WO2018115682A1 - Procédé de détection d'un courant inversé dans une structure de commutation alimentant une charge inductive - Google Patents

Procédé de détection d'un courant inversé dans une structure de commutation alimentant une charge inductive Download PDF

Info

Publication number
WO2018115682A1
WO2018115682A1 PCT/FR2017/053650 FR2017053650W WO2018115682A1 WO 2018115682 A1 WO2018115682 A1 WO 2018115682A1 FR 2017053650 W FR2017053650 W FR 2017053650W WO 2018115682 A1 WO2018115682 A1 WO 2018115682A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
cycl
rap
duty cycle
integration
Prior art date
Application number
PCT/FR2017/053650
Other languages
English (en)
Inventor
Angelo Pasqualetto
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to CN201780078582.7A priority Critical patent/CN110062890B/zh
Priority to US16/470,384 priority patent/US10514427B2/en
Publication of WO2018115682A1 publication Critical patent/WO2018115682A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/14Indicating direction of current; Indicating polarity of voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies

Definitions

  • the present invention relates to a method for detecting an inverted current in a switching structure supplying an inductive load.
  • the switching structure comprising at least one power switch and being adapted to drive a current in the load in a duty cycle, is connected, on the one hand, to a power source and on the other hand to a mass for inductive load control.
  • the present invention finds preferential but nonlimiting applications in the automotive field.
  • the present invention can be implemented, for example, in an electronic circuit incorporating a switching structure such as an H-transistor bridge.
  • a switching structure such as an H-transistor bridge.
  • such an electronic circuit can be used to control the direction and / or or the intensity of the electric current in inductive loads such as electric motors.
  • the supply of an inductive load such as for example an electric motor, generally uses a switching structure such as an H-switch bridge, which is not limiting for the present invention.
  • an H-bridge as switching structure 2 of an inductive load 1 comprises four power switches HS1, HS2, HL1 and HL2, namely two "high” switches HS1, HS2 on the d-side.
  • a positive power supply Vps for example a battery producing a positive supply voltage
  • two "low” switches LS1 and LS2 on the side of a negative power supply or of the mass Mas.
  • Each switch generally comprises a power MOS transistor.
  • the inductive load 1 is connected to the H bridge by the outputs s1 and s2.
  • the amount of current injected into the inductive load delivered by the switching circuit is generally controlled by a sequence of analog control signals of the four switches produced from a setpoint control signal.
  • the command control signal and the analog control signals are generally pulse width modulated signals, also known by the acronym PWM for "Pulse Width Modulation".
  • the inductive load can be controlled in both directions.
  • the inductive load can also be controlled by hashing so as to control the current flowing through the inductive load.
  • the force torque in the inductive load generates an angular acceleration in the case of an electric motor as a load and this results in an angular or linear movement of the inductive load.
  • the inductive load under the effect of the movement, generates a counter-electromotive force proportional to the angular or linear speed of the inductive load.
  • the inductive load can therefore be modeled by an inductance, a resistance and a voltage source that is the counter-electromotive force opposing the supply voltage.
  • the control of the inductive load consists of a control phase where the current from the power supply feeds the inductive load at a given duty cycle and a freewheel phase where the induced current from the inductive load is removed. to the mass.
  • the flow direction of the current as well as the amount of current delivered in the inductive load are dependent on the duty cycle as well as different combinations of states of the analog control signals.
  • An inverted current is likely to be created in the switching structure during a freewheeling phase following a high duty cycle in a previous control phase creating the counter-electromotive force in the inductive load.
  • the supply voltage is no longer applied to the motor and the only source of voltage is the counter-electromotive force created.
  • the inductance of the motor tends to retain the value of the current passing through it, but the counter-electromotive force tends to reverse the direction of the current and actually arrives there if its value is sufficiently high and if the freewheeling time is long enough.
  • the problem underlying the present invention is to detect a current inversion in a switching structure for direct current control of an inductive load during a freewheel phase in the switching structure.
  • the invention relates to a method for detecting an inverted current in a switching structure supplying an inductive load, the switching structure comprising at least one power switch and being adapted to drive a current in the load according to a ratio cyclic, the switching structure being connected, on the one hand, to a power source and, on the other hand, to a ground for inductive load control, the method relating to a control phase where the current from of the power supply feeds the inductive load according to a given duty cycle and a freewheel phase where the induced current from the inductive load is decreasing, the inverted current being able to be created in the switching structure when a freewheeling phase following a high duty cycle in a previous control phase creating a counter-electromotive force in the load Inductive.
  • the method is remarkable in that an approximation of the counter-electromotive force at a given instant is performed as being substantially proportional to the integration of the duty cycle as a function of time, the inverted current being either calculated as a function of the force counter-electromotive estimate or a current reversal criterion being established.
  • the technical effect obtained is to establish a reverse current diagnosis in a simple way by using an approximation that is not strictly accurate.
  • the approximation made is to consider that the counter-electromotive force is similar to the time integration of the duty cycle. It is then possible knowing the counter-electromotive force to calculate the reversed current or to establish an inversion criterion which is less precise than the calculation of the reversed current but easier to implement.
  • the approximation of the back electromotive force is calibrated with respect to the inductive load and an integration coefficient for the duty cycle is defined. Since the method according to the present invention is based on an approximation, it is advantageous to modify the integration of the duty cycle as a function of time in order to bring it closer to the counter-electromotive force.
  • the integration coefficient a may be equal to 0.8 and a time granularity of 5 milliseconds can be defined for the integration of the duty cycle, and one can start with -50% of duty cycle for 40ms before 'apply
  • a slope limit p is estimated on a curve of the integration of the duty cycle and a limit value b corresponding to the slope limit for a temporal granularity is set. according to the equation:
  • the limit b is calibrated according to the selected temporal grain size and the inductive load used as well as the signal frequency of a pulse width modulation.
  • this calculation is made from a mean current expressed as a function of the estimated counter-electromotive force fcem, of the measured voltage of the power source Vps of the cyclic ratio rapp cycl and of the resistance of the circuit R according to the following equation:
  • the invention also relates to a set of an inductive load and its power supply device, the power supply device comprising a switching structure comprising at least one power switch and being associated with a control unit comprising means for controlling a current in the load according to a cyclic ratio of a pulse width modulation, the structure of switching being connected, on the one hand, to a power supply source and, on the other hand, to a mass, characterized in that the assembly implements such a method for detecting an inverted current in the structure switching device, the control unit comprising means for integrating the duty cycle, means for approximating a counter-electromotive force as a function of the integration of the duty cycle, means for calculating the reversed current from the counter-electromotive force approximation or the means for detecting a current inversion according to an inversion criterion stored in the storage means of the control unit, the control unit also comprising means for transmitting current reversal information.
  • the switching structure is an H bridge.
  • FIG. 1 is a schematic representation of a perspective view of an H-bridge as a switching structure, the method for detecting an inverted current according to the present invention being able to be implemented with such a structure,
  • FIG. 2 is a timing diagram including two groups of various curves, the group of upper curves being formed by a signed duty cycle curve, a warning curve and a duty cycle integration curve. while the group of bottom curves is formed of a current intensity curve, a counter-electromotive force curve and an angular position curve, an approximation of the counter-electromotive force being made according to the integration of the duty cycle in the method according to the present invention.
  • FIGS. 3a and 3b show the structure diodes of the switches of FIG. 1, through which the current imposed by the load passes during a dead time, that is to say just after switching.
  • FIGS. 4a and 4b show other compatible switching structures of the invention, respectively half-bridge for FIG. 4a and single switching for FIG. 4b.
  • the present invention relates to a method for detecting an inverted current in a switching structure 2 supplying an inductive load 1.
  • the inductive load 1 may advantageously be an electric motor, more particularly a DC electric motor.
  • FIG. 1 which has already been described in the introductory part of the present application, relates to an H-bridge which is a preferred but non-limiting embodiment of the switching structure 2 implemented in the context of the present invention. Such an H bridge is known from the state of the art.
  • the switching structure 2 comprises at least one power switch HS1, HS2, LS1, LS2 and is adapted to drive a current in the load in a duty cycle.
  • the switching structure 2 is connected, on the one hand, to a power supply source referenced Vps in FIG. 1 and, on the other hand, to a mass Mas.
  • the switching structure 2 makes it possible to carry out a control of the inductive load 1 consisting of a control phase in which the current coming from the power source Vps supplies the inductive load 1 and a free-wheeling phase where the current is generated by the inductive load 1.
  • the current increases during the control phase and decreases during the freewheel phase.
  • An average current is proportional to the duty cycle, which corresponds to the duration of the control phase divided by the period.
  • an inverted current is likely to be created in the switching structure 2 during a freewheel phase following an earlier duty cycle having created a counter-electromotive force fcem in the inductive load 1.
  • an approximation of the counter-electromotive force fcem at a given instant is carried out as being substantially proportional to the integration of the integral duty cycle [Rap cycl] in function time t.
  • the inverted current is then calculated as a function of the estimated counter-electromotive force fcem or a current inversion criterion is established.
  • FIG. 2 two groups of three curves are shown as a function of a time t.
  • the curves of the top of FIG. 2 are a cyclic integration curve referenced integra [Rap cycl] and illustrated by a solid line curve, a signed duty cycle curve, that is to say with the indication the direction of the duty cycle, the sign representing the control direction, referenced rap cycl sign and illustrated by a dashed curve.
  • the third curve is an emission curve of a warning signal representative of a potentially inverted current, referenced Alert and illustrated by a curve with stars.
  • the bottom curves of FIG. 2 are an intensity curve I of the average current expressed in amperes, illustrated by a curve with squares, a counter-electromotive force curve fcem expressed in volts referenced fcem and illustrated by a curve with circles.
  • the third curve is an angular position curve of the inductive load 1, referenced Pos angl and illustrated by a curve with diamonds.
  • the current I is, in the absence of counter-electromotive force fcem, proportional to the duty cycle.
  • the counter-electromotive force fcem is proportional to the angular velocity which is deduced from the integration of the acceleration. Since the acceleration is proportional to the current I, the counter-electromotive force fcem would be proportional to the integration of the integral cyclic ratio [Rap cycl] if the counter-electromotive force fcem was zero, which is not the case and limits therefore the approximation.
  • an integration of the duty cycle of rank n: integra [Rap cycl (n)] is defined by an integration of the preceding duty cycle of rank n-1: integra [Rap cycl (n -1)] and by the cyclic ratio of rank n: rap cycl (n) according to the following equation, where a is the integration coefficient:
  • the integration coefficient a may be equal to 0.8 and a time granularity of 5 milliseconds is defined for the integration of the duty cycle and starts with -50% duty cycle for 40ms before applying + 50% cyclic ratio.
  • the limit b can be calibrated according to the selected temporal grain size and the inductive load used as well as the signal frequency of a pulse width modulation.
  • this calculation is made from a current expressed as a function of the estimated counter-electromotive force fcem, of the measured voltage of the power supply.
  • Vps cycl cycl cyclic ratio and the resistance of the circuit R according to the following equation:
  • Imoyen (rap cycl.Vps - fcem) / R
  • the minimum current is obtained by subtracting an estimated margin obtained by calibration.
  • the maximum current is obtained by adding an estimated margin, and obtained by calibration.
  • the current I is said to be inverted when it changes direction without the duty cycle changing direction. This change of direction is detected by a minimum negative current, when the duty cycle is positive or a maximum positive current when the duty cycle is negative.
  • is the time constant obtained by dividing the inductance of the load by the total resistance of the circuit.
  • the average current is obtained mathematically by integrating the current over a period.
  • the result is the expression already given previously:
  • the third results from a comparison of the slope of the counter-electromotive force.
  • the invention also relates to a set of an inductive load 1 and its power supply device, the power device comprising a switching structure 2 comprising at least one power switch HS1 , HS2, LS1, LS2 and being associated with a control unit comprising means for controlling a current in the load according to a duty cycle of a pulse width modulation. That is, the invention relates to H-bridges, H-half bridges and even simple switches associated with a recirculation diode.
  • FIGS. 4a and 4b show other compatible switching structures of the invention, respectively half-bridge for FIG. 4a and single switching for FIG. 4b.
  • the switching structure 2 is connected, on the one hand, to a source Vps of power supply and, on the other hand, to a mass Mas.
  • the assembly implements a method for detecting an inverted current in the switching structure 2 as previously mentioned.
  • the control unit comprises means of integration of the integral cyclic ratio [Rap cycl], means for approximating a counter-electromotive force fcem as a function of the integration of the integral duty cycle [Rap cycl], means method for calculating the inverted current from the approximation of the counter-electromotive force fcem or the means for detecting a current inversion according to an inversion criterion stored in the memory means of the control unit , the control unit also comprising means for transmitting a current inversion information, according to the signal referenced alert at the top of FIG. 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

