WO2018110152A1 - 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法 - Google Patents

低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法 Download PDF

Info

Publication number
WO2018110152A1
WO2018110152A1 PCT/JP2017/040169 JP2017040169W WO2018110152A1 WO 2018110152 A1 WO2018110152 A1 WO 2018110152A1 JP 2017040169 W JP2017040169 W JP 2017040169W WO 2018110152 A1 WO2018110152 A1 WO 2018110152A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
less
steel pipe
cooling
temperature
Prior art date
Application number
PCT/JP2017/040169
Other languages
English (en)
French (fr)
Inventor
聡太 後藤
博士 中田
俊介 豊田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018510136A priority Critical patent/JP6388091B1/ja
Priority to CN201780076735.4A priority patent/CN110073018B/zh
Priority to KR1020197016788A priority patent/KR102256983B1/ko
Publication of WO2018110152A1 publication Critical patent/WO2018110152A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/10Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles for making tubes
    • B21D5/12Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles for making tubes making use of forming-rollers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a hot rolled steel sheet for a low yield ratio square steel pipe, and a square steel pipe (square column) manufactured by cold forming from the hot rolled steel sheet and having a low yield ratio and low temperature toughness.
  • the present invention relates to a rectangular steel pipe that can be applied as a building member for a medium-rise building having a height of more than 20 m.
  • a square steel pipe is usually manufactured by cold forming using a hot-rolled steel sheet (hot-rolled steel strip) or a thick plate as a raw material.
  • a cold forming method used for manufacturing a square steel pipe there are press forming and roll forming.
  • When manufacturing a square steel pipe using hot-rolled steel sheet as a raw material using roll forming first form the hot-rolled steel sheet into a round steel pipe, and then cold-form the round steel pipe to obtain a square steel pipe. It is common.
  • This square steel pipe manufacturing method using roll forming has the advantage of higher productivity than the square steel pipe manufacturing method using press forming.
  • Patent Document 1 contains 0.20% or less of C by weight%, Mn: 0.40 to 0.90%, Nb: 0.005 to 0.040%, and Ti.
  • a steel material containing one or two of 0.005 to 0.050% has a rolling reduction in the non-recrystallization temperature range of 55% or more, a rolling end temperature of 730 to 830 ° C, and a coiling temperature of 550 ° C or less.
  • the yield ratio is 90% or less and the Charpy absorbed energy at a test temperature of 0 ° C. is 27 J or more.
  • a square steel pipe is obtained.
  • the steel containing C: 0.07 to 0.18% and Mn: 0.3 to 1.5% by mass% is heated to a heating temperature of 1100 to 1300 ° C., and then the rough rolling is completed.
  • the hot-rolled steel sheet as a raw material needs to have a steel structure that suppresses an increase in the yield ratio during forming and excellent low-temperature toughness that can withstand the deterioration of toughness due to large working strain.
  • the square steel pipes manufactured by the methods disclosed in Patent Documents 1 to 3 have a problem that the yield ratio becomes high and the yield ratio of 90% or less cannot be satisfied particularly when the plate thickness exceeds 25 mm. is there. That is, in the prior art, a rectangular steel pipe manufactured by cold roll forming cannot be applied as a building member for a middle-rise building having a height of more than 20 m.
  • An object of the present invention is to provide a hot-rolled steel sheet for low yield ratio square steel pipe that can have low temperature toughness with absorbed energy of Charpy impact test at ⁇ 20 ° C. of 27 J or more, and a method for producing the same.
  • the present invention is a low yield ratio square steel pipe made of a hot-rolled steel sheet having the above-mentioned characteristics, and in the pipe axis direction, the yield strength is 295 MPa or more, the tensile strength is 400 MPa or more, and 90% or less.
  • An object of the present invention is to provide a low yield ratio square steel pipe that can exhibit low-temperature toughness that exhibits a low yield ratio and has an absorption energy of 27 J or more in a Charpy impact test at a test temperature of 0 ° C. and a method for producing the same. .
  • the inventors investigated a steel structure suitable for suppressing the increase in yield ratio. Specifically, the easiness of work hardening of a ferrite single phase structure (including a bainitic ferrite single phase structure), a structure composed of ferrite and pearlite, a martensite structure, and an upper bainite structure was examined. Note that the higher the work hardening is, the higher the yield ratio is due to the work strain introduced during cold forming. As a result, the ferrite single-phase structure (including bainitic ferrite single-phase structure) is the hardest to work harden, followed by the ferrite and pearlite structures are hard to harden, and the martensite structure and upper bainite structure are the most work hardened. I found it easy to do.
  • the inventors have conducted further detailed studies and have come up with an invention.
  • the gist of the present invention is as follows.
  • the steel structure at the center of the plate thickness is composed of a main phase composed of ferrite and a second phase composed of one or more selected from pearlite, pseudo pearlite and upper bainite and having an area fraction of 8 to 20%.
  • a hot-rolled steel sheet for a low yield ratio square steel pipe characterized in that the steel structure on the front and back surfaces of the plate is a single phase of ferrite or a single phase of bainitic ferrite and has an average crystal grain size of 2 to 20 ⁇ m.
  • the composition further contains one or more selected from mass%, Nb: 0.04% or less, Ti: 0.02% or less, and V: 0.10% or less.
  • the steel material is subjected to a hot rolling process, a cooling process and a winding process in this order to form a hot rolled steel sheet.
  • the steel material is a steel material having the composition according to any one of [1] to [4],
  • the hot rolling step after the steel material is heated to a heating temperature of 1100 to 1300 ° C., the heated steel material is subjected to rough rolling to a rough rolling end temperature of 1150 to 950 ° C., and finish rolling start temperature: 1100 to 850 ° C., finish rolling finish temperature: 900 to 750 ° C.
  • the cooling step is a step of performing hot rolling to obtain a hot rolled sheet
  • the cooling step is a step of cooling the hot-rolled sheet to a cooling stop temperature: 580 ° C. or less at a cooling rate at which the average cooling rate from the start of cooling to the stop of cooling is 4 to 25 ° C./s at the plate thickness center temperature.
  • the initial cooling step which is between 10s from the start of cooling, has at least one cooling step of 0.2s or more and less than 3.0s
  • a low yield ratio square steel pipe characterized by using the hot rolled steel sheet for low yield ratio square steel pipe as described in any one of [1] to [5] above.
  • a hot-rolled steel sheet obtained by the method for producing a hot-rolled steel sheet for a low yield ratio rectangular steel pipe according to [6] or [7] is obtained by cold-rolling to obtain a rectangular steel pipe.
  • the steel structure at the center of the plate thickness is composed of a main phase composed of ferrite and a second phase composed of one or more selected from pearlite, pseudo pearlite and upper bainite and having an area fraction of 8 to 20%.
  • a low-yield-ratio rectangular steel pipe characterized in that the steel structure on the front and back sides of the plate thickness is a single phase of ferrite or a single phase of bainitic ferrite and has an average crystal grain size of 2 to 20 ⁇ m.
  • the yield strength 200 MPa or more
  • the tensile strength: 400 MPa or more a low yield ratio of 75% or less
  • a low temperature at which the absorbed energy of the Charpy impact test at a test temperature of ⁇ 20 ° C. is 27 J or more.
  • a hot-rolled steel sheet for low yield ratio square steel pipe having toughness can be provided. And even if this hot-rolled steel sheet has a thickness of more than 25 mm, in a rectangular steel pipe manufactured by cold roll forming using this as a raw material, the yield strength: 295 MPa or more in the tube axis direction
  • the hot-rolled steel sheet for low yield ratio square steel pipe of the present invention is in mass%, C: 0.07 to 0.20%, Mn: 0.3 to 2.0%, P: 0.03% or less, S: 0.015% or less, Al: 0.01 to 0.06%, N: 0.006% or less, having a component composition consisting of the balance Fe and inevitable impurities, And a main phase composed of ferrite and a second phase composed of one or more selected from pearlite, pseudo-pearlite and upper bainite and having an area fraction of 8 to 20%.
  • the steel structure including the phase has an average crystal grain size of 7 to 20 ⁇ m
  • the steel structure on the front and back sides of the plate thickness is a ferrite single phase or a bainitic ferrite single phase
  • the average crystal grain size is 2 to 20 ⁇ m. It is characterized by this.
  • the “hot rolled steel sheet” includes a hot rolled steel sheet and a hot rolled steel strip.
  • C 0.07 to 0.20%
  • C is an element that contributes to the formation of pearlite, which is one of the second phases, while increasing the strength of the steel sheet by solid solution strengthening.
  • a content of 0.07% or more is required.
  • the content exceeds 0.20%, there is a concern that a martensite structure is generated during on-site welding of square steel pipes (for example, when welding square steel pipes), which causes weld cracking. Therefore, C is limited to the range of 0.07 to 0.20%.
  • the lower limit of C is preferably 0.09%, and the upper limit is preferably 0.18%.
  • Mn 0.3 to 2.0%
  • Mn is an element that increases the strength of the steel sheet through solid solution strengthening, and needs to be contained in an amount of 0.3% or more in order to ensure a desired steel sheet strength. If the content is less than 0.3%, the ferrite transformation start temperature rises and the structure tends to become excessively coarse. On the other hand, if the content exceeds 2.0%, the hardness of the central segregation part increases, which may cause cracks during field welding of the square steel pipe. Therefore, Mn is limited to the range of 0.3 to 2.0%.
  • the upper limit of Mn is preferably 1.6%. More preferably, the upper limit is 1.4%.
  • P 0.03% or less
  • P is an element that has the effect of segregating at the ferrite grain boundaries and lowering toughness.
  • P is preferably reduced as much as possible.
  • excessive reduction leads to an increase in refining costs, so 0.002% or more is preferable.
  • 0.03% is acceptable. For this reason, P was limited to 0.03% or less.
  • P is preferably 0.025% or less.
  • S 0.015% or less S is present as sulfide in steel, and is mainly present as MnS within the composition range of the present invention. Since MnS is thinly stretched in the hot rolling step and adversely affects ductility and toughness, it is desirable to reduce MnS as much as possible in the present invention. However, excessive reduction leads to an increase in refining costs, so S is preferably 0.0002% or more. In addition, up to 0.015% is acceptable. For this reason, S was limited to 0.015% or less. S is preferably 0.010% or less.
