrial robot 10, the materials commonly used in the robot body 11 are carbon structural steel and alloy structural steel, aluminum, aluminum alloy and other light alloy materials, fiber reinforced alloys, ceramics, fiber reinforced composite materials. , viscoelastic large damping materials, etc., to meet the characteristics of light weight, high stiffness, large damping.
加速度传感器12部署于机器人本体11中,用于实时获取机器人本体11的加速度值。The acceleration sensor 12 is disposed in the robot body 11 for acquiring the acceleration value of the robot body 11 in real time.
其中,加速度传感器12,顾名思义,是一种能够测量加速度的传感器,通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。加速度传感器12在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。根据传感器敏感元件的不同,常见的加速度传感器12包括电容式、电感式、应变式、压阻式、压电式等。Among them, the acceleration sensor 12, as the name suggests, is a sensor capable of measuring acceleration, usually composed of a mass, a damper, an elastic component, a sensitive component, and a suitable circuit. The acceleration sensor 12 obtains the acceleration value by using Newton's second law by measuring the inertial force of the mass during acceleration. The common acceleration sensor 12 includes a capacitive type, an inductive type, a strain type, a piezoresistive type, a piezoelectric type, and the like, depending on sensor sensitive elements.
在一个应用场景中可采用压电式加速度传感器12,其工作原理主要利于压电敏感元件的压电效应得到与振动或者压力成正比的电荷量或者电压量,具体如IEPE型加速度传感器,及内置IC电路压电加速度传感器。A piezoelectric acceleration sensor 12 can be used in an application scenario, and its working principle is mainly beneficial to the piezoelectric effect of the piezoelectric sensitive component to obtain a charge amount or a voltage amount proportional to vibration or pressure, such as an IEPE type acceleration sensor, and a built-in IC circuit piezoelectric acceleration sensor.
在本实施例中,机器人本体11的振动可以简化为机器人末端的正弦运动S=Asinwt,其中振幅A代表振动的强度;w代表振动频率,一般和机器人本体11固有频率一致,决定于机器人本体11的设计,因此可以通过控制振幅A来控制机器人本体11的振动,振幅A变是本实施例中所需要调节控制的最终目标。通过上式能够得出,机器人本体11的加速度为a=-Aw2sinwt,因此,可看作加速度传感器12输出与机器人本体11振动量成正比的电压信号。In the present embodiment, the vibration of the robot body 11 can be simplified to the sinusoidal motion of the robot end S=Asinwt, wherein the amplitude A represents the intensity of the vibration; w represents the vibration frequency, generally coincides with the natural frequency of the robot body 11, and is determined by the robot body 11 The design can therefore control the vibration of the robot body 11 by controlling the amplitude A, which is the ultimate goal of the adjustment control required in this embodiment. As can be seen from the above equation, the acceleration of the robot body 11 is a = -Aw 2 sinwt, and therefore, it can be considered that the acceleration sensor 12 outputs a voltage signal proportional to the amount of vibration of the robot body 11.
其中,加速度值具体是指加速度传感器12所获取的当前状态下机器人本体11的加速度值,具体是指加速度传感器12所在位置的加速度值。在一个应用场景中,工业机器人10是六轴串联型工业机器人,此时,加速度传感器12部署于机器人本体11的第六轴法兰111内。进一步地,机器人本体11的工具中心点为第六轴法兰111的中心点,那么此时,加速度传感器12具体获取机器人本体11的工具中心点处的加速度,以使得加速度传感器12能够更加直接得反应机器人本体11的工作部位的加速度。The acceleration value refers specifically to the acceleration value of the robot body 11 in the current state acquired by the acceleration sensor 12, and specifically refers to the acceleration value of the position where the acceleration sensor 12 is located. In one application scenario, the industrial robot 10 is a six-axis tandem industrial robot. At this time, the acceleration sensor 12 is disposed in the sixth shaft flange 111 of the robot body 11. Further, the tool center point of the robot body 11 is the center point of the sixth shaft flange 111. At this time, the acceleration sensor 12 specifically acquires the acceleration at the tool center point of the robot body 11 so that the acceleration sensor 12 can be more directly obtained. The acceleration of the working portion of the robot body 11 is reflected.
