WO2018117519A1 - Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery - Google Patents

Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery Download PDF

Info

Publication number
WO2018117519A1
WO2018117519A1 PCT/KR2017/014554 KR2017014554W WO2018117519A1 WO 2018117519 A1 WO2018117519 A1 WO 2018117519A1 KR 2017014554 W KR2017014554 W KR 2017014554W WO 2018117519 A1 WO2018117519 A1 WO 2018117519A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
binder
rule
negative electrode
copolymer
Prior art date
Application number
PCT/KR2017/014554
Other languages
French (fr)
Korean (ko)
Inventor
후쿠치이와오
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016246152A external-priority patent/JP6813350B2/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201780079033.1A priority Critical patent/CN110088951B/en
Publication of WO2018117519A1 publication Critical patent/WO2018117519A1/en
Priority to US16/446,361 priority patent/US11005102B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery binder, a secondary battery binder resin composition, a secondary battery electrode, and a secondary battery.
  • Non-aqueous electrolyte secondary batteries are widely used as a power source for portable devices such as notebook computers (Note PCs) or mobile phones, and have high expectations for their development in terms of high voltage and high capacity.
  • a negative electrode material (negative electrode active material) of such a nonaqueous electrolyte secondary battery a graphite carbon material such as natural graphite or artificial graphite capable of detaching and inserting Li ions in addition to lithium metal or lithium alloy is used.
  • a novel negative electrode active material is substituted for a carbon-based active material (for example, a graphite carbon material) which is widely used as a negative electrode active material.
  • a carbon-based active material for example, a graphite carbon material
  • Tin (Sn) alloys, silicon (Si) alloys, silicon (Si) oxides, lithium (Li) nitrides, etc. are attracting attention as a novel negative electrode active material, but at this point, any of the new negative electrode materials has graphite charge / discharge cycle characteristics. Lagging behind in carbon materials.
  • the carbon-based active material has a layered structure, and Li is inserted / deleted between the layers during charge and discharge, so that the expansion / contraction during Li insertion / deletion is small.
  • the novel negative electrode material especially the silicon-based active material, has a more complicated structure than the carbon-based active material, and at the same time, the amount of Li inserted / deleted per unit mass during charge / discharge is large.
  • the silicon-based active material has a large expansion / contraction due to charge / discharge, and as a result, the electrode swells greatly in a charge / discharge cycle in which expansion / contraction is repeated, resulting in short circuit of the active material due to destruction of the electrode structure.
  • the electroconductivity falls. For this reason, charge / discharge cycle life is known to fall extremely compared with graphite carbon material.
  • a binder resin for example, a polyimide-based binder is known, but since the polyimide-based binder is an organic solvent-based binder, there is a side that is difficult to use as a negative electrode binder in which an aqueous binder is mainly used. Therefore, the above problem cannot be solved fundamentally.
  • sodium polyacrylate is known as an aqueous high strength binder.
  • This binder is easy to use as a binder for the negative electrode because it is water-based, but the flexibility of the electrode is remarkably lowered, and cracks are easily generated, or the electrode is easily curled during drying. There is this. Moreover, the swelling inhibitory effect was also inadequate. Therefore, even this binder could not fundamentally solve the above problem.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is water-based, and a new and improved secondary battery binder and secondary battery, which are easy to handle while being able to suppress electrode swelling of a lithium ion secondary battery, are secondary. It is to provide a battery binder resin composition, a secondary battery electrode, and a secondary battery.
  • the residue of a 1st copolymer unit containing any 1 or more types of a carboxyl group-containing acrylic monomer, an acrylic acid derivative monomer, and substituted or unsubstituted styrene, and the residue of a polymeric azo initiator A secondary copolymer comprising a second copolymer unit, wherein the mass ratio of the second copolymer unit to the total mass of the first copolymer unit and the second copolymer unit is 10 to 40% by mass.
  • a battery binder is provided.
  • the carboxyl group-containing acrylic monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, mono methyl maleic acid, 2-carboxyethyl acrylate, and 2-carboxyethyl methacrylate.
  • the acrylic acid derivative monomer may be at least one member selected from the group consisting of nitrile group-containing acrylic monomers, acrylic acid esters, and acrylamides.
  • the nitrile group-containing acrylic monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, 2-cyanoethyl acrylate, and 2-cyanoethyl methacrylate.
  • At least some of the carboxyl group-containing acrylic monomers may be alkali metal salts or ammonium salts.
  • the first copolymer unit may include an alkali metal salt or an ammonium salt as the carboxyl group-containing acrylic monomer, and may include a nitrile group-containing acrylic monomer as the acrylic acid derivative monomer.
  • the second copolymer unit may include at least one of polyether and polysiloxane as a residue of the polymer azo initiator.
  • a secondary battery binder resin composition comprising the secondary battery binder.
  • a secondary battery electrode comprising the secondary battery binder.
  • the secondary battery electrode may further include carboxymethyl cellulose (CMC) as the secondary battery binder.
  • CMC carboxymethyl cellulose
  • a secondary battery comprising the above secondary battery electrode.
  • the secondary battery electrode may be a negative electrode.
  • the secondary battery binder according to the present invention can be suppressed by using the secondary battery binder according to the present invention as an aqueous binder for the secondary battery electrode.
  • the binder for secondary batteries according to the present invention also has good handling properties.
  • FIG. 1 is a side cross-sectional view schematically showing the configuration of a lithium ion secondary battery.
  • the lithium ion secondary battery 10 includes a positive electrode 20, a negative electrode 30, a separator 40, and a nonaqueous electrolyte.
  • the charge arrival voltage (redox potential) of the lithium ion secondary battery 10 is, for example, 4.0 V (vs. Li / Li + ) or more, 5.0 V or less, particularly 4.2 V or more and 5.0 V or less.
  • the form of the lithium ion secondary battery 10 is not specifically limited. In other words, the lithium ion secondary battery 10 may be any of cylindrical, rectangular, laminate, button, and the like.
  • the positive electrode 20 includes a current collector 21 and a positive electrode active material layer 22.
  • the current collector 21 may be any conductor, and is composed of, for example, aluminum, stainless steel, nickel coated steel, or the like.
  • the positive electrode active material layer 22 contains at least a positive electrode active material, and may further contain a conductive agent and a binder for a positive electrode.
  • the positive electrode active material is, for example, a solid solution oxide containing lithium, but is not particularly limited as long as it is a material capable of electrochemically storing and releasing lithium ions.
  • Solid solution oxides include, for example, Li a Mn x Co y Ni z O 2 (1.150 ⁇ a ⁇ 1.430, 0.45 ⁇ x ⁇ 0.6, 0.10 ⁇ y ⁇ 0.15, 0.20 ⁇ z ⁇ 0.28), LiMn x Co y Ni z O 2 (0.3 ⁇ x ⁇ 0.85, 0.10 ⁇ y ⁇ 0.3, 0.10 ⁇ z ⁇ 0.3) and LiMn 1.5 Ni 0.5 O 4 .
  • the conductive agent is, for example, carbon black such as Ketjenblack, acetylene black, natural graphite, artificial graphite, or the like, but is not particularly limited as long as it is for enhancing the conductivity of the positive electrode.
  • the binder for the positive electrode is, for example, polyvinylidene fluoride, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethylmethacrylate, polyethylene, cellulose nitrate, and the like. 21) If it can be bound up, it is not particularly limited.
  • the positive electrode active material layer 22 is manufactured by the following manufacturing method, for example. In other words, first, the positive electrode active material, the conductive agent, and the binder for the positive electrode are dry mixed to prepare a positive electrode mixture.
  • the positive electrode mixture is dispersed in a suitable organic solvent to prepare a positive electrode mixture slurry, and the positive electrode mixture slurry is applied onto the current collector 21, dried, and rolled to prepare a positive electrode active material layer.
  • the negative electrode 30 includes a current collector 31 and a negative electrode active material layer 32.
  • the current collector 31 may be any conductor, and is composed of, for example, aluminum, stainless steel, nickel plated steel, or the like.
  • the negative electrode active material layer 32 includes at least a negative electrode active material and a negative electrode binder.
  • the negative electrode active material may be, for example, a graphite active material (artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, etc.), a mixture of fine particles of silicon or tin or oxides thereof, and a graphite active material, Fine particles of silicon or tin, alloys based on silicon or tin, titanium oxide compounds such as Li 4 Ti 5 O 12 , lithium nitride and the like are conceivable. Oxides of silicon are represented by SiO x (0 ⁇ x ⁇ 2). In addition to these, metal lithium etc. are mentioned as a negative electrode active material.
  • the negative electrode binder since the negative electrode binder possesses the following constitution, the swelling of the electrode can be suppressed even when a negative electrode active material, for example, a silicon-based active material that expands and contracts greatly during charging and discharging is used.
  • a negative electrode active material for example, a silicon-based active material that expands and contracts greatly during charging and discharging is used.
  • the negative electrode binder includes a copolymer binder.
  • the negative electrode binder may further include a negative electrode binder used in the conventional lithium ion secondary battery 10, and may further include, for example, carboxymethyl cellulose (CMC).
  • the copolymer binder is a block copolymer comprising a first copolymer repeating unit and a second copolymer repeating unit.
  • the first copolymer repeating unit contains at least one of a carboxyl group-containing acrylic monomer, an acrylic acid derivative monomer and a substituted or unsubstituted styrene.
  • the first copolymer repeating unit is a repeating unit for expressing the strength and the electrolyte resistance of the negative electrode binder. Since the copolymer binder includes the first copolymer repeating unit, swelling of the negative electrode 30 can be suppressed.
  • at least one or more of carboxyl group-containing acrylic monomers, acrylic acid derivative monomers and substituted or unsubstituted styrenes are randomly copolymerized.
  • the carboxyl group-containing acrylic monomer is preferably any one or more selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, monomethyl maleic acid, 2-carboxyethyl acrylate, and 2-carboxyethyl methacrylate.
  • the carboxyl group-containing acrylic monomer is an alkali metal salt or an ammonium salt.
  • the alkali metal salt or ammonium salt may be any one or more alkali metal salts or ammonium salts selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, and mono methyl maleic acid.
  • the acrylic acid derivative monomer is preferably any one or more selected from the group consisting of nitrile group-containing acrylic monomers, acrylic esters and acrylamides.
  • the nitrile group-containing acrylic monomer is preferably any one or more selected from the group consisting of acrylonitrile, methacrylonitrile, 2-cyanoethyl acrylate, and 2-cyanoethyl methacrylate.
  • the first copolymer repeating unit contains an alkali metal salt or an ammonium salt as the carboxyl group-containing acrylic monomer and a nitrile group-containing acrylic monomer as the acrylic acid derivative monomer. In this case, the characteristics of the lithium ion secondary battery 10 are further improved.
  • the weight ratio of the carboxyl group-containing acrylic monomer to at least one of the acrylic acid derivative monomer and the substituted or unsubstituted styrene is not particularly limited, but may be, for example, about 2.5: 1.0 to 2.0: 1.0.
  • the glass transition point of a 1st copolymer repeating unit is 150 degreeC or more and 250 degrees C or less. In this case, the characteristics of the lithium ion secondary battery 10 are further improved.
  • the second copolymer repeat unit comprises a moiety of the polymeric azo initiator.
  • the second copolymer repeating unit is a repeating unit for expressing flexibility and swelling by the electrolyte solution.
  • the binder for the negative electrode deteriorates battery characteristics by merely high strength.
  • a certain degree of flexibility and swelling property are given to the binder for negative electrodes by a 2nd copolymer repeating unit.
  • a 2nd copolymer repeating unit contains at least 1 sort (s) of a polyether and polysiloxane as a residue of a polymeric azo initiator.
  • polyether polyethylene glycol is preferable, for example.
  • the weight ratio of the second copolymer repeating unit to the total weight of the first copolymer repeating unit and the second copolymer repeating unit is preferably 10 to 40% by weight.
  • the glass transition point of a 2nd copolymer repeating unit is -150 degreeC or more and 50 degrees C or less.
  • the characteristics of the lithium ion secondary battery 10 are further improved.
  • the first copolymer repeating unit is represented by, for example, the following formulas (1) to (24).
  • a 1st copolymer repeating unit is not limited to the following example.
  • the second copolymer repeating unit is represented by the following general formulas (25) to (26), for example.
  • a 2nd copolymer repeating unit is not limited to the following example.
  • R 1 -Me, -Et, -Pr (27)
  • R 2 -Me, -Et, -Pr, -CN, -CO 2 Me, -CO 2 Et, -CO 2 Pr, -CONHMe, -CONHEt, -CONHPr (28)
  • R 3 -CH 2- , -C 2 H 4- , -C 3 H 6- (29)
  • the binder for negative electrodes is represented by following General formula (30), for example.
  • the negative electrode binder may have a structure in which the formulas (1) to (24) and the formulas (25) to (26) are arbitrarily combined.
  • the separator 40 is not particularly limited, and any separator may be used as long as the separator 40 is used as a separator of a lithium ion secondary battery.
  • a separator it is preferable to use together porous film, a nonwoven fabric, etc. which show the outstanding high rate discharge performance alone or in combination.
  • the resin constituting the separator is, for example, a polyolefin resin represented by polyethylene, polypropylene, or the like, polyethylene terephthalate, polybutylene terephthalate, or the like.
  • polyester resin PVDF, vinylidene fluoride (VDF) -hexafluoro propylene (HFP) copolymer, vinylidene fluoride-perfluoro vinyl ether copolymer, vinylidene Fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoro Acetone (hexafluoroacetone) copolymer, vinylidene fluoride-ethylene Polymers, vinylidene fluoride-propylene copolymers, vinylidene fluoride-trifluoro propylene copolymers, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene Copolymers, vinylidene fluoride-ethylene (ethylene) -tetrafluoroethylene copolymers, and the like.
  • PVDF
  • the nonaqueous electrolyte can be used without particular limitation, such as a nonaqueous electrolyte which can conventionally be used for a lithium secondary battery.
  • the nonaqueous electrolyte has a composition in which an electrolyte salt is contained in the nonaqueous solvent.
  • non-aqueous solvent for example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate (ester); cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; Chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; Chain esters such as methyl formate, methyl acetate and butyric acid methyl; Tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl diglyme, etc.
  • cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate (ester); cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; Chain carbonates
  • Ethers Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone, or derivatives thereof, or the like, or a mixture of two or more thereof, and the like.
  • the concentration of the electrolyte salt may be the same as the nonaqueous electrolyte used in the conventional lithium secondary battery, and there is no particular limitation.
  • a nonaqueous electrolyte containing an appropriate lithium compound (electrolyte salt) at a concentration of about 0.8 to 1.5 mol / L can be used.
  • additives may be added to the nonaqueous electrolyte.
  • Such additives include cathodic additives, cathodic additives, ester additives, carbonic acid ester additives, sulfate ester additives, phosphate ester additives, boric acid ester additives, acid anhydride additives, and electrolyte systems. Additives and the like. Any one of these may be added to the nonaqueous electrolyte, and a plurality of kinds of additives may be added to the nonaqueous electrolyte.
  • the anode 20 is manufactured as follows. First, a slurry is formed by dispersing the positive electrode active material, the conductive agent, and the positive electrode binder in the above ratio in a solvent (for example, N-methyl-2-pyrrolidone). Next, the slurry is formed on the current collector 21 (for example, applied) and dried to form the positive electrode active material layer 22.
  • a solvent for example, N-methyl-2-pyrrolidone
  • coating is not specifically limited.
  • the knife coater method, the gravure coater method, etc. are mentioned, for example.
  • the positive electrode active material layer 22 is pressed to have a density within the above range by a press.
  • the anode 20 is manufactured.
  • the negative electrode 30 is also manufactured in the same manner as the positive electrode 20.
  • a negative electrode active material and a negative electrode binder (specifically, a binder resin composition containing a negative electrode binder) are mixed, and the mixture is dispersed in a solvent (for example, N-methyl-2-pyrrolidone) to prepare a slurry. Form.
  • the slurry is formed (for example, coated) on the current collector 31 and dried to form the negative electrode active material layer 32.
  • the temperature at the time of drying 150 degreeC or more is preferable.
  • the negative electrode active material layer 32 is pressed by a press to have a density within the above range.
  • the cathode 30 is manufactured.
  • a binder resin composition is manufactured by heating, stirring a mixed liquid (reaction liquid) of the monomer which comprises a 1st copolymer repeating unit, and a polymeric azo initiator.
  • the weight ratio of the polymer azo initiator is 10 to 40% by weight based on the total weight of the monomer and the polymer azo initiator constituting the first copolymer repeating unit. Detailed conditions will be described in the Examples.
  • the separator 40 is placed between the positive electrode 20 and the negative electrode 30 to produce an electrode structure.
  • the electrode structure is processed into a desired shape (e.g., cylindrical, square, laminated, button, etc.) and inserted into a container of the above type.
  • the nonaqueous electrolyte is injected into the container, and the pores in the separator 40 are impregnated with the electrolyte solution. Thereby, a lithium ion secondary battery is manufactured.
  • the binder which has the structure mentioned above as a binder for negative electrodes is used.
  • This negative electrode binder is an aqueous binder.
  • swelling of the negative electrode 30 is suppressed.
  • dropping of the active material and deterioration of electron conductivity due to destruction of the electrode structure are suppressed, and the life of the secondary battery is improved.
  • this binder for negative electrodes is also favorable in handling property.
  • Example of this embodiment is described.
  • the synthesis example of a binder resin composition is demonstrated.
  • the compounding ratio of the monomer and polymeric azo initiator described below shall show a weight ratio unless it rejects in particular.
  • lithium hydroxide monohydrate (34.2 g, 0.98 equivalents to acrylic acid) was added and stirred until the binder resin composition was completely dissolved.
  • the reaction solution was reduced to about 2 ml and the weight of the nonvolatile matter (NV) was measured to be 13.2 wt% (theoretical value 13.5 wt%).
  • the binder resin composition after measuring the non-volatile content (NV) is reduced to about 7 to 10 mg, and at 5 ° C / min to -100 ° C to 270 ° C under nitrogen atmosphere in X-DSC7000 manufactured by SII (Seiko Instruments Inc.).
  • Tg measurement was performed by heating at a temperature increase rate, Tg derived from PEG was observed around -55 ° C, and Tg derived from a copolymer of PAALi and PAN was observed near 235 ° C.
  • Distilled water 118g, acrylic acid (55g, 0.763mol), acrylonitrile (30g, 0.565mol), polymer azo initiator (VPE-0201 (PEG chain number average molecular weight 2000) manufactured by Wako Pure Chemical Industries, Ltd.), 15.0g, 0.0075mol (Molar number as initiator)) and lithium hydroxide monohydrate (31.4 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1 above. It was 13.2 weight% (theoretical value 13.5 weight%) when the weight of the non-volatile matter (NV) of the reaction liquid was measured. In addition, Tg was observed in two places around -55 degreeC and around 235 degreeC.
  • Distilled water 118g, acrylic acid (55g, 0.763mol), acrylonitrile (30g, 0.565mol), polymer azo initiator (VPE-1001 (Polysiloxan chain number average molecular weight 10000) made by Wako Pure Chemical Industries, Ltd., 15.0g, 0.0015mol) (Molar number as initiator)) and lithium hydroxide monohydrate (31.4 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1 above. It was 13.1 weight% (theoretical value 13.5 weight%) when the weight of the non-volatile matter (NV) of the reaction liquid was measured. In addition, Tg was observed in one place near 235 degreeC. Since Tg derived from polysiloxane exists in -100 degrees C or less and it fell out of the measurement range, it is thought that it was not observed.
  • Graphite silicon composite anode (silicon content 60% by weight) 14.5% by weight, artificial graphite 79.0% by weight, acetylene black 2.0% by weight, styrene butadiene copolymer (SBR) 3.0% by weight, carboxymethyl cellulose (CMC) 1.5% by weight
  • SBR styrene butadiene copolymer
  • CMC carboxymethyl cellulose
  • the gap of the bar coater was adjusted so that the amount of the coated mixture (surface density) after drying was 9.55 mg / cm 2 , and the negative electrode mixture slurry was uniformed to copper foil (current collector, thickness 10 ⁇ m) by the bar coater.
  • the negative electrode mixture slurry was dried for 15 minutes with a blower type dryer set at 80 ° C.
  • the negative electrode mixture after drying was pressed in a roll press so that the mixture density became 1.65 g / cm 3 .
  • the negative electrode mixture was vacuum dried at 150 ° C. for 6 hours to prepare a negative electrode.
  • a negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 1 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
  • SBR styrene butadiene copolymer
  • CMC carboxymethylcellulose
  • a negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 2 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
  • SBR styrene butadiene copolymer
  • CMC carboxymethylcellulose
  • a negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 3 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
  • SBR styrene butadiene copolymer
  • CMC carboxymethylcellulose
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 4.5 wt% of the binder resin composition synthesized in Example 4 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
  • SBR styrene butadiene copolymer
  • CMC carboxymethylcellulose
  • a negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 5 was used instead of 3.0 wt% of styrene butadiene copolymer (SBR) and 1.5 wt% of carboxymethylcellulose (CMC). .
  • SBR styrene butadiene copolymer
  • CMC carboxymethylcellulose
  • a negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 6 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
  • SBR styrene butadiene copolymer
  • CMC carboxymethylcellulose
  • a negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 7 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
  • SBR styrene butadiene copolymer
  • CMC carboxymethylcellulose
  • a negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 8 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
  • SBR styrene butadiene copolymer
  • CMC carboxymethylcellulose
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 1 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
  • SBR styrene butadiene copolymer
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 2 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
  • SBR styrene butadiene copolymer
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 3 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
  • SBR styrene butadiene copolymer
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 4 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
  • SBR styrene butadiene copolymer
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 5 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
  • SBR styrene butadiene copolymer
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 6 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
  • SBR styrene butadiene copolymer
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 7 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
  • SBR styrene butadiene copolymer
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 8 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
  • SBR styrene butadiene copolymer
  • a negative electrode was prepared in the same manner as in Comparative Example 1 except that 1.5 wt% of the binder resin composition synthesized in Example 2 and 3.0 wt% of the carboxymethylcellulose (CMC) were used instead of 3.0 wt% of the styrene butadiene copolymer (SBR). .
  • CMC carboxymethylcellulose
  • SBR styrene butadiene copolymer
  • Solid solution oxide Li 1 . 2 0Mn 0 . 55 Co 0 . 10 Ni 0 . 96 weight percent 15 O 2 , 2 weight percent Ketjen Black and 2 weight percent polyvinylidene fluoride were dispersed in N-methyl-2-pyrrolidone to form a positive electrode mixture slurry.
  • the nonvolatile components in the positive electrode mixture slurry was 50% by weight based on the total weight of the slurry.
  • the gap of the bar coater was adjusted so that the amount of coating material (surface density) after drying might be 22.7 mg / cm ⁇ 2> , and the positive electrode mixture slurry was apply
  • the positive electrode mixture slurry was dried for 15 minutes with a blowing type dryer set at 80 ° C.
  • the positive electrode mixture after drying was pressed in a roll press so that the mixture density became 3.9 g / cm 3 .
  • the positive electrode mixture was vacuum dried at 80 ° C. for 6 hours to prepare a sheet-shaped positive electrode composed of a positive electrode current collector and a positive electrode active material layer.
  • the negative electrode of Comparative Example 1 was cut into a circle with a diameter of 1.55 cm, and the positive electrode of the positive electrode manufacturing example was cut into a circle with a diameter of 1.3 cm.
  • the separator (a polyethylene microporous membrane having a thickness of 25 ⁇ ) was cut into a circle having a diameter of 1.8 cm.
  • disconnected in 1.5 cm round was overlapped in this order.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 9 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 10 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 11 was used.
  • a related secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 12 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 13 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 14 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 15 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 16 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 17 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 18 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 19 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 20 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 21 was used.
  • a secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 22 was used.
  • the lithium ion secondary batteries according to the examples and the comparative examples were charged and discharged once at 25 degrees at 0.2C. Then, after charging a lithium ion secondary battery at 1.0 C, the battery was disassembled and the negative electrode was taken out.
  • the swelling of the negative electrode in a charged state was calculated
  • the value of swelling was calculated as ((thickness of negative electrode after charge)-(thickness of negative electrode before initial charge and discharge)) / (thickness of negative electrode before initial charge and discharge) ⁇ 100.
  • the evaluation results are collectively shown in Table 1.
  • Example 1 SBR / CMC 3 / 1.5 31.0
  • Example 26 Example 9
  • Example 27 Example 10
  • Example 28 Example 11
  • Example 29 Example 12
  • Example 30 Example 13
  • Example 5 / CMC 4.5 / 0 28.0
  • Example 14 Example 6 / CMC 4.5 / 0 28.5
  • Example 32 Example 15
  • Example 33 Example 16
  • Example 34 Example 17
  • Example 35 Example 18
  • Example 36 Example 19
  • Example 37 Example 20
  • the lithium ion secondary battery according to each of Examples and Comparative Examples was charged and discharged once at 25 ° C at 0.2C. Thereafter, the charge and discharge cycle of charging and discharging the lithium ion secondary battery at 1.0 C was repeated 100 times.
  • the discharge capacity retention rate (percentage) is calculated by dividing the discharge capacity at 100 cycles (100th cycle of the 1.0C charge and discharge cycle) by the discharge capacity (initial discharge capacity) at 1 cycle (the first cycle of the 1.0C charge and discharge cycle). did.
  • Table 2 it can be seen that in the present embodiment, the initial discharge capacity and the capacity retention rate are excellent.
  • Example 1 [Revision according to Rule 26 04.01.2018] battery electrode bookbinder Initial discharge capacity (mAh) Capacity maintenance rate (%) Used binder Usage (mass%) Comparative Example 2 Comparative Example 1 SBR / CMC 3 / 1.5 4.57 96.3
  • Example 9 Example 1 / CMC 4.5 / 0 4.58 97.1
  • Example 27 Example 10
  • Example 28 Example 11
  • Example 3 / CMC 4.5 / 0 4.59 96.8 Example 29
  • Example 12 Example 4 / CMC 4.5 / 0 4.65 96.5
  • Example 30 Example 13
  • Example 14 Example 6 / CMC 4.5 / 0 4.68 95.7
  • Example 32 Example 15
  • Example 33 Example 16
  • Example 17 Example 1 /