  • Al 0.01 to 0.06%
  • Al is an element that acts as a deoxidizer and has the effect of fixing N as AlN. In order to acquire such an effect, 0.01% or more of content is required. If it is less than 0.01%, the deoxidizing power is insufficient when Si is not added, the oxide inclusions increase, and the cleanliness of the steel sheet decreases. On the other hand, when the content exceeds 0.06%, the amount of solute Al increases, and the welded portion is increased during the longitudinal welding of the square steel pipe (when welding the square steel pipe), particularly in the atmosphere. The risk of forming an oxide increases, and the toughness of the welded portion of the square steel pipe decreases. For this reason, Al was limited to 0.01 to 0.06%. Al preferably has a lower limit of 0.02% and an upper limit of 0.05%.
  • N 0.006% or less
  • N is an element having an action of lowering toughness by firmly fixing dislocation movement.
  • N is preferably 0.005% or less.
  • Si Less than 0.4% Si is an element that contributes to the increase in strength of the steel sheet by solid solution strengthening, and can be contained as necessary in order to ensure a desired steel sheet strength. In order to acquire such an effect, it is desirable to contain exceeding 0.01%. However, when the content is 0.4% or more, a firelight called red scale is easily formed on the surface of the steel sheet, and the appearance quality of the surface often decreases. For this reason, when it contains, it is preferable to set it as less than 0.4%. In particular, when Si is not added, Si is an inevitable impurity, and its level is 0.01% or less.
  • Nb 0.04% or less
  • Ti 0.02% or less
  • V 0.10% or less
  • Nb, Ti, and V are all fine carbides and nitriding in steel It is an element that forms an object and contributes to improving the strength of steel through precipitation strengthening. If contained, the yield ratio after steel pipe forming tends to be high. For this reason, it is desirable not to contain in this invention. However, as long as the yield ratio of the square steel pipe is 90% or less, it may be contained for the purpose of adjusting the strength.
  • the ranges are Nb: 0.04% or less, Ti: 0.02% or less, and V: 0.10% or less, respectively. When Nb, Ti, or V is contained, it is preferable that Nb is 0.001% or more, Ti is 0.001% or more, and V is 0.001% or more.
  • B 0.008% or less
  • B is an element that delays the ferrite transformation in the cooling process, promotes the formation of low-temperature transformed ferrite, that is, the ash-like ferrite phase, and increases the steel sheet strength. Increases the yield ratio of the steel sheet and hence the square steel pipe. For this reason, in this invention, if it is a range which the yield ratio of a square steel pipe will be 90% or less, it can contain as needed in order to adjust an intensity
  • B preferably has a lower limit of 0.0001% and an upper limit of 0.0015%. More preferably, the lower limit is 0.0003% and the upper limit is 0.0008%.
  • the balance other than the above components is Fe and inevitable impurities.
  • As an inevitable impurity for example, O: 0.005% or less is acceptable.
  • the steel structure of the hot rolled steel sheet for low yield ratio square steel pipe of the present invention will be described.
  • the steel structure at the center of the plate thickness is composed of a main phase and a second phase.
  • the main phase is made of ferrite, and the area fraction of the main phase is 80 to 92%.
  • the second phase is composed of one or more selected from pearlite, pseudo pearlite and upper bainite, and the area fraction of the second phase is 8 to 20%. If the area fraction of the second phase is less than 8%, the desired tensile strength cannot be satisfied. If the area fraction of the second phase exceeds 20%, the desired low temperature toughness cannot be ensured.
  • the average crystal grain size of the steel structure including the main phase and the second phase which is the steel structure at the center of the plate thickness, is 7 to 20 ⁇ m.
  • the “average grain size of the steel structure including the main phase and the second phase” as used herein refers to the ferrite phase constituting the main phase, the pearlite phase, the pseudo pearlite phase, and the upper bainite phase constituting the second phase. It means the average crystal grain size measured for all crystal grains. If the average crystal grain size is less than 7 ⁇ m, it is too fine to secure a yield ratio of 90% or less for the square steel pipe.
  • the average crystal grain size exceeds 20 ⁇ m and becomes coarse, the toughness of the square steel pipe is lowered and the desired toughness cannot be secured.
  • the average crystal grain size is preferably 15 ⁇ m or less.
  • the steel structure in the central part of the plate thickness is observed by the following method to determine the type of main phase and second phase, the area fraction, and the average crystal grain size of the steel structure including the main phase and the second phase.
  • the structure observation specimen taken from the hot-rolled steel sheet is polished so that the cross section in the rolling direction (L section) becomes the observation surface, subjected to nital corrosion, and from the surface of the structure observation specimen (hot-rolled steel sheet surface).
  • the steel structure is observed and imaged using an optical microscope (magnification: 500 times) or a scanning electron microscope (magnification: 500 times) with the plate thickness 1 / 2t position as the observation center.
  • t is the thickness (plate thickness) of a steel plate.
  • the steel structure of the thickness front and back surfaces of the hot rolled steel sheet (both surfaces of the hot rolled steel sheet) is a ferrite single phase or a bainitic ferrite single phase, and an average crystal
  • the particle size is 2 to 20 ⁇ m.
  • the single phase here refers to a case where the area fraction is 95% or more.
  • board thickness front-and-back surface of a hot-rolled steel plate specifically means the area
  • the average crystal grain size is less than 2 ⁇ m, the yield strength of the front and back surfaces of the plate will be excessively increased, the load during roll forming will increase, and it will be difficult to form round and square steel tubes. Moreover, when it coarsens exceeding 20 micrometers, the toughness of a square steel pipe will fall and it will become impossible to ensure desired toughness. Therefore, the average crystal grain size is limited to 2 to 20 ⁇ m. The upper limit of the average crystal grain size is preferably 15 ⁇ m.
  • the steel structure on the front and back surfaces of the plate thickness is within the range of 1 mm from the surface of the hot-rolled steel sheet, instead of centering the position of the sheet thickness 1 / 2t from the surface of the specimen for structural observation (hot-rolled steel sheet surface). Except as described above, the type of steel structure and the average crystal grain size are determined in the same manner as in the method for observing and measuring the steel structure at the center of the plate thickness.
  • all of the component composition, the type of steel structure at the center of the plate thickness, the area fraction and the average crystal grain size, and the type of steel structure on the front and back sides of the plate thickness and the average crystal grain size are as specified above. Yield strength: 200 MPa or more, tensile strength: 400 MPa or more, low yield ratio of 75% or less, and low temperature toughness at which the absorbed energy of Charpy impact test at a test temperature of ⁇ 20 ° C. is 27 J or more.
  • the hot-rolled steel sheet can be provided, and the hot-rolled steel sheet is very suitable as a material for a square steel pipe.
  • the thickness of the hot rolled steel sheet for low yield ratio square steel pipe of the present invention is not particularly limited, and is, for example, 15 mm or more, preferably more than 25 mm, and more preferably 28 mm or more. If a hot rolled steel sheet for a low yield ratio square steel pipe having a thickness of more than 25 mm is formed into a square steel pipe by cold roll forming, the techniques of Patent Documents 1 to 3 have a problem that the yield ratio is high and insufficient. However, the hot-rolled steel sheet for a low yield ratio square steel pipe of the present invention can provide a square steel pipe with a yield ratio of 90% or less because the increase in the yield ratio is suppressed even if it is an extremely thick wall exceeding 25 mm.
  • the method for producing a hot-rolled steel sheet for a low yield ratio square steel pipe according to the present invention is a hot-rolled steel sheet obtained by subjecting a steel material having the above-described component composition to a specific hot-rolling process, cooling process and winding process in this order.
  • the method for producing a hot-rolled steel sheet for a low yield ratio square steel pipe according to the present invention includes subjecting a steel material to a hot-rolled steel sheet by subjecting a steel material to a hot-rolling process, a cooling process, and a winding process in this order.
  • the material is a steel material having the above-described component composition, and after the hot rolling process, the steel material is heated to a heating temperature of 1100 to 1300 ° C., and then the rough rolling finish temperature is set to 1150 to 950 ° C. Rough rolling is performed, and the finish rolling start temperature is 1100 to 850 ° C. and the finish rolling finish temperature is 900 to 750 ° C. to form hot rolled sheets, and the cooling process is the thickness of the hot rolled sheets This is a process of cooling to a cooling stop temperature: 580 ° C.
  • the temperature is the surface temperature of a steel material, a sheet bar, a hot-rolled plate, a steel plate, etc. unless otherwise specified.
  • the surface temperature can be measured with a radiation thermometer or the like.
  • the average cooling rate is ((temperature before cooling ⁇ temperature after cooling) / cooling time) unless otherwise specified.
  • the manufacturing method of the steel material having the above-described component composition is not particularly limited, and is manufactured by a generally known casting method such as a converter, an electric furnace, a vacuum melting furnace, etc., and by a generally known casting method such as a continuous casting method. , Manufactured to the desired dimensions.
  • the molten steel may be further subjected to secondary refining such as ladle refining. Further, there is no problem if an ingot-bundling method is applied instead of the continuous casting method.
  • the steel material having the above-described composition is heated to a heating temperature of 1100 to 1300 ° C., and then the rough rolling finish temperature is set to 1150 to 950 ° C. Rough rolling is performed, and finish rolling start temperature (finish rolling entry temperature): 1100 to 850 ° C., finish rolling finish temperature (finish rolling exit temperature): 900 to 750 ° C. is performed to obtain a hot rolled sheet.