控制器13与加速度传感器12连接,用于接收加速度传感器12所实时获取 的机器人本体11的加速度值,判断机器人本体11的加速度值与预设加速度阈值的关系,并根据判断结果对机器人本体11的加速度进行调节,以调整机器人本体11的振动幅值。The controller 13 is connected to the acceleration sensor 12 for receiving the real-time acquisition of the acceleration sensor 12. The acceleration value of the robot body 11 determines the relationship between the acceleration value of the robot body 11 and the preset acceleration threshold, and adjusts the acceleration of the robot body 11 according to the determination result to adjust the vibration amplitude of the robot body 11.
其中,控制器13是工业机器人10的核心,除了为机器人本体11提供动力以外,更重要的是控制机器人本体11在工作空间中的运动位置、姿态和轨迹,操作顺序及动作的时间等。为了满足工业需求,工业机器人10的控制器13可采用计算能力较强的ARM系列、DSP系列、POWERPC系列、Intel系列等芯片组成,在一些应用场景中,已有的通用芯片在功能和性能上不能完全满足某些工业机器人在价格、性能、集成度和接口等方面的要求,此时可以根据需要将特定的处理器与所需要的接口集成在一起,这样能够简化系统外围电路的设计,缩小系统尺寸,并降低成本。同时,控制器13可以为便携式设备或固定设备,具体根据不同需求而定。The controller 13 is the core of the industrial robot 10. In addition to powering the robot body 11, it is more important to control the movement position, posture and trajectory of the robot body 11 in the work space, the operation sequence and the time of the action. In order to meet the industrial demand, the controller 13 of the industrial robot 10 can be composed of ARM series, DSP series, POWERPC series, Intel series and other chips with strong computing power. In some application scenarios, the existing general-purpose chips have functions and performances. The requirements of price, performance, integration, and interface of some industrial robots cannot be fully satisfied. In this case, specific processors can be integrated with the required interfaces as needed, which simplifies the design and reduction of peripheral circuits of the system. System size and cost reduction. At the same time, the controller 13 can be a portable device or a fixed device, depending on different needs.
在调整机器人本体11的振动幅值时,往往以机器人本体的振动阈值为标准。其中,振动阈值通常是预先设置好的,由工业机器人10本身的结构、材料等决定的,往往是能够保证机器人不会因为振动过大而导致工作精度下降的最大振动幅度。在一个应用场景中,根据判断结果对机器人本体11的加速度进行调节,具体为当加速度值不小于预设的加速度阈值时,控制器13控制机器人本体11将加速度减小,当加速度值小于预设的加速度阈值时,控制器13控制机器人本体11将加速度增大。在另一个应用场景中,振动阈值也可以是既能保证机器人本体11具有良好的工作精度,又能保证其具有较高的工作强度的最大振动幅度。通过控制器13使振动幅度小于振动阈值这种方法不仅能够将机器人本体11的振动幅度控制在振动阈值之内,同时又能够保证充分发挥机器人本体11的工作效率。When adjusting the vibration amplitude of the robot body 11, the vibration threshold of the robot body is often used as a standard. Among them, the vibration threshold is usually set in advance, and is determined by the structure, material, and the like of the industrial robot 10 itself, and is often the maximum vibration amplitude that can ensure that the robot does not cause the work accuracy to decrease due to excessive vibration. In an application scenario, the acceleration of the robot body 11 is adjusted according to the determination result, specifically, when the acceleration value is not less than the preset acceleration threshold, the controller 13 controls the robot body 11 to reduce the acceleration, and when the acceleration value is less than the preset At the acceleration threshold, the controller 13 controls the robot body 11 to increase the acceleration. In another application scenario, the vibration threshold may also be the maximum vibration amplitude that can ensure the robot body 11 has good working precision and can ensure its high working intensity. The method in which the vibration amplitude is smaller than the vibration threshold by the controller 13 can not only control the vibration amplitude of the robot body 11 within the vibration threshold, but also ensure that the working efficiency of the robot body 11 is fully exerted.
