WO2018113593A1 - 一种波束管理信息的配置、处理方法、终端及基站 - Google Patents

一种波束管理信息的配置、处理方法、终端及基站 Download PDF

Info

Publication number
WO2018113593A1
WO2018113593A1 PCT/CN2017/116433 CN2017116433W WO2018113593A1 WO 2018113593 A1 WO2018113593 A1 WO 2018113593A1 CN 2017116433 W CN2017116433 W CN 2017116433W WO 2018113593 A1 WO2018113593 A1 WO 2018113593A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
downlink
information
base station
indicate
Prior art date
Application number
PCT/CN2017/116433
Other languages
English (en)
French (fr)
Inventor
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP17883099.8A priority Critical patent/EP3562049A4/en
Priority to US16/471,561 priority patent/US20190394664A1/en
Publication of WO2018113593A1 publication Critical patent/WO2018113593A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the technical field of communications, and in particular, to a configuration, a processing method, a terminal, and a base station of beam management information.
  • High-frequency communication can provide a wider system bandwidth, and the antenna size can be smaller, which is more advantageous for large-scale antenna deployment in base stations and user equipment (UE).
  • High-frequency communication has the disadvantages of large path loss, easy interference, and weak link.
  • Large-scale antenna technology can provide large antenna gain. Therefore, the combination of high-frequency communication and large-scale antenna is the future 5G mobile communication system. The inevitable trend.
  • the use of large-scale antenna technology cannot solve all the problems of high-frequency communication, such as link fragility.
  • Fast, efficient and reasonable beam management for beams in high-frequency communication can effectively improve the robustness of high-frequency communication links.
  • the configuration information about beam management and the reporting of beam groups or beams are particularly important.
  • the embodiments of the present disclosure provide a configuration, a processing method, a terminal, and a base station of beam management information, so as to solve the problem that the related art does not perform beam reporting.
  • an embodiment of the present disclosure provides a method for configuring beam management information, which is applied to a base station, including: configuring beam management information in a beam management process, where the beam management information includes: a beam in a downlink beam management process. And transmitting the beam information indicating the parameter or the uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports the beam that meets the predetermined condition in the downlink beam management process; and sends the beam management information to the terminal.
  • an embodiment of the present disclosure further provides a method for processing beam management information, which is applied to a terminal, including: acquiring beam management information sent by a base station, where the beam management information includes: beam reporting in a downlink beam management process. Instructing a parameter or a transmit and receive beam information in an uplink beam management process, where the beam report indication parameter is used to indicate that the terminal reports a beam that satisfies a predetermined condition in a downlink beam management process; and performs beam reporting or beam transmission processing according to the beam management information. .
  • an embodiment of the present disclosure further provides a base station, including: a configuration module, configured to configure beam management information in a beam management process, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process Or the transmitting and receiving beam information in the uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports a beam that meets a predetermined condition in the downlink beam management process, and the sending module is configured to send the beam management information to the terminal.
  • an embodiment of the present disclosure further provides a terminal, including: a second acquiring module, configured to acquire beam management information sent by a base station, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process Or the transmitting and receiving beam information in the uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports the beam that meets the predetermined condition in the downlink beam management process; and the processing module is configured to perform beam reporting according to the beam management information.
  • Beam transmission processing configured to acquire beam management information sent by a base station, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process Or the transmitting and receiving beam information in the uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports the beam that meets the predetermined condition in the downlink beam management process.
  • the processing module is configured to perform beam reporting according to the beam management information. Beam transmission processing.
  • an embodiment of the present disclosure provides a base station, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, when the processor executes the computer program The steps of the method of configuring beam management information as described in the first aspect.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, when the processor executes the computer program The step of implementing the indication method of the downlink control channel as described in the second aspect.
  • an embodiment of the present disclosure provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement beam management as described in the first aspect The steps of the information configuration method.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements downlink control as described in the second aspect. The steps of the method of indicating the channel.
  • the foregoing technical solution of the embodiment of the present disclosure configures beam management information in a beam management process, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transceiver beam information in an uplink beam management process.
  • the beam reporting indication parameter is used to indicate that the terminal reports a beam that meets a predetermined condition in the downlink beam management process; and the beam management information is sent to the terminal, so that the terminal implements beam information reporting or uplink in the downlink beam management process.
  • the uplink beam is transmitted during the beam management process, which can reduce the downlink control information of the base station and the information reported by the terminal in the beam management of the future mobile communication system, thereby effectively improving the spectrum utilization rate and thereby increasing the system transmission rate.
  • FIG. 1 is a flowchart of a method for configuring beam management information in some embodiments of the present disclosure
  • FIG. 2 is a flowchart of a method for configuring beam management information in some embodiments of the present disclosure
  • FIG. 3 is a flowchart of a method for configuring beam management information in some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of a first downlink beam management of a method for configuring beam management information according to some embodiments of the present disclosure
  • FIG. 5 is a flowchart of a method for configuring beam management information in some embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of a second downlink beam management of a method for configuring beam management information according to some embodiments of the present disclosure
  • FIG. 7 is a flowchart of a method for configuring beam management information in some embodiments of the present disclosure.
  • FIG. 8 is a flowchart of a method for configuring beam management information in some embodiments of the present disclosure
  • FIG. 9 is a schematic diagram of uplink beam management of a method for configuring beam management information according to some embodiments of the present disclosure.
  • FIG. 10 is a flowchart of a method for processing beam management information in some embodiments of the present disclosure
  • FIG. 11 is a flowchart of a method for processing beam management information in some embodiments of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a base station according to some embodiments of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a base station according to some embodiments of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a base station according to some embodiments of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a terminal according to some embodiments of the present disclosure.
  • 16 is a schematic structural diagram of a terminal in some embodiments of the present disclosure.
  • 17 is a schematic structural diagram of a terminal in some embodiments of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a terminal in some embodiments of the present disclosure.
  • an embodiment of the present disclosure provides a method for configuring beam management information, which is applied to a base station, and includes the following steps.
  • Step 101 Configure beam management information in the beam management process, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transceiver beam information in an uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal is in the A beam that satisfies a predetermined condition is reported in the downlink beam management process.
  • the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transceiver beam information in an uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal is in the A beam that satisfies a predetermined condition is reported in the downlink beam management process.
  • the base station configures a beam reporting indication parameter for the terminal to report the beam information, and the beam reporting indication parameter indicates that the terminal reports the beam that meets the predetermined condition in the downlink beam management process, thereby implementing the downlink beam management process.
  • the predetermined condition may include: the number of reported beams is less than or equal to a predetermined number of beams; the received power of the reported beam is greater than a predetermined power threshold; the received signal strength of the reported beam is greater than a predetermined signal strength value; and the reported beam is reported in any two downlink beam management processes.
  • the offset is smaller than the preset beam offset and the like.
  • the beam reporting indication parameter includes at least one of the following parameters: a number of reported beams or an antenna port number or a number of beam occupation resources, where the number of reported beams is used to indicate the maximum number of reported beams of the terminal in the downlink management process, The number of the antenna ports is used to indicate the maximum number of reported antenna ports in the downlink management process, and the number of the occupied resources of the beam is used to indicate the maximum number of resources occupied by the terminal in the downlink management process; the beam receiving power threshold value, The minimum received power value used to indicate the reported beam of the terminal; the beam received signal strength threshold value, which is used to indicate the minimum received signal strength value of the reported beam of the terminal; and the offset of the beam receiving power threshold value, used to indicate any two The offset of the beam receiving power threshold value reported by the terminal during the downlink beam management process; the offset of the beam receiving signal strength threshold value, used to indicate the terminal received beam receiving signal strength threshold value between any two downlink beam management processes Offset; beam receive power offset, used to indicate the reception of the reported beam
  • the beam reporting indication parameters configured in each downlink beam management process may be the same or different.
  • the terminal can report the beam information that meets the corresponding conditions in the downlink beam management process.
  • the base station configures the terminal to transmit and receive beam information for the terminal to transmit the uplink beam.
  • the transceiver beam information specifically includes the transmit beam information of the terminal in the uplink beam management process and/or the receive beam information of the base station.
  • the transmit and receive beam information configured in each of the uplink beam management processes may be the same or different.
  • the transmit and receive beam information may include at least one of the following information: the uplink transmit beam information of the terminal in the uplink beam management process, where the terminal may send the uplink uplink.
  • the shift amount may be an uplink uplink transmit beam resource indication or a beam resource group or an antenna port identifier or an antenna port group offset between any two uplink beam management processes; and an uplink receive beam information of the base station in the uplink beam management process, specifically It may be an uplink receiving beam resource indication or a beam resource group or an antenna port identifier or an antenna port group of the base station in the uplink beam management process.
  • the terminal may indicate the uplink receiving beam information of the base station through the uplink control channel or the uplink traffic channel, and may be an uplink receiving beam resource indication or a beam resource group or an antenna port identifier or an antenna port group, and used for The base station is instructed to receive a beam resource or a beam resource group or an antenna port or an antenna port group.
  • the uplink receiving beam information reporting may be used in a scenario where the uplink transmission beam of the terminal does not match the uplink reception beam of the base station.
  • reporting of the beam group in the uplink beam management process can also be used for fast switching of the beam and selection of the transmission mode.
  • Step 102 Send the beam management information to the terminal.
  • the beam management information is sent to the terminal by using the radio resource control RRC signaling, the medium access MAC layer control unit CE, and/or the physical layer downlink control indication DCI, for the terminal to perform beam information reporting or uplink beam transmission.
  • the radio resource control RRC signaling the radio resource control RRC signaling, the medium access MAC layer control unit CE, and/or the physical layer downlink control indication DCI, for the terminal to perform beam information reporting or uplink beam transmission.
  • the method for configuring beam management information in the embodiment of the present disclosure configures beam management information in a beam management process, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transmitting and receiving beam information in an uplink beam management process,
  • the beam reporting indication parameter is used to indicate that the terminal reports a beam that meets a predetermined condition in a downlink beam management process, and sends the beam management information to the terminal, so that the terminal implements beam information reporting or in the downlink beam management process.
  • the uplink beam is transmitted during the uplink beam management process, which can reduce the downlink control information of the base station and the information reported by the terminal in the beam management of the mobile communication system in the future, thereby effectively improving the spectrum utilization rate and thereby increasing the system transmission rate.
  • an embodiment of the present disclosure further provides a method for configuring beam management information, which is applied to a base station, and includes the following steps.
  • Step 201 Configure beam management information in the beam management process, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports the predetermined condition in the downlink beam management process. Beam.
  • the base station configures a beam reporting indication parameter for the terminal to perform beam information reporting for the terminal in the downlink beam management process.
  • Step 202 Send the beam management information to the terminal.
  • step 102 This step is the same as step 102 above, and details are not described herein again.
  • Step 203 Acquire the downlink transmission beam information of the base station and/or the downlink reception beam information of the terminal reported by the terminal according to the beam reporting indication parameter.
  • the downlink transmission beam information of the base station includes at least one of the following information: resource indication information of a downlink transmission beam of a base station, resource group information of a downlink transmission beam of a base station, an antenna port identifier of a downlink transmission beam of a base station, or an antenna port group of a downlink transmission beam of a base station.
  • the terminal downlink receiving beam information includes at least one of the following information: resource indication information of the downlink receiving beam of the terminal, resource group information of the downlink receiving beam of the terminal, an antenna port identifier of the downlink receiving beam of the terminal, or an antenna port of the terminal downlink receiving beam. Group information.
  • the downlink downlink receiving beam information reporting of the terminal may be used in a scenario where the base station transmitting beam does not match the terminal receiving beam.
  • reporting of the beam group in the downlink beam management process can also be used for fast switching of the beam and selection of the transmission mode.
  • the terminal performs the beam reporting process in the beam management process according to the beam reporting indication parameter, the reported downlink transmission beam information of the base station, and/or the downlink downlink beam information of the terminal.
