WO2018107724A1 - 一种具有屏蔽近红外光功能的温控调光膜及其制备方法 - Google Patents

一种具有屏蔽近红外光功能的温控调光膜及其制备方法 Download PDF

Info

Publication number
WO2018107724A1
WO2018107724A1 PCT/CN2017/090825 CN2017090825W WO2018107724A1 WO 2018107724 A1 WO2018107724 A1 WO 2018107724A1 CN 2017090825 W CN2017090825 W CN 2017090825W WO 2018107724 A1 WO2018107724 A1 WO 2018107724A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
temperature
dimming film
nanoparticles
polymerizable monomer
Prior art date
Application number
PCT/CN2017/090825
Other languages
English (en)
French (fr)
Inventor
杨槐
梁霄
陈梅
郭姝萌
张兰英
张翠红
王茜
李辰悦
邹呈
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to US16/466,457 priority Critical patent/US10725328B2/en
Publication of WO2018107724A1 publication Critical patent/WO2018107724A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/132Thermal activation of liquid crystals exhibiting a thermo-optic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/521Inorganic solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to and includes by reference the Chinese patent application CN201611165277.5, which is filed on Dec. 16, 2016, entitled “A temperature-controlled dimming film with shielding near-infrared light function and its preparation method", and is required to enjoy Priority of the above Chinese patent application.
  • the invention belongs to the field of functional liquid crystal material technology application, and particularly relates to a temperature control light control film with shielding near infrared light function and a preparation method thereof.
  • Intelligent and controllable sunshade film is an important development direction in the field of building energy-saving materials.
  • the intelligent temperature-controlled liquid crystal dimming film has the characteristic of automatically adjusting its light transmittance according to the change of the external temperature, that is, when the weather is cold, the film is transparent, does not affect indoor lighting and heating; when the weather is hot
  • the film automatically becomes a light scattering state, which can shield most of the radiant energy of visible light and prevent the eyes of indoor people from receiving strong sunlight.
  • the higher polymer content inside the film makes the film have good bond strength, which is convenient for large-scale large-scale processing. Therefore, the intelligent temperature control liquid crystal dimming film has a good application prospect in the field of building energy conservation.
  • An object of the present invention is to provide a temperature-controlled dimming film having a function of shielding near-infrared light, which has good transmittance and near-infrared light shielding effect at low temperatures, and a film at a high temperature. Automatically becomes a state of light scattering and simultaneously shields 90% of near-infrared light.
  • Another object of the present invention is to provide a method for preparing the above temperature-controlled dimming film.
  • the invention provides a temperature-controlled dimming film with a function of shielding near-infrared light, wherein the liquid crystal dimming film comprises a polymer network a skeleton and a liquid crystal molecule, the polymer network skeleton being composed of a polymer dispersed liquid crystal network structure and a polymer stabilized liquid crystal network structure, the polymer network skeleton comprising a polymer matrix containing a mesh, the mesh having a vertically aligned polymer network; the liquid crystal molecules are dispersed inside the polymer network skeleton and have a transition from a smectic phase (SmA) to a cholesteric phase (N*); and the skeleton and the liquid crystal molecules are dispersed Nanoparticles having absorption at 800-3000 nm.
  • SmA smectic phase
  • N* cholesteric phase
  • the polymer network skeleton is formed by stepwise polymerization of a polymerizable monomer.
  • the stepwise polymerization and the ultraviolet light stepwise polymerization mentioned below mean that the polymerizable monomer in the system is polymerized in a controlled manner, including ultraviolet light-induced prepolymerization and ultraviolet light and electric field interaction.
  • the first ultraviolet-initiated polymerization enables 10% to 90% of the non-liquid crystalline polymerizable monomer and 0.1% to 90% of the liquid crystalline polymerizable monomer in the system to be polymerized, thereby forming a certain
  • the viscous substrate and the preliminary polymer matrix having the mesh are then polymerized by the combination of ultraviolet light and electric field to form a polymer network having a substantially vertical orientation.
  • the degree of polymerization of the first UV-initiated polymerization can be controlled to achieve control of the stepwise polymerization.
  • the method of control can choose to extend or shorten the time of ultraviolet light.
  • the first external light time is selected within 10-600s.
  • the first ultraviolet light time that can be selected can be 10 -30s, 30-60s, 60-120s, 100-200s, 200-400s, 400-600s.
  • Controlling the first ultraviolet light irradiation time can obtain a degree of polymerization of the non-liquid crystalline polymerizable monomer (monomer reaction ratio) of 10-20%, 20-30%, 30-50%, 50-60%, 60-70%, 70-90% and the degree of polymerization of the liquid crystalline polymerizable monomer (monomer reaction ratio) are 0.1-10%, 10-20%, 20-40%, 40-60%, 60-70%, 70-90% Primary polymerization product.
  • the method of controlling the ultraviolet light time is used to control the stepwise polymerization in the embodiment of the present invention, but those skilled in the art will appreciate that other methods which can control the progress of the polymerization can also be applied to the practice of the present invention.
  • the polymer matrix has a mesh size of 1 um to 100 um.
  • the mesh pore size of the substrate can be controlled as needed.
  • the vertically oriented polymer network prepared according to the method of the present invention is also changed after the pore size is controlled.
  • different range values can be selected, such as 1-10, 10-20, 20-40, 40-60, 60-80, 80-100 micron, subject to mesh diameter, corresponding
  • the size of the vertically oriented polymer network will also change to a smaller size.
  • the ratio of the liquid crystal material, the polymerizable monomer, and the nanoparticles in the raw material for preparing the dimming temperature control film according to the weight ratio is:
  • Liquid crystal material 10.0 to 90.0 parts by weight
  • Polymerizable monomer 10.0-80.0 parts by weight
  • Nanoparticles 1.0 to 30.0 parts by weight.
  • the liquid crystal material is a liquid crystal material having a SmA to N* phase transition, and the phase transition temperature is above -10 °C.
  • the liquid crystal material comprises a liquid crystal material having a smectic phase, One or more of a liquid crystal material having a nematic phase and a chiral compound, the liquid crystal monomer in the liquid crystal material including but not limited to one or more of the following molecules:
  • M, N is an alkyl group having 1 to 16 carbon atoms, or an alkoxy group having 1 to 16 carbon atoms, or a siloxane group of 1 to 16 atoms, or a cyano group, or an ester group, or Halogen, or isothiocyanato, or nitro
  • A, B are aromatic rings (such as 1,4-benzene ring, 2-5-pyrimidine ring, 1,2,6-naphthalene ring), or alicyclic (such as trans-1,4-cyclohexane), wherein A, B may contain a pendant group, a halogen, or a cyano group, or a methyl group, wherein x, y are respectively 0 to 4, wherein Z is an ester group, Or alkynyl, or alkane, or directly linked, or a nitrogen-nitrogen double bond, or an ether linkage.
  • the nematic liquid crystal material may also be selected from liquid crystal materials, such as SLC-1717, SLC-7011, TEB30A of Yongsheng Huaqing Liquid Crystal Material Co., Ltd., E7, E44, E48 of Merck Liquid Crystal Materials Co., Germany. ZLI-1275, etc., but not limited to these materials.