在一个应用场景中,机器人本体11内部部署有电源线112、信号线113等,此时加速度传感器12通过电源线112、信号线113连接机器人本体11,进而连接于控制器13,从而将其所感应到的加速度值反馈给控制器13。并且,由于电源线112、信号线113均位于机器人本体11的内部,因此能够避免过多的线缆在外部缠绕,进而保持机器人的整体整洁美观。In an application scenario, the power line 112, the signal line 113, and the like are disposed inside the robot body 11. At this time, the acceleration sensor 12 is connected to the robot body 11 through the power line 112 and the signal line 113, and is further connected to the controller 13, thereby The sensed acceleration value is fed back to the controller 13. Moreover, since the power line 112 and the signal line 113 are both located inside the robot body 11, it is possible to prevent excessive cables from being entangled outside, thereby maintaining the overall cleanliness and beauty of the robot.
可选地,工业机器人10进一步包括驱动器14,驱动器14与控制器13以及机器人本体11连接,通过控制器13控制驱动器14的驱动参数的调节进而实现对机器人本体11的加速度的调节。 Optionally, the industrial robot 10 further includes a driver 14 connected to the controller 13 and the robot body 11 to control the adjustment of the driving parameters of the driver 14 by the controller 13 to realize the adjustment of the acceleration of the robot body 11.
在一个应用场景中,驱动器14的驱动参数具体是指刚度值、加加速度值。其中,刚度和加加速度均是能够反应机器人本体11加速度的参数。通常情况下,机器人的刚度是不变的,但是刚度的大小能够影响机器人的加速度,因此本发明中,将刚度设置为可调节,然后通过调节机器人的刚度来控制机器人的加速度,进而调节机器人的振动幅度。而加加速度,顾名思义即加速度的加速度是反应机器人加速度的变化的量,机器人的加加速度越大,则加速度变化得越快,相反,加加速度越小,则机器人的加速度变化得越慢。具体地,当控制器13接收到加速度传感器12的加速度值,并对加速度值与预设的加速度阈值进行大小比较后,当加速度值不小于预设加速度阈值时,控制器13控制减小机器人本体11的刚度值和/或加加速度值,使得振动幅度小于上述振动阈值;而当加速度值小于预设加速度阈值时,控制器13控增大机器人本体11的刚度值和/或加加速度值,同时也保证振动幅度小于上述振动阈值。In an application scenario, the driving parameters of the driver 14 specifically refer to a stiffness value and a jerk value. Among them, the stiffness and the jerk are parameters that can reflect the acceleration of the robot body 11. Normally, the stiffness of the robot is constant, but the magnitude of the stiffness can affect the acceleration of the robot. Therefore, in the present invention, the stiffness is set to be adjustable, and then the acceleration of the robot is adjusted to adjust the acceleration of the robot, thereby adjusting the robot's The amplitude of the vibration. The jerk, as the name implies, the acceleration of the acceleration is the amount of change in the acceleration of the reaction robot. The larger the jerk of the robot is, the faster the acceleration changes. On the contrary, the smaller the jerk, the slower the acceleration of the robot changes. Specifically, when the controller 13 receives the acceleration value of the acceleration sensor 12 and compares the acceleration value with the preset acceleration threshold, when the acceleration value is not less than the preset acceleration threshold, the controller 13 controls to reduce the robot body. The stiffness value and/or the jerk value of 11 is such that the vibration amplitude is smaller than the vibration threshold; and when the acceleration value is less than the preset acceleration threshold, the controller 13 controls to increase the stiffness value and/or the jerk value of the robot body 11 while It is also ensured that the vibration amplitude is smaller than the above vibration threshold.
因此,通过在机器人本体11上,尤其是在第六轴法兰111上安装加速度传感器12,不仅不影响工件的安装,而且还能够最直接得反应机器人工具中心点的加速度。同时,控制器13通过加速度传感器12的反馈,对驱动器14的驱动参数进行动态调整,从而调节机器人本体11的振动,进而能够最大程度的保证机器人本体11的驱动性能发挥和运动精度得到兼顾。Therefore, by mounting the acceleration sensor 12 on the robot body 11, particularly on the sixth shaft flange 111, not only does the installation of the workpiece not be affected, but also the acceleration of the center point of the robot tool can be most directly reflected. At the same time, the controller 13 dynamically adjusts the driving parameters of the driver 14 by the feedback of the acceleration sensor 12, thereby adjusting the vibration of the robot body 11, thereby maximally ensuring that the driving performance of the robot body 11 and the motion accuracy are balanced.