La présente invention a pour objet un procédé de détection d'un courant inversé dans une structure de commutation alimentant une charge inductive avec au moins un interrupteur et reliée à une source d'alimentation électrique et à une masse pour une phase de commande où le courant provenant de la source alimente la charge selon un rapport cyclique déterminé et une phase de roue libre où le courant induit provenant de la charge est en décroissance, le courant inversé étant susceptible de se créer lors d'une phase de roue libre suite à un rapport cyclique élevé dans une phase de commande précédente créant une force contre-électromotrice (fcem). Il est effectué une approximation de la fcem proportionnelle à l'intégration du rapport cyclique (intég[Rap cycl]) en fonction du temps (t), le courant inversé étant soit calculé en fonction de la fcem estimée ou un critère d'inversion du courant étant établi.

Description

Procédé de détection d'un courant inversé dans une structure de commutation alimentant une charge inductive
La présente invention concerne un procédé de détection d'un courant inversé dans une structure de commutation alimentant une charge inductive. La structure de commutation comprenant au moins un interrupteur de puissance et étant adaptée pour piloter un courant dans la charge selon un rapport cyclique, est reliée, d'une part, à une source d'alimentation électrique et, d'autre part, à une masse pour une commande de la charge inductive.
La présente invention trouve des applications préférentielles mais non limitatives dans le domaine automobile. La présente invention peut être mise en oeuvre, par exemple, dans un circuit électronique intégrant une structure de commutation telle qu'un pont de transistors en H. Dans l'industrie automobile, un tel circuit électronique peut être utilisé pour commander le sens et/ou l'intensité du courant électrique dans des charges inductives comme par exemple des moteurs électriques.
L'alimentation d'une charge inductive, comme par exemple un moteur électrique, utilise en général une structure de commutation telle qu'un pont d'interrupteurs en H, ce qui n'est pas limitatif pour la présente invention.
Comme montré à la figure 1 , un pont en H en tant que structure de commutation 2 d'une charge inductive 1 comprend quatre interrupteurs de puissance HS1 , HS2, HL1 et HL2, à savoir deux interrupteurs « hauts » HS1 , HS2 du côté d'une alimentation positive Vps, par exemple une batterie produisant une tension d'alimentation positive, et deux interrupteurs « bas » LS1 et LS2 du côté d'une alimentation négative ou de la masse Mas. Chaque interrupteur comprend en général un transistor MOS de puissance. La charge inductive 1 est raccordée au pont en H par les sorties s1 et s2.
La quantité de courant injectée dans la charge inductive délivrée par le circuit de commutation est en général commandée par une séquence de signaux analogiques de commande des quatre interrupteurs produits à partir d'un signal de commande de consigne. Le signal de commande de consigne et les signaux analogiques de commande sont en général des signaux modulés en largeur d'impulsion, aussi connus sous l'acronyme anglo-saxon de PWM pour «Puise Width Modulation».
Grâce à une telle structure de commutation, la charge inductive peut être pilotée dans les deux sens. La charge inductive peut aussi être commandée par hachage de façon à maîtriser le courant traversant la charge inductive.
Lors d'une activation, le couple de forces dans la charge inductive génère une accélération, angulaire dans le cas d'un moteur électrique en tant que charge et il en découle un mouvement, angulaire ou linéaire, de la charge inductive. La charge inductive, sous l'effet du mouvement, engendre une force contre-électromotrice proportionnelle à la vitesse angulaire ou linéaire de la charge inductive. La charge inductive est donc modélisable par une inductance, une résistance et une source de tension qu'est la force contre-électromotrice s'opposant à la tension d'alimentation.
La commande de la charge inductive se compose d'une phase de commande où le courant provenant de la source d'alimentation alimente la charge inductive selon un rapport cyclique déterminé et une phase de roue libre où le courant induit provenant de la charge inductive est évacué vers la masse. Le sens de circulation du courant ainsi que la quantité de courant délivrée dans la charge inductive sont dépendants du rapport cyclique ainsi que de différentes combinaisons d'états des signaux analogiques de commande.
Un courant inversé est susceptible de se créer dans la structure de commutation lors d'une phase de roue libre suite à un rapport cyclique élevé dans une phase de commande précédente créant la force contre-électromotrice dans la charge inductive.
Lors de la phase de roue libre, c'est-à-dire lorsque les deux terminaux du moteur sont reliés par la structure de commutation, par exemple un pont en H, la tension d'alimentation n'est plus appliquée au moteur et la seule source de tension est la force contre-électromotrice créée. L'inductance du moteur tend à conserver la valeur du courant la traversant mais la force contre-électromotrice tend à inverser le sens du courant et y arrive effectivement si sa valeur est suffisamment élevée et si le temps de roue libre est assez long.
Cette inversion du sens du courant par rapport au sens attendu crée, lors des phases de temps mort, une recirculation du courant dans les diodes de structure des interrupteurs. En effet, dans la structure de commutation, à l'occasion d'un hachage, on évite de commander les commutateurs du même côté, c'est-à-dire, en se référant à nouveau à la figure 1 , HS1 et LS1 ou alors HS2 et LS2 en même temps et au contraire on passe par une phase où les deux commutateurs sont ouverts. Cette phase est appelée temps mort. Les figures 3a et 3b reprennent la figure 1 en la complétant des diodes de structure de chacun des transistors de commutation. Ces diodes offrent au courant un chemin, lors de la phase de temps mort. Durant le temps mort, lorsque la charge 1 impose un sens du courant de S1 vers S2, comme représenté à la figure 3a, le potentiel de la sortie S1 est légèrement négatif, et le potentiel de la sortie S2 est légèrement supérieur au potentiel Vps. Durant le temps mort, lorsque la charge 1 impose au contraire un sens du courant de S2 vers S1 , comme représenté à la figure 3b, le potentiel de la sortie S2 est légèrement négatif, et le potentiel de la sortie S1 est légèrement supérieur au potentiel Vps. On peut donc attendre un potentiel légèrement négatif et obtenir un potentiel légèrement au-dessus de Vps et réciproquement, lorsque le courant s'inverse sous l'effet de la force contre-électromotrice. Cet effet peut être perturbant lors de certains diagnostics. C'est pourquoi il est avantageux pour un logiciel de pilotage de reconnaître les cas d'inversion potentielle du courant.