  • the chiral compound includes, but is not limited to, one or more of the following molecules, such as cholesteryl phthalate, CB15, C15, S811, R811, S1011, R1011, and the like.
  • the nanoparticles include indium tin oxide (ITO), antimony tin oxide (ATO), tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), tungsten bronze (alkali) One or more of metal doped WO 3 ) or copper sulfide (CuS) having oxygen deficiency.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • WO 3 tungsten trioxide
  • MoO 3 molybdenum trioxide
  • CuS copper sulfide
  • the liquid crystal material includes a liquid crystal composition including a first component, which further includes a second component, a third component, a fourth component, and a fifth One or more of the components;
  • the first component is one or more of any one of the following group A or group B, or one or more of the group A and the group B a mixture of one or several of the components;
  • Group A is a liquid crystal compound represented by formula (1-a)
  • Group B is a liquid crystal compound represented by formula (1-b), wherein R a is 8 to 12 An alkyl group of a carbon atom, R b is an alkyl group having 8 to 10 carbon atoms;
  • the second component is one or more of any one of Group C and Group D liquid crystal compounds, or a mixture of one or more of Group C and one or more of Group D;
  • R c is an alkyl group having 6 to 7 carbon atoms
  • R d is an alkyl group having 5 to 7 carbon atoms
  • Group C is a liquid crystal compound represented by formula (2-c)
  • group D is a formula ( a liquid crystal compound shown in 2-d);
  • the third component has a liquid crystal compound composed of the formula (3); wherein R 3 is an alkyl group having 5 to 7 carbon atoms;
  • the fourth component is one or more of any one of the following group E, group F and group G, or one or more of group E, one or more of group F, a mixture of one or more of the groups G; wherein R 4 is an alkyl group having 5 to 7 carbon atoms; Group E is a liquid crystal compound represented by the formula (4-e), and Group F is a formula (4- f) the liquid crystal compound shown, group G is a liquid crystal compound represented by formula (4-g);
  • the fifth component is a chiral compound having the same chiral configuration.
  • the liquid crystal composition comprises 15% to 40% of the first component, 35% to 60% of the second component, 1% to 10% of the third component, and 5% of the fourth component. ⁇ 25%, the fifth component is 1% to 20%.
  • the liquid crystal composition includes the formula (1-a), the formula (1-b), the formula (2-c), the formula (2-d), the formula (3), and the formula. (4-e), a compound of the formula (4-f), the formula (4-g), and a fifth component.
  • the liquid crystal compound represented by the formula (1-a) has a mass fraction of 15% to 40%, and the liquid crystal compound represented by the formula (1-b) has a mass fraction of 0% to 8%.
  • the mass fraction of the liquid crystal compound is 16% to 45%, the mass fraction of the liquid crystal compound represented by the formula (2-d) is 15% to 28%, and the mass fraction of the liquid crystal compound represented by the formula (3) is 1% to 10%.
  • the mass fraction of the liquid crystal compound represented by the formula (4-e) is 5% to 25%
  • the mass fraction of the liquid crystal compound represented by the formula (4-f) is 0% to 6%
  • the mass of the liquid crystal compound represented by the formula (4-g) The score is 0% to 5%
  • the mass fraction of the fifth component is 1% to 20%.
  • the polymerizable monomer used in the present invention is an ultraviolet photopolymerizable monomer, including a non-liquid crystalline ultraviolet photopolymerizable monomer and a liquid crystalline ultraviolet photopolymerizable monomer.
  • the non-liquid crystalline ultraviolet light polymerizable monomer may be selected from, but not limited to, one or more of the following, such as unsaturated polyester, epoxy acrylate, urethane acrylate, polyester acrylate, epoxy acrylate, and more.
  • the liquid crystalline ultraviolet light polymerizable monomer may also be selected but not limited to one or more of the following molecules, such as
  • n and n are 4 to 8
  • x and y are 1 to 2
  • E and Q are acrylates, or epoxy acrylates, or urethane acrylates, or epoxy resins, or polyene thiols.
  • the surface of the nanoparticles is grafted with a surfactant.
  • the temperature-controlled dimming film can shield more than 80% of near-infrared light when the phase transition temperature is lower than the liquid crystal, and the transmittance in the visible light band is higher than 75%.
  • the phase transition temperature is higher than the liquid crystal, the light transmittance in the visible light and near-infrared light bands is less than 10%.
  • the invention also provides a preparation method of a temperature-controlled dimming film, comprising:
  • the liquid crystal material, the polymerizable monomer, the initiator, and the spacer particles are mixed to obtain a uniform mixture, and added to the solution containing the nanoparticles, and after uniformly mixing, the solvent is removed, and then the obtained liquid is transferred between the conductive films. And incomplete polymerization of the non-liquid crystalline polymerizable monomer and the liquid crystalline polymerizable monomer in the system, and then an electric field is applied to the conductive film to polymerize the remaining polymerizable monomer to obtain a temperature-controlled dimming film.
  • a part of the non-liquid crystalline photopolymerizable monomer is polymerized with a small portion of the liquid crystalline photopolymerizable monomer to cause ultraviolet light-induced polymerization.
  • the present invention grafts a surfactant onto the surface of the nanoparticle by a microemulsion method, a reverse microemulsion method or a surfactant method.
  • a temperature-controlled dimming film is prepared by the following typical method:
  • the nanoparticles are placed in a solvent such as acetone or ethanol (about 1 mL of solvent per 4 mg of nanoparticles), and ultrasonically dispersed to sufficiently disperse in a solvent for about 30 minutes.
  • a solvent such as acetone or ethanol (about 1 mL of solvent per 4 mg of nanoparticles)
  • the dispersion of the nanoparticles described in the step 2 is added to the mixed system in a certain ratio, and passed.
  • the solvent of the nanoparticles is removed by heating or distillation to obtain a dispersion of the nanoparticles in the mixed system.
  • the dispersion of the nanoparticles obtained in the step 3 in the mixed system is placed between the two conductive films and extruded into a film.
  • the polymerizable monomer in the system is partially polymerized, and then the remaining polymerizable monomer is polymerized completely under application of an electric field to the film to prepare a temperature-controlled dimming film having a function of shielding near-infrared light.
  • the nanoparticles Before the nanoparticles are used, it is first necessary to sufficiently disperse the nanoparticles in a solvent. When the doping amount of the nanoparticles is less than 5.0%, it is only necessary to disperse the nanoparticles by ultrasonication. For better dispersion, the nanoparticles must be chemically bonded or physically coated with an organic layer (or none) before use.
  • the method of the compound is subjected to surface modification to reduce the agglomeration of the nanoparticles and to improve their dispersibility in the liquid crystal/polymerizable monomer system.
  • Specific surface modification methods include a microemulsion method, a reverse microemulsion method, a microcapsule method, a coupling agent method, a surfactant method, a ligand exchange method, and the like. After the surface modification of the nanoparticles used in the present invention, the nanoparticles have a good dispersibility when the content in the mixed system reaches 30%.
  • the invention utilizes a step-by-step ultraviolet photopolymerization method to construct a polymer dispersion and stable liquid crystal system (PD&SLC) in which a polymer dispersed liquid crystal (PDLC) and a polymer stabilized liquid crystal (PSLC) are combined inside the film, which greatly improves the The bonding strength between the two films realizes the thinning of the temperature-controlled dimming film.