Abstract

According to the present invention, provided is a binder for a secondary battery, the binder comprising: a first copolymer unit comprising a carboxyl group-containing acrylic monomer and at least one of an acrylic acid derivative monomer and substituted or unsubstituted styrene; and a second copolymer unit comprising a residue of a polymer azo initiator, wherein the ratio of mass of the second copolymer unit relative to the total mass of the first copolymer unit and the second copolymer unit is 10-40 mass%.

Description

이차전지용 바인더, 이차전지용 바인더 수지 조성물, 이차전지용 전극, 및 이차전지Secondary Battery Binder, Secondary Battery Binder Resin Composition, Secondary Battery Electrode, and Secondary Battery
본 발명은 이차전지용 바인더, 이차전지용 바인더 수지 조성물, 이차전지용 전극, 및 이차전지에 관한 것이다. The present invention relates to a secondary battery binder, a secondary battery binder resin composition, a secondary battery electrode, and a secondary battery.
비수전해질 이차전지는 노트북 컴퓨터(Note PC) 또는 휴대폰 등의 포터블(portable)기기의 전원으로 널리 사용되고 있으며, 고전압ㆍ고용량인 점에서 그 발전에 큰 기대가 몰려 있다. 이러한 비수전해질 이차전지의 음극재료(음극 활물질)로는 리튬 금속이나 리튬 합금 외에 Li 이온을 이탈ㆍ삽입 가능한 천연흑연이나 인조흑연과 같은 흑연질 탄소재료 등이 이용되고 있다. Non-aqueous electrolyte secondary batteries are widely used as a power source for portable devices such as notebook computers (Note PCs) or mobile phones, and have high expectations for their development in terms of high voltage and high capacity. As a negative electrode material (negative electrode active material) of such a nonaqueous electrolyte secondary battery, a graphite carbon material such as natural graphite or artificial graphite capable of detaching and inserting Li ions in addition to lithium metal or lithium alloy is used.
최근에는 소형화 및 다기능화된 휴대 기기 전지에 대해서 한층 더 고용량화가 요구되고 있고, 이 요구를 고려하여 음극 활물질로 널리 사용되고 있는 탄소계 활물질(예를 들면 흑연질 탄소재료)을 대신하는 신규한 음극 활물질이 검토되고 있다. 신규 음극 활물질로는 주석(Sn) 합금, 실리콘(Si) 합금, 실리콘(Si) 산화물, 리튬(Li) 질화물 등이 주목 받고 있지만, 현시점에서는 상기의 어떠한 신규 음극재료도 충방전 사이클 특성이 흑연질 탄소재료에 비교해서 뒤지고 있다. In recent years, miniaturized and multifunctional portable battery cells have been required to have higher capacities, and in view of this demand, a novel negative electrode active material is substituted for a carbon-based active material (for example, a graphite carbon material) which is widely used as a negative electrode active material. This is under review. Tin (Sn) alloys, silicon (Si) alloys, silicon (Si) oxides, lithium (Li) nitrides, etc. are attracting attention as a novel negative electrode active material, but at this point, any of the new negative electrode materials has graphite charge / discharge cycle characteristics. Lagging behind in carbon materials.
탄소계 활물질은 층상구조를 갖고 있으며, 충방전 시에 Li이 이 층간에 삽입/이탈하므로, Li 삽입/이탈시의 팽창/수축이 작다. 이에 비하여, 상기 신규 음극재료, 특히 규소계 활물질은 탄소계 활물질보다도 구조가 복잡하고, 동시에, 충방전시의 단위질량당의 Li의 삽입/이탈하는 Li량이 많다. 이 때문에, 규소계 활물질은 충방전에 따른 팽창/수축이 크고, 그 결과로 팽창/수축을 반복하는 충방전 사이클(cycle)에 있어서, 전극이 크게 부풀어, 전극구조의 파괴에 의한 활물질의 단락이나 전자전도성의 저하가 일어난다. 이 때문에, 충방전 사이클 수명이 흑연질 탄소재료에 비해 극단적으로 저하되는 것으로 알려져 있다. The carbon-based active material has a layered structure, and Li is inserted / deleted between the layers during charge and discharge, so that the expansion / contraction during Li insertion / deletion is small. On the other hand, the novel negative electrode material, especially the silicon-based active material, has a more complicated structure than the carbon-based active material, and at the same time, the amount of Li inserted / deleted per unit mass during charge / discharge is large. For this reason, the silicon-based active material has a large expansion / contraction due to charge / discharge, and as a result, the electrode swells greatly in a charge / discharge cycle in which expansion / contraction is repeated, resulting in short circuit of the active material due to destruction of the electrode structure. The electroconductivity falls. For this reason, charge / discharge cycle life is known to fall extremely compared with graphite carbon material.
그래서 일반적으로는 고용량화와 충방전 사이클 수명을 양립시키기 위해, 신규 음극재료만을 단독으로 이용하지는 않고, 탄소계 활물질과의 혼합계로 이용되는 경우가 많다. 그러나 이 경우에도 신규 음극재료의 팽창 수축이 커서 전극이 부풀어 오르기 때문에 고용량화 하기에 어려움이 있다. For this reason, in general, in order to achieve both high capacity and charge / discharge cycle life, not only a new anode material is used alone, but also often used in a mixed system with a carbon-based active material. However, even in this case, since the expansion and contraction of the new anode material is large, it is difficult to increase the capacity because the electrode swells.
근래, 상기 고용량화로의 애로사항을 해결하기 위해, 고강도 수지를 바인더(binder)로 이용함으로써, 전극의 부풀기를 억제하는 방법이 개발되어 있다. 본 방법에 의하면, 바인더에 의해 전극의 부풀기가 억제되기 때문에, 전극구조가 유지되어 충방전 사이클 수명의 저하가 억제되는 것을 기대할 수 있다. In recent years, in order to solve the trouble of the high capacity furnace, the method of suppressing swelling of an electrode has been developed by using a high strength resin as a binder. According to this method, since swelling of an electrode is suppressed by a binder, it can be expected that an electrode structure is maintained and the fall of charge-discharge cycle life is suppressed.
이러한 바인더 수지로서 예를 들면 폴리이미드(polyimide)계 바인더가 알려져 있는데, 폴리이미드계 바인더는 유기용매계인 점에서, 수계 바인더가 주류로 사용되고 있는 음극용 바인더로는 사용하기 어려운 면이 있다. 따라서, 상기의 문제를 근본적으로 해결 할 수 없었다. As such a binder resin, for example, a polyimide-based binder is known, but since the polyimide-based binder is an organic solvent-based binder, there is a side that is difficult to use as a negative electrode binder in which an aqueous binder is mainly used. Therefore, the above problem cannot be solved fundamentally.
한편, 수계의 고강도 바인더로는 폴리 아크릴산 나트륨(Sodium polyacrylate)이 알려져 있다. 이 바인더는 수계이기 때문 음극용 바인더로 사용하기 쉽지만, 전극의 유연성이 현저하게 저하되고, 크랙(crack)이 생기기 쉬운 문제점이나, 전극 건조 중에 전극이 말리기(curing)쉬운 문제점이 있어, 핸들링에 어려움이 있다. 또한, 부풀기 억제 효과도 불충분했다. 따라서, 이 바인더로도 상기의 문제를 근본적으로 해결 할 수 없었다. On the other hand, sodium polyacrylate is known as an aqueous high strength binder. This binder is easy to use as a binder for the negative electrode because it is water-based, but the flexibility of the electrode is remarkably lowered, and cracks are easily generated, or the electrode is easily curled during drying. There is this. Moreover, the swelling inhibitory effect was also inadequate. Therefore, even this binder could not fundamentally solve the above problem.
따라서, 본 발명은 상기 문제에 감안해서 이루어진 것으로, 본 발명이 목적으로 하는 바는 수계이며, 리튬이온 이차전지의 전극 부풀기를 억제할 수 있으면서 취급이 용이한, 신규 동시에 개량된 이차전지용 바인더, 이차전지용 바인더 수지 조성물, 이차전지용 전극, 및 이차전지를 제공하는 것이다. Accordingly, the present invention has been made in view of the above-mentioned problems, and an object of the present invention is water-based, and a new and improved secondary battery binder and secondary battery, which are easy to handle while being able to suppress electrode swelling of a lithium ion secondary battery, are secondary. It is to provide a battery binder resin composition, a secondary battery electrode, and a secondary battery.
상기 과제를 해결하기 위하여, 본 발명의 한 관점에 의하면, 카르복시기 함유 아크릴 모노머와, 아크릴산 유도체 모노머 및 치환 또는 비치환의 스티렌 중 어느 1종 이상을 포함하는 제1 공중합체 유닛과, 고분자 아조 개시제의 잔기를 포함하는 제2 공중합체 유닛을 포함하고, 상기 제1 공중합체 유닛 및 상기 제2 공중합체 유닛의 총 질량에 대한 상기 제2 공중합체 유닛의 질량비가 10∼40질량%인 것을 특징으로 하는 이차전지용 바인더가 제공된다.MEANS TO SOLVE THE PROBLEM In order to solve the said subject, According to one aspect of this invention, the residue of a 1st copolymer unit containing any 1 or more types of a carboxyl group-containing acrylic monomer, an acrylic acid derivative monomer, and substituted or unsubstituted styrene, and the residue of a polymeric azo initiator A secondary copolymer comprising a second copolymer unit, wherein the mass ratio of the second copolymer unit to the total mass of the first copolymer unit and the second copolymer unit is 10 to 40% by mass. A battery binder is provided.
상기 카르복시기 함유 아크릴 모노머는 아크릴산, 메타아크릴산, 말레인산, 모노 메틸 말레인산, 2-카르복시에틸 아크릴레이트, 및 2-카르복시에틸 메타크릴레이트로부터 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.The carboxyl group-containing acrylic monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, mono methyl maleic acid, 2-carboxyethyl acrylate, and 2-carboxyethyl methacrylate.
상기 아크릴산 유도체 모노머는 니트릴기 함유 아크릴 모노머, 아크릴산 에스테르 및 아크릴아미드로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다. The acrylic acid derivative monomer may be at least one member selected from the group consisting of nitrile group-containing acrylic monomers, acrylic acid esters, and acrylamides.
상기 니트릴기 함유 아크릴 모노머는 아크릴로니트릴, 메타아크릴로니트릴, 2-시아노에틸아크릴레이트, 및 2-시아노에틸메타아크릴레이트로부터 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.The nitrile group-containing acrylic monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, 2-cyanoethyl acrylate, and 2-cyanoethyl methacrylate.
상기 카르복시기 함유 아크릴 모노머의 적어도 일부는 알칼리 금속 염 또는 암모늄 염일 수 있다.At least some of the carboxyl group-containing acrylic monomers may be alkali metal salts or ammonium salts.
상기 제1 공중합체 유닛은 상기 카르복시기 함유 아크릴 모노머로서, 알칼리 금속 염 또는 암모늄 염을 포함하고, 상기 아크릴산유도체 모노머로서, 니트릴기 함유 아크릴 모노머를 포함할 수 있다.The first copolymer unit may include an alkali metal salt or an ammonium salt as the carboxyl group-containing acrylic monomer, and may include a nitrile group-containing acrylic monomer as the acrylic acid derivative monomer.
상기 제2 공중합체 유닛은 상기 고분자 아조 개시제의 잔기로서, 폴리에테르 및 폴리 실록산 중적어도 1종을 포함할 수 있다.The second copolymer unit may include at least one of polyether and polysiloxane as a residue of the polymer azo initiator.
본 발명의 다른 관점에 의하면, 상기 이차전지용 바인더를 포함하는 것을 특징으로 하는 이차전지용 바인더 수지 조성물이 제공된다.According to another aspect of the present invention, there is provided a secondary battery binder resin composition comprising the secondary battery binder.
본 발명의 다른 관점에 의하면, 상기 이차전지용 바인더를 포함하는 것을 특징으로 하는 이차전지용 전극이 제공된다.According to another aspect of the present invention, there is provided a secondary battery electrode comprising the secondary battery binder.
상기 이차전지용 전극은 상기 이차전지용 바인더로서 카르복시메틸셀룰로오스(CMC)을 더욱 포함할 수 있다. The secondary battery electrode may further include carboxymethyl cellulose (CMC) as the secondary battery binder.
본 발명의 다른 관점에 의하면, 상기 이차전지용 전극을 구비하는 것을 특징으로 하는 이차전지가 제공된다.According to another aspect of the present invention, there is provided a secondary battery comprising the above secondary battery electrode.
상기 이차전지용 전극은 음극일 수 있다. The secondary battery electrode may be a negative electrode.
이상 설명한 바와 같이 본 발명에 의한 이차전지용 바인더는 수계 바인더로서 본 발명에 의한 이차전지용 바인더를 이차전지의 전극에 사용하는 것에 의해 전극의 부풀기가 억제될 수 있다. 또한, 본 발명에 의한 이차전지용 바인더는 핸들링성도 양호하다. As described above, the secondary battery binder according to the present invention can be suppressed by using the secondary battery binder according to the present invention as an aqueous binder for the secondary battery electrode. In addition, the binder for secondary batteries according to the present invention also has good handling properties.
도 1은 리튬이온 이차전지의 구성을 개략적으로 나타내는 측단면도이다.1 is a side cross-sectional view schematically showing the configuration of a lithium ion secondary battery.
이하에 첨부 도면을 참조하면서, 본 발명이 바람직한 실시형태에 대해서 상세하게 설명한다. 한편, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능 구성을 갖는 구성 요소에 대해서는 동일한 부호가 부여되는 것에 의해 중복 설명을 생략한다. EMBODIMENT OF THE INVENTION Preferred embodiment of this invention is described in detail, referring an accompanying drawing below. In addition, in this specification and drawing, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol about the component which has substantially the same functional structure.
<1. 리튬이온 이차전지의 구성> <1. Composition of Lithium-ion Secondary Battery>
먼저, 도 1에 따라 본 실시형태에 따른 리튬이온 이차전지(10)의 구성에 대하여 설명한다. 리튬이온 이차전지(10)은 양극(20), 음극(30), 세퍼레이터(40)와 비수전해액을 구비한다. 리튬이온 이차전지(10)의 충전 도달 전압(산화 환원 전위)은 예를 들면 4.0V (vs. Li/Li+) 이상, 5.0V 이하, 특히 4.2V 이상 5.0V 이하가 된다. 리튬이온 이차전지(10)의 형태는 특별히 한정되지 않는다. 다시 말해, 리튬이온 이차전지(10)은 원통형, 각형, 라미네이트(laminate)형, 버튼(button)형 등의 어떠한 것이어도 좋다. First, the structure of the lithium ion secondary battery 10 which concerns on this embodiment with reference to FIG. 1 is demonstrated. The lithium ion secondary battery 10 includes a positive electrode 20, a negative electrode 30, a separator 40, and a nonaqueous electrolyte. The charge arrival voltage (redox potential) of the lithium ion secondary battery 10 is, for example, 4.0 V (vs. Li / Li + ) or more, 5.0 V or less, particularly 4.2 V or more and 5.0 V or less. The form of the lithium ion secondary battery 10 is not specifically limited. In other words, the lithium ion secondary battery 10 may be any of cylindrical, rectangular, laminate, button, and the like.
(1-1. 양극(20)) (1-1.anode 20)
양극(20)은 집전체(21) 및 양극 활물질층(22)을 구비한다. 집전체(21)은 도전체라면 어떤 것이라도 양호하고, 예를 들면, 알루미늄(aluminum), 스테인리스(stainless)강철, 및 니켈 도금(nickel coated)강철 등으로 구성된다. 양극 활물질층(22)은 적어도 양극 활물질을 포함하고, 도전제와, 양극용 바인더를 추가로 포함하고 있어도 된다. The positive electrode 20 includes a current collector 21 and a positive electrode active material layer 22. The current collector 21 may be any conductor, and is composed of, for example, aluminum, stainless steel, nickel coated steel, or the like. The positive electrode active material layer 22 contains at least a positive electrode active material, and may further contain a conductive agent and a binder for a positive electrode.
양극 활물질은 예를 들면 리튬을 포함하는 고용체 산화물이지만, 전기 화학적으로 리튬이온을 흡장 및 방출 할 수 있는 물질이라면 특별히 제한 되지 않는다. 고용체 산화물은 예를 들면, LiaMnxCoyNizO2(1.150≤a≤1.430, 0.45≤x≤ 0.6, 0.10≤y≤0.15, 0.20≤z≤0.28), LiMnxCoyNizO2(0.3≤x≤0.85, 0.10≤y≤0.3, 0.10≤z≤0.3), LiMn1.5Ni0.5O4이 된다. The positive electrode active material is, for example, a solid solution oxide containing lithium, but is not particularly limited as long as it is a material capable of electrochemically storing and releasing lithium ions. Solid solution oxides include, for example, Li a Mn x Co y Ni z O 2 (1.150 ≦ a ≦ 1.430, 0.45 ≦ x ≦ 0.6, 0.10 ≦ y ≦ 0.15, 0.20 ≦ z ≦ 0.28), LiMn x Co y Ni z O 2 (0.3 ≦ x ≦ 0.85, 0.10 ≦ y ≦ 0.3, 0.10 ≦ z ≦ 0.3) and LiMn 1.5 Ni 0.5 O 4 .