Le problème à la base de la présente invention est de détecter une inversion de courant dans une structure de commutation destinée à piloter en courant continu une charge inductive lors d'une phase de roue libre dans la structure de commutation.
A cet effet l'invention concerne un procédé de détection d'un courant inversé dans une structure de commutation alimentant une charge inductive, la structure de commutation comprenant au moins un interrupteur de puissance et étant adaptée pour piloter un courant dans la charge selon un rapport cyclique, la structure de commutation étant reliée, d'une part, à une source d'alimentation électrique et, d'autre part, à une masse pour une commande de la charge inductive, le procédé concernant une phase de commande où le courant provenant de la source d'alimentation alimente la charge inductive selon un rapport cyclique déterminé et une phase de roue libre où le courant induit provenant de la charge inductive est en décroissance, le courant inversé étant susceptible de se créer dans la structure de commutation lors d'une phase de roue libre suite à un rapport cyclique élevé dans une phase de commande précédente créant une force contre-électromotrice dans la charge inductive. Le procédé est remarquable en ce qu'il est effectué une approximation de la force contre-électromotrice à un instant donné comme étant sensiblement proportionnelle à l'intégration du rapport cyclique en fonction du temps, le courant inversé étant soit calculé en fonction de la force contre- électromotrice estimée ou un critère d'inversion du courant étant établi.
L'effet technique obtenu est d'établir un diagnostic de courant inversé d'une manière simple par l'utilisation d'une approximation qui n'est pas rigoureusement exacte. L'approximation faite est de considérer que la force contre-électromotrice est similaire à l'intégration dans le temps du rapport cyclique. Il est alors possible en connaissant la force contre-électromotrice de calculer le courant inversé ou d'établir un critère d'inversion qui est moins précis que le calcul du courant inversé mais plus facile de mise en oeuvre.
Avantageusement, l'approximation de la force contre-électromotrice est étalonnée par rapport à la charge inductive et il est défini un coefficient d'intégration pour le rapport cyclique. Comme le procédé selon la présente invention repose sur une approximation il est avantageux de modifier l'intégration du rapport cyclique en fonction du temps pour la rapprocher de la force contre-électromotrice.
Avantageusement, une intégration du rapport cyclique de rang n : intég[Rap cycl(n)] est définie par une intégration du rapport cyclique précédent de rang n-1 : intég[Rap cycl(n-1 )] et par le rapport cyclique de rang n rap cycl(n) selon l'équation suivante, a étant le coefficient d'intégration, compris entre 0 et 1 : lntég[Rap cycl(n)] = a. intég[Rap cycl(n-1 )] + (1 -a). rap cycl(n) Le premier élément de la série lntég[Rap cycl(n)] est nul, c'est-à-dire que :
lntég[Rap cycl(O)] = 0
Notons que le rapport cyclique est signé, c'est-à-dire que la direction correspond au signe et que Rap cycl(n) varie donc entre -1 et +1 .
Par exemple, le coefficient d'intégration a peut être égal à 0,8 et il peut être défini une granularité temporelle de 5 millisecondes pour l'intégration du rapport cyclique, et on peut commencer par -50% de rapport cyclique pendant 40ms avant d'appliquer
+50% de rapport cyclique.
Avantageusement, quand un critère d'inversion du courant est établi, il est estimé une limite de pente p sur une courbe de l'intégration du rapport cyclique et il est fixé une valeur limite b correspondant à la limite de pente pour une granularité temporelle g selon l'équation :
b = p. g
il est ensuite défini un critère d'inversion de courant relatif à une différence entre l'intégration du rapport cyclique de rang n : intég[Rap cycl(n)] et l'intégration du rapport cyclique de rang n-1 : intég[Rap cycl(n-1 )] et,
quand cette différence est inférieure à : -b pour une intégration du rapport cyclique positif soit :
lntég[Rap cycl (n)] - intég[Rap cycl(n-1 )] < -b
ou quand cette différence est supérieure à -ι-b pour une intégration du rapport cyclique négatif soit :
lntég[Rap cycl (n)] - intég[Rap cycl(n-1 )] > +b
il est estimé qu'une inversion de courant est effective.
Avantageusement, la limite b est calibrable selon la granulométrie temporelle sélectionnée et selon la charge inductive utilisée ainsi que de la fréquence du signal d'une modulation en largeur d'impulsion.
Avantageusement, quand le courant I inversé est calculé, ce calcul se fait à partir d'un courant moyen exprimé en fonction de la force contre-électromotrice estimée fcem, du voltage mesuré de la source d'alimentation Vps du rapport cyclique rapp cycl et de la résistance du circuit R selon l'équation suivante :
I moyen = (rap cycl . Vps - fcem)/R
L'invention concerne aussi un ensemble d'une charge inductive et de son dispositif d'alimentation électrique, le dispositif d'alimentation comprenant une structure de commutation comprenant au moins un interrupteur de puissance et étant associée à une unité de commande comprenant des moyens de pilotage d'un courant dans la charge selon un rapport cyclique d'une modulation en largeur d'impulsion, la structure de commutation étant reliée, d'une part, à une source d'alimentation électrique et, d'autre part, à une masse, caractérisé en ce que l'ensemble met en œuvre un tel procédé de détection d'un courant inversé dans la structure de commutation, l'unité de commande comprenant des moyens d'intégration du rapport cyclique, des moyens d'approximation d'une force contre-électromotrice en fonction de l'intégration du rapport cyclique, des moyens de calcul du courant inversé à partir de l'approximation de la force contre- électromotrice ou des moyens de détection d'une inversion de courant en fonction d'un critère d'inversion conservé dans des moyens de mémorisation de l'unité de commande, l'unité de commande comprenant aussi des moyens d'émission d'une information d'inversion de courant.
Avantageusement, la structure de commutation est un pont en H.
Des détails et avantages de la présente invention apparaîtront mieux dans la description qui suit, faite en référence au dessin schématique annexé sur lequel :
- la figure 1 est une représentation schématique d'une vue en perspective d'un pont en H en tant que structure de commutation, le procédé de détection d'un courant inversé selon la présente invention pouvant être mis en œuvre avec une telle structure,