  • PDLC polymer dispersed liquid crystal
  • PSLC polymer stabilized liquid crystal
  • the nanoparticles with strong shielding effect in the near-infrared band of 800 nm to 3000 nm are surface-modified and doped in a temperature-controlled liquid crystal dimming film according to a certain ratio, which greatly improves the film in the near-infrared band. Shield performance.
  • the prepared film shields more than 80% of near-infrared light when the temperature is lower than the phase transition temperature of the liquid crystal, and most of the visible light can pass through; and when the temperature is higher than the phase transition temperature of the liquid crystal, the infrared light shielding rate can be Up to 90% or more, and most of the visible light is transmitted in the form of scattered light.
  • the visible light has a good transmittance
  • the eyes of the indoor person can be prevented from being stimulated by strong sunlight.
  • the nanoparticles have good dispersibility in the liquid crystal/polymer composite.
  • the transmittance of visible light can exceed 75%, that is, when the film is transparent.
  • the doped nanoparticles do not affect the transmission of visible light.
  • Example 1 is a near-infrared light absorption spectrum of a nanoparticle used in Example 1;
  • Example 2 is a graph showing the transmittance of a film prepared in Example 1 as a function of temperature
  • Figure 3 is a visible-near infrared spectrum of the film prepared in Example 1;
  • Example 4 is a near-infrared light absorption spectrum of the nanoparticles prepared in Example 2;
  • Figure 5 is a plot of transmittance versus temperature for a film prepared in Example 2.
  • Figure 6 is a visible-near-infrared spectrum of the film prepared in Example 2.
  • Example 7 is a scanning electron micrograph of a cross section of a film prepared in Example 2.
  • the degree of initial polymerization can be controlled by other methods, and the difference in the degree of polymerization causes the properties of the product to be different, so that products of different uses can be prepared.
  • the selected liquid crystal material (LC) having a smectic phase (SmA) to cholesteric phase (N*) transition is a transition temperature tunable liquid crystal material having a phase transition temperature of SmA-35 ° C-N. *-80 ° C-I, that is, when the outside temperature is lower than 35 ° C, the film is in a transparent state; when the film is higher than 35 ° C, it is in a light scattering state, and various commercially available materials satisfying the foregoing requirements can be applied to the present invention.
  • Those skilled in the art may also select the compounds selected in the Summary of the Invention or a combination thereof. Unless otherwise indicated, the following examples were all carried out at room temperature at 25 ° C.
  • the names and structural formulas of the polymerizable monomers and initiators used in Examples 1 and 2 are shown in Figures 1 and 2.
  • the proportions of the components in the polymerizable monomer are shown in Table 1.
  • HMPA Hydrophilicity-adroxypropyl methacrylate
  • LMA Lauryl methacrylate
  • PEDGA600 Polyethylene glycol diacrylate
  • Bis-EMA15 Bisphenol a ethoxylate dimethacrylate
  • the nanoparticles used in this example were ITO nanoparticles, which were purchased from Shanghai Huzheng Nano Technology Co., Ltd. Its absorption spectrum in the near-infrared band is shown in Figure 1.
  • CN105219091A discloses a copper sulfide nanoparticle, and an infrared absorption material as disclosed in CN103724854B, which can be applied to the present invention. Preparation of the film.
  • the names of the liquid crystals, polymerizable monomers, initiators, and spacer particles selected are listed in Table 2.
  • the components in Table 2 were compounded according to the ratio, and stirred at room temperature to form an isotropic liquid, which was uniformly mixed.
  • the total mass of the mixture was 19 g.
  • the dispersion of the nanoparticles obtained in the first step was added to the mixture of the second step, and ultrasonicated again for 10 minutes to uniformly disperse the nanoparticles. It was then incubated at 80 ° C for 24 h to completely remove the ethanol solution. At this time, a dispersion of ITO nanoparticles in a mixed system was obtained.
  • the dispersion of the above ITO nanoparticles in a mixed system was applied to two plastic films coated with an indium tin oxide (ITO) transparent conductive film, and rolled to form a film.
  • the film was irradiated with ultraviolet light having a wavelength of 365 nm at room temperature, the ultraviolet light intensity was 0.5 mw/cm 2 , and the illumination time was 90 s. Then, the film was fabricated into an upper electrode, a voltage of 50.0 Hz, 170 v was applied, and the use of 365 nm was continued. Irradiation with ultraviolet light, purple temperature control dimming film.
  • the temperature-dependent ultraviolet-visible-near-infrared spectrophotometer was used to test the light intensity of the film at room temperature and at 40 ° C for 1.5 mw/cm 2 , and the irradiation time was 10 min, which obtained the function of shielding near-infrared light of Example 1.
  • the curve of the intelligence rate as a function of wavelength is shown in Figure 2.
  • the test wavelength range is from 400 nm to 3000 nm.
  • the temperature of the solution was lowered to room temperature, and 30 mL of isopropyl alcohol was added to flocculate the nanoparticles. After the nanoparticles were separated by centrifugation, the prepared oleamide oleic acid-coated ITO nanoparticles were redispersed in 20.0 mL of a cyclohexane solvent.
  • ITO nanoparticles Since ITO nanoparticles have good conductivity, when the amount of addition is too large, the electrode is easily ablated when a voltage is applied to the film. Therefore, in this embodiment, the ITO nanoparticles are coated with a layer of two. Silicon oxide, which insulates the nanoparticles from each other without affecting the near-infrared absorption characteristics of the ITO nanoparticles, avoids ablation of the electrodes during power up.
  • the specific procedure is as follows: 2,3-nonylphenol polyether is added to 20 mL of cyclohexane solvent obtained in the first step to construct a reverse microemulsion system.
  • the names of the liquid crystals, polymerizable monomers, initiators, and spacer particles selected are listed in Table 3.
  • the components in Table 3 were compounded according to the ratio, and stirred at room temperature to form an isotropic liquid, which was uniformly mixed.
  • the total mass of the mixture was 900 mg.
  • the dispersion of the nanoparticles obtained in the second step was added to the mixture of the third step, and ultrasonically again for 10 minutes to uniformly disperse the nanoparticles. It was then incubated at 80 ° C for 24 h to completely remove the ethanol solution. At this time, a dispersion of ITO nanoparticles in a mixed system was obtained.
  • the dispersion of the above ITO nanoparticles in a mixed system was applied to two plastic films coated with an indium tin oxide (ITO) transparent conductive film, and rolled to form a film.
  • the film was irradiated with ultraviolet light having a wavelength of 365 nm at room temperature, the ultraviolet light intensity was 0.5 mw/cm 2 , and the illumination time was 90 s. Then, the film was fabricated into an upper electrode, a voltage of 50.0 Hz, 170 v was applied, and 365 nm was continuously used.
  • the ultraviolet light was irradiated, the ultraviolet light intensity was 1.5 mW/cm 2 , and the irradiation time was 10 min, that is, the intelligent temperature-controlled dimming film having the function of shielding near-infrared light of Example 2 was obtained.
  • the temperature-dependent ultraviolet-visible-near-infrared spectrophotometer was used to test the light transmittance of the film at room temperature and 40 ° C as a function of wavelength, as shown in Figure 4.
