WO2018107654A1 - 显示面板和显示面板的制程 - Google Patents

显示面板和显示面板的制程 Download PDF

Info

Publication number
WO2018107654A1
WO2018107654A1 PCT/CN2017/084121 CN2017084121W WO2018107654A1 WO 2018107654 A1 WO2018107654 A1 WO 2018107654A1 CN 2017084121 W CN2017084121 W CN 2017084121W WO 2018107654 A1 WO2018107654 A1 WO 2018107654A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
substrate
block
photoresist
Prior art date
Application number
PCT/CN2017/084121
Other languages
English (en)
French (fr)
Inventor
简重光
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US15/744,796 priority Critical patent/US10732450B2/en
Publication of WO2018107654A1 publication Critical patent/WO2018107654A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present application relates to the field of display technologies, and more particularly to a process for displaying a display panel and a display panel.
  • the liquid crystal display has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • Most of the liquid crystal displays on the market are backlight type liquid crystal displays, which include a liquid crystal panel and a backlight module.
  • the working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates, and apply a driving voltage on the two glass substrates to control the rotation direction of the liquid crystal molecules to refract the light of the backlight module to generate a picture.
  • a thin film transistor liquid crystal display includes a liquid crystal panel including a color filter substrate (CF Substrate, also referred to as a color filter substrate) and a thin film transistor array substrate (Thin Film Transistor Substrate, TFT Substrate).
  • CF Substrate also referred to as a color filter substrate
  • TFT Substrate Thin Film Transistor Substrate
  • a transparent electrode is present on the opposite inner side of the substrate.
  • a layer of liquid crystal molecules (LC) is sandwiched between the two substrates.
  • the liquid crystal panel controls the orientation of the liquid crystal molecules by an electric field, changes the polarization state of the light, and realizes the purpose of display by the penetration and blocking of the optical path by the polarizing plate.
  • a conductive gold ball is disposed between the color film substrate and the array substrate, and a first ITO (indium tin oxide) layer is disposed on one side of the color filter substrate. And disposing a second ITO layer on one side of the array substrate.
  • the conductive ball is placed between the first ITO layer and the second ITO layer, and the first ITO layer and the second layer are formed by the conductive balls.
  • the ITO layers are connected such that the color filter substrate and the array substrate form an electrical path between each other.
  • the technical problem to be solved by the present application is to provide a display panel capable of saving a process.
  • the present application also provides a process for displaying a panel to save a process.
  • the present application discloses a display panel, the display panel comprising:
  • the first substrate is provided with a first transparent conductive layer
  • the second substrate and the first substrate are oppositely disposed, and the second substrate is provided with a second transparent conductive layer;
  • a plurality of spaced transparent conductive blocks are disposed, the transparent conductive blocks electrically connecting the first transparent conductive layer and the second transparent conductive layer; the transparent conductive
  • the block is made of the same material as at least one of the first transparent conductive layer and the second transparent conductive layer, and is integrally formed.
  • At least one of the first transparent conductive layer and the second transparent conductive layer is made of a transparent conductive photoresist.
  • the transparent conductive photoresist not only has good electrical conductivity, but also has good light transmission effect.
  • the transparent conductive photoresist of the present application can add metal particles to the transparent photoresist and achieve the effect of conduction through the metal particles.
  • the first substrate comprises a color photoresist layer
  • the first conductive layer is disposed on the color photoresist layer
  • the plurality of spaced transparent conductive blocks protrude from the first transparent conductive layer And adopting the same material as the first transparent conductive layer and integrally molding.
  • This is a specific way of setting a transparent conductive block in the present application.
  • the first transparent conductive layer and the transparent conductive block are made of the same material and integrated, the first transparent conductive layer and the transparent conductive block can be in the same process. Made in.
  • the transparent conductive block and the second transparent conductive layer cooperate to electrically connect the first transparent conductive layer and the second transparent conductive layer.
  • the first transparent conductive layer and the transparent conductive block are made in the same process by using transparent conductive photoresist.
  • the transparent conductive photoresist not only has good electrical conductivity, but also has good light transmission effect.
  • the transparent conductive photoresist of the present application can add metal particles to the transparent photoresist and achieve the effect of conduction through the metal particles.
  • the second transparent conductive layer is made of transparent conductive photoresist.
  • Transparent conductive photoresist not only The electric effect is good, and the light transmission effect is good.
  • the transparent conductive photoresist of the present application can add metal particles to the transparent photoresist and achieve the effect of conduction through the metal particles.
  • the second transparent conductive layer is also made of a transparent conductive photoresist, so that the first transparent conductive layer, the second transparent conductive layer and the transparent conductive block are all made of transparent conductive photoresist, which not only saves the process, but also saves the process. Moreover, the material is convenient and more convenient to produce.
  • the second substrate includes a pixel electrode, a data line for charging the pixel electrode, and a scan line for controlling the pixel electrode, and the pixel electrode is made of a transparent conductive photoresist.
  • the transparent conductive photoresist not only has good electrical conductivity, but also has good light transmission effect.
  • the transparent conductive photoresist of the present application can add metal particles to the transparent photoresist and achieve the effect of conduction through the metal particles.
  • the pixel electrode is also made of a transparent conductive photoresist, so that the first transparent conductive layer, the second transparent conductive layer, the transparent conductive block and the pixel electrode are all made of transparent conductive photoresist, which not only saves the process, but also saves the process. Moreover, the material is convenient and more convenient to produce.
  • the outer surface of the transparent conductive block is arranged in an arc shape, and the size of the transparent conductive block gradually increases from the top to the middle thereof, and gradually decreases from the middle position to the root thereof.
  • the transparent conductive block of the curved structure has better electrical conduction effect, and the transparent conductive block of the curved structure and the second transparent conductive layer have better connection effect when the first substrate and the second substrate are assembled.
  • the transparent conductive block comprises a first translucent conductive block and a second translucent conductive block, the first translucent conductive block and the first transparent conductive layer are integrally formed, the second translucent conductive block and the second
  • the transparent conductive layer is integrally formed, and the first transparent conductive layer, the first translucent conductive block, the second transparent conductive layer and the second translucent conductive block are all made of transparent conductive photoresist.
  • the first transparent conductive layer and the first transparent conductive block can be formed in the same process, and the second transparent conductive layer and the second can be formed in another process. Translucent conductive block.
  • the first translucent conductive block and the second translucent conductive block cooperate with each other to form a complete transparent conductive block, thereby achieving electrical communication between the first transparent conductive layer and the second transparent conductive layer. It also saves the process technology and improves production efficiency; and it is convenient to take materials and reduce production and material costs.
  • the size of the first translucent conductive block gradually decreases from the top to the root thereof, and the size of the second translucent conductive block gradually decreases from the top to the root thereof, the first translucent conductive block Top
  • the portion is adapted to the top of the second translucent conductive block. This is a specific way of setting the first translucent conductive block and the second translucent conductive block, such that the first translucent conductive block and the second translucent conductive block are better in contact with each other, and the conductive effect is better. .
  • a plurality of the transparent conductive blocks are respectively disposed on the first transparent conductive layer and the second transparent conductive layer, and the transparent conductive block on the first transparent conductive layer and the transparent conductive block on the second transparent conductive layer are spaced apart arrangement.
  • One part of the transparent conductive block and the first transparent conductive layer are integrally formed, and the other part of the transparent conductive block and the second transparent conductive layer are integrally formed.
  • a portion of the transparent conductive block and another portion of the transparent conductive block are spaced apart from each other to electrically connect the first transparent conductive layer and the second transparent conductive layer. It also saves the process technology and improves production efficiency; and it is convenient to take materials and reduce production and material costs.
  • the transparent conductive block has a cylindrical structure.
  • the transparent conductive block has a cone structure.
  • the second transparent conductive layer is made of indium tin oxide.
  • the indium tin oxide and the transparent conductive block cooperate to enable electrical communication between the indium tin oxide and the first transparent conductive layer.
  • a process such as the above display panel comprising the following steps:
  • the transparent conductive photoresist is processed into a first transparent conductive layer or a second transparent conductive layer and a transparent conductive block integrally formed with the first transparent conductive layer or the second transparent conductive layer by the same photomask process.
  • the step of laying a transparent conductive photoresist on the first substrate or the second substrate includes:
  • the step of processing the transparent conductive photoresist into the first transparent conductive layer or the second transparent conductive layer and the transparent conductive block integrally formed with the first transparent conductive layer or the second transparent conductive layer by the same photomask process includes:
  • Illuminating a reticle with the same light source, and filtering out two different wavelengths of light through the reticle to The photoinitiator is controlled such that the transparent conductive photoresist has a different amount of shrinkage to form a first transparent conductive layer and a transparent conductive block.
  • the transparent conductive photoresist not only has good electrical conductivity, but also has good light transmission effect.
  • the transparent conductive photoresist of the present application can add metal particles to the transparent photoresist and achieve the effect of conduction through the metal particles.