도전제는 예를 들면 케첸 블랙(Ketjenblack), 아세틸렌 블랙(acetylene black) 등의 카본블랙, 천연흑연, 인조흑연 등이지만, 양극의 도전성을 높이기 위한 것이라면 특별히 제한되지 않는다. The conductive agent is, for example, carbon black such as Ketjenblack, acetylene black, natural graphite, artificial graphite, or the like, but is not particularly limited as long as it is for enhancing the conductivity of the positive electrode.
양극용 바인더는 예를 들면 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 에틸렌프로필렌 디엔(ethylene-propylene-diene) 삼원공중합체, 스티렌 부타디엔 고무(Styrene-butadiene rubber), 아크릴로니트릴 부타디엔 고무(acrylonitrile-butadiene rubber), 플루오르 고무(fluororubber), 폴리 비닐 아세트테이트(polyvinyl acetate), 폴리메틸 메타크릴레이트(polymethylmethacrylate), 폴리에틸렌(polyethylene), 니트로셀룰로오스(cellulose nitrate) 등이지만, 양극 활물질 및 도전제를 집전체(21) 위로 결착 시킬 수 있는 것이라면, 특별히 제한되지 않는다. The binder for the positive electrode is, for example, polyvinylidene fluoride, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethylmethacrylate, polyethylene, cellulose nitrate, and the like. 21) If it can be bound up, it is not particularly limited.
양극 활물질층(22)은 예를 들면, 이하의 제조법에 의해 제조된다. 다시 말해, 먼저, 양극 활물질, 도전제, 및 양극용 바인더를 건식 혼합하여 양극합제를 제조한다. The positive electrode active material layer 22 is manufactured by the following manufacturing method, for example. In other words, first, the positive electrode active material, the conductive agent, and the binder for the positive electrode are dry mixed to prepare a positive electrode mixture.
이어, 양극합제를 적당한 유기 용매에 분산시켜 양극합제 슬러리(slurry)를 제조하고, 이 양극합제 슬러리를 집전체(21) 위로 도포하고, 건조, 압연하는 것으로 양극 활물질층을 제조한다. Next, the positive electrode mixture is dispersed in a suitable organic solvent to prepare a positive electrode mixture slurry, and the positive electrode mixture slurry is applied onto the current collector 21, dried, and rolled to prepare a positive electrode active material layer.
(1-2. 음극(30)) (1-2.cathode 30)
음극(30)은 집전체(31)와 음극 활물질층(32)을 포함한다. 집전체(31)은 도전체라면 어떤 것이라도 양호하고, 예를 들면, 알루미늄, 스테인리스강, 및 니켈 도금 강철 등으로 구성된다. 음극 활물질층(32)은 적어도 음극 활물질 및 음극용 바인더를 포함한다. 음극 활물질은 예를 들면, 흑연활물질(인조흑연, 천연흑연, 인조흑연과 천연흑연과의 혼합물, 인조흑연을 피복한 천연흑연 등), 규소 또는 주석 또는 이들의 산화물의 미립자와 흑연활물질의 혼합물, 규소 또는 주석의 미립자, 규소 또는 주석을 기본재료로 한 합금, 및 Li4Ti5O12 등의 산화 티탄계 화합물, 리튬 질화물 등이 생각된다. 규소의 산화물은 SiOx(0≤x≤2)로 표시된다. 음극 활물질로는 이들 이외에, 예를 들면 금속 리튬 등을 들 수 있다. 한편, 본 실시형태에서는 음극용 바인더가 이하의 구성을 소유하므로, 충방전시에 크게 팽창 수축하는 음극 활물질, 예를 들면 규소계 활물질을 사용한 경우라도, 전극의 부풀기를 억제 할 수 있다. The negative electrode 30 includes a current collector 31 and a negative electrode active material layer 32. The current collector 31 may be any conductor, and is composed of, for example, aluminum, stainless steel, nickel plated steel, or the like. The negative electrode active material layer 32 includes at least a negative electrode active material and a negative electrode binder. The negative electrode active material may be, for example, a graphite active material (artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, etc.), a mixture of fine particles of silicon or tin or oxides thereof, and a graphite active material, Fine particles of silicon or tin, alloys based on silicon or tin, titanium oxide compounds such as Li 4 Ti 5 O 12 , lithium nitride and the like are conceivable. Oxides of silicon are represented by SiO x (0 ≦ x ≦ 2). In addition to these, metal lithium etc. are mentioned as a negative electrode active material. On the other hand, in this embodiment, since the negative electrode binder possesses the following constitution, the swelling of the electrode can be suppressed even when a negative electrode active material, for example, a silicon-based active material that expands and contracts greatly during charging and discharging is used.
음극용 바인더는 공중합체 바인더를 포함한다.The negative electrode binder includes a copolymer binder.
음극용 바인더는 또 종래의 리튬이온 이차전지(10)로 사용되는 음극용 바인더를 추가로 포함하고 있어도 되고, 예를 들면 카르복실메틸셀룰로오스(CMC)을 추가로 포함하고 있어도 좋다. 공중합체 바인더는 제1 공중합체 반복 단위와 제2 공중합체 반복 단위를 포함하는 블록 공중합체이다. The negative electrode binder may further include a negative electrode binder used in the conventional lithium ion secondary battery 10, and may further include, for example, carboxymethyl cellulose (CMC). The copolymer binder is a block copolymer comprising a first copolymer repeating unit and a second copolymer repeating unit.
제1 공중합체 반복 단위는 카르복시기 함유 아크릴 모노머와, 아크릴산 유도체 모노머 및 치환 또는 비치환의 스티렌 중 적어도 1종 이상을 포함한다. 제1 공중합체 반복 단위는 음극용 바인더의 강도, 내전해액성을 발현하기 위한 반복 단위이다. 공중합체 바인더는 제1 공중합체 반복 단위를 포함하므로, 음극(30)의 부풀기를 억제할 수 있다. 제1 공중합체 반복 단위 내에서는 카르복시기 함유 아크릴 모노머와, 아크릴산 유도체 모노머 및 치환 또는 비치환의 스티렌 중 적어도 1종 이상이 랜덤으로 공중합체화되어 있다. The first copolymer repeating unit contains at least one of a carboxyl group-containing acrylic monomer, an acrylic acid derivative monomer and a substituted or unsubstituted styrene. The first copolymer repeating unit is a repeating unit for expressing the strength and the electrolyte resistance of the negative electrode binder. Since the copolymer binder includes the first copolymer repeating unit, swelling of the negative electrode 30 can be suppressed. In the first copolymer repeating unit, at least one or more of carboxyl group-containing acrylic monomers, acrylic acid derivative monomers and substituted or unsubstituted styrenes are randomly copolymerized.
여기에서, 카르복시기함유 아크릴 모노머는 아크릴산, 메타아크릴산, 말레인산, 모노메틸 말레인산, 2-카르복시에틸 아크릴레이트, 및 2-카르복시에틸 메타크릴레이트로부터 이루어지는 군으로부터 선택되는 어느 1종 이상인 것이 바람직하다. Herein, the carboxyl group-containing acrylic monomer is preferably any one or more selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, monomethyl maleic acid, 2-carboxyethyl acrylate, and 2-carboxyethyl methacrylate.
또한, 카르복시기 함유 아크릴 모노머의 적어도 일부가 알칼리 금속 염 또는 암모늄 염인 것이 더욱 바람직하다. 이 경우, 리튬이온 이차전지(10)의 특성이 더욱 향상된다. 여기에서, 알칼리 금속염 또는 암모늄 염은 아크릴산, 메타아크릴산, 말레인산, 및 모노 메틸 말레인산으로부터 이루어지는 군으로부터 선택되는 어느 1종 이상의 알칼리 금속 염 또는 암모늄 염일 수 있다. Moreover, it is more preferable that at least a part of the carboxyl group-containing acrylic monomer is an alkali metal salt or an ammonium salt. In this case, the characteristics of the lithium ion secondary battery 10 are further improved. Here, the alkali metal salt or ammonium salt may be any one or more alkali metal salts or ammonium salts selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, and mono methyl maleic acid.
또한, 아크릴산유도체 모노머는 니트릴기 함유 아크릴 모노머, 아크릴산 에스테르 및 아크릴아미드로부터 이루어지는 군으로부터 선택되는 어느 1종 이상인 것이 바람직하다. 니트릴기 함유 아크릴 모노머는 아크릴로니트릴, 메타아크릴로니트릴, 2-시아노에틸아크릴레이트, 및 2-시아노에틸메타아크릴레이트로부터 이루어지는 군으로부터 선택되는 어느 1종 이상인 것이 바람직하다. The acrylic acid derivative monomer is preferably any one or more selected from the group consisting of nitrile group-containing acrylic monomers, acrylic esters and acrylamides. The nitrile group-containing acrylic monomer is preferably any one or more selected from the group consisting of acrylonitrile, methacrylonitrile, 2-cyanoethyl acrylate, and 2-cyanoethyl methacrylate.
제1 공중합체 반복 단위는 카르복시기 함유 아크릴 모노머로서, 알칼리 금속 염 또는 암모늄 염을 포함하고, 아크릴산유도체 모노머로서, 니트릴기 함유 아크릴 모노머를 포함하는 것이 특히 바람직하다. 이 경우, 리튬이온 이차전지(10)의 특성이 더욱 향상된다. It is particularly preferable that the first copolymer repeating unit contains an alkali metal salt or an ammonium salt as the carboxyl group-containing acrylic monomer and a nitrile group-containing acrylic monomer as the acrylic acid derivative monomer. In this case, the characteristics of the lithium ion secondary battery 10 are further improved.
카르복시기 함유 아크릴 모노머와, 아크릴산유도체 모노머 및 치환 또는 비치환의 스티렌 중 적어도 1종 이상과의 중량비는 특별히 제한되지 않지만, 예를 들면, 2.5:1.0∼2.0:1.0 정도일 수도 있다. The weight ratio of the carboxyl group-containing acrylic monomer to at least one of the acrylic acid derivative monomer and the substituted or unsubstituted styrene is not particularly limited, but may be, for example, about 2.5: 1.0 to 2.0: 1.0.
제1 공중합체 반복 단위의 유리 전이점은 150℃ 이상, 250℃ 이하인 것이 바람직하다. 이 경우, 리튬이온 이차전지(10)의 특성이 더욱 향상된다. It is preferable that the glass transition point of a 1st copolymer repeating unit is 150 degreeC or more and 250 degrees C or less. In this case, the characteristics of the lithium ion secondary battery 10 are further improved.
제2 공중합체 반복 단위는 고분자 아조 개시제의 잔기를 포함한다. 제2 공중합체 반복 단위는 유연성, 전해액에 의한 팽윤성을 발현하기 위한 반복 단위이다. 즉, 음극용 바인더는 단순히 고강도만으로는 오히려 전지특성이 저하된다. 이 때문에, 본 실시형태에서는 제2 공중합체 반복 단위에 의해 음극용 바인더에 어느 정도의 유연성, 팽윤성을 부여한다. The second copolymer repeat unit comprises a moiety of the polymeric azo initiator. The second copolymer repeating unit is a repeating unit for expressing flexibility and swelling by the electrolyte solution. In other words, the binder for the negative electrode deteriorates battery characteristics by merely high strength. For this reason, in this embodiment, a certain degree of flexibility and swelling property are given to the binder for negative electrodes by a 2nd copolymer repeating unit.
여기에서, 제2 공중합체 반복 단위는 고분자 아조 개시제의 잔기로서, 폴리에테르 및 폴리 실록산 중 적어도 1종을 포함하는 것이 바람직하다. 여기에서, 폴리에테르로는 예를 들면 폴리에틸렌글리콜이 바람직하다. Here, it is preferable that a 2nd copolymer repeating unit contains at least 1 sort (s) of a polyether and polysiloxane as a residue of a polymeric azo initiator. Here, as polyether, polyethylene glycol is preferable, for example.
또, 제1 공중합체 반복 단위 및 제2 공중합체 반복 단위의 총 중량에 대한 제2 공중합체 반복 단위의 중량비가 10 내지 40 중량%인 것이 바람직하다. The weight ratio of the second copolymer repeating unit to the total weight of the first copolymer repeating unit and the second copolymer repeating unit is preferably 10 to 40% by weight.
제2 공중합체 반복 단위의 유리 전이점은 -150℃ 이상, 50℃ 이하인 것이 바람직하다. It is preferable that the glass transition point of a 2nd copolymer repeating unit is -150 degreeC or more and 50 degrees C or less.
이 경우, 리튬이온 이차전지(10)의 특성이 더욱 향상된다. In this case, the characteristics of the lithium ion secondary battery 10 are further improved.
(1-3. 제1의 공중합체 반복 단위의 구체적인 예) (1-3. Specific Example of First Copolymer Repeating Unit)
제1 공중합체 반복 단위는 예를 들면 이하의 화학식 (1)∼ (24)로 표시된다. 물론, 제1 공중합체 반복 단위는 이하의 예에 한정되지 않는다. The first copolymer repeating unit is represented by, for example, the following formulas (1) to (24). Of course, a 1st copolymer repeating unit is not limited to the following example.
[화학식 1] [Formula 1]
Figure PCTKR2017014554-appb-I000001
Figure PCTKR2017014554-appb-I000001
[화학식 2] [Formula 2]
Figure PCTKR2017014554-appb-I000002
Figure PCTKR2017014554-appb-I000002
[화학식 3] [Formula 3]
Figure PCTKR2017014554-appb-I000003
Figure PCTKR2017014554-appb-I000003
[화학식 4] [Formula 4]
Figure PCTKR2017014554-appb-I000004
Figure PCTKR2017014554-appb-I000004
[화학식 5] [Formula 5]
Figure PCTKR2017014554-appb-I000005
Figure PCTKR2017014554-appb-I000005
[화학식 6] [Formula 6]
Figure PCTKR2017014554-appb-I000006
Figure PCTKR2017014554-appb-I000006
[화학식 7] [Formula 7]
Figure PCTKR2017014554-appb-I000007
Figure PCTKR2017014554-appb-I000007
[화학식 8] [Formula 8]
Figure PCTKR2017014554-appb-I000008
Figure PCTKR2017014554-appb-I000008
[화학식 9] [Formula 9]
Figure PCTKR2017014554-appb-I000009
Figure PCTKR2017014554-appb-I000009
[화학식 10] [Formula 10]
Figure PCTKR2017014554-appb-I000010
Figure PCTKR2017014554-appb-I000010
[화학식 11] [Formula 11]
Figure PCTKR2017014554-appb-I000011
Figure PCTKR2017014554-appb-I000011
[화학식 12] [Formula 12]
Figure PCTKR2017014554-appb-I000012
Figure PCTKR2017014554-appb-I000012
[화학식 13] [Formula 13]
Figure PCTKR2017014554-appb-I000013
Figure PCTKR2017014554-appb-I000013
[화학식 14] [Formula 14]
Figure PCTKR2017014554-appb-I000014
Figure PCTKR2017014554-appb-I000014
[화학식 15] [Formula 15]
Figure PCTKR2017014554-appb-I000015
Figure PCTKR2017014554-appb-I000015
[화학식 16] [Formula 16]
Figure PCTKR2017014554-appb-I000016
Figure PCTKR2017014554-appb-I000016
[화학식 17] [Formula 17]
Figure PCTKR2017014554-appb-I000017
Figure PCTKR2017014554-appb-I000017
[화학식 18] [Formula 18]
Figure PCTKR2017014554-appb-I000018
Figure PCTKR2017014554-appb-I000018
[화학식 19] [Formula 19]
Figure PCTKR2017014554-appb-I000019
Figure PCTKR2017014554-appb-I000019
[화학식 20] [Formula 20]
Figure PCTKR2017014554-appb-I000020
Figure PCTKR2017014554-appb-I000020
[화학식 21] [Formula 21]
Figure PCTKR2017014554-appb-I000021
Figure PCTKR2017014554-appb-I000021
[화학식 22] [Formula 22]
Figure PCTKR2017014554-appb-I000022
Figure PCTKR2017014554-appb-I000022
[화학식 23] [Formula 23]
Figure PCTKR2017014554-appb-I000023
Figure PCTKR2017014554-appb-I000023
[화학식 24] [Formula 24]
Figure PCTKR2017014554-appb-I000024
Figure PCTKR2017014554-appb-I000024
(1-4. 제2의 공중합체 반복 단위의 구체적인 예) (1-4. Specific Example of Second Copolymer Repeating Unit)
제2 공중합체 반복 단위는 예를 들면 이하의 화학식 (25)∼ (26)로 표시된다. 물론, 제2 공중합체 반복 단위는 이하의 예에 한정되지 않는다. The second copolymer repeating unit is represented by the following general formulas (25) to (26), for example. Of course, a 2nd copolymer repeating unit is not limited to the following example.
[화학식 25] [Formula 25]
Figure PCTKR2017014554-appb-I000025
Figure PCTKR2017014554-appb-I000025
[화학식 26] [Formula 26]
Figure PCTKR2017014554-appb-I000026
Figure PCTKR2017014554-appb-I000026
한편, 화학식 (25), (26) 중, R1 내지 R3이 취할 수 있는 작용기는 이하의 화학식 (27) 내지 (29)로 표시된다. In the formulas (25) and (26), the functional groups that R 1 to R 3 can take are represented by the following formulas (27) to (29).
R1=-Me, -Et, -Pr (27) R 1 = -Me, -Et, -Pr (27)
R2=-Me, -Et, -Pr, -CN, -CO2Me, -CO2Et, -CO2Pr, -CONHMe, -CONHEt, -CONHPr (28) R 2 = -Me, -Et, -Pr, -CN, -CO 2 Me, -CO 2 Et, -CO 2 Pr, -CONHMe, -CONHEt, -CONHPr (28)
R3=-CH2-, -C2H4-, -C3H6- (29) R 3 = -CH 2- , -C 2 H 4- , -C 3 H 6- (29)
따라서, 음극용 바인더는 예를 들면 이하의 화학식 (30)로 표시된다. 물론, 음극용 바인더는 화학식 (1) 내지 (24)과 화학식 (25) 내지 (26)을 임의로 조합한 구조를 가지고 있을 수도 있다. Therefore, the binder for negative electrodes is represented by following General formula (30), for example. Of course, the negative electrode binder may have a structure in which the formulas (1) to (24) and the formulas (25) to (26) are arbitrarily combined.
[화학식 30] [Formula 30]
Figure PCTKR2017014554-appb-I000027
Figure PCTKR2017014554-appb-I000027
(1-5. 세퍼레이터) (1-5.Separator)