- la figure 2 est un diagramme temporel incluant deux groupes de diverses courbes, le groupe des courbes du haut étant formé d'une courbe de rapport cyclique signé, d'une courbe d'alerte et d'une courbe d'intégration du rapport cyclique tandis que le groupe des courbes du bas est formé d'une courbe d'intensité du courant, d'une courbe de force contre-électromotrice et d'une courbe de position angulaire, une approximation de la force contre-électromotrice étant faite en fonction de l'intégration du rapport cyclique dans le procédé selon la présente invention.
- les figures 3a et 3b représentent les diodes de structure des commutateurs de la figure 1 , à travers lesquelles passe le courant imposé par la charge lors d'un temps mort, c'est-à-dire juste après une commutation.
- les figures 4a et 4b représentent d'autres structures de commutation compatibles de l'invention, respectivement en demi-pont pour la figure 4a et en simple commutation pour la figure 4b.
En se référant aux figures 1 et 2, la présente invention concerne un procédé de détection d'un courant inversé dans une structure de commutation 2 alimentant une charge inductive 1 . La charge inductive 1 peut avantageusement être un moteur électrique, plus particulièrement un moteur électrique à courant continu. La figure 1 qui a déjà été décrite dans la partie introductive de la présente demande est relative à un pont en H qui est une forme de réalisation préférentielle mais non limitative de la structure de commutation 2 mise en œuvre dans le cadre de la présente invention. Un tel pont en H est connu de l'état de la technique.
De manière générale, la structure de commutation 2 comprend au moins un interrupteur de puissance HS1 , HS2, LS1 , LS2 et est adaptée pour piloter un courant dans la charge selon un rapport cyclique. La structure de commutation 2 est reliée, d'une part, à une source d'alimentation électrique référencée Vps à la figure 1 et, d'autre part, à une masse Mas.
La structure de commutation 2 permet d'effectuer une commande de la charge inductive 1 se composant d'une phase de commande où le courant provenant de la source d'alimentation Vps alimente la charge inductive 1 et une phase de roue libre où le courant est généré par la charge inductive 1 . Le courant croît lors de la phase de commande et décroît lors de la phase de roue libre. Un courant moyen est proportionnel au rapport cyclique, lequel correspond à la durée de la phase de commande divisée par la période.
Comme précédemment mentionné, un courant inversé est susceptible de se créer dans la structure de commutation 2 lors d'une phase de roue libre suite à un rapport cyclique antérieur ayant créé une force contre-électromotrice fcem dans la charge inductive 1 .
Selon l'invention, et en se référant plus particulièrement à la figure 2, il est effectué une approximation de la force contre-électromotrice fcem à un instant donné comme étant sensiblement proportionnelle à l'intégration du rapport cyclique intég[Rap cycl] en fonction du temps t. Le courant inversé est alors calculé en fonction de la force contre-électromotrice fcem estimée ou un critère d'inversion du courant est établi.
A la figure 2, il est montré deux groupes de trois courbes en fonction d'un temps t. Les courbes du haut de la figure 2 sont une courbe d'intégration de rapport cyclique référencée intég[Rap cycl] et illustrée par une courbe en trait plein, une courbe de rapport cyclique signé, c'est-à-dire avec l'indication du sens du rapport cyclique, le signe représentant la direction de commande, référencée rap cycl sign et illustrée par une courbe en pointillés. Enfin, la troisième courbe est une courbe d'émission d'un signal d'alerte représentatif d'un courant potentiellement inversé, référencée Alert et illustrée par une courbe avec des étoiles.
Les courbes du bas de la figure 2 sont une courbe d'intensité I du courant moyen exprimé en ampères, illustrée par une courbe avec des carrés, une courbe de force contre-électromotrice fcem exprimée en Volts référencée fcem et illustrée par une courbe avec des cercles. La troisième courbe est une courbe de position angulaire de la charge inductive 1 , référencée Pos angl et illustrée par une courbe avec des losanges.
A la figure 2, il est visible que la courbe d'intégration de rapport cyclique référencée intég[Rap cycl] s'apparente à la courbe de force contre-électromotrice fcem. Cette similitude entre les deux courbes peut être renforcée en étalonnant par le choix du coefficient d'intégration a pour le rapport cyclique.
Cette approximation n'est cependant pas exacte et ne peut être réellement considérée comme une égalité entre la courbe d'intégration de rapport cyclique intég[Rap cycl] et la courbe de force contre-électromotrice fcem. En considérant que le courant moyen dépend linéairement du rapport cyclique et de la force contre-électromotrice, ce qui est assez juste, on obtient un jeu d'équations:
lmoyen(t) = a rap _ cycl(t) - β fcemif)
fcem(t) = k vitesse(t)
vitesse{i) = ^acceleration(t) dt
acceleration{t) = γ· \moyen(t)
=> fcem(t) - k - Γ rap _cycl(t) dt - k β γ- fcemif) dt
J P0
La relation finale aboutit sur une équation différentielle où figurent des constantes α, β, γ, k et non à une intégration du rapport cyclique intég[Rap cycl] selon l'équation suivante avec λ étant une constante :
=> fcemif) - λ · f rap _ cyclif) · dt
J0
Car ceci suppose l'annulation du coefficient β, ce qui n'est pas vrai. On se ramènera pourtant à cette approximation et l'étalonnage permettra d'obtenir un résultat satisfaisant malgré cette inexactitude mathématique.
Le courant I est, en l'absence de force contre-électromotrice fcem, proportionnel au rapport cyclique. La force contre-électromotrice fcem est proportionnelle à la vitesse angulaire laquelle est déduite de l'intégration de l'accélération. Comme l'accélération est proportionnelle au courant I, la force contre-électromotrice fcem serait proportionnelle à l'intégration du rapport cyclique intég[Rap cycl] si la force contre- électromotrice fcem était nulle, ce qui n'est pas le cas et limite donc l'approximation.
Ceci démontre une relation avec l'intégration du rapport cyclique intég[Rap cycl] et en même temps l'impossibilité d'une stricte proportionnalité avec cette intégration puisque la force contre-électromotrice fcem réduit le courant I.
Il s'agit d'adapter la courbe d'intégration de rapport cyclique intég[Rap cycl] pour créer un signal qui ressemble le plus possible à celui de la force contre- électromotrice fcem. Ceci peut se faire en réglant le niveau d'intégration pour un maximum de ressemblance avec la force contre-électromotrice fcem. Il est donc nécessaire de caler d'abord le modèle de simulation sur le moteur électrique considéré et ensuite de doser un coefficient d'intégration.
C'est pour cela qu'un étalonnage et un coefficient d'intégration sont nécessaires pour effectuer une correction de la courbe d'intégration de rapport cyclique intég[Rap cycl] Cependant il peut être considéré que cette approximation est suffisante pour donner une estimation valide de la force contre-électromotrice fcem.
