WO2018110644A1 - 防汚性高親水性焼付塗膜とその製造方法および熱交換器用アルミニウムフィン材と熱交換器および冷熱機器 - Google Patents

防汚性高親水性焼付塗膜とその製造方法および熱交換器用アルミニウムフィン材と熱交換器および冷熱機器 Download PDF

Info

Publication number
WO2018110644A1
WO2018110644A1 PCT/JP2017/044886 JP2017044886W WO2018110644A1 WO 2018110644 A1 WO2018110644 A1 WO 2018110644A1 JP 2017044886 W JP2017044886 W JP 2017044886W WO 2018110644 A1 WO2018110644 A1 WO 2018110644A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
antifouling
highly hydrophilic
water
heat exchanger
Prior art date
Application number
PCT/JP2017/044886
Other languages
English (en)
French (fr)
Inventor
直人 碓井
慎也 川上
怜司 森岡
悦子 広瀬
義則 山本
Original Assignee
三菱アルミニウム株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017220447A external-priority patent/JP6964489B2/ja
Application filed by 三菱アルミニウム株式会社, 三菱電機株式会社 filed Critical 三菱アルミニウム株式会社
Priority to DE112017006336.1T priority Critical patent/DE112017006336T5/de
Priority to CN201780068978.3A priority patent/CN109923367B/zh
Publication of WO2018110644A1 publication Critical patent/WO2018110644A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Definitions