  • Heating temperature 1100-1300 ° C
  • the heating temperature of the steel material is 1100 to 1300 ° C., and preferably the upper limit is 1280 ° C.
  • a heating temperature in the range of 1100 ° C. or lower and the Ar 3 transformation point or higher may be selected.
  • the thickness of the steel material may be about 200 to 350 mm that is usually used, and is not particularly limited.
  • the heated steel material is then roughly rolled into a sheet bar or the like.
  • Rough rolling finish temperature 950-1150 ° C
  • the heated steel material is refined by processing and recrystallizing austenite grains by rough rolling. If the rough rolling end temperature is less than 950 ° C., the load resistance and rolling torque of the rough rolling mill are likely to be insufficient. On the other hand, when the temperature exceeds 1150 ° C., the austenite grains become coarse, and it is difficult to secure a desired average crystal grain size of 20 ⁇ m or less even if finish rolling is performed thereafter. For this reason, the rough rolling end temperature is limited to a range of 950 to 1150 ° C. This rough rolling end temperature range can be achieved by adjusting the heating temperature of the steel material, the residence between passes of rough rolling, the thickness of the steel material, and the like.
  • the lower limit of the rough rolling end temperature may be Ar 3 transformation point + 100 ° C. or higher.
  • the thickness (thickness of the sheet bar, etc.) at the stage when the rough rolling is finished is not particularly limited as long as it can be a product plate (hot rolled steel plate) having a desired product thickness by finish rolling. About 32 to 60 mm is suitable.
  • finish rolling is then performed by a tandem rolling mill to obtain a hot rolled steel sheet.
  • Finish rolling start temperature finish rolling entrance temperature: 1100-850 ° C
  • finish rolling entry temperature finish rolling entry temperature
  • the processing strain introduced by the rolling process tends to remain, and the ⁇ grains can be easily refined.
  • finishing rolling start temperature finishing rolling entry temperature
  • the temperature in the vicinity of the steel sheet surface in the finishing mill becomes lower than the Ar 3 transformation point, increasing the risk of ferrite formation.
  • the produced ferrite becomes ferrite grains elongated in the rolling direction by the subsequent finish rolling process, which causes a decrease in workability.
  • finish rolling start temperature (finish rolling entry side temperature) exceeds 1100 ° C. and becomes high, the effect of refinement of ⁇ grains by the finish rolling described above is reduced, and the desired heat of average grain size: 20 ⁇ m or less. It becomes difficult to ensure the average crystal grain size of the rolled steel sheet. For this reason, the finish rolling start temperature is limited to a range of 1100 to 850 ° C.
  • the finish rolling start temperature is preferably 1050 to 850 ° C.
  • Finish rolling finish temperature (finish rolling exit temperature): 900-750 ° C
  • finish rolling finish temperature (finish rolling exit temperature) exceeds 900 ° C. and becomes a high temperature
  • the processing strain applied at the time of finish rolling is insufficient, and the refinement of ⁇ grains is not achieved. Therefore, the average crystal grain size: It becomes difficult to ensure the average crystal grain size of a desired hot-rolled steel sheet of 20 ⁇ m or less.
  • finish rolling finish temperature (finish rolling exit temperature) is less than 750 ° C., the temperature in the vicinity of the steel sheet surface is below the Ar 3 transformation point in the finish mill, and ferrite grains elongated in the rolling direction are formed. There is an increased risk of becoming mixed and reducing workability. For this reason, the finish rolling finish temperature (finish rolling exit temperature) is limited to the range of 900 to 750 ° C.
  • the finish rolling finish temperature is preferably 850 ° C. at the upper limit.
  • the hot-rolled sheet obtained by finish rolling is cooled at a cooling rate at which the average cooling rate from the start of cooling to the cooling stop (cooling end) is 4 to 25 ° C./s at the plate thickness center temperature: 580 Cool to below °C.
  • the cooling performed in the cooling process is performed by water cooling (water cooling) such as water column cooling, spray cooling, mist cooling, or the like, or gas jet cooling for injecting a cooling gas.
  • water cooling water cooling
  • the average cooling rate at the steel sheet thickness center is less than 4 ° C./s, the frequency of ferrite grain formation decreases, the ferrite crystal grains become coarse, and the desired average crystal grain size: 20 ⁇ m or less at the center of the sheet thickness. The particle size cannot be secured.
  • the average cooling rate at the center of the plate thickness is 4 to 25 ° C./s, more preferably the lower limit is 5 ° C./s and the upper limit is 15 ° C./s.
  • the average cooling rate at the center of the plate thickness is obtained by ((temperature at the center of plate thickness at the start of cooling ⁇ temperature at the center of plate thickness at the time of cooling stop) / cooling time).
  • the temperature at the thickness center of the steel sheet is obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis, and correcting the result by the temperatures of the actual outer surface and inner surface. If the cooling stop temperature exceeds 580 ° C., the desired average crystal grain size of 7 to 20 ⁇ m at the center of the plate thickness cannot be satisfied.
  • the average cooling rate in the temperature range of 750 ° C. to 650 ° C. at the steel sheet surface temperature is preferably 20 ° C./s or more. Moreover, it is preferable to start the cooling process immediately (within 5 seconds) after finishing rolling.
  • the initial cooling step is 10 s from the start of cooling, that is, the cooling step of 0.2 s or more and less than 3.0 s is performed for 10 seconds (between 10 s) after starting the cooling of the hot rolled sheet. Cool once at least once. This is performed to suppress the formation of a martensite structure or an upper bainite structure on the front and back surfaces of the plate.
  • the steel structure on the front and back surfaces of the plate thickness becomes a martensite structure, a bainite structure, or an upper bainite structure. A tick ferrite single phase structure cannot be obtained.
  • the time of the cooling process performed during the initial cooling process that is 10 seconds from the start of cooling is limited to 0.2 s or more and less than 3.0 s.
  • the time for the cooling step is preferably 0.4 to 2.0 s.
  • the number of cooling steps performed during the initial cooling step may be appropriately determined depending on the cooling equipment arrangement, the cooling stop temperature, and the like, and the upper limit is not particularly limited.
  • winding is performed at a winding temperature of 580 ° C. or lower, and then allowed to cool. If the winding temperature exceeds 580 ° C., ferrite transformation and pearlite transformation proceed after winding, so that the desired average crystal grain size of 7 to 20 ⁇ m at the center of the plate thickness cannot be satisfied. Even if the coiling temperature is lowered, there will be no problem with the material. There may not be. For this reason, it is preferable that winding temperature shall be 400 degreeC or more.
  • the hot rolled steel sheet for low yield ratio square steel pipe of the present invention is obtained by allowing to cool.
  • the low yield ratio square steel pipe of the present invention is made from the above hot rolled steel sheet for low yield ratio square steel pipe of the present invention.
  • the low yield ratio square steel pipe of the present invention exhibits a low yield ratio of 90% or less at a yield strength of 295 MPa or more, a tensile strength of 400 MPa or more, and a test temperature of 0 ° C. in the pipe axis direction.
  • the low yield ratio square steel pipe of the present invention can be manufactured by cold forming the hot rolled steel sheet for the low yield ratio square steel pipe of the present invention.
  • Cold roll forming means forming with a roll at room temperature without using a heating device or the like.
  • the round steel pipe is A square steel pipe is manufactured by forming into a square by the roll forming method used.
  • roll forming into a round steel pipe is carried out cold, a large working strain is introduced in the pipe axis direction, so that there is a problem that the yield ratio in the pipe axis direction tends to increase and the toughness tends to decrease.
  • the hot rolled steel sheet for the low yield ratio square steel pipe of the present invention is used as a raw material, the above problem, that is, an increase in the yield ratio or the like is suppressed. Even a thick-walled one can have a low yield ratio and low temperature toughness.
  • Molten steel was melted in a converter and slabs (steel material: wall thickness 250 mm) having the composition shown in Table 1 were obtained by a continuous casting method. After these slabs (steel materials) were heated to the heating temperature shown in Table 2, they were subjected to a hot rolling process, a cooling process, and a winding process under the conditions shown in Table 2, and then allowed to cool to obtain a sheet thickness: 19 A hot rolled steel sheet having a thickness of 32 mm was used. In addition, the cooling process was started immediately (within 5 seconds) after finishing rolling. Cooling was performed by water cooling. The cooling process was performed by providing a cooling section in which water cooling is not performed during the initial cooling process that is between 10s from the start of cooling. Moreover, the product plate
  • the obtained hot-rolled steel sheet was used as a raw material to form a round steel pipe by cold roll forming, and then into a square steel pipe (400 to 550 mm square) by cold roll forming.
  • Test pieces were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, and impact test. The results are shown in Table 3.
  • the structure observation was performed by the above-described method. About the central portion of the plate thickness, the type of the main phase and the second phase, the area fraction, the average grain size of the steel structure including the main phase and the second phase (" In the “steel structure at the center of the plate thickness” column, it is simply described as “average crystal grain size”), and the type of steel structure and the average crystal grain size were determined for the front and back surfaces of the plate thickness.
  • test piece was extract
  • the results are shown in Table 3.
  • the test method was as follows. (3) Square steel pipe tensile test JIS No. 5 tensile test specimen was sampled from the flat part of the obtained square steel pipe so that the tensile direction would be the longitudinal direction of the pipe, and the tensile test was conducted in accordance with the provisions of JIS Z 2241. The yield strength YS and the tensile strength TS were measured, and the yield ratio YR (%) defined by (yield strength) / (tensile strength) ⁇ 100 (%) was calculated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