  • the test wavelength range is from 400 nm to 3000 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种具有屏蔽近红外光功能的温控调光膜,包括高分子网络骨架和液晶分子,高分子网络骨架由聚合物分散液晶网络结构与聚合物稳定液晶网络结构组成,高分子网络骨架包括含有网孔的的高分子基体,网孔内部有垂直排列的高分子网络;液晶分子分散在高分子网络骨架内部,且具有近晶相(SmA)~胆甾相(N*)的转变;骨架和液晶分子之间分散有纳米粒子,纳米粒子在800-3000nm具有吸收。采用分步聚合的方法,在两片基板之间构建了PD&SLC的网络结构,极大的提升了两片基板之间的粘结强度,并极大的提高了温控液晶调光膜的隔热性能。

Description

一种具有屏蔽近红外光功能的温控调光膜及其制备方法
相关申请
本发明涉及并通过引证包含了2016年12月16日提交的、主题为“一种具有屏蔽近红外光功能的温控调光膜及其制备方法”的中国专利申请CN201611165277.5,并且要求享有上述中国专利申请的优先权。
技术领域
本发明属于功能性液晶材料技术应用领域,具体涉及一种具有屏蔽近红外光功能的温控调光膜及其制备方法。
背景技术
能源是国民经济的基础产业,对经济持续稳定发展和人民生活质量的改善具有十分重要的保障作用。进入二十一世纪以来,经济社会飞速发展,科技创新日新月异,全球人口和经济规模不断增长,能源作为最基本的驱动力得到了更加广泛的使用。随着全球不可再生能源资源日益枯竭预期的强化,能源供需矛盾突现。众所周知,工业能耗、交通能耗和建筑能耗是国际能源消耗的三大主要组成,尤其是建筑耗能随着建筑总量的不断增加和居住舒适度的提升,呈现急剧上升趋势。大量研究表明:由窗户直接进入室内的太阳光辐射热量是夏季室内过热的主要原因,高层楼房约29%的能量来自于太阳光的辐射能,在气候炎热地区,这一数字可接近40%。
智能与可控遮阳膜是建筑节能材料领域的重要发展方向。其中,智能温控液晶调光膜具有根据外界温度的变化,自动调节其光透过率的特性,即在天气较冷时,薄膜呈透明态,不影响室内采光和采暖;在天气较热时,薄膜自动变成光散射状态,可以屏蔽掉大部分可见光的辐射能,并避免室内人员的眼睛收到强烈太阳光的刺激。同时,薄膜内部较高的聚合物含量使得薄膜具有良好的粘结强度,便于进行大面积规模化加工。因此,智能温控液晶调光膜在建筑节能领域具有良好的应用前景。
在太阳光的辐射能中,可见光大约占据了47%的能量,而近红外光占据了近50%的能量,因此,为了进一步提升智能温控液晶调光膜隔热性能,就必须提高薄膜对于近红外光的吸收能力。
发明内容
本发明的一个目的在于提供一种具有屏蔽近红外光功能的温控调光膜,该温控调光膜在低温时具备较好的透过率和近红外光屏蔽效果,并且在高温时薄膜自动变为光散射的状态,并同时屏蔽掉90%的近红外光。
本发明的另外一个目的在于提供上述温控调光膜的制备方法。
本发明提供的具有屏蔽近红外光功能的温控调光膜,所述液晶调光膜包括高分子网 络骨架和液晶分子,所述高分子网络骨架由聚合物分散液晶网络结构与聚合物稳定液晶网络结构组成,所述高分子网络骨架包括含有网孔的的高分子基体,所述网孔内部有垂直排列的高分子网络;所述液晶分子分散在高分子网络骨架内部,且具有近晶相(SmA)~胆甾相(N*)的转变;所述骨架和所述液晶分子之间分散有纳米粒子,所述纳米粒子在800-3000nm具有吸收。
作为上述技术方案的一个较好的选择,所述高分子网络骨架由可聚合单体通过分步聚合而成。
所述的分步聚合以及下文提及的紫外光分步聚合指的是将体系内的可聚合单体通过可控的方式实现聚合,其包括紫外光引发的预聚和紫外光及电场共同作用下的加电聚合,所述第一次紫外引发聚合使得体系内10%~90%的非液晶性可聚合单体和0.1%~90%的液晶性可聚合单体实现聚合,从而形成具有一定粘度的基底和具有网孔的初步的高分子基体,之后再通过紫外光和电场的共同作用下使网孔内聚合形成具有明显垂直取向的高分子网络。依据用途(如刚性和柔性以及产品特性的要求),可以控制第一次紫外引发聚合的聚合度来实现对于分步聚合的控制。控制的方式可以选择延长或者缩短紫外光照的时间,如选择第一次外光照时间在10-600s之内,为了得到具有不同初次聚合程度的产品,可以选择的第一次紫外光照时间可以是10-30s,30-60s,60-120s,100-200s,200-400s,400-600s不等。控制第一次紫外光照时间可以得到非液晶性可聚合单体聚合程度(单体反应比例)为10-20%,20-30%,30-50%,50-60%,60-70%,70-90%以及液晶性可聚合单体聚合程度(单体反应比例)为0.1-10%,10-20%,20-40%,40-60%,60-70%,70-90%的初次聚合产物。在本发明的实施例内使用了控制紫外光照时间的方式来控制分步聚合,但是本领域技术人员应当知晓,其他可以控制聚合进度的方法也可以应用于本发明的实施。
作为上述技术方案的一个较好的选择,所述高分子基体的网孔尺寸大小为1um~100um。所述基体的网孔孔径可以根据需要进行控制,作为基础常识在控制了孔径后,依照本发明方法制备得到的垂直取向的高分子网络也会进行改变。对于所述的网孔大小,可以选择不同的范围值,如1-10,10-20,20-40,40-60,60-80,80-100微米不等,受制于网孔直径,相应的垂直取向的高分子网络尺寸也会相应变为更小的尺寸。
作为上述技术方案的一个较好的选择,所述制备调光温控膜的原料中液晶材料、可聚合单体、纳米粒子按照重量比分比为:
液晶材料:          10.0~90.0重量份;
可聚合单体:        10.0~80.0重量份;
纳米粒子:          1.0~30.0重量份。
作为上述技术方案的一个较好的选择,所述液晶材料为具有SmA~N*相转变的液晶材料,其相变温度在-10℃以上。
作为上述技术方案的一个较好的选择,所述液晶材料包括具有近晶相的液晶材料、 具有向列相的液晶材料和手性化合物中的一种或多种,所述液晶材料中的液晶单体包括但不仅限于下面分子中的一种或几种:
Figure PCTCN2017090825-appb-000001
其中,M,N是含有1~16个碳原子的烷基,或1~16个碳原子的烷氧基,或1~16个原子的硅氧烷基,或氰基,或酯基,或卤素,或异硫氰基,或硝基,A、B为芳香族环(如1,4-苯环、2-5-嘧啶环、1,2,6-萘环),或脂环烷(如反-1,4-环己烷),其中,A、B可含有侧基,为卤素,或氰基,或甲基,其中x,y分别为0~4,其中,Z为酯基,或炔基,或烷烃基,或直接相连,或氮氮双键,或醚键。
所述的向列相液晶材料还可选择市场在售液晶材料,如永生华清液晶材料有限公司的SLC-1717、SLC-7011、TEB30A等,德国默克液晶材料公司的E7、E44、E48、ZLI-1275等,但不仅限于这些材料。
所述的手性化合物包括但不仅限于下面分子中的一种或几种,如胆甾醇壬酸酯、CB15、C15、S811、R811、S1011、R1011等.