  • the present invention relates to an antifouling and highly hydrophilic baked coating film, a production method thereof, an aluminum fin material for a heat exchanger provided with the coating film, a heat exchanger, and a cooling device.
  • hydrophilic dirt such as dust or hydrophobic dirt such as oil adheres to the fin surface, making the fin surface water repellent, and condensed water is scattered by blowing air, There is a problem that so-called exposure occurs. In order to solve this skipping, it is necessary to make both the hydrophilic dirt and the hydrophobic dirt difficult to adhere to the fin.
  • a technique for imparting hydrophilicity to the surface of the fin for heat exchanger a technique for surface treatment with an organic polymer resin solution containing silica particles on the surface of the fin material, an organic polymer substance composed of an acrylic resin, and SiO 2 or A technique for coating an aluminum fin material with a film formed by mixing and applying an aqueous composition containing TiO 2 and drying it is known.
  • Patent Document 1 it is possible to form a hydrophilic coating film containing silica particles and polyethylene glycol on the surface of an aluminum alloy base material on an organic resin such as polyacrylic acid that is metal-crosslinked with a Zr compound. It is disclosed.
  • Patent Document 2 discloses that an undercoating layer containing a resin and zirconium is formed on an aluminum plate, and a hydrophilic coating layer containing a resin, colloidal silica, and a zirconium compound is formed thereon. ing.
  • Japanese Unexamined Patent Publication No. 2010-96416 A) Japanese Patent No. 4667978 (B) Japanese Unexamined Patent Publication No. 2016-90105 (A)
  • the present invention is an antifouling and highly hydrophilic baked coating film that is effective for both hydrophilic dirt and hydrophobic dirt, and does not cause a problem in terms of mold wear.
  • An object of the present invention is to provide an antifouling and highly hydrophilic baked coating film that does not cause problems such as corrosion in a heat transfer tube made of copper, a manufacturing method thereof, an aluminum fin material provided with the coating film, a heat exchanger, and a cooling / heating device. .
  • an object of the present invention is to provide a cooling / heating device having a heat exchanger provided with an antifouling and highly hydrophilic baked coating film having the above-described excellent characteristics.
  • the antifouling and highly hydrophilic baked coating film of the present invention is a baked coating film formed on the outer surface of a heat exchanger, comprising alumina particles contained in alumina sol, a water-soluble acrylic resin containing sulfonic acid, and polyethylene glycol.
  • the sulfur component containing fluororesin particles and soluble in water is 0.5 mg / m 2 or less, and the coating amount is 0.3 to 0.8 g / m 2 .
  • the average particle diameter of the alumina particles is 0.02 to 20 ⁇ m, and the alumina particles are contained in an amount of 5 to 45% by mass in 100% by mass of the baking coating film solid content.
  • the surface dynamic friction coefficient is preferably 0.2 or less.
  • the area ratio of the alumina particles is 90% or more on the surface of the baked coating film of the present invention.
  • the baking coating film in any one of the above is formed in the outer surface of the board
  • the heat exchanger of the present invention is a copper in which a plurality of the aluminum fin materials described above are arranged in parallel, a through hole is formed in each aluminum fin material, and the aluminum fin material is integrated through the through holes. Or it is preferable that the heat exchanger tube which consists of copper alloys was provided.
  • the cooling / heating apparatus of the present invention uses the heat exchanger described above.
  • the production method of the present invention is a method for producing an antifouling and highly hydrophilic baked coating film applied to the outer surface of a fin material or a heat transfer tube, comprising mixing alumina sol, a water-soluble acrylic resin, polyethylene glycol, and fluororesin particles.
  • the water-based paint obtained in this way was applied to the outer surface of the fin material or heat transfer tube in a coating amount range of 0.3 to 0.8 g / m 2 and then dried by heating to obtain an antifouling and highly hydrophilic baked paint film.
  • the water-soluble sulfur component in the antifouling and highly hydrophilic baking coating film is adjusted to 0.5 mg / m 2 or less by washing with water or hot water.
  • alumina particles having an average particle size of 0.02 to 20 ⁇ m can be used, and 5 to 45% by mass of alumina particles can be contained in 100% by mass of the solid content of the baked coating film.
  • 0.05 to 3% by mass of fluororesin particles having an average particle size of 0.1 to 0.5 ⁇ m can be contained in 100% by mass of the baking film solid content.
  • the antifouling and highly hydrophilic baked coating film of the present invention is effective for both hydrophilic and hydrophobic stains, prevents the occurrence of dew, and wears molds when processed as a fin material. Thus, it is possible to provide an antifouling and highly hydrophilic baked coating film that does not cause any problems.
  • the baked coating film of the present invention is provided on the surface of the fin material, corrosion occurs in the heat transfer tube even when stored for a long time in combination with a heat transfer tube made of copper or copper alloy to assemble a heat exchanger And so on.
  • the above-described excellent antifouling and highly hydrophilic baked coating film in which the sulfur component soluble in water is suppressed to 0.5 mg / m 2 or less can be obtained. Furthermore, if it is a refrigeration equipment provided with a heat exchanger having the above-mentioned features, it is possible to suppress the occurrence of dew jumping, and when the fin material is combined with a heat transfer tube at the manufacturing stage for a long period of storage. In addition, it is possible to obtain a refrigeration device that does not cause corrosion in the heat transfer tube.
  • the fragmentary sectional view of the aluminum fin material provided with the antifouling high hydrophilic baking film concerning the present invention The perspective view which shows an example of the heat exchanger core which assembled the aluminum fin provided with the antifouling high hydrophilic baking coating which concerns on this invention, and a heat exchanger tube.
  • the microscope picture which shows the surface state before the hot water washing of the baking coating film containing the fluororesin particle
  • the heat exchanger fin material 1 of the present embodiment includes a base material 2 made of aluminum or an aluminum alloy, a chemical conversion film 3 coated on the surface of the base material 2, and a chemical conversion film. 3 is composed of an antifouling and highly hydrophilic baking coating 5 formed so as to cover 3.
  • aluminum or aluminum alloy which comprises the base material 2 it does not specifically limit as aluminum or aluminum alloy which comprises the base material 2, Generally, the aluminum material of the composition currently applied to the base material for heat exchangers can be used suitably.
  • aluminum alloys such as JIS regulations A1050, A1100, A1200, and A3003 can be exemplified.
  • the chemical conversion film 3 a thin chromate film subjected to chromate treatment or the like can be used.
  • the antifouling and highly hydrophilic baked coating film 5 is 150 to 150 after coating on the chemical conversion film 3 with a water-based paint containing alumina sol, a water-soluble acrylic resin containing sulfonic acid, and polyethylene glycol or a modified product of polyethylene glycol as a coating film. It is a baked film formed by baking at 300 ° C. for a predetermined time, for example, for several seconds to several minutes.
  • Alumina sol means a state in which alumina particles are dispersed in a liquid dispersion medium.
  • the antifouling and highly hydrophilic baked coating film 5 after firing the water-based paint has the alumina particles 7 in the resin layer 6 made of a fired product of a mixture of a water-soluble acrylic resin and polyethylene glycol or a modified product of polyethylene glycol. It has a distributed structure. Moreover, you may employ
  • Fluorine resin particles 8 are mixed in a water-based paint in the state of PTFE dispersion, FEP dispersion, etc., and the water-based paint is baked to add a necessary amount of the fluorine resin particles 8 to provide an antifouling and highly hydrophilic baking coating.
  • the membrane 5 can be obtained.
  • the water in the paint evaporates and disappears, and the solid content contained in the paint remains to form the antifouling and highly hydrophilic baking coating 5.
  • the resin of antifouling and highly hydrophilic baked coating film 5 is obtained by washing the baked coating film with water or hot water (using 60 ° C. to 80 ° C. hot water, for example, 60 ° C. hot water). It is necessary to elute the sulfur component contained in the layer 6 and remove most of the sulfur component contained in the resin layer 6.