板厚25mm超であっても十分な強度、低降伏比および低温靭性を有する角形鋼管用の素材として好適な熱延鋼板を提供する。 質量%で、C:0.07~0.20%、Mn:0.3~2.0%、P:0.03%以下、S:0.015%以下、Al:0.01~0.06%、N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、 板厚中心部の鋼組織が、フェライトからなる主相と、パーライト、擬似パーライトおよび上部ベイナイトから選択される1種または2種以上からなり面積分率が8~20%である第二相とを有し、主相と第二相とを含む鋼組織の平均結晶粒径が7~20μmであり、 板厚表裏面の鋼組織が、フェライト単相またはベイニティックフェライト単相であり、平均結晶粒径が2~20μmである低降伏比角形鋼管用熱延鋼板とする。

Description

低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法
 本発明は、低降伏比角形鋼管用熱延鋼板、および、該熱延鋼板を素材とし冷間でロール成形により製造され低降伏比と低温靭性を具備する角形鋼管(角コラム)に関する。特に、高さ20mを超える中層建築物の建築部材として適用することができる角形鋼管に関する。
 角形鋼管は、通常、熱延鋼板(熱延鋼帯)または厚板を素材として、冷間成形により製造される。角形鋼管の製造に用いられる冷間成形方法としては、プレス成形、ロール成形がある。熱延鋼板を素材としロール成形を利用して角形鋼管を製造する場合には、まず熱延鋼板を丸型鋼管に成形し、その後、該丸型鋼管に冷間成形を加えて角形鋼管とするのが一般的である。このロール成形を利用した角形鋼管の製造方法は、プレス成形を利用した角形鋼管の製造方法に比べて、生産性が高いという利点がある。しかし、ロール成形を利用した角形鋼管の製造方法では、丸型鋼管への成形に際し管軸方向に大きな加工歪が導入されるため、管軸方向の降伏比が上昇しやすく、靭性が低下しやすいという問題がある。
 このような問題に対し、特許文献1では、重量%で、Cを0.20%以下含有し、さらにMn:0.40~0.90%、Nb:0.005~0.040%およびTi:0.005~0.050%のうち1種または2種を含有する鋼素材を、未再結晶温度域における圧下率55%以上、圧延終了温度730~830℃、巻取り温度550℃以下の熱延によりコイルとする熱延工程により、鋼管成形工程における外周長絞りを板厚の3倍以下とすることで、降伏比が90%以下で試験温度0℃におけるシャルピー吸収エネルギーが27J以上である角形鋼管を得ている。
 特許文献2では、質量%で、C:0.07~0.18%、Mn:0.3~1.5%を含む鋼を、加熱温度:1100~1300℃に加熱したのち、粗圧延終了温度:1150~950℃とする粗圧延と仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施したあと、表面温度で冷却停止温度が550℃以上となるように冷却する一次冷却と、3~15s間空冷する二次冷却と、板厚中央部温度で750~650℃の温度域の平均冷却速度が4~15℃/sとなる冷却速度で650℃以下まで冷却する三次冷却を施し、鋼組織に含まれる第二相頻度の値を0.20~0.42とすることによって、80%以下の低降伏比を示し試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが150J以上の機械的特性を具備する角形鋼管を製造している。
 特許文献3では、質量%で、C:0.07~0.18%、Mn:0.3~1.5%を含む鋼を、加熱温度:1100~1300℃に加熱したのち、次いで粗圧延終了温度:1150~950℃とする粗圧延と仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施したあと、表面温度で750~650℃の温度域の平均冷却速度が20℃/s以下、板厚中心部温度が650℃に到達するまでの時間が35s以内でかつ板厚中心部の750~650℃の温度域の平均冷却速度が4~15℃/sとなるように、500~650℃の巻取温度まで冷却することで、80%以下の低降伏比を示し試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが150J以上の機械的特性を具備する角形鋼管を製造している。
特開平9-87743号公報 特許第5594165号 特許第5589885号
 ここで、冷間でのロール成形により製造される角形鋼管は、その肉厚が大きくなるほど導入される加工歪が増加し、降伏比の上昇と靭性の低下がより大きくなる。そのため、素材となる熱延鋼板には、成形時の降伏比の上昇を抑制する鋼組織と、大きな加工歪による靭性の悪化に耐えうる優れた低温靭性を具備することが必要となる。しかし、上記の特許文献1~3で開示された方法で製造される角形鋼管では、特に板厚が25mmを超える場合に、降伏比が高くなってしまい降伏比90%以下を満足できないという問題がある。すなわち従来技術では、冷間でのロール成形により製造される角形鋼管を、高さ20mを超える中層建築物の建築部材として適用することはできなかった。
 本発明はかかる事情に鑑みてなされたものであって、板厚25mm超であっても降伏強さ:200MPa以上、引張強さ:400MPa以上で、75%以下の低降伏比を示し、試験温度-20℃でのシャルピー衝撃試験の吸収エネルギーが27J以上となる低温靭性を具備することができる低降伏比角形鋼管用熱延鋼板およびその製造方法を提供することを目的とする。
 また、本発明は、上記した特性を有する熱延鋼板を素材とする低降伏比角形鋼管であって、管軸方向で、降伏強さ:295MPa以上、引張強さ:400MPa以上で、90%以下の低降伏比を示し、試験温度:0℃でのシャルピー衝撃試験の吸収エネルギーが27J以上となる低温靭性を具備することができる低降伏比角形鋼管およびその製造方法を提供することを目的とする。
 本発明者らは上記課題を解決するために検討した結果、以下の知見を得た。
 まず、特許文献1~3で開示された方法で角形鋼管の試作を行なったところ、特に板厚が25mmを超える場合に、降伏比90%以下を満足できなかった。試作した鋼板の鋼組織を解析したところ、板厚中心部は、フェライトおよびパーライトからなる組織であり、板厚表裏面の鋼組織は、マルテンサイト組織、上部ベイナイト組織、または、フェライトおよびパーライトからなる組織であった。
 次に、発明者らは降伏比の上昇抑制に適した鋼組織を調査した。具体的には、フェライト単相組織(ベイニティックフェライト単相組織を含む)、フェライトおよびパーライトからなる組織、マルテンサイト組織や、上部ベイナイト組織の加工硬化のしやすさを調べた。なお、加工硬化しやすいほど、冷間成形時に導入される加工歪により高降伏比化する。その結果、フェライト単相組織(ベイニティックフェライト単相組織を含む)がもっとも加工硬化し難く、次にフェライトおよびパーライトからなる組織が加工硬化し難く、マルテンサイト組織と上部ベイナイト組織は最も加工硬化しやすいことが分かった。
 上記検討により、冷間でのロール成形で導入される加工歪が最も大きくなる板厚表裏面において、マルテンサイト組織、上部ベイナイト組織や、フェライトおよびパーライトからなる組織の形成を抑制し、フェライト単相またはベイニティックフェライト単相組織とすることができれば、肉厚が大きな角形鋼管を冷間でのロール成形で製造する場合においても降伏比の上昇を抑制し、降伏比90%以下の角形鋼管を製造できると考えた。
 発明者らは、さらに詳細な検討を重ね、発明をするに至った。本発明の要旨は次のとおりである。
 [1] 質量%で、C:0.07~0.20%、Mn:0.3~2.0%、P:0.03%以下、S:0.015%以下、Al:0.01~0.06%、N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
 板厚中心部の鋼組織が、フェライトからなる主相と、パーライト、擬似パーライトおよび上部ベイナイトから選択される1種または2種以上からなり面積分率が8~20%である第二相とを有し、主相と第二相とを含む鋼組織の平均結晶粒径が7~20μmであり、
 板厚表裏面の鋼組織が、フェライト単相またはベイニティックフェライト単相であり、平均結晶粒径が2~20μmであることを特徴とする低降伏比角形鋼管用熱延鋼板。
 [2] 前記成分組成に加えてさらに、質量%で、Si:0.4%未満を含有することを特徴とする前記[1]に記載の低降伏比角形鋼管用熱延鋼板。
 [3] 前記成分組成に加えてさらに、質量%で、Nb:0.04%以下、Ti:0.02%以下およびV:0.10%以下から選択される1種または2種以上を含有することを特徴とする前記[1]または[2]に記載の低降伏比角形鋼管用熱延鋼板。
 [4] 前記成分組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする前記[1]~[3]のいずれか一つに記載の低降伏比角形鋼管用熱延鋼板。
 [5] 板厚が25mm超であることを特徴とする前記[1]~[4]のいずれか一つに記載の低降伏比角形鋼管用熱延鋼板。
 [6] 鋼素材に、熱延工程、冷却工程および巻取工程をこの順に施して、熱延鋼板とするにあたり、
 前記鋼素材を、前記[1]~[4]のいずれかに記載の成分組成を有する鋼素材とし、
 前記熱延工程が、前記鋼素材を加熱温度:1100~1300℃に加熱した後、該加熱された鋼素材に粗圧延終了温度:1150~950℃とする粗圧延を施し、仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施し熱延板とする工程であり、
 前記冷却工程が、前記熱延板を板厚中心温度で冷却開始から冷却停止までの平均冷却速度が4~25℃/sとなる冷却速度で冷却停止温度:580℃以下まで冷却を施す工程であって、冷却開始から10s間である初期冷却工程において0.2s以上3.0s未満の放冷工程を1回以上有し、
 前記巻取工程が、前記冷却工程後の熱延板を巻取温度:580℃以下で巻取り、その後放冷する工程であることを特徴とする低降伏比角形鋼管用熱延鋼板の製造方法。
 [7] 前記熱延鋼板の板厚が25mm超であることを特徴とする前記[6]に記載の低降伏比角形鋼管用熱延鋼板の製造方法。
 [8] 前記[1]~[5]のいずれか一つに記載の低降伏比角形鋼管用熱延鋼板を素材とすることを特徴とする低降伏比角形鋼管。
 [9] 前記[6]または[7]に記載の低降伏比角形鋼管用熱延鋼板の製造方法で得られた熱延鋼板を冷間でロール成形することにより角形鋼管を得ることを特徴とする低降伏比角形鋼管の製造方法。