作为上述技术方案的一个较好的选择,所述纳米粒子包括氧化铟锡(ITO)、氧化锡锑(ATO)、三氧化钨(WO3)、三氧化钼(MoO3)、钨青铜(碱金属掺杂的WO3)、或具有氧缺陷的硫化铜(CuS)中的一种或几种。
作为上述技术方案的进一步优选,所述液晶材料包括如下的液晶组合物,所述液晶组合物包括第一组分,其还包括第二组份、第三组份、第四组份、第五组份中的一种或多种;所述第一组份为下列组A或组B中任意一组液晶化合物中的一种或几种,或包括组A中一种或几种与组B中一种或几种组成的混合物;组A为式(1-a)所示的液晶化合物,组B为式(1-b)所示的液晶化合物,式中Ra是含有8~12个碳原子的烷基,Rb是含有8~10个碳原子的烷基;
Figure PCTCN2017090825-appb-000002
所述第二组份为包括组C和组D中任意一组液晶化合物中的一种或几种,或为组C中一种或几种与组D中一种或几种组成的混合物;其中,Rc是含有6~7个碳原子的烷基,Rd是含有5~7个碳原子的烷基;组C为式(2-c)所示的液晶化合物,组D为式(2-d)所示的液晶化合物;
Figure PCTCN2017090825-appb-000003
Figure PCTCN2017090825-appb-000004
所述第三组份具有如式(3)所组成的液晶化合物;其中,R3是含有5~7个碳原子的烷基;
Figure PCTCN2017090825-appb-000005
所述第四组份为下列组E、组F和组G中任意一组液晶化合物中的一种或几种,或包括组E中一种或几种、组F中一种或几种、组G中一种或几种组成的混合物;其中,R4是含有5~7个碳原子的烷基;组E为式(4-e)所示的液晶化合物,组F为式(4-f)所示的液晶化合物,组G为式(4-g)所示的液晶化合物;
Figure PCTCN2017090825-appb-000006
所述第五组份为具有相同手性构型的手性化合物。
作为上述技术方案的进一步优选,所述液晶组合物包括第一组份15%~40%,第二组份35%~60%,第三组份1%~10%,第四组分5%~25%,第五组份1%~20%。
作为上述技术方案的进一步优选,所述的液晶组合物包括如式(1-a)、式(1-b)、式(2-c)、式(2-d)、式(3)、式(4-e)、式(4-f)、式(4-g)所示的化合物和第五组份。
作为上述技术方案的进一步优选,式(1-a)所示液晶化合物质量分数为15%~40%,式(1-b)所示液晶化合物质量分数为0%~8%,式(2-c)所示液晶化合物质量分数为16%~45%,式(2-d)所示液晶化合物质量分数为15%~28%,式(3)所示液晶化合物质量分数为1%~10%,式(4-e)所示液晶化合物质量分数为5%~25%,式(4-f)所示液晶化合物质量分数为0%~6%,式(4-g)所示液晶化合物质量分数为0%~5%,第五组份的质量分数为1%~20%。
作为上述技术方案的一个较好的选择,本发明所使用的聚合单体为紫外光可聚合单体,包括非液晶性紫外光可聚合单体和液晶性紫外光可聚合单体。其中非液晶性紫外光可聚合单体可选择但不仅限于下面中的一种或几种,如不饱和聚酯、环氧丙烯酸酯、聚氨酯丙烯酸酯、聚酯丙烯酸酯、环氧丙烯酸酯、多烯硫醇体系、聚醚丙烯酸酯、水性丙烯酸酯、乙烯基醚类等。液晶性紫外光可聚合单体亦可选择但不限于下面分子中的一种或几种,如
Figure PCTCN2017090825-appb-000007
其中,m、n为4~8,x、y为1~2,E、Q为丙烯酸酯,或环氧丙烯酸酯,或聚氨酯丙烯酸酯,或环氧,或多烯硫醇。
作为上述技术方案的一个较好的选择,所述纳米粒子表面接枝有表面活性剂。
作为上述技术方案的一个较好的选择,所述温控调光膜在低于液晶的相变温度时,可屏蔽80%以上的近红外光,且在可见光波段的透过率高于75%;而在高于液晶的相变温度时,在可见光和近红外光波段的光透过率低于10%。
本发明还提供了一种温控调光膜的制备方法,包括:
将液晶材料、可聚合单体、引发剂、间隔粒子混合以得到均匀的混合物,并将其加至含有纳米粒子的溶液内,混合均匀后去除溶剂,后将得到的液体转移至导电薄膜之间,并使体系中非液晶性可聚合单体和液晶性可聚合单体发生不完全聚合反应,后对导电薄膜施加电场,使剩余的可聚合单体聚合,得到温控调光膜。
作为上述技术方案的一个较好的选择,部分非液晶性光可聚合单体与小部分液晶性光可聚合单体发生聚合反应为紫外光引发聚合。
作为上述技术方案的一个较好的选择,本发明通过微乳液法、反相微乳液法或表面活性剂法将表面活性剂接枝在纳米粒子表面。
在本发明的实施例内,通过如下的典型方法来制备温控调光膜:
1.选择具有合适温域及相变温度的液晶材料。
2.将纳米粒子放入一定量的丙酮或乙醇等溶剂中(约每4mg纳米粒子需1mL溶剂),进行超声分散,使其在溶剂中充分分散,超声时间约为30分钟。
3.将步骤1所述的液晶、可聚合单体、间隔粒子、促进剂/引发剂混合均匀后,将步骤2中所述的纳米粒子的分散液按照一定的比例加入到混合体系中,通过加热或蒸馏等方式除去纳米粒子的溶剂,得到纳米粒子在混合体系中的分散液。
4.将步骤3中得到的纳米粒子在混合体系中的分散液至于两片导电薄膜之间,挤压成膜。首先使体系中的可聚合单体发生部分聚合,随后在对薄膜施加电场的情况下,使得剩余的可聚合单体聚合完全,制备具有屏蔽近红外光功能的温控调光膜。
纳米粒子在使用之前,首先需使纳米粒子在溶剂中进行充分的分散。当纳米粒子的掺杂量小于5.0%时,只需利用超声的方法使纳米粒子进行分散。若需获得更加良好的分散效果,纳米粒子在使用之前,则需通过表面化学键合或物理包覆上一层有机(或无 机)化合物的方法来进行表面修饰,以减少纳米粒子的团聚,提高其在液晶/聚合单体体系中的分散性。具体的表面改性方法包括微乳液法、反相微乳液法、微胶囊法、偶联剂法、表面活性剂法、配体交换法等。本发明中所使用的纳米粒子经过表面改性之后,在混合体系中的含量达到30%时依然具有良好的分散性。
本发明利用分步紫外光聚合的方法,在薄膜内部构建了聚合物分散液晶(PDLC)与聚合物稳定液晶(PSLC)相结合的聚合物分散&稳定液晶体系(PD&SLC),极大的提高了两片薄膜之间的粘结强度,实现了温控调光膜的薄膜化。同时,将在800nm~3000nm的近红外波段具有强烈屏蔽作用的纳米粒子经过表面修饰后,按照一定的比例掺杂在温控液晶调光膜中,极大的提高了薄膜在近红外光波段的屏蔽性能。所制备的薄膜在温度低于液晶的相变温度时,屏蔽掉80%以上的近红外光,同时大部分可见光可以透过;而在温度高于液晶的相变温度时,红外光屏蔽率可达90%以上,同时大部分可见光以散射光的形式透过,在保证可见光具有良好的透过率的情况下,可避免室内人员的眼睛受强烈阳光的刺激。此外,通过选择合适的表面改性剂,纳米粒子在液晶/聚合物复合材料中具有良好的分散性,薄膜在低温状态时,可见光的透过率可超过75%,即在薄膜呈现透明状态时,所掺杂的纳米粒子不会影响可见光的透过。
附图说明
图1是实施例1中所使用的纳米粒子的近红外光吸收光谱;、
图2是实施例1中所制备薄膜的透过率随温度变化曲线;
图3是实施例1中所制备的薄膜的可见-近红外光谱;
图4是实施例2中所制备的纳米粒子的近红外光吸收光谱;
图5是实施例2中所制备薄膜的透过率随温度变化曲线
图6是实施例2中所制备的薄膜的可见-近红外光光谱;
图7是实施例2中所制备的薄膜的截面的扫描电镜照片。
具体实施方式
如下为本发明的实施例,其仅用做对本发明的解释而并非限制。
如下实施例内,初次聚合程度可以通过其他方法来进行控制,聚合程度的差异会导致产品的性能不同,从而可以制备出不同用途的产品。
在如下的实施例内,选择的具有近晶相(SmA)到胆甾相(N*)转变的液晶材料(LC),为转变温度可调液晶材料,相转变温度为SmA-35℃-N*-80℃-I,即当外界温度低于35℃时,薄膜呈透明态;膜高于35℃时呈光散射态,市售的各种满足前述要求的材料均可以适用于本发明,本领域技术人员也可以选用发明内容部分所选用的化合物或其组合。凡未经指明,下面实施例均在室温25℃环境进行反应。实施例1、2中所用到的可聚合单体、引发剂的名称及结构式见图1和图2。可聚合单体中各组分的比例见表1。