  • the alumina sol is in a stage where the dispersed particles (alumina particles) are transferred from the amorphous gel to boehmite (hydrate), and this state does not change in the aggregation process or the ordinary baking conditions of the coating film.
  • the alumina particles of the alumina sol at the stage of transition from the amorphous gel to boehmite are softer than colloidal silica.
  • the Mohs hardness is low. Therefore, the workability when pressing the fin material 1 provided with the antifouling and highly hydrophilic baked coating film 5 containing alumina particles derived from this alumina sol is good, and the durability of the mold is also high. can do.
  • Examples of ⁇ and ⁇ unsaturated monomers A having a sulfonic acid group or a salt thereof include vinyl sulfonic acid, aryl sulfonic acid, 2-acrylamido-2-methyl sulfonic acid, styrene sulfonic acid, methacryloyloxyethyl sulfonic acid, Or salts such as the aforementioned sodium salts, potassium salts and lithium salts are preferred.
  • This monomer A exhibits anionic hydrophilicity and improves the water wettability of the coating film.
  • ⁇ and ⁇ unsaturated monomers B having a carboxylic acid group for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid and the like are preferable. This monomer B improves the water wettability and adhesion of the coating film.
  • ⁇ and ⁇ unsaturated monomers C having an alcoholic hydroxyl group for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, N-methylol (meth) acrylamide and the like are preferable.
  • This monomer C plays a role of improving the wettability of the coating film and fixing particles derived from the alumina sol.
  • the coating amount of the water-based paint is preferably in the range of 0.3 to 0.8 g / m 2 as the amount of the coating film excluding moisture that disappears from the water-based paint upon firing (corresponding to the coating amount of solid matter). .
  • the range of 0.3 to 0.8 g / m 2 means 0.3 g / m 2 or more and 0.8 g / m 2 or less.
  • the coating amount of the water-based paint within the range of 0.3 to 0.8 g / m 2 described above, antifouling and highly hydrophilic baking with excellent coating film adhesion, hydrophilicity, antifouling property and antifouling property
  • the coating film 5 is obtained. If the coating amount is less than 0.3 g / m 2 , the antifouling baked coating film 5 may have poor hydrophilicity, poor stain resistance, and poor antifouling properties. On the other hand, when the coating amount exceeds 0.8 g / m 2 , there is a risk of poor adhesion and an increase in cost of the antifouling and highly hydrophilic baking coating 5.
  • the average particle diameter of the alumina particles contained in the alumina sol is preferably in the range of 0.02 to 20 ⁇ m. If the average particle diameter of the alumina particles is less than 0.02 ⁇ m, there is a problem that an adsorption odor is generated due to an increase in the specific surface area. If the average particle diameter of the alumina particles seems to exceed 20 ⁇ m, the mold during press working There is a problem that wear resistance deteriorates.
  • the amount of alumina particles added is desirably in the range of 5 to 45% by mass in 100% by mass of the solid content in the paint.
  • the antifouling and highly hydrophilic baked coating film 5 having excellent coating film adhesion, hydrophilicity, stain resistance, and antifouling properties is obtained. If the amount of alumina particles added is less than 5% by mass, there is a risk of poor hydrophilicity, poor stain resistance, and poor antifouling properties. When the amount of alumina particles added exceeds 45% by mass, the adhesion of the antifouling and highly hydrophilic baking coating film 5 tends to be poor, and the cost tends to increase.
  • the water-based paint contains 40 to 60% water-soluble acrylic resin containing sulfonic acid as a solid content and about 20 to 40% polyethylene glycol in addition to solid content such as alumina particles and fluororesin.
  • the average particle size of the fluororesin particles 8 is preferably in the range of 0.1 to 0.5 ⁇ m, and the addition amount is in the range of 0.05 to 3% by mass with respect to 100% by mass of the solid content in the paint. It is desirable.
  • the fluororesin particles 8 particles contained in PTFE dispersion, FEP dispersion, or the like can be used. If the addition amount of the fluororesin particles 8 is in the range of 0.05 to 3% by mass, good antifouling properties are exhibited. If the added amount is less than 0.05% by mass, the antifouling baked coating film 5 is inferior in antifouling property, and if the added amount exceeds 3% by mass, the antifouling baked coating film 5 tends to have poor hydrophilicity.
  • the average particle size of the fluororesin particles 8 is less than 0.1 ⁇ m, there is a problem that the predetermined antifouling property cannot be exhibited.
  • the average particle size of the fluororesin particles 8 exceeds 0.5 ⁇ m, the fluororesin particles 8 are uniformly dispersed in the paint. There is a difficult problem.
  • the coefficient of dynamic friction on the surface of the antifouling and highly hydrophilic baking coating 5 is desirably 0.20 or less. When the dynamic friction coefficient of the antifouling and highly hydrophilic baking coating film 5 exceeds 0.20, mold wear tends to be poor. If the coefficient of dynamic friction of the antifouling and highly hydrophilic baked coating film 5 is 0.20 or less, the press workability is excellent and it is difficult to cause mold wear defects.
  • the area ratio of alumina particles in the surface of the antifouling and highly hydrophilic baking coating 5 is desirably 90% or more.
  • the alumina particles need to be dispersed in the antifouling baked coating film 5, and in order to disperse the alumina particles, the amount of alumina particles needs to be 40% by mass or less based on 100 mass of the solid content of the paint. By setting it to 40% by mass or less, it is possible to make the area ratio of the coating surface alumina particles 90% or more, thereby reducing the dynamic friction coefficient and reducing die wear. If the area ratio of the alumina particles present on the surface of the antifouling baked coating film 5 is less than 90%, the alumina particles tend to be in an aggregated state on the surface of the antifouling high hydrophilic baking film 5, and the dynamic friction coefficient increases due to the aggregation. , 0.2, and die wear resistance deteriorates.
  • the sulfur component contained in the resin layer 6 of the antifouling and highly hydrophilic baking coating 5 is 0.5 mg / m 2 or less.
  • the sulfur component contained in the resin layer 6 is eluted in water or hot water by performing water washing or hot water washing for about 1 second to 10 minutes, so that the sulfur component in the resin layer 6 is 0.5 mg / It can be reduced to m 2 or less.
  • the adhesion of the coating film is excellent, the hydrophilicity is excellent, the stain resistance is excellent, and the dynamic friction coefficient is small.
  • the baked coating film 5 having excellent hydrophilicity is made hydrophilic by using alumina sol containing alumina particles whose Mohs hardness is lower than that of colloidal silica of the conventional material, and further mixing fluororesin particles 8 as hydrophobic particles.
  • the fin material 1 having the above structure can be widely applied to heat exchangers for room air conditioners, heat exchangers for packaged air conditioners, heat exchangers for vending machines, heat exchangers for refrigeration showcases, heat exchangers for refrigerators, and the like. It can. Further, the antifouling and highly hydrophilic baking coating 5 may be formed on both the front surface and the back surface of the fin material 1 via the chemical conversion film 3. Moreover, you may apply
  • the above-described water-based paint is applied to the entire heat exchanger core and baked, whereby the entire surface of the heat exchanger core is antifouling.
  • a highly hydrophilic baking film 5 may be formed.
  • the antifouling and highly hydrophilic baked coating film 5 can be formed as a postcoat for the heat exchanger.
  • FIG. 2 a plurality of rectangular plate-shaped fins (heat radiating plates) 15 made of fin material 1 are arranged in parallel at predetermined intervals, and U-shaped heat transfer tubes 11 are inserted into insertion holes 15 a formed in the fins 15.
  • the state which assembled the heat exchanger core 16 to the middle is shown.
  • the U-shaped heat transfer tube 11 is inserted through the insertion holes 15 a of the plurality of fins 15 so that the curved portion 11 a is aligned with one side of the parallel body of fins 1 and the open end 11 b side is aligned with the other side of the parallel body of fins 1.
  • the heat exchanger core 16 is completed by connecting an unillustrated U-shaped elbow pipe.
  • the heat transfer tube 11 and the elbow tube are made of copper or a copper alloy.
  • the antifouling and highly hydrophilic baked coating film 5 is formed on the front and back surfaces of the fins 15. For this reason, the antifouling and highly hydrophilic baking coating 5 and the heat transfer tube 11 are brought into contact with each other at the peripheral portion of the insertion hole 15a.
  • the conventional coating film may cause sulfur to ooze out from the coating film and corrode the heat transfer tube 16. It was.