 [10] 質量%で、C:0.07~0.20%、Mn:0.3~2.0%、P:0.03%以下、S:0.015%以下、Al:0.01~0.06%、N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
 板厚中心部の鋼組織が、フェライトからなる主相と、パーライト、擬似パーライトおよび上部ベイナイトから選択される1種または2種以上からなり面積分率が8~20%である第二相とを有し、主相と第二相とを含む鋼組織の平均結晶粒径が7~20μmであり、
 板厚表裏面の鋼組織が、フェライト単相またはベイニティックフェライト単相であり、平均結晶粒径が2~20μmであることを特徴とする低降伏比角形鋼管。
 本発明によれば、降伏強さ:200MPa以上、引張強さ:400MPa以上で、75%以下の低降伏比を示し、試験温度-20℃でのシャルピー衝撃試験の吸収エネルギーが27J以上となる低温靭性を具備する低降伏比角形鋼管用熱延鋼板を提供することができる。そして、この熱延鋼板は、板厚25mm超の厚肉のものであっても、これを素材として冷間でのロール成形により製造した角形鋼管において、管軸方向で、降伏強さ:295MPa以上、引張強さ:400MPa以上で、90%以下の低降伏比を示し、試験温度:0℃で、シャルピー衝撃試験の吸収エネルギーが27J以上となる低温靭性を具備させることができる。したがって、厚肉の角形鋼管、例えば建築構造部材向け角形鋼管として好適に用いることができる。これにより、高さ20mを超える中層建築物の資材コストの低減、工期の短縮が実現できる。
 本発明の低降伏比角形鋼管用熱延鋼板は、質量%で、C:0.07~0.20%、Mn:0.3~2.0%、P:0.03%以下、S:0.015%以下、Al:0.01~0.06%、N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、板厚中心部の鋼組織が、フェライトからなる主相と、パーライト、擬似パーライトおよび上部ベイナイトから選択される1種または2種以上からなり面積分率が8~20%である第二相とを有し、主相と第二相とを含む鋼組織の平均結晶粒径が7~20μmであり、板厚表裏面の鋼組織が、フェライト単相またはベイニティックフェライト単相であり、平均結晶粒径が2~20μmであることを特徴とするものである。なお、「熱延鋼板」には、熱延鋼板、熱延鋼帯を含むものとする。
 まず、本発明の低降伏比角形鋼管用熱延鋼板の成分組成について、説明する。なお、特に断わらない限り質量%は、単に%で記す。
 C:0.07~0.20%
 Cは、固溶強化により鋼板の強度を増加させるとともに、第二相の一つであるパーライトの形成に寄与する元素である。所望の引張特性、靭性、さらに所望の鋼板組織を確保するためには、0.07%以上の含有を必要とする。一方、0.20%を超える含有は、角形鋼管の現場溶接時(例えば、角形鋼管同士の溶接時)にマルテンサイト組織が生成し溶接割れの原因となる懸念がある。このため、Cは0.07~0.20%の範囲に限定した。Cは、好ましくは下限が0.09%であり、上限が好ましくは0.18%である。
 Mn:0.3~2.0%
 Mnは、固溶強化を介して鋼板の強度を増加させる元素であり、所望の鋼板強度を確保するために、0.3%以上の含有を必要とする。0.3%未満の含有では、フェライト変態開始温度の上昇を招き、組織が過度に粗大化しやすい。一方、2.0%を超えて含有すると、中心偏析部の硬度が上昇し、角形鋼管の現場溶接時の割れの原因となる懸念がある。このため、Mnは0.3~2.0%の範囲に限定した。Mnは、好ましくは上限が1.6%である。より好ましくは、上限が1.4%である。
 P:0.03%以下
 Pは、フェライト粒界に偏析して、靭性を低下させる作用を有する元素であり、本発明では、不純物としてできるだけ低減することが望ましい。しかし、過度の低減は、精錬コストの高騰を招くため、0.002%以上とすることが好ましい。なお、0.03%までは許容できる。このため、Pは0.03%以下に限定した。Pは、好ましくは0.025%以下である。
 S:0.015%以下
 Sは、鋼中では硫化物として存在し、本発明の組成範囲であれば、主としてMnSとして存在する。MnSは、熱延工程で薄く延伸され、延性、靭性に悪影響を及ぼすため、本発明ではできるだけMnSは低減することが望ましい。しかし、過度の低減は、精錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。なお、0.015%までは許容できる。このため、Sは0.015%以下に限定した。Sは、好ましくは0.010%以下である。
 Al:0.01~0.06%
 Alは、脱酸剤として作用するとともに、AlNとしてNを固定する作用を有する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。0.01%未満では、Si無添加の場合に脱酸力が不足し、酸化物系介在物が増加し、鋼板の清浄度が低下する。一方、0.06%を超える含有は、固溶Al量が増加し、角形鋼管の長手溶接時(角形鋼管の製造時の溶接時)に、特に大気中での溶接の場合に、溶接部に酸化物を形成させる危険性が高くなり、角形鋼管溶接部の靭性が低下する。このため、Alは0.01~0.06%に限定した。Alは、好ましくは、下限が0.02%であり上限が0.05%である。
 N:0.006%以下
 Nは、転位の運動を強固に固着することで靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましく、0.006%までは許容できる。このため、Nは0.006%以下に限定した。Nは、好ましくは0.005%以下である。
 Si:0.4%未満
 Siは、固溶強化で鋼板の強度増加に寄与する元素であり、所望の鋼板強度を確保するために、必要に応じて含有できる。このような効果を得るためには、0.01%を超えて含有することが望ましい。しかし、0.4%以上の含有は、鋼板表面に赤スケールと称するファイアライトが形成しやすくなり、表面の外観性状が低下する場合が多くなる。このため、含有する場合には、0.4%未満とすることが好ましい。なお、特にSiを添加しない場合は、Siは不可避的不純物として、そのレベルは0.01%以下である。
 Nb:0.04%以下、Ti:0.02%以下、V:0.10%以下から選択される1種または2種以上
 Nb、Ti、Vはいずれも、鋼中で微細な炭化物、窒化物を形成し、析出強化を通じて鋼の強度向上に寄与する元素である。含有すれば鋼管成形後の降伏比が高くなる傾向となる。このため、本発明では、含有しないことが望ましい。しかし、角形鋼管の降伏比が90%以下となるような範囲であれば、強度を調整する目的で含有してもよい。範囲はそれぞれ、Nb:0.04%以下、Ti:0.02%以下、V:0.10%以下である。なお、Nb、Ti、Vのいずれかを含有する場合、Nb:0.001%以上、Ti:0.001%以上、V:0.001%以上であることが好ましい。
 B:0.008%以下
 Bは、冷却過程のフェライト変態を遅延させ、低温変態フェライト、すなわち、アシュキュラーフェライト相の形成を促進し、鋼板強度を増加させる作用を有する元素であり、Bの含有は、鋼板の降伏比、したがって角形鋼管の降伏比を増加させる。このため、本発明では、角形鋼管の降伏比が90%以下となるような範囲であれば、強度を調整する目的で必要に応じて含有できる。このような範囲はB:0.008%以下である。Bは、好ましくは、下限が0.0001%であり上限が0.0015%である。さらに好ましくは、下限が0.0003%であり上限が0.0008%である。
 上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、例えばO:0.005%以下が許容できる。
 次に、本発明の低降伏比角形鋼管用熱延鋼板の鋼組織について説明する。本発明の低降伏比角形鋼管用熱延鋼板は、板厚中心部の鋼組織が主相と第二相からなる。主相はフェライトからなり、主相の面積分率は80~92%である。また、第二相はパーライト、擬似パーライトおよび上部ベイナイトから選択される1種または2種以上からなり、第二相の面積分率は8~20%である。第二相の面積分率が8%未満となると所望の引張強さを満足できなくなる。第二相の面積分率が20%を超えると、所望の低温靭性を確保できなくなる。このため、第二相の面積分率を8~20%の範囲に限定した。そして、上記板厚中心部の鋼組織である主相と第二相とを含む鋼組織の平均結晶粒径は、7~20μmである。ここでいう「主相と第二相とを含む鋼組織の平均結晶粒径」とは、主相を構成するフェライト相と、第二相を構成するパーライト相、擬似パーライト相および上部ベイナイト相の全結晶粒について測定した平均結晶粒径を意味する。平均結晶粒径が7μm未満では、微細すぎて、角形鋼管の降伏比が90%以下を確保できない。一方、平均結晶粒径が20μmを超えて粗大化すると、角形鋼管の靭性が低下し、所望の靭性を確保できなくなる。なお、更なる高靭性を確保するという観点から、平均結晶粒径は、好ましくは15μm以下である。
 上記板厚中心部の鋼組織は、以下の方法で観察し主相および第二相の種類、面積分率、主相と第二相とを含む鋼組織の平均結晶粒径を求める。まず、熱延鋼板から採取した組織観察用試験片について、圧延方向断面(L断面)が観察面となるように研磨し、ナイタール腐食を施し、組織観察用試験片表面(熱延鋼板表面)から板厚1/2t位置を観察中心として、光学顕微鏡(倍率:500倍)、または走査型電子顕微鏡(倍率:500倍)を用いて鋼組織を観察し、撮像する。なお、tは鋼板の厚さ(板厚)である。そして、得られた組織写真について、画像解析装置(画像解析ソフト:Photoshop、Adobe社製)を用いて、主相および第二相の種類を特定し、面積分率を算出し、JIS G 0551記載の方法で主相と第二相とを含む鋼組織の平均結晶粒径を算出する。
 本発明の低降伏比角形鋼管用熱延鋼板は、熱延鋼板の板厚表裏面(熱延鋼板の両表面)の鋼組織は、フェライト単相またはベイニティックフェライト単相であり、平均結晶粒径が2~20μmである。ここでいう単相とは、面積分率が95%以上である場合をいう。また、熱延鋼板の板厚表裏面とは、具体的には熱延鋼板の両表面からそれぞれ1mmまでの領域のことをいう。平均結晶粒径が2μm未満であると、板表裏面の降伏強さが過度に上昇し、ロール成形時の負荷が増大し丸形鋼管、角形鋼管の成形が困難となる。また、20μmを超えて粗大化すると、角形鋼管の靭性が低下し、所望の靭性を確保できなくなる。このため、該平均結晶粒径は2~20μmに限定した。該平均結晶粒径は、好ましくは、上限が15μmである。
