WO2018115543A1 - Method and device for biometric authentication by means of blink recognition - Google Patents

Method and device for biometric authentication by means of blink recognition Download PDF

Info

Publication number
WO2018115543A1
WO2018115543A1 PCT/ES2017/070148 ES2017070148W WO2018115543A1 WO 2018115543 A1 WO2018115543 A1 WO 2018115543A1 ES 2017070148 W ES2017070148 W ES 2017070148W WO 2018115543 A1 WO2018115543 A1 WO 2018115543A1
Authority
WO
WIPO (PCT)
Prior art keywords
blink
subject
eyelid
blinking
eye
Prior art date
Application number
PCT/ES2017/070148
Other languages
Spanish (es)
French (fr)
Inventor
Julián ESPINOSA TOMÁS
Begoña DOMENECH AMIGOT
Carmen VAZQUEZ FERRI
Jorge PÉREZ RODRIGUEZ
David MAS CANDELA
Original Assignee
Universidad De Alicante
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alicante filed Critical Universidad De Alicante
Publication of WO2018115543A1 publication Critical patent/WO2018115543A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00

Definitions

  • the object of the present invention is a method and a device for the authentication of the identity of a human being from the recognition of the blink of said human being in a previously recorded video sequence.
  • Biometric authentication is the automatic study for the unique recognition of humans based on one or more biometric identifiers that are classified as behavioral traits or physiological traits [Jain, A ⁇ il K .; Ross, Arun (2008). "Introduction to Biometrics.” In Jain, AK; Flynn; Ross, A. Handbook of Biometrics. Springer pp. 1-22. ISBN 978-0-387-71040-2].
  • the physiological features are related to intrinsic physical characteristics of the body, such as the fingerprint, veins or fingerprint of the palm, face, DNA, iris, retina, electroencephalogram (EEG) or electrocardiogram (ECG).
  • EEG electroencephalogram
  • ECG electrocardiogram
  • behavioral traits are related to a person's pattern of behavior, such as the rhythm of writing, signature or voice.
  • the characteristics of the blink that have been studied the most are the frequency and duration due to their relationship with mental states such as fatigue, attention spans and stress.
  • the determination of the beginning and end of the blink is usually addressed by defining precalibrated thresholds.
  • some method that accurately calculates or determines the end of the blinking is unknown [F. VanderWerf, P. Brassinga, D. Reits, M. Aramideh, and B. O. de Visser, "Eyelid Movements: Behavioral Studies of Blinking in Humans Under Different Stimulus Conditions," Journal of Neurophysiology, 89, pp. 2784-2796 (2003)].
  • the present invention analyzes the intensity changes captured by a digital camera of the light diffused by the eye and its corresponding eyelid when blinking. These changes are directly related to eyelid displacement. From the variation of the eyelid position over time, it is an object of the present invention to calculate a plurality of physical parameters that characterize the kinematics and dynamics of the flickering. These parameters are used to identify each subject in a classification process.
  • the blinking is a temporary closure of both eyes and involves the movement of the upper and lower eyelids. From a physiological point of view, the blinking keeps the eye hydrated, which allows the distribution of the tear film over the ocular surface, protecting it against external objects. Eyelid movements require simple neural commands and few active forces. Flickering represents a normal phenomenon easily observable and accessible, which reflects the processes of central nervous system activation without voluntary manipulation. Thus, its analysis allows to find any abnormality and if it is derived from a muscular or neuronal abnormality.
  • Flickering is one of the fastest human reflexes (300-400 ms) therefore, to obtain parameters that properly characterize it from a video, a camera with a capture rate according to that duration is necessary.
  • This camera in a particular embodiment is a commercial camera, and in another particular embodiment is a camera of a portable electronic device, such as a mobile phone or equivalent, as long as the capture rate is at least 150 frames per second (fps).
  • the intensity of the light diffused by the frontally illuminated eyelid varies depending on its position, being maximum when the eyelid is closed and minimal when it is open. Thus, in a recorded video of a blinking subject, this variation will be reflected as changes in the intensity of the recorded light.
  • the intensity of the light diffused by the eyelid can be estimated by adding the gray levels of the pixels of the area of interest around each eye. Blinks will appear as peaks in the intensity profile [D. Mas, B. Domenech, J. Espinosa, J. Pérez, C. Hernández, and C. Illueca, "Noninvasive measurement of eye retraction during blinking," Optics Letters 35, 1884 (2010)].
  • each blink is isolated and adjusted to a smoothed spline curve to eliminate the effect of noise.
  • the first and second derivative with respect to the time of this curve are related, respectively, to the speed (first derivative) and the acceleration (second derivative) and its product is proportional to the power developed by the muscles responsible for the blinking. These curves are used to determine different kinematic and dynamic parameters that characterize the blink of each individual.
  • the kinematic and dynamic parameters obtained are suitable for the biometric authentication of a human being through classification algorithms, since they describe physiological features related to flickering.
  • Classification is a type of supervised machine learning based on a set of training data containing observations whose membership in a category is previously established.
  • the classification algorithms take advantage of the discriminant information of that training set and learn to classify a new observation in one of the categories or classes.
  • the technical problem that is solved at this stage of the method is the assignment of a blink, ie a new observation, to a class selected from a plurality of classes, ie the subjects, that is, the technical problem that is Solve is a multi-class classification.
  • the extraction of a set of characteristic parameters that are capable of preserving the discriminant information of each subject allows a new observation of a blink to be assigned to one of the subjects that make up the training set by classification.
  • LDA and QDA linear and quadratic discriminant analysis
  • KNN K-Nearest Neighbors
  • CT Classification Tree
  • NCC Normalized Cross Correlation
  • FIG. 1 shows a scheme of the elements involved in capturing a scene.
  • FIG. 2 shows a scheme detailing the selection of a region of interest in each frame and how intensity varies over time in a blink in that region of interest.
  • FIG. 3 shows the normalized power curve obtained for an example blink. The intersections with zero, the local maximums and minimums and the areas under the curve between intersections are used to define characteristic parameters of the blinking.
  • FIG. 4 shows the normalized velocity and acceleration curves for an example blink. Local highs and lows and the areas under the curve between intersections are used to define characteristic parameters of the flickering.
  • FIG. 5 shows the eyelid displacement curve for an example blink.
  • the first stage of the method object of the present invention consists in the recording of different sequences by means of a video camera with a capture speed greater than 150 fps, and where the subjects that they form the set of classes to identify blink.
  • a scheme of the capture system configuration is shown in FIG. 1.
  • a camera (2) with a capture rate greater than 150 fps records a sequence (3) of undetermined duration in which the subject (1) flashes.
  • the eyelid appears in a different position. The measurement is carried out without contact with the subject (1) and can even be done unconsciously for the subject, which facilitates the use of the invention in applications where it is not necessary to require the collaboration of the subject (1).
  • a region of rectangular interest (4) is selected in the first frame of this around each eye. This selection can be made manually or automated using an eye detection algorithm. The same region of interest is select in the rest of the frames of the sequence and its function is to cut the frames to lighten the processing.
  • the ocular detection algorithm is based on the difference in light absorption between the eyelid and the open eye (the pupil, the iris and the sclera). Visible light, as well as infrared radiation, is absorbed by the pupil and iris considerably more than is absorbed by the eyelid, as described in [M. Durkin, L. Prescott, C. J. Jonet, E. Frank, M. Niggel, and D. A. Powell, "Photoresistive Measurement of the Pavlovian Conditioned Eyelid Response in Human Subjects," Psychophysiology 27, pp. 599-603 (1990)]. As a result, the energy in the region of interest of the "open eye” image is lower than in the same region of interest of the "closed eye” image (5).
  • each region of interest of each frame is obtained by adding the value of gray levels of each pixel of it.
  • the amount of intensity reflected by the eye is almost constant when the eyelid is open. Blinks appear as rapid increases and decreases in intensity: when the eyelid closes, the light diffused by the eyelid changes and the same occurs with the intensity recorded by the camera.
  • the intensity peaks represent the moment when the eyelid is completely closed.
  • each blink is cut from the sequence from 0.25 seconds before the peak to 0.46 seconds after. This involves conditioning the interval between flashes to be greater than 0.67 seconds and that the duration of the blinking is less than that value. This selection covers the entire range of flicker duration for normal subjects (50-500 ms) as indicated in [P. P.
  • the intensity curve obtained, directly related to the displacement of the eyelid (15) is smoothed by means of spiines (16) to then calculate the first and second temporal derivative and their product. These magnitudes are proportional to the speed (10) and acceleration of the eyelid (1 1) and to the power developed by the muscles in the process (9) respectively.
  • FIG. 3 shows the normalized power curve (9) obtained for a sample flicker.
  • the standardized power curve (9) allows to clearly define the beginning at the first moment when it ceases to be zero and the end at the last, which returns to zero.
  • the shape of the curve in the opening phase is similar to the closing.
  • the total power developed by the muscles reaches a local maximum at t 5P that occurs when the eyelid is in the ascending phase. Then, the power decreases until it is zero at t 6 p and the eyelid reaches a maximum speed. After that, the sign of the force changes when the eyelid is braking and the curve reaches a local minimum at t 7P . At that time, the eye is not yet fully open. Finally, the power decreases in absolute value to zero (t 8 p), when the eyelid retracts again, the muscle forces are compensated, the eye is open and the blinking ends.
  • the area under the standardized power curve (9) W ⁇ ⁇ is related to the work done by the muscles in a period of time between t c and t d . Said area between zero intersections is calculated, according to figure 3, obtaining four more parameters.
  • the normalized speed (10) and acceleration (1 1) are represented together with the previously defined instants. It can be seen that the zeroes and the local maximums and minimums of the velocity have already been characterized, while the local maximums and minimums of the acceleration provide new instants of time (12) not yet defined.
  • t 1a is the time after starting the blinking when the eyelid is in the closing phase and reaches a maximum in acceleration. Then, after the maximum in the developed power, a maximum is reached in the speed and a zero in acceleration, after which the total force of the muscles that intervene in the blinking brakes to the eyelid (there is a change in the sign of acceleration). This braking force peaks at t 2a , before completely closing the eye. Then, in the opening phase, the dynamics are similar. The force accelerates the eyelid to a maximum in t 3a . Later, the force decreases and probably reaches a local minimum that corresponds to the time when the acceleration of braking of the eyelid opening in the ascending phase is maximum, just before stopping it.
  • the proposed technique has been evaluated with videos obtained with a sports camera (type GOPRO®) recording at 240 fps on 26 subjects.
  • 3251 blinks were obtained from the recorded video sequences, ranging from 74 to 191 blinks per subject.
  • the difference in the number of blinks per subject is due to losses in the processing of signals due to overlapping of blinks or incomplete blinks.
  • at least 74 blinks were obtained from all subjects, so 74 blinks of each participant were randomly selected to obtain a set with the same number of data for each subject.
  • the number of blinks is reduced to 1924. With this set the classification for biometric authentication has been carried out.
  • each classifier (LDA, QDA, KNN, CT and NCC) is evaluated through cross-validation of 10 iterations.
  • the data set has been distributed proportionally into 10 disjoint subsets. Nine subsets are used for training and the last subset is evaluated. The process is repeated 10 times, each time leaving a different subset for evaluation.
  • Five sets of data have been evaluated through cross-validation of 10 iterations: the original set of 1924 eyelids and four additional sets obtained from the original.
  • the definition of the additional sets consists of the generation of 100 flashes for each participant.