  • the antifouling and highly hydrophilic baked coating film 5 formed on the fin material 1 as described above contains only 0.5 mg / m 2 or less of sulfur, so that the antifouling property is high.
  • the heat exchanger provided with the above-mentioned heat exchanger core 16 can be widely applied as, for example, a cooling / heating device.
  • Alumina sol (average particle diameter of alumina particles 0.8 ⁇ m) of the product name (Cataloid AS-3) manufactured by Catalytic Chemical Industry Co., Ltd., water-soluble acrylic resin (2-acrylamido-2-methylpropanesulfonic acid), polyethylene glycol ( PEG # 6000) and a fluororesin (PTFE fluorine dispersion) manufactured by Asahi Glass Co., Ltd. (PTFE AD911E) were mixed at a ratio shown in Table 1 to prepare a water-based paint. In Table 1, the addition amount is indicated by the amount of fluororesin particles contained in the PTFE fluorine dispersion.
  • a 100 ⁇ m thick aluminum alloy plate made of JIS standard A1050 alloy is subjected to phosphoric acid chromate treatment to form a 0.3 ⁇ m thick chemical film, and water-based paints having various compositions shown in Table 1 below are formed on this chemical film.
  • An antifouling high hydrophilic baking film was formed.
  • the water content of the water-based paint evaporates, and only the solid content in the water-based paint remains on the aluminum alloy plate.
  • an antifouling and highly hydrophilic baked coating film was subjected to hot water washing treatment with running water at 60 ° C. for 10 seconds.
  • the obtained fin materials, adhesion of coating film, hydrophilicity after running water, contact angle after wet and dry cycle, contamination resistance, dynamic friction coefficient, powder adhesion rate, mold wear, alumina particle area rate, copper tube return The presence or absence was measured and is shown in Table 1 below.
  • the adhesion shown in Table 1 refers to the adhesion state of the antifouling film after the Kim Towel (registered trademark) affixed to a 1 pound hammer is placed on the surface of the antifouling film of the sample and rubbed 10 times. It is the result of having observed.
  • a sample in which the antifouling film does not peel off is indicated by A
  • a surface layer is peeled off, but a remaining sample is indicated by B
  • a sample which peels about 50% is indicated by C
  • D a sample in which 100% peeling is recognized
  • the hydrophilicity after running water is the result of measuring the contact angle of the antifouling film surface after being immersed in room temperature running water at a flow rate of 3 L / min for 24 hours.
  • a sample having a contact angle of 20 ° or less is indicated by B, and a sample having a contact angle exceeding 20 ° is indicated by D.
  • the contact angle after dry / wet cycle is the contact angle of the surface of the antifouling film after 14 cycles of alternating drying at 80 ° C. for 16 hours after being immersed in normal temperature flowing water at a flow rate of 3 L / m. It is the result.
  • a sample having a contact angle of 40 ° or less is indicated by B, and a sample having a contact angle exceeding 40 ° is indicated by D.
  • a sample having a dynamic friction coefficient of 0.2 or less is indicated by B, and a sample having a dynamic friction coefficient exceeding 0.2 is indicated by D.
  • the powder adhesion rate was determined by immersing a 100 mm x 100 mm sample (aluminum fin material) in room-temperature flowing water at a flow rate of 3 L / min for 1 hour, and then using 11 types and 12 types of test powders as defined in JISZ8901 The adhesion area ratio was measured by image analysis.
  • a sample having an adhesion area ratio of 3% or less is indicated by A
  • a sample having an adhesion area ratio of 3% to 10% is indicated by B
  • a sample having an adhesion area ratio exceeding 10% is indicated by D.
  • a sample (aluminum fin material) was cut 1 million times by press working, and the wear state of the die (slit blade) was observed.
  • the hardness of the slit blade is HRC 37-41, and the wear area of the die (slit blade) is measured with a laser microscope for quantitative evaluation.
  • a sample with a wear area in a two-dimensional section of 100 ⁇ m 2 or less is used.
  • a sample indicated by B and a wear area exceeding 100 ⁇ m 2 is indicated by D.
  • the area ratio of the alumina particles is determined by observing the surface of the antifouling film with a laser microscope with a 100 ⁇ objective lens as a quantitative evaluation, and analyzing the area of the alumina particles by binarized images in a 50 ⁇ m ⁇ 50 ⁇ m field of view.
  • the sample having an area ratio of alumina particles of 90% or more is indicated by B, and the sample having an area ratio of less than 90% is indicated by D.
  • Measurement of the amount of sulfur component soluble in water in the coating film was made by cutting the fins into 4 A4 size sheets (8 sides) and storing them in a container. Stir for 10 minutes. This water was analyzed by ICP emission spectroscopic analysis, and the value obtained by converting the sulfur amount measured there to the original amount per coating film was adopted.
  • the fins described above were cut out to a height of 10 cm and a width of 5 cm, placed in close contact with a copper tube of equal length and a clip, placed in the bottom of the beaker, poured into the bottom of the beaker, and the mouth of the beaker The part was closed with a lap and the beaker was sealed.
  • the test environmental conditions were 35 cycles of 16 ° C.
  • the example samples No. 1 to No. 20 in which the coating amount of the water-based paint is in the range of 0.3 to 0.8 g / m 2 are excellent in the adhesion of the coating film.
  • the amount of sulfur component soluble in water in the coating film was 0.5 mg / m 2 or less, and no discoloration (corrosion) occurred in the copper heat transfer tube.
  • the coating amount is in the range of 0.3 to 0.8 g / m 2
  • Samples Nos. 1 to 14 in which the amount of alumina added is 5 to 45 mass% in the solid content of the paint and the amount of fluororesin added is 0.05 to 3.0 mass% in the solid content of the paint are excellent in all the test items. The results are shown.
  • No. Samples Nos. 25, 26, and 27 have appropriate coating amounts, and alumina addition amounts and fluororesin addition amounts are also appropriate, but are samples having a large amount of sulfur component soluble in water in the coating film. Discoloration occurred in the heat transfer tube.
  • No. Samples 29 to 31 have an appropriate coating amount of paint, and the addition amount of alumina and the addition amount of fluororesin are also appropriate, but are samples having a large amount of sulfur component soluble in water in the coating film. Discoloration occurred.
  • No. Sample 32 is a sample in which the amount of fluororesin added is too small, and the amount of sulfur component soluble in water in the coating film is large, but the powder adhesion rate deteriorates and corrosion of the copper heat transfer tube also occurs. It was. No.
  • Sample 33 is a sample in which the amount of fluororesin added is too large and the amount of sulfur component soluble in water in the coating film is also large. However, after running water, the hydrophilicity, wet / dry cycle, and contamination resistance deteriorated, and copper Corrosion of the heat transfer tube also occurred.
  • the coating amount in the above-mentioned water-based coating is an application amount in the range of 0.3 to 0.8 g / m 2. It is understood that it is important that the amount of sulfur component soluble in water is 0.5 mg / m 2 or less by applying, baking and washing with hot water. As a result, it has excellent coating adhesion, excellent hydrophilic properties, stain resistance, dynamic friction coefficient, powder adhesion rate, mold wear and particle area rate, and many well-balanced properties. Can be provided.
  • the characteristic which does not produce corrosion can be acquired even if it is a case where it is closely_contact
  • the average particle diameter of alumina particles in the coating film is 0.02 to 20 ⁇ m, and the coating film contains alumina particles in an amount of 5 to 45% by mass in 100% by mass of the baking film solid content, It is possible to provide fins that are excellent in coating film adhesion, hydrophilicity, contact angle, stain resistance, and particle area ratio, have little mold wear, and are less likely to cause corrosion in copper pipes.
  • FIG. 3 is a photomicrograph showing alumina particles and fluorine particles contained in the antifouling baked coating film formed on the sample surface of Example No. 3 in Table 1 before hot water washing
  • FIG. 4 is an example in Table 1.
  • It is a microscope picture which shows the alumina particle and fluorine particle which are contained in the antifouling-proof baking coating film formed in the sample surface of No. 3 after hot water washing.
  • a large number of amorphous alumina particles having a plurality of pointed convex portions are mixed together with rice-like fluororesin particles. It can be seen that the structure in which these particles are embedded in the resin layer is a schematic structure of the antifouling film.
  • ⁇ Left and right can be easily selected using a switch attached to the housing, and can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明の防汚性高親水性焼付塗膜は、熱交換器の表面に形成される焼付塗膜であって、アルミナゾルに含まれるアルミナ粒子とスルホン酸を含む水溶性アクリル樹脂とポリエチレングリコールとフッ素樹脂粒子を含み、水に可溶な硫黄成分が0.5mg/m以下であり、塗布量が0.3~0.8g/mであることを特徴とする。