  • the present application is doped with a photoinitiator in a transparent conductive photoresist, and the photoinitiator is used to cooperate with a predetermined wavelength of light, and the photoinitiator and the transparent conductive photoresist are crosslinked by irradiation of a predetermined wavelength of light.
  • the reaction forms a different amount of shrinkage.
  • the degree of shrinkage is to form a first transparent conductive layer and a transparent conductive block, or to form a second transparent conductive layer and a conductive block. Therefore, in the same process, the first transparent conductive layer and the transparent conductive block can be completed, or the second transparent conductive layer and the conductive block can be completed; thus, the process technology is saved, and the material is convenient and more convenient for production.
  • the manufacturing process of the display panel is complicated, and two ITO layers are respectively disposed on opposite sides of the two substrates. After the two ITO layers are disposed, a conductive gold ball is disposed between the two ITO layers, and the conductive gold ball is disposed. Two ITO layers are connected such that the two ITO layers are electrically conductive. Compared with the prior art, the technical effects of the present application are:
  • the display panel of the present application is provided with a plurality of spaced transparent conductive blocks between the first transparent conductive layer of the first substrate and the second transparent conductive layer of the second substrate, the transparent conductive blocks electrically connecting the first transparent conductive layer and the second transparent conductive
  • the layer, the transparent conductive block and the first transparent conductive layer and the second transparent conductive layer are made of the same material and integrally formed.
  • the first transparent conductive layer and the transparent conductive block are directly formed of the same material and integrally formed; or the second transparent conductive layer is directly formed of the same material as the transparent conductive block and integrally formed; or the transparent conductive block is spaced apart at On the first transparent conductive layer and the second transparent layer, a part of the transparent conductive block and the first transparent conductive layer are made of the same material and integrally formed, and the other part of the transparent conductive block and the second transparent conductive layer are made of the same material and integrally formed. . Therefore, the first transparent conductive layer and the transparent conductive block or the second transparent conductive layer and the transparent conductive block can be simultaneously formed in the same process, and the first transparent substrate can be first transparently formed when the first substrate and the second substrate are assembled.
  • the conductive layer and the second transparent conductive layer are electrically connected.
  • the process of inserting conductive gold balls is reduced, the process of the display panel is saved, and the production efficiency is improved.
  • the conductive gold ball is high in cost, and the present invention directly forms a transparent conductive block by the same material as the first conductive layer or the second conductive layer, which is not only simple in process, but also convenient in material extraction and low in cost.
  • FIG. 1 is a schematic structural view of a first substrate according to an embodiment of the present application.
  • FIG. 2 is a schematic structural view of a second substrate according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view of a display panel according to an embodiment of the present application.
  • FIG. 4 is a schematic structural view of a first substrate according to an embodiment of the present application.
  • FIG. 5 is a schematic structural view of a second substrate according to an embodiment of the present application.
  • FIG. 6 is a schematic structural view of a display panel according to an embodiment of the present application.
  • FIG. 7 is a schematic structural view of a first substrate according to an embodiment of the present application.
  • FIG. 8 is a schematic structural view of a second substrate according to an embodiment of the present application.
  • FIG. 9 is a schematic structural view of a display panel according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a process of a display panel according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a process of a display panel according to an embodiment of the present application.
  • FIG. 12 is a process flow diagram of a display panel according to an embodiment of the present application.
  • FIG. 13 is a flow chart of a process of a display panel according to an embodiment of the present application.
  • first and second may include one or more of the features either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • the term “comprises” and its variations are intended to cover a non-exclusive inclusion.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.
  • FIG. 1 is a schematic structural view of a first substrate according to an embodiment of the present application
  • FIG. 2 is a schematic structural view of a second substrate according to an embodiment of the present application
  • FIG. FIG. 4 is a schematic structural diagram of a first substrate according to an embodiment of the present application
  • FIG. 5 is a schematic structural view of a second substrate according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first substrate according to an embodiment of the present application
  • FIG. 8 is a schematic structural view of a second substrate according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a display panel according to an embodiment of the present application. Schematic.
  • the display panel 100 includes a first substrate 110 and a second substrate 120.
  • the first substrate 110 is provided with a first transparent conductive layer 111; the second substrate 120 and the first substrate 110 are oppositely disposed, the second substrate 120 is provided with a second transparent conductive layer 121; a plurality of spaced transparent conductive blocks (first transparent conductive block 112, or second transparent conductive block) are disposed between the first transparent conductive layer 111 and the second transparent conductive layer 121 123, or the first translucent conductive block 1121 and the second translucent conductive block 1231), the transparent conductive block is electrically connected to the first transparent conductive layer 111 and the second transparent conductive layer 121; the transparent conductive block and the transparent conductive block At least one of the first transparent conductive layer 111 and the second transparent conductive layer 121 is made of the same material and integrally formed.
  • the display panel of the present application is provided with a plurality of spaced transparent conductive blocks between the first transparent conductive layer of the first substrate and the second transparent conductive layer of the second substrate, the transparent conductive blocks electrically connecting the first transparent conductive layer and the second
  • the transparent conductive layer, the transparent conductive block and at least one of the first transparent conductive layer and the second transparent conductive layer are made of the same material and integrally formed.
  • the first transparent conductive layer and the transparent conductive block are directly formed of the same material and integrally formed; or the second transparent conductive layer is directly formed of the same material as the transparent conductive block and integrally formed; or the transparent conductive block is spaced apart at On the first transparent conductive layer and the second transparent layer, a part of the transparent conductive block and the first transparent conductive layer are made of the same material and integrally formed, and the other part of the transparent conductive block and the second transparent conductive layer are made of the same material and integrally formed. . Therefore, the first transparent conductive layer and the transparent conductive block or the second transparent conductive layer and the transparent conductive block can be simultaneously formed in the same process, and the first transparent substrate can be first transparently formed when the first substrate and the second substrate are assembled.
  • the conductive layer and the second transparent conductive layer are electrically connected.
  • the process of inserting conductive gold balls is reduced, the process of the display panel is saved, and the production efficiency is improved.
  • the conductive gold ball is high in cost, and the present invention directly forms a transparent conductive block by the same material as the first conductive layer or the second conductive layer, which is not only simple in process, but also convenient in material extraction and low in cost.
  • FIG. 10 is a schematic diagram of a process of a display panel according to an embodiment of the present application.
  • At least one of the first transparent conductive layer 111 and the second transparent conductive layer 121 in the embodiment is made of a transparent conductive resist 130.
  • Transparent conductive photoresist not only has good electrical conductivity, but And the light transmission effect is good.
  • the transparent conductive photoresist of the present application can add metal particles to the transparent photoresist and achieve the effect of conduction through the metal particles.
  • the first transparent conductive layer 111, the second transparent conductive layer 121, and the transparent conductive block are made of a transparent conductive resist 130;
  • the conductive layer 111, the second transparent conductive layer 121 and the transparent conductive block are all made of transparent conductive photoresist, which not only saves the process process, but also facilitates the material and is more convenient for production.
  • the plurality of spaced transparent conductive blocks protrude from the first transparent conductive layer 111 and are made of the same material as the first transparent conductive layer 111 (the material is a transparent conductive photoresist), and One piece.
  • a plurality of transparent conductive blocks disposed on the first substrate 110 are defined as the first transparent conductive block 112 in FIGS. 1 to 3. This is a specific manner of setting a transparent conductive block in the embodiment of the present application.
  • the first transparent conductive layer and the first transparent conductive block are made of the same material, that is, the transparent conductive resist 130, and the integrated conductive film can be integrally formed.
  • the first transparent conductive layer and the first transparent conductive block are formed in the same process.
  • the first transparent conductive block and the second transparent conductive layer cooperate to electrically connect the first transparent conductive layer and the second transparent conductive layer.
  • the second transparent conductive layer can also be made of other materials, for example, the second transparent conductive layer is made of indium tin oxide, and the indium tin oxide and the first transparent conductive block 112 are matched with each other. It is also possible to achieve electrical communication between the indium tin oxide and the first transparent conductive layer 11.
  • a transparent conductive block is provided in the embodiment.
  • the transparent conductive block in this embodiment may have other manners, as follows:
  • the transparent conductive block includes a first translucent conductive block 1121 and a second translucent conductive block 1231 , and the first translucent conductive block 1121 and the first A transparent conductive layer 111 is integrally formed, the second translucent conductive block 1231 and the second transparent conductive layer 121 are integrally formed, the first transparent conductive layer, the first translucent conductive block, the second transparent conductive layer and the second
  • the translucent conductive blocks are all made of a transparent conductive photoresist 130. This is another specific manner in which the transparent conductive block is disposed in the present application.
  • the first transparent conductive layer and the first translucent conductive block can be formed in the same process, that is, the first transparent conductive can be formed in the process of the first substrate.
  • Layer and first translucent conductive And forming a second transparent conductive layer and a second translucent conductive block in another process, that is, a second transparent conductive layer and a second translucent conductive block may be formed in a process of the second substrate.