 上記板厚表裏面の鋼組織は、組織観察用試験片表面(熱延鋼板表面)から板厚1/2t位置を観察中心とする代わりに、観察視野が熱延鋼板表面から1mmの範囲内になるようにする以外は、上記板厚中心部の鋼組織の観察方法および測定方法と同様にして、鋼組織の種類、平均結晶粒径を求める。
 このように、成分組成、板厚中心部の鋼組織の種類、面積分率および平均結晶粒径、ならびに、板厚表裏面の鋼組織の種類および平均結晶粒径の全てを上記特定のものとすることにより、降伏強さ:200MPa以上、引張強さ:400MPa以上で、75%以下の低降伏比を示し、試験温度-20℃でのシャルピー衝撃試験の吸収エネルギーが27J以上となる低温靭性を具備する熱延鋼板とすることができ、該熱延鋼板は角形鋼管用の素材として非常に適する。
 本発明の低降伏比角形鋼管用熱延鋼板の板厚は特に限定されず、例えば15mm以上、好ましくは25mm超、さらに好ましくは、28mm以上である。板厚25mm超の低降伏比角形鋼管用熱延鋼板を冷間でのロール成形により角形鋼管とすると、特許文献1~3等の技術では降伏比が高く不十分であるという問題がある。しかし、本発明の低降伏比角形鋼管用熱延鋼板は、25mm超の極厚肉であっても降伏比の上昇が抑制され降伏比が90%以下の角形鋼管を得ることができる。
 次に、上記本発明の低降伏比角形鋼管用熱延鋼板の製造方法の一例である、本発明の低降伏比角形鋼管用熱延鋼板の製造方法について説明する。
 本発明の低降伏比角形鋼管用熱延鋼板の製造方法は、上述した成分組成を有する鋼素材に、特定の熱延工程、冷却工程および巻取工程をこの順に施して、熱延鋼板とするものである。具体的には、本発明の低降伏比角形鋼管用熱延鋼板の製造方法は、鋼素材に、熱延工程、冷却工程および巻取工程をこの順に施して、熱延鋼板とするにあたり、鋼素材を、前記した成分組成を有する鋼素材とし、熱延工程が、鋼素材を加熱温度:1100~1300℃に加熱した後、該加熱された鋼素材に粗圧延終了温度:1150~950℃とする粗圧延を施し、仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施し熱延板とする工程であり、冷却工程が、熱延板を板厚中心温度で冷却開始から冷却停止までの平均冷却速度が4~25℃/sとなる冷却速度で冷却停止温度:580℃以下まで冷却を施す工程であって、冷却開始から10s間である初期冷却工程において0.2s以上3.0s未満の放冷工程を1回以上有し、巻取工程が、巻取温度:580℃以下で巻取り、その後放冷する工程であることを特徴とする。以下に各工程について、詳細に説明する。なお、以下の製造方法の説明において、温度は特に断らない限り鋼素材、シートバー、熱延板や鋼板等の表面温度とする。該表面温度は、放射温度計等で測定することができる。また、平均冷却速度は特に断らない限り((冷却前の温度-冷却後の温度)/冷却時間)とする。
 上記した成分組成を有する鋼素材の製造方法は特に限定されず、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、連続鋳造法等の通常公知の鋳造方法により、所望寸法に製造される。溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。また、連続鋳造法に代えて、造塊-分塊圧延法を適用しても何ら問題はない。
 熱延工程(熱間圧延工程)では、上記した成分組成を有する鋼素材を加熱温度:1100~1300℃に加熱した後、該加熱された鋼素材に粗圧延終了温度:1150~950℃とする粗圧延を施し、仕上圧延開始温度(仕上圧延入側温度):1100~850℃、仕上圧延終了温度(仕上圧延出側温度):900~750℃とする仕上圧延を施し熱延板とする。
 加熱温度:1100~1300℃
 鋼素材の加熱温度が1100℃未満では、被圧延材の変形抵抗が大きくなりすぎて、粗圧延機、仕上圧延機の耐荷重、圧延トルクの不足が生じ、圧延が困難となる。一方、1300℃を超えると、オーステナイト結晶粒が粗大化し、粗圧延、仕上圧延でオーステナイト粒の加工・再結晶を繰返しても、細粒化することが困難となり、所望の熱延鋼板の平均結晶粒径を確保することが困難となる。このため、鋼素材の加熱温度は1100~1300℃であり、好ましくは、上限が1280℃である。また、圧延機の耐荷重、圧延トルクに余裕がある場合には、1100℃以下Ar変態点以上の範囲の加熱温度を選択してもよい。鋼素材の厚さは、通常用いられる200~350mm程度でよく、特に限定されない。
 加熱された鋼素材は、次いで粗圧延を施され、シートバー等とされる。
 粗圧延終了温度:950~1150℃
 加熱された鋼素材は、粗圧延により、オーステナイト粒が加工、再結晶されて微細化する。粗圧延終了温度が950℃未満では、粗圧延機の耐荷重、圧延トルクの不足が生じやすくなる。一方、1150℃を超えて高温となると、オーステナイト粒が粗大化し、その後に仕上圧延を施しても、平均結晶粒径:20μm以下という所望の平均結晶粒径を確保することが困難となる。このため、粗圧延終了温度は950~1150℃の範囲に限定する。この粗圧延終了温度範囲は、鋼素材の加熱温度、粗圧延のパス間での滞留、鋼素材厚さ等を調整することにより達成できる。なお、圧延機の耐荷重、圧延トルクに余裕がある場合には、粗圧延終了温度の下限を、Ar変態点+100℃以上としてもよい。粗圧延が終了した段階での厚さ(シートバー等の厚さ)は、仕上圧延で、所望の製品厚さの製品板(熱延鋼板)とすることができればよく、特に限定する必要はなく、32~60mm程度が適当である。
 粗圧延後は、次いでタンデム圧延機により仕上圧延を施され、熱延鋼板とされる。
 仕上圧延開始温度(仕上圧延入側温度):1100~850℃
 仕上圧延では、圧延加工-再結晶が繰り返され、オーステナイト(γ)粒の微細化が進行する。仕上圧延開始温度(仕上圧延入側温度)が低くなると、圧延加工により導入される加工歪が残存しやすくなり、γ粒の微細化を達成しやすい。仕上圧延開始温度(仕上圧延入側温度)が、850℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr変態点以下となりフェライトが生成する危険性が増大する。生成したフェライトは、その後の仕上圧延加工により圧延方向に伸長したフェライト粒となり、加工性低下の原因となる。一方、仕上圧延開始温度(仕上圧延入側温度)が、1100℃を超えて高温となると、上記した仕上圧延によるγ粒の微細化効果が低減し、平均結晶粒径:20μm以下の所望の熱延鋼板の平均結晶粒径を確保することが困難となる。このため、仕上圧延開始温度は1100~850℃の範囲に限定する。仕上圧延開始温度は、好ましくは1050~850℃である。
 仕上圧延終了温度(仕上圧延出側温度):900~750℃
 仕上圧延終了温度(仕上圧延出側温度)が900℃を超えて高温となると、仕上圧延時に付加される加工歪が不足し、γ粒の微細化が達成されず、したがって、平均結晶粒径:20μm以下の所望の熱延鋼板の平均結晶粒径を確保することが困難となる。一方、仕上圧延終了温度(仕上圧延出側温度)が750℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr変態点以下となり、圧延方向に伸長したフェライト粒が形成され、フェライト粒が混粒となり、加工性が低下する危険性が増大する。このため、仕上圧延終了温度(仕上圧延出側温度)は900~750℃の範囲に限定する。仕上圧延終了温度は、好ましくは、上限が850℃である。
 仕上圧延終了後、冷却工程を施す。
 冷却工程では、仕上圧延で得られた熱延板を板厚中心温度で冷却開始から冷却停止(冷却終了)までの平均冷却速度が4~25℃/sとなる冷却速度で冷却停止温度:580℃以下まで冷却する。冷却工程で施す冷却は、ノズルから水を噴射する、水柱冷却、スプレー冷却、ミスト冷却等の水冷(水冷却)や、冷却ガスを噴射するガスジェット冷却等で行われる。なお、鋼板(熱延板)の両面が同条件で冷却されるように鋼板両面に冷却操作を施すことが好ましい。
 鋼板板厚中心の平均冷却速度が4℃/s未満では、フェライト粒の生成頻度が減少し、フェライト結晶粒が粗大化して、板厚中心部における平均結晶粒径:20μm以下という所望の平均結晶粒径を確保できなくなる。一方、25℃/sを超えると、パーライトの生成が抑制され、上部ベイナイト組織が形成するようになるため、板厚中心部における所望の平均結晶粒径を確保できなくなる。このため、板厚中心の平均冷却速度は4~25℃/sであり、より好ましくは、下限が5℃/sであり上限が15℃/sである。板厚中心の平均冷却速度は、((冷却開始時の板厚中心の温度-冷却停止時の板厚中心の温度)/冷却時間)で求められる。鋼板板厚中心の温度は、伝熱解析により鋼板断面内の温度分布を計算し、その結果を実際の外面および内面の温度によって補正することにより求める。冷却停止温度が580℃を超えると、板厚中心部における所望の平均結晶粒径7~20μmを満足できなくなる。なお、所望の表裏面鋼組織を得るためには、鋼板表面温度で750℃~650℃の温度域での平均冷却速度は20℃/s以上とすることが好ましい。また、仕上圧延終了から直ちに(5秒以内に)冷却工程を開始することが好ましい。
 そして、冷却工程では、冷却開始から10s間である初期冷却工程、すなわち、熱延板の冷却を開始してから10秒間(10s間)は、0.2s以上3.0s未満の放冷工程を一回以上設けて冷却する。これは、板表裏面においてマルテンサイト組織又は上部ベイナイト組織の生成を抑制するために行なう。初期冷却工程において、放冷工程を設けないか、放冷工程が0.2s未満の場合、板厚表裏面の鋼組織がマルテンサイト組織、ベイナイト組織や上部ベイナイト組織となり、フェライト単相またベイニティックフェライト単相組織を得ることができない。また、初期冷却工程において3.0s以上の放冷工程を設けると、フェライトおよびパーライトからなる組織となり、所望の鋼組織を得ることができない。このため、冷却工程において冷却開始から10秒間である初期冷却工程中に行う放冷工程の時間は0.2s以上3.0s未満に限定した。放冷工程の時間は、好ましくは、0.4~2.0sである。初期冷却工程中に行う放冷工程の回数は冷却設備配列や冷却停止温度などによって適当に決めればよく、上限は特に限定しない。
 冷却終了後、巻取工程を施す。
 巻取工程では、巻取温度:580℃以下で巻取り、その後放冷する。巻取温度が580℃を超えると、巻取り後にフェライト変態とパーライト変態が進行するため、板厚中心部における所望の平均結晶粒径7~20μmを満足できなくなる。巻取温度を低くしても材質上の問題は生じないが、400℃未満となると、特に板厚が25mmを超えるような厚肉鋼板の場合、巻取り変形抵抗が多大になり、きれいに巻き取れない場合がある。このため、巻取り温度は400℃以上とすることが好ましい。