Description

防汚性高親水性焼付塗膜とその製造方法および熱交換器用アルミニウムフィン材と熱交換器および冷熱機器
 本発明は、防汚性高親水性焼付塗膜とその製造方法および前記塗膜を備えた熱交換器用アルミニウムフィン材と熱交換器および冷熱機器に関する。
 本願は、2016年12月15日に日本に出願された特願2016-243686号及び2017年11月15日に日本に出願された特願2017-220447号に基づき優先権を主張し、その内容をここに援用する。
 エアーコンディショナー用の熱交換器には、埃などの親水性の汚れや油分等の疎水性の汚れがフィン表面に付着することによって、フィン表面が撥水化し、結露水が送風によって飛散すること、いわゆる露飛びが発生する問題がある。
 この露飛びを解決するためには、親水性汚れ、疎水性汚れ共にフィンに付着し難くする必要がある。
 熱交換器用フィンの表面に親水性を付与する技術として、フィン材表面にシリカ粒子を含有する有機高分子樹脂溶液で表面処理する技術や、アクリル系樹脂などからなる有機高分子物質とSiO又はTiOを含む水性組成物を混合して塗布し、乾燥することによって形成される皮膜によりアルミニウムフィン材を被覆する技術が知られている。
 以下の特許文献1には、Zr化合物を用いて金属架橋させたポリアクリル酸等の有機樹脂に、シリカ粒子、ポリエチレングリコールを含有した親水性塗膜をアルミニウム合金基材の表面に形成することが開示されている。
 以下の特許文献2には、アルミニウム板に、樹脂とジルコニウムを含有する下地皮膜層を形成し、その上に、樹脂、コロイダルシリカ、ジルコニウム化合物を含有する親水性被膜層を形成することが開示されている。
上述の露飛びを解決するための手法の一例として、親水性粒子と疎水性粒子の混合膜をアルミニウムフィンの表面に塗布することが有効であるが、親水性粒子として知られているコロイダルシリカを用いると、粒子硬度が高いため、アルミニウム板材からフィン材をプレス加工で作製する場合、金型摩耗を生じ易い問題がある。
 そこで本願発明者らは先に親水性粒子としてモース硬度がコロイダルシリカより低いアルミナゾルを用い、疎水性粒子としてフッ素樹脂を混合することによって、親水性汚れと疎水性汚れの双方を付着し難くした塗膜構造について以下の特許文献3により提案している。
日本国特開2010-96416号公報(A) 日本国特許第4667978号公報(B) 日本国特開2016-90105号公報(A)
 特許文献3に記載の塗膜をアルミニウムフィン材に形成することにより、親水性汚れと疎水性汚れの双方に有効であるとともに、金型摩耗の少ないフィン材を提供することができる。
 そこで、上述の塗膜を備えたアルミニウムフィン材を用いて熱交換器を製造するため、複数のアルミニウムフィン材を用意し、これらフィン材を並列配置し、これらを貫通するように銅合金からなる伝熱管を設けて熱交換器コアを組み立て、環境試験を行った。
 ところが、この環境試験を行うために作成した複数の熱交換器コアを数ヶ月保管したところ、保管環境によっては熱交換器コアの伝熱管の外周に緑色の変色部分を生じることが判明した。伝熱管の緑色の変色部分について本発明者らがEPMA(電子線マイクロアナライザー)およびESCA(X線光電子分光分析)により分析を行った結果、変色部分に正常部では存在しないClが存在し、正常部よりNa、Sが増加していることが判明した。また、この変色部分をFT-IR分析(フーリエ変換赤外分光分析)した結果、緑青とほぼ同等のピークが得られた。このことは変色部分に緑青を生じていると判断でき、伝熱管表層部に腐食を生じていることがわかった。
 本願発明は、これらの事情に鑑み、親水性汚れと疎水性汚れの両方に有効であり、金型摩耗の面でも問題を生じない防汚性高親水性焼付塗膜であり、長期保存しても銅からなる伝熱管に腐食などの問題を生じない防汚性高親水性焼付塗膜とその製造方法と前記塗膜を備えたアルミニウムフィン材および熱交換器と冷熱機器の提供を目的とする。本願発明は、これらの背景に鑑み、上述の優れた特徴を備えた防汚性高親水性焼付塗膜を備えた熱交換器を有する冷熱機器の提供を目的とする。
 本発明の防汚性高親水性焼付塗膜は、熱交換器の外面に形成される焼付塗膜であって、アルミナゾルに含まれるアルミナ粒子と、スルホン酸を含む水溶性アクリル樹脂と、ポリエチレングリコールと、フッ素樹脂粒子を含み、水に可溶な硫黄成分が0.5mg/m以下であり、塗膜量が0.3~0.8g/mである。
 本発明において、前記アルミナ粒子の平均粒子径が0.02~20μmであり、前記焼付塗膜固形分100質量%中にアルミナ粒子が5~45質量%含まれたことが好ましい。
 本発明において、表面の動摩擦係数が0.2以下であることが好ましい。
 本発明において、平均粒子径0.1~0.5μmのフッ素樹脂粒子が焼付塗膜固形分100質量%中に0.05~3質量%含まれたことが好ましい。
 本発明の前記焼付塗膜表面において前記アルミナ粒子の面積率が90%以上であることが好ましい。
 本発明のアルミニウムフィン材は、アルミニウム又はアルミニウム合金からなる板材の外面に、前記いずれかに記載の焼付塗膜が形成されたことが好ましい。
 本発明の熱交換器は、先に記載のアルミニウムフィン材が複数並列配置され、前記各アルミニウムフィン材に透孔が形成され、該透孔を挿通して前記アルミニウムフィン材と一体化される銅又は銅合金からなる伝熱管が設けられたことが好ましい。
 本発明の冷熱機器は、先に記載の熱交換器を用いたものである。
 本発明の製造方法は、フィン材または伝熱管の外面に塗布される防汚性高親水性焼付塗膜の製造方法であって、アルミナゾルと水溶性アクリル樹脂とポリエチレングリコールとフッ素樹脂粒子を混合して得た水系塗料をフィン材または伝熱管の外面に塗膜量0.3~0.8g/mの範囲で塗布した後、加熱乾燥して防汚性高親水性焼付塗膜を得た後、水洗または湯洗することにより防汚性高親水性焼付塗膜中の水に可溶な硫黄成分を0.5mg/m以下とすることを特徴とする。
本発明の製造方法において、平均粒子径が0.02~20μmのアルミナ粒子を用い、前記焼付塗膜固形分100質量%中にアルミナ粒子を5~45質量%含ませることができる。
 本発明の製造方法において、平均粒子径0.1~0.5μmのフッ素樹脂粒子を焼付塗膜固形分100質量%中に0.05~3質量%含ませることができる。
 本発明の防汚性高親水性焼付塗膜であるならば、親水性汚れと疎水性汚れの両方に有効であり、露飛びの発生を防止できるとともに、フィン材として加工する場合に金型摩耗の面でも問題を生じない防汚性高親水性焼付塗膜を提供できる。
 また、本発明の焼付塗膜であれば、フィン材表面に設け、熱交換器を組み立てるために銅または銅合金からなる伝熱管と組み合わせて長期保存した場合であっても、伝熱管に腐食発生などの問題を生じることがない。
 本発明の製造方法によれば、水に可溶な硫黄成分を0.5mg/m以下に抑制した上述の優れた防汚性高親水性焼付塗膜を得ることができる。
 更に、上述の特徴を備えた熱交換器を備えた冷熱機器であるならば、露飛びの発生を抑えることができるとともに、製造段階でフィン材を伝熱管と組み合わせて長期保管した場合であっても伝熱管に腐食を生じていない冷熱機器を得ることができる。
本発明に係る防汚性高親水性焼付塗膜を備えたアルミニウムフィン材の部分断面図。 本発明に係る防汚性高親水性焼付塗膜を備えたアルミニウムフィンと伝熱管を組み立てた熱交換器コアの一例を示す斜視図。 実施例において得られたフッ素樹脂粒子を含む焼付塗膜の湯洗前の表面状態を示す顕微鏡写真。 実施例において得られたフッ素樹脂粒子を含む焼付塗膜の湯洗後の表面状態を示す顕微鏡写真。
 以下、添付図面に示す実施の形態に基づいて本発明を詳細に説明する。
 本実施形態の熱交換器用フィン材1は、図1に断面構造を示すように、アルミニウムまたはアルミニウム合金からなる基材2と、該基材2の表面に被覆された化成皮膜3と、化成皮膜3を覆うように被覆形成された防汚性高親水性焼付塗膜5から構成されている。
 基材2を構成するアルミニウム又はアルミニウム合金としては、特に限定されず、一般的に熱交換器用の基材に適用されている組成のアルミニウム材を適宜用いることができる。なお、例示するならばJIS規定A1050、A1100、A1200、A3003等のアルミニウム合金を例示できる。
 化成皮膜3として、クロメート処理された薄いクロメート皮膜などを用いることができる。
 防汚性高親水性焼付塗膜5は、アルミナゾルと、スルホン酸を含む水溶性アクリル樹脂と、ポリエチレングリコールもしくはポリエチレングリコールの変性物を含む水系塗料を塗膜として化成皮膜3上に塗布後に150~300℃で所定時間、例えば、数秒~数分程度焼成してなる焼付塗膜である。
 アルミナゾルは、アルミナ粒子を液体の分散媒に分散させた状態のものを意味する。
 従って、水系塗料を焼成した後の防汚性高親水性焼付塗膜5は、水溶性アクリル樹脂とポリエチレングリコールもしくはポリエチレングリコールの変性物の混合物の焼成体からなる樹脂層6中にアルミナ粒子7が分散された構造となっている。
 また、防汚性高親水性焼付塗膜5に対し、フッ素樹脂粒子8を添加した構造を採用してもよい。防汚性高親水性焼付塗膜5にフッ素樹脂粒子8を添加するには、フッ素樹脂粒子8を水に分散させたPTFEディスパージョン、FEPディスパージョンなどを水系塗料に必要量混合しておけばよい。