Abstract

The invention relates to a method and device for biometric authentication by means of the recognition of the blink of a subject, the method comprising the steps of: (a) recording, with a digital video camera, at least one blink sequence of at least one subject; and (b) analysing changes in the intensity of the light diffused by at least one eye, said changes being captured by the digital video camera, and the corresponding blink of said eye, in at least one subject. The method also comprises a step of cinematic and dynamic blink characterisation, said characterisation being configured to identify at least one subject by means of a classification algorithm.

Description

MÉTODO Y DISPOSITIVO DE AUTENTICACIÓN BIOMÉTRICA MEDIANTE EL  METHOD AND DEVICE OF BIOMETRIC AUTHENTICATION THROUGH THE
RECONOCIMIENTO DEL PARPADEO  BLINKING RECOGNITION
Objeto de la invención Object of the invention
El objeto de la presente invención es un método y un dispositivo para la autenticación de la identidad de un ser humano a partir del reconocimiento del parpadeo de dicho ser humano en una secuencia de video previamente grabada. Estado de la técnica The object of the present invention is a method and a device for the authentication of the identity of a human being from the recognition of the blink of said human being in a previously recorded video sequence. State of the art
La autenticación biométrica es el estudio automático para el reconocimiento único de humanos basado en uno o más identificadores biométricos que se clasifican como rasgos conductuales o rasgos fisiológicos [Jain, Añil K.; Ross, Arun (2008). "Introduction to Biometrics". In Jain, AK; Flynn; Ross, A. Handbook of Biometrics. Springer. pp. 1-22. ISBN 978-0-387-71040-2]. Biometric authentication is the automatic study for the unique recognition of humans based on one or more biometric identifiers that are classified as behavioral traits or physiological traits [Jain, Añil K .; Ross, Arun (2008). "Introduction to Biometrics." In Jain, AK; Flynn; Ross, A. Handbook of Biometrics. Springer pp. 1-22. ISBN 978-0-387-71040-2].
Los rasgos fisiológicos están relacionados con características físicas intrínsecas del cuerpo como, por ejemplo, la huella digital, venas o huella de la palma de la mano, la cara, el ADN, el iris, la retina, el electroencefalograma (EEG) o el electrocardiograma (ECG). Por otro lado, los rasgos conductuales se relacionan con el patrón de comportamiento de una persona como, por ejemplo, el ritmo de la escritura, la firma o la voz. The physiological features are related to intrinsic physical characteristics of the body, such as the fingerprint, veins or fingerprint of the palm, face, DNA, iris, retina, electroencephalogram (EEG) or electrocardiogram (ECG). On the other hand, behavioral traits are related to a person's pattern of behavior, such as the rhythm of writing, signature or voice.
Los movimientos del ojo [M. Juhola, Y. Zhang, J. Rasku, "Biometric verification of a subject through eye movements," Computers in Biology and Medicine 43, pp 42-50 (2013)] y el parpadeo [M. Abo-Zahhad, Sabah M. Ahmed, Sherif N. Abbas, "A novel biometric approach for human Identification and verification using eye blinking signal," IEEE signal processing letters, 22, No. 7 pp 876-880 (2015)] han sido utilizados recientemente como rasgos fisiológicos aptos para la autenticación biométrica humana. En ambos casos, las señales bioeléctricas de las que se derivan los parámetros que caracterizan e identifican a cada individuo se obtienen a partir del registro de un electrooculograma (EOG) derivado del EEG, aunque en el caso de los movimientos del ojo, también pueden obtenerse a partir de videocámaras (videoculógrafo). El hecho de que para la medida del EOG se necesiten electrodos pegados a la piel, lo hace poco práctico para su uso biométrico. The eye movements [M. Juhola, Y. Zhang, J. Rasku, "Biometric verification of a subject through eye movements," Computers in Biology and Medicine 43, pp 42-50 (2013)] and flickering [M. Abo-Zahhad, Sabah M. Ahmed, Sherif N. Abbas, "A novel biometric approach for human Identification and verification using eye blinking signal," IEEE signal processing letters, 22, No. 7 pp 876-880 (2015)] have been Recently used as physiological traits suitable for human biometric authentication. In both cases, the bioelectric signals from which the parameters that characterize and identify each individual are derived are obtained from the recording of an electrooculogram (EOG) derived from the EEG, although in the case of eye movements, they can also be obtained from camcorders (videograph). The fact that electrodes glued to the skin are needed to measure the EOG, makes it impractical for biometric use.
Tradicionalmente, el parpadeo se ha evaluado principalmente mediante técnicas de contacto que requieren el uso de electrodos para medir el EOG [D. Denney and C. Denney, "The eye blink electro-oculogram.," Br J Ophthalmol 68, pp. 225-228 (1984)] o el electromiograma [B. W. O. D. Visser and C. Goor, "Electromyographic and reflex study in idiopathic and symptomatic trigeminal neuralgias: latency of the jaw and blink reflexes," J Neurol Neurosurg Psychiatry 37, pp. 1225-1230 (1974)], o la aplicación de una bobina magnética [J. Schlag, B. Merker, and M. Schlag-Rey, "Comparison of EOG and search coil techniques in long-term measurements of eye position in alert monkey and cat," Vision Research 23, pp. 1025-1030 (1983)]. Sin embargo, también es posible el uso de procedimientos de registro sin contacto, tales como fotografía o video que permiten una evaluación cuantitativa del movimiento del ojo durante el parpadeo sin interferir con el sujeto [S. H. Choi, K. S. Park, M. W. Sung, and K. H. Kim, "Dynamic and quantitative evaluation of eyelid motion using image analysis," Med Biol Eng Comput 41 , pp. 146-150 (2003)]. Traditionally, flickering has been evaluated primarily through contact techniques that require the use of electrodes to measure the EOG [D. Denney and C. Denney, "The eye blink electro-oculogram.," Br J Ophthalmol 68, pp. 225-228 (1984)] or the electromyogram [BWOD Visser and C. Goor, "Electromyographic and reflex study in idiopathic and symptomatic trigeminal neuralgia: latency of the jaw and blink reflexes," J Neurol Neurosurg Psychiatry 37, pp. 1225-1230 (1974)], or the application of a magnetic coil [J. Schlag, B. Merker, and M. Schlag-Rey, "Comparison of EOG and search coil techniques in long-term measurements of eye position in alert monkey and cat," Vision Research 23, pp. 1025-1030 (1983)]. However, it is also possible to use contactless registration procedures, such as photography or video that allow a quantitative evaluation of eye movement during blinking without interfering with the subject [SH Choi, KS Park, MW Sung, and KH Kim , "Dynamic and quantitative evaluation of eyelid motion using image analysis," Med Biol Eng Comput 41, pp. 146-150 (2003)].
Las características del parpadeo que más se han estudiado son la frecuencia y la duración debido a su relación con estados mentales tales como fatiga, lapsos de atención y estrés. La determinación del comienzo y el fin del parpadeo se aborda, por lo general, mediante la definición de umbrales precalibrados. De hecho, se desconoce algún método que calcule o determine de forma precisa el final del parpadeo [F. VanderWerf, P. Brassinga, D. Reits, M. Aramideh, and B. O. de Visser, "Eyelid Movements: Behavioral Studies of Blinking in Humans Under Different Stimulus Conditions," Journal of Neurophysiology, 89, pp. 2784- 2796 (2003)]. The characteristics of the blink that have been studied the most are the frequency and duration due to their relationship with mental states such as fatigue, attention spans and stress. The determination of the beginning and end of the blink is usually addressed by defining precalibrated thresholds. In fact, some method that accurately calculates or determines the end of the blinking is unknown [F. VanderWerf, P. Brassinga, D. Reits, M. Aramideh, and B. O. de Visser, "Eyelid Movements: Behavioral Studies of Blinking in Humans Under Different Stimulus Conditions," Journal of Neurophysiology, 89, pp. 2784-2796 (2003)].