  • the first translucent conductive block and the second translucent conductive block cooperate with each other to form a complete transparent conductive block, thereby achieving electrical communication between the first transparent conductive layer and the second transparent conductive layer. It also saves the process technology and improves production efficiency; and it is convenient to take materials and reduce production and material costs.
  • the size of the first translucent conductive block 1121 gradually decreases from the top to the root thereof
  • the size of the second translucent conductive block 1231 gradually decreases from the top to the root thereof.
  • the top of the first translucent conductive block is adapted to the top of the second translucent conductive block. This is a specific way of setting the first translucent conductive block and the second translucent conductive block, such that the first translucent conductive block and the second translucent conductive block are better in contact with each other, and the conductive effect is better. .
  • a bump may be disposed on top of the first translucent conductive block, correspondingly disposed on top of the second translucent conductive block for A pit that mates with a bump.
  • the first translucent conductive block and the second translucent conductive block are respectively the same size.
  • the first translucent conductive block may be set to be large, and The two semi-transparent conductive blocks are set small; or the first translucent conductive block is set small, and the second translucent conductive block is set large.
  • the definition of the specific structure of the first translucent conductive block and the second translucent conductive block is not limited thereto.
  • a plurality of the transparent conductive blocks are respectively disposed on the first transparent conductive layer 111 and the second transparent conductive layer 121 , and the first transparent conductive layer 111 .
  • a transparent conductive block on the transparent conductive block (which is the same as the transparent conductive block in FIGS. 1 to 3, and therefore also positioned as the first transparent conductive block 112) and on the second transparent conductive layer 121
  • the transparent conductive blocks (this transparent conductive block is defined as the second transparent conductive block 123) are spaced apart. This is another specific manner of setting a transparent conductive block in the embodiment of the present application.
  • One part of the transparent conductive block (the first transparent conductive block 112) and the first transparent conductive layer 111 are integrally formed, and another part of the transparent conductive block (second The transparent conductive block 123) and the second transparent conductive layer 121 are integrally formed.
  • first substrate 110 and the second substrate 120 are assembled, one The partially transparent conductive block (the first transparent conductive block 112) and the other partially transparent conductive block (the second transparent conductive block 123) are spaced apart from each other to electrically connect the first transparent conductive layer 111 and the second transparent conductive layer 121. It also saves the process technology and improves production efficiency; and it is convenient to take materials and reduce production and material costs.
  • the specific structure of the transparent conductive block of the embodiment of the present application is limited to the curved structure, and the transparent conductive block may be disposed as a cylindrical structure, a cone structure or the like.
  • the transparent conductive block is integrally molded only with the second transparent conductive layer.
  • the specific structure and effect are the same as those in FIG. 1 to FIG. 3 .
  • FIG. 1 to FIG. 3 refer to FIG. 1 to FIG. 3 and the above, which are not detailed herein.
  • the first substrate 110 further includes a first carrier 114 and a color photoresist layer 113.
  • the color photoresist layer 113 is disposed on the first carrier 114, and the first transparent conductive layer 111 is disposed on the first substrate 110.
  • On the color photoresist layer a plurality of spaced first transparent conductive blocks 112 protrude from the first transparent conductive layer 111.
  • the second substrate 120 further includes a second carrier 122, a pixel electrode, a data line for charging the pixel electrode, and a scan line for controlling the pixel electrode, and the second transparent conductive layer 121 is disposed on the second carrier. 122.
  • the pixel electrode, the data line, and the scan line are disposed in a display area of the display panel 100.
  • the color photoresist layer of this embodiment includes, but is not limited to, an R photoresist, a G photoresist, and a B photoresist.
  • first carrier and the second carrier may be a glass plate, and the light transmission type is good, and the setting is convenient.
  • the first carrier and the second carrier of the embodiment are not limited thereto, and for example, the first carrier and the second carrier are flexible substrates.
  • the pixel electrode is made of a transparent conductive photoresist 130.
  • the pixel electrode is also made of a transparent conductive photoresist 130, so that the first transparent conductive layer 111, the second transparent conductive layer 121, the first transparent conductive block 112, and the pixel electrode are all made of a transparent conductive photoresist 130. This not only saves the process technology, but also makes it easier to take materials and further facilitate production.
  • the outer surface of the first transparent conductive block 112 is arranged in an arc shape, and the size of the transparent conductive block 112 gradually increases from the top to the middle thereof, and gradually decreases from the middle position to the root thereof.
  • the transparent conductive block of the curved structure has better electrical conduction effect.
  • the first transparent conductive block 112 of the embodiment may also be configured as other structures, such as a cylindrical structure, a cone structure, or the like.
  • the display panel of the embodiment is a liquid crystal panel, the first substrate 110 is a color film substrate, and the second substrate 120 is an array substrate. It should be noted that the display panel of this embodiment is not limited thereto.
  • FIG. 10 is a schematic diagram of a process of a display panel according to an embodiment of the present application
  • FIG. 11 is a schematic diagram of a process of manufacturing a display panel according to an embodiment of the present application
  • the process of the display panel of the embodiment includes step S101 and step S102.
  • step S101 a transparent conductive photoresist is laid on the first substrate or the second substrate.
  • Step S102 processing the transparent conductive photoresist into a first transparent conductive layer or a second transparent conductive layer by using the same photomask (for example, a Gray-tone Mask or a Half Tone Mask) process, And a transparent conductive block integrally formed with the first transparent conductive layer or the second transparent conductive layer.
  • photomask for example, a Gray-tone Mask or a Half Tone Mask
  • the display panel of the embodiment of the present application can be seen in FIG. 1 to FIG. 9.
  • the display panel includes a first substrate and a second substrate.
  • the first substrate is provided with a first transparent conductive layer
  • the second substrate is provided with a second transparent conductive layer.
  • the first substrate and the second substrate are referred to the above embodiments, and are not described herein.
  • a transparent conductive photoresist is disposed on the first substrate or the second substrate, and the transparent conductive photoresist is processed by the same photomask process, so that the transparent conductive photoresist forms the first transparent conductive layer or the second transparent conductive layer, and a transparent conductive block integrally formed with the first transparent conductive layer or the second transparent conductive layer.
  • the transparent conductive block is electrically connected to the first transparent conductive layer and the second transparent conductive layer, and the transparent conductive block is integrally formed with at least one of the first transparent conductive layer and the second transparent conductive layer.
  • the first transparent conductive layer is directly formed integrally with the transparent conductive block; or the second transparent conductive layer is directly formed integrally with the transparent conductive block; or the transparent conductive block is spaced apart on the first transparent conductive layer and the second transparent layer A part of the transparent conductive block and the first transparent conductive layer are integrally formed, and another part of the transparent conductive block and the second transparent conductive layer are integrally formed. Therefore, the first transparent conductive layer and the transparent conductive block or the second transparent conductive layer and the transparent conductive block can be simultaneously formed in the same process, and the first transparent substrate can be first transparently formed when the first substrate and the second substrate are assembled. The conductive layer and the second transparent conductive layer are electrically connected.
  • the transparent conductive block formed by the same transparent conductive photoresist as the first conductive layer or the second conductive layer is not only simple in process, but also convenient in material and low in cost.
  • the first transparent conductive layer, the second transparent conductive layer and the transparent conductive block can be formed directly through the transparent conductive photoresist, and the transparent conductive photoresist has good electrical conduction effect and good light transmission effect.
  • the transparent conductive photoresist can add metal particles in the transparent photoresist, and the conductive effect is achieved by the metal particles.
  • the step of laying a transparent conductive photoresist on the first substrate or the second substrate includes:
  • a transparent conductive photoresist is laid on the color photoresist layer.
  • the step of processing the transparent conductive photoresist into the first transparent conductive layer or the second transparent conductive layer and the transparent conductive block integrally formed with the first transparent conductive layer or the second transparent conductive layer by the same photomask process include:
  • FIG. 13 is a specific flowchart of a process for displaying a panel according to an embodiment of the present application.
  • the process in FIG. 13 includes step S201 , step S202 , step S203 , and step S204 .
  • step S201 the details are as follows:
  • Step S201 laying a color photoresist layer 113 on the first substrate 110.
  • Step S202 laying a transparent conductive photoresist 130 on the color photoresist layer 113.
  • Step S203 doping the photoinitiator 140 in the transparent conductive photoresist 130.
  • Step S204 illuminating a reticle 200 with the same light source 300, and filtering two different wavelengths of light through the reticle to control the photoinitiator so that the transparent conductive photoresist has different shrinkage amounts.
  • a photoinitiator is doped in a transparent conductive photoresist, and the photoinitiator is used to cooperate with a predetermined wavelength of light, and the photoinitiator and the transparent conductive photoresist are crosslinked by irradiation of a predetermined wavelength of light.
  • the reaction forms a different amount of shrinkage.
  • the first transparent conductive layer and the transparent conductive block can be completed in the same process, or the second transparent conductive layer and the conductive block can be completed; thus, the process technology is saved, and the material is convenient to be taken, and the production is more convenient.