 水系塗料にPTFEディスパージョン、FEPディスパージョンなどの状態でフッ素樹脂粒子8を混合しておき、水系塗料を焼成することで、必要量のフッ素樹脂粒子8を添加した防汚性高親水性焼付塗膜5を得ることができる。水系塗料を焼成することによって塗料中の水分は蒸発して消失し、塗料中に含まれていた固形分が残留して防汚性高親水性焼付塗膜5となる。
 なお、この例では焼成後の焼付塗膜に対し水洗または湯洗(60℃~80℃の湯、例えば60℃の湯を使用)を行うことにより防汚性高親水性焼付塗膜5の樹脂層6に含まれている硫黄成分の溶出を行い、樹脂層6に含まれている硫黄成分の大部分を除去する必要がある。
 アルミナゾルは、その分散粒子(アルミナ粒子)が不定型ゲルからベーマイト(水和物)に移行する途中の段階にあり、この状態は凝集過程や通常の塗膜の焼付け条件程度では変化しない。この不定型ゲルからベーマイトに移行する途中の段階のアルミナゾルのアルミナ粒子は、コロイダルシリカと比較して軟らかい。例えば、モース硬度が低い。
 従って、このアルミナゾルに由来するアルミナ粒子を含有する防汚性高親水性焼付塗膜5を備えたフィン材1をプレス加工する時の加工性は良好であり、かつ、金型の耐久性も高くすることができる。
 水溶性アクリル樹脂としては、スルホン酸基、又はその塩を有するα、β不飽和単量体Aと、カルボン酸基を有するα、β不飽和単量体Bと、アルコール性水酸基を有するα、β不飽和単量体Cとを(割合:A;1~80wt%(好ましくは30~50wt%)、B;1~50wt%(好ましくは20~50wt%)、C;1~50wt%(好ましくは20~40wt%)が望ましい。A+B+C=100wt%)共重合したものが好ましい。
 スルホン酸基、又はその塩を有するα、β不飽和単量体Aとしては、例えばビニルスルホン酸、アリールスルホン酸、2-アクリルアミド-2-メチルスルホン酸、スチレンスルホン酸、メタクリロイルオキシエチルスルホン酸、又は前記のナトリウム塩、カリウム塩、リチウム塩などの塩が好ましい。この単量体Aは、アニオン性の親水性を示し、塗膜の水濡れ性を向上させる。
 カルボン酸基を有するα、β不飽和単量体Bとしては、例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸などが好ましい。この単量体Bは、塗膜の水濡れ性と密着性を向上させる。アルコール性水酸基を有するα、β不飽和単量体Cとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド等が好ましい。この単量体Cは、塗膜の水濡れ性を向上させると共に、アルミナゾルに由来の粒子を固定する役割を奏する。
 水系塗料の塗膜量は、水系塗料から焼成時に消失する水分を除いた塗膜量(固形分の塗膜量に相当)として0.3~0.8g/mの範囲であることが好ましい。なお、以下の説明において、「~」を用いて範囲の上限と下限を表記した場合、特に説明のない限り、下限と上限を含むものとする。よって、0.3~0.8g/mの範囲は0.3g/m以上0.8g/m以下を意味する。
 水系塗料の塗膜量を上述の0.3~0.8g/mの範囲とすることで、塗膜密着性、親水性、耐汚染性、防汚性に優れる防汚性高親水性焼付塗膜5となる。0.3g/m未満の塗膜量では防汚性焼付塗膜5の親水性不良、耐汚染性不良、防汚性不良となるおそれがある。また、0.8g/mを超える塗膜量では、防汚性高親水性焼付塗膜5の密着性不良、コストの上昇になるおそれがある。
 アルミナゾルに含まれているアルミナ粒子の平均粒子径は0.02~20μmの範囲が好ましい。アルミナ粒子の平均粒子径が0.02μm未満では、比表面積が増大することによって吸着臭が発生する問題があり、アルミナ粒子の平均粒子径が20μmを超えるようであると、プレス加工時の金型摩耗性が悪化する問題がある。
 アルミナ粒子の添加量は塗料中の固形分100質量%中、5~45質量%の範囲であることが望ましい。アルミナ粒子をこの範囲添加することで、塗膜密着性、親水性、耐汚染性、防汚性に優れる防汚性高親水性焼付塗膜5となる。アルミナ粒子の添加量を5質量%未満とすると、親水性不良、耐汚染性不良、防汚性不良となるおそれがある。アルミナ粒子の添加量について45質量%を超える量とすると、防汚性高親水性焼付塗膜5の密着性不良、コストの上昇になり易い。
 なお、前記水系塗料中には、アルミナ粒子、フッ素樹脂などの固形分の他に、固形分としてスルホン酸を含む水溶性アクリル樹脂40~60%とポリエチレングリコール20~40%程度が含まれる。
 フッ素樹脂粒子8の平均粒子径は、0.1~0.5μmの範囲であることが好ましく、添加量は塗料中の固形分の100質量%に対し0.05~3質量%の範囲であることが望ましい。フッ素樹脂粒子8として、PTFEディスパージョン、FEPディスパージョンなどに含まれている粒子を用いることができる。
 フッ素樹脂粒子8の添加量が0.05~3質量%の範囲であるならば、良好な防汚性を発揮する。添加量が0.05質量%未満では防汚性焼付塗膜5の防汚性に劣るようになり、添加量が3質量%を超えるようでは防汚性焼付塗膜5が親水性不良となり易い。
 フッ素樹脂粒子8の平均粒子径が0.1μm未満では、所定の防汚性を発揮出来ない問題があり、フッ素樹脂粒子8の平均粒子径が0.5μmを超えると塗料中に均一に分散され難い問題がある。
 防汚性高親水性焼付塗膜5の表面の動摩擦係数は0.20以下であることが望ましい。防汚性高親水性焼付塗膜5の動摩擦係数が0.20を超える値では金型摩耗不良となり易い。防汚性高親水性焼付塗膜5の動摩擦係数が0.20以下であるならば、プレス加工性に優れ、金型摩耗不良を生じ難い。
 防汚性高親水性焼付塗膜5の表面に占めるアルミナ粒子の面積率は、90%以上であることが望ましい。アルミナ粒子は、防汚性焼付塗膜5に分散した状態にする必要があり、分散させるためには、アルミナ粒子添加量を塗料固形分100質量中40質量%以下にする必要がある。40質量%以下にすることによって、塗料表面アルミナ粒子の面積率を90%以上にすることが可能で、これにより動摩擦係数を低減でき、かつ、金型摩耗を低減することが可能となる。防汚性焼付塗膜5の表面に存在するアルミナ粒子の面積率が90%未満では防汚性高親水性焼付塗膜5の表面においてアルミナ粒子が凝集状態となり易く、凝集により動摩擦係数が増大し、0.2を超えるようになり、金型摩耗性が悪化する。
 防汚性高親水性焼付塗膜5の樹脂層6に含まれている硫黄成分は0.5mg/m以下であることが望ましい。上述の如く水洗浄あるいは湯洗浄を1秒~10分程度行うことにより樹脂層6に含まれている硫黄成分を水中又は湯中に溶出させることによって樹脂層6中の硫黄成分を0.5mg/m以下に減少させることができる。
 樹脂層6中に含まれる硫黄成分が0.5mg/mを超えるようであると、後述するように熱交換器を構成するために銅または銅合金からなる伝熱管と組み合わせた場合、結露水や湿気などにより樹脂層6中に含まれている硫黄成分が伝熱管の表面に到達し、銅と反応して緑青を生じる。一例として、後述する実施例に示す如く0.05~0.48mg/mの範囲の硫黄成分を有する程度であれば、伝熱管の腐食を防止できる。
 湯洗浄の場合60~80℃程度の湯を用いて1秒~60秒程度洗浄することが好ましい。水洗浄の場合、10秒~60分程度洗浄することが好ましい。
 以上説明の防汚性高親水性焼付塗膜5を表面に備えたフィン材1であるならば、塗膜の密着性に優れ、親水性に優れ、耐汚染性に優れ、動摩擦係数が小さく、フィンを形成するためのプレス加工において金型摩耗を少なくし、金型寿命を長くできる特徴を有する。
 これは、親水性に優れた焼付塗膜5について、モース硬度が従来材のコロイダルシリカよりも低いアルミナ粒子を含むアルミナゾルを用い、更に疎水性粒子としてのフッ素樹脂粒子8を混合することによって、親水性汚れ、疎水性汚れの両方を付着し難くして防汚性を向上させ、かつ、防汚性高親水性焼付塗膜5の表面に面積率で90%以上のアルミナゾルに由来するアルミナ粒子を存在させることでプレス加工時の金型摩耗を低減できることによる。
 前記構造のフィン材1は、ルームエアコンの熱交換器、パッケージエアコンの熱交換器、自動販売機用熱交換器、冷凍ショーケース用熱交換器、冷蔵庫用熱交換器などに広く適用することができる。
 また、フィン材1の表面と裏面の両方に化成皮膜3を介し防汚性高親水性焼付塗膜5を形成しても良い。また、熱交換器のフィン材1の表面と裏面に限らず、伝熱管を含めて熱交換器全体に塗布しても良い。例えば、フィン材1と伝熱管11を組み合わせて熱交換器コアを組み立てた後、熱交換器コアの全体に前述の水系塗料を塗布し焼成することで熱交換器コアの全体表面に防汚性高親水性焼付塗膜5を形成しても良い。
 この場合は防汚性高親水性焼付塗膜5を熱交換器に対するポストコートとして形成することができる。
 図2はフィン材1からなる矩形板状のフィン(放熱板)15を所定の間隔で複数並列配置し、各フィン15に形成されている挿通孔15aにU字状の伝熱管11を挿通して熱交換器コア16を途中まで組み立てた状態を示す。U字状の伝熱管11は湾曲部11aをフィン1の並列体の一側に揃え、開口端11b側をフィン1の並列体の他側に揃えるように複数のフィン15の挿通孔15aに挿通されている。
 これらの伝熱管11には図示略の拡管プラグを開口端11b側から挿入して拡管し、伝熱管11とフィン15の接合強度を向上させ、その後に伝熱管11の開口端側を結ぶように図示略のU字型のエルボ管を接続することで熱交換器コア16が完成される。
 この熱交換器コア16において、伝熱管11とエルボ管は銅あるいは銅合金からなる。