 巻取りの後、放冷することで本発明の低降伏比角形鋼管用熱延鋼板が得られる。
 本発明の低降伏比角形鋼管は、上記本発明の低降伏比角形鋼管用熱延鋼板を素材としたものである。本発明の低降伏比角形鋼管は、管軸方向で、降伏強さ:295MPa以上、引張強さ:400MPa以上で、90%以下の低降伏比を示し、試験温度:0℃でのシャルピー衝撃試験の吸収エネルギーが27J以上となる低温靭性を具備するものとすることができ、例えば、建築構造部材として使用することができる。
 本発明の低降伏比角形鋼管は、上記本発明の低降伏比角形鋼管用熱延鋼板を、冷間でロール成形することにより製造することができる。冷間でロール成形するとは、加熱装置等を使用せず室温でロールにより成形することを意味する。
 例えばコイル状の本発明の低降伏比角形鋼管用熱延鋼板を、冷間で、ロールを用いたロール成形法により円形に成形して丸型鋼管を製造した後に、丸型鋼管を、ロールを用いたロール成形法により角形に成形して角形鋼管を製造する。丸型鋼管へのロール成形を冷間で行うと、管軸方向に大きな加工歪が導入されるため、管軸方向の降伏比が上昇しやすく、靭性が低下しやすいという問題がある。しかしながら、本発明の低降伏比角形鋼管においては、上記本発明の低降伏比角形鋼管用熱延鋼板を素材としているため、上記問題、すなわち、降伏比の上昇等が抑制されて、例えば25mm超の厚肉のものであっても、低降伏比且つ低温靭性を具備するものとすることができる。
 以下に、本発明の更なる理解のために実施例を用いて説明する。なお、実施例はなんら本発明を限定するものではない。
 溶鋼を転炉で溶製し、連続鋳造法で、表1に示す組成のスラブ(鋼素材:肉厚250mm)とした。それらスラブ(鋼素材)を、表2に示す加熱温度に加熱したのち、表2に示す条件の熱延工程、冷却工程、巻取工程を施した後、放冷することにより、板厚:19~32mmの熱延鋼板とした。なお、仕上圧延終了後、直ちに(5秒以内に)冷却工程を開始した。冷却は水冷で行った。放冷工程は、冷却開始から10s間である初期冷却工程中に、水冷を行わない放冷区間を設けることで行った。また、表2に示す製品板厚は、熱延工程で得られた熱延板の板厚であり、得られた熱延鋼板の板厚である。
 また、得られた熱延鋼板を素材として、冷間でロール成形により丸型鋼管とし、ついで、冷間でロール成形により角形鋼管(400~550mm角)とした。
 得られた熱延鋼板から試験片を採取して、組織観察、引張試験、衝撃試験を実施した。結果を表3に示す。組織観察は上記の方法で行って、板厚中心部について、主相および第二相の種類、面積分率、主相と第二相とを含む鋼組織の平均結晶粒径(表3中「板厚中心部の鋼組織」欄において単に「平均結晶粒径」と記載する)を算出し、板厚表裏面について、鋼組織の種類、平均結晶粒径を求めた。表3の「板厚中心部の鋼組織」の「種類」欄に、板厚中心部の鋼組織の種類を、左から主相、第二相の順に記載する。なお鋼板No.8は板厚中心部の鋼組織は上部ベイナイトのみ存在していた。また、板厚表裏面の鋼組織は、鋼板No.9はマルテンサイトと上部ベイナイトとの混合相であり、鋼板No.10はフェライトとパーライトとの混合相であり、その他の鋼板はフェライト100%またはベイニティックフェライト100%であった。また、引張試験、シャルピー衝撃試験の試験方法は次の通りとした。
(1)引張試験
 得られた熱延鋼板から、引張方向が圧延方向となるように、JIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYS、引張強さTSを測定し、(降伏強さ)/(引張強さ)×100(%)で定義される降伏比YR(%)を算出した。
(2)シャルピー衝撃試験
 得られた熱延鋼板の板厚1/2t位置から、試験片長手方向が圧延方向と直交する方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:-20℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とし、その平均値を算出した。
 また、得られた角形鋼管の平坦部から、試験片を採取し、引張試験、シャルピー衝撃試験を実施し、降伏比、靭性を評価した。結果を表3に示す。試験方法は次の通りとした。
(3)角形鋼管引張試験
 得られた角形鋼管平坦部から、引張方向が管長手方向となるように、JIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYS、引張強さTSを測定し、(降伏強さ)/(引張強さ)×100(%)で定義される降伏比YR(%)を算出した。
(4)角形鋼管衝撃試験
 得られた角形鋼管平坦部の板厚1/4t位置から、試験片長手方向が管周方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本の平均値とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  質量%で、C:0.07~0.20%、
    Mn:0.3~2.0%、
    P:0.03%以下、
    S:0.015%以下、
    Al:0.01~0.06%、
    N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
     板厚中心部の鋼組織が、フェライトからなる主相と、パーライト、擬似パーライトおよび上部ベイナイトから選択される1種または2種以上からなり面積分率が8~20%である第二相とを有し、主相と第二相とを含む鋼組織の平均結晶粒径が7~20μmであり、
     板厚表裏面の鋼組織が、フェライト単相またはベイニティックフェライト単相であり、平均結晶粒径が2~20μmであることを特徴とする低降伏比角形鋼管用熱延鋼板。
  2.  前記成分組成に加えてさらに、質量%で、Si:0.4%未満を含有することを特徴とする請求項1に記載の低降伏比角形鋼管用熱延鋼板。
  3.  前記成分組成に加えてさらに、質量%で、Nb:0.04%以下、
    Ti:0.02%以下
    およびV:0.10%以下から選択される1種または2種以上を含有することを特徴とする請求項1または2に記載の低降伏比角形鋼管用熱延鋼板。
  4.  前記成分組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする請求項1~3のいずれか一項に記載の低降伏比角形鋼管用熱延鋼板。
  5.  板厚が25mm超であることを特徴とする請求項1~4のいずれか一項に記載の低降伏比角形鋼管用熱延鋼板。
  6.  鋼素材に、熱延工程、冷却工程および巻取工程をこの順に施して、熱延鋼板とするにあたり、
     前記鋼素材を、請求項1~4のいずれか一項に記載の成分組成を有する鋼素材とし、
     前記熱延工程が、前記鋼素材を加熱温度:1100~1300℃に加熱した後、該加熱された鋼素材に粗圧延終了温度:1150~950℃とする粗圧延を施し、仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施し熱延板とする工程であり、
     前記冷却工程が、前記熱延板を板厚中心温度で冷却開始から冷却停止までの平均冷却速度が4~25℃/sとなる冷却速度で冷却停止温度:580℃以下まで冷却を施す工程であって、冷却開始から10s間である初期冷却工程において0.2s以上3.0s未満の放冷工程を1回以上有し、
     前記巻取工程が、前記冷却工程後の熱延板を巻取温度:580℃以下で巻取り、その後放冷する工程であることを特徴とする低降伏比角形鋼管用熱延鋼板の製造方法。
  7.  前記熱延鋼板の板厚が25mm超であることを特徴とする請求項6に記載の低降伏比角形鋼管用熱延鋼板の製造方法。
  8.  請求項1~5のいずれか一項に記載の低降伏比角形鋼管用熱延鋼板を素材とすることを特徴とする低降伏比角形鋼管。
  9.  請求項6または7に記載の低降伏比角形鋼管用熱延鋼板の製造方法で得られた熱延鋼板を冷間でロール成形することにより角形鋼管を得ることを特徴とする低降伏比角形鋼管の製造方法。
  10.  質量%で、C:0.07~0.20%、
    Mn:0.3~2.0%、
    P:0.03%以下、
    S:0.015%以下、
    Al:0.01~0.06%、
    N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
     板厚中心部の鋼組織が、フェライトからなる主相と、パーライト、擬似パーライトおよび上部ベイナイトから選択される1種または2種以上からなり面積分率が8~20%である第二相とを有し、主相と第二相とを含む鋼組織の平均結晶粒径が7~20μmであり、
     板厚表裏面の鋼組織が、フェライト単相またはベイニティックフェライト単相であり、平均結晶粒径が2~20μmであることを特徴とする低降伏比角形鋼管。
PCT/JP2017/040169 2016-12-12 2017-11-08 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法 WO2018110152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018510136A JP6388091B1 (ja) 2016-12-12 2017-11-08 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法
CN201780076735.4A CN110073018B (zh) 2016-12-12 2017-11-08 低屈服比方形钢管用热轧钢板及其制造方法、和低屈服比方形钢管及其制造方法
KR1020197016788A KR102256983B1 (ko) 2016-12-12 2017-11-08 저항복비 각형 강관용 열연 강판 및 그의 제조 방법 그리고 저항복비 각형 강관 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240038 2016-12-12
JP2016-240038 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018110152A1 true WO2018110152A1 (ja) 2018-06-21