세퍼레이터(40)는 특별히 제한 되지 않고, 리튬이온 이차전지의 세퍼레이터로서 사용되는 것이라면, 어떠한 것이어도 된다. 세퍼레이터로는 우수한 고율방전 성능을 나타내는 다공막이나 부직포 등을 단독 혹은 병용하는 것이 바람직하다. 세퍼레이터를 구성하는 수지로는 예를 들면 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등으로 대표되는 폴리올레핀(polyolefin)계 수지, 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate), 폴리부틸렌 테레프탈레이트(polybutylene terephthalate) 등으로 대표되는 폴리에스테르(Polyester)계 수지, PVDF, 비닐리덴 플루오라이드(VDF)-헥사플루오로 프로필렌(HFP) 공중합체, 비닐리덴 플루오라이드-퍼플루오로 비닐에테르(par fluorovinyl ether) 공중합체, 비닐리덴 플루오라이드-테트라플루오로에틸렌(tetrafluoroethylene) 공중합체, 비닐리덴 플루오라이드-트리플루오로에틸렌(trifluoroethylene) 공중합체, 비닐리덴 플루오라이드-플루오로에틸렌(fluoroethylene) 공중합체, 비닐리덴 플루오라이드-헥사플루오로 아세톤(hexafluoroacetone) 공중합체, 비닐리덴 플루오라이드-에틸렌(ethylene) 공중합체, 비닐리덴 플루오라이드-프로필렌(propylene) 공중합체, 비닐리덴 플루오라이드-트리플루오로 프로필렌(trifluoro propylene) 공중합체, 비닐리덴 플루오라이드-테트라플루오로에틸렌(tetrafluoroethylene)-헥사플루오로 프로필렌(hexafluoropropylene) 공중합체, 비닐리덴 플루오라이드-에틸렌(ethylene)-테트라플루오로에틸렌(tetrafluoroethylene) 공중합체 등을 들 수 있다. The separator 40 is not particularly limited, and any separator may be used as long as the separator 40 is used as a separator of a lithium ion secondary battery. As a separator, it is preferable to use together porous film, a nonwoven fabric, etc. which show the outstanding high rate discharge performance alone or in combination. The resin constituting the separator is, for example, a polyolefin resin represented by polyethylene, polypropylene, or the like, polyethylene terephthalate, polybutylene terephthalate, or the like. Typical polyester resin, PVDF, vinylidene fluoride (VDF) -hexafluoro propylene (HFP) copolymer, vinylidene fluoride-perfluoro vinyl ether copolymer, vinylidene Fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoro Acetone (hexafluoroacetone) copolymer, vinylidene fluoride-ethylene Polymers, vinylidene fluoride-propylene copolymers, vinylidene fluoride-trifluoro propylene copolymers, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene Copolymers, vinylidene fluoride-ethylene (ethylene) -tetrafluoroethylene copolymers, and the like.
(1-6. 비수전해액) (1-6.Non-aqueous electrolyte)
비수전해액은 종래부터 리튬 이차전지에 이용할 수 있는 비수전해액과 같은 것을 특별히 한정없이 사용 할 수 있다. 비수전해액은 비수용매에 전해질염을 함유시킨 조성을 가진다. 비수용매로는 예를 들면, 프로필렌 카보네이트(propylene carbonate), 에틸렌 카보네이트(ethylene carbonate), 부틸렌 카보네이트(ethylene carbonate), 클로로에틸렌 카보네이트(chloroethylene carbonate), 비닐렌 카보네이트(vinylene carbonate) 등의 환형탄산에스테르(ester)류; γ-부티로락톤(butyrolactone), γ-발레로 락톤(valerolactone) 등의 환형에스테르류; 디메틸 카보네이트(dimethyl carbonate), 디에틸카보네이트(diethyl carbonate),에틸 메틸 카보네이트(ethyl methyl carbonate) 등의 쇄상 카보네이트류; 포름산 메틸(methyl formate), 아세트산 메틸(methyl acetate), 부티르산 메틸(butyric acid methyl) 등의 쇄상에스테르류; 테트라하이드로푸란(Tetrahydrofuran) 또는 그 유도체; 1,3-디옥산(dioxane), 1,4-디옥산(dioxane), 1,2-디메톡시에탄(dimethoxyethane), 1,4-디부톡시에탄(dibutoxyethane), 메틸 디글라임(methyl diglyme) 등의에테르(ether)류; 아세토니트릴(acetonitrile), 벤조니트릴(benzonitrile) 등의 니트릴(nitrile)류; 디옥솔란(Dioxolane) 또는 그 유도체; 에틸렌 설파이드(ethylene sulfide), 설포란(sulfolane), 술톤(sultone) 또는 그 유도체 등의 단독 또는 그것들 2종 이상의 혼합물 등을 들 수 있지만, 이들에 한정되지 않는다. The nonaqueous electrolyte can be used without particular limitation, such as a nonaqueous electrolyte which can conventionally be used for a lithium secondary battery. The nonaqueous electrolyte has a composition in which an electrolyte salt is contained in the nonaqueous solvent. As the non-aqueous solvent, for example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate (ester); cyclic esters such as γ-butyrolactone and γ-valerolactone; Chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; Chain esters such as methyl formate, methyl acetate and butyric acid methyl; Tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl diglyme, etc. Ethers; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone, or derivatives thereof, or the like, or a mixture of two or more thereof, and the like.
또, 전해질염으로는 예를 들면, LiClO4, LiBF4, LiAsF6, LiPF6, LiPF6 -x(CnF2n+1)x[단, 1 <x <6, n=1 또는 2], LiSCN, LiBr, LiI, Li2SO4, Li2B10Cl10, NaClO4, NaI, NaSCN, NaBr, KClO4, KSCN 등의 리튬(Li), 나트륨(Na) 또는 칼륨(K)의 1종을 포함하는 무기 이온 염, LiCF3SO3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(CF3SO2)(C4F9SO2), LiC(CF3SO2)3, LiC(C2F5SO2)3, (CH3)4NBF4, (CH3)4NBr, (C2H5)4NClO4, (C2H5)4NI,(C3H7)4NBr, (n-C4H9)4NClO4, (n-C4H9)4NI, (C2H5)4 N-말리에이트(maleate), (C2H5)4 N-벤조에이트, (C2H5)4 N-프탈레이트, 도데킬벤젠술폰산 리튬(dodecyl benzene sulphonic acid) 등의 유기 이온 염 등을 들 수 있고, 이들 이온성 화합물을 단독,혹은 2종류 이상 혼합해서 이용하는 것이 가능하다. 한편, 전해질염의 농도는 종래의 리튬 이차전지에서 사용되는 비수전해액과 동일하면 되며, 특별히 제한은 없다. 본 실시형태에서는 적당한 리튬 화합물(전해질염)을 0.8 내지 1.5mol/L정도의 농도로 함유시킨 비수전해액을 사용 할 수 있다. As the electrolyte salt, for example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiPF 6 -x (C n F 2n + 1 ) x [where 1 <x <6, n = 1 or 2] 1 of lithium (Li), sodium (Na) or potassium (K) such as LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN Inorganic Ion Salts Containing Species, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (nC 4 H 9 ) 4 NClO 4 , (nC 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N- benzoate, (C 2 H 5) 4 N- phthalate, dodecyl benzene sulfonic acid lithium keel (dodecyl benzene sulphonic acid) and the like organic ion salts such as, those ionic compounds alone, or two kinds of It is possible to mix and use the above. On the other hand, the concentration of the electrolyte salt may be the same as the nonaqueous electrolyte used in the conventional lithium secondary battery, and there is no particular limitation. In the present embodiment, a nonaqueous electrolyte containing an appropriate lithium compound (electrolyte salt) at a concentration of about 0.8 to 1.5 mol / L can be used.
한편, 비수전해액에는 각종 첨가제를 첨가 할 수도 있다. 이러한 첨가제로는 음극작용 첨가제, 양극작용 첨가제, 에스테르계의 첨가제, 탄산에스테르계의 첨가제, 황산에스테르계의 첨가제, 인산에스테르계의 첨가제, 붕산에스테르계의 첨가제, 산무수물계의 첨가제, 및 전해질계의 첨가제 등을 들 수 있다. 이들 중에서 어느 1종을 비수전해액에 첨가할 수도 있고, 복수 종류의 첨가제를 비수전해액에 첨가할 수도 있다. On the other hand, various additives may be added to the nonaqueous electrolyte. Such additives include cathodic additives, cathodic additives, ester additives, carbonic acid ester additives, sulfate ester additives, phosphate ester additives, boric acid ester additives, acid anhydride additives, and electrolyte systems. Additives and the like. Any one of these may be added to the nonaqueous electrolyte, and a plurality of kinds of additives may be added to the nonaqueous electrolyte.
<2. 리튬이온 이차전지의 제조 방법> <2. Manufacturing Method of Lithium Ion Secondary Battery>
그 다음에, 리튬이온 이차전지(10)의 제조 방법에 대하여 설명한다. 양극(20)은 아래와 같이 제작된다. 먼저, 양극 활물질, 도전제, 및 양극용 바인더를 상기의 비율로 혼합한 것을, 용매 (예를 들면 N-메틸-2-피롤리돈)에 분산시키는 것으로 슬러리를 형성한다. 이어서, 슬러리를 집전체(21) 위로 형성(예를 들면 도포)하고, 건조시키는 것으로, 양극 활물질층(22)을 형성한다. Next, the manufacturing method of the lithium ion secondary battery 10 is demonstrated. The anode 20 is manufactured as follows. First, a slurry is formed by dispersing the positive electrode active material, the conductive agent, and the positive electrode binder in the above ratio in a solvent (for example, N-methyl-2-pyrrolidone). Next, the slurry is formed on the current collector 21 (for example, applied) and dried to form the positive electrode active material layer 22.
한편, 도포의 방법은 특별히 한정되지 않는다. 도포의 방법으로는 예를 들면, 나이프 코터(knife coater)법, 그라비아 코터(gravure coater)법 등을 들 수 있다.In addition, the method of application | coating is not specifically limited. As a coating method, the knife coater method, the gravure coater method, etc. are mentioned, for example.
이하의 각 도포 공정도 동일한 방법으로 실시할 수 있다. 이어서, 프레스(press)기에 의해 양극 활물질층(22)을 상기 범위내의 밀도가 되도록 프레스한다. 이에 따라, 양극(20)이 제조된다. Each following application process can also be performed by the same method. Next, the positive electrode active material layer 22 is pressed to have a density within the above range by a press. Thus, the anode 20 is manufactured.
음극(30)도 양극(20)과 동일하게 제조된다. 먼저, 음극 활물질 및 음극용 바인더(구체적으로는 음극용 바인더를 포함하는 바인더 수지 조성물)를 혼합하고, 이 혼합물을, 용매(예를 들면 N-메틸-2-피롤리돈)에 분산시켜 슬러리를 형성한다. 이어서, 슬러리를 집전체(31) 위로 형성(예를 들면 도포)하고, 건조시켜, 음극 활물질층(32)을 형성한다. 건조시의 온도는 150℃ 이상이 바람직하다. 이어서, 프레스기에 의해 음극 활물질층(32)을 상기의 범위내의 밀도가 되도록 프레스한다. 이에 따라, 음극(30)이 제조된다. The negative electrode 30 is also manufactured in the same manner as the positive electrode 20. First, a negative electrode active material and a negative electrode binder (specifically, a binder resin composition containing a negative electrode binder) are mixed, and the mixture is dispersed in a solvent (for example, N-methyl-2-pyrrolidone) to prepare a slurry. Form. Subsequently, the slurry is formed (for example, coated) on the current collector 31 and dried to form the negative electrode active material layer 32. As for the temperature at the time of drying, 150 degreeC or more is preferable. Subsequently, the negative electrode active material layer 32 is pressed by a press to have a density within the above range. Thus, the cathode 30 is manufactured.
여기에서, 바인더 수지 조성물은 제1 공중합체 반복 단위를 구성하는 모노머와 고분자 아조 개시제의 혼합액(반응액)을 교반하면서 가열하여 제조한다. 고분자 아조 개시제의 중량비는 제1 공중합체 반복 단위를 구성하는 모노머 및 고분자 아조 개시제의 총 중량에 대하여 10 내지 40 중량%이다. 상세한 조건에 대해서는 실시예에서 설명한다. Here, a binder resin composition is manufactured by heating, stirring a mixed liquid (reaction liquid) of the monomer which comprises a 1st copolymer repeating unit, and a polymeric azo initiator. The weight ratio of the polymer azo initiator is 10 to 40% by weight based on the total weight of the monomer and the polymer azo initiator constituting the first copolymer repeating unit. Detailed conditions will be described in the Examples.
이어서, 세퍼레이터(40)을 양극(20) 및 음극(30) 사이에 두는 것으로, 전극 구조체를 제조한다. 이어서, 전극 구조체를 원하는 형태(예를 들면, 원통형, 각형, 라미네이트형, 버튼형 등)로 가공하고, 상기 형태의 용기에 삽입한다. 이어서, 해당 용기 내에 비수전해액을 주입하여, 세퍼레이터(40) 내의 각 기공에 전해액을 함침시킨다. 이에 따라, 리튬이온 이차전지가 제조된다. Subsequently, the separator 40 is placed between the positive electrode 20 and the negative electrode 30 to produce an electrode structure. Subsequently, the electrode structure is processed into a desired shape (e.g., cylindrical, square, laminated, button, etc.) and inserted into a container of the above type. Subsequently, the nonaqueous electrolyte is injected into the container, and the pores in the separator 40 are impregnated with the electrolyte solution. Thereby, a lithium ion secondary battery is manufactured.
이상에 의해, 본 실시형태에 의하면, 음극용 바인더로 상술한 구성을 갖는 바인더를 사용한다. 이 음극용 바인더는 수계 바인더이다. 또한, 상세한 것은 실시예에서 설명하지만, 음극(30)의 부풀기가 억제된다. 그 결과, 전극구조의 파괴에 의한 활물질의 탈락이나 전자전도성의 저하가 억제되어, 이차전지의 수명이 향상된다. 또한, 이 음극용 바인더는 핸들링성도 양호하다. As mentioned above, according to this embodiment, the binder which has the structure mentioned above as a binder for negative electrodes is used. This negative electrode binder is an aqueous binder. In addition, although the detail is demonstrated in an Example, swelling of the negative electrode 30 is suppressed. As a result, dropping of the active material and deterioration of electron conductivity due to destruction of the electrode structure are suppressed, and the life of the secondary battery is improved. Moreover, this binder for negative electrodes is also favorable in handling property.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, examples and comparative examples of the present invention are described. Such following examples are only examples of the present invention, and the present invention is not limited to the following examples.
[실시예] EXAMPLE
<1. 바인더 수지 조성물 합성> <1. Binder Resin Composition Synthesis>
그 다음에, 본 실시형태의 실시예에 대하여 설명한다. 먼저, 바인더 수지 조성물의 합성예에 대하여 설명한다. 한편, 이하에서 기재하는 모노머 및 고분자 아조 개시제의 배합비는 특별히 거절하지 않는 한 중량비를 나타내는 것으로 한다. Next, the Example of this embodiment is described. First, the synthesis example of a binder resin composition is demonstrated. In addition, the compounding ratio of the monomer and polymeric azo initiator described below shall show a weight ratio unless it rejects in particular.
(실시예 1: 폴리 아크릴산 나트륨(PAALi)/ 폴리아크릴로니트릴(PAN)/ 폴리에틸렌글리콜(PEG) = 60/30/10의 합성 예) (Example 1: Sodium polyacrylate (PAALi) / polyacrylonitrile (PAN) / polyethylene glycol (PEG) = Synthesis example of 60/30/10)
교반자, 온도계, 냉각관을 장착한 200ml의 4구 분리 가능한 플라스크내에, 증류수 119g, 아크릴산(25g, 0.833mol)을 첨가한 후, 다이어프램 펌프에서 내압을 10mmHg로 압력을 내리고, 질소로 내압을 상압으로 되돌리는 조작을 3회 반복하였다. 아크릴로니트릴(30g, 0.565mol), 고분자 아조 개시제(Wako Pure Chemical Industries, Ltd. 제조 VPE-0201(PEG사슬 수평균 분자량2000), 10.0g, 0.005mol(개시제로서의 몰수))을 더하고, 400rpm으로 교반하였다. 반응액의 온도가 65℃∼70℃의 사이에서 안정되게 가열을 제어하면서, 4시간, 또한 온도를 80℃로 승온하고, 4시간 반응시킨 바, 괴상의 고형물인 바인더 수지 조성물이 얻어졌다. In a 200 ml four-necked detachable flask equipped with a stirrer, a thermometer, and a cooling tube, 119 g of distilled water and acrylic acid (25 g, 0.833 mol) were added, and the internal pressure was reduced to 10 mmHg by a diaphragm pump, and the internal pressure was atmospheric pressure with nitrogen. The operation to return to was repeated three times. Acrylonitrile (30 g, 0.565 mol), high molecular weight azo initiator (VPE-0201 manufactured by Wako Pure Chemical Industries, Ltd. (PEG chain number average molecular weight 2000), 10.0 g, 0.005 mol (molar number as initiator)) were added, and the result was 400 rpm. Stirred. When the temperature of the reaction liquid controlled heating stably between 65 degreeC-70 degreeC, when the temperature was heated to 80 degreeC for 4 hours and made to react for 4 hours, the binder resin composition which is a massive solid was obtained.
실온으로 냉각 후, 수산화 리튬1수화물(34.2g, 아크릴산에 대하여 0.98당량)을 더하고, 바인더 수지 조성물이 완전히 용해될 때까지 교반하였다. After cooling to room temperature, lithium hydroxide monohydrate (34.2 g, 0.98 equivalents to acrylic acid) was added and stirred until the binder resin composition was completely dissolved.
반응액을 2ml정도 덜어, 비휘발분(NV)의 중량을 측정한 바 13.2 중량%(이론값 13.5 중량%)이었다. The reaction solution was reduced to about 2 ml and the weight of the nonvolatile matter (NV) was measured to be 13.2 wt% (theoretical value 13.5 wt%).
또, 비휘발분(NV)을 측정후의 바인더 수지 조성물을 7∼10mg정도 덜어, SII(Seiko Instruments Inc.)사 제조 X-DSC7000에서 질소 분위기 하, -100℃~270℃까지 5℃도/min의 승온속도로 가열해 Tg 측정을 행한 바, -55℃ 부근에 PEG 유래의 Tg가 관측되어, 또한 235℃ 부근에 PAALi와 PAN의 공중합체 유래의 Tg가 관측되었다. In addition, the binder resin composition after measuring the non-volatile content (NV) is reduced to about 7 to 10 mg, and at 5 ° C / min to -100 ° C to 270 ° C under nitrogen atmosphere in X-DSC7000 manufactured by SII (Seiko Instruments Inc.). When Tg measurement was performed by heating at a temperature increase rate, Tg derived from PEG was observed around -55 ° C, and Tg derived from a copolymer of PAALi and PAN was observed near 235 ° C.