表1实施例1、2中所使用的聚合单体各组分的配比
名称 比例/%
HPMA 45.6
LMA 30.4
Bis-EMA15 11.4
PEGDA600 7.6
C6M 5.0
其中,HMPA(Hydroxypropyl methacrylate)结构为
Figure PCTCN2017090825-appb-000008
LMA(Lauryl methacrylate)为
Figure PCTCN2017090825-appb-000009
PEDGA600(Polyethylene glycol diacrylate)为
Figure PCTCN2017090825-appb-000010
Bis-EMA15(Bisphenol a ethoxylate dimethacrylate)为
Figure PCTCN2017090825-appb-000011
C6M(2-methyl-l,4-phenylene-bis(4-((6-acryloyloxy)hexyl)oxy)benzoate)为
Figure PCTCN2017090825-appb-000012
所使用的引发剂C61(2,2-dimethoxy-1,2-diphenylethan-1-one)为
Figure PCTCN2017090825-appb-000013
实施例1
本实施例中所使用的纳米粒子为ITO纳米粒子,购买自上海沪正纳米科技有限公司。其在近红外光波段的吸收光谱见图1。本领域技术人员也可以选用现有技术中已经报道的其他纳米粒子来用于本发明,如CN105219091A公开了一种硫化铜纳米粒子,又如CN103724854B公开的红外吸收材料,其都可以应用于本发明薄膜的制备。
步骤一:
取1.0g上述ITO纳米粒子加入到一定量的乙醇溶剂中,超声10min。随后将0.05g表面活性剂3-(甲基丙烯酰氧)丙基三甲氧基硅烷,简称KH570加入到ITO纳米粒子在乙醇的分散液中。将分散液升温至60℃后,逐滴加入0.075g质量分数20.0%的氨水,同时不断搅拌。反应时间为12小时。随后将改性后的纳米离子通过离心分离出来,并再次加入至250.0mL乙醇溶液中,超声分散30min后,待用。
步骤二:
所选用的液晶、可聚合单体、引发剂、间隔粒子的名称、配比如表2所列。将表2中的各组分按照配比进行混配,并在室温下搅拌形成各向同性液体,混合均匀。混合物总质量为19g。
表2.实施例1中所使用的各材料的配比
名称 比例/%
液晶材料 63.2
可聚合单体 35.8
引发剂 0.5
20微米间隔粒子 0.5
步骤三:
将步骤一中得到的纳米粒子的分散液加入至步骤二的混合物中,并再次超声10min,使纳米粒子分散均匀。随后在80℃下保温24h,以完全除去乙醇溶液。此时得到ITO纳米粒子在混合体系中的分散液。
步骤四:
将上述ITO纳米粒子在混合体系中的分散液涂覆于两片镀有氧化铟锡(ITO)透明导电膜的塑料薄膜中间,用辊压匀形成薄膜。将此薄膜在室温下由波长为365nm的紫外光进行辐照,紫外光强为0.5mw/cm2,光照时间为90s,随后将薄膜制作上电极,施加50.0Hz,170v电压,并继续利用365nm的紫外光进行辐照,紫温控调光膜。利用变温紫外-可见-近红外分光光度计分别测试薄膜室温时和40℃时光透过外光强为1.5mw/cm2,辐照时间为10min,即得到实施例1的具有屏蔽近红外光功能的智能率随波长变化的曲线,如图2所示。测试波长范围为400nm~3000nm。
实施例2
步骤一:
ITO纳米粒子的合成:用圆底烧瓶称量300mg乙酰丙酮铟与30mg乙酰丙酮氯化锡,并加入17mL十八碳烯溶剂,后搅拌均匀。随后在惰性气体保护的情况下,加热至250℃, 保温30min,随后加入1mL油酸,并将溶液立即加热至270℃,保温1h。随后加入3mL油胺,并将溶液立即升温290℃,保温1h。反应结束后,待溶液温度降至室温,加入30mL异丙醇,使纳米粒子凝絮。通过离心将纳米粒子分离出来后,即可将所制得的油胺油酸包覆的ITO纳米粒子重新分散在20.0mL环己烷溶剂中。
步骤二
ITO纳米粒子的表面修饰:由于ITO纳米粒子具有良好的导电性,当其加入量过多时,在对薄膜施加电压时容易烧蚀电极,因此,本实施例中对ITO纳米粒子包覆一层二氧化硅,在不影响ITO纳米粒子的近红外吸收特性的情况下,使纳米粒子彼此绝缘,以避免在加电过程中烧蚀电极。具体过程如下:将2,3-壬基酚聚醚加入至步骤一得到的20mL环己烷溶剂中,以构建反相微乳液体系。随后,加入0.2mL正硅酸乙酯,并在室温下搅拌15min,然后逐滴加入0.3mL质量分数为20%的氨水并不断搅拌,室温下反应24h。随后加入0.2mL的KH570,继续在室温下搅拌12h。即制得经过KH570修饰的ITO-SiO2纳米粒子。通过离心将纳米粒子分离出来后,将其重新分散在20mL乙醇溶液中,待用。该纳米粒子的近红外波段的吸收光谱如图5所示。
步骤三:
所选用的液晶、可聚合单体、引发剂、间隔粒子的名称、配比如表3所列。将表3中的各组分按照配比进行混配,并在室温下搅拌形成各向同性液体,混合均匀。混合物总质量为900mg。
表3.实施例2中所使用的各材料的配比
名称 比例/%
液晶材料 61.10
可聚合单体 37.80
引发剂 0.55
20um间隔粒子 0.55
步骤四:
将步骤二中得到的纳米粒子的分散液加入至步骤三的混合物中,并再次超声10min,使纳米粒子分散均匀。随后在80℃下保温24h,以完全除去乙醇溶液。此时得到ITO纳米粒子在混合体系中的分散液。
步骤五:
将上述ITO纳米粒子在混合体系中的分散液涂覆于两片镀有氧化铟锡(ITO)透明导电膜的塑料薄膜中间,用辊压匀形成薄膜。将此薄膜在室温下由波长为365nm的紫外光进行辐照,紫外光强为0.5mw/cm2,光照时间为90s,随后将薄膜制作上电极,施加 50.0Hz,170v电压,并继续利用365nm的紫外光进行辐照,紫外光强为1.5mw/cm2,辐照时间为10min,即得到实施例2的具有屏蔽近红外光功能的智能温控调光膜。利用变温紫外-可见-近红外分光光度计分别测试薄膜室温时和40℃时光透过率随波长变化的曲线,如图4所示。测试波长范围为400nm~3000nm。利用扫描电镜观察薄膜截面的网络形貌,可以清晰的看到在多孔的PDLC网络结构内部形成了垂直取向的高分子网络结构(如图5所示)。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种具有屏蔽近红外光功能的温控调光膜,其特征在于,所述液晶调光膜包括高分子网络骨架和液晶分子,所述高分子网络骨架由聚合物分散液晶网络结构与聚合物稳定液晶网络结构组成,所述高分子网络骨架包括含有网孔的的高分子基体,所述网孔内部有垂直排列的高分子网络;所述液晶分子分散在高分子网络骨架内部,且具有近晶相~胆甾相的转变;所述骨架和所述液晶分子之间分散有纳米粒子,所述纳米粒子在800-3000nm具有吸收。
  2. 根据权利要求1所述的温控调光膜,其特征在于,所述高分子网络骨架由可聚合单体通过分步聚合而成。
  3. 根据权利要求1所述的温控调光膜,其特征在于,所述制备调光温控膜的原料中液晶材料、可聚合单体、纳米粒子按照重量比分比为:
    液晶材料:                              10.0~90.0重量份;
    可聚合单体:                            10.0~80.0重量份;
    纳米粒子:                              1.0~30.0重量份。
  4. 根据权利要求1所述的温控调光膜,其特征在于:所述纳米粒子包括氧化铟锡、氧化锡锑、三氧化钨、三氧化钼、钨青铜或具有氧缺陷的硫化铜中的一种或几种。
  5. 根据权利要求1所述的温控调光膜,其特征在于:所述液晶材料为具有SmA~N*相转变的液晶材料,其相变温度在-10℃以上。