A la figure 2, la courbe de courant I a traversé l'axe de courant nul sans pour autant que la direction du rapport cyclique n'ait changé avec donc un même signe du rapport cyclique signé rap cycl sign. Ceci traduit une inversion de courant I.
Au milieu de la courbe de courant I en prenant comme référence l'échelle du temps t, le courant change I de direction mais en accord avec le changement de signe du rapport cyclique rap cycl sign de commande. Il n'y a pas dans ce cas là d'inversion du courant par rapport au sens attendu.
Dans un premier mode préférentiel de réalisation de la présente invention, une intégration du rapport cyclique de rang n : intég[Rap cycl(n)] est défini par une intégration du rapport cyclique précédent de rang n-1 : intég[Rap cycl(n-1 )] et par le rapport cyclique de rang n : rap cycl(n) selon l'équation suivante, a étant le coefficient d'intégration :
lntég[Rap cycl(n)] = a. intég[Rap cycl(n-1 )] + (1 -a), rap cycl(n)
Par exemple, le coefficient d'intégration a peut être égal à 0,8 et il est défini une granularité temporelle de 5 millisecondes pour l'intégration du rapport cyclique et on commence par -50% de rapport cyclique pendant 40ms avant d'appliquer +50% de rapport cyclique.
Pour cet exemple, la série obtenue est, pour les premiers éléments:
Figure imgf000010_0001
Quand un critère d'inversion du courant est établi, il peut être estimé une pente p sur une courbe de l'intégration du rapport cyclique intég[Rap cycl(n)] et il peut être fixé une limite b sur la pente pour une granularité temporelle g selon l'équation :
b = p. g Il peut être ensuite défini un critère d'inversion de courant relatif à une différence entre l'intégration du rapport cyclique de rang n intég[Rap cycl(n)] et l'intégration du rapport cyclique de rang n-1 intég[Rap cycl(n-1 )].
Quand cette différence est inférieure à -b pour une intégration du rapport cyclique positif soit :
lntég[Rap cycl (n)] - intég[Rap cycl(n-1 )] < -b
ou quand cette différence est supérieure à +b pour une intégration du rapport cyclique négatif soit :
lntég[Rap cycl (n)] - intég[Rap cycl(n-1 )]> +b
il est estimé qu'une inversion de courant est effective.
La limite b peut être calibrable selon la granulométrie temporelle sélectionnée et selon la charge inductive utilisée ainsi que de la fréquence du signal d'une modulation en largeur d'impulsion.
Dans un deuxième mode préférentiel de la présente invention, pour lequel le courant I inversé est calculé, ce calcul se fait à partir d'un courant exprimé en fonction de la force contre-électromotrice estimée fcem, du voltage mesuré de la source d'alimentation Vps du rapport cyclique rap cycl et de la résistance du circuit R selon l'équation suivante :
Imoyen = (rap cycl.Vps - fcem)/R
Pour un rapport cyclique positif, le courant minimum est obtenu en soustrayant une marge estimée et obtenue par calibration.
Pour un rapport cyclique négatif, le courant maximum est obtenu en ajoutant une marge estimée, et obtenue par calibration.
Le courant I étant dit inversé quand il change de sens sans que le rapport cyclique ne change de sens. Ce changement de sens est détecté par un courant minimum négatif, lorsque le rapport cyclique est positif ou un courant maximum positif lorsque le rapport cyclique est négatif.
Cette expression donne en fait un courant moyen. Lorsque celui-ci est suffisamment proche de 0, il peut y avoir, en fin de roue libre, une inversion du sens de courant. Pour connaître le courant à tout instant, il faudrait faire un calcul bien moins simple détaillé si après.
En utilisant une période, avec tO pour le temps en début de période, l'équation du courant lors de l'activation est :
Figure imgf000011_0001
Où ζ est la constante de temps obtenue en divisant l'inductance de la charge par la résistance totale du circuit. Lors de la phase de roue libre, à partir du temps t1 =t0+ rap cycl . période, l'équation du courant est :
Figure imgf000012_0001
Ainsi le courant prend sa valeur minimum à l'instant t2, à la fin de la phase de roue libre.
t2=t0+période
Figure imgf000012_0002
Le courant moyen s'obtient mathématiquement en intégrant le courant sur une période. Le résultat est l'expression déjà donnée précédemment :
I moyen = (rap cycl . Vps - fcem)/R
Trois façons d'utiliser la valeur de force contre électromotrice apparaissent: La première s'effectue par un calcul précis suivant la formule :
Im inimum =
Figure imgf000012_0003
La deuxième s'effectue par un calcul simplifié utilisant :
I moyen = (rap cycl . Vps - fcem)/R
et une marge de courant correspondant à l'écart estimé entre le courant moyen et le courant minimum.
La troisième résulte d'une comparaison sur la pente de la force contre- électromotrice.
Les deux dernières façons sont avantageuses pour une plus grande simplicité de calcul. Comme la valeur de la force contre-électromotrice est dépendante de la charge, il faut de toute façon procéder par étalonnage et l'étalonnage est susceptible de compenser des approximations dans les formules.
En se référant aux figures 1 et 2, l'invention concerne aussi un ensemble d'une charge inductive 1 et de son dispositif d'alimentation électrique, le dispositif d'alimentation comprenant une structure de commutation 2 comprenant au moins un interrupteur de puissance HS1 , HS2, LS1 , LS2 et étant associée à une unité de commande comprenant des moyens de pilotage d'un courant dans la charge selon un rapport cyclique d'une modulation en largeur d'impulsion. C'est-à-dire que l'invention concerne les ponts en H, les demi-ponts en H et même de simples commutateurs associés à une diode de recirculation. Par exemple et non limitativement, les figures 4a et 4b représentent d'autres structures de commutation compatibles de l'invention, respectivement en demi-pont pour la figure 4a et en simple commutation pour la figure 4b.
La structure de commutation 2 est reliée, d'une part, à une source Vps d'alimentation électrique et, d'autre part, à une masse Mas.
L'ensemble met en œuvre un procédé de détection d'un courant inversé dans la structure de commutation 2 tel que précédemment mentionné. L'unité de commande comprend des moyens d'intégration du rapport cyclique intég[Rap cycl], des moyens d'approximation d'une force contre-électromotrice fcem en fonction de l'intégration du rapport cyclique intég[Rap cycl], des moyens de calcul du courant inversé à partir de l'approximation de la force contre-électromotrice fcem ou des moyens de détection d'une inversion de courant en fonction d'un critère d'inversion conservé dans des moyens de mémorisation de l'unité de commande, l'unité de commande comprenant aussi des moyens d'émission d'une information d'inversion de courant, selon le signal référencé alert en haut de la figure 2.