(실시예 2: 폴리 아크릴산 나트륨(PAALi)/ 폴리아크릴로니트릴(PAN)/ 폴리에틸렌글리콜(PEG) = 55/30/15의 합성 예) (Example 2: Sodium polyacrylate (PAALi) / polyacrylonitrile (PAN) / polyethylene glycol (PEG) = Synthesis example of 55/30/15)
증류수 118g, 아크릴산(55g, 0.763mol), 아크릴로니트릴(30g, 0.565mol), 고분자 아조 개시제(Wako Pure Chemical Industries, Ltd. 제조 VPE-0201(PEG사슬 수평균 분자량2000), 15.0g, 0.0075mol(개시제로서의 몰수)), 수산화 리튬1수화물(31.4g, 아크릴산에 대하여 0.98당량)을 사용한 것 이외에는 상기 실시예 1과 동일하게 실시하여 합성하였다. 반응액의 비휘발분(NV)의 중량을 측정한 바 13.2 중량%(이론값 13.5 중량%)이었다. 또 Tg는 -55℃ 부근과 235℃ 부근의 2군데에서 관측되었다. Distilled water 118g, acrylic acid (55g, 0.763mol), acrylonitrile (30g, 0.565mol), polymer azo initiator (VPE-0201 (PEG chain number average molecular weight 2000) manufactured by Wako Pure Chemical Industries, Ltd.), 15.0g, 0.0075mol (Molar number as initiator)) and lithium hydroxide monohydrate (31.4 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1 above. It was 13.2 weight% (theoretical value 13.5 weight%) when the weight of the non-volatile matter (NV) of the reaction liquid was measured. In addition, Tg was observed in two places around -55 degreeC and around 235 degreeC.
(실시예 3: 폴리 아크릴산 나트륨(PAALi)/ 폴리아크릴로니트릴(PAN)/ 폴리에틸렌글리콜(PEG) = 50/30/20의 합성 예) (Example 3: Sodium polyacrylate (PAALi) / polyacrylonitrile (PAN) / polyethylene glycol (PEG) = Synthesis example of 50/30/20)
증류수 116g, 아크릴산(50g, 0.694mol), 아크릴로니트릴(30g, 0.565mol), 고분자 아조 개시제(Wako Pure Chemical Industries, Ltd. 제조 VPE-0201(PEG사슬 수평균 분자량2000), 20.0g, 0.01mol(개시제로서의 몰수)), 수산화 리튬1수화물(28.5g, 아크릴산에 대하여 0.98당량)을 사용한 것 이외에는 상기 실시예 1과 동일하게 실시하여 합성하였다. 반응액의 비휘발분(NV)을 측정한 바 13.0 중량%(이론값 13.5 중량%)이었다. 또 Tg는 -55℃ 부근과 235℃ 부근의 2군데에서 관측되었다. 116 g of distilled water, acrylic acid (50 g, 0.694 mol), acrylonitrile (30 g, 0.565 mol), polymer azo initiator (VPE-0201 (PEG chain number average molecular weight 2000) manufactured by Wako Pure Chemical Industries, Ltd.), 20.0 g, 0.01 mol (Moles as initiator)) and lithium hydroxide monohydrate (28.5 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1. It was 13.0 weight% (theoretical value 13.5 weight%) when the non volatile matter (NV) of the reaction liquid was measured. In addition, Tg was observed in two places around -55 degreeC and around 235 degreeC.
(실시예 4: 폴리 아크릴산 나트륨(PAALi)/ 폴리아크릴로니트릴(PAN)/ 폴리에틸렌글리콜(PEG) = 50/20/30의 합성 예) Example 4 Synthesis Example of Sodium Polyacrylate (PAALi) / Polyacrylonitrile (PAN) / Polyethylene Glycol (PEG) = 50/20/30
증류수 116g, 아크릴산(50g, 0.694mol), 아크릴로니트릴(20g, 0.377mol), 고분자 아조 개시제(Wako Pure Chemical Industries, Ltd. 제조 VPE-0201(PEG사슬 수평균 분자량2000), 30.0g, 0.015mol(개시제로서의 몰수)), 수산화 리튬1수화물(28.5g, 아크릴산에 대하여 0.98당량)을 사용한 것 이외에는 상기 실시예 1과 동일하게 실시하여 합성하였다. 반응액의 비휘발분(NV)의 중량을 측정한 바 13.0 중량%(이론값 13.5 중량%)이었다. 또 Tg는 -55℃ 부근과 235℃ 부근의 2군데에 관측되었다. 116 g of distilled water, acrylic acid (50 g, 0.694 mol), acrylonitrile (20 g, 0.377 mol), polymer azo initiator (VPE-0201 (PEG chain number average molecular weight 2000) manufactured by Wako Pure Chemical Industries, Ltd.), 30.0 g, 0.015 mol (Moles as initiator)) and lithium hydroxide monohydrate (28.5 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1. It was 13.0 weight% (theoretical value 13.5 weight%) when the weight of the non volatile matter (NV) of the reaction liquid was measured. Moreover, Tg was observed in two places about -55 degreeC and 235 degreeC vicinity.
(실시예 5: 폴리 아크릴산 나트륨(PAALi)/폴리아크릴로니트릴(PAN)/폴리 실록산(Polysiloxan)=60/ 30/10의 합성 예) Example 5 Synthesis Example of Sodium Polyacrylate (PAALi) / Polyacrylonitrile (PAN) / Polysiloxan = 60/30/10
증류수 119g, 아크릴산(60g, 0.833mol), 아크릴로니트릴(30g, 0.565mol), 고분자 아조 개시제(Wako Pure Chemical Industries, Ltd. 제조 VPE-1001(Polysiloxan사슬 수평균 분자량10000), 10.0g, 0.001mol(개시제로서의 몰수)), 수산화 리튬1수화물(34.2g, 아크릴산에 대하여 0.98당량)을 사용한 것 이외에는 상기 실시예 1과 동일하게 실시하여 합성하였다. 반응액의 비휘발분(NV)의 질량을 측정한 바 13.2 중량%(이론값 13.5 중량%)이었다. 또 Tg는 235℃ 부근의 1군데에만 관측되었다. 폴리 실록산 유래의 Tg는 -100℃ 이하에 존재하고 있어, 측정 범위 밖이 되었기 때문에, 관측되지 않았다고 생각된다. 119 g of distilled water, acrylic acid (60 g, 0.833 mol), acrylonitrile (30 g, 0.565 mol), polymer azo initiator (VPE-1001 (Polysiloxan chain number average molecular weight 10000) manufactured by Wako Pure Chemical Industries, Ltd., 10.0 g, 0.001 mol) (Molar number as initiator)) and lithium hydroxide monohydrate (34.2 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1. It was 13.2 weight% (theoretical value 13.5 weight%) when the mass of the non-volatile matter (NV) of the reaction liquid was measured. In addition, Tg was observed only in one place near 235 degreeC. Since Tg derived from polysiloxane exists in -100 degrees C or less and it fell out of the measurement range, it is thought that it was not observed.
(실시예 6: 폴리 아크릴산 나트륨(PAALi)/폴리아크릴로니트릴(PAN)/폴리 실록산(Polysiloxan)=55/ 30/15의 합성 예) Example 6 Synthesis Example of Sodium Polyacrylate (PAALi) / Polyacrylonitrile (PAN) / Polysiloxan = 55/30/15
증류수 118g, 아크릴산(55g, 0.763mol), 아크릴로니트릴(30g, 0.565mol), 고분자 아조 개시제(Wako Pure Chemical Industries, Ltd. 제조 VPE-1001(Polysiloxan사슬 수평균 분자량10000), 15.0g, 0.0015mol(개시제로서의 몰수)), 수산화 리튬1수화물(31.4g, 아크릴산에 대하여 0.98당량)을 사용한 것 이외에는 상기 실시예 1과 동일하게 실시하여 합성하였다. 반응액의 비휘발분(NV)의 중량을 측정한 바 13.1 중량%(이론값 13.5 중량%)이었다. 또 Tg는 235℃ 부근의 1군데에 관측되었다. 폴리 실록산 유래의 Tg는 -100℃ 이하에 존재하고 있어, 측정 범위 밖이 되었기 때문에, 관측되지 않았다고 생각된다. Distilled water 118g, acrylic acid (55g, 0.763mol), acrylonitrile (30g, 0.565mol), polymer azo initiator (VPE-1001 (Polysiloxan chain number average molecular weight 10000) made by Wako Pure Chemical Industries, Ltd., 15.0g, 0.0015mol) (Molar number as initiator)) and lithium hydroxide monohydrate (31.4 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1 above. It was 13.1 weight% (theoretical value 13.5 weight%) when the weight of the non-volatile matter (NV) of the reaction liquid was measured. In addition, Tg was observed in one place near 235 degreeC. Since Tg derived from polysiloxane exists in -100 degrees C or less and it fell out of the measurement range, it is thought that it was not observed.
(실시예 7: 폴리 아크릴산 나트륨(PAALi)/폴리아크릴로니트릴(PAN)/폴리 실록산(Polysiloxan)=50/ 30/15의 합성 예) Example 7 Synthesis Example of Sodium Polyacrylate (PAALi) / Polyacrylonitrile (PAN) / Polysiloxan = 50/30/15
증류수 116g, 아크릴산(50g, 0.694mol), 아크릴로니트릴(30g, 0.565mol), 고분자 아조 개시제(Wako Pure Chemical Industries, Ltd. 제조 VPE-1001(Polysiloxan사슬 수평균 분자량10000), 20.0g, 0.002mol(개시제로서의 몰수)), 수산화 리튬1수화물(28.5g, 아크릴산에 대하여 0.98당량)을 사용한 것 이외에는 상기 실시예 1과 동일하게 실시하여 합성하였다. 반응액의 비휘발분(NV)의 중량을 측정한 바 13.1 중량%(이론값 13.5 중량%)이었다. 또 Tg는 235℃ 부근의 1군데에서 관측되었다. 폴리 실록산 유래의 Tg는 -100℃ 이하에 존재하고 있어, 측정 범위 밖이 되었기 때문에, 관측되지 않았다고 생각된다. 116 g of distilled water, acrylic acid (50 g, 0.694 mol), acrylonitrile (30 g, 0.565 mol), polymer azo initiator (VPE-1001 (Polysiloxan chain number average molecular weight 10000) manufactured by Wako Pure Chemical Industries, Ltd., 20.0 g, 0.002 mol) (Moles as initiator)) and lithium hydroxide monohydrate (28.5 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1. It was 13.1 weight% (theoretical value 13.5 weight%) when the weight of the non-volatile matter (NV) of the reaction liquid was measured. In addition, Tg was observed in one place near 235 degreeC. Since Tg derived from polysiloxane exists in -100 degrees C or less and it fell out of the measurement range, it is thought that it was not observed.
(실시예 8: 폴리 아크릴산 나트륨(PAALi)/폴리아크릴로니트릴(PAN)/폴리 실록산(Polysiloxan)=50/ 20/30의 합성 예) Example 8 Synthesis Example of Sodium Polyacrylate (PAALi) / Polyacrylonitrile (PAN) / Polysiloxan = 50/20/30
증류수 116g, 아크릴산(50g, 0.694mol), 아크릴로니트릴(20g, 0.377mol), 고분자 아조 개시제(Wako Pure Chemical Industries, Ltd. 제조 VPE-1001(Polysiloxan사슬 수평균 분자량10000), 30.0g, 0.003mol(개시제로서의 몰수)), 수산화 리튬1수화물(28.5g, 아크릴산에 대하여 0.98당량)을 사용한 것 이외에는 상기 실시예 1과 동일하게 실시하여 합성하였다. 반응액의 비휘발분(NV)의 중량을 측정한 바 13.1 중량%(이론값 13.5 중량%)이었다. 또 Tg는 235℃ 부근의 1군데에 관측되었다. 폴리 실록산 유래의 Tg는 -100℃ 이하에 존재하고 있어, 측정 범위 밖이 되었기 때문에, 관측되지 않았다고 생각된다. 116 g of distilled water, acrylic acid (50 g, 0.694 mol), acrylonitrile (20 g, 0.377 mol), polymer azo initiator (VPE-1001 (Polysiloxan chain number average molecular weight 10000) manufactured by Wako Pure Chemical Industries, Ltd., 30.0 g, 0.003 mol) (Moles as initiator)) and lithium hydroxide monohydrate (28.5 g, 0.98 equivalents to acrylic acid) were used and synthesized in the same manner as in Example 1. It was 13.1 weight% (theoretical value 13.5 weight%) when the weight of the non-volatile matter (NV) of the reaction liquid was measured. In addition, Tg was observed in one place near 235 degreeC. Since Tg derived from polysiloxane exists in -100 degrees C or less and it fell out of the measurement range, it is thought that it was not observed.
<2. 음극제작> <2. Cathode Production>
(비교예 1) (Comparative Example 1)
흑연 실리콘 복합 음극(실리콘 함유량 60 중량%) 14.5 중량%, 인조흑연 79.0 중량%, 아세틸렌 블랙 2.0 중량%, 스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량%의 혼합비로 수계 음극합제 슬러리를 제조하였다. 한편, 음극합제 슬러리중의 비휘발 성분은 슬러리 총 중량에 대하여 55 중량%이었다. Graphite silicon composite anode (silicon content 60% by weight) 14.5% by weight, artificial graphite 79.0% by weight, acetylene black 2.0% by weight, styrene butadiene copolymer (SBR) 3.0% by weight, carboxymethyl cellulose (CMC) 1.5% by weight An aqueous negative electrode mixture slurry was prepared. On the other hand, the nonvolatile components in the negative electrode mixture slurry was 55% by weight based on the total weight of the slurry.
(음극의 제작) (Production of the cathode)
이어서, 건조후의 합제도포량(면 밀도)이 9.55mg/cm2이 되도록 바 코터(bar coater)의 갭을 조정하고, 이 바 코터에 의해 음극합제 슬러리를 구리박(집전체, 두께 10μm)에 균일하게 도포하였다. 이어서, 음극합제 슬러리를 80℃로 설정한 송풍형 건조기로 15분 건조하였다. 이어, 건조후의 음극합제를 롤 프레스기에 의해 합제밀도가 1.65g/cm3이 되게 프레스하였다. 이어, 음극합제를 150℃로 6시간 진공 건조하여, 음극을 제조하였다. Subsequently, the gap of the bar coater was adjusted so that the amount of the coated mixture (surface density) after drying was 9.55 mg / cm 2 , and the negative electrode mixture slurry was uniformed to copper foil (current collector, thickness 10 μm) by the bar coater. Was applied. Subsequently, the negative electrode mixture slurry was dried for 15 minutes with a blower type dryer set at 80 ° C. Subsequently, the negative electrode mixture after drying was pressed in a roll press so that the mixture density became 1.65 g / cm 3 . Subsequently, the negative electrode mixture was vacuum dried at 150 ° C. for 6 hours to prepare a negative electrode.
(실시예 9) (Example 9)
스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량% 대신 실시예 1로 합성한 바인더 수지 조성물 4.5 중량%를 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. 한편, 음극의 제작 시에, 음극에 크랙은 발생하지 않았다. 또, 음극의 건조 중에 음극은 거의 말리지 않았다. A negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 1 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). . On the other hand, no crack was generated in the cathode during the production of the cathode. In addition, during drying of the negative electrode, the negative electrode was hardly dried.
(실시예 10) (Example 10)
스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량% 대신 실시예 2로 합성한 바인더 수지 조성물 4.5 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 2 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
(실시예 11) (Example 11)
스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량% 대신 실시예 3로 합성한 바인더 수지 조성물 4.5 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 3 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
(실시예 12) (Example 12)
스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량% 대신 실시예 4로 합성한 바인더 수지 조성물 4.5 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 4.5 wt% of the binder resin composition synthesized in Example 4 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
(실시예 13) (Example 13)
스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량% 대신 실시예 5로 합성한 바인더 수지 조성물 4.5 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 5 was used instead of 3.0 wt% of styrene butadiene copolymer (SBR) and 1.5 wt% of carboxymethylcellulose (CMC). .
(실시예 14) (Example 14)
스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량% 대신 실시예 6로 합성한 바인더 수지 조성물 4.5 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 6 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
(실시예 15) (Example 15)
스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량% 대신 실시예 7로 합성한 바인더 수지 조성물 4.5 중량%를 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 7 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
(실시예 16) (Example 16)
스티렌 부타디엔 공중합체(SBR) 3.0 중량%, 카르복시메틸셀룰로오스(CMC) 1.5 중량% 대신 실시예 8로 합성한 바인더 수지 조성물 4.5 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1, except that 4.5 wt% of the binder resin composition synthesized in Example 8 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR) and 1.5 wt% of the carboxymethylcellulose (CMC). .
(실시예 17) (Example 17)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 1로 합성한 바인더 수지 조성물 3.0 중량%를 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 1 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
(실시예 18) (Example 18)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 2로 합성한 바인더 수지 조성물 3.0 중량%를 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 2 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
(실시예 19) (Example 19)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 3로 합성한 바인더 수지 조성물 3.0 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 3 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
(실시예 20) (Example 20)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 4로 합성한 바인더 수지 조성물 3.0 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 4 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
(실시예 21) (Example 21)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 5로 합성한 바인더 수지 조성물 3.0 중량%을 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 5 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