Explicación de la invención Es un objeto de la presente invención la identificación y autenticación de seres humanos a partir de una secuencia de video de su parpadeo. Para ello, la presente invención realiza un análisis de los cambios de intensidad capturados por una cámara digital de la luz difundida por el ojo y su párpado correspondiente al parpadear. Estos cambios están directamente relacionados con el desplazamiento del párpado. A partir de la variación de la posición del párpado con el tiempo, es un objeto de la presente invención el cálculo de una pluralidad de parámetros físicos que caracterizan la cinemática y dinámica del parpadeo. Estos parámetros se utilizan para identificar a cada sujeto en un proceso de clasificación. Explanation of the invention It is an object of the present invention to identify and authenticate human beings from a video sequence of their flickering. For this, the present invention analyzes the intensity changes captured by a digital camera of the light diffused by the eye and its corresponding eyelid when blinking. These changes are directly related to eyelid displacement. From the variation of the eyelid position over time, it is an object of the present invention to calculate a plurality of physical parameters that characterize the kinematics and dynamics of the flickering. These parameters are used to identify each subject in a classification process.
El parpadeo es un cierre temporal de ambos ojos e implica el movimiento de los párpados superior e inferior. Desde un punto de vista fisiológico, el parpadeo mantiene el ojo hidratado, lo que permite la distribución de la película lagrimal sobre la superficie ocular, protegiéndolo frente a objetos externos. Los movimientos de los párpados requieren comandos neurales simples y pocas fuerzas activas. El parpadeo representa un fenómeno normal fácilmente observable y accesible, que refleja los procesos de activación del sistema nervioso central sin manipulación voluntaria. Así pues, su análisis permite encontrar cualquier anormalidad y si ésta se deriva de una anomalía muscular o neuronal. The blinking is a temporary closure of both eyes and involves the movement of the upper and lower eyelids. From a physiological point of view, the blinking keeps the eye hydrated, which allows the distribution of the tear film over the ocular surface, protecting it against external objects. Eyelid movements require simple neural commands and few active forces. Flickering represents a normal phenomenon easily observable and accessible, which reflects the processes of central nervous system activation without voluntary manipulation. Thus, its analysis allows to find any abnormality and if it is derived from a muscular or neuronal abnormality.
El parpadeo es uno de los reflejos humanos más rápidos (300-400 ms) por tanto, para obtener parámetros que lo caractericen adecuadamente a partir de un video es necesaria una cámara con una tasa de captura acorde a esa duración. Esta cámara, en una realización particular es una cámara comercial, y en otra realización particular es una cámara de un dispositivo electrónico portátil, como por ejemplo un teléfono móvil o equivalente, siempre y cuando la velocidad de captura sea, al menos, 150 fotogramas por segundo (fps). La intensidad de la luz difundida por el párpado iluminado frontalmente varía dependiente de su posición, siendo máxima cuando el párpado está cerrado y mínima cuando está abierto. Así, en un video grabado de un sujeto que parpadea, esta variación aparecerá reflejada como cambios en la intensidad de la luz registrada. En cada fotograma de la secuencia de parpadeo se puede estimar la intensidad de la luz difundida por el párpado sumando los niveles de gris de los píxeles del área de interés en torno a cada ojo. Los parpadeos aparecerán como picos en el perfil de intensidades [D. Mas, B. Domenech, J. Espinosa, J. Pérez, C. Hernández, and C. Illueca, "Noninvasive measurement of eye retraction during blinking," Optics Letters 35, 1884 (2010)]. Mediante un algoritmo de detección de picos se aisla cada parpadeo y se ajusta a una curva suavizada mediante "smoothing splines" para eliminar el efecto del ruido. La primera y segunda derivada respecto del tiempo de esta curva están relacionadas, respectivamente con la velocidad (primera derivada) y la aceleración (segunda derivada) y su producto resulta proporcional a la potencia desarrollada por los músculos responsables del parpadeo. Estas curvas se utilizan para determinar diferentes parámetros cinemáticos y dinámicos que caracterizan el parpadeo de cada individuo. Flickering is one of the fastest human reflexes (300-400 ms) therefore, to obtain parameters that properly characterize it from a video, a camera with a capture rate according to that duration is necessary. This camera, in a particular embodiment is a commercial camera, and in another particular embodiment is a camera of a portable electronic device, such as a mobile phone or equivalent, as long as the capture rate is at least 150 frames per second (fps). The intensity of the light diffused by the frontally illuminated eyelid varies depending on its position, being maximum when the eyelid is closed and minimal when it is open. Thus, in a recorded video of a blinking subject, this variation will be reflected as changes in the intensity of the recorded light. In each frame of the flickering sequence, the intensity of the light diffused by the eyelid can be estimated by adding the gray levels of the pixels of the area of interest around each eye. Blinks will appear as peaks in the intensity profile [D. Mas, B. Domenech, J. Espinosa, J. Pérez, C. Hernández, and C. Illueca, "Noninvasive measurement of eye retraction during blinking," Optics Letters 35, 1884 (2010)]. Using a peak detection algorithm, each blink is isolated and adjusted to a smoothed spline curve to eliminate the effect of noise. The first and second derivative with respect to the time of this curve are related, respectively, to the speed (first derivative) and the acceleration (second derivative) and its product is proportional to the power developed by the muscles responsible for the blinking. These curves are used to determine different kinematic and dynamic parameters that characterize the blink of each individual.
Los parámetros cinemáticos y dinámicos obtenidos son aptos para la autenticación biométrica de un ser humano mediante algoritmos de clasificación, ya que describen rasgos fisiológicos relacionados con el parpadeo. The kinematic and dynamic parameters obtained are suitable for the biometric authentication of a human being through classification algorithms, since they describe physiological features related to flickering.
La clasificación es un tipo de aprendizaje automático supervisado basado en un conjunto de datos de entrenamiento que contiene observaciones cuya pertenencia a una categoría está previamente establecida. Los algoritmos de clasificación aprovechan la información discriminante de ese conjunto de entrenamiento y aprenden a clasificar una nueva observación en una de las categorías o clases. En la presente invención, el problema técnico que se resuelve en esta etapa del método es la asignación de un parpadeo, i.e. una nueva observación, a una clase seleccionada entre una pluralidad de clases, i.e. los sujetos, es decir, el problema técnico que se resuelve es una clasificación multiclase. Classification is a type of supervised machine learning based on a set of training data containing observations whose membership in a category is previously established. The classification algorithms take advantage of the discriminant information of that training set and learn to classify a new observation in one of the categories or classes. In the present invention, the technical problem that is solved at this stage of the method is the assignment of a blink, ie a new observation, to a class selected from a plurality of classes, ie the subjects, that is, the technical problem that is Solve is a multi-class classification.