请参阅图2,图2是本发明工业机器人的振动调节方法一实施例的流程示意图。其中,本发明工业机器人的振动调节方法一实施例包括:Please refer to FIG. 2. FIG. 2 is a schematic flow chart of an embodiment of a vibration adjustment method for an industrial robot according to the present invention. An embodiment of the vibration adjustment method of the industrial robot of the present invention includes:
S21,实时获取机器人本体的加速度值;S21, acquiring an acceleration value of the robot body in real time;
S22,判断加速度值与预设加速度阈值的关系;S22. Determine a relationship between the acceleration value and a preset acceleration threshold.
S23,根据判断结果调节当前状态下的加速度,以调整机器人本体的振动幅值。S23. Adjust the acceleration in the current state according to the judgment result to adjust the vibration amplitude of the robot body.
在一个应用场景中,工业机器人的一些驱动参数能够在一定程度上反应机器人本体的加速度,此时可以根据判断结果调节机器人本体的驱动参数,进而调整机器人本体的振动幅值。In an application scenario, some driving parameters of the industrial robot can reflect the acceleration of the robot body to a certain extent. At this time, the driving parameters of the robot body can be adjusted according to the judgment result, and then the vibration amplitude of the robot body can be adjusted.
在一个应用场景中,上述驱动参数指机器人本体的刚度值,和/或加加速度值。此时,根据判断结果调节机器人本体的驱动参数具体可以是:当判断结果为加速度值不小于预设加速度阈值时,减小机器人本体的刚度值和/或加加速度值;当加速度值小于预设加速度阈值时,增大机器人本体的刚度值和/或加加速度值。 In one application scenario, the above drive parameters refer to the stiffness values of the robot body, and/or jerk values. At this time, adjusting the driving parameter of the robot body according to the determination result may specifically: when the determination result is that the acceleration value is not less than the preset acceleration threshold, reducing the stiffness value and/or the jerk value of the robot body; when the acceleration value is less than the preset value When the acceleration threshold is increased, the stiffness value and/or the jerk value of the robot body is increased.
其中,上述加速度值等与本发明振动可调节工业机器人一实施例相应之处均与上述实施例相同,此处不再赘述。The above-mentioned acceleration values and the like correspond to the embodiment of the vibration-adjustable industrial robot of the present invention, which are the same as the above embodiments, and are not described herein again.
上述方法,能够通过实时调节机器人本体的刚度值和/或加加速度值,来调整机器人本体的加速度,当加速度偏大时调小,当加速度偏小时调大,进而使得机器人本体的振动幅值不能太大,同时也不至于过小。以此在一定程度上保证了机器人既能避免振动过大而造成的定位精度下降的现象,又能充分发挥机器人的性能。The above method can adjust the acceleration of the robot body by adjusting the stiffness value and/or the jerk value of the robot body in real time, and adjust the acceleration when the acceleration is too large, and when the acceleration is small, the vibration amplitude of the robot body cannot be adjusted. Too big, not too small. In this way, to a certain extent, the robot can avoid the phenomenon that the positioning accuracy is reduced due to excessive vibration, and the performance of the robot can be fully utilized.
请参阅图3,图3是本发明工业机器人的振动调节系统一实施例的结构示意图。其中,本发明工业机器人的振动调节系统一实施例,包括:加速度传感器31,用于实时获取机器人本体的加速度值;控制器32,与加速度传感器31连接,用于判断加速度值与预设加速度阈值的关系,根据判断结果调节当前状态下的驱动参数,以调整机器人本体的振动幅值。Please refer to FIG. 3. FIG. 3 is a schematic structural view of an embodiment of a vibration adjusting system for an industrial robot according to the present invention. An embodiment of the vibration adjustment system of the industrial robot of the present invention includes: an acceleration sensor 31 for acquiring an acceleration value of the robot body in real time; and a controller 32 connected to the acceleration sensor 31 for determining an acceleration value and a preset acceleration threshold. The relationship is adjusted according to the judgment result to adjust the vibration amplitude of the robot body.