(실시예 22) (Example 22)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 6로 합성한 바인더 수지 조성물 3.0 중량%를 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 6 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
(실시예 23) (Example 23)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 7로 합성한 바인더 수지 조성물 3.0 중량%를 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 7 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
(실시예 24) (Example 24)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 8로 합성한 바인더 수지 조성물 3.0 중량%를 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 3.0 wt% of the binder resin composition synthesized in Example 8 was used instead of 3.0 wt% of the styrene butadiene copolymer (SBR).
(실시예 25) (Example 25)
스티렌 부타디엔 공중합체(SBR) 3.0 중량% 대신 실시예 2로 합성한 바인더 수지 조성물 1.5 중량%, 카르복시메틸셀룰로오스(CMC) 3.0 중량%를 사용한 것 이외에는 상기 비교예 1과 동일하게 실시하여 음극을 제조하였다. A negative electrode was prepared in the same manner as in Comparative Example 1 except that 1.5 wt% of the binder resin composition synthesized in Example 2 and 3.0 wt% of the carboxymethylcellulose (CMC) were used instead of 3.0 wt% of the styrene butadiene copolymer (SBR). .
<3. 양극 제조> <3. Anode Manufacturing>
(양극합제 슬러리의 제조) (Production of Anode Mixture Slurry)
고용체 산화물 Li1 . 20Mn0 . 55Co0 . 10Ni0 . 15O2 96 중량%, 케첸 블랙 2 중량%, 폴리비닐리덴 플루오라이드 2 중량%을 N-메틸-2-피롤리돈에 분산시켜, 양극합제 슬러리를 형성하였다. 한편, 양극합제 슬러리 중의 비휘발 성분은 슬러리 총 중량에 대하여 50 중량%이었다. Solid solution oxide Li 1 . 2 0Mn 0 . 55 Co 0 . 10 Ni 0 . 96 weight percent 15 O 2 , 2 weight percent Ketjen Black and 2 weight percent polyvinylidene fluoride were dispersed in N-methyl-2-pyrrolidone to form a positive electrode mixture slurry. On the other hand, the nonvolatile components in the positive electrode mixture slurry was 50% by weight based on the total weight of the slurry.
(양극의 제조) (Manufacture of Anode)
이어서, 건조후의 합제도포량(면 밀도)이 22.7mg/cm2이 되도록 바 코터의 갭을 조정하고, 이 바 코터에 의해 양극합제 슬러리를 집전체인 알루미늄 집전박위로 도포하였다. 이어, 양극합제 슬러리를 80℃로 설정한 송풍형 건조기로 15분 건조하였다. 이어, 건조후의 양극합제를 롤 프레스기에 의해 합제밀도가 3.9g/cm3이 되게 프레스하였다. 이어, 양극합제를 80℃로 6시간 진공건조하여, 양극집전체와 양극 활물질층으로 이루어지는 시트 형의 양극을 제조하였다. Subsequently, the gap of the bar coater was adjusted so that the amount of coating material (surface density) after drying might be 22.7 mg / cm <2> , and the positive electrode mixture slurry was apply | coated on the aluminum collector foil which is an electrical power collector by this bar coater. Subsequently, the positive electrode mixture slurry was dried for 15 minutes with a blowing type dryer set at 80 ° C. Subsequently, the positive electrode mixture after drying was pressed in a roll press so that the mixture density became 3.9 g / cm 3 . Subsequently, the positive electrode mixture was vacuum dried at 80 ° C. for 6 hours to prepare a sheet-shaped positive electrode composed of a positive electrode current collector and a positive electrode active material layer.
<4. 이차전지의 제조> <4. Manufacturing of Secondary Battery>
(비교예 2) (Comparative Example 2)
비교예 1의 음극을 직경 1.55cm의 원형으로, 양극 제조예의 양극을 직경 1.3cm의 원형으로 각각 절단하였다. 이어, 세퍼레이터(두께 25μ의 폴리에틸렌제 미다공막)을 직경 1.8cm의 원형으로 절단하였다. 직경 2.0cm의 스테인리스강제 코인 외장 용기내에서, 직경 1.3cm의 원형으로 절단한 양극, 직경 1.8cm의 원형으로 절단한 세퍼레이터, 직경 1.55cm의 원형으로 절단한 비교예 1의 음극, 또 스페이서로서 직경 1.5cm의 원형으로 절단한 두께 200μm의 구리박을 이 순서로 겹쳤다. 이어, 용기에 전해액 (1.4M의 LiPF6 에틸렌 카보네이트/디에틸카보네이트/플루오로에틸렌 카보네이트=10/70/20 혼합 용액(부피비))을 150μL 첨가하였다. 이어서, 폴리프로필렌제의 패킹을 개재하고, 스테인리스강제의 캡을 용기에 씌우고, 코인 전지제작용의 접합기로 용기를 밀봉하였다. 이에 따라, 비교예 2에 따른 리튬이온 이차전지(코인 셀)을 제조하였다. The negative electrode of Comparative Example 1 was cut into a circle with a diameter of 1.55 cm, and the positive electrode of the positive electrode manufacturing example was cut into a circle with a diameter of 1.3 cm. Next, the separator (a polyethylene microporous membrane having a thickness of 25 µ) was cut into a circle having a diameter of 1.8 cm. In a stainless steel coin outer container having a diameter of 2.0 cm, a positive electrode cut in a circle of 1.3 cm in diameter, a separator cut in a circle of 1.8 cm in diameter, a negative electrode of Comparative Example 1 cut in a circle of 1.55 cm in diameter, and a spacer as a diameter The copper foil of 200 micrometers in thickness which cut | disconnected in 1.5 cm round was overlapped in this order. Next, 150 µL of an electrolyte solution (1.4 M LiPF 6 ethylene carbonate / diethyl carbonate / fluoroethylene carbonate = 10/70/20 mixed solution (volume ratio)) was added to the vessel. Next, the container was sealed with the cap made of stainless steel via the packing made of polypropylene, and the coin cell operation | work was sealed. Thus, a lithium ion secondary battery (coin cell) according to Comparative Example 2 was prepared.
(실시예 26) (Example 26)
실시예 9에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 9 was used.
(실시예 27) (Example 27)
실시예 10에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 10 was used.
(실시예 28) (Example 28)
실시예 11에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 11 was used.
(실시예 29) (Example 29)
실시예 12에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 하여 관련 이차전지를 제조하였다. A related secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 12 was used.
(실시예 30) (Example 30)
실시예 13에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 13 was used.
(실시예 31) (Example 31)
실시예 14에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 14 was used.
(실시예 32) (Example 32)
실시예 15에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 15 was used.
(실시예 33) (Example 33)
실시예 16에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 16 was used.
(실시예 34) (Example 34)
실시예 17에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 17 was used.
(실시예 35) (Example 35)
실시예 18에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 18 was used.
(실시예 36) (Example 36)
실시예 19에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 19 was used.
(실시예 37) (Example 37)
실시예 20에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 20 was used.
(실시예 38) (Example 38)
실시예 21에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 21 was used.
(실시예 39) (Example 39)
실시예 22에서 제조한 음극을 사용한 것 이외에는 상기 비교예 2와 동일하게 실시하여 관련 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Comparative Example 2, except that the negative electrode prepared in Example 22 was used.
(실시예40) Example 40
실시예 23에서 제작한 음극을 이용한 이외는 모두 비교예 2과 동일하게 하여 관련 이차전지를 제작했다. All of the secondary batteries were manufactured in the same manner as in Comparative Example 2 except that the negative electrode produced in Example 23 was used.
(실시예41) Example 41
실시예 24에서 제작한 음극을 이용한 이외는 모두 비교예 2과 동일하게 하여 관련 이차전지를 제작했다. In the same manner as in Comparative Example 2, except that the negative electrode produced in Example 24 was used, a related secondary battery was produced.
(실시예42) Example 42
실시예 25에서 제작한 음극을 이용한 이외는 모두 비교예 2과 동일하게 하여 관련 이차전지를 제작했다. In the same manner as in Comparative Example 2 except that the negative electrode produced in Example 25 was used, the related secondary battery was produced.
<5. 전극 부풀기의 평가> <5. Evaluation of Electrode Inflation>
각 실시예 및 비교예에 따른 리튬이온 이차전지를 25도로 0.2C로 1회 충방전했다. 그 후, 1.0C로 리튬이온 이차전지를 충전후, 전지를 해체하고, 음극을 꺼냈다. 디메틸 카보네이트로 세정후 바람 건조하고, 마이크로미터에서 음극의 두께를 측정하고, 미리 측정해 둔 초회 충방전 전의 음극의 두께와 비교하는 것으로, 충전 상태에 있어서의 음극의 부풀기를 구했다. 여기에서, 부풀기의 값은 ((충전후의 음극의 두께)- (초회 충방전 전의 음극의 두께))/ (초회 충방전 전의 음극의 두께)×100로서 구했다. 평가 결과를 통합해서 표1에 나타낸다. The lithium ion secondary batteries according to the examples and the comparative examples were charged and discharged once at 25 degrees at 0.2C. Then, after charging a lithium ion secondary battery at 1.0 C, the battery was disassembled and the negative electrode was taken out. The swelling of the negative electrode in a charged state was calculated | required by washing with dimethyl carbonate, air drying, measuring the thickness of a negative electrode with a micrometer, and comparing with the thickness of the negative electrode before the initial charge / discharge previously measured. Here, the value of swelling was calculated as ((thickness of negative electrode after charge)-(thickness of negative electrode before initial charge and discharge)) / (thickness of negative electrode before initial charge and discharge) × 100. The evaluation results are collectively shown in Table 1.
전지battery 전극electrode 바인더bookbinder 부풀기(%)Inflation (%)
사용 바인더Used binder 사용량(질량%)Usage (mass%)
비교예2Comparative Example 2 비교예1Comparative Example 1 SBR/CMCSBR / CMC 3/1.53 / 1.5 31.031.0
실시예26Example 26 실시예9Example 9 실시예1/CMCExample 1 / CMC 4.5/04.5 / 0 28.528.5
실시예27Example 27 실시예10Example 10 실시예2/CMCExample 2 / CMC 4.5/04.5 / 0 29.129.1
실시예28Example 28 실시예11Example 11 실시예3/CMCExample 3 / CMC 4.5/04.5 / 0 29.229.2
실시예29Example 29 실시예12Example 12 실시예4/CMCExample 4 / CMC 4.5/04.5 / 0 30.030.0
실시예30Example 30 실시예13Example 13 실시예5/CMCExample 5 / CMC 4.5/04.5 / 0 28.028.0
실시예31Example 31 실시예14Example 14 실시예6/CMCExample 6 / CMC 4.5/04.5 / 0 28.528.5
실시예32Example 32 실시예15Example 15 실시예7/CMCExample 7 / CMC 4.5/04.5 / 0 29.229.2
실시예33Example 33 실시예16Example 16 실시예8/CMCExample 8 / CMC 4.5/04.5 / 0 29.529.5
실시예34Example 34 실시예17Example 17 실시예1/CMCExample 1 / CMC 3/1.53 / 1.5 24.024.0
실시예35Example 35 실시예18Example 18 실시예2/CMCExample 2 / CMC 3/1.53 / 1.5 24.624.6
실시예36Example 36 실시예19Example 19 실시예3/CMCExample 3 / CMC 3/1.53 / 1.5 25.225.2
실시예37Example 37 실시예20Example 20 실시예4/CMCExample 4 / CMC 3/1.53 / 1.5 26.026.0
실시예38Example 38 실시예21Example 21 실시예5/CMCExample 5 / CMC 3/1.53 / 1.5 23.823.8
실시예39Example 39 실시예22Example 22 실시예6/CMCExample 6 / CMC 3/1.53 / 1.5 24.624.6
실시예40Example 40 실시예23Example 23 실시예7/CMCExample 7 / CMC 3/1.53 / 1.5 25.525.5
실시예41Example 41 실시예24Example 24 실시예8/CMCExample 8 / CMC 3/1.53 / 1.5 26.926.9
실시예42Example 42 실시예25Example 25 실시예2/CMCExample 2 / CMC 1.5/31.5 / 3 27.327.3
표 1에 의하면, 본 실시예에 따른 이차전지의 음극의 부풀기가 억제되어 있는 것을 알 수 있다. According to Table 1, it turns out that swelling of the negative electrode of the secondary battery which concerns on a present Example is suppressed.
<6. 사이클 수명평가> <6. Cycle Life Assessment>
각 실시예 및 비교예에 따른 리튬이온 이차전지를 25도로 0.2C에서 1회 충방전했다. 그 후, 1.0C로 리튬이온 이차전지를 충방전하는 충방전 사이클을 100회 반복했다. 100사이클 때 (1.0C충방전 사이클의 100회째)의 방전 용량을 1사이클 때 (1.0C충방전 사이클의 1회째)의 방전 용량(초기 방전 용량)로 나누는 것으로, 방전 용량유지율 (백분율)을 산출했다. 용량유지율이 클 수록 사이클 수명이 좋은 것을 나타낸다. 평가 결과를 통합해서 표2에 나타낸다. 표2에 의하면, 본 실시예에서는 초기 방전 용량 및 용량유지율이 우수한 것을 알 수 있다. The lithium ion secondary battery according to each of Examples and Comparative Examples was charged and discharged once at 25 ° C at 0.2C. Thereafter, the charge and discharge cycle of charging and discharging the lithium ion secondary battery at 1.0 C was repeated 100 times. The discharge capacity retention rate (percentage) is calculated by dividing the discharge capacity at 100 cycles (100th cycle of the 1.0C charge and discharge cycle) by the discharge capacity (initial discharge capacity) at 1 cycle (the first cycle of the 1.0C charge and discharge cycle). did. The larger the capacity maintenance rate, the better the cycle life. The evaluation results are collectively shown in Table 2. According to Table 2, it can be seen that in the present embodiment, the initial discharge capacity and the capacity retention rate are excellent.
[규칙 제26조에 의한 보정 04.01.2018]
전지 전극 바인더 초기방전용량(mAh) 용량유지율(%)
사용 바인더 사용량(질량%)
비교예2 비교예1 SBR/CMC 3/1.5 4.57 96.3
실시예26 실시예9 실시예1/CMC 4.5/0 4.58 97.1
실시예27 실시예10 실시예2/CMC 4.5/0 4.58 97.3
실시예28 실시예11 실시예3/CMC 4.5/0 4.59 96.8
실시예29 실시예12 실시예4/CMC 4.5/0 4.65 96.5
실시예30 실시예13 실시예5/CMC 4.5/0 4.59 97.3
실시예31 실시예14 실시예6/CMC 4.5/0 4.68 95.7
실시예32 실시예15 실시예7/CMC 4.5/0 4.68 95.9
실시예33 실시예16 실시예8/CMC 4.5/0 4.58 97.8
실시예34 실시예17 실시예1/CMC 3/1.5 4.64 97.7
실시예35 실시예18 실시예2/CMC 3/1.5 4.56 89.8
실시예36 실시예19 실시예3/CMC 3/1.5 4.56 83.3
실시예37 실시예20 실시예4/CMC 3/1.5 4.65 96.0
실시예38 실시예21 실시예5/CMC 3/1.5 4.65 95.5
실시예39 실시예22 실시예6/CMC 3/1.5 4.57 96.3
실시예40 실시예23 실시예7/CMC 3/1.5 4.581 97.1
실시예41 실시예24 실시예8/CMC 3/1.5 4.56 100.3
실시예42 실시예25 실시예2/CMC 1.5/3 4.59 96.8
[Revision according to Rule 26 04.01.2018]
battery electrode bookbinder Initial discharge capacity (mAh) Capacity maintenance rate (%)
Used binder Usage (mass%)
Comparative Example 2 Comparative Example 1 SBR / CMC 3 / 1.5 4.57 96.3
Example 26 Example 9 Example 1 / CMC 4.5 / 0 4.58 97.1
Example 27 Example 10 Example 2 / CMC 4.5 / 0 4.58 97.3
Example 28 Example 11 Example 3 / CMC 4.5 / 0 4.59 96.8
Example 29 Example 12 Example 4 / CMC 4.5 / 0 4.65 96.5
Example 30 Example 13 Example 5 / CMC 4.5 / 0 4.59 97.3
Example 31 Example 14 Example 6 / CMC 4.5 / 0 4.68 95.7
Example 32 Example 15 Example 7 / CMC 4.5 / 0 4.68 95.9
Example 33 Example 16 Example 8 / CMC 4.5 / 0 4.58 97.8
Example 34 Example 17 Example 1 / CMC 3 / 1.5 4.64 97.7
Example 35 Example 18 Example 2 / CMC 3 / 1.5 4.56 89.8
Example 36 Example 19 Example 3 / CMC 3 / 1.5 4.56 83.3
Example 37 Example 20 Example 4 / CMC 3 / 1.5 4.65 96.0
Example 38 Example 21 Example 5 / CMC 3 / 1.5 4.65 95.5
Example 39 Example 22 Example 6 / CMC 3 / 1.5 4.57 96.3
Example 40 Example 23 Example 7 / CMC 3 / 1.5 4.581 97.1
Example 41 Example 24 Example 8 / CMC 3 / 1.5 4.56 100.3
Example 42 Example 25 Example 2 / CMC 1.5 / 3 4.59 96.8
[규칙 제26조에 의한 보정 04.01.2018] 
이상, 첨부 도면을 참조하면서 본 발명이 바람직한 실시형태에 대해서 상세하게 설명했지만, 본 발명은 이러한 예에 한정되지 않는다. 본 발명이 속하는 기술 분야에 있어서의 통상의 지식을 갖는 자라면, 특허청구의 범위에 기재된 기술적 사상의 범주 내에 있어서, 각종 변경예 또는 수정예에 이를 수 있는 것은 명확해서, 이것들에 대해서도, 당연히 본 발명의 기술적 범위에 속하는 것이라고 이해된다.
[Revision according to Rule 26 04.01.2018]
As mentioned above, although preferred embodiment was described in detail, referring an accompanying drawing, this invention is not limited to this example. Those skilled in the art to which the present invention pertains can clearly see various changes or modifications within the scope of the technical idea described in the claims. It is understood that it belongs to the technical scope of the invention.