  • the method for configuring beam management information in the embodiment of the present disclosure configures beam management information in a beam management process, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process, where the beam reporting indication parameter is used to indicate that the terminal is in the downlink
  • the beam management process reports the beam that meets the predetermined condition; the beam management information is sent to the terminal; the acquiring terminal performs the beam management process according to the beam reporting indication parameter, the reported downlink transmission beam information of the base station, and/or the downlink downlink beam information of the terminal.
  • the purpose of the beam reporting by the terminal in the middle.
  • the beam reporting indication parameter is the number of reported beams.
  • the method for configuring the beam management information in the embodiment of the present disclosure, as shown in FIG. 3, includes the following steps.
  • Step 301 Configure beam management information in the beam management process, where the beam management information includes: a number of reported beams for indicating that the maximum number of reported beams is K in the downlink beam management process.
  • the base station configures the number of reported beams in the beam management information to control the number of the reported beams.
  • the configuration information of the downlink beam management information includes only the number of reported beams, which is easy to implement when configuring.
  • Step 302 Send the beam management information to the terminal.
  • the beam management information is sent to the terminal by the radio resource control RRC signaling, the medium access MAC layer control unit CE, and/or the physical layer downlink control indication DCI, for the terminal to perform beam information reporting.
  • Step 303 Send a first downlink transmit beam set to the terminal in the first downlink beam management process.
  • the TRP transmitting and receiving point
  • N the maximum number of transmit beams of the transmitting and receiving point
  • M the maximum number of received beams of the UE
  • K the number of reported beams of the UE
  • the TRP is transmitted by using a wider beam.
  • the transmit beam resource identifier is 0, 1, ..., N 1 (N 1 ⁇ N)
  • the receive beam resource identifier is 0, 1, ..., M.
  • the TRP sends the first downlink transmit beam set to the terminal, so that the terminal determines the best downlink transmit beam and the best downlink receive beam according to the beam in the first downlink transmit beam set.
  • Step 304 Acquire a first reported beam set and/or a terminal optimal downlink receive beam that includes the K best downlink transmit beams after the terminal receives the measurement of the beam in the first downlink transmit beam set.
  • the terminal uses different downlink receiving beams to receive beams in the first downlink transmitting beam set, and selects K downlink transmitting beams, for example, n 1 , . . . , n 1+k is optimally transmitted. Beam and determine the best downlink receive beam m of the terminal. The terminal may report the first reported beam set including the K best downlink transmit beams and/or the terminal optimal downlink receive beam to the TRP of the base station.
  • Step 305 In the second downlink beam management process, send the second downlink transmission beam set to the optimal downlink receiving beam of the terminal determined in the first downlink beam management process, and the beam width in the second downlink transmission beam set. It is smaller than the width of the beam in the first downlink transmission beam set.
  • the fixed UE receives the beam as m, and the TRP uses the narrower beam to transmit the second downlink transmit beam set, and the transmit beam resource identifier is 0, 1, ..., N 2 (N 2 ⁇ N), so that the terminal measures the beam in the second downlink transmission beam set.
  • Step 306 The second reported beam set including the K best downlink transmit beams sent by the terminal after receiving the measurement of the beam in the second downlink transmit beam set.
  • the terminal uses the best downlink receive beam m to measure the downlink transmit beams sent by different TRPs, and selects K downlink transmit beams in the second downlink transmit beam set, such as n 2 ,...,n 2+k and reported to the base station.
  • Step 307 In the third downlink beam management process, in the second reported beam set, an optimal downlink transmit beam is selected and sent to the terminal.
  • one of the second reported beam sets is selected as a transmit beam for the terminal to measure different downlink receive beams.
  • Step 308 Acquire the best downlink receiving beam of the reported terminal after the terminal measures the different downlink receiving beams according to the best downlink transmitting beam sent by the base station in the third downlink beam management process.
  • the fixed TRP transmission beam is n 2
  • the UE measures different receiving beams to determine that the best receiving beam of the UE is m′ and/or the UE reports the best receiving beam as m′. .
  • the best transmit beam of the TRP is n 2 and the best receive beam of the UE is m'.
  • the beam reporting indication parameter is an offset of a beam receiving power threshold value and a beam receiving power threshold value, as shown in FIG. 5, the beam management information of the embodiment of the present disclosure.
  • the configuration method includes the following steps.
  • Step 501 Configure beam management information in the beam management process, where the beam management information includes: a beam receiving power threshold value for indicating a minimum received power value of the reported beam of the terminal, and a terminal for indicating any two downlink beam management processes.
  • the offset of the beam receiving power threshold value of the offset of the beam receiving power threshold is a beam receiving power threshold value for indicating a minimum received power value of the reported beam of the terminal.
  • the base station configures a downlink beam management beam receiving power threshold value and an offset of the P-1 and P-2 beam receiving power threshold values to indicate that the terminal reports a downlink transmitting beam whose receiving power is greater than the beam receiving power threshold value. And indicate the offset of the P-1 and P-2 beam receive power thresholds.
  • Step 502 Send the beam management information to the terminal.
  • the beam management information is sent to the terminal by the radio resource control RRC signaling, the medium access MAC layer control unit CE, and/or the physical layer downlink control indication DCI, for the terminal to perform beam information reporting.
  • Step 503 Send a first downlink transmit beam set to the terminal in the first downlink beam management process.
  • the maximum number of transmit beams of the TRP of the base station is N
  • the maximum number of receive beams of the UE is M
  • the threshold of the downlink beam management beam received by the network side is BeamRxPowerTh
  • the offset of the beam receiving power threshold is BeamRxPowerThOffset.
  • the TRP transmission beam resource identifier is 0, 1, ..., N 1 (N 1 ⁇ N)
  • the receive beam resource identifier is 0, 1, ..., M.
  • the TRP sends the first downlink transmit beam set to the terminal, so that the terminal determines the best downlink transmit beam and the best downlink receive beam according to the beam in the first downlink transmit beam set.
  • Step 504 Acquire a third reported beam set and/or an optimal downlink receive beam of the terminal after receiving the measurement of the beam in the first downlink transmit beam set, and corresponding to the downlink transmit beam of the base station in the third reported beam set.
  • the received power of the downlink downlink receiving beam is greater than the beam receiving power threshold.
  • the terminal receives the beam in the first downlink transmission beam set by using different downlink receiving beams, selects the downlink receiving beam of the terminal whose receiving power is greater than the threshold value BeamRxPowerTh, and determines the selected terminal downlink receiving.
  • the TRP optimal transmit beam corresponding to the beam is n 1 , . . . , n 1+k , and the optimal downlink receive beam m of the terminal is determined.
  • the terminal reports the determined TRP optimal transmit beam n 1 , . . . , n 1+k and/or the terminal optimal downlink receive beam m to the TRP of the base station.
  • Step 505 In the second beam management process, send a second downlink transmit beam set to the best downlink receive beam of the terminal determined in the first beam management process.
  • the fixed UE receiving beam is m
  • the transmitting beam resource identifier is 0, 1, ..., N 2 (N 2 ⁇ N), so that the terminal is to the second.
  • the beam in the downlink transmit beam set is measured.
  • Step 506 The fourth reported beam set is sent after the terminal receives the measurement of the beam in the second downlink transmit beam set, and the received power of the downlink receive beam corresponding to the downlink transmit beam in the fourth reported beam set is greater than the beam receive.
  • the sum of the power threshold and the offset of the beam receive power threshold is greater than the beam receive.
  • the terminal uses the best downlink receive beam m to measure the downlink transmit beams sent by different TRPs, and selects the downlink receive beams of the terminal whose received power is greater than the sum of BeamRxPowerTh and BeamRxPowerThOffset, and determines The TRP downlink transmission beam corresponding to the selected downlink downlink receiving beam, such as n 2 , . . . , n 2+1 , is reported to the base station.
  • Step 507 In the third beam management process, in the fourth reported beam set, an optimal downlink transmit beam is selected and sent to the terminal.
  • one of the fourth reported beam sets is used as a transmit beam for the terminal to measure different downlink receive beams.
  • Step 508 Acquire the best downlink receiving beam of the reported terminal after the terminal measures the different downlink receiving beams according to the best downlink transmitting beam sent by the base station in the third beam management process.
  • UE measures the different receive beams to determine the optimal reception beam UE is m 'and / or the UE reports the best reception beam for the m' .
  • the best transmit beam of the TRP is n 2 and the best receive beam of the UE is m'.
  • the beam management information is configured in the downlink beam management process by configuring the beam receiving power threshold and the beam receiving power threshold.
  • the beam reporting indication parameter is a beam receiving power offset.
  • the method for configuring beam management information according to an embodiment of the present disclosure includes the following steps.
  • Step 701 Configure beam management information in the beam management process, where the beam management information includes: a beam receiving power offset, where the beam receiving power offset is used to indicate the received power of the reported beam of the terminal and the maximum power of the maximum received power of the beam. Offset.
  • the base station configures a beam receiving power offset to indicate that the terminal reports an offset of the received power and the maximum received power of the beam, and is less than or equal to the beam of the maximum power offset.
  • Step 702 Send the beam management information to the terminal.
  • the beam management information is sent to the terminal by the radio resource control RRC signaling, the medium access MAC layer control unit CE, and/or the physical layer downlink control indication DCI, for the terminal to perform beam information reporting.
  • Step 703 Send a first downlink transmit beam set to the terminal in the first downlink beam management process.
  • the TRP transmission beam resource identifier is 0, 1, ..., N 1 (N 1 ⁇ N)
  • the received beam resource identifier is 0, 1, ..., M.
  • the TRP sends the first downlink transmit beam set to the terminal, so that the terminal determines the best downlink transmit beam and the best downlink receive beam according to the beam in the first downlink transmit beam set.
  • Step 704 Acquire a fifth report beam set and/or an optimal downlink receive beam of the terminal, and a downlink transmit beam in the fifth report beam set, after the terminal performs the receive measurement on the beam in the first downlink transmit beam set.
  • the received power of the corresponding downlink downlink receiving beam is offset from the maximum received power of the current downlink receiving beam by less than or equal to the maximum power offset.
  • the terminal receives the beam in the first downlink transmit beam set by using different downlink receive beams, and selects that the beam receive power falls within the interval [P n1 -BeamRxPowerOffset, P n1 ].
  • the terminal downlink receives the beam, and determines that the TRP optimal transmission beam corresponding to the selected terminal downlink receiving beam is n 1 , . . . , n 1+k , and determines the optimal downlink receiving beam m of the terminal.
  • the terminal reports the determined TRP optimal transmit beam n 1 , . . . , n 1+k and/or the terminal optimal downlink receive beam m to the TRP of the base station.
  • Step 705 In the second downlink beam management process, send the second downlink transmit beam set to the optimal downlink receive beam of the terminal determined in the first downlink beam management process.
  • the fixed UE receiving beam is m
  • the transmitting beam resource identifier is 0, 1, ..., N 2 (N 2 ⁇ N), so that the terminal is to the second.
  • the beam in the downlink transmit beam set is measured.
  • Step 706 Acquire a sixth reported beam set sent by the terminal to receive and measure the beam in the second downlink transmit beam set, and receive power and downlink current of the downlink receive beam corresponding to the downlink transmit beam in the sixth report beam set.
  • the offset of the maximum received power of the receive beam is less than or equal to the maximum power offset.
  • the terminal uses the best downlink receive beam m to measure the downlink transmit beams sent by different TRPs, and selects the received power to fall into the interval.
  • the terminal downlink receiving beam in [Pn2-BeamRxPowerOffset, Pn2] determines the TRP downlink transmission beam corresponding to the selected terminal downlink receiving beam, such as n 2 , . . . , n 2+1 , and reports it to the base station.
  • Step 707 In the third downlink beam management process, in the sixth reported beam set, an optimal downlink transmit beam is selected and sent to the terminal.
  • one of the sixth reported beam sets is selected as a transmit beam for the terminal to measure different downlink receive beams.
  • Step 708 Acquire the best downlink receiving beam of the reported terminal after the terminal measures the different downlink receiving beams according to the best downlink transmitting beam sent by the base station in the third downlink beam management process.
  • the fixed TRP transmission beam is n 2
  • the UE measures different receiving beams to determine that the best receiving beam of the UE is m′ and/or the UE reports the best receiving beam as m′. .
  • the best transmit beam of the TRP is n 2 and the best receive beam of the UE is m'.
  • the beam information is reported in the downlink beam management process by configuring the beam receiving power offset, so that the reported number of beams is relatively accurate.
  • the beam management information is assumed to be the transmit and receive beam information in the uplink beam management process, and the transmit and receive beam information includes the best uplink transmit beam and/or the best determined in the first uplink beam management process.
  • the uplink receiving beam n 1 ; the beam offset of the uplink transmitting beam between the second uplink beam management process and the third beam management process, as shown in FIG. 8 the beam management information configuration method of the embodiment of the present disclosure includes The following steps.
  • Step 801 Configure beam management information in a beam management process, where the beam management information includes: transmit and receive beam information in an uplink beam management process, where the transmit and receive beam information includes an optimal uplink transmit beam and a first uplink beam management process. / or the best uplink receive beam n 1 ; the beam offset of the uplink transmit beam between the second uplink beam management process and the third beam management process.
  • the uplink beam management process is shown in Figure 9.
  • the UE sends the beam resource identifiers to 0, 1, ..., M, and the TRP receive beam resource identifiers are 0, 1, ..., N 1 (N 1 ⁇ N), and the UE is best.
  • the transmit beam is m
  • the TRP optimal receive beam is n 1 .
  • the second uplink beam management process U-2 the information that the terminal transmits using the best transmit beam m, and the second uplink beam management process and the second are configured in the transmit and receive beam information.
  • the beam offset of the uplink transmit beam between the three beam management processes to control the transmission of the terminal beam in the subsequent beam management process.
  • Step 802 Send the beam management information to the terminal.
  • the beam management information is sent to the terminal by the radio resource control RRC signaling, the medium access MAC layer control unit CE, and/or the physical layer downlink control indication DCI, for the terminal to perform beam information reporting.
  • Step 803 In the second uplink beam management process, the uplink receiving beam is measured according to the best uplink transmitting beam determined by the first uplink beam management process, and the optimal uplink receiving beam is determined.