Claims

REVENDICATIONS
1. Procédé de détection d'un courant inversé dans une structure de commutation (2) alimentant une charge inductive (1 ), la structure de commutation (2) comprenant au moins un interrupteur de puissance (HS1 , HS2, LS1 , LS2) et étant adaptée pour piloter un courant dans la charge selon un rapport cyclique, la structure de commutation (2) étant reliée, d'une part, à une source d'alimentation (Vps) électrique et, d'autre part, à une masse (mas) pour une commande de la charge inductive (1 ), le procédé concernant une phase de commande où le courant provenant de la source d'alimentation (Vps) alimente la charge inductive (1 ) selon un rapport cyclique déterminé et une phase de roue libre où le courant induit provenant de la charge inductive (1 ) est en décroissance, le courant inversé étant susceptible de se créer dans la structure de commutation (2) lors d'une phase de roue libre suite à un rapport cyclique élevé dans une phase de commande précédente créant une force contre- électromotrice (fcem) dans la charge inductive (1 ), caractérisé en ce qu'il est effectué une approximation de la force contre-électromotrice (fcem) à un instant donné comme étant sensiblement proportionnelle à l'intégration du rapport cyclique (intég[ Rap cycl]) en fonction du temps (t), le courant inversé étant soit calculé en fonction de la force contre-électromotrice (fcem) estimée ou un critère d'inversion du courant étant établi.
2. Procédé selon la revendication 1 , dans lequel l'approximation de la force contre-électromotrice (fcem) est étalonnée par rapport à la charge inductive (1 ) et il est défini un coefficient d'intégration pour le rapport cyclique.
3. Procédé selon la revendication 2, dans lequel une intégration du rapport cyclique de rang n intég[Rap cycl(n)] est définie par une intégration du rapport cyclique précédent de rang n-1 : intég[Rap cycl(n-1 )] et par le rapport cyclique de rang n rap cycl(n) selon l'équation suivante, a étant le coefficient d'intégration :
lntég[Rap cycl(n)] = a. intég[Rap cycl(n-1 )] + (1 -a), rap cycl(n)
4. Procédé selon la revendication 3, dans lequel, quand un critère d'inversion du courant est établi, il est estimé une limite de pente p sur une courbe de l'intégration du rapport cyclique (intég[Rap cycl]) et il est fixé une valeur limite b correspondant à la limite de pente pour une granularité temporelle g selon l'équation :
b = p. g
il est ensuite défini un critère d'inversion de courant relatif à une différence entre l'intégration du rapport cyclique de rang n intég. Rap cycl (n) et l'intégration du rapport cyclique de rang n-1 : intég[Rap cycl(n-1 )] et, quand cette différence est inférieure à -b pour une intégration du rapport cyclique positif soit : lntég[Rap cycl (n)] - intég[Rap cycl(n-1 )] < -b ou quand cette différence est supérieure à +b pour une intégration du rapport cyclique négatif soit :
lntég[Rap cycl (n)] - intég[Rap cycl(n-1 )] > +b il est estimé qu'une inversion de courant est effective.
5. Procédé selon la revendication précédente, dans lequel la limite b est calibrable selon la granulométrie temporelle sélectionnée et selon la charge inductive utilisée ainsi que de la fréquence du signal d'une modulation en largeur d'impulsion.
6. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel, quand le courant I inversé est calculé, ce calcul se fait à partir d'un courant exprimé en fonction de la force contre-électromotrice estimée fcem, du voltage mesuré de la source d'alimentation Vps du rapport cyclique rap cycl et de la résistance du circuit R selon l'équation suivante :
I = (rap cycl. Vps - fcem)/R
7. Ensemble d'une charge inductive (1 ) et de son dispositif d'alimentation électrique, le dispositif d'alimentation comprenant une structure de commutation (2) comprenant au moins un interrupteur de puissance (HS1 , HS2, LS1 , LS2) et étant associée à une unité de commande comprenant des moyens de pilotage d'un courant dans la charge selon un rapport cyclique d'une modulation en largeur d'impulsion, la structure de commutation (2) étant reliée, d'une part, à une source d'alimentation (Vps) électrique et, d'autre part, à une masse (mas), caractérisé en ce que l'ensemble met en œuvre un procédé de détection d'un courant inversé dans la structure de commutation (2) selon l'une quelconque des revendications précédentes, l'unité de commande comprenant des moyens d'intégration du rapport cyclique (intég[Rap cycl)], des moyens d'approximation d'une force contre-électromotrice (fcem) en fonction de l'intégration du rapport cyclique (intég[Rap cycl)], des moyens de calcul du courant inversé à partir de l'approximation de la force contre- électromotrice (fcem) ou des moyens de détection d'une inversion de courant en fonction d'un critère d'inversion conservé dans des moyens de mémorisation de l'unité de commande, l'unité de commande comprenant aussi des moyens d'émission d'une information d'inversion de courant.
8. Ensemble selon la revendication précédente, dans lequel la structure de commutation (2) est un pont en H.
PCT/FR2017/053650 2016-12-20 2017-12-18 Procédé de détection d'un courant inversé dans une structure de commutation alimentant une charge inductive WO2018115682A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780078582.7A CN110062890B (zh) 2016-12-20 2017-12-18 换向结构中的反向电流的检测方法和相关组件
US16/470,384 US10514427B2 (en) 2016-12-20 2017-12-18 Method for detecting a reverse current in a switching structure supplying an inductive load