Claims (12)

  1. [규칙 제26조에 의한 보정 04.01.2018]
    카르복시기 함유 아크릴 모노머와, 아크릴산 유도체 모노머 및 치환 또는 비치환의 스티렌 중 어느 1종 이상을 포함하는 제1 공중합체 유닛과,
    고분자 아조 개시제의 잔기를 포함하는 제2 공중합체 유닛을 포함하고,
    상기 제1 공중합체 유닛 및 상기 제2 공중합체 유닛의 총 질량에 대한 상기 제2 공중합체 유닛의 질량비가 10∼40질량%인 것을 특징으로 하는 이차전지용 바인더.
    [Revision according to Rule 26 04.01.2018]
    A first copolymer unit comprising any one or more of carboxyl group-containing acrylic monomers, acrylic acid derivative monomers and substituted or unsubstituted styrenes,
    A second copolymer unit comprising residues of a polymeric azo initiator,
    The mass ratio of the said 2nd copolymer unit with respect to the total mass of the said 1st copolymer unit and the said 2nd copolymer unit is 10-40 mass%, The binder for secondary batteries characterized by the above-mentioned.
  2. [규칙 제26조에 의한 보정 04.01.2018]
    제1 항에 있어서,
    상기 카르복시기 함유 아크릴 모노머가 아크릴산, 메타아크릴산, 말레인산, 모노 메틸 말레인산, 2-카르복시에틸 아크릴레이트, 및 2-카르복시에틸 메타크릴레이트로부터 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 이차전지용 바인더.
    [Revision according to Rule 26 04.01.2018]
    According to claim 1,
    The carboxyl group-containing acrylic monomer is at least one member selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, monomethyl maleic acid, 2-carboxyethyl acrylate, and 2-carboxyethyl methacrylate.
  3. [규칙 제26조에 의한 보정 04.01.2018]
    제1 항 또는 제2 항에 있어서,
    상기 아크릴산 유도체 모노머가 니트릴기 함유 아크릴 모노머, 아크릴산 에스테르 및 아크릴아미드로 이루어지는 군으로부터 선택되는 1종 이상 인 것을 특징으로 하는 이차전지용 바인더.
    [Revision according to Rule 26 04.01.2018]
    The method according to claim 1 or 2,
    A secondary battery binder, wherein the acrylic acid derivative monomer is at least one member selected from the group consisting of nitrile group-containing acrylic monomers, acrylic esters, and acrylamides.
  4. [규칙 제26조에 의한 보정 04.01.2018]
    제3 항에 있어서,
    상기 니트릴기 함유 아크릴 모노머가 아크릴로니트릴, 메타아크릴로니트릴, 2-시아노에틸아크릴레이트, 및 2-시아노에틸메타아크릴레이트로부터 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 이차전지용 바인더.
    [Revision according to Rule 26 04.01.2018]
    The method of claim 3, wherein
    The nitrile group-containing acrylic monomer is at least one member selected from the group consisting of acrylonitrile, methacrylonitrile, 2-cyanoethyl acrylate, and 2-cyanoethyl methacrylate.
  5. [규칙 제26조에 의한 보정 04.01.2018]
    제1 항 또는 제2 항에 있어서,
    상기 카르복시기 함유 아크릴 모노머의 적어도 일부가 알칼리 금속 염 또는 암모늄 염인 것을 특징으로 하는 이차전지용 바인더.
    [Revision according to Rule 26 04.01.2018]
    The method according to claim 1 or 2,
    At least a part of the carboxyl group-containing acrylic monomer is an alkali metal salt or an ammonium salt.
  6. [규칙 제26조에 의한 보정 04.01.2018]
    제1 항 또는 제2 항에 있어서,
    상기 제1 공중합체 유닛은 상기 카르복시기 함유 아크릴 모노머로서, 알칼리 금속 염 또는 암모늄 염을 포함하고, 상기 아크릴산유도체 모노머로서, 니트릴기 함유 아크릴 모노머를 포함하는 것을 특징으로 하는 이차전지용 바인더.
    [Revision according to Rule 26 04.01.2018]
    The method according to claim 1 or 2,
    And the first copolymer unit comprises an alkali metal salt or an ammonium salt as the carboxyl group-containing acrylic monomer, and a nitrile group-containing acrylic monomer as the acrylic acid derivative monomer.
  7. [규칙 제26조에 의한 보정 04.01.2018]
    제1 항 또는 제2 항에 있어서,
    상기 제2 공중합체 유닛은 상기 고분자 아조 개시제의 잔기로서, 폴리에테르 및 폴리 실록산 중적어도 1종을 포함하는 것을 특징으로 하는 이차전지용 바인더.
    [Revision according to Rule 26 04.01.2018]
    The method according to claim 1 or 2,
    And the second copolymer unit comprises at least one of polyether and polysiloxane as residues of the polymer azo initiator.
  8. [규칙 제91조에 의한 정정 04.01.2018] 
    제1 항 또는 제2 항에 기재된 이차전지용 바인더를 포함하는 것을 특징으로 하는 이차전지용 바인더 수지 조성물.
    [Correction under Rule 91 04.01.2018]
    The secondary battery binder resin composition of Claim 1 or 2 containing the binder for secondary batteries.
  9. [규칙 제26조에 의한 보정 04.01.2018] 
    제1 항 또는 제2 항에 기재된 이차전지용 바인더를 포함하는 것을 특징으로 하는 이차전지용 전극.
    [Revision according to Rule 26 04.01.2018]
    A secondary battery electrode, comprising the secondary battery binder according to claim 1.
  10. [규칙 제26조에 의한 보정 04.01.2018]
    제9 항에 있어서,
    상기 이차전지용 바인더로서 카르복시메틸셀룰로오스(CMC)을 더욱 포함하는 것을 특징으로 하는 이차전지용 전극.
    [Revision according to Rule 26 04.01.2018]
    The method of claim 9,
    Secondary battery electrode, characterized in that it further comprises carboxymethyl cellulose (CMC) as the secondary battery binder.
  11. [규칙 제26조에 의한 보정 04.01.2018] 
    제9 항 또는 제10 항에 기재된 이차전지용 전극을 구비하는 것을 특징으로 하는 이차전지.
    [Revision according to Rule 26 04.01.2018]
    A secondary battery comprising the secondary battery electrode according to claim 9.
  12. [규칙 제26조에 의한 보정 04.01.2018]
    제11 항에 있어서,
    상기 이차전지용 전극은 음극인 것을 특징으로 하는 이차전지.
    [Revision according to Rule 26 04.01.2018]
    The method of claim 11, wherein
    The secondary battery electrode is a secondary battery, characterized in that the negative electrode.
PCT/KR2017/014554 2016-12-20 2017-12-12 Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery WO2018117519A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780079033.1A CN110088951B (en) 2016-12-20 2017-12-12 Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery
US16/446,361 US11005102B2 (en) 2016-12-20 2019-06-19 Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016246152A JP6813350B2 (en) 2016-12-20 2016-12-20 Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery
JP2016-246152 2016-12-20
KR10-2017-0156533 2017-11-22
KR1020170156533A KR102224023B1 (en) 2016-12-20 2017-11-22 Binder for rechargable battery, binder resin composition for rechargable battery, electrode for rechargable battery, and rechargable battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/446,361 Continuation US11005102B2 (en) 2016-12-20 2019-06-19 Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery

Publications (1)

Publication Number Publication Date
WO2018117519A1 true WO2018117519A1 (en) 2018-06-28

Family

ID=62626654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014554 WO2018117519A1 (en) 2016-12-20 2017-12-12 Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery

Country Status (1)

Country Link
WO (1) WO2018117519A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080074241A (en) * 2007-02-08 2008-08-13 주식회사 엘지화학 Electrode material containing conductive polymer with excellent dispersibility as binder and lithium secondary battery employed with the same
JP2011521405A (en) * 2008-05-02 2011-07-21 オクシス・エナジー・リミテッド Rechargeable battery with lithium cathode
KR20130096138A (en) * 2012-02-21 2013-08-29 삼성에스디아이 주식회사 Lithium battery
US20130236764A1 (en) * 2012-03-07 2013-09-12 Massachusetts Institute Of Technology Rechargeable lithium battery for wide temperature operation
KR20140116190A (en) * 2012-01-11 2014-10-01 미쯔비시 레이온 가부시끼가이샤 Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080074241A (en) * 2007-02-08 2008-08-13 주식회사 엘지화학 Electrode material containing conductive polymer with excellent dispersibility as binder and lithium secondary battery employed with the same
JP2011521405A (en) * 2008-05-02 2011-07-21 オクシス・エナジー・リミテッド Rechargeable battery with lithium cathode
KR20140116190A (en) * 2012-01-11 2014-10-01 미쯔비시 레이온 가부시끼가이샤 Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
KR20130096138A (en) * 2012-02-21 2013-08-29 삼성에스디아이 주식회사 Lithium battery
US20130236764A1 (en) * 2012-03-07 2013-09-12 Massachusetts Institute Of Technology Rechargeable lithium battery for wide temperature operation

Similar Documents

Publication Publication Date Title
WO2017196012A1 (en) Composition for polymer electrolyte and lithium secondary battery comprising same
WO2021235794A1 (en) Secondary battery
WO2017171442A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte produced therefrom, and electrochemical element comprising same
WO2018135889A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021101188A1 (en) Anode and secondary battery comprising same
WO2018131894A1 (en) Secondary battery
WO2019107921A1 (en) Gel polymer electrolyte composition, and gel polymer electrolyte and lithium secondary battery which comprise same
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2019004699A1 (en) Lithium secondary battery
WO2020036336A1 (en) Electrolyte for lithium secondary battery
WO2017171449A1 (en) Gel polymer electrolyte composition, and gel polymer electrolyte
WO2021033987A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2015170786A1 (en) Organic electrolyte and lithium battery employing said electrolyte
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2018135890A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2015064987A1 (en) Lithium secondary battery
WO2022019642A1 (en) Solid polymer electrolyte precursor composition, solid polymer electrolyte and all-solid-state battery comprising same
WO2018131952A1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2021060811A1 (en) Method for manufacturing secondary battery
WO2020222469A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021020805A1 (en) Composite anode active material, manufacturing method of same, anode comprising same, and secondary battery
WO2020149677A1 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including same
WO2017057968A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2019107838A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019151725A1 (en) Lithium secondary battery having improved high-temperature storage characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884622

Country of ref document: EP

Kind code of ref document: A1