在一个应用场景中,工业机器人的一些驱动参数能够在一定程度上反应机器人本体的加速度,此时可以根据判断结果调节机器人本体的驱动参数,以调整机器人本体的振动幅值。In an application scenario, some driving parameters of the industrial robot can reflect the acceleration of the robot body to a certain extent. At this time, the driving parameters of the robot body can be adjusted according to the judgment result to adjust the vibration amplitude of the robot body.
在一个应用场景中,上述驱动参数指机器人本体的刚度值,和/或加加速度值。此时,根据判断结果调节机器人本体的驱动参数具体可以是:当判断结果为加速度值不小于预设加速度阈值时,减小机器人本体的刚度值和/或加加速度值;当加速度值小于预设加速度阈值时,增大机器人本体的刚度值和/或加加速度值。In one application scenario, the above drive parameters refer to the stiffness values of the robot body, and/or jerk values. At this time, adjusting the driving parameter of the robot body according to the determination result may specifically: when the determination result is that the acceleration value is not less than the preset acceleration threshold, reducing the stiffness value and/or the jerk value of the robot body; when the acceleration value is less than the preset value When the acceleration threshold is increased, the stiffness value and/or the jerk value of the robot body is increased.
其中,上述加速度值等与本发明工业机器人一实施例相应之处均与上述实施例相同,此处不再赘述。The above-mentioned acceleration values and the like correspond to the embodiment of the industrial robot of the present invention, which are the same as the above embodiments, and are not described herein again.
通过上述实施例的实施,加速度传感器31实时获取机器人本体的加速度,然后控制器32判断加速度值与预设加速度阈值的关系,并根据判断结果调节当前状态下的驱动参数,以调整机器人本体的振动幅值。Through the implementation of the above embodiment, the acceleration sensor 31 acquires the acceleration of the robot body in real time, and then the controller 32 determines the relationship between the acceleration value and the preset acceleration threshold, and adjusts the driving parameters in the current state according to the determination result to adjust the vibration of the robot body. Amplitude.
请参与图4,图4是本发明工业机器人的振动调节装置一实施例的框架示意图。其中,本发明工业机器人的振动调节装置一实施例包括:Please refer to FIG. 4. FIG. 4 is a schematic diagram of a frame of an embodiment of a vibration adjusting device for an industrial robot according to the present invention. An embodiment of the vibration adjusting device of the industrial robot of the present invention includes:
获取模块41,用于实时获取机器人本体的加速度值;The obtaining module 41 is configured to acquire an acceleration value of the robot body in real time;
判断模块42,用于判断加速度值与预设加速度阈值的关系;The determining module 42 is configured to determine a relationship between the acceleration value and the preset acceleration threshold;
调节模块43,用于根据判断模块的判断结果调节当前状态下的驱动参数,以调整机器人本体的振动幅值。 The adjusting module 43 is configured to adjust the driving parameter in the current state according to the determination result of the determining module to adjust the vibration amplitude of the robot body.
其中,上述加速度值等与本发明工业机器人一实施例相应之处均与上述实施例相同,此处不再赘述。The above-mentioned acceleration values and the like correspond to the embodiment of the industrial robot of the present invention, which are the same as the above embodiments, and are not described herein again.
通过上述实施例的实施,获取模块41实时获取机器人本体的加速度值;判断模块42判断加速度值与预设加速度阈值的关系;调节模块43根据判断模块的判断结果调节当前状态下的驱动参数,以调整机器人本体的振动幅值。Through the implementation of the foregoing embodiment, the obtaining module 41 acquires the acceleration value of the robot body in real time; the determining module 42 determines the relationship between the acceleration value and the preset acceleration threshold; the adjusting module 43 adjusts the driving parameter in the current state according to the judgment result of the determining module, Adjust the vibration amplitude of the robot body.
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。 The above is only the embodiment of the present invention, and is not intended to limit the scope of the invention, and the equivalent structure or equivalent process transformation made by the specification and the drawings of the present invention may be directly or indirectly applied to other related technical fields. The same is included in the scope of patent protection of the present invention.