  • a color photoresist layer 113 is first disposed on the first carrier 114 of the first substrate 110.
  • the color photoresist layer 113 of the present embodiment includes, but is not limited to, R light. Resistance, G photoresist and B photoresist.
  • the transparent conductive photoresist 130 is laid on the color resist layer 113, and the photoinitiator 140 is doped in the transparent conductive resist 130.
  • the transparent conductive photoresist 130 and the photoinitiator 140 are irradiated by a light source 300 and a photomask 200; specifically, the light source 300 emits a first light L1, the first light L1 is irradiated onto the photomask 200, and the photomask 200 is filtered. Two different light rays, namely a second light L2 and a third light L3, are irradiated to the transparent conductive resist 130 and the photoinitiator 140 to control the photoinitiator so that the transparent conductive resist has contraction and is formed.
  • the third light L3 is irradiated to the transparent conductive photoresist 130 and the photoinitiator 140 to control the photoinitiator such that the transparent conductive photoresist has contraction and forms the first transparent conductive layer 111.
  • the first transparent conductive layer and the first transparent conductive block are formed in the same process.
  • the second substrate 120 and the first substrate 110 are assembled, and the first transparent conductive block can electrically connect the first transparent conductive layer and the second transparent conductive layer of the second substrate.
  • the sealant 150 is encapsulated on the edges of both the first substrate and the second substrate to form a complete display panel 100.
  • the second transparent conductive layer of the embodiment is preferably made of a transparent conductive photoresist material, which is convenient for taking materials and convenient for production.
  • the second transparent conductive layer of the embodiment is not limited thereto.
  • the second transparent conductive layer may also be made of indium tin oxide.
  • FIG. 11 This is a specific way of setting a transparent conductive block in this embodiment.
  • the arrangement of the transparent conductive block is not limited thereto, for example, as shown in FIG. 11 , in FIG. 11 , the second of the second substrate 120 A transparent conductive photoresist and a photoinitiator are disposed on the carrier 122, and are also irradiated by a light source 300 and a mask 200 to form a second transparent conductive layer 121 and a second transparent conductive block 123, and the first substrate and the second substrate are assembled.
  • the second transparent conductive block 123 can electrically connect the first transparent conductive layer and the second transparent conductive layer.
  • Figure 11 differs from Figure 10 in that a transparent conductive photoresist and a photoinitiator are laid on different substrates. Or refer to FIG. 4 to FIG. 6 and FIG. 7 to FIG. 9 , which will not be described in detail herein.
  • first carrier and the second carrier may be a glass plate, and the light transmission type is good, and the setting is convenient.
  • the first carrier and the second carrier of the embodiment are not limited thereto, and for example, the first carrier and the second carrier are flexible substrates.
  • the first substrate 110 further includes a first carrier 114 and a color photoresist layer 113.
  • the color photoresist layer 113 is disposed on the first carrier 114, and the first transparent conductive layer 111 is disposed on the first substrate 110.
  • On the color photoresist layer a plurality of spaced first transparent conductive blocks 112 protrude from the first transparent conductive layer 111.
  • the second substrate 120 further includes a second carrier 122, a pixel electrode, a data line for charging the pixel electrode, and a scan line for controlling the pixel electrode, and the second transparent conductive layer 121 is disposed on the second carrier. 122.
  • the pixel electrode, the data line, and the scan line are disposed in a display area of the display panel 100.
  • the pixel electrode is made of a transparent conductive photoresist 130.
  • the pixel electrode is also made of a transparent conductive photoresist 130, so that the first transparent conductive layer 111, the second transparent conductive layer 121, the first transparent conductive block 112, and the pixel electrode are all made of a transparent conductive photoresist 130. This not only saves the process technology, but also makes it easier to take materials and further facilitate production.
  • the outer surface of the first transparent conductive block 112 is arranged in an arc shape, and the size of the transparent conductive block 112 gradually increases from the top to the middle thereof, and gradually decreases from the middle position to the root thereof.