 熱交換器コア16において、フィン15の表裏面には防汚性高親水性焼付塗膜5が形成されている。このため、挿通孔15aの周縁部分において防汚性高親水性焼付塗膜5と伝熱管11が接触されることとなる。この熱交換器コア16を倉庫などに保管した場合、結露水などが付着した状態が続くと従来の塗膜では塗膜から結露水に硫黄分が染み出して伝熱管16を腐食させるおそれがあった。これに対し先に説明したようにフィン材1に形成されている防汚性高親水性焼付塗膜5には0.5mg/m以下の硫黄分しか含まれていないので、防汚性高親水性焼付塗膜15と伝熱管11との接触部分周りに結露水が存在していても結露水側に硫黄分の溶出は殆ど生じることがなく、伝熱管11に緑青などの腐食を生じることがない。
 前述の熱交換器コア16を備える熱交換器は、例えば、冷熱機器として広く適用することができる。
 触媒化成工業株式会社製商品名(カタロイドAS-3)のアルミナゾル(アルミナ粒子の平均粒子径0.8μm)と、水溶性アクリル樹脂(2-アクリルアミド-2-メチルプロパンスルホン酸)と、ポリエチレングリコール(PEG#6000)と、旭硝子株式会社製商品名(PTFE AD911E)のフッ素樹脂(PTFEフッ素ディスパージョン)を以下の表1に示す割合で混合し水系塗料を作製した。表1ではPTFEフッ素ディスパージョンに含まれるフッ素樹脂粒子の量で添加量を表示している。
 JIS規定A1050合金からなる厚さ100μmのアルミニウム合金板をリン酸クロメート処理して厚さ0.3μmの化成皮膜を形成後、この化成皮膜上に以下の表1に示す種々の組成の水系塗料を表1に示す塗布量(焼付前の塗料中の水分と固形分が残留しているものの総量)にてバーコーターにて塗布し、オーブンを用いて220℃(設定温度)にて30秒間焼き付けて防汚性高親水性焼付塗膜を形成した。この焼付処理によって水系塗料の水分は蒸発し、アルミニウム合金板の上に水系塗料中の固形分のみが残留する。
 焼き付け後、防汚性高親水性焼付塗膜を60℃の温水にて10秒間流水洗浄する湯洗浄処理を行った。
 得られた複数のフィン材について、塗膜の密着性、流水後親水性、乾湿サイクル後接触角、耐汚染性、動摩擦係数、粉体付着率、金型摩耗、アルミナ粒子面積率、銅管返書の有無を測定し、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す密着性とは、1ポンドのハンマーに貼り付けたキムタオル(登録商標)を試料の防汚性皮膜の表面に載置し、往復10回擦った後の防汚性皮膜の密着状態を観察した結果である。防汚性皮膜が剥離しない試料をA、表層は剥離するが一層残る試料をBで示し、50%程度剥離する試料をCで示し、100%剥離が認められた試料をDで示した。
 流水後親水性とは、試料に対し流量3L/minの常温流水に24時間浸漬した後の防汚性皮膜表面の接触角を測定した結果である。接触角が20゜以下の試料をBで示し、接触角が20゜を超えた試料をDで示した。
 乾湿サイクル後接触角とは、試料に対し流量3L/mの常温流水に24時間浸漬した後、80℃×16時間乾燥を交互に14サイクル行った後の防汚性皮膜表面の接触角を測定した結果である。接触角40゜以下の試料をBで示し、接触角40゜を超える試料をDで示した。
 耐汚染性を評価する耐汚染試験は、汚染物質としてバルミチン酸6gと試料とをビーカーの中に入れ、100℃で6日間加熱暴露後の防汚性皮膜表面の接触角を測定した。接触角60゜以下の試料をBで示し、接触角60゜を超える試料をDで示した。
 動摩擦係数は、バウデン式摩擦試験機を用い、プレス油を塗布しないで試料の防汚性皮膜表面に鋼球サイズφ9/32の接触子を200gの荷重で押し付け、試料を摺動(1サイクル)させたときの摩擦力を測定して。動摩擦係数を求めた。動摩擦係数が0.2以下の試料をBで示し、動摩擦係数が0.2を超えた試料をDで示した。
 粉体付着率は、100mm×100mmの試料(アルミニウムフィン材)を流量3L/minの常温流水に1時間浸漬後、JISZ8901で定められる試験用粉体11種、12種のそれぞれを試料の防汚性皮膜の表面に付着させて、画像解析により付着面積率を測定した。付着面積率が3%以下の試料をAで示し、付着面積率が3%以上~10%以下の試料をB、付着面積率が10%を超える試料をDで示した。
 金型摩耗は、プレス加工で100万回試料(アルミニウムフィン材)を切断し、金型(スリット刃)の摩耗状態を観察した。スリット刃の硬度はHRC37~41のものを使用し、定量評価としてレーザー顕微鏡にて金型(スリット刃)の刃先の摩耗面積を測定し、2次元断面での摩耗面積が100μm以下の試料をBで示し、摩耗面積が100μmを超えた試料をDで示した。
 アルミナ粒子の面積率は、定量評価としてレーザー顕微鏡にて防汚性皮膜の表面を対物レンズ100倍で観察し、50μm×50μmの視野での2値化した画像にて粒子解析によりアルミナ粒子の面積率を測定し、アルミナ粒子の面積率が90%以上の試料をBで示し、面積率が90%未満の試料をDで示した。
 塗膜中の水に可溶な硫黄成分量の測定は、フィンをA4サイズ4枚(8面)に切断して容器に収容し、そこに100mlの純水を入れて40℃に加熱し、10分間撹拌する。この水をICP発光分光分析で分析し、そこで測定された硫黄量を元の塗膜あたりの量に換算し直した値を採用した。
 銅管変色試験は上述のフィンを高さ10cm、幅5cmに切り出し、同等長さの銅管とクリップで密着させた状態でビーカーの底部に収容し、ビーカーの底部に水を入れ、ビーカーの口部をラップで閉じてビーカーを密閉した。試験環境条件は35℃×16hr→20℃×4hr→35℃×1hr→20℃×3hrを1サイクルとして7サイクル実施し、その後銅管の変色有無を観察した。銅管に変色が見られた場合にDで示し、変色が見られなかった場合はBで示した。
 表1に示す結果から水系塗料の塗膜量が0.3~0.8g/mの範囲となっているNo.1~No.20の実施例試料は、塗膜の密着性に優れるとともに、流水後親水性と乾湿サイクル後接触角と耐汚染性と動摩擦係数と粉体付着率と金型摩耗と粒子面積率の試験のうち、多くの試験結果において優れ、バランスの良い特性を発揮した。また、これらのNo.1~No.20の試料はいずれにおいても塗膜中の水に可溶な硫黄成分量が0.5mg/m以下であり、銅の伝熱管に変色(腐食)を生じなかった。
 試料No.1~20において、塗膜量が0.3~0.8g/mの範囲であり、
アルミナ添加量が塗料固形分中5~45質量%であり、フッ素樹脂添加量が塗料固形分中0.05~3.0質量%であるNo.1~14の試料は全ての試験項目において優れた結果を示した。
 これらの試料に対し、アルミナ粒子添加量の多すぎるNo.28の試料は、動摩擦係数が大きく、金型摩耗、粒子面積率で結果が悪く、水系塗料塗布量が少ない比較例試料No.21は、流水後親水性と乾湿サイクル後接触角と耐汚染性が悪化した。また、水系塗料中の塗膜量が多すぎる比較例試料No.23、24は密着性に問題を生じた。
 また、No.25、26、27の試料は塗料の塗布量が適正であり、アルミナ添加量、フッ素樹脂添加量も適切であるが、塗膜中の水に可溶な硫黄成分量が多い試料であり、銅の伝熱管に変色を生じた。
 No.29~31の試料は塗料の塗膜量が適正であり、アルミナ添加量、フッ素樹脂添加量も適切であるが、塗膜中の水に可溶な硫黄成分量が多い試料であり、銅管に変色を生じた。
 No.32の試料はフッ素樹脂添加量が少なすぎる試料であり、塗膜中の水に可溶な硫黄成分量が多い試料であるが、粉体付着率が悪化し、銅の伝熱管の腐食も生じた。
 No.33の試料はフッ素樹脂添加量が多すぎる試料であり、塗膜中の水に可溶な硫黄成分量も多い試料であるが、流水後親水性、乾湿サイクル、耐汚染性が悪化し、銅の伝熱管の腐食も生じた。
 表1に示す結果から、フィン材に防汚性高親水性焼付塗膜を形成する場合、上述の水系塗料中の塗膜量を0.3~0.8g/mの範囲の塗布量で塗布し、焼付け後に湯洗して水に可溶な硫黄成分量を0.5mg/m以下とすることが重要であることがわかる。
 これにより、塗膜密着性に優れ、親水性と耐汚染性と動摩擦係数と粉体付着率と金型摩耗と粒子面積率の試験のうち、多くの試験結果において優れ、バランスの良い特性を発揮するフィン材を提供できる。また、このフィン材であるならば、銅管と密着させた場合であっても腐食を生じない特徴を得ることができる。
更に、前記塗膜中のアルミナ粒子の平均粒子径が0.02~20μmであり、焼付塗膜固形分100質量%中にアルミナ粒子が5~45質量%含まれた塗膜であるならば、塗膜密着性と親水性と接触角と耐汚染性と粒子面積率に優れ、金型摩耗が少なく、銅管に腐食も生じ難いフィンを提供できる。
 図3は表1の実施例No.3の試料表面に形成した湯洗前の防汚性焼付塗膜に含まれているアルミナ粒子とフッ素粒子を示す顕微鏡写真、図4は表1の実施例No.3の試料表面に形成した湯洗後の防汚性焼付塗膜に含まれているアルミナ粒子とフッ素粒子を示す顕微鏡写真である。
 先の尖った凸部を複数有する不定形の多数のアルミナ粒子が米粒状のフッ素樹脂粒子とともに混在された状態を呈している。これらの粒子が樹脂層の内部に埋設された構造が防汚性皮膜の概略構造となっていることがわかる。
 筺体に取付けたスイッチを用いて容易に左右の選択ができ、…適用できる。
 1  フィン材
 2  基材
 3  化成皮膜
 5  防汚性高親水性焼付塗膜
 6  樹脂層
 7  アルミナ粒子
 8  フッ素樹脂粒子
 11  伝熱管
 11a  開口部
 15  フィン
 15a  挿通孔
 16  熱交換器コア