Claims (14)

  1. 一种工业机器人,其特征在于,包括:An industrial robot characterized by comprising:
    机器人本体;Robot body
    加速度传感器,部署于所述机器人本体中,用于实时获取所述机器人本体的加速度值;An acceleration sensor is disposed in the robot body for acquiring an acceleration value of the robot body in real time;
    控制器,与所述加速度传感器连接,用于接收所述加速度传感器所实时获取的所述机器人本体的加速度值,判断所述机器人本体的所述加速度值与预设加速度阈值的关系,并根据判断结果对所述机器人本体的加速度进行调节,以调整所述机器人本体的振动幅值。The controller is connected to the acceleration sensor, and configured to receive an acceleration value of the robot body acquired by the acceleration sensor in real time, determine a relationship between the acceleration value of the robot body and a preset acceleration threshold, and determine As a result, the acceleration of the robot body is adjusted to adjust the vibration amplitude of the robot body.
  2. 根据权利要求1所述的工业机器人,其特征在于,The industrial robot according to claim 1, wherein
    所述工业机器人还包括驱动器;The industrial robot also includes a driver;
    所述驱动器与所述控制器、所述机器人本体连接,通过所述控制器对所述驱动器的驱动参数的调节,以实现所述对所述机器人本体的加速度的调节。The driver is connected to the controller and the robot body, and the driving parameter of the driver is adjusted by the controller to implement the adjustment of the acceleration of the robot body.
  3. 根据权利要求2所述的工业机器人,其特征在于,The industrial robot according to claim 2, wherein
    所述驱动器的驱动参数指所述机器人本体的刚度值,和/或加加速度值。The drive parameter of the drive refers to a stiffness value of the robot body, and/or a jerk value.
  4. 根据权利要求3所述的工业机器人,其特征在于,The industrial robot according to claim 3, wherein
    所述控制器根据判断结果对所述机器人本体的加速度进行调节包括:The controller adjusts the acceleration of the robot body according to the determination result, including:
    当所述判断结果为加速度值不小于所述预设加速度阈值时,减小所述机器人本体的刚度值和/或加加速度值;When the judgment result is that the acceleration value is not less than the preset acceleration threshold, reducing the stiffness value and/or the jerk value of the robot body;
    当所述加速度值小于所述预设加速度阈值时,增大所述机器人本体的刚度值和/或加加速度值。When the acceleration value is less than the preset acceleration threshold, the stiffness value and/or the jerk value of the robot body is increased.
  5. 根据权利要求1所述的工业机器人,其特征在于,The industrial robot according to claim 1, wherein
    所述工业机器人为六轴工业机器人,,所述加速度传感器具体部署于所述六轴工业机器人的第六轴法兰内。The industrial robot is a six-axis industrial robot, and the acceleration sensor is specifically deployed in a sixth shaft flange of the six-axis industrial robot.
  6. 根据权利要求1所述的工业机器人,其特征在于, The industrial robot according to claim 1, wherein
    所述加速度传感器具体获取所述机器人本体的工具中心点的加速度。The acceleration sensor specifically acquires an acceleration of a tool center point of the robot body.
  7. 根据权利要求1所述的工业机器人,其特征在于,所述工业机器人还包括部署于所述机器人本体内部的电源线、信号线;The industrial robot according to claim 1, wherein the industrial robot further comprises a power line and a signal line disposed inside the robot body;
    所述加速度传感器进一步连接所述电源线、信号线。The acceleration sensor is further connected to the power line and the signal line.
  8. 一种工业机器人的振动调节方法,其特征在于,包括:A method for adjusting vibration of an industrial robot, comprising:
    实时获取机器人本体的加速度值;Acquire the acceleration value of the robot body in real time;
    判断所述加速度值与预设加速度阈值的关系;Determining a relationship between the acceleration value and a preset acceleration threshold;
    根据判断结果调节当前状态下的驱动参数,以调整所述机器人本体的振动幅值。The driving parameter in the current state is adjusted according to the judgment result to adjust the vibration amplitude of the robot body.