  • the network side configures the UE to use the beam m to transmit, and/or the TRP optimal receive beam n 1 , and the TRP receive beam resource identifier is 0, 1, ..., N 2 (N 2 ⁇ N), the TRP uses different receive beams for measurement, and determines that the TRP optimal receive beam is n 2 .
  • the UE may also use the uplink control channel or the uplink traffic channel to indicate that the TRP uses the beam near n 1 to perform the measurement, and determines that the TRP optimal receiving beam is n 2 .
  • the step 803 may specifically include: In the beam management process, according to the best uplink transmit beam determined by the first uplink beam management process, the uplink receive beam adjacent to the best uplink receive beam n 1 is measured, and the best uplink receive beam is determined, where The uplink receiving beam adjacent to the optimal uplink transmitting beam n 1 is a beam with an offset from the optimal uplink receiving beam n 1 being less than a preset offset.
  • Step 804 In the third uplink beam management process, the best uplink receiving beam determined by the second uplink beam management process is used, the uplink transmitting beam sent by the terminal is received, and the optimal transmitting beam of the terminal is determined, and the third uplink beam is determined.
  • the uplink transmit beam sent by the terminal in the management process is offset from the optimal uplink transmit beam determined in the first uplink beam management process by less than or equal to the beam offset.
  • the beam offset between U-2 and U-3 is set to k on the network side, and the UE uses the beam falling within the interval [mk, m+k] to transmit, and fix the TRP.
  • reception beam is n 2
  • TRP is measured for different receive beams to determine the optimal UE transmit beam is m '.
  • Beam through the uplink management U-1, U-2 and U-3 process may determine the uplink transmission, UE is the optimal transmission beam m ', the optimal reception beam TRP is n 2.
  • the method for configuring beam management information in the embodiments of the present disclosure can reduce control signaling overhead and improve uplink beam management efficiency.
  • an embodiment of the present disclosure further provides a method for processing beam management information, which is applied to a terminal, and includes the following steps.
  • Step 1001 Acquire beam management information sent by the base station, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transceiver beam information in an uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal is in a downlink beam. A beam that satisfies a predetermined condition is reported during management.
  • the base station configures a beam reporting indication parameter for the terminal to report the beam information, and the beam reporting indication parameter indicates that the terminal reports the beam that meets the predetermined condition in the downlink beam management process, thereby implementing the downlink beam management process.
  • the predetermined condition may include: the number of reported beams is less than or equal to a predetermined number of beams; the received power of the reported beam is greater than a predetermined power threshold; the received signal strength of the reported beam is greater than a predetermined signal strength value; and the reported beam is reported in any two downlink beam management processes.
  • the offset is smaller than the preset beam offset and the like.
  • the beam reporting indication parameter includes at least one of the following information: the number of reported beams or the number of antenna ports or the number of beam occupied resources, and the number of reported beams is used to indicate the maximum number of reported beams of the terminal in the downlink management process, The number of the antenna ports is used to indicate the maximum number of reported antenna ports in the downlink management process, and the number of the occupied resources of the beam is used to indicate the maximum number of resources occupied by the terminal in the downlink management process; the beam receiving power threshold value, The minimum received power value used to indicate the reported beam of the terminal; the beam received signal strength threshold value, which is used to indicate the minimum received signal strength value of the reported beam of the terminal; and the offset of the beam receiving power threshold value, used to indicate any two The offset of the beam receiving power threshold value reported by the terminal during the downlink beam management process; the offset of the beam receiving signal strength threshold value, used to indicate the terminal received beam receiving signal strength threshold value between any two downlink beam management processes Offset; beam receive power offset, used to indicate the reception of the reported beam
  • the beam reporting indication parameters configured in each downlink beam management process may be the same or different.
  • the terminal can report the beam information that meets the corresponding conditions in the downlink beam management process.
  • the base station configures the terminal to transmit and receive beam information for the terminal to transmit the uplink beam.
  • the transceiver beam information specifically includes the transmit beam information of the terminal in the uplink beam management process and/or the receive beam information of the base station.
  • the transmit and receive beam information configured in each of the uplink beam management processes may be the same or different.
  • the transmit and receive beam information may include at least one of the following information: the uplink transmit beam information of the terminal in the uplink beam management process, where the terminal may send the uplink uplink.
  • the shift amount may be an uplink uplink transmit beam resource indication or a beam resource group or an antenna port identifier or an antenna port group offset between any two uplink beam management processes; and an uplink receive beam information of the base station in the uplink beam management process, specifically It may be an uplink receiving beam resource indication or a beam resource group or an antenna port identifier or an antenna port group of the base station in the uplink beam management process.
  • the terminal may indicate the uplink receiving beam information of the base station through the uplink control channel or the uplink traffic channel, and may be an uplink receiving beam resource indication or a beam resource group or an antenna port identifier or an antenna port group, and used for The base station is instructed to receive a beam resource or a beam resource group or an antenna port or an antenna port group.
  • the uplink receiving beam information reporting may be used in a scenario where the uplink transmission beam of the terminal does not match the uplink reception beam of the base station.
  • reporting of the beam group in the uplink beam management process can also be used for fast switching of the beam and selection of the transmission mode.
  • Step 1002 Perform beam reporting or beam sending processing according to beam management information.
  • the above step 1002 may specifically include the following steps.
  • Step 10021 If the beam management information is a beam reporting indication parameter, report the base station downlink transmission beam information and/or the terminal downlink reception beam information to the base station according to the beam reporting indication parameter.
  • the terminal implements the purpose of beam information reporting according to the beam management information configured by the base station.
  • Step 10022 If the beam management information is the transmit and receive beam information, send the terminal uplink transmit beam to the base station according to the transmit and receive beam information.
  • the terminal implements uplink beam transmission according to beam management information configured by the base station.
  • the beam management information processing method of the embodiment of the present disclosure acquires beam management information sent by the base station, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transmitting and receiving beam information in an uplink beam management process, where the beam reporting is performed.
  • the indication parameter is used to indicate that the terminal reports a beam that satisfies a predetermined condition in the downlink beam management process, and performs beam reporting or beam transmission processing according to the beam management information, which can reduce control signaling overhead and improve uplink beam management efficiency.
  • an embodiment of the present disclosure further provides a base station 1200, including: a configuration module 1201, configured to configure beam management information in a beam management process, where the beam management The information includes: a beam reporting indication parameter in the downlink beam management process or a transmitting and receiving beam information in the uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports a beam that meets a predetermined condition in the downlink beam management process; the sending module 1202 And transmitting the beam management information to the terminal.
  • a configuration module 1201 configured to configure beam management information in a beam management process, where the beam management The information includes: a beam reporting indication parameter in the downlink beam management process or a transmitting and receiving beam information in the uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports a beam that meets a predetermined condition in the downlink beam management process
  • the sending module 1202 And transmitting the beam management information to the terminal.
  • the beam management information is a beam reporting indication parameter.
  • the base station 1200 further includes: a first acquiring module 1203, configured to acquire, according to the beam reporting indication parameter, the terminal The reported base station downlink transmission beam information and/or terminal downlink reception beam information.
  • the downlink transmission beam information of the base station includes at least one of the following information: resource indication information of a downlink transmission beam of the base station, resource group information of a downlink transmission beam of the base station, an antenna port identifier of the downlink transmission beam of the base station, or downlink of the base station.
  • Antenna port group information of the transmit beam includes at least one of the following information: resource indication information of a downlink transmission beam of the base station, resource group information of a downlink transmission beam of the base station, an antenna port identifier of the downlink transmission beam of the base station, or downlink of the base station.
  • the terminal downlink receiving beam information includes at least one of the following information: resource indication information of the downlink receiving beam of the terminal, resource group information of the downlink receiving beam of the terminal, antenna port identifier of the downlink receiving beam of the terminal, or antenna port group information of the downlink receiving beam of the terminal. .
  • the beam reporting indication parameter includes at least one of the following parameters: the number of reported beams or the number of antenna ports or the number of resources occupied by the beam, and the number of reported beams is used to indicate the maximum reporting of the terminal in the downlink management process.
  • the number of the antennas, the number of the antenna ports is used to indicate the maximum number of reported antenna ports in the downlink management process, and the number of the occupied resources of the beam is used to indicate the maximum number of resources occupied by the terminal in the downlink management process;
  • the power threshold value is used to indicate the minimum received power value of the reported beam of the terminal;
  • the beam received signal strength threshold value is used to indicate the minimum received signal strength value of the reported beam of the terminal; and the offset of the beam receiving power threshold value is used.
  • the transmit and receive beam information includes at least one of the following information: uplink transmit beam information of the terminal in the uplink beam management process; and offset of the uplink transmit beam information of the terminal between any two uplink beam management processes; Uplink receive beam information of the base station in the uplink beam management process.
  • the sending module 1202 is specifically configured to send the beam management information to the terminal.
  • the base station is a base station corresponding to the foregoing method embodiment. All the implementation manners in the foregoing method embodiments are applicable to the embodiment of the base station, and the same technical effects can be achieved.
  • the base station of the embodiment of the present disclosure configures beam management information in a beam management process, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transceiving beam information in an uplink beam management process, where the beam reporting indication The parameter is used to indicate that the terminal reports the beam that meets the predetermined condition in the downlink beam management process, and sends the beam management information to the terminal, so that the terminal implements beam information reporting in the downlink beam management process or in the uplink beam management process.
  • the uplink beam transmission can reduce the overhead of the base station downlink control information and the terminal reporting information in the beam management of the future mobile communication system, thereby effectively improving the spectrum utilization rate and thereby increasing the system transmission rate.
  • the base station of the present disclosure further provides a base station, where the base station includes: a processor. a memory 1420 connected to the processor 1400 via a bus interface, and a transceiver 1410 connected to the processor 1400 through a bus interface; the memory 1420 is configured to store a memory used by the processor when performing an operation Programs and data; transmitting data information or pilots through the transceiver 1410, and receiving an uplink control channel through the transceiver 1410; when the processor 1400 calls and executes the programs and data stored in the memory 1420, specifically The scheduling information carrying the numerical configuration information is sent to the terminal.
  • the base station includes: a processor. a memory 1420 connected to the processor 1400 via a bus interface, and a transceiver 1410 connected to the processor 1400 through a bus interface; the memory 1420 is configured to store a memory used by the processor when performing an operation Programs and data; transmitting data information or pilots through the transceiver 1410, and receiving an uplink control channel through the transcei
  • the processor 1400 is configured to read the program in the memory 1420, and perform the following process: configuring beam management information in the beam management process, where the beam management information includes: a beam reporting indication parameter in the downlink beam management process or an uplink beam management process.
  • the beam-receiving beam information is used to instruct the terminal to report a beam that satisfies a predetermined condition in a downlink beam management process; and the beam management information is sent to the terminal.
  • the beam management information is a beam reporting indication parameter
  • the processor 1400 is further configured to: acquire, by the terminal, the downlink transmission beam information and/or the terminal reported by the terminal according to the beam reporting indication parameter. Downlink receiving beam information.
  • the downlink transmit beam information of the base station includes at least one of the following information: resource indication information of a base station downlink transmit beam, resource group information of a base station downlink transmit beam, and an antenna port identifier of a base station downlink transmit beam or Antenna port group information of the downlink transmission beam of the base station.
  • the terminal downlink receiving beam information includes at least one of the following information: resource indication information of the downlink receiving beam of the terminal, resource group information of the downlink receiving beam of the terminal, antenna port identifier of the downlink receiving beam of the terminal, or antenna port group information of the downlink receiving beam of the terminal. .
  • the beam reporting indication parameter includes at least one of the following parameters: a number of reported beams or an antenna port number or a number of beam occupation resources, where the number of reported beams is used to indicate that the terminal is in a downlink management process.
  • the maximum number of reported beams, the number of the antenna ports is used to indicate the maximum number of reported antenna ports in the downlink management process, and the number of the occupied resources of the beam is used to indicate the maximum number of resources occupied by the terminal in reporting the downlink management process;
  • the beam receiving power threshold value is used to indicate the minimum received power value of the reported beam of the terminal;
  • the beam receiving signal strength threshold value is used to indicate the minimum received signal strength value of the reported beam of the terminal;
  • the offset of the beam receiving power threshold value For indicating the offset of the beam receiving power threshold value reported by the terminal between any two downlink beam management processes;
  • the offset of the beam receiving signal strength threshold value is used to indicate the terminal reporting between any two downlink beam management processes Offset of the beam received signal strength threshold;