  6. 根据权利要求3所述的温控调光膜,其特征在于,所述可聚合单体为紫外光可聚合单体,包括非液晶性紫外光可聚合单体和液晶性紫外光可聚合单体。
  7. 根据权利要求1所述的温控调光膜,其特征在于:所述纳米粒子表面接枝有表面活性剂。
  8. 根据权利要求1所述的温控调光膜,其特征在于,所述温控调光膜在低于液晶的相变温度时,可屏蔽80%以上的近红外光,且在可见光波段的透过率高于75%;而在高于液晶的相变温度时,在可见光和近红外光波段的光透过率低于10%。
  9. 权利要求1-8任一所述的温控调光膜的制备方法,包括:
    将液晶材料、可聚合单体、引发剂、间隔粒子混合以得到均匀的混合物,并将其加至含有纳米粒子的溶液内,混合均匀后去除溶剂,后将得到的液体转移至导电薄膜之间,并使体系中非液晶性可聚合单体和的液晶性可聚合单体发生不完全聚合反应,后对导电薄膜施加电场,使剩余的可聚合单体聚合,得到温控调光膜。
  10. 根据权利要求9所述的温控调光膜,其特征在于,通过微乳液法、反相微乳液法或表面活性剂法将表面活性剂接枝在纳米粒子表面。
PCT/CN2017/090825 2016-12-16 2017-06-29 一种具有屏蔽近红外光功能的温控调光膜及其制备方法 WO2018107724A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/466,457 US10725328B2 (en) 2016-12-16 2017-06-29 Temperature-controlled dimming film with a function of shielding near-infrared light and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611165277.5A CN106773234B (zh) 2016-12-16 2016-12-16 一种具有屏蔽近红外光功能的温控调光膜及其制备方法
CN2016111652775 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018107724A1 true WO2018107724A1 (zh) 2018-06-21

Family

ID=58891659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090825 WO2018107724A1 (zh) 2016-12-16 2017-06-29 一种具有屏蔽近红外光功能的温控调光膜及其制备方法

Country Status (3)

Country Link
US (1) US10725328B2 (zh)
CN (1) CN106773234B (zh)
WO (1) WO2018107724A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773234B (zh) * 2016-12-16 2019-10-29 北京大学 一种具有屏蔽近红外光功能的温控调光膜及其制备方法
CN109324433B (zh) * 2017-08-01 2020-12-29 北京大学 一种掺杂纳米粒子的聚合物分散液晶薄膜及其制备方法
CN109752893B (zh) * 2017-11-03 2021-02-02 北京大学 一种对可见光和近红外光透过率分段调控的温控调光膜及其制备方法
CN110007499B (zh) * 2018-01-05 2021-09-28 北京大学 一种具有多响应性的多功能液晶调光膜、透光件及其制备方法
CN110092875B (zh) * 2018-01-29 2021-11-23 苏州英荟虹彩薄膜材料科技有限公司 一种基于液晶/高分子复合材料体系的pdlc膜的制备方法
CN108676565B (zh) * 2018-03-19 2021-09-10 北京八亿时空液晶科技股份有限公司 一种液晶材料及其应用
TWI804675B (zh) * 2018-09-03 2023-06-11 日本國立研究開發法人產業技術總合研究所 液晶組成物、溫度響應性調光元件及膜
CN109991781B (zh) * 2019-04-30 2022-02-01 京东方科技集团股份有限公司 液晶盒及其制备方法和具备液晶盒的控温装置及方法
CN110256811B (zh) * 2019-05-15 2020-09-01 北京大学 一种热-紫外分步聚合制备液晶调光膜的方法
CN110256810B (zh) * 2019-05-15 2020-09-01 北京大学 一种低驱动电压的电控液晶调光膜
CN110283602B (zh) * 2019-07-23 2021-10-26 哈尔滨工业大学 一种聚合物分散液晶的应用
CN110376783B (zh) * 2019-08-01 2021-08-13 北京大学 一种聚合物分散液晶薄膜的制备方法
CN110850620A (zh) * 2019-11-19 2020-02-28 北京大学 一种制备低电压驱动复合薄膜的方法
CN111533849B (zh) * 2020-04-23 2021-03-19 中新国际联合研究院 一种热致型调光材料及智能调光透明板
CN111505878A (zh) * 2020-05-25 2020-08-07 珠海兴业新材料科技有限公司 热转变液晶基薄膜、其制备方法及智能窗户
US12066706B2 (en) * 2022-06-20 2024-08-20 Peking University Liquid crystal/polymer composite electrically controlled dimming films and preparation methods thereof
CN116736565B (zh) * 2023-06-19 2024-07-12 珠海水发兴业新材料科技有限公司 一种遮光型隔热双控调光薄膜及其制备方法
CN118063671A (zh) * 2024-04-19 2024-05-24 北京大学 液晶/高分子复合材料及其制备方法、包含其的调光膜和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460238A (zh) * 2009-04-10 2012-05-16 雷文布里克有限责任公司 结合有宾主型结构的热切换滤光器
CN104011584A (zh) * 2011-12-27 2014-08-27 默克专利股份有限公司 依赖温度调节通过透光区域的能量流通的装置
US20140320776A1 (en) * 2011-11-30 2014-10-30 Alphamicron Incorporated Adaptive liquid crystal structural interface
CN105295311A (zh) * 2014-06-11 2016-02-03 亿高应用材料有限公司 近红外光屏蔽膜、近红外光屏蔽膜的制造方法及近红外光屏蔽组合物
CN105334677A (zh) * 2015-11-12 2016-02-17 友达光电股份有限公司 一种液晶显示装置
CN105572946A (zh) * 2016-03-14 2016-05-11 京东方科技集团股份有限公司 一种耐低温显示装置
CN106773234A (zh) * 2016-12-16 2017-05-31 北京大学 一种具有屏蔽近红外光功能的温控调光膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2737041C (en) * 2008-08-20 2013-10-15 Ravenbrick, Llc Methods for fabricating thermochromic filters