  • the transparent conductive block of the curved structure has better electrical conduction effect.
  • the first transparent conductive block 112 of the embodiment may also be configured as other structures, such as a cylindrical structure, a cone structure, and the like.
  • the display panel formed by the above display panel and the above process can be used in a display device, wherein
  • the display device further includes a backlight module, and the display device may be a liquid crystal display or an OLED display.
  • the backlight module can be used as a light source for supplying sufficient light source with uniform brightness and uniform distribution.
  • the backlight module of the embodiment may be front light type or In the backlight mode, it should be noted that the backlight module of the embodiment is not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板(100)和显示面板(100)的制程,显示面板(100)包括第一基板(110)和第二基板(120),第一基板(110)设置有第一透明导电层(111);第二基板(120)和第一基板(110)相对设置,第二基板(120)设置有第二透明导电层(121);第一透明导电层(111)和第二透明导电层(121)之间设置有多个间隔的透明导电块(112、123、1121、1231),透明导电块(112、123、1121、1231)电连通第一透明导电层(111)和第二透明导电层(121);透明导电块(112、123、1121、1231)与第一透明导电层(111)、第二透明导电层(121)中的至少一个采用相同材料、且一体成型。

Description

显示面板和显示面板的制程 【技术领域】
本申请涉及显示技术领域,更具体的说,涉及一种显示面板和显示面板的制程。
【背景技术】
液晶显示器具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶面板及背光模组(Backlight Module)。液晶面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,并在两片玻璃基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
其中,薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)由于具有低的功耗、优异的画面品质以及较高的生产良率等性能,目前已经逐渐占据了显示领域的主导地位。同样,薄膜晶体管液晶显示器包含液晶面板和背光模组,液晶面板包括彩膜基板(Color Filter Substrate,CF Substrate,也称彩色滤光片基板)和薄膜晶体管阵列基板(Thin Film Transistor Substrate,TFT Substrate),上述基板的相对内侧存在透明电极。两片基板之间夹一层液晶分子(Liquid Crystal,LC)。液晶面板是通过电场对液晶分子取向的控制,改变光的偏振状态,并藉由偏光板实现光路的穿透与阻挡,实现显示的目的。
现有液晶面板的制程过程中,需要在彩膜基板和阵列基板之间设置导电金球(Au ball,导电球),并在彩膜基板的一侧设置第一ITO(氧化铟锡)层,以及在阵列基板一侧设置第二ITO层,当彩膜基板和阵列基板组装时,将导电球置于第一ITO层和第二ITO层之间,通过导电球将第一ITO层和第二ITO层连通,使得彩膜基板和阵列基板彼此之间形成电通路。在实现第一ITO层和第二ITO层电连通的过程需要多个制程,增加生产成本,降低生产效率。
【发明内容】
本申请所要解决的技术问题是提供一种能够节省制程工艺的显示面板。
此外,本申请还提供一种显示面板的制程,以节省制程工艺。
本申请的目的是通过以下技术方案来实现的:
根据本申请的一个方面,本申请公开了一种显示面板,所述显示面板包括:
第一基板,所述第一基板设置有第一透明导电层;
第二基板,所述第二基板和第一基板相对设置,所述第二基板设置有第二透明导电层;
所述第一透明导电层和第二透明导电层之间设置有多个间隔的透明导电块,所述透明导电块电连通所述第一透明导电层和第二透明导电层;所述透明导电块与所述第一透明导电层、第二透明导电层中的至少一个采用相同材料、且一体成型。
其中,所述第一透明导电层、第二透明导电层中的至少一个采用透明导电光阻制成。透明导电光阻不仅导电效果好,而且透光效果好。本申请透明导电光阻可在透明光阻中添加金属粒子,通过金属粒子实现导电的效果。
其中,所述第一基板包括有彩色光阻层,所述第一导电层设置在所述彩色光阻层上;多个间隔的所述透明导电块凸出于所述第一透明导电层上,与所述第一透明导电层采用相同材料、且一体成型。这是本申请设置透明导电块的一种具体方式,将第一透明导电层和透明导电块两者采用相同材料,且实现一体成型,就可以将第一透明导电层和透明导电块在同一制程中制成。将第一基板和第二基板装配时,透明导电块和第二透明导电层配合,从而电连通第一透明导电层和第二透明导电层。
其中,所述第一透明导电层和透明导电块采用透明导电光阻在同一制程中制成。透明导电光阻不仅导电效果好,而且透光效果好。本申请透明导电光阻可在透明光阻中添加金属粒子,通过金属粒子实现导电的效果。
其中,所述第二透明导电层采用透明导电光阻制成。透明导电光阻不仅导 电效果好,而且透光效果好。本申请透明导电光阻可在透明光阻中添加金属粒子,通过金属粒子实现导电的效果。本申请将第二透明导电层也采用透明导电光阻制成,从而第一透明导电层、第二透明导电层及透明导电块都采用透明导电光阻制成,这样不仅在节省了制程工艺,而且取材方便,更加方便生产。
其中,所述第二基板包括有像素电极、用于为所述像素电极充电的数据线以及用于控制所述像素电极的扫描线,所述像素电极采用透明导电光阻制成。透明导电光阻不仅导电效果好,而且透光效果好。本申请透明导电光阻可在透明光阻中添加金属粒子,通过金属粒子实现导电的效果。本申请将像素电极也采用透明导电光阻制成,从而第一透明导电层、第二透明导电层、透明导电块及像素电极都采用透明导电光阻制成,这样不仅在节省了制程工艺,而且取材方便,更加方便生产。
其中,所述透明导电块外表面设置成弧形,所述透明导电块的大小从其顶部至其中部位置逐渐增大,并从其中部位置至其根部逐渐减小。弧形结构的透明导电块导电效果更佳,在第一基板和第二基板装配时,弧形结构的透明导电块与第二透明导电层连接效果更好。
其中,所述透明导电块包括第一半透明导电块和第二半透明导电块,所述第一半透明导电块和第一透明导电层一体成型,所述第二半透明导电块和第二透明导电层一体成型,所述第一透明导电层、第一半透明导电块、第二透明导电层和第二半透明导电块都采用透明导电光阻制成。这是本申请设置透明导电块的另一种具体方式,在同一制程中可以形成第一透明导电层和第一半透明导电块,以及在另同一制程中可以形成第二透明导电层和第二半透明导电块。当第一基板和第二基板装配时,第一半透明导电块和第二半透明导电块相互配合,形成完整的透明导电块,实现第一透明导电层和第二透明导电层的电连通。同样节省了制程工艺,提高生产效率;且取材方便,降低生产和材料成本。
其中,所述第一半透明导电块的大小从其顶部至其根部逐渐减小,所述第二半透明导电块的大小从其顶部至其根部逐渐减小,所述第一半透明导电块顶 部和第二半透明导电块顶部相适应。这是设置第一半透明导电块和第二半透明导电块的一种具体方式,这样设置使得第一半透明导电块和第二半透明导电块相互配合时接触效果更好,导电效果更佳。
其中,多个所述透明导电块分别设置在第一透明导电层和第二透明导电层,所述第一透明导电层上的透明导电块和所述第二透明导电层上的透明导电块间隔排列。这是本申请设置透明导电块的又一种具体方式,将一部分透明导电块和第一透明导电层一体成型,并将另一部分透明导电块和第二透明导电层一体成型。当第一基板和第二基板装配时,一部分透明导电块和另一部分透明导电块相互间隔布置,都实现电连通第一透明导电层和第二透明导电层。同样节省了制程工艺,提高生产效率;且取材方便,降低生产和材料成本。
其中,所述透明导电块为圆柱体结构。
其中,所述透明导电块为圆锥体结构。
其中,所述第二透明导电层采用氧化铟锡制成。氧化铟锡和透明导电块相互配合能够实现氧化铟锡和第一透明导电层电连通。
一种如以上显示面板的制程,所述制程包括以下步骤:
在第一基板或第二基板上铺设透明导电光阻;
通过同一光掩膜工艺将透明导电光阻加工成第一透明导电层或第二透明导电层、以及与第一透明导电层或第二透明导电层一体成型的透明导电块。
其中,所述在第一基板或第二基板上铺设透明导电光阻的步骤包括:
在所述第一基板上铺设彩色光阻层;
在所述彩色光阻层上铺设透明导电光阻;
所述通过同一光掩膜工艺将透明导电光阻加工成第一透明导电层或第二透明导电层、以及与第一透明导电层或第二透明导电层一体成型的透明导电块的步骤包括:
在所述透明导电光阻中掺杂光起始剂;
采用同一光源照射一光罩,通过所述光罩过滤出两种不同波长的光线,以 控制所述光起始剂使得所述透明导电光阻具有不同的收缩量,形成第一透明导电层和透明导电块。
透明导电光阻不仅导电效果好,而且透光效果好。本申请透明导电光阻可在透明光阻中添加金属粒子,通过金属粒子实现导电的效果。
另外,本申请在透明导电光阻中掺杂光起始剂,光起始剂用于与预设波长光线配合,通过预设波长光线的照射使得光起始剂和透明导电光阻产生交联反应,形成不同的收缩量。本申请通过同一光源经过一光罩的作用,透过两种不同波长的光线,两种不同的光线分别和光起始剂配合,使得光起始剂和透明导电光阻产生交联反应,进行不同程度的收缩,以形成第一透明导电层和透明导电块,或形成第二透明导电层和导电块。从而本申请在同一制程中就可以完成第一透明导电层和透明导电块,或完成第二透明导电层和导电块;这样就节省了制程工艺,而且取材方便,更加方便生产。