La extracción de un conjunto de parámetros característicos que sean capaces de conservar la información discriminante de cada sujeto permite asignar una nueva observación de un parpadeo a uno de los sujetos que conforman el conjunto de entrenamiento mediante clasificación. The extraction of a set of characteristic parameters that are capable of preserving the discriminant information of each subject allows a new observation of a blink to be assigned to one of the subjects that make up the training set by classification.
En una realización particular de la invención, se han evaluado diferentes algoritmos de clasificación seleccionados entre: un análisis discriminante lineal y cuadrático (LDA y QDA); K-Vecinos Más Cercanos (KNN), Árbol de Clasificación (CT) y Correlación Cruzada Normalizada (NCC). No obstante, en una realización preferida de la invención se ha utilizado un análisis discriminante lineal LDA donde se ha obtenido una tasa de identificación correcta de hasta el 99%. In a particular embodiment of the invention, different classification algorithms selected from: a linear and quadratic discriminant analysis (LDA and QDA) have been evaluated; K-Nearest Neighbors (KNN), Classification Tree (CT) and Normalized Cross Correlation (NCC). However, in a preferred embodiment of the invention a linear discriminant analysis LDA has been used where a correct identification rate of up to 99% has been obtained.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que restrinjan la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to restrict the present invention. In addition, the present invention covers all possible combinations of particular and preferred embodiments indicated herein.
Breve descripción de las figuras A continuación, se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta. BRIEF DESCRIPTION OF THE FIGURES Next, a series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention which is presented as a non-limiting example thereof is described very briefly.
La FIG.1 muestra un esquema de los elementos intervinientes en la captura de una escena. FIG. 1 shows a scheme of the elements involved in capturing a scene.
La FIG. 2 muestra un esquema en el que se detalla la selección de una región de interés en cada fotograma y se representa cómo varia la intensidad con el tiempo en un parpadeo en dicha región de interés. FIG. 2 shows a scheme detailing the selection of a region of interest in each frame and how intensity varies over time in a blink in that region of interest.
La FIG. 3 muestra la curva de potencia normalizada obtenida para un parpadeo ejemplo. Las intersecciones con cero, los máximos y mínimos locales y las áreas bajo la curva entre intersecciones se utilizan para definir parámetros característicos del parpadeo. FIG. 3 shows the normalized power curve obtained for an example blink. The intersections with zero, the local maximums and minimums and the areas under the curve between intersections are used to define characteristic parameters of the blinking.
La FIG. 4 muestra las curvas de velocidad y aceleración normalizadas para un parpadeo ejemplo. Los máximos y mínimos locales y las áreas bajo la curva entre intersecciones se utilizan para definir parámetros característicos del parpadeo. FIG. 4 shows the normalized velocity and acceleration curves for an example blink. Local highs and lows and the areas under the curve between intersections are used to define characteristic parameters of the flickering.
La FIG. 5 muestra la curva de desplazamiento del párpado para un parpadeo ejemplo. FIG. 5 shows the eyelid displacement curve for an example blink.
Exposición detallada de un modo de realización de la invención Detailed statement of an embodiment of the invention
Tal y como se observa con detalle en las figuras adjuntas, la primera etapa del método objeto de la presente invención consiste en la grabación de diferentes secuencias mediante una cámara de video con una velocidad de captura superior a 150 fps, y en donde los sujetos que forman el conjunto de clases a identificar parpadean. En la FIG.1 se muestra un esquema de la configuración del sistema de captura. Así pues, dado un sujeto (1), una cámara (2) con una velocidad de captura superior a 150 fps graba una secuencia (3) de duración indeterminada en la que el sujeto (1) parpadea. En cada fotograma aparece el párpado en una posición diferente. La toma de medidas se realiza sin contacto con el sujeto (1) e, incluso, puede realizarse de forma inconsciente para éste, lo que facilita el empleo de la invención en aplicaciones donde no sea necesaria requerir la colaboración del sujeto (1). As can be seen in detail in the attached figures, the first stage of the method object of the present invention consists in the recording of different sequences by means of a video camera with a capture speed greater than 150 fps, and where the subjects that they form the set of classes to identify blink. A scheme of the capture system configuration is shown in FIG. 1. Thus, given a subject (1), a camera (2) with a capture rate greater than 150 fps records a sequence (3) of undetermined duration in which the subject (1) flashes. In each frame the eyelid appears in a different position. The measurement is carried out without contact with the subject (1) and can even be done unconsciously for the subject, which facilitates the use of the invention in applications where it is not necessary to require the collaboration of the subject (1).
Para evaluar de forma precisa el parpadeo es necesario grabar un video de alta velocidad, i.e. con una velocidad de captura tal que permita capturar la diferencia de posición del párpado en un parpadeo cuya duración está comprendida entre 300 y 400 ms. Si el video no es de alta velocidad, la diferencia de la posición del párpado entre fotogramas es demasiado grande para realizar el seguimiento preciso del párpado. To accurately assess the flickering it is necessary to record a high-speed video, i.e. with a capture speed such that it allows capturing the eyelid position difference in a blink whose duration is between 300 and 400 ms. If the video is not high speed, the difference in eyelid position between frames is too large to accurately track the eyelid.
Una vez realizada la captura, se procede a su procesamiento según aparece esquematizado en la FIG.2. Dada la secuencia (3) se selecciona una región de interés rectangular (4) en el primer fotograma de ésta en torno a cada ojo. Esta selección puede realizarse manualmente o automatizarla mediante un algoritmo de detección ocular. La misma región de interés se selecciona en el resto de fotogramas de la secuencia y su función es recortar los fotogramas para aligerar el procesado. Once the capture has been carried out, it is processed as shown in FIG. 2. Given the sequence (3) a region of rectangular interest (4) is selected in the first frame of this around each eye. This selection can be made manually or automated using an eye detection algorithm. The same region of interest is select in the rest of the frames of the sequence and its function is to cut the frames to lighten the processing.
El algoritmo de detección ocular se basa en la diferencia de absorción de la luz entre el párpado y el ojo abierto (la pupila, el iris y la esclera). La luz visible, así como la radiación infrarroja, es absorbida por la pupila y el iris considerablemente más de lo que es absorbida por el párpado, tal y como se describe en [M. Durkin, L. Prescott, C. J. Jonet, E. Frank, M. Niggel, and D. A. Powell, "Photoresistive Measurement of the Pavlovian Conditioned Eyelid Response in Human Subjects," Psychophysiology 27, pp. 599-603 (1990)]. Como resultado, la energía en la región de interés de la imagen "ojo abierto" es más baja que en la misma región de interés de la imagen "ojo cerrado" (5). The ocular detection algorithm is based on the difference in light absorption between the eyelid and the open eye (the pupil, the iris and the sclera). Visible light, as well as infrared radiation, is absorbed by the pupil and iris considerably more than is absorbed by the eyelid, as described in [M. Durkin, L. Prescott, C. J. Jonet, E. Frank, M. Niggel, and D. A. Powell, "Photoresistive Measurement of the Pavlovian Conditioned Eyelid Response in Human Subjects," Psychophysiology 27, pp. 599-603 (1990)]. As a result, the energy in the region of interest of the "open eye" image is lower than in the same region of interest of the "closed eye" image (5).