  • beam receive power offset used to indicate the terminal The maximum power offset and received power of the maximum power of the received beam beam; beam received signal strength offset, the maximum signal strength reported by the terminal offset indication of a beam received signal strength maximum received signal strength of the beam.
  • the transceiver beam information includes at least one of the following information: uplink transmit beam information of the terminal in the uplink beam management process; and offset of the uplink transmit beam information of the terminal between any two uplink beam management processes The amount of uplink receive beam information of the base station during uplink beam management.
  • the processor 1400 is further configured to send the beam management information to the network by using radio resource control RRC signaling, media access MAC layer control unit CE, and/or physical layer downlink control indication DCI. Said terminal.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1400 and various circuits of memory represented by memory 1420.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1410 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1400 is responsible for managing the bus architecture and general processing, and the memory 1420 can store data used by the processor 1400 in performing operations.
  • the base station configures beam management information in the beam management process, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transmitting and receiving beam information in an uplink beam management process, where the beam reporting indication parameter is used.
  • the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transmitting and receiving beam information in an uplink beam management process, where the beam reporting indication parameter is used.
  • the transmission can reduce the overhead of the base station downlink control information and the terminal reporting information in the beam management of the future mobile communication system, thereby effectively improving the spectrum utilization rate and thereby increasing the system transmission rate.
  • the base station of the present disclosure may also be a device having a transceiving function, such as a network node, a cell, a relay, a small cell, a micro cell, or a transceiver node.
  • a transceiving function such as a network node, a cell, a relay, a small cell, a micro cell, or a transceiver node.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.
  • FIG. 15 is a block diagram of a terminal of an embodiment of the present disclosure.
  • the terminal 1500 shown in FIG. 15 can implement the details of the terminal scheduling method in the foregoing method embodiment, and achieve the same effect, and specifically includes: a second acquiring module 1501, configured to acquire beam management information sent by the base station, where the beam
  • the management information includes: a beam reporting indication parameter in the downlink beam management process or a transmitting and receiving beam information in an uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports a beam that satisfies a predetermined condition in a downlink beam management process; 1502.
  • the method is configured to perform beam reporting or beam sending processing according to the beam management information.
  • the processing module 1502 includes: a first processing sub-module 15021, configured to: if the beam management information is a beam reporting indication parameter, according to the beam reporting indication parameter
  • the base station reports the downlink transmission beam information of the base station and/or the downlink reception beam information of the terminal
  • the second processing sub-module 15022 is configured to send, according to the transmit and receive beam information, the base station to the base station according to the transmit and receive beam information.
  • the terminal transmits the uplink.
  • the transceiver beam information includes at least one of the following information: uplink transmit beam information of the terminal in the uplink beam management process; and offset of the uplink transmit beam information of the terminal between any two uplink beam management processes; Uplink receive beam information of the base station in the uplink beam management process.
  • the beam reporting indication parameter includes at least one of the following parameters: the number of reported beams or the number of antenna ports or the number of resources occupied by the beam, and the number of reported beams is used to indicate the maximum reporting of the terminal in the downlink management process.
  • the number of the antennas, the number of the antenna ports is used to indicate the maximum number of reported antenna ports in the downlink management process, and the number of the occupied resources of the beam is used to indicate the maximum number of resources occupied by the terminal in the downlink management process;
  • the power threshold value is used to indicate the minimum received power value of the reported beam of the terminal;
  • the beam received signal strength threshold value is used to indicate the minimum received signal strength value of the reported beam of the terminal; and the offset of the beam receiving power threshold value is used.
  • the terminal is a terminal corresponding to the foregoing method embodiment. All the implementation manners in the foregoing method embodiments are applicable to the embodiment of the terminal, and the same technical effects can be achieved.
  • the terminal of the embodiment of the present disclosure acquires beam management information sent by the base station, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transmitting and receiving beam information in an uplink beam management process, where the beam reporting indication parameter is used to indicate
  • the terminal reports a beam that satisfies a predetermined condition in the downlink beam management process, and performs beam reporting or beam transmission processing according to the beam management information, which can reduce control signaling overhead and improve uplink beam management efficiency.
  • the terminal 1700 shown in FIG. 17 includes: at least one processor 1701, a memory 1702, and at least one network interface 1704. Interface 1703 with other users.
  • the various components in terminal 1700 are coupled together by a bus system 1705. It will be appreciated that the bus system 1705 is used to implement connection communication between these components.
  • Bus system 1705 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1705 in FIG.
  • the user interface 1703 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 1702 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 1702 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 17021 and an application 17022.
  • the operating system 17021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 17022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 17022.
  • the program or the instruction stored in the memory 1702 may be a program or an instruction stored in the application 17022, and the processor 1701 is configured to acquire beam management information sent by the base station, where the beam
  • the management information includes: a beam reporting indication parameter in the downlink beam management process or a transmitting and receiving beam information in an uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports a beam that satisfies a predetermined condition in a downlink beam management process;
  • the beam management information is described, and beam reporting or beam transmitting processing is performed.
  • the processor 1701 is further configured to: if the beam management information is a beam reporting indication parameter, report the base station downlink transmission beam information and/or the terminal to the base station according to the beam reporting indication parameter.
  • the downlink receiving beam information if the beam management information is the transmitting and receiving beam information, transmitting the terminal uplink transmitting beam to the base station according to the transmitting and receiving beam information.
  • the transceiver beam information includes at least one of the following information: uplink transmit beam information of the terminal in the uplink beam management process; and offset of the uplink transmit beam information of the terminal between any two uplink beam management processes The amount of uplink receive beam information of the base station during uplink beam management.
  • the beam reporting indication parameter includes at least one of the following parameters: a number of reported beams or an antenna port number or a number of beam occupation resources, where the number of reported beams is used to indicate that the terminal is in a downlink management process.
  • the maximum number of reported beams, the number of the antenna ports is used to indicate the maximum number of reported antenna ports in the downlink management process, and the number of the occupied resources of the beam is used to indicate the maximum number of resources occupied by the terminal in reporting the downlink management process;
  • the beam receiving power threshold value is used to indicate the minimum received power value of the reported beam of the terminal;
  • the beam receiving signal strength threshold value is used to indicate the minimum received signal strength value of the reported beam of the terminal;
  • the offset of the beam receiving power threshold value For indicating the offset of the beam receiving power threshold value reported by the terminal between any two downlink beam management processes;
  • the offset of the beam receiving signal strength threshold value is used to indicate the terminal reporting between any two downlink beam management processes Offset of the beam received signal strength threshold;
  • beam receive power offset used to indicate the terminal The maximum power offset and received power of the maximum power of the received beam beam; beam received signal strength offset, the maximum signal strength reported by the terminal offset indication of a beam received signal strength maximum received signal strength of the beam.
  • the processor 1701 is configured to acquire beam management information that is sent by the base station, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transceiver beam information in an uplink beam management process, where the beam is received.
  • the reporting indication parameter is used to indicate that the terminal reports a beam that meets a predetermined condition in the downlink beam management process; performing beam reporting or beam transmission processing according to the beam management information, which can reduce control signaling overhead and improve uplink beam management efficiency.
  • the terminal of the present disclosure may be, for example, a mobile phone, a tablet computer, a personal digital assistant (PDA), or a car computer or the like.
  • PDA personal digital assistant
  • the terminal 1700 can implement various processes implemented by the terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the methods disclosed in the above embodiments of the present disclosure may be applied to the processor 1701 or implemented by the processor 1701.
  • the processor 1701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1701 or an instruction in a form of software.
  • the processor 1701 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1702, and the processor 1701 reads the information in the memory 1702 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • FIG. 18 a block diagram of still another terminal of the embodiment of the present disclosure.
  • the terminal 1800 shown in FIG. 18 includes a radio frequency (RF) circuit 1810, a memory 1820, an input unit 1830, a display unit 1840, a processor 1860, an audio circuit 1870, a WiFi (Wireless Fidelity) module 1880, and a power supply 1890.
  • RF radio frequency
  • the input unit 1830 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the terminal 1800.
  • the input unit 1830 may include a touch panel 1831.
  • the touch panel 1831 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 1831), and according to the preset The programmed program drives the corresponding connection device.
  • the touch panel 1831 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1860 is provided and can receive commands from the processor 1860 and execute them.
  • the touch panel 1831 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1830 may further include other input devices 1832.
  • the other input devices 1832 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 1840 can be used to display information input by the user or information provided to the user and various menu interfaces of the terminal 1800.
  • the display unit 1840 can include a display panel 1841.
  • the display panel 1841 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 1831 may cover the display panel 1841 to form a touch display screen, and when the touch display screen detects a touch operation thereon or nearby, it is transmitted to the processor 1860 to determine the type of the touch event, and then the processor The 1860 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • processor 1860 is a control center of the terminal 1800, which connects various parts of the entire mobile phone using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 1821, and calling stored in the second memory.
  • the data in 1822 performs various functions and processing data of the terminal 1800, thereby performing overall monitoring of the terminal 1800.
  • processor 1860 can include one or more processing units.
  • the processor 1860 is configured to acquire beam management information sent by the base station by calling a software program and/or a module stored in the first memory 1821 and/or data in the second memory 1822.
  • the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transmitting and receiving beam information in an uplink beam management process, where the beam reporting indication parameter is used to indicate that the terminal reports a beam that satisfies a predetermined condition in a downlink beam management process. And performing beam reporting or beam transmitting processing according to the beam management information.
  • the processor 1860 is further configured to: if the beam management information is a beam reporting indication parameter, report the base station downlink transmission beam information and/or the terminal to the base station according to the beam reporting indication parameter.
  • the downlink receiving beam information if the beam management information is the transmitting and receiving beam information, transmitting the terminal uplink transmitting beam to the base station according to the transmitting and receiving beam information.
  • the transceiver beam information includes at least one of the following information: uplink transmit beam information of the terminal in the uplink beam management process; and offset of the uplink transmit beam information of the terminal between any two uplink beam management processes The amount of uplink receive beam information of the base station during uplink beam management.
  • the beam reporting indication parameter includes at least one of the following parameters: a number of reported beams or an antenna port number or a number of beam occupation resources, where the number of reported beams is used to indicate that the terminal is in a downlink management process.
  • the maximum number of reported beams, the number of the antenna ports is used to indicate the maximum number of reported antenna ports in the downlink management process, and the number of the occupied resources of the beam is used to indicate the maximum number of resources occupied by the terminal in reporting the downlink management process;
  • the beam receiving power threshold value is used to indicate the minimum received power value of the reported beam of the terminal;
  • the beam receiving signal strength threshold value is used to indicate the minimum received signal strength value of the reported beam of the terminal;
  • the offset of the beam receiving power threshold value For indicating the offset of the beam receiving power threshold value reported by the terminal between any two downlink beam management processes;
  • the offset of the beam receiving signal strength threshold value is used to indicate the terminal reporting between any two downlink beam management processes The offset of the beam received signal strength threshold;
  • the beam receiving power offset is used to indicate the maximum power offset of the received power of the reported beam of the terminal and the maximum received power of the beam;
  • the beam received signal strength offset is used to indicate the maximum signal strength offset of the received signal strength of the reported beam of the terminal and the maximum received signal strength of the beam.
  • the terminal of the present disclosure may be, for example, a mobile phone, a tablet computer, a personal digital assistant (PDA), or a car computer or the like.
  • PDA personal digital assistant
  • the terminal 1800 can implement various processes implemented by the terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the processor 1860 is configured to acquire beam management information sent by the base station, where the beam management information includes: a beam reporting indication parameter in a downlink beam management process or a transceiver beam information in an uplink beam management process, where the beam is received.
  • the reporting indication parameter is used to indicate that the terminal reports a beam that meets a predetermined condition in the downlink beam management process; performing beam reporting or beam transmission processing according to the beam management information, which can reduce control signaling overhead and improve uplink beam management efficiency.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种波束管理信息的配置、处理方法、终端及基站。所述配置方法包括:配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;将所述波束管理信息发送给所述终端,使终端在下行波束管理过程中实现波束信息的上报或在上行波束管理过程中进行上行波束的发送。