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662850 2016-12-20
FR1662850A FR3060759B1 (fr) 2016-12-20 2016-12-20 Procede de detection d'un courant inverse dans une structure de commutation alimentant une charge inductive

Publications (1)

Publication Number Publication Date
WO2018115682A1 true WO2018115682A1 (fr) 2018-06-28

Family

ID=58547596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053650 WO2018115682A1 (fr) 2016-12-20 2017-12-18 Procédé de détection d'un courant inversé dans une structure de commutation alimentant une charge inductive

Country Status (4)

Country Link
US (1) US10514427B2 (fr)
CN (1) CN110062890B (fr)
FR (1) FR3060759B1 (fr)
WO (1) WO2018115682A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644484A (en) * 1994-07-19 1997-07-01 Sgs-Thomson Microelectronics Pte Ltd. Bidirectional load current sense circuit for a H-bridge
DE102016100438A1 (de) * 2015-01-21 2016-07-21 Ford Global Technologies, Llc Leistungs-Stromrichter mit Vorkompensation für Totzeiteneinsatz
US20160352262A1 (en) * 2015-05-25 2016-12-01 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657219A (en) * 1995-08-29 1997-08-12 Crown International, Inc. Opposed current power converter
CN101078742A (zh) * 2007-06-29 2007-11-28 建德市正达电器有限公司 一种正负脉冲电流的测量方法
JP5265931B2 (ja) * 2008-01-16 2013-08-14 矢崎総業株式会社 電力供給装置
GB2512078A (en) * 2013-03-19 2014-09-24 Control Tech Ltd Control system for multi-phase rotary machines
CN103454481B (zh) * 2013-09-10 2015-10-28 深圳市英威腾电气股份有限公司 一种boost电感电流采样校正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644484A (en) * 1994-07-19 1997-07-01 Sgs-Thomson Microelectronics Pte Ltd. Bidirectional load current sense circuit for a H-bridge
DE102016100438A1 (de) * 2015-01-21 2016-07-21 Ford Global Technologies, Llc Leistungs-Stromrichter mit Vorkompensation für Totzeiteneinsatz
US20160352262A1 (en) * 2015-05-25 2016-12-01 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method

Also Published As

Publication number Publication date
US20190310323A1 (en) 2019-10-10
CN110062890A (zh) 2019-07-26
CN110062890B (zh) 2022-09-06
US10514427B2 (en) 2019-12-24
FR3060759B1 (fr) 2019-05-10
FR3060759A1 (fr) 2018-06-22

Similar Documents

Publication Publication Date Title
EP1881594B1 (fr) Procédé d&#39;ajustement de paramètres d&#39;un moteur synchrone et variateur de vitesse utilisant un tel procédé
FR2894735A1 (fr) Generateur-moteur synchrone a enroulement de champ
FR2901647A1 (fr) Dispositif et procede de commande de puissance pour une machine dynamo electrique du type a enroulement de champ
FR2871771A1 (fr) Appareil de commande de servo-direction electrique et procede d&#39;ajustement du decalage de courant electrique d&#39;entrainement dans cet appareil de commande
EP3229366B1 (fr) Procédé de commande d&#39;un moteur électrique asynchrone
EP1820265B1 (fr) Procede de commande d&#39;un ensemble d&#39;entrainement de vehicule a moteur thermique
EP1820264A1 (fr) Procede de commande pour un fonctionnement en mode courant continu d&#39;un ensemble d&#39;entrainement de vehicule a moteur thermique
EP2870018B1 (fr) Procédé de commande d&#39;un groupe motopropulseur et système correspondant
EP3221958B1 (fr) Procédé de commande d&#39;une machine électrique synchrone à rotor bobiné
WO2018115682A1 (fr) Procédé de détection d&#39;un courant inversé dans une structure de commutation alimentant une charge inductive
FR3115425A1 (fr) Procédé et système de contrôle d’une machine électrique déterminant des consignes de courant optimales
EP1484835B1 (fr) Procédé et système de régulation du couple électromagnétique instantané, et support d&#39;enregistrement pour la mise en oeuvre du procédé
EP2403119B1 (fr) Procédé de commande et système pour compenser les temps-morts dans une commande MLI
EP2659579A1 (fr) Systeme de commande d&#39;un onduleur de tension alimentant un moteur electrique multiphase de vehicule automobile
EP3672059B1 (fr) Adaptation de la décélération d&#39;un moteur en fonction d&#39;une tension redressée moyenne
EP3555652A1 (fr) Procede de compensation dynamique de l&#39;erreur d&#39;offset d&#39;une chaine d&#39;acquisition comportant un capteur de courant
FR2832872A1 (fr) Unite de commande de moteur triphase sans balai avec possibilite de compensation dynamique du courant mesure
WO2024042241A1 (fr) Système de pilotage destiné à un moteur sans balai polyphasé dépourvu de capteur de position
FR2909816A1 (fr) Appareil de commande de generateur de courant alternatif (ca) pour vehicule
FR2855808A1 (fr) Equipement electro-hydraulique de direction assistee
EP3881424A1 (fr) Procede de commande pour convertisseur de puissance, systeme et dispositif associes
EP4101065B1 (fr) Procédé d&#39;estimation du couple électromagnétique d&#39;une machine électrique synchrone
FR2933249A1 (fr) Procede de reglage de la boucle de vitesse d&#39;un variateur de vitesse
WO2023117402A1 (fr) Procede et systeme de commande d&#39;une machine electrique pilotee par un onduleur pourvu de plusieurs bras de commutation
EP3128667B1 (fr) Procédé de commande pour le démarrage d&#39;un moteur électrique synchrone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17828961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17828961

Country of ref document: EP

Kind code of ref document: A1