La energía contenida en cada región de interés de cada fotograma se obtiene sumando el valor de niveles de gris de cada píxel de ésta. La cantidad de intensidad reflejada por el ojo es casi constante cuando el párpado está abierto. Los parpadeos aparecen como aumentos y descensos rápidos de intensidad: cuando el párpado se cierra, la luz difundida por el párpado cambia y lo mismo ocurre con la intensidad registrada por la cámara. Los picos en intensidad representan el momento en el que el párpado está completamente cerrado. Mediante un algoritmo de detección de picos, se recorta de la secuencia cada parpadeo desde 0.25 segundos antes del pico hasta 0.46 segundos después. Esto supone condicionar el intervalo entre parpadeos a ser superior a 0.67 segundos y que la duración del parpadeo sea inferior a dicho valor. Con esta selección se abarca todo el rango de duración del parpadeo para sujetos normales (50-500 ms) tal y como se indica en [P. P. Caffier, U. Erdmann, and P. Ullsperger, "Experimental evaluation of eye-blink parameters as a drowsiness measure," Eur J Appl Physiol 89, 319-325 (2003)]) y se descartan parpadeos incompletos y/o dobles. The energy contained in each region of interest of each frame is obtained by adding the value of gray levels of each pixel of it. The amount of intensity reflected by the eye is almost constant when the eyelid is open. Blinks appear as rapid increases and decreases in intensity: when the eyelid closes, the light diffused by the eyelid changes and the same occurs with the intensity recorded by the camera. The intensity peaks represent the moment when the eyelid is completely closed. Using a peak detection algorithm, each blink is cut from the sequence from 0.25 seconds before the peak to 0.46 seconds after. This involves conditioning the interval between flashes to be greater than 0.67 seconds and that the duration of the blinking is less than that value. This selection covers the entire range of flicker duration for normal subjects (50-500 ms) as indicated in [P. P. Caffier, U. Erdmann, and P. Ullsperger, "Experimental evaluation of eye-blink parameters as a drowsiness measure," Eur J Appl Physiol 89, 319-325 (2003)]) and incomplete and / or double blinks are ruled out .
La curva de intensidades obtenida, directamente relacionada con el desplazamiento del párpado (15) se suaviza mediante spiines (16) para, a continuación, calcular la primera y segunda derivada temporal y el producto de éstas. Dichas magnitudes son proporcionales a la velocidad (10) y aceleración del párpado (1 1) y a la potencia desarrollada por los músculos en el proceso (9) respectivamente. The intensity curve obtained, directly related to the displacement of the eyelid (15) is smoothed by means of spiines (16) to then calculate the first and second temporal derivative and their product. These magnitudes are proportional to the speed (10) and acceleration of the eyelid (1 1) and to the power developed by the muscles in the process (9) respectively.
En la FIG.3 se representa la curva de potencia normalizada (9) obtenida para un parpadeo de muestra. La curva de potencia normalizada (9) permite definir claramente el comienzo en el primer instante en que deja de ser cero y el final en el último, que vuelve a ser cero. Asimismo, es posible localizar los instantes en los que ocurren máximos y mínimos locales (8), así como las intersecciones con cero (7). Todos estos, junto con los valores de los máximos y los mínimos locales (8) proporcionan información del parpadeo y se utilizan como características para describirlo. FIG. 3 shows the normalized power curve (9) obtained for a sample flicker. The standardized power curve (9) allows to clearly define the beginning at the first moment when it ceases to be zero and the end at the last, which returns to zero. Likewise, it is possible to locate the instants in which local maximums and minimums (8) occur, as well as the zero intersections (7). All these, together with the values of the local maximums and minimums (8) provide information on the flicker and are used as characteristics to describe it.
Cronológicamente, unas pocas centésimas de segundo después de que el parpadeo haya comenzado, la potencia total desarrollada por los músculos es máxima en el momento t1 P en la fase de cierre. A continuación, en t2p, los músculos del párpado dejan de funcionar, la potencia es cero y el párpado consigue una velocidad máxima de cierre. Después, el párpado inicia el frenado y la potencia se desarrolla con el signo opuesto. Hay un momento (t3P), cuando la curva alcanza el mínimo, que corresponde a la potencia máxima desarrollada para frenar el cierre del párpado. Entonces, la potencia disminuye en valor absoluto, hasta que vuelve a cero. Este momento (t4P) se corresponde con el ojo cerrado, cuando termina la fase de cierre y comienza la fase de apertura. Chronologically, a few hundredths of a second after the blink has begun, the total power developed by the muscles is maximum at the time t 1 P in the closing phase. Then, at t 2 p, the eyelid muscles stop working, the power is zero and the eyelid achieves a maximum closing speed. Then, the eyelid starts braking and the power develops with the opposite sign. There is a moment (t 3P ), when the curve reaches the minimum, which corresponds to the maximum power developed to stop the eyelid closure. Then, the power decreases in absolute value, until it returns to zero. This moment (t 4P ) corresponds to the closed eye, when the closing phase ends and the opening phase begins.
La forma de la curva en la fase de apertura es similar a la de cierre. La potencia total desarrollada por los músculos alcanza un máximo local en t5P que ocurre cuando el párpado está en la fase ascendente. Entonces, la potencia disminuye hasta que es cero en t6p y el párpado alcanza una velocidad máxima. Después de eso, el signo de la fuerza cambia cuando el párpado está frenando y la curva alcanza un mínimo local en t7P. En ese momento, el ojo todavía no está completamente abierto. Finalmente, la potencia disminuye en valor absoluto hasta cero (t8p), cuando el párpado se retrae de nuevo, las fuerzas de los músculos se compensan, el ojo está abierto y el parpadeo termina. El área bajo la curva de la potencia normalizada (9) W¡^ está relacionada con el trabajo desarrollado por los músculos en un período de tiempo entre tc y td. Se calcula dicha área entre las intersecciones con cero, según la figura 3, obteniendo cuatro parámetros más. En la figura 4, se representa la velocidad (10) y la aceleración (1 1) normalizadas junto a los instantes definidos previamente. Se puede observar que los ceros y los máximos y mínimos locales de la velocidad ya han sido caracterizados, mientras que los máximos y mínimos locales de la aceleración proporcionan nuevos instantes de tiempo (12) todavía no definidos. The shape of the curve in the opening phase is similar to the closing. The total power developed by the muscles reaches a local maximum at t 5P that occurs when the eyelid is in the ascending phase. Then, the power decreases until it is zero at t 6 p and the eyelid reaches a maximum speed. After that, the sign of the force changes when the eyelid is braking and the curve reaches a local minimum at t 7P . At that time, the eye is not yet fully open. Finally, the power decreases in absolute value to zero (t 8 p), when the eyelid retracts again, the muscle forces are compensated, the eye is open and the blinking ends. The area under the standardized power curve (9) W¡ ^ is related to the work done by the muscles in a period of time between t c and t d . Said area between zero intersections is calculated, according to figure 3, obtaining four more parameters. In figure 4, the normalized speed (10) and acceleration (1 1) are represented together with the previously defined instants. It can be seen that the zeroes and the local maximums and minimums of the velocity have already been characterized, while the local maximums and minimums of the acceleration provide new instants of time (12) not yet defined.