Description

一种波束管理信息的配置、处理方法、终端及基站
相关申请的交叉引用
本申请主张在2016年12月23日在中国提交的中国专利申请号No.201611206090.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信的技术领域,尤其涉及一种波束管理信息的配置、处理方法、终端及基站。
背景技术
未来第五代(5 Generation,5G)移动通信系统中,为达到下行链路传输速率20Gbps,上行链路传输速率10Gbps的目标,高频通信和大规模天线技术将会被引入。高频通信可提供更宽的系统带宽,天线尺寸也可以更小,更加有利于大规模天线在基站和用户设备(User Equipment,UE)中部署。高频通信存在路径损耗较大、容易受干扰、链路较脆弱的缺点,而大规模天线技术可提供较大天线增益,因此,高频通信与大规模天线的结合是未来5G移动通信系统的必然趋势。然而,采用大规模天线技术不能解决全部高频通信的问题,如链路的脆弱性。对高频通信中的波束进行快速、高效、合理的波束管理可有效提高高频通信链路的健壮性。波束管理的相关配置信息,以及波束组或波束的上报显得尤为重要。
合理的波束测量和上报,可有效降低控制信道开销,提高系统频谱利用率。相关技术虽然给出高频通信中上行和下行波束管理的过程,但未给出如何进行波束测量和上报的方法。
发明内容
本公开实施例提供一种波束管理信息的配置、处理方法、终端及基站,以解决相关技术未给出如何进行波束上报的问题。
第一方面,本公开的实施例提供了一种波束管理信息的配置方法,应用 于基站,包括:配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;将所述波束管理信息发送给所述终端。
第二方面,本公开的实施例还提供了一种波束管理信息的处理方法,应用于终端,包括:获取基站发送的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;根据所述波束管理信息,进行波束上报或波束发送处理。
第三方面,本公开的实施例还提供了一种基站,包括:配置模块,用于配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;发送模块,用于将所述波束管理信息发送给所述终端。
第四方面,本公开的实施例还提供了一种终端,包括:第二获取模块,用于获取基站发送的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;处理模块,用于根据所述波束管理信息,进行波束上报或波束发送处理。
第五方面,本公开实施例提供了一种基站,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的波束管理信息的配置方法的步骤。
第六方面,本公开实施例提供了一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第二方面所述的下行控制信道的指示方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的波束管理信息的配置方法的步骤。
第八方面,本公开实施例提供了一种计算机可读存储介质,所述计算机 可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第二方面所述的下行控制信道的指示方法的步骤。
这样,本公开实施例的上述技术方案,配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;将所述波束管理信息发送给所述终端,使终端在下行波束管理过程中实现波束信息的上报或在上行波束管理过程中进行上行波束的发送,可降低未来移动通信系统波束管理中基站下行控制信息和终端上报信息的开销,有效提高频谱利用率,进而提升系统传输速率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施例中波束管理信息的配置方法的流程图;
图2为本公开一些实施例中波束管理信息的配置方法的流程图;
图3为本公开一些实施例中波束管理信息的配置方法的流程图;
图4为本公开一些实施例中波束管理信息的配置方法的第一下行波束管理示意图;
图5为本公开一些实施例中波束管理信息的配置方法的流程图;
图6为本公开一些实施例中波束管理信息的配置方法的第二下行波束管理示意图;
图7为本公开一些实施例中波束管理信息的配置方法的流程图;
图8为本公开一些实施例中波束管理信息的配置方法的流程图;
图9为本公开一些实施例中波束管理信息的配置方法的上行波束管理示意图;
图10为本公开一些实施例中波束管理信息的处理方法的流程图;
图11为本公开一些实施例中波束管理信息的处理方法的流程图;
图12为本公开一些实施例中基站的结构示意图;
图13为本公开一些实施例中基站的结构示意图;
图14为本公开一些实施例中基站的结构示意图;
图15为本公开一些实施例中终端的结构示意图;
图16为本公开一些实施例中终端的结构示意图;
图17为本公开一些实施例中终端的结构示意图;
图18为本公开一些实施例中终端的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在一些可选的实施例中,如图1所示,本公开的实施例提供了一种波束管理信息的配置方法,应用于基站,包括以下步骤。
步骤101:配置波束管理过程中的波束管理信息,该波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,该波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束。
在下行波束管理过程中,基站为终端配置供终端上报波束信息的波束上报指示参数,该波束上报指示参数指示终端在下行波束管理过程中上报满足预定条件的波束,从而实现在下行波束管理过程中控制终端上报相应波束信息的目的。该预定条件可具体包括:上报波束的数目小于或者等于预定波束数;上报波束的接收功率大于预定功率阈值;上报波束的接收信号强度大于预定信号强度值;任意两个下行波束管理过程中上报波束的偏移量小于预设波束偏移量等。
进一步地,上述波束上报指示参数包括以下参数的至少一个:上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管 理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;波束接收功率门限值,用于指示终端上报波束的最小接收功率值;波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
这里,每个下行波束管理过程中配置的波束上报指示参数可以相同,也可以不同,通过配置包含上述信息的波束上报指示参数,能够在下行波束管理过程中控制终端上报符合相应条件的波束信息。
上行波束管理过程中,基站为终端配置收发波束信息,供终端进行上行波束的发送。该收发波束信息具体包括上行波束管理过程中终端的发送波束信息和/或基站的接收波束信息。
每个上行波束管理过程中配置的收发波束信息可以相同,也可以不同,上述收发波束信息可具体包括以下信息的至少一个:上行波束管理过程中终端的上行发送波束信息,具体可以为终端上行发送波束资源指示或波束资源组或天线端口标识或天线端口组,用于指示UE上行发送波束或波束组或天线端口或天线端口组;任意两个上行波束管理过程间终端的上行发送波束信息的偏移量,具体可以为任意两个上行波束管理过程间终端上行发送波束资源指示或波束资源组或天线端口标识或天线端口组的偏移量;上行波束管理过程中基站的上行接收波束信息,具体可以为上行波束管理过程中基站的上行接收波束资源指示或波束资源组或天线端口标识或天线端口组。
需要说明的是,上行波束管理过程中,终端可通过上行控制信道或上行业务信道指示基站上行接收波束信息,可以为上行接收波束资源指示或波束资源组或天线端口标识或天线端口组,用于指示基站上行接收波束资源或波 束资源组或天线端口或天线端口组。
这里,上行接收波束信息上报可用于终端上行发送波束与基站上行接收波束不匹配的场景。
此外,上行波束管理过程中波束组的上报还可用于波束的快速切换和传输模式的选择。
步骤102:将上述波束管理信息发送给终端。
具体的,将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给终端,供终端进行波束信息上报或进行上行波束的发送。
本公开实施例的波束管理信息的配置方法,配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;将所述波束管理信息发送给所述终端,使终端在下行波束管理过程中实现波束信息的上报或在上行波束管理过程中进行上行波束的发送,可降低未来移动通信系统波束管理中基站下行控制信息和终端上报信息的开销,有效提高频谱利用率,进而提升系统传输速率。
在一些可选的实施例中,如图2所示,本公开的实施例还提供了一种波束管理信息的配置方法,应用于基站,包括以下步骤。
步骤201:配置波束管理过程中的波束管理信息,该波束管理信息包括:下行波束管理过程中的波束上报指示参数,上述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束。
这里,基站在下行波束管理过程中为终端配置供终端进行波束信息上报的波束上报指示参数。
步骤202:将上述波束管理信息发送给终端。
该步骤与上述步骤102相同,此处不再赘述。
步骤203:获取终端根据所述波束上报指示参数,上报的基站下行发送波束信息和/或终端下行接收波束信息。
其中,上述基站下行发送波束信息包括以下信息的至少一个:基站下行 发送波束的资源指示信息、基站下行发送波束的资源组信息、基站下行发送波束的天线端口标识或基站下行发送波束的天线端口组信息;所述终端下行接收波束信息包括以下信息的至少一个:终端下行接收波束的资源指示信息、终端下行接收波束的资源组信息、终端下行接收波束的天线端口标识或终端下行接收波束的天线端口组信息。
需要说明的是,终端下行接收波束信息上报可用于基站发送波束与终端接收波束不匹配的场景。
此外,下行波束管理过程中波束组的上报还可用于波束的快速切换和传输模式的选择。
这里,终端根据上述波束上报指示参数,上报的基站下行发送波束信息和/或终端下行接收波束信息,实现波束管理过程中终端进行波束上报的目的。
本公开实施例的波束管理信息的配置方法,配置波束管理过程中的波束管理信息,该波束管理信息包括:下行波束管理过程中的波束上报指示参数,上述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;将上述波束管理信息发送给终端;获取终端根据所述波束上报指示参数,上报的基站下行发送波束信息和/或终端下行接收波束信息,实现波束管理过程中终端进行波束上报的目的。
在一些可选的实施例中,假定上述波束上报指示参数为上报波束数,本公开的实施例的波束管理信息的配置方法,如图3所示,包括以下步骤。
步骤301:配置波束管理过程中的波束管理信息,该波束管理信息包括:用于指示终端在下行波束管理过程中,最大上报波束数为K的上报波束数。
基站在波束管理信息中配置上报波束数,以控制终端在进行上报波束的数目,该下行波束管理信息的配置信息仅包括上报波束数,在进行配置时较易实现。
步骤302:将上述波束管理信息发送给终端。
具体的,将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给终端,供终端进行波束信息上报。
步骤303:第一次下行波束管理过程中向终端发送第一下行发送波束集 合。
假定下行波束管理过程中,基站的收发节点(Transmission and Reception Point,TRP)最大发送波束数为N,UE最大接收波束数为M,网络侧配置UE上报波束数为K,如图4所示,第一次下行波束管理过程P-1中,TRP采用较宽波束发送,发送波束资源标识为0,1,…,N 1(N 1≤N),接收波束资源标识为0,1,…,M。TRP向终端发送第一下行发送波束集合,以使终端根据该第一下行发送波束集合中的波束确定最佳下行发送波束和最佳下行接收波束。
步骤304:获取终端对第一下行发送波束集合中的波束进行接收测量后,发送的包含K个最佳下行发送波束的第一上报波束集合和/或终端最佳下行接收波束。
如图4所示,终端采用不同的下行接收波束对第一下行发送波束集合中的波束进行接收,并选取K个下行发送波束,如将n 1,…,n 1+k作为最佳发送波束,并确定终端最佳下行接收波束m。终端可将包含K个最佳下行发送波束的第一上报波束集合和/或终端最佳下行接收波束上报给基站的TRP。
步骤305:在第二次下行波束管理过程中,向第一次下行波束管理过程中所确定的终端最佳下行接收波束,发送第二下行发送波束集合,第二下行发送波束集合中波束的宽度小于第一下行发送波束集合中波束的宽度。
如图4所示,在第二次下行波束管理过程中,固定UE接收波束为m,TRP采用较窄波束发送第二下行发送波束集合,发送波束资源标识为0,1,...,N 2(N 2≤N),以使终端对该第二下行发送波束集合中的波束进行测量。
步骤306:获取终端对第二下行发送波束集合中的波束进行接收测量后,发送的包含K个最佳下行发送波束的第二上报波束集合。
在第二次下行波束管理过程P-2中,终端采用最佳下行接收波束m对不同TRP发送的下行发送波束进行测量,在第二下行发送波束集合中选取K个下行发送波束,如n 2,…,n 2+k,并上报给基站。
步骤307:在第三次下行波束管理过程中,在第二上报波束集合中,选取一个最佳下行发送波束发送给终端。
第三次下行波束管理过程中,在第二上报波束集合中任选一个波束作为 发送波束,供终端对不同的下行接收波束进行测量。
步骤308:获取第三次下行波束管理过程中,终端根据基站发送的最佳下行发送波束对不同的下行接收波束进行测量后,上报的终端最佳下行接收波束。
在第三次下行波束管理过程P-3中,固定TRP发送波束为n 2,UE对不同接收波束进行测量,确定UE最佳接收波束为m’和/或UE上报最佳接收波束为m’。
通过上述下行波束管理P-1,P-2和P-3过程,可确定下行发送时,TRP的最佳发送波束为n 2,UE的最佳接收波束为m’。
本公开实施例的波束管理信息的配置方法,下行波束管理过程中仅需要配置上报波束数,简单易实现。
在一些可选的实施例中,假定上述波束上报指示参数为波束接收功率门限值及波束接收功率门限值的偏移量,如图5所示,本公开的实施例的波束管理信息的配置方法,包括以下步骤。
步骤501:配置波束管理过程中的波束管理信息,该波束管理信息包括:用于指示终端上报波束的最小接收功率值的波束接收功率门限值及用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量的波束接收功率门限值的偏移量。
这里,基站配置下行波束管理波束接收功率门限值及P-1与P-2波束接收功率门限值的偏移量,以指示终端上报接收功率大于上述波束接收功率门限值的下行发送波束,并指示P-1与P-2波束接收功率门限值的偏移量。
步骤502:将上述波束管理信息发送给终端。
具体的,将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给终端,供终端进行波束信息上报。
步骤503:第一次下行波束管理过程中向终端发送第一下行发送波束集合。
假定下行波束管理过程中,基站的收发节点TRP的最大发送波束数为N,UE最大接收波束数为M,网络侧配置下行波束管理波束接收功率门限为 BeamRxPowerTh,和第一次下行波束管理过程与第二次下行波束管理过程间,波束接收功率门限值的偏移量为BeamRxPowerThOffset,如图6所示,第一次下行波束管理过程P-1中,TRP发送波束资源标识为0,1,...,N 1(N 1≤N),接收波束资源标识为0,1,…,M。TRP向终端发送第一下行发送波束集合,以使终端根据该第一下行发送波束集合中的波束确定最佳下行发送波束和最佳下行接收波束。
步骤504:获取终端对第一下行发送波束集合中的波束进行接收测量后,发送的第三上报波束集合和/或终端最佳下行接收波束,第三上报波束集合中基站下行发送波束所对应的终端下行接收波束的接收功率,大于所述波束接收功率门限值。
如图6所示,终端采用不同的下行接收波束对第一下行发送波束集合中的波束进行接收,选取出接收功率大于门限值BeamRxPowerTh的终端下行接收波束,并确定选取出的终端下行接收波束所对应的TRP最佳发送波束为n 1,…,n 1+k,同时确定终端最佳下行接收波束m。终端将所确定的TRP最佳发送波束n 1,…,n 1+k和/或终端最佳下行接收波束m上报给基站的TRP。
步骤505:在第二次波束管理过程中,向所述第一次波束管理过程中所确定的终端最佳下行接收波束,发送第二下行发送波束集合。
如图6所示,在第二次下行波束管理过程中,固定UE接收波束为m,发送波束资源标识为0,1,…,N 2(N 2≤N),以使终端对该第二下行发送波束集合中的波束进行测量。
步骤506:获取终端对第二下行发送波束集合中的波束进行接收测量后,发送的第四上报波束集合,该第四上报波束集合中的下行发送波束对应的下行接收波束的接收功率大于波束接收功率门限值及波束接收功率门限值的偏移量之和。
在第二次下行波束管理过程P-2中,终端采用最佳下行接收波束m对不同TRP发送的下行发送波束进行测量,选取出接收功率大于BeamRxPowerTh与BeamRxPowerThOffset之和的终端下行接收波束,并确定与选取出的终端下行接收波束所对应的TRP下行发送波束,如n 2,…,n 2+1,并上报给基站。
步骤507:在第三次波束管理过程中,在第四上报波束集合中,选取一 个最佳下行发送波束发送给终端。
第三次下行波束管理过程中,在第四上报波束集合中任选一个波束作为发送波束,供终端对不同的下行接收波束进行测量。
步骤508:获取第三次波束管理过程中,终端根据基站发送的最佳下行发送波束对不同的下行接收波束进行测量后,上报的终端最佳下行接收波束。
在第三次下行波束管理过程P-3中,固定TRP发送波束为n 2,UE对不同接收波束进行测量,确定UE最佳接收波束为m’和/或UE上报最佳接收波束为m’。
通过上述下行波束管理P-1,P-2和P-3过程,可确定下行发送时,TRP的最佳发送波束为n 2,UE的最佳接收波束为m’。
本公开实施例的波束管理信息的配置方法,通过配置波束接收功率门限值及波束接收功率门限值的偏移量,来实现下行波束管理过程中的波束信息上报。
在一些可选的实施例中,假定上述波束上报指示参数为波束接收功率偏移量,如图7所示,本公开的实施例还的波束管理信息的配置方法,包括以下步骤。
步骤701:配置波束管理过程中的波束管理信息,该波束管理信息包括:波束接收功率偏移量,该波束接收功率偏移量用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量。
这里,基站配置波束接收功率偏移量,以指示终端上报,接收功率与波束最大接收功率的偏移量,小于或者等于上述最大功率偏移量的波束。
步骤702:将上述波束管理信息发送给终端。
具体的,将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给终端,供终端进行波束信息上报。
步骤703:第一次下行波束管理过程中向终端发送第一下行发送波束集合。
假定下行波束管理过程中,基站的收发节点TRP的最大发送波束数为N,UE最大接收波束数为M,网络侧配置波束接收功率偏移量 BeamRxPowerOffset,如图6所示,第一次下行波束管理过程P-1中,TRP发送波束资源标识为0,1,…,N 1(N 1≤N),接收波束资源标识为0,1,…,M。TRP向终端发送第一下行发送波束集合,以使终端根据该第一下行发送波束集合中的波束确定最佳下行发送波束和最佳下行接收波束。
步骤704:获取终端对第一下行发送波束集合中的波束,进行接收测量后,发送的第五上报波束集合和/或终端最佳下行接收波束,该第五上报波束集合中的下行发送波束对应的终端下行接收波束的接收功率,与当前下行接收波束最大接收功率的偏移量,小于或者等于所述最大功率偏移量。
假定当前UE波束最大接收功率为P n1,终端采用不同的下行接收波束对第一下行发送波束集合中的波束进行接收,选取出波束接收功率落入区间[P n1-BeamRxPowerOffset,P n1]内的终端下行接收波束,并确定与选取出的终端下行接收波束所对应的TRP最佳发送波束为n 1,…,n 1+k,同时确定终端最佳下行接收波束m。终端将所确定的TRP最佳发送波束n 1,…,n 1+k和/或终端最佳下行接收波束m上报给基站的TRP。
步骤705:在第二次下行波束管理过程中,向第一次下行波束管理过程中所确定的终端最佳下行接收波束,发送第二下行发送波束集合。
如图6所示,在第二次下行波束管理过程中,固定UE接收波束为m,发送波束资源标识为0,1,…,N 2(N 2≤N),以使终端对该第二下行发送波束集合中的波束进行测量。
步骤706:获取终端对第二下行发送波束集合中的波束进行接收测量后,发送的第六上报波束集合,该第六上报波束集合中的下行发送波束对应的下行接收波束的接收功率与当前下行接收波束最大接收功率的偏移量小于或者等于最大功率偏移量。
假定当前UE波束最大接收功率为P n2,在第二次下行波束管理过程P-2中,终端采用最佳下行接收波束m对不同TRP发送的下行发送波束进行测量,选取出接收功率落入区间[Pn2-BeamRxPowerOffset,Pn2]内的终端下行接收波束,并确定与选取出的终端下行接收波束所对应的TRP下行发送波束,如n 2,…,n 2+1,并上报给基站。
步骤707:在第三次下行波束管理过程中,在第六上报波束集合中,选 取一个最佳下行发送波束发送给终端。
第三次下行波束管理过程中,在第六上报波束集合中任选一个波束作为发送波束,供终端对不同的下行接收波束进行测量。
步骤708:获取第三次下行波束管理过程中,终端根据基站发送的最佳下行发送波束对不同的下行接收波束进行测量后,上报的终端最佳下行接收波束。
在第三次下行波束管理过程P-3中,固定TRP发送波束为n 2,UE对不同接收波束进行测量,确定UE最佳接收波束为m’和/或UE上报最佳接收波束为m’。
通过上述下行波束管理P-1,P-2和P-3过程,可确定下行发送时,TRP的最佳发送波束为n 2,UE的最佳接收波束为m’。
本公开实施例的波束管理信息的配置方法,通过配置波束接收功率偏移量,来实现下行波束管理过程中的波束信息上报,使得上报的波束数比较精确。
在一些可选的实施例中,假定上述波束管理信息为上行波束管理过程中的收发波束信息,该收发波束信息包括第一次上行波束管理过程中确定的最佳上行发送波束和/或最佳上行接收波束n 1;第二次上行波束管理过程和第三次波束管理过程间上行发送波束的波束偏移量,如图8所示,本公开的实施例的波束管理信息的配置方法,包括以下步骤。
步骤801:配置波束管理过程中的波束管理信息,该波束管理信息包括:上行波束管理过程中的收发波束信息,该收发波束信息包括第一次上行波束管理过程中确定的最佳上行发送波束和/或最佳上行接收波束n 1;第二次上行波束管理过程和第三次波束管理过程间上行发送波束的波束偏移量。
假设上行波束管理过程中,UE最大发送波束数为M,TRP最大接收波束数为N,上行波束管理过程如图9所示。第一次上行波束管理过程U-1中,UE发送波束资源标识为0,1,…,M,TRP接收波束资源标识为0,1,…,N 1(N 1≤N),UE最佳发送波束为m,TRP最佳接收波束为n 1。则基站在进行波束管理信息的配置时,在收发波束信息中配置第二次上行波束管理过程U-2中,终端使用最佳发送波束m进行发送的信息及第二次上行波束管理过程和 第三次波束管理过程间上行发送波束的波束偏移量,以控制后续波束管理过程中终端波束的发送。