Family

ID=62558474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040169 WO2018110152A1 (ja) 2016-12-12 2017-11-08 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法

Country Status (4)

Country Link
JP (1) JP6388091B1 (ja)
KR (1) KR102256983B1 (ja)
CN (1) CN110073018B (ja)
WO (1) WO2018110152A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039980A1 (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
WO2020039979A1 (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 熱延鋼板およびその製造方法
WO2020135691A1 (zh) * 2018-12-28 2020-07-02 宝山钢铁股份有限公司 一种表层铁素体内层铁素体+珠光体的梯度钢铁材料及制造方法
WO2020135690A1 (zh) * 2018-12-28 2020-07-02 宝山钢铁股份有限公司 一种表层高塑性内层高强度的梯度钢铁材料及制造方法
CN111378893A (zh) * 2018-12-28 2020-07-07 上海梅山钢铁股份有限公司 一种屈服强度290MPa级纵剖焊管用热轧钢板
WO2020170774A1 (ja) * 2019-02-20 2020-08-27 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
WO2020170775A1 (ja) * 2019-02-20 2020-08-27 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
JP2021188104A (ja) * 2020-06-03 2021-12-13 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP2021188105A (ja) * 2020-06-03 2021-12-13 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP7396552B1 (ja) * 2022-09-20 2023-12-12 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
WO2024062686A1 (ja) * 2022-09-20 2024-03-28 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048663B (zh) * 2020-08-07 2022-04-22 山东钢铁股份有限公司 一种低成本高强度矩形钢管的生产方法
CN115679205A (zh) * 2022-09-28 2023-02-03 南京钢铁股份有限公司 一种低温恶劣环境使用290Mpa级低屈服强度钢及其制造方法
CN115558864B (zh) * 2022-10-19 2023-10-24 湖南华菱涟源钢铁有限公司 一种高强钢板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012703A (ja) * 2010-05-31 2012-01-19 Jfe Steel Corp 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2012241272A (ja) * 2011-05-24 2012-12-10 Jfe Steel Corp 耐圧潰性および溶接熱影響部靱性に優れた高強度ラインパイプ及びその製造方法
JP2014189808A (ja) * 2013-03-26 2014-10-06 Kobe Steel Ltd 耐水素誘起割れ性と曲げ性に優れた低降伏比型高強度鋼板
WO2014171057A1 (ja) * 2013-04-15 2014-10-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2015199987A (ja) * 2014-04-08 2015-11-12 新日鐵住金株式会社 低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952207B2 (ja) * 1976-08-19 1984-12-18 新日本製鐵株式会社 低降伏比、高靭性、高張力鋼板の製造方法
JPS5544551A (en) * 1978-09-25 1980-03-28 Nippon Steel Corp Production of low yield ratio high tension hot rolled steel plate of superior ductility
JP3219820B2 (ja) * 1991-12-27 2001-10-15 川崎製鉄株式会社 低降伏比高強度熱延鋼板およびその製造方法
KR100257900B1 (ko) * 1995-03-23 2000-06-01 에모토 간지 인성이 우수한 저항복비 고강도 열연강판 및 그 제조방법
JPH0987743A (ja) 1995-09-27 1997-03-31 Kawasaki Steel Corp 低降伏比高靱性電縫角形鋼管の製造方法
JPH1121623A (ja) * 1997-07-07 1999-01-26 Nkk Corp 耐候性に優れた低降伏比溶接構造用鋼材の製造方法
JP4507745B2 (ja) * 2003-07-31 2010-07-21 Jfeスチール株式会社 耐歪時効特性に優れた低降伏比高強度高靱性鋼管およびその製造方法
CN1928130A (zh) * 2006-09-25 2007-03-14 攀枝花新钢钒股份有限公司 低屈强比超细晶粒带钢的制造方法
CN100516269C (zh) * 2006-09-28 2009-07-22 上海梅山钢铁股份有限公司 一种细晶强化碳素结构钢热轧薄板的制造工艺
JP4957185B2 (ja) * 2006-10-31 2012-06-20 Jfeスチール株式会社 塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板およびその製造方法
CN101270438B (zh) * 2007-03-23 2011-07-20 宝山钢铁股份有限公司 低屈强比电阻焊石油套管用正火钢、电阻焊套管及其制法
CN101798655A (zh) * 2010-04-16 2010-08-11 北京科技大学 一种低屈强比的深冲性良好的微碳铝镇静钢及其制备方法
JP5842359B2 (ja) * 2010-10-28 2016-01-13 Jfeスチール株式会社 非調質低降伏比高張力鋼板およびその製造方法
JP5589885B2 (ja) 2010-11-30 2014-09-17 Jfeスチール株式会社 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法
JP5594165B2 (ja) 2011-01-28 2014-09-24 Jfeスチール株式会社 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法
JP5679114B2 (ja) * 2011-02-24 2015-03-04 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
EP2735622B1 (en) * 2011-07-20 2019-09-04 JFE Steel Corporation Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
KR101660149B1 (ko) * 2012-04-12 2016-09-26 제이에프이 스틸 가부시키가이샤 건축 구조 부재용 각형 강관용 두꺼운 열연 강판 및 그 제조 방법
CN103627950A (zh) * 2013-12-13 2014-03-12 安徽工业大学 一种屈强比0.45~0.49、抗拉强度630~670MPa热轧轮辐用钢及其制造方法
CN105220065B (zh) * 2015-10-16 2017-08-25 宝山钢铁股份有限公司 一种高扩孔率低屈强比热轧高强度钢板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012703A (ja) * 2010-05-31 2012-01-19 Jfe Steel Corp 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2012241272A (ja) * 2011-05-24 2012-12-10 Jfe Steel Corp 耐圧潰性および溶接熱影響部靱性に優れた高強度ラインパイプ及びその製造方法
JP2014189808A (ja) * 2013-03-26 2014-10-06 Kobe Steel Ltd 耐水素誘起割れ性と曲げ性に優れた低降伏比型高強度鋼板
WO2014171057A1 (ja) * 2013-04-15 2014-10-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2015199987A (ja) * 2014-04-08 2015-11-12 新日鐵住金株式会社 低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板及びその製造方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498954B1 (ko) 2018-08-23 2023-02-10 제이에프이 스틸 가부시키가이샤 각형 강관 및 그 제조 방법 그리고 건축 구조물
WO2020039979A1 (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 熱延鋼板およびその製造方法
JP6693607B1 (ja) * 2018-08-23 2020-05-13 Jfeスチール株式会社 熱延鋼板およびその製造方法
JP6693606B1 (ja) * 2018-08-23 2020-05-13 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
CN112585289B (zh) * 2018-08-23 2022-04-29 杰富意钢铁株式会社 热轧钢板及其制造方法
CN112601831A (zh) * 2018-08-23 2021-04-02 杰富意钢铁株式会社 方形钢管及其制造方法以及建筑构造物
CN112585289A (zh) * 2018-08-23 2021-03-30 杰富意钢铁株式会社 热轧钢板及其制造方法
KR20210032494A (ko) * 2018-08-23 2021-03-24 제이에프이 스틸 가부시키가이샤 각형 강관 및 그 제조 방법 그리고 건축 구조물
WO2020039980A1 (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
TWI707958B (zh) * 2018-08-23 2020-10-21 日商Jfe鋼鐵股份有限公司 角形鋼管及其製造方法以及建築構造物
WO2020135690A1 (zh) * 2018-12-28 2020-07-02 宝山钢铁股份有限公司 一种表层高塑性内层高强度的梯度钢铁材料及制造方法
JP7239704B2 (ja) 2018-12-28 2023-03-14 バオシャン アイアン アンド スティール カンパニー リミテッド フェライトの表層とフェライト+パーライトの内層を有する勾配鉄鋼材料及びその製造方法
JP7241179B2 (ja) 2018-12-28 2023-03-16 バオシャン アイアン アンド スティール カンパニー リミテッド 高塑性表層と高強度内層を有する勾配鉄鋼材料及びその製造方法
CN111378893A (zh) * 2018-12-28 2020-07-07 上海梅山钢铁股份有限公司 一种屈服强度290MPa级纵剖焊管用热轧钢板
JP2022513499A (ja) * 2018-12-28 2022-02-08 バオシャン アイアン アンド スティール カンパニー リミテッド フェライトの表層とフェライト+パーライトの内層を有する勾配鉄鋼材料及びその製造方法
WO2020135691A1 (zh) * 2018-12-28 2020-07-02 宝山钢铁股份有限公司 一种表层铁素体内层铁素体+珠光体的梯度钢铁材料及制造方法
JP2022514915A (ja) * 2018-12-28 2022-02-16 バオシャン アイアン アンド スティール カンパニー リミテッド 高塑性表層と高強度内層を有する勾配鉄鋼材料及びその製造方法
US20220042122A1 (en) * 2018-12-28 2022-02-10 Baoshan Iron & Steel Co., Ltd. Gradient steel material having high-plasticity surface layer and high-strength inner layer, and manufacturing method
EP3885460A4 (en) * 2018-12-28 2021-12-01 Baoshan Iron & Steel Co., Ltd. GRADIENT STEEL MATERIAL HAVING A HIGH PLASTICITY SURFACE LAYER AND A HIGH STRENGTH INNER LAYER AND METHOD OF MANUFACTURING THIS MATERIAL
EP3885461A4 (en) * 2018-12-28 2021-12-01 Baoshan Iron & Steel Co., Ltd. GRADIENT STEEL MATERIAL WITH A SURFACE LAYER WITH FERRITE AND INNER LAYER WITH FERRITE + PERLITE AND MANUFACTURING PROCESS
WO2020170775A1 (ja) * 2019-02-20 2020-08-27 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
CN113453817A (zh) * 2019-02-20 2021-09-28 杰富意钢铁株式会社 方形钢管、其制造方法以及建筑结构物
CN113453816A (zh) * 2019-02-20 2021-09-28 杰富意钢铁株式会社 方形钢管及其制造方法以及建筑构造物
TWI724782B (zh) * 2019-02-20 2021-04-11 日商Jfe鋼鐵股份有限公司 方形鋼管及其製造方法,以及建築構造物
JP6813141B1 (ja) * 2019-02-20 2021-01-13 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
JP6813140B1 (ja) * 2019-02-20 2021-01-13 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
WO2020170774A1 (ja) * 2019-02-20 2020-08-27 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP2021188105A (ja) * 2020-06-03 2021-12-13 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP2021188104A (ja) * 2020-06-03 2021-12-13 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP7314862B2 (ja) 2020-06-03 2023-07-26 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP7314863B2 (ja) 2020-06-03 2023-07-26 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP7396552B1 (ja) * 2022-09-20 2023-12-12 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
WO2024062686A1 (ja) * 2022-09-20 2024-03-28 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物

Also Published As

Publication number Publication date
CN110073018B (zh) 2021-08-27
JPWO2018110152A1 (ja) 2018-12-20
CN110073018A (zh) 2019-07-30
KR102256983B1 (ko) 2021-05-26
JP6388091B1 (ja) 2018-09-12
KR20190085027A (ko) 2019-07-17

Similar Documents

Publication Publication Date Title
JP6388091B1 (ja) 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法
JP6565887B2 (ja) 低降伏比角形鋼管用熱延鋼板の製造方法および低降伏比角形鋼管の製造方法
KR101660149B1 (ko) 건축 구조 부재용 각형 강관용 두꺼운 열연 강판 및 그 제조 방법
DK2924140T3 (en) Process for producing a flat high-strength steel product
JP5589885B2 (ja) 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法
JP5594165B2 (ja) 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法
US20030066580A1 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP5321605B2 (ja) 延性に優れる高強度冷延鋼板およびその製造方法
WO2020209060A1 (ja) 角形鋼管およびその製造方法ならびに建築構造物
JP7031477B2 (ja) 熱延鋼板、角形鋼管、およびその製造方法
JP6813140B1 (ja) 角形鋼管およびその製造方法、並びに建築構造物
JP2019199649A (ja) 非調質低降伏比高張力厚鋼板およびその製造方法
JP6813141B1 (ja) 角形鋼管およびその製造方法並びに建築構造物
JP6569745B2 (ja) コイルドチュービング用熱延鋼板およびその製造方法
JP2007277629A (ja) 極厚鋼材及びその製造方法
JP6123734B2 (ja) 鋼管杭向け低降伏比高強度電縫鋼管およびその製造方法
JP2021147630A (ja) 熱延鋼板、角形鋼管、およびそれらの製造方法
JP2007277697A (ja) 耐疲労亀裂伝播特性および脆性亀裂伝播停止特性に優れた高張力厚鋼板およびその製造方法
JP3991552B2 (ja) 圧延形鋼の製造方法
JP2002363642A (ja) 低降伏比で靭性に優れた圧延h形鋼の製造方法
WO2013160938A1 (ja) 延性に優れる高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510136

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016788

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880610

Country of ref document: EP

Kind code of ref document: A1