Cronológicamente, t1a es el tiempo después de comenzar el parpadeo cuando el párpado está en la fase de cierre y alcanza un máximo en la aceleración. A continuación, después del máximo en la potencia desarrollada, se alcanza un máximo en la velocidad y un cero en aceleración, tras el que la fuerza total de los músculos que intervienen en el parpadeo frena al párpado (hay un cambio en el signo de la aceleración). Esta fuerza de frenado alcanza su máximo en t2a, antes de cerrar completamente el ojo. Seguidamente, en la fase de apertura, la dinámica es similar. La fuerza acelera al párpado hasta un máximo en t3a. Más tarde, la fuerza disminuye y probablemente alcanza un mínimo local que corresponde al tiempo cuando la aceleración de frenado de la abertura del párpado en la fase ascendente es máxima, justo antes de detenerlo. Sin embargo, al contrario de lo que ocurre en la curva de potencia, en los gráficos de aceleración no aparece claramente esta fase de frenado por lo que ese mínimo local no se puede definir. Procediendo con un análisis similar al de la potencia, se han obtenido los valores absolutos de los picos locales tanto de aceleración como de velocidad (13), y las áreas bajo la curva de aceleración (14). El área bajo la curva de la aceleración en un intervalo de tiempo se denota por j y representa el impulso mecánico por unidad de masa desarrollada por los músculos en ese período de tiempo comprendido entre tc y td. Se definen tres parámetros relacionados con el impulso entre las intersecciones de la curva con cero. Chronologically, t 1a is the time after starting the blinking when the eyelid is in the closing phase and reaches a maximum in acceleration. Then, after the maximum in the developed power, a maximum is reached in the speed and a zero in acceleration, after which the total force of the muscles that intervene in the blinking brakes to the eyelid (there is a change in the sign of acceleration). This braking force peaks at t 2a , before completely closing the eye. Then, in the opening phase, the dynamics are similar. The force accelerates the eyelid to a maximum in t 3a . Later, the force decreases and probably reaches a local minimum that corresponds to the time when the acceleration of braking of the eyelid opening in the ascending phase is maximum, just before stopping it. However, contrary to what happens in the power curve, this braking phase does not clearly appear in the acceleration graphs, so that local minimum cannot be defined. Proceeding with an analysis similar to that of the power, the absolute values of the local peaks of both acceleration and velocity (13), and the areas under the acceleration curve (14) have been obtained. The area under the acceleration curve in a time interval is denoted by j and represents the mechanical impulse per unit of mass developed by the muscles in that period of time between t c and t d . Three parameters related to the impulse between the intersections of the curve with zero are defined.
Por último, en la figura 5, se analiza la curva ajustada a partir de los datos de desplazamiento (16). Habiéndose definido S=e1/e2, el cociente entre velocidades medias de los procesos de cierre y apertura (17), y la anchura a mitad de altura de la curva, w, (18). Finally, in Figure 5, the curve adjusted from the displacement data (16) is analyzed. Having defined S = e 1 / e 2 , the ratio between average speeds of the closing and opening processes (17), and the half-height width of the curve, w, (18).
Las características que describen la dinámica y la cinemática del parpadeo se agrupan en un vector siguiendo el orden indicado en la tabla 1. The characteristics that describe the dynamics and kinematics of the flicker are grouped into a vector in the order indicated in table 1.
Vector Descripción Fase Vector Description Phase
U Inicio (1 a potencia≠ cero) U Start (1 at power ≠ zero)
UP Potencia máxima local  UP Local maximum power
Up Cruce potencia cero Cierre  Up Zero power cross Close
Up Potencia mínima local  Up Local minimum power
Tiempo(  Weather(
UP Cerrado  UP Closed
s)  s)
UP Potencia máxima local  UP Local maximum power
UP Cruce potencia cero Abertura UP Zero power crossing Opening
UP Potencia mínima local UP Minimum local power
UP Fin (Potencia cero)  UP End (Zero Power)
P(t1P) P (t 1P )
Cierre Closing
(t3P) \ (t 3P ) \
Potencia absoluta normalizada  Normalized absolute power
Abertura  Opening
p(t7P) | p (t 7P ) |
w0 tip Trabajo De 0 a t2P w 0 tip Work From 0 to 2P
Wt4P Cierre W t4P Close
(u.a.) De t2p a
Figure imgf000011_0001
(ua) Of t 2 pa
Figure imgf000011_0001
Tabla 1 . Parámetros de parpadeo  Table 1 . Flashing parameters
La técnica propuesta se ha evaluado con videos obtenidos con una cámara deportiva (tipo GOPRO®) grabando a 240 fps sobre 26 sujetos. Se han obtenido 3251 parpadeos a partir de las secuencias de vídeo grabadas, que van desde 74 hasta 191 parpadeos por sujeto. La diferencia en el número de parpadeos por sujeto es debida a las pérdidas en el procesamiento de las señales por superposición de parpadeos o parpadeos incompletos. Sin embargo, de todos los sujetos se han obtenido al menos 74 parpadeos, por lo que se han seleccionado aleatoriamente 74 parpadeos de cada participante para obtener un conjunto con el mismo número de datos de cada sujeto. Así, se reduce el número de parpadeos a 1924. Con este conjunto se ha procedido a la clasificación para la autentificación biométrica. The proposed technique has been evaluated with videos obtained with a sports camera (type GOPRO®) recording at 240 fps on 26 subjects. 3251 blinks were obtained from the recorded video sequences, ranging from 74 to 191 blinks per subject. The difference in the number of blinks per subject is due to losses in the processing of signals due to overlapping of blinks or incomplete blinks. However, at least 74 blinks were obtained from all subjects, so 74 blinks of each participant were randomly selected to obtain a set with the same number of data for each subject. Thus, the number of blinks is reduced to 1924. With this set the classification for biometric authentication has been carried out.
El rendimiento de cada clasificador (LDA, QDA, KNN, CT y NCC) se evalúa a través de validación cruzada de 10 iteraciones. El conjunto de datos se ha repartido proporcionalmente en 10 subconjuntos disjuntos. Nueve subconjuntos se utilizan para el entrenamiento y se evalúa el último subconjunto. El proceso se repite 10 veces, dejando cada vez un subconjunto diferente para su evaluación. Se ha evaluado a través de validación cruzada de 10 iteraciones cinco conjuntos de datos: el conjunto original de 1924 párpados y cuatro conjuntos adicionales obtenidos a partir del original. La definición de los conjuntos adicionales consiste en la generación de 100 parpadeos para cada participante. Cada parpadeo se construye con la media aritmética de β parpadeos seleccionados al azar de 74 ensayos de cada participante, siendo β = 3, 5, 10 y 25 para cada conjunto (nombrado β-media). Los clasificadores biométricos se compararon a través de la tasa de identificaciones correctas en la tabla 2. The performance of each classifier (LDA, QDA, KNN, CT and NCC) is evaluated through cross-validation of 10 iterations. The data set has been distributed proportionally into 10 disjoint subsets. Nine subsets are used for training and the last subset is evaluated. The process is repeated 10 times, each time leaving a different subset for evaluation. Five sets of data have been evaluated through cross-validation of 10 iterations: the original set of 1924 eyelids and four additional sets obtained from the original. The definition of the additional sets consists of the generation of 100 flashes for each participant. Each blink is constructed with the arithmetic mean of β blinks randomly selected from 74 trials of each participant, with β = 3, 5, 10 and 25 for each set (named β-media). Biometric classifiers were compared to through the correct identification rate in table 2.
Figure imgf000012_0001
Figure imgf000012_0001
Tabla 2. Tasa de identificaciones correctas (%)  Table 2. Correct identification rate (%)