步骤802:将上述波束管理信息发送给终端。
具体的,将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给终端,供终端进行波束信息上报。
步骤803:第二次上行波束管理过程中,根据第一次上行波束管理过程所确定的最佳上行发送波束,对上行接收波束进行测量,并确定最佳上行接收波束。
第二次上行波束管理过程U-2中,网络侧配置UE采用波束m发送,和/或TRP最佳接收波束n 1,TRP接收波束资源标识为0,1,…,N 2(N 2≤N),TRP采用不同的接收波束进行测量,确定TRP最佳接收波束为n 2
另外,这里还可以由UE通过上行控制信道或上行业务信道指示TRP采用n 1附近的波束进行测量,并确定TRP最佳接收波束为n 2,此时该步骤803可具体包括:第二次上行波束管理过程中,根据第一次上行波束管理过程所确定的最佳上行发送波束,对与所述最佳上行接收波束n 1邻近的上行接收波束进行测量,并确定最佳上行接收波束,其中,与所述最佳上行发送波束n 1邻近的上行接收波束,为与最佳上行接收波束n 1的偏移量小于预设偏移量的波束。
步骤804:第三次上行波束管理过程中,采用第二次上行波束管理过程所确定的最佳上行接收波束,接收终端发送的上行发送波束,并确定终端最佳发送波束,第三次上行波束管理过程中所述终端发送的上行发送波束,与第一次上行波束管理过程中确定的最佳上行发送波束的偏移量小于或者等于波束偏移量。
第三次上行波束管理过程U-3中,网络侧配置U-2与U-3间波束偏移量为k,UE采用落入区间[m-k,m+k]内的波束进行发送,固定TRP接收波束为n 2,TRP对不同接收波束进行测量,确定UE最佳发送波束为m’。
通过上述上行波束管理U-1,U-2和U-3过程,可确定上行发送时,UE的最佳发送波束为m’,TRP的最佳接收波束为n 2
本公开实施例的波束管理信息的配置方法,可降低控制信令开销,提高上行波束管理的效率。
在一些可选的实施例中,如图10所示,本公开的实施例还提供了一种波束管理信息的处理方法,应用于终端,包括以下步骤。
步骤1001:获取基站发送的波束管理信息,该波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,该波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束。
在下行波束管理过程中,基站为终端配置供终端上报波束信息的波束上报指示参数,该波束上报指示参数指示终端在下行波束管理过程中上报满足预定条件的波束,从而实现在下行波束管理过程中控制终端上报相应波束信息的目的。该预定条件可具体包括:上报波束的数目小于或者等于预定波束数;上报波束的接收功率大于预定功率阈值;上报波束的接收信号强度大于预定信号强度值;任意两个下行波束管理过程中上报波束的偏移量小于预设波束偏移量等。
进一步地,上述波束上报指示参数包括以下信息的至少一个:上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;波束接收功率门限值,用于指示终端上报波束的最小接收功率值;波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
这里,每个下行波束管理过程中配置的波束上报指示参数可以相同,也 可以不同,通过配置包含上述信息的波束上报指示参数,能够在下行波束管理过程中控制终端上报符合相应条件的波束信息。
上行波束管理过程中,基站为终端配置收发波束信息,供终端进行上行波束的发送。该收发波束信息具体包括上行波束管理过程中终端的发送波束信息和/或基站的接收波束信息。
每个上行波束管理过程中配置的收发波束信息可以相同,也可以不同,上述收发波束信息可具体包括以下信息的至少一个:上行波束管理过程中终端的上行发送波束信息,具体可以为终端上行发送波束资源指示或波束资源组或天线端口标识或天线端口组,用于指示UE上行发送波束或波束组或天线端口或天线端口组;任意两个上行波束管理过程间终端的上行发送波束信息的偏移量,具体可以为任意两个上行波束管理过程间终端上行发送波束资源指示或波束资源组或天线端口标识或天线端口组的偏移量;上行波束管理过程中基站的上行接收波束信息,具体可以为上行波束管理过程中基站的上行接收波束资源指示或波束资源组或天线端口标识或天线端口组。
需要说明的是,上行波束管理过程中,终端可通过上行控制信道或上行业务信道指示基站上行接收波束信息,可以为上行接收波束资源指示或波束资源组或天线端口标识或天线端口组,用于指示基站上行接收波束资源或波束资源组或天线端口或天线端口组。
这里,上行接收波束信息上报可用于终端上行发送波束与基站上行接收波束不匹配的场景。
此外,上行波束管理过程中波束组的上报还可用于波束的快速切换和传输模式的选择。
步骤1002:根据波束管理信息,进行波束上报或波束发送处理。
如图11所示,上述步骤1002可具体包括以下步骤。
步骤10021:若波束管理信息为波束上报指示参数,则根据波束上报指示参数向基站上报基站下行发送波束信息和/或终端下行接收波束信息。
这里,终端根据基站配置的波束管理信息,实现波束信息上报的目的。
步骤10022:若波束管理信息为收发波束信息,则根据收发波束信息向基站发送终端上行发送波束。
这里,终端根据基站配置的波束管理信息,实现上行波束的发送。
本公开实施例的波束管理信息的处理方法,获取基站发送的波束管理信息,该波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,该波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;根据波束管理信息,进行波束上报或波束发送处理,可降低控制信令开销,提高上行波束管理的效率。
在一些可选的实施例中,如图12所示,本公开的实施例还提供了一种基站1200,包括:配置模块1201,用于配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;发送模块1202,用于将所述波束管理信息发送给所述终端。
本公开实施例的基站,所述波束管理信息为波束上报指示参数;如图13所示,所述基站1200还包括:第一获取模块1203,用于获取所述终端根据所述波束上报指示参数,上报的基站下行发送波束信息和/或终端下行接收波束信息。
本公开实施例的基站,所述基站下行发送波束信息包括以下信息的至少一个:基站下行发送波束的资源指示信息、基站下行发送波束的资源组信息、基站下行发送波束的天线端口标识或基站下行发送波束的天线端口组信息。
所述终端下行接收波束信息包括以下信息的至少一个:终端下行接收波束的资源指示信息、终端下行接收波束的资源组信息、终端下行接收波束的天线端口标识或终端下行接收波束的天线端口组信息。
本公开实施例的基站,所述波束上报指示参数包括以下参数的至少一个:上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;波束接收功率门限值,用于指示终端上报波束的最小接收功率值;波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;波束接收功率门限值的偏移量,用于指 示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
本公开实施例的基站,所述收发波束信息包括以下信息的至少一个:上行波束管理过程中终端的上行发送波束信息;任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;上行波束管理过程中基站的上行接收波束信息。
本公开实施例的基站,所述发送模块1202具体用于将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给所述终端。
需要说明的是,该基站是与上述方法实施例对应的基站,上述方法实施例中所有实现方式均适用于该基站的实施例中,也能达到相同的技术效果。
本公开实施例的基站,配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;将所述波束管理信息发送给所述终端,使终端在下行波束管理过程中实现波束信息的上报或在上行波束管理过程中进行上行波束的发送,可降低未来移动通信系统波束管理中基站下行控制信息和终端上报信息的开销,有效提高频谱利用率,进而提升系统传输速率。
在一些可选的实施例中,如图14所示,为了更好的实现上述目的,如图14所示,本公开的基站一些实施例中还提供了一种基站,该基站包括:处理器1400;通过总线接口与所述处理器1400相连接的存储器1420,以及通过总线接口与处理器1400相连接的收发机1410;所述存储器1420用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机1410发送数据信息或者导频,还通过所述收发机1410接收上行控制信道;当处理器1400调用并执行所述存储器1420中所存储的程序和数据,具体用于将携带有数值 配置信息的调度信息发送给终端。
处理器1400用于读取存储器1420中的程序,执行下列过程:配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;将所述波束管理信息发送给所述终端。
在一些可选的实施例中,所述波束管理信息为波束上报指示参数;处理器1400还用于,获取所述终端根据所述波束上报指示参数,上报的基站下行发送波束信息和/或终端下行接收波束信息。
在一些可选的实施例中,所述基站下行发送波束信息包括以下信息的至少一个:基站下行发送波束的资源指示信息、基站下行发送波束的资源组信息、基站下行发送波束的天线端口标识或基站下行发送波束的天线端口组信息。
所述终端下行接收波束信息包括以下信息的至少一个:终端下行接收波束的资源指示信息、终端下行接收波束的资源组信息、终端下行接收波束的天线端口标识或终端下行接收波束的天线端口组信息。
在一些可选的实施例中,所述波束上报指示参数包括以下参数的至少一个:上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;波束接收功率门限值,用于指示终端上报波束的最小接收功率值;波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
在一些可选的实施例中,所述收发波束信息包括以下信息的至少一个:上行波束管理过程中终端的上行发送波束信息;任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;上行波束管理过程中基站的上行接收波束信息。
在一些可选的实施例中,处理器1400还用于,将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给所述终端。
其中,在图14中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1400代表的一个或多个处理器和存储器1420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1410可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1400负责管理总线架构和通常的处理,存储器1420可以存储处理器1400在执行操作时所使用的数据。
这样,该基站配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;将所述波束管理信息发送给所述终端,使终端在下行波束管理过程中实现波束信息的上报或在上行波束管理过程中进行上行波束的发送,可降低未来移动通信系统波束管理中基站下行控制信息和终端上报信息的开销,有效提高频谱利用率,进而提升系统传输速率。
本公开的基站还可以是网络节点、小区、中继、小小区、微小区或收发节点等具有收发功能的设备。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的 全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。
在一些可选的实施例中,图15是本公开一个实施例的终端的结构图。图15所示的终端1500,能实现上述方法实施例中的终端调度方法的细节,并达到相同的效果,具体包括:第二获取模块1501,用于获取基站发送的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;处理模块1502,用于根据所述波束管理信息,进行波束上报或波束发送处理。
本公开实施例的终端,如图16所示,所述处理模块1502包括:第一处理子模块15021,用于若所述波束管理信息为波束上报指示参数,则根据所述波束上报指示参数向所述基站上报基站下行发送波束信息和/或终端下行接收波束信息;第二处理子模块15022,用于若所述波束管理信息为收发波束信息,则根据所述收发波束信息向所述基站发送终端上行发送波束。
本公开实施例的终端,所述收发波束信息包括以下信息的至少一个:上行波束管理过程中终端的上行发送波束信息;任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;上行波束管理过程中基站的上行接收波束信息。
本公开实施例的终端,所述波束上报指示参数包括以下参数的至少一个:上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;波束接收功率门限值,用于指示终端上报波束的最小接收功率值;波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
需要说明的是,该终端是与上述方法实施例对应的终端,上述方法实施例中所有实现方式均适用于该终端的实施例中,也能达到相同的技术效果。
本公开实施例的终端,获取基站发送的波束管理信息,该波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,该波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;根据波束管理信息,进行波束上报或波束发送处理,可降低控制信令开销,提高上行波束管理的效率。
在一些可选的实施例中,如图17所示,为本公开实施例终端的又一结构框图,图17所示的终端1700包括:至少一个处理器1701、存储器1702、至少一个网络接口1704和其他用户接口1703。终端1700中的各个组件通过总线系统1705耦合在一起。可理解,总线系统1705用于实现这些组件之间的连接通信。总线系统1705除包括数据总线之外,还包括电源总线、控制总线 和状态信号总线。但是为了清楚说明起见,在图17中将各种总线都标为总线系统1705。
其中,用户接口1703可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器1702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器1702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统17021和应用程序17022。
其中,操作系统17021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序17022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序17022中。
在本公开的一实施例中,通过调用存储器1702存储的程序或指令,具体的可以是在应用程序17022中存储的程序或指令,处理器1701用于获取基站 发送的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;根据所述波束管理信息,进行波束上报或波束发送处理。
在一些可选的实施例中,处理器1701还用于:若所述波束管理信息为波束上报指示参数,则根据所述波束上报指示参数向所述基站上报基站下行发送波束信息和/或终端下行接收波束信息;若所述波束管理信息为收发波束信息,则根据所述收发波束信息向所述基站发送终端上行发送波束。
在一些可选的实施例中,所述收发波束信息包括以下信息的至少一个:上行波束管理过程中终端的上行发送波束信息;任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;上行波束管理过程中基站的上行接收波束信息。
在一些可选的实施例中,所述波束上报指示参数包括以下参数的至少一个:上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;波束接收功率门限值,用于指示终端上报波束的最小接收功率值;波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
本公开实施例的终端1700,处理器1701用于获取基站发送的波束管理信息,该波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,该波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;根据波束管理信息,进行波束 上报或波束发送处理,可降低控制信令开销,提高上行波束管理的效率。
本公开的终端如可以是手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等等终端。
终端1700能够实现前述实施例中终端实现的各个过程,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法均可以应用于处理器1701中,或者由处理器1701实现。处理器1701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1702,处理器1701读取存储器1702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
在一些可选的实施例中,如图18所示,为本公开实施例的终端的再一结构框图。图18所示的终端1800包括射频(Radio Frequency,RF)电路1810、存储器1820、输入单元1830、显示单元1840、处理器1860、音频电路1870、WiFi(Wireless Fidelity)模块1880和电源1890。
其中,输入单元1830可用于接收用户输入的数字或字符信息,以及产生与终端1800的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元1830可以包括触控面板1831。触控面板1831,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1831上的操作),并根据预先设定的程式驱动相应的连接装置。在一些可选的实施例中,触控面板1831可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器1860,并能接收处理器1860发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1831。除了触控面板1831,输入单元1830还可以包括其他输入设备1832,其他输入设备1832可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元1840可用于显示由用户输入的信息或提供给用户的信息以及终端1800的各种菜单界面。显示单元1840可包括显示面板1841,在一些可选的实施例中,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1841。
应注意,触控面板1831可以覆盖显示面板1841,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器1860以确定触摸事件的类型,随后处理器1860根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显 示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器1860是终端1800的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器1821内的软件程序和/或模块,以及调用存储在第二存储器1822内的数据,执行终端1800的各种功能和处理数据,从而对终端1800进行整体监控。在一些可选的实施例中,处理器1860可包括一个或多个处理单元。
在本公开的一实施例中,通过调用存储该第一存储器1821内的软件程序和/或模块和/或该第二存储器1822内的数据,处理器1860用于获取基站发送的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;根据所述波束管理信息,进行波束上报或波束发送处理。
在一些可选的实施例中,处理器1860还用于:若所述波束管理信息为波束上报指示参数,则根据所述波束上报指示参数向所述基站上报基站下行发送波束信息和/或终端下行接收波束信息;若所述波束管理信息为收发波束信息,则根据所述收发波束信息向所述基站发送终端上行发送波束。
在一些可选的实施例中,所述收发波束信息包括以下信息的至少一个:上行波束管理过程中终端的上行发送波束信息;任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;上行波束管理过程中基站的上行接收波束信息。
在一些可选的实施例中,所述波束上报指示参数包括以下参数的至少一个:上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;波束接收功率门限值,用于指示终端上报波束的最小接收功率值;波束接收信号强度门限值,用于指 示终端上报波束的最小接收信号强度值;波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;
波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;
波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
本公开的终端如可以是手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等等终端。
终端1800能够实现前述实施例中终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的终端1800,处理器1860用于获取基站发送的波束管理信息,该波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,该波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;根据波束管理信息,进行波束上报或波束发送处理,可降低控制信令开销,提高上行波束管理的效率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一 些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (24)