WO2011062708A2 (en) * 2009-11-17 2011-05-26 Ravenbrick Llc Thermally switched optical filter incorporating a refractive optical structure
EP2586833A4 (en) * 2010-06-25 2015-09-09 Tokyo Inst Tech THERMOCHROMIC RESIN COMPOSITION, METHOD FOR ADJUSTING THE TROUBLE POINT OF A THERMOCHROMIC RESIN COMPOSITION, AND DIMMER
JP2019534344A (ja) * 2016-09-07 2019-11-28 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングMerck Patent GmbH 液晶媒体および光変調素子
CN106773239A (zh) 2016-11-28 2017-05-31 深圳市华星光电技术有限公司 显示面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460238A (zh) * 2009-04-10 2012-05-16 雷文布里克有限责任公司 结合有宾主型结构的热切换滤光器
US20140320776A1 (en) * 2011-11-30 2014-10-30 Alphamicron Incorporated Adaptive liquid crystal structural interface
CN104011584A (zh) * 2011-12-27 2014-08-27 默克专利股份有限公司 依赖温度调节通过透光区域的能量流通的装置
CN105295311A (zh) * 2014-06-11 2016-02-03 亿高应用材料有限公司 近红外光屏蔽膜、近红外光屏蔽膜的制造方法及近红外光屏蔽组合物
CN105334677A (zh) * 2015-11-12 2016-02-17 友达光电股份有限公司 一种液晶显示装置
CN105572946A (zh) * 2016-03-14 2016-05-11 京东方科技集团股份有限公司 一种耐低温显示装置
CN106773234A (zh) * 2016-12-16 2017-05-31 北京大学 一种具有屏蔽近红外光功能的温控调光膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANG XIAO: "A temperature and electric field-responsive flexible smart film with full broadband optical modulation", MATERIALS HORIZONS, vol. 4, no. 5, 21 June 2017 (2017-06-21), pages 878 - 884, XP055605851 *
SUN JIAN: "Preparation and thermo-optical characteristics of a smart po- lymer-stabilized liquid crystal thin film based on smectic A - chiral nematic phase transition", SMART MATERIALS AND STRUCTURES, vol. 23, no. 12, 12 November 2014 (2014-11-12), pages 125038, XP020274419, DOI: doi:10.1088/0964-1726/23/12/125038 *

Also Published As

Publication number Publication date
CN106773234B (zh) 2019-10-29
US10725328B2 (en) 2020-07-28
CN106773234A (zh) 2017-05-31
US20190310499A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018107724A1 (zh) 一种具有屏蔽近红外光功能的温控调光膜及其制备方法
CN108957825B (zh) 一种可调节近红外光透过率的反式电控调光膜及其制备方法
CN106526945B (zh) 一种兼具温控和电控功能的液晶调光膜及其制备方法
Zhang et al. Energy-saving smart windows with HPC/PAA hybrid hydrogels as thermochromic materials
CN106699960B (zh) 一种温控调光膜及其分步聚合制备方法
CN108663866B (zh) 一种包含宾主液晶组合物的调光装置
Shen et al. Recent progress in liquid crystal‐based smart windows: materials, structures, and design
CN106405916A (zh) 一种柔性反式液晶调光膜及其制备方法
CN105676489B (zh) 一种基于电响应的红外反射器件
CN109752893B (zh) 一种对可见光和近红外光透过率分段调控的温控调光膜及其制备方法
CN107429164A (zh) 包含金属‑有机液晶基元的双稳态液晶分散体装置及其应用
WO2014154011A1 (zh) 蓝相液晶复合材料和含该材料的液晶显示器
CN111592822B (zh) 一种快速响应热致型调光材料及快速响应智能调光薄膜
CN104178180A (zh) 一种具有大双折射率的向列相液晶材料及其应用
CN109752879A (zh) 一种可屏蔽近红外光的电控调光膜及其制备方法
EP4296765A1 (en) Liquid crystal/polymer composite electrically controlled dimming films and preparation method thereof
CN105906762A (zh) 一种低电压驱动含硫醇聚合物分散液晶薄膜材料及其制备方法
CN106896541A (zh) 一种热致变色薄膜及其制备方法
JP2016534176A (ja) 液晶ポリマー組成物、それを製造するための方法およびそれを含む液晶物品
Sang et al. Smart windows with a VO2 thin film as a conductive layer for efficient and independent dual-band modulation
CN110007499B (zh) 一种具有多响应性的多功能液晶调光膜、透光件及其制备方法
CN107015394B (zh) 具有屏蔽近红外光功能的反式电控调光膜及其制备方法
CN115433590A (zh) MXene纳米复合手性液晶光子晶体柔性膜及其制备方法和应用
Zhang et al. A novel low-voltage fast-response electrically controlled dimming film based on fluorinated PDLC for smart window applications
CN111983844A (zh) 一种基于液晶物理凝胶的聚合物分散液晶薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881327

Country of ref document: EP

Kind code of ref document: A1