Claims (11)

  1.  熱交換器の外面に形成される焼付塗膜であって、アルミナゾルに含まれるアルミナ粒子と、スルホン酸を含む水溶性アクリル樹脂と、ポリエチレングリコールと、フッ素樹脂粒子を含み、水に可溶な硫黄成分が0.5mg/m以下であり、塗膜量が0.3~0.8g/mである防汚性高親水性焼付塗膜。
  2.  前記アルミナ粒子の平均粒子径が0.02~20μmであり、前記焼付塗膜固形分100質量%中にアルミナ粒子が5~45質量%含まれた請求項1に記載の防汚性高親水性焼付塗膜。
  3.  表面の動摩擦係数が0.2以下である請求項1または請求項2に記載の防汚性高親水性焼付塗膜。
  4.  平均粒子径0.1~0.5μmのフッ素樹脂粒子が焼付塗膜固形分100質量%中に0.05~3質量%含まれた請求項1~請求項3のいずれか一項に記載の防汚性高親水性焼付塗膜。
  5.  前記焼付塗膜表面において前記アルミナ粒子の面積率が90%以上である請求項1~請求項4のいずれか一項に記載の防汚性高親水性焼付塗膜。
  6.  アルミニウム又はアルミニウム合金からなる板材の外面に、請求項1~請求項5のいずれか一項に記載の焼付塗膜が形成されたアルミニウムフィン材。
  7.  請求項6に記載のアルミニウムフィン材が複数並列配置され、前記各アルミニウムフィン材に透孔が形成され、該透孔を挿通して前記アルミニウムフィン材と一体化される銅または銅合金からなる伝熱管が設けられた熱交換器。
  8.  請求項7に記載の熱交換器を用いた冷熱機器。
  9.  フィン材または伝熱管の外面に塗布される防汚性高親水性焼付塗膜の製造方法であって、アルミナゾルと水溶性アクリル樹脂とポリエチレングリコールとフッ素樹脂粒子を混合して得た水系塗料をフィン材または伝熱管の外面に塗膜量0.3~0.8g/mの範囲で塗布した後、加熱乾燥して防汚性高親水性焼付塗膜を得た後、水洗または湯洗することにより防汚性高親水性焼付塗膜中の水に可溶な硫黄成分を0.5mg/m以下とすることを特徴とする防汚性高親水性焼付塗膜の製造方法。
  10.  平均粒子径が0.02~20μmのアルミナ粒子を用い、前記焼付塗膜固形分100質量%中にアルミナ粒子を5~45質量%含ませることを特徴とする請求項9または請求項10に記載の防汚性高親水性焼付塗膜の製造方法。
  11.  平均粒子径0.1~0.5μmのフッ素樹脂粒子を焼付塗膜固形分100質量%中に0.05~3質量%含ませることを特徴とする請求項9または請求項10に記載の防汚性高親水性焼付塗膜の製造方法。
PCT/JP2017/044886 2016-12-15 2017-12-14 防汚性高親水性焼付塗膜とその製造方法および熱交換器用アルミニウムフィン材と熱交換器および冷熱機器 WO2018110644A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017006336.1T DE112017006336T5 (de) 2016-12-15 2017-12-14 Stark hydrophiler, eingebrannter Antifouling-Beschichtungsfilm, Verfahren zur Herstellung desselben, Aluminiumrippenmaterial für Wärmetauscher, Wärmetauscher und Heiz-Kühlanlage
CN201780068978.3A CN109923367B (zh) 2016-12-15 2017-12-14 防污性高亲水性烧结涂膜及其制造方法、以及热交换器用铝翅片件和热交换器以及冷热设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-243686 2016-12-15
JP2016243686 2016-12-15
JP2017220447A JP6964489B2 (ja) 2016-12-15 2017-11-15 防汚性高親水性焼付塗膜とその製造方法および熱交換器用アルミニウムフィン材と熱交換器および冷熱機器
JP2017-220447 2017-11-15

Publications (1)

Publication Number Publication Date
WO2018110644A1 true WO2018110644A1 (ja) 2018-06-21

Family

ID=62558857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044886 WO2018110644A1 (ja) 2016-12-15 2017-12-14 防汚性高親水性焼付塗膜とその製造方法および熱交換器用アルミニウムフィン材と熱交換器および冷熱機器

Country Status (1)

Country Link
WO (1) WO2018110644A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211114A (ja) * 2006-02-08 2007-08-23 Nippon Shokubai Co Ltd 基材表面改質用樹脂組成物及び積層体
JP2008224204A (ja) * 2007-02-16 2008-09-25 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
US20110209848A1 (en) * 2008-09-24 2011-09-01 Earth To Air Systems, Llc Heat Transfer Refrigerant Transport Tubing Coatings and Insulation for a Direct Exchange Geothermal Heating/Cooling System and Tubing Spool Core Size
JP2016090105A (ja) * 2014-10-31 2016-05-23 三菱アルミニウム株式会社 防汚性を有する熱交換器用アルミニウムフィン材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211114A (ja) * 2006-02-08 2007-08-23 Nippon Shokubai Co Ltd 基材表面改質用樹脂組成物及び積層体
JP2008224204A (ja) * 2007-02-16 2008-09-25 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
US20110209848A1 (en) * 2008-09-24 2011-09-01 Earth To Air Systems, Llc Heat Transfer Refrigerant Transport Tubing Coatings and Insulation for a Direct Exchange Geothermal Heating/Cooling System and Tubing Spool Core Size
JP2016090105A (ja) * 2014-10-31 2016-05-23 三菱アルミニウム株式会社 防汚性を有する熱交換器用アルミニウムフィン材

Similar Documents

Publication Publication Date Title
JP6964489B2 (ja) 防汚性高親水性焼付塗膜とその製造方法および熱交換器用アルミニウムフィン材と熱交換器および冷熱機器
JP6374219B2 (ja) 熱交換器用フィン材及びその製造方法
JP5469350B2 (ja) アルミニウム製フィン材
JP6470548B2 (ja) 防汚性を有する熱交換器用アルミニウムフィン材及びその製造方法と前記アルミニウムフィン材を備えた熱交換器及び空気調和機
JP2010096416A (ja) 熱交換器用プレコートアルミニウムフィン材
WO2020022213A1 (ja) プレコートアルミニウム材
JP2019113251A (ja) 親水性焼付塗膜および熱交換器用アルミニウムフィン材と熱交換器
JP5559227B2 (ja) アルミニウム製フィン材
JP6061755B2 (ja) アルミニウムフィン材およびその製造方法
JP2010159379A (ja) 塗料組成物、その製造方法及び熱交換器用フィン
JP2018070677A (ja) 表面処理剤、皮膜及び表面処理方法
JP2010223520A (ja) 熱交換器用アルミニウムフィン材
WO2018110644A1 (ja) 防汚性高親水性焼付塗膜とその製造方法および熱交換器用アルミニウムフィン材と熱交換器および冷熱機器
JP6551949B2 (ja) 防汚性を有する熱交換器用アルミニウムフィン材及びその製造方法と前記アルミニウムフィン材を備えた熱交換器
JP2013210144A (ja) アルミニウムフィン材
JP4467264B2 (ja) フィン用塗料組成物およびフィン材
WO2022215374A1 (ja) アルミニウム製フィン材
WO2021199876A1 (ja) アルミニウム製フィン材
WO2021199875A1 (ja) アルミニウム製フィン材
WO2013146077A1 (ja) アルミニウム製フィン材
JP2012122052A (ja) 水溶性樹脂、これを用いた熱交換器用フィン材、および熱交換器
WO2021162061A1 (ja) アルミニウムフィン材、熱交換器、および、アルミニウムフィン材の製造方法
JP5661866B2 (ja) アルミニウム製フィン材
JPH0424632B2 (ja)
JP2021188866A (ja) アルミニウム製フィン材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880378

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17880378

Country of ref document: EP

Kind code of ref document: A1