  1. 一种波束管理信息的配置方法,应用于基站,包括:
    配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;
    将所述波束管理信息发送给所述终端。
  2. 根据权利要求1所述的波束管理信息的配置方法,其中,所述波束管理信息为波束上报指示参数;
    所述将所述波束管理信息发送给所述终端的步骤之后,还包括:
    获取所述终端根据所述波束上报指示参数,上报的基站下行发送波束信息和/或终端下行接收波束信息。
  3. 根据权利要求2所述的波束管理信息的配置方法,其中,所述基站下行发送波束信息包括以下信息的至少一个:
    基站下行发送波束的资源指示信息、基站下行发送波束的资源组信息、基站下行发送波束的天线端口标识或基站下行发送波束的天线端口组信息;
    所述终端下行接收波束信息包括以下信息的至少一个:
    终端下行接收波束的资源指示信息、终端下行接收波束的资源组信息、终端下行接收波束的天线端口标识或终端下行接收波束的天线端口组信息。
  4. 根据权利要求1所述的波束管理信息的配置方法,其中,所述波束上报指示参数包括以下参数的至少一个:
    上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;
    波束接收功率门限值,用于指示终端上报波束的最小接收功率值;
    波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;
    波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;
    波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;
    波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;
    波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
  5. 根据权利要求1所述的波束管理信息的配置方法,其中,所述收发波束信息包括以下信息的至少一个:
    上行波束管理过程中终端的上行发送波束信息;
    任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;
    上行波束管理过程中基站的上行接收波束信息。
  6. 根据权利要求1所述的波束管理信息的配置方法,其中,所述将所述波束管理信息发送给所述终端,包括:
    将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给所述终端。
  7. 一种波束管理信息的处理方法,应用于终端,包括:
    获取基站发送的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;
    根据所述波束管理信息,进行波束上报或波束发送处理。
  8. 根据权利要求7所述的波束管理信息的处理方法,其中,所述根据所述波束管理信息,进行波束上报或波束发送处理的步骤,包括:
    若所述波束管理信息为波束上报指示参数,则根据所述波束上报指示参数向所述基站上报基站下行发送波束信息和/或终端下行接收波束信息;
    若所述波束管理信息为收发波束信息,则根据所述收发波束信息向所述基站发送终端上行发送波束。
  9. 根据权利要求7所述的波束管理信息的处理方法,其中,所述收发波束信息包括以下信息的至少一个:
    上行波束管理过程中终端的上行发送波束信息;
    任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;
    上行波束管理过程中基站的上行接收波束信息。
  10. 根据权利要求7所述的波束管理信息的处理方法,其中,所述波束上报指示参数包括以下参数的至少一个:
    上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;
    波束接收功率门限值,用于指示终端上报波束的最小接收功率值;
    波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;
    波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;
    波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;
    波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;
    波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
  11. 一种基站,包括:
    配置模块,用于配置波束管理过程中的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;
    发送模块,用于将所述波束管理信息发送给所述终端。
  12. 根据权利要求11所述的基站,其中,所述波束管理信息为波束上报 指示参数;
    所述基站还包括:
    第一获取模块,用于获取所述终端根据所述波束上报指示参数,上报的基站下行发送波束信息和/或终端下行接收波束信息。
  13. 根据权利要求12所述的基站,其中,所述基站下行发送波束信息包括以下信息的至少一个:
    基站下行发送波束的资源指示信息、基站下行发送波束的资源组信息、基站下行发送波束的天线端口标识或基站下行发送波束的天线端口组信息;
    所述终端下行接收波束信息包括以下信息的至少一个:
    终端下行接收波束的资源指示信息、终端下行接收波束的资源组信息、终端下行接收波束的天线端口标识或终端下行接收波束的天线端口组信息。
  14. 根据权利要求11所述的基站,其中,所述波束上报指示参数包括以下参数的至少一个:
    上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端在下行管理过程中上报波束所占用的最大资源数;
    波束接收功率门限值,用于指示终端上报波束的最小接收功率值;
    波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;
    波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;
    波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;
    波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;
    波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
  15. 根据权利要求11所述的基站,其中,所述收发波束信息包括以下信 息的至少一个:
    上行波束管理过程中终端的上行发送波束信息;
    任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;
    上行波束管理过程中基站的上行接收波束信息。
  16. 根据权利要求11所述的基站,其中,所述发送模块具体用于将所述波束管理信息通过无线资源控制RRC信令、媒体接入MAC层控制单元CE和/或物理层下行控制指示DCI发送给所述终端。
  17. 一种终端,包括:
    第二获取模块,用于获取基站发送的波束管理信息,所述波束管理信息包括:下行波束管理过程中的波束上报指示参数或上行波束管理过程中的收发波束信息,所述波束上报指示参数用于指示终端在下行波束管理过程中上报满足预定条件的波束;
    处理模块,用于根据所述波束管理信息,进行波束上报或波束发送处理。
  18. 根据权利要求17所述的终端,其中,所述处理模块包括:
    第一处理子模块,用于若所述波束管理信息为波束上报指示参数,则根据所述波束上报指示参数向所述基站上报基站下行发送波束信息和/或终端下行接收波束信息;
    第二处理子模块,用于若所述波束管理信息为收发波束信息,则根据所述收发波束信息向所述基站发送终端上行发送波束。
  19. 根据权利要求17所述的终端,其中,所述收发波束信息包括以下信息的至少一个:
    上行波束管理过程中终端的上行发送波束信息;
    任意两个上行波束管理过程间终端的上行发送波束信息的偏移量;
    上行波束管理过程中基站的上行接收波束信息。
  20. 根据权利要求17所述的终端,其中,所述波束上报指示参数包括以下参数的至少一个:
    上报波束数或天线端口数或波束占用资源数,所述上报波束数用于指示终端在下行管理过程中的最大上报波束数,所述天线端口数用于指示终端在下行管理过程中的最大上报天线端口数,所述波束占用资源数用于指示终端 在下行管理过程中上报波束所占用的最大资源数;
    波束接收功率门限值,用于指示终端上报波束的最小接收功率值;
    波束接收信号强度门限值,用于指示终端上报波束的最小接收信号强度值;
    波束接收功率门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收功率门限值的偏移量;
    波束接收信号强度门限值的偏移量,用于指示任意两个下行波束管理过程间终端上报波束接收信号强度门限值的偏移量;
    波束接收功率偏移量,用于指示终端上报波束的接收功率与波束最大接收功率的最大功率偏移量;
    波束接收信号强度偏移量,用于指示终端上报波束的接收信号强度与波束最大接收信号强度的最大信号强度偏移量。
  21. 一种基站,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至6中任一项所述的波束管理信息的配置方法的步骤。
  22. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求7至10中任一项所述的下行控制信道的指示方法的步骤。
  23. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的波束管理信息的配置方法的步骤。
  24. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求7至10中任一项所述的下行控制信道的指示方法的步骤。
PCT/CN2017/116433 2016-12-23 2017-12-15 一种波束管理信息的配置、处理方法、终端及基站 WO2018113593A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17883099.8A EP3562049A4 (en) 2016-12-23 2017-12-15 METHOD FOR CONFIGURING AND PROCESSING RADIATION ADMINISTRATION INFORMATION, END UNIT AND BASE STATION
US16/471,561 US20190394664A1 (en) 2016-12-23 2017-12-15 Beam management information configuration and processing method, terminal and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611206090.5A CN108243430B (zh) 2016-12-23 2016-12-23 一种波束管理信息的配置、处理方法、终端及基站
CN201611206090.5 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018113593A1 true WO2018113593A1 (zh) 2018-06-28