现有技术中显示面板的制程工艺复杂,需要将两个基板的相对侧分别设置两个ITO层,在两个ITO层设置好之后再在两个ITO层之间设置导电金球,导电金球连接两个ITO层,使得两个ITO层实现电导通。与现有技术相比,本申请的技术效果是:
本申请显示面板在第一基板的第一透明导电层和第二基板的第二透明导电层之间设置多个间隔的透明导电块,透明导电块电连通第一透明导电层和第二透明导电层,透明导电块与第一透明导电层、第二透明导电层中的至少一个采用相同材料、且一体成型。也就是说第一透明导电层直接和透明导电块采用相同的材料、且一体成型;或者第二透明导电层直接和透明导电块采用相同的材料、且一体成型;再或者透明导电块间隔布置在第一透明导电层和第二透明层上,一部分透明导电块和第一透明导电层采用相同的材料、且一体成型,另一部分透明导电块和第二透明导电层采用相同的材料、且一体成型。从而在同一工艺制程中就可以同时形成第一透明导电层和透明导电块或第二透明导电层和透明导电块,将第一基板和第二基板装配时即可通过透明导电块实现第一透明 导电层和第二透明导电层电连接。相比通过多个工艺制程形成两个ITO层,再在两个ITO层之间点入导电金球,就减少了点入导电金球的工艺制程,节省了显示面板的制程工艺,提高生产效率。而且导电金球成本高,本申请直接通过与第一导电层或第二导电层相同的材料形成透明导电块,不仅制程简单,而且取材方便、降低成本。
【附图说明】
图1是本申请一实施例第一基板的结构示意图;
图2是本申请一实施例第二基板的结构示意图;
图3是本申请一实施例显示面板的结构示意图;
图4是本申请一实施例第一基板的结构示意图;
图5是本申请一实施例第二基板的结构示意图;
图6是本申请一实施例显示面板的结构示意图;
图7是本申请一实施例第一基板的结构示意图;
图8是本申请一实施例第二基板的结构示意图;
图9是本申请一实施例显示面板的结构示意图;
图10是本申请一实施例显示面板的制程过程示意图;
图11是本申请一实施例显示面板的制程过程示意图;
图12是本申请一实施例显示面板的制程流程图;
图13是本申请一实施例显示面板的制程流程图。
【具体实施方式】
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、 “右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面参考图1至图13描述本申请实施例显示面板和显示面板的制程。
下面结合附图1至13和具体实施例对本申请作进一步详细说明。
在本申请一实施例中,如图1至图9所示,图1为本申请一实施例第一基板的结构示意图,图2为本申请一实施例第二基板的结构示意图,图3为本申请一实施例显示面板的结构示意图;图4为本申请一实施例第一基板的结构示意图,图5为本申请一实施例第二基板的结构示意图,图6为本申请一实施例显示面板的结构示意图;图7为本申请一实施例第一基板的结构示意图,图8为本申请一实施例第二基板的结构示意图,图9为本申请一实施例显示面板的 结构示意图。所述显示面板100包括第一基板110和第二基板120,所述第一基板110设置有第一透明导电层111;所述第二基板120和第一基板110相对设置,所述第二基板120设置有第二透明导电层121;所述第一透明导电层111和第二透明导电层121之间设置有多个间隔的透明导电块(第一透明导电块112,或第二透明导电块123,或第一半透明导电块1121及第二半透明导电块1231),所述透明导电块电连通所述第一透明导电层111和第二透明导电层121;所述透明导电块与所述第一透明导电层111、第二透明导电层121中的至少一个采用相同材料、且一体成型。
本申请实施例显示面板在第一基板的第一透明导电层和第二基板的第二透明导电层之间设置多个间隔的透明导电块,透明导电块电连通第一透明导电层和第二透明导电层,透明导电块与第一透明导电层、第二透明导电层中的至少一个采用相同材料、且一体成型。也就是说第一透明导电层直接和透明导电块采用相同的材料、且一体成型;或者第二透明导电层直接和透明导电块采用相同的材料、且一体成型;再或者透明导电块间隔布置在第一透明导电层和第二透明层上,一部分透明导电块和第一透明导电层采用相同的材料、且一体成型,另一部分透明导电块和第二透明导电层采用相同的材料、且一体成型。从而在同一工艺制程中就可以同时形成第一透明导电层和透明导电块或第二透明导电层和透明导电块,将第一基板和第二基板装配时即可通过透明导电块实现第一透明导电层和第二透明导电层电连接。相比通过多个工艺制程形成两个ITO层,再在两个ITO层之间点入导电金球,就减少了点入导电金球的工艺制程,节省了显示面板的制程工艺,提高生产效率。而且导电金球成本高,本申请直接通过与第一导电层或第二导电层相同的材料形成透明导电块,不仅制程简单,而且取材方便、降低成本。
在本实施例中,具体的,结合图10,其中,图10为本申请一实施例显示面板的制程过程示意图。本实施例所述第一透明导电层111、第二透明导电层121中的至少一个采用透明导电光阻130制成。透明导电光阻不仅导电效果好,而 且透光效果好。本申请透明导电光阻可在透明光阻中添加金属粒子,通过金属粒子实现导电的效果。
优选的,如图1和图3所示,且结合图10,本实施例第一透明导电层111、第二透明导电层121及透明导电块采用透明导电光阻130制成;从而第一透明导电层111、第二透明导电层121及透明导电块都采用透明导电光阻制成,这样不仅在节省了制程工艺,而且取材更加方便,更加方便生产。以及本申请实施例多个间隔的所述透明导电块凸出于所述第一透明导电层111上,并与所述第一透明导电层111采用相同材料(材料为透明导电光阻)、且一体成型。在图1至图3中将设置在第一基板110上的多个透明导电块定义为第一透明导电块112。这是本申请实施例设置透明导电块的一种具体方式,将第一透明导电层和第一透明导电块两者采用相同的材料,也就是透明导电光阻130,且实现一体成型,就可以将第一透明导电层和第一透明导电块在同一制程中制成。将第一基板110和第二基板120装配时,第一透明导电块和第二透明导电层配合,从而电连通第一透明导电层和第二透明导电层。
然而,需要说明的是,本实施例也可以将第二透明导电层采用其他材料制成,比如:第二透明导电层采用氧化铟锡制成,氧化铟锡和第一透明导电块112相互配合同样能够实现氧化铟锡和第一透明导电层11电连通。
然而,需要说明的是,以上为本实施例设置透明导电块的一种具体方式,本实施例透明导电块还可以有其他设置方式,具体如下:
例如1:如图4至图6所示,且结合图10,所述透明导电块包括第一半透明导电块1121和第二半透明导电块1231,所述第一半透明导电块1121和第一透明导电层111一体成型,所述第二半透明导电块1231和第二透明导电层121一体成型,所述第一透明导电层、第一半透明导电块、第二透明导电层和第二半透明导电块都采用透明导电光阻130制成。这是本申请设置透明导电块的另一种具体方式,在同一制程中可以形成第一透明导电层和第一半透明导电块,也就是在第一基板的制程工艺中可以形成第一透明导电层和第一半透明导电 块;以及在另同一制程中可以形成第二透明导电层和第二半透明导电块,也就是在第二基板的制程工艺中可以形成第二透明导电层和第二半透明导电块。当第一基板和第二基板装配时,第一半透明导电块和第二半透明导电块相互配合,形成完整的透明导电块,实现第一透明导电层和第二透明导电层的电连通。同样节省了制程工艺,提高生产效率;且取材方便,降低生产和材料成本。
如图4至图6所示,所述第一半透明导电块1121的大小从其顶部至其根部逐渐减小,所述第二半透明导电块1231的大小从其顶部至其根部逐渐减小,所述第一半透明导电块顶部和第二半透明导电块顶部相适应。这是设置第一半透明导电块和第二半透明导电块的一种具体方式,这样设置使得第一半透明导电块和第二半透明导电块相互配合时接触效果更好,导电效果更佳。为了更进一步增加第一半透明导电块和第二半透明导电块之间的接触效果,可以在第一半透明导电块顶部设置凸点,对应的,在第二半透明导电块顶部设置用于与凸点配合的凹点。
其中,如图4至图6所示,第一半透明导电块和第二半透明导电块两者各自大小相同,需要说明的是,也可以将第一半透明导电块设置大,而将第二半透明导电块设置小;或将第一半透明导电块设置小,而将第二半透明导电块设置大。在此,对第一半透明导电块和第二半透明导电块的具体结构的限定并不限于此。
例如2:如图7至图9所示,且结合图10,多个所述透明导电块分别设置在第一透明导电层111和第二透明导电层121上,所述第一透明导电层111上的透明导电块(此透明导电块与图1至图3中的透明导电块相同,因此,在此同样将其定位为第一透明导电块112)和所述第二透明导电层121上的透明导电块(此透明导电块定义为第二透明导电块123)间隔排列。这是本申请实施例设置透明导电块的又一种具体方式,将一部分透明导电块(第一透明导电块112)和第一透明导电层111一体成型,并将另一部分透明导电块(第二透明导电块123)和第二透明导电层121一体成型。当第一基板110和第二基板120装配时,一 部分透明导电块(第一透明导电块112)和另一部分透明导电块(第二透明导电块123)相互间隔布置,都实现电连通第一透明导电层111和第二透明导电层121。同样节省了制程工艺,提高生产效率;且取材方便,降低生产和材料成本。
需要说明的是,本申请实施例的透明导电块的具体结构并限于弧形结构,也可以将透明导电块设置成圆柱体结构、圆锥体结构等。
例如3:将透明导电块仅和第二透明导电层一体成型。其具体结构和效果与图1至图3中的相同,具体可参见图1至图3及以上内容,在此不再一一详述。
在本实施例中,进一步的,所述第一基板110还包括有第一载体114和彩色光阻层113,彩色光阻层113设置在第一载体114上,第一透明导电层111设置在彩色光阻层上,多个间隔的第一透明导电块112凸出于第一透明导电层111上。以及第二基板120还包括有第二载体122、像素电极、用于为所述像素电极充电的数据线以及用于控制所述像素电极的扫描线,第二透明导电层121设置在第二载体122上。像素电极、数据线及扫描线布置在显示面板100的显示区域。
其中,本实施例的彩色光阻层包括但不限于:R光阻、G光阻和B光阻。
其中,第一载体及第二载体可以为玻璃板,其透光型好,方便设置。当然,需要说明的是,本实施例的第一载体和第二载体并不限于此,比如第一载体和第二载体为可挠式基板。
其中,所述像素电极采用透明导电光阻130制成。本申请实施例将像素电极也采用透明导电光阻130制成,从而第一透明导电层111、第二透明导电层121、第一透明导电块112及像素电极都采用透明导电光阻130制成,这样不仅在节省了制程工艺,而且更进一步的方便取材,更进一步的方便生产。
其中,所述第一透明导电块112外表面设置成弧形,所述透明导电块112的大小从其顶部至其中部位置逐渐增大,并从其中部位置至其根部逐渐减小。弧形结构的透明导电块导电效果更佳,在第一基板110和第二基板120装配时,弧形结构的第一透明导电块112与第二透明导电层121连接效果更好。然而, 需要说明的是,本实施例第一透明导电块112还可以设置成其他结构,比如:圆柱体结构、圆锥体结构等等。
其中,本实施例的显示面板为液晶面板,第一基板110为彩膜基板,第二基板120为阵列基板。需要说明的是,本实施例显示面板并不限于此。