Claims

REIVINDICACIONES
1. - Un método para la autenticación biométrica mediante el reconocimiento del parpadeo de un sujeto, donde dicho método comprende las etapas de: 1. - A method for biometric authentication by recognizing the blink of a subject, where said method comprises the steps of:
(a) grabar con una cámara digital de video al menos una secuencia de parpadeo de al menos un sujeto;  (a) record with a digital video camera at least one flickering sequence of at least one subject;
(a.1) y donde la secuencia de parpadeo comprende una pluralidad de fotogramas;  (a.1) and where the flickering sequence comprises a plurality of frames;
(b) analizar los cambios de intensidad capturados por la cámara digital de video de la luz difundida por al menos un ojo y su correspondiente párpado de al menos un sujeto;  (b) analyze the intensity changes captured by the digital video camera of the light diffused by at least one eye and its corresponding eyelid of at least one subject;
y que se caracteriza porque  and that is characterized because
comprende una etapa de caracterización cinemática y dinámica del parpadeo; estando configurada dicha caracterización para identificar a al menos un sujeto mediante un algoritmo de clasificación.  it comprises a stage of kinematic and dynamic characterization of the blinking; said characterization being configured to identify at least one subject by a classification algorithm.
2. - El método de acuerdo con la reivindicación 1 donde para cada fotograma se estima la intensidad de luz difundida por el párpado sumando los niveles de gris de unos píxeles dentro de un área de interés entorno a cada ojo. 2. - The method according to claim 1 wherein for each frame the intensity of light diffused by the eyelid is estimated by adding the gray levels of some pixels within an area of interest around each eye.
3.- El método de acuerdo con la reivindicación 2 donde cada parpadeo queda definido como un pico en un perfil de intensidades y donde mediante un algoritmo de detección de picos se aisla cada parpadeo y se ajusta a una curva de parpadeo suavizada y eliminando el ruido. 3. The method according to claim 2 wherein each blink is defined as a peak in an intensity profile and where by means of a peak detection algorithm each blink is isolated and adjusted to a smoothed blink curve and eliminating noise .
4.- El método de las reivindicaciones 1 a 3 donde la caracterización cinemática y dinámica del parpadeo comprende el cálculo de: (i) la velocidad del párpado mediante a primera derivada de la curva de parpadeo; (ii) la aceleración del párpado mediante la segunda derivada de la curva de parpadeo; y donde el producto de la velocidad y aceleración del parpadeo resulta proporcional a la potencia desarrollada por los músculos responsables del parpadeo. 4. The method of claims 1 to 3 wherein the kinematic and dynamic characterization of the blinking comprises the calculation of: (i) the eyelid velocity by first derivative of the flickering curve; (ii) acceleration of the eyelid by the second derivative of the flickering curve; and where the product of the speed and acceleration of the blinking is proportional to the power developed by the muscles responsible for the blinking.
5.- El método de acuerdo con las reivindicaciones 1 a 4 donde el algoritmo de clasificación asigna un parpadeo a un sujeto; y donde dicho algoritmo de clasificación es uno seleccionado entre: un análisis discriminante lineal y cuadrático (LDA y QDA); K-Vecinos Más Cercanos (KNN), Árbol de Clasificación (CT) y Correlación Cruzada Normalizada (NCC). 5. The method according to claims 1 to 4 wherein the classification algorithm assigns a blink to a subject; and where said classification algorithm is one selected from: a linear and quadratic discriminant analysis (LDA and QDA); K-Nearest Neighbors (KNN), Classification Tree (CT) and Normalized Cross Correlation (NCC).
6.- El método de acuerdo con la reivindicación 5 donde el algoritmo de clasificación es preferentemente un análisis discriminante lineal LDA. 6. The method according to claim 5 wherein the classification algorithm is preferably a linear discriminant LDA analysis.
7.- Un dispositivo de autenticación biométrica mediante el reconocimiento del parpadeo de un sujeto que se caracteriza por que comprende medios para ejecutar el método de acuerdo con cualquiera de las reivindicaciones 1 a 6. 7. A biometric authentication device by recognizing the flashing of a subject characterized in that it comprises means for executing the method according to any of claims 1 to 6.
PCT/ES2017/070148 2016-12-20 2017-03-16 Method and device for biometric authentication by means of blink recognition WO2018115543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201631628A ES2610196A1 (en) 2016-12-20 2016-12-20 Method and biometric authentication device through the recognition of flashing (Machine-translation by Google Translate, not legally binding)
ESP201631628 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018115543A1 true WO2018115543A1 (en) 2018-06-28