Family

ID=62624748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116433 WO2018113593A1 (zh) 2016-12-23 2017-12-15 一种波束管理信息的配置、处理方法、终端及基站

Country Status (4)

Country Link
US (1) US20190394664A1 (zh)
EP (1) EP3562049A4 (zh)
CN (1) CN108243430B (zh)
WO (1) WO2018113593A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057459A1 (zh) * 2018-09-20 2020-03-26 华为技术有限公司 指示波束的方法和装置
WO2023279367A1 (en) * 2021-07-09 2023-01-12 Nokia Shanghai Bell Co., Ltd. Beam management for small data transmission

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183995A1 (en) * 2017-03-31 2018-10-04 Intel IP Corporation System and method for beam management procedure configuration
US11108476B2 (en) * 2017-10-17 2021-08-31 Intel Corporation Techniques in beam measurement
CN110753400A (zh) * 2018-07-24 2020-02-04 索尼公司 用户设备、电子设备、无线通信方法和存储介质
CN110798296B (zh) * 2018-08-03 2021-11-09 维沃移动通信有限公司 下行信号指示、接收方法和设备
US11812449B2 (en) * 2018-08-10 2023-11-07 Qualcomm Incorporated Active beam management, configuration, and capability signaling
CN111200872A (zh) 2018-11-19 2020-05-26 华为技术有限公司 波束上报的方法和通信装置
JP2023516962A (ja) * 2020-02-29 2023-04-21 華為技術有限公司 通信方法および装置、ならびにデバイス
US11728849B2 (en) * 2020-11-25 2023-08-15 Samsung Electronics Co., Ltd. Method and apparatus for multi-objective beam management
US11991649B2 (en) * 2021-08-18 2024-05-21 Charter Communications Operating, Llc Power budget control via wireless communication management
CN116195346A (zh) * 2021-09-28 2023-05-30 北京小米移动软件有限公司 信息上报、波束切换方法及装置、存储介质
WO2023082258A1 (zh) * 2021-11-15 2023-05-19 华为技术有限公司 一种确定发波束的方法及装置
CN117041997A (zh) * 2022-04-28 2023-11-10 中兴通讯股份有限公司 波束管理方法、用户装置、基站、存储介质及程序产品
WO2024000156A1 (zh) * 2022-06-28 2024-01-04 富士通株式会社 信息收发方法与装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805297A (zh) * 2005-01-10 2006-07-19 胡淑欣 防辐射移动通信终端
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和系统
CN104734760A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种实现下行波束索引处理的方法、装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237475B2 (en) * 2012-03-09 2016-01-12 Samsung Electronics Co., Ltd. Channel quality information and beam index reporting
WO2013152490A1 (en) * 2012-04-12 2013-10-17 Nokia Siemens Networks Oy Three-dimensional beamforming in a mobile communications network
EP3295737B1 (en) * 2015-05-12 2021-02-24 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for beam selection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805297A (zh) * 2005-01-10 2006-07-19 胡淑欣 防辐射移动通信终端
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和系统
CN104734760A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种实现下行波束索引处理的方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3562049A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057459A1 (zh) * 2018-09-20 2020-03-26 华为技术有限公司 指示波束的方法和装置
US12010527B2 (en) 2018-09-20 2024-06-11 Huawei Technologies Co., Ltd. Beam indication method and apparatus
WO2023279367A1 (en) * 2021-07-09 2023-01-12 Nokia Shanghai Bell Co., Ltd. Beam management for small data transmission

Also Published As

Publication number Publication date
EP3562049A4 (en) 2019-11-20
US20190394664A1 (en) 2019-12-26
EP3562049A1 (en) 2019-10-30
CN108243430B (zh) 2020-09-11
CN108243430A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2018113593A1 (zh) 一种波束管理信息的配置、处理方法、终端及基站
WO2018171669A1 (zh) 一种波束的测量上报方法、终端侧设备及网络侧设备
WO2018121323A1 (zh) 一种接入切换方法、网络侧设备及移动终端
WO2019029609A1 (zh) 波束切换方法、移动终端及计算机可读存储介质
WO2018121203A1 (zh) 测量配置方法、网络设备及终端设备
CN108632839B (zh) 一种波束处理方法、基站及终端
WO2018127000A1 (zh) 一种参考信号的指示方法、网络设备及终端设备
US11647482B2 (en) Method and device for selecting grant-free and grant-based uplink transmission
WO2019029417A1 (zh) 波束指示的处理方法、移动终端及网络侧设备
WO2018228360A1 (zh) 通信方法、移动终端、基站及计算机可读存储介质
WO2020221301A1 (zh) 参考信号测量、参考信号资源配置方法和设备
WO2020143657A1 (zh) 信道和干扰测量方法和设备
CN109391992B (zh) 一种信号测量方法、第一移动终端及网络侧设备
WO2021174994A1 (zh) 波束推荐方法、装置、网络侧设备、终端及存储介质
WO2018228313A1 (zh) 信息传输方法、基站、移动终端及计算机可读存储介质
WO2019034052A1 (zh) 多波束的测量上报方法、移动终端及网络侧设备
WO2019034074A1 (zh) 随机接入方法、终端和基站
WO2018113721A1 (zh) 一种参考信号配置方法、网络侧设备和用户设备
WO2022012171A1 (zh) Csi反馈方法、装置、电子设备及存储介质
WO2019015471A1 (zh) 测量上报的配置方法及装置、测量上报方法及装置
CN110086572B (zh) 一种上报信道质量信息的方法、装置及系统
WO2020098568A1 (zh) 上行波束训练方法、终端设备和网络侧设备
WO2017107152A1 (zh) 无线通信网络中确定网络制式的方法、接入点设备、终端设备和无线网络控制器
WO2019024890A1 (zh) 数据传输方法、数据检测方法及装置
WO2021179725A1 (zh) 上行信道传输方法、装置、基站、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017883099

Country of ref document: EP

Effective date: 20190723