在本申请一实施例中,如图10至图12所示,图10为本申请一实施例显示面板的制程过程示意图,图11为本申请一实施例显示面板的制程过程示意图;图12为本申请一实施例显示面板的制程流程图。
其中,在图11中,本实施例显示面板的制程包括步骤S101和步骤S102。
具体的,步骤S101:在第一基板或第二基板上铺设透明导电光阻。
步骤S102:通过同一光掩膜(例如灰色光罩(Gray-tone Mask)或半色调光罩(Half Tone Mask))工艺将透明导电光阻加工成第一透明导电层或第二透明导电层、以及与第一透明导电层或第二透明导电层一体成型的透明导电块。
本申请实施例的显示面板可参见图1至图9,显示面板包括有第一基板和第二基板,第一基板设置有第一透明导电层,第二基板设置有第二透明导电层,关于第一基板和第二基板参见以上实施例,在此不再一一描述。
本申请实施例在第一基板或第二基板上铺设透明导电光阻,通过同一光掩膜工艺加工透明导电光阻,使得透明导电光阻形成第一透明导电层或第二透明导电层、以及与第一透明导电层或第二透明导电层一体成型的透明导电块。透明导电块电连通第一透明导电层和第二透明导电层,透明导电块与第一透明导电层、第二透明导电层中的至少一个一体成型。也就是说第一透明导电层直接和透明导电块一体成型;或者第二透明导电层直接和透明导电块采一体成型;再或者透明导电块间隔布置在第一透明导电层和第二透明层上,一部分透明导电块和第一透明导电层一体成型,另一部分透明导电块和第二透明导电层一体成型。从而在同一工艺制程中就可以同时形成第一透明导电层和透明导电块或第二透明导电层和透明导电块,将第一基板和第二基板装配时即可通过透明导电块实现第一透明导电层和第二透明导电层电连接。相比通过多个工艺制程形 成两个ITO层,再在两个ITO层之间点入导电金球,就减少了点入导电金球的工艺制程,节省了显示面板的制程工艺,提高生产效率。而且导电金球成本高,本申请实施例直接通过与第一导电层或第二导电层相同的透明导电光阻形成透明导电块,不仅制程简单,而且取材方便、降低成本。
本实施例直接通过透明导电光阻可形成第一透明导电层、第二透明导电层及透明导电块,透明导电光阻不仅导电效果好,而且透光效果好。本申请实施例透明导电光阻可在透明光阻中添加金属粒子,通过金属粒子实现导电的效果。
其中,所述在第一基板或第二基板上铺设透明导电光阻的步骤包括:
在所述第一基板上铺设彩色光阻层;
在所述彩色光阻层上铺设透明导电光阻。
其中,所述通过同一光掩膜工艺将透明导电光阻加工成第一透明导电层或第二透明导电层、以及与第一透明导电层或第二透明导电层一体成型的透明导电块的步骤包括:
在所述透明导电光阻中掺杂光起始剂;
采用同一光源照射一光罩,通过所述光罩过滤出两种不同波长的光线,以控制所述光起始剂使得所述透明导电光阻具有不同的收缩量,形成第一透明导电层和透明导电块。
具体的,如图13所示,图13为本申请一实施例显示面板的制程的具体流程图,图13中的制程包括步骤S201、步骤S202、步骤S203和步骤S204。结合图10和图11,具体如下:
步骤S201:在所述第一基板110上铺设彩色光阻层113。
步骤S202:在所述彩色光阻层113上铺设透明导电光阻130。
步骤S203:在所述透明导电光阻130中掺杂光起始剂140。
步骤S204:采用同一光源300照射一光罩200,通过所述光罩过滤出两种不同波长的光线,以控制所述光起始剂使得所述透明导电光阻具有不同的收缩量,形成第一透明导电层和透明导电块。
本申请实施例在透明导电光阻中掺杂光起始剂,光起始剂用于与预设波长光线配合,通过预设波长光线的照射使得光起始剂和透明导电光阻产生交联反应,形成不同的收缩量。本申请通过同一光源经过一光罩的作用,透过两种不同波长的光线,两种不同的光线分别和光起始剂配合,使得光起始剂和透明导电光阻产生交联反应,进行不同程度的收缩,以形成第一透明导电层和透明导电块,或形成第二透明导电层和导电块。从而本申请实施例在同一制程中就可以完成第一透明导电层和透明导电块,或完成第二透明导电层和导电块;这样就节省了制程工艺,而且取材方便,更加方便生产。
具体的,结合图10所示,图10中,先在第一基板110的第一载体114上铺设彩色光阻层113,其中,本实施例的彩色光阻层113包括但不限于:R光阻、G光阻和B光阻。然而,在彩色光阻层113上铺设透明导电光阻130,并在透明导电光阻130内掺杂光起始剂140。然而,通过一光源300和一光罩200照射透明导电光阻130和光起始剂140;具体的是,光源300发出第一光线L1,第一光线L1照射到光罩200上,光罩200过滤出两种不同的光线,即第二光线L2和第三光线L3,第二光线L2照射到透明导电光阻130和光起始剂140来控制光起始剂使得透明导电光阻具有收缩,并形成第一透明导电块112。第三光线L3照射到透明导电光阻130和光起始剂140来控制光起始剂使得透明导电光阻具有收缩,并形成第一透明导电层111。这样就在同一工艺制程中形成第一透明导电层和第一透明导电块。然而,将第二基板120和第一基板110装配,第一透明导电块即可电连通第一透明导电层和第二基板的第二透明导电层。在第一基板和第二基板两者的边沿封装框胶150,从而形成完整的显示面板100。
其中,本实施例第二透明导电层优选采用透明导电光阻材料制成,这样就方便取材,方便生产。当然,需要说明的是,本实施例第二透明导电层并不限于此,比如:第二透明导电层也可以使用氧化铟锡制成。
这是本实施例设置透明导电块的一种具体方式。需要说明的是,透明导电块的设置并不限于此,比如:如图11所示,在图11中,第二基板120的第二 载体122上铺设透明导电光阻和光起始剂,同样通过一光源300和一光罩200进行照射以形成第二透明导电层121和第二透明导电块123,将第一基板和第二基板装配,第二透明导电块123即可电连通第一透明导电层和第二透明导电层。图11与图10的区别在于:在不同的基板上铺设透明导电光阻和光起始剂。或者参见图4至图6,以及参见图7至图9,在此不再详述。
其中,第一载体及第二载体可以为玻璃板,其透光型好,方便设置。当然,需要说明的是,本实施例的第一载体和第二载体并不限于此,比如第一载体和第二载体为可挠式基板。
在本实施例中,进一步的,所述第一基板110还包括有第一载体114和彩色光阻层113,彩色光阻层113设置在第一载体114上,第一透明导电层111设置在彩色光阻层上,多个间隔的第一透明导电块112凸出于第一透明导电层111上。以及第二基板120还包括有第二载体122、像素电极、用于为所述像素电极充电的数据线以及用于控制所述像素电极的扫描线,第二透明导电层121设置在第二载体122上。像素电极、数据线及扫描线布置在显示面板100的显示区域。
其中,所述像素电极采用透明导电光阻130制成。本申请实施例将像素电极也采用透明导电光阻130制成,从而第一透明导电层111、第二透明导电层121、第一透明导电块112及像素电极都采用透明导电光阻130制成,这样不仅在节省了制程工艺,而且更进一步的方便取材,更进一步的方便生产。
其中,所述第一透明导电块112外表面设置成弧形,所述透明导电块112的大小从其顶部至其中部位置逐渐增大,并从其中部位置至其根部逐渐减小。弧形结构的透明导电块导电效果更佳,在第一基板110和第二基板120装配时,弧形结构的第一透明导电块112与第二透明导电层121连接效果更好。然而,需要说明的是,本实施例第一透明导电块112还可以设置成其他结构,比如:圆柱体结构、圆锥体结构等等。
本申请以上显示面板及以上制程形成的显示面板可用于显示装置中,其中 所述显示装置还包括背光模组,该显示装置可以为液晶显示器,也可以为OLED显示器。其中,当本本申请实施例的显示装置为液晶显示器时,背光模组可作为光源,用于供应充足的亮度与分布均匀的光源,本实施例的背光模组可以为前光式,也可以为背光式,需要说明的是,本实施例的背光模组并不限于此。
以上内容是结合具体的优选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (19)

  1. 一种显示面板,包括:
    第一基板,所述第一基板设置有第一透明导电层;
    第二基板,所述第二基板和第一基板相对设置,所述第二基板设置有第二透明导电层;
    所述第一透明导电层和第二透明导电层之间设置有多个间隔的透明导电块,所述透明导电块电连通所述第一透明导电层和第二透明导电层;所述透明导电块与所述第一透明导电层、第二透明导电层中的至少一个采用相同材料、且一体成型;
    所述第一基板包括有彩色光阻层,所述第一导电层设置在所述彩色光阻层上;多个间隔的所述透明导电块凸出于所述第一透明导电层上,与所述第一透明导电层采用相同材料、且一体成型;
    所述第一透明导电层和透明导电块采用透明导电光阻在同一制程中制成;
    所述第二透明导电层采用透明导电光阻制成;
    所述第二基板包括有像素电极、用于为所述像素电极充电的数据线以及用于控制所述像素电极的扫描线,所述像素电极采用透明导电光阻制成;
    所述透明导电块外表面设置成弧形,所述透明导电块的大小从其顶部至其中部位置逐渐增大,并从其中部位置至其根部逐渐减小。
  2. 一种显示面板,包括:
    第一基板,所述第一基板设置有第一透明导电层;
    第二基板,所述第二基板和第一基板相对设置,所述第二基板设置有第二透明导电层;
    所述第一透明导电层和第二透明导电层之间设置有多个间隔的透明导电块,所述透明导电块电连通所述第一透明导电层和第二透明导电层;所述透明导电块与所述第一透明导电层、第二透明导电层中的至少一个采用相同材料、 且一体成型。
  3. 如权利要求2所述的显示面板,其中,所述第一透明导电层、第二透明导电层中的至少一个采用透明导电光阻制成。
  4. 如权利要求2所述的显示面板,其中,所述第一基板包括有彩色光阻层,所述第一导电层设置在所述彩色光阻层上;多个间隔的所述透明导电块凸出于所述第一透明导电层上,与所述第一透明导电层采用相同材料、且一体成型。
  5. 如权利要求4所述的显示面板,其中,所述第一透明导电层和透明导电块采用透明导电光阻在同一制程中制成。
  6. 如权利要求5所述的显示面板,其中,所述第二透明导电层采用透明导电光阻制成。
  7. 如权利要求6所述的显示面板,其中,所述第二基板包括有像素电极、用于为所述像素电极充电的数据线以及用于控制所述像素电极的扫描线,所述像素电极采用透明导电光阻制成。
  8. 如权利要求6所述的显示面板,其中,所述透明导电块外表面设置成弧形,所述透明导电块的大小从其顶部至其中部位置逐渐增大,并从其中部位置至其根部逐渐减小。
  9. 如权利要求6所述的显示面板,其中,所述透明导电块为圆柱体结构。
  10. 如权利要求6所述的显示面板,其中,所述透明导电块为圆锥体结构。
  11. 如权利要求2所述的显示面板,其中,所述第二基板包括有像素电极、用于为所述像素电极充电的数据线以及用于控制所述像素电极的扫描线,所述像素电极采用透明导电光阻制成。
  12. 如权利要求2所述的显示面板,其中,所述透明导电块外表面设置成弧形,所述透明导电块的大小从其顶部至其中部位置逐渐增大,并从其中部位置至其根部逐渐减小。
  13. 如权利要求2所述的显示面板,其中,所述透明导电块为圆柱体结构。
  14. 如权利要求2所述的显示面板,其中,所述透明导电块为圆锥体结构。