  9. 根据权利要求8所述的方法,其特征在于,The method of claim 8 wherein:
    所述驱动参数指所述机器人本体的刚度值,和/或加加速度值。The drive parameter refers to a stiffness value of the robot body, and/or a jerk value.
  10. 根据权利要求9所述的方法,其特征在于,所述根据判断结果调节当前状态下的加速度,包括:The method according to claim 9, wherein the adjusting the acceleration in the current state according to the judgment result comprises:
    当所述判断结果为加速度值不小于所述预设加速度阈值时,减小所述机器人本体的刚度值和/或加加速度值;When the judgment result is that the acceleration value is not less than the preset acceleration threshold, reducing the stiffness value and/or the jerk value of the robot body;
    当所述加速度值小于所述预设加速度阈值时,增大所述机器人本体的刚度值和/或加加速度值。When the acceleration value is less than the preset acceleration threshold, the stiffness value and/or the jerk value of the robot body is increased.
  11. 一种工业机器人的振动调节系统,其特征在于,包括:A vibration regulation system for an industrial robot, comprising:
    加速度传感器,用于实时获取机器人本体的加速度值;An acceleration sensor for acquiring an acceleration value of the robot body in real time;
    控制器,与所述加速度传感器连接,用于判断所述加速度值与预设加速度阈值的关系,根据判断结果调节当前状态下的驱动参数,以调整所述机器人本体的振动幅值。The controller is connected to the acceleration sensor for determining a relationship between the acceleration value and a preset acceleration threshold, and adjusting a driving parameter in a current state according to the determination result to adjust a vibration amplitude of the robot body.
  12. 根据权利要求11所述的系统,其特征在于,The system of claim 11 wherein:
    所述驱动参数指所述机器人本体的刚度值,和/或加加速度值。The drive parameter refers to a stiffness value of the robot body, and/or a jerk value.
  13. 根据权利要求12所述的系统,其特征在于,The system of claim 12 wherein:
    所述控制器在所述判断结果为加速度值不小于所述预设加速度阈值时,减小所述机器人本体的刚度值和/或加加速度值;The controller reduces the stiffness value and/or the jerk value of the robot body when the determination result is that the acceleration value is not less than the preset acceleration threshold;
    所述控制器在所述加速度值小于所述预设加速度阈值时,增大所述 机器人本体的刚度值和/或加加速度值。The controller increases the said acceleration value when the acceleration value is less than the preset acceleration threshold The stiffness value and/or jerk value of the robot body.
  14. 一种工业机器人的阵动调节装置,其特征在于,包括:An array adjustment device for an industrial robot, comprising:
    获取模块,用于实时获取机器人本体的加速度值;Obtaining a module for acquiring an acceleration value of the robot body in real time;
    判断模块,用于判断所述加速度值与预设加速度阈值的关系;a determining module, configured to determine a relationship between the acceleration value and a preset acceleration threshold;
    调节模块,用于根据所述判断模块的判断结果调节当前状态下的驱动参数,以调整所述机器人本体的振动幅值。 And an adjustment module, configured to adjust a driving parameter in a current state according to the determination result of the determining module to adjust a vibration amplitude of the robot body.