Family

ID=58550396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070148 WO2018115543A1 (en) 2016-12-20 2017-03-16 Method and device for biometric authentication by means of blink recognition

Country Status (2)

Country Link
ES (1) ES2610196A1 (en)
WO (1) WO2018115543A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027683A1 (en) * 2021-08-23 2023-03-02 Hewlett-Packard Development Company, L.P. Authentication by habitual eye tracking data

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072793A1 (en) * 2004-10-05 2006-04-06 Honeywell International, Inc. Security alarm notification using iris detection systems
USRE39539E1 (en) * 1996-08-19 2007-04-03 Torch William C System and method for monitoring eye movement
US20080226139A1 (en) * 2007-03-15 2008-09-18 Aisin Seiki Kabushiki Kaisha Eyelid detection apparatus, eyelid detection method and program therefor
US20080253622A1 (en) * 2006-09-15 2008-10-16 Retica Systems, Inc. Multimodal ocular biometric system and methods
US20110280454A1 (en) * 2009-01-22 2011-11-17 Leiming Su Image processing apparatus, biometric authentication apparatus, image processing method and recording medium
US20120293643A1 (en) * 2011-05-17 2012-11-22 Eyelock Inc. Systems and methods for illuminating an iris with visible light for biometric acquisition
US20140050370A1 (en) * 2012-08-15 2014-02-20 International Business Machines Corporation Ocular biometric authentication with system verification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717665A (en) * 2016-04-19 2016-06-29 来明工业(厦门)有限公司 Smart glasses applied to electric appliance for remote control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39539E1 (en) * 1996-08-19 2007-04-03 Torch William C System and method for monitoring eye movement
US20060072793A1 (en) * 2004-10-05 2006-04-06 Honeywell International, Inc. Security alarm notification using iris detection systems
US20080253622A1 (en) * 2006-09-15 2008-10-16 Retica Systems, Inc. Multimodal ocular biometric system and methods
US20080226139A1 (en) * 2007-03-15 2008-09-18 Aisin Seiki Kabushiki Kaisha Eyelid detection apparatus, eyelid detection method and program therefor
US20110280454A1 (en) * 2009-01-22 2011-11-17 Leiming Su Image processing apparatus, biometric authentication apparatus, image processing method and recording medium
US20120293643A1 (en) * 2011-05-17 2012-11-22 Eyelock Inc. Systems and methods for illuminating an iris with visible light for biometric acquisition
US20140050370A1 (en) * 2012-08-15 2014-02-20 International Business Machines Corporation Ocular biometric authentication with system verification

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A BU HASNAT MOHAMMAD RUBAIYAT ET AL.: "17th International Conference on Computer and Information Technology (ICCIT", FAST NORMALIZED CROSS-CORRELATION BASED RETINAL, 31 December 2014 (2014-12-31), XP032755263 *
DAVID MAS ET AL.: "NONINVASIVE MEASUREMENT OF EYE RETRACTION DURING BLINKING", OPTICS LETTERS, vol. 35, no. 11, 31 December 2010 (2010-12-31), pages 1884 - 1886, XP001554394 *
S. ANU H NAIR ET AL., PCA BASED IMAGE FUSION OF FACE AND IRIS BIOMETRIC FEATURES CSE, vol. 1, 31 December 2013 (2013-12-31), Annamalai Nagar, Chidambaram, Tamil Nadu, India, pages 2319 - 2526 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027683A1 (en) * 2021-08-23 2023-03-02 Hewlett-Packard Development Company, L.P. Authentication by habitual eye tracking data

Also Published As

Publication number Publication date
ES2610196A1 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
Czajka Pupil dynamics for iris liveness detection
ES2838682T3 (en) Sensory and cognitive profiling system
US20210345888A1 (en) Detecting alcohol intoxication from video images
Juhola et al. Biometric verification of a subject through eye movements
Irani et al. Spatiotemporal analysis of RGB-DT facial images for multimodal pain level recognition
Biederman et al. Neural and psychophysical analysis of object and face recognition
US11642068B2 (en) Device and method to determine objectively visual memory of images
Espinosa et al. Blinking characterization from high speed video records. Application to biometric authentication
Zhang et al. On biometrics with eye movements
Komogortsev et al. Biometric authentication via complex oculomotor behavior
WO2018115543A1 (en) Method and device for biometric authentication by means of blink recognition
Velichkovsky et al. Measurement-related issues in the investigation of active vision
JP6344254B2 (en) Sleepiness detection device
Czajka Iris liveness detection by modeling dynamic pupil features
ES1223404U (en) BIOMETRIC AUTHENTICATION DEVICE THROUGH THE RECOGNITION OF FLASHING (Machine-translation by Google Translate, not legally binding)
KR20180131045A (en) Drowsiness preventing apparatus integrally formed by multi-sensored detectionalarm means and central processing means while driving a car and control methed therefor
EP3529764A1 (en) Device for determining features of a person
Strmiska et al. Measuring brain signals using emotiv devices
Nagasawa et al. Stress estimation using multimodal biosignal information from RGB facial video
Trokielewicz et al. Iris recognition under biologically troublesome conditions-effects of aging, diseases and post-mortem changes
JP2018033996A5 (en)
Momin et al. Current status and future research directions in monitoring vigilance of individual or mass audience in monotonous working environment
Avendaño et al. Sleep onset period detection using slow eyelid movement (SEM) through eye aspect ratio with electroencephalogram (EEG)
Shinde et al. Facial features based prediction of Parkinson's disease
Derakhshani et al. An ensemble method for classifying startle eyeblink modulation from high-speed video records

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884244

Country of ref document: EP

Kind code of ref document: A1