  15. 如权利要求2所述的显示面板,其中,所述透明导电块包括第一半透明导电块和第二半透明导电块,所述第一半透明导电块和第一透明导电层一体成型,所述第二半透明导电块和第二透明导电层一体成型。
  16. 如权利要求2所述的显示面板,其中,所述透明导电块包括第一半透明导电块和第二半透明导电块,所述第一半透明导电块和第一透明导电层一体成型,所述第二半透明导电块和第二透明导电层一体成型。
  17. 如权利要求16所述的显示面板,其中,所述第一透明导电层、第一半透明导电块、第二透明导电层和第二半透明导电块都采用透明导电光阻制成。
  18. 一种显示面板的制程,其中,所述制程包括以下步骤:
    在第一基板或第二基板上铺设透明导电光阻;
    通过同一光掩膜工艺将透明导电光阻加工成第一透明导电层或第二透明导电层、以及与第一透明导电层或第二透明导电层一体成型的透明导电块。
  19. 如权利要求19所述的显示面板的制程,其中,所述在第一基板或第二基板上铺设透明导电光阻的步骤包括:
    在所述第一基板上铺设彩色光阻层;
    在所述第二基板的彩色光阻层上铺设透明导电光阻;
    所述通过同一光掩膜工艺将透明导电光阻加工成第一透明导电层或第二透明导电层、以及与第一透明导电层或第二透明导电层一体成型的透明导电块的步骤包括:
    在所述透明导电光阻中掺杂光起始剂;
    采用同一光源照射一光罩,通过所述光罩过滤出两种不同波长的光线,以控制所述光起始剂使得所述透明导电光阻具有不同的收缩量,形成第一透明导电层和透明导电块。
PCT/CN2017/084121 2016-12-16 2017-05-12 显示面板和显示面板的制程 WO2018107654A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/744,796 US10732450B2 (en) 2016-12-16 2017-05-12 Display panel and manufacturing process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611175424.7A CN106773344B (zh) 2016-12-16 2016-12-16 显示面板和显示面板的制程
CN201611175424.7 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018107654A1 true WO2018107654A1 (zh) 2018-06-21

Family

ID=58889942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084121 WO2018107654A1 (zh) 2016-12-16 2017-05-12 显示面板和显示面板的制程

Country Status (3)

Country Link
US (1) US10732450B2 (zh)
CN (1) CN106773344B (zh)
WO (1) WO2018107654A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181749B (zh) * 2017-12-29 2020-08-28 深圳市华星光电技术有限公司 制造液晶显示面板的方法
CN112764275A (zh) * 2021-02-23 2021-05-07 南京华日触控显示科技有限公司 利用内置硅球的环氧树脂支撑盒厚的液晶盒及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2916694Y (zh) * 2006-07-11 2007-06-27 胜华科技股份有限公司 双层超扭转向列型液晶显示装置及其补偿片结构
US20080188023A1 (en) * 2007-02-05 2008-08-07 Yong-Hwan Shin Method of manufacturing display substrate, method of patterning inorganic layer and method of manufacturing display device using the same
JP2012108299A (ja) * 2010-11-17 2012-06-07 Seiko Epson Corp 電気光学装置及び電子機器
CN202929337U (zh) * 2012-12-07 2013-05-08 京东方科技集团股份有限公司 Tft-lcd显示面板及显示装置
CN203217211U (zh) * 2013-03-15 2013-09-25 北京京东方光电科技有限公司 一种显示面板和显示装置
CN104281319A (zh) * 2014-08-22 2015-01-14 京东方科技集团股份有限公司 触摸面板及其制造方法和触摸显示装置
CN106126000A (zh) * 2016-06-28 2016-11-16 友达光电(昆山)有限公司 显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929578B2 (ja) * 2003-11-10 2012-05-09 大日本印刷株式会社 液晶表示装置
KR101137873B1 (ko) * 2005-04-11 2012-04-20 엘지디스플레이 주식회사 패드전극 형성방법, 그를 이용한 액정표시소자의 제조방법,및 그 방법에 의해 제조된 액정표시소자
KR20080050851A (ko) * 2006-12-04 2008-06-10 삼성전자주식회사 액정표시패널
CN201698132U (zh) * 2010-06-17 2011-01-05 天马微电子股份有限公司 液晶显示器
KR101755601B1 (ko) * 2010-11-04 2017-07-10 삼성디스플레이 주식회사 터치 스크린 패널 일체형 액정표시장치
CN103033978B (zh) * 2012-12-14 2015-04-29 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
TWI557772B (zh) * 2014-04-10 2016-11-11 友達光電股份有限公司 元件基板及其製造方法
CN104199203B (zh) * 2014-09-18 2017-02-15 深圳市华星光电技术有限公司 液晶显示面板及其制造方法
US20170269732A1 (en) * 2016-03-18 2017-09-21 Industrial Technology Research Institute Touch-sensing display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2916694Y (zh) * 2006-07-11 2007-06-27 胜华科技股份有限公司 双层超扭转向列型液晶显示装置及其补偿片结构
US20080188023A1 (en) * 2007-02-05 2008-08-07 Yong-Hwan Shin Method of manufacturing display substrate, method of patterning inorganic layer and method of manufacturing display device using the same
JP2012108299A (ja) * 2010-11-17 2012-06-07 Seiko Epson Corp 電気光学装置及び電子機器
CN202929337U (zh) * 2012-12-07 2013-05-08 京东方科技集团股份有限公司 Tft-lcd显示面板及显示装置
CN203217211U (zh) * 2013-03-15 2013-09-25 北京京东方光电科技有限公司 一种显示面板和显示装置
CN104281319A (zh) * 2014-08-22 2015-01-14 京东方科技集团股份有限公司 触摸面板及其制造方法和触摸显示装置
CN106126000A (zh) * 2016-06-28 2016-11-16 友达光电(昆山)有限公司 显示装置

Also Published As

Publication number Publication date
US10732450B2 (en) 2020-08-04
CN106773344B (zh) 2020-02-28
US20190011762A1 (en) 2019-01-10
CN106773344A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN107229152B (zh) 液晶显示面板的制作方法及液晶显示面板
US8643815B2 (en) Array substrate and liquid crystal display apparatus having the same
WO2018120729A1 (zh) 一种液晶面板及液晶显示装置
JP4490948B2 (ja) 液晶表示素子及びカラーフィルタ基板並びにその製造方法
WO2018120728A1 (zh) 一种液晶面板及液晶面板的制造方法
WO2018086312A1 (zh) 一种液晶面板、液晶显示器及液晶面板的制造方法
US20090109369A1 (en) Liquid crystal display device
JP2004163951A (ja) 液晶表示装置用基板
CN100439992C (zh) 液晶显示器件及其制造方法
WO2013139192A1 (zh) 触摸液晶显示装置、液晶显示面板及上部基板
WO2017088179A1 (zh) 用于液晶面板中的阵列基板及其制作方法
TWI465821B (zh) 顯示面板以及顯示面板的配向方法
JP4354948B2 (ja) 液晶表示装置の配向膜形成方法
WO2018107654A1 (zh) 显示面板和显示面板的制程
CN103309106B (zh) 彩色滤光阵列基板及其制造方法
WO2020062489A1 (zh) 液晶显示模组、液晶显示器及显示设备
WO2014012269A1 (zh) 具有嵌入式光伏电池的阵列基板的制作方法
WO2018120532A1 (zh) 显示面板和显示装置
CN106773357A (zh) 液晶显示面板及液晶显示装置
CN107688258A (zh) 显示面板及其制作方法
WO2018205358A1 (zh) 一种显示面板和显示装置
WO2019006905A1 (zh) 一种显示面板及其制作方法
CN102789107A (zh) 液晶显示面板
CN110109305A (zh) 显示面板
CN105759523B (zh) 显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880049

Country of ref document: EP

Kind code of ref document: A1