PCT/CN2016/112164 2016-12-26 2016-12-26 Method, system, and device for vibration regulation and industrial robot WO2018119594A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112164 WO2018119594A1 (en) 2016-12-26 2016-12-26 Method, system, and device for vibration regulation and industrial robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201680028509.4A CN107690376B (en) 2016-12-26 2016-12-26 Vibration adjusting method, system and device and industrial robot
PCT/CN2016/112164 WO2018119594A1 (en) 2016-12-26 2016-12-26 Method, system, and device for vibration regulation and industrial robot

Publications (1)

Publication Number Publication Date
WO2018119594A1 true WO2018119594A1 (en) 2018-07-05

Family

ID=61151264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112164 WO2018119594A1 (en) 2016-12-26 2016-12-26 Method, system, and device for vibration regulation and industrial robot

Country Status (2)

Country Link
CN (1) CN107690376B (en)
WO (1) WO2018119594A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836544B2 (en) 2018-05-09 2021-03-03 ファナック株式会社 Control system and driven body control method
CN108942939A (en) * 2018-07-31 2018-12-07 深圳市山龙智控有限公司 Scara robot speed planing method and its system based on glide filter
CN110370278B (en) * 2019-07-16 2020-11-13 绍兴文理学院 Route adjusting system and method based on industrial robot jitter analysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055015A (en) * 2007-05-17 2007-10-17 中国科学技术大学 Rigidity-variable full-automatic power vibration-absorber
CN101975241A (en) * 2010-10-15 2011-02-16 游世辉 Mgnetorheological hydraulic rubber spring
JP2012187649A (en) * 2011-03-09 2012-10-04 Kawada Kogyo Kk Vibration suppression method for working arm
CN103538065A (en) * 2012-07-09 2014-01-29 发那科株式会社 Vibration control robot system
CN104647397A (en) * 2015-03-17 2015-05-27 河北工业大学 Rigidity-variable flexible joint
CN105328711A (en) * 2015-11-10 2016-02-17 哈尔滨工业大学 Modular rigidity-changing joint
CN106239554A (en) * 2016-10-10 2016-12-21 中国科学院宁波材料技术与工程研究所 The conduction mechanism of a kind of stiffness variable and joint of robot

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973037B (en) * 2010-11-22 2011-12-21 北方工业大学 Passive robot joint with adjustable rigidity elasticity
CN105415389B (en) * 2016-01-08 2017-12-29 浙江理工大学 A kind of gripper and control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055015A (en) * 2007-05-17 2007-10-17 中国科学技术大学 Rigidity-variable full-automatic power vibration-absorber
CN101975241A (en) * 2010-10-15 2011-02-16 游世辉 Mgnetorheological hydraulic rubber spring
JP2012187649A (en) * 2011-03-09 2012-10-04 Kawada Kogyo Kk Vibration suppression method for working arm
CN103538065A (en) * 2012-07-09 2014-01-29 发那科株式会社 Vibration control robot system
CN104647397A (en) * 2015-03-17 2015-05-27 河北工业大学 Rigidity-variable flexible joint
CN105328711A (en) * 2015-11-10 2016-02-17 哈尔滨工业大学 Modular rigidity-changing joint
CN106239554A (en) * 2016-10-10 2016-12-21 中国科学院宁波材料技术与工程研究所 The conduction mechanism of a kind of stiffness variable and joint of robot

Also Published As

Publication number Publication date
CN107690376B (en) 2021-05-07
CN107690376A (en) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2018119594A1 (en) Method, system, and device for vibration regulation and industrial robot
JP5906506B1 (en) Actuator device, power assist robot and humanoid robot
JP4962551B2 (en) Robot system and control method of robot system
JP2770982B2 (en) Manipulator position and force coordination controller
US8335591B2 (en) Robot apparatus and method of controlling the same
JP2007098507A (en) Work assisting device
US6243624B1 (en) Non-Linear muscle-like compliant controller
CN104589304A (en) Robot control device and robot
US9999974B2 (en) Robot
EP1930131A3 (en) Robot control apparatus for force control
Weber et al. Active vibration canceling of a cable-driven parallel robot in modal space
CN108436916A (en) A kind of balancing device and its control method based on gyro driver
CN110497423A (en) A kind of manipulator adaptive machining method
EP3007868A2 (en) Device with improved actuating means and method for use thereof
CN111660306A (en) Robot variable admittance control method and system based on operator comfort
Muscolo et al. A comparison between two force-position controllers with gravity compensation simulated on a humanoid arm
TWI651176B (en) Robot arm processing system and method thereof
KR101765952B1 (en) Method and apparatus for controlling wearable robot
JP2012187649A (en) Vibration suppression method for working arm
CN111319042A (en) Robot flexible assembly control method based on forgetting factor dynamic parameters
CN110977990A (en) Mechanical arm dragging teaching method based on terminal six-dimensional force sensor
CN106003049B (en) The control method of people-machine cooperative system
Luo et al. Cartesian position and force control with adaptive impedance/compliance capabilities for a humanoid robot arm
JP2011062766A (en) Energy-saving drive control system for robot joint
CN210335958U (en) Novel industrial robot motion control device based on machine vision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925569

Country of ref document: EP

Kind code of ref document: A1