WO2018107619A1 - Circuit de conversion de tension sinusoïdale en pont complet intelligent basé sur la résonance pfc et llc - Google Patents

Circuit de conversion de tension sinusoïdale en pont complet intelligent basé sur la résonance pfc et llc Download PDF

Info

Publication number
WO2018107619A1
WO2018107619A1 PCT/CN2017/079185 CN2017079185W WO2018107619A1 WO 2018107619 A1 WO2018107619 A1 WO 2018107619A1 CN 2017079185 W CN2017079185 W CN 2017079185W WO 2018107619 A1 WO2018107619 A1 WO 2018107619A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
switch tube
switching transistor
pfc
bridge
Prior art date
Application number
PCT/CN2017/079185
Other languages
English (en)
Chinese (zh)
Inventor
侯涛
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2018107619A1 publication Critical patent/WO2018107619A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a voltage conversion circuit, in particular to an intelligent full bridge sine wave voltage conversion circuit based on PFC and LLC resonance.
  • the intelligent buck-boost conversion device from AC to AC is also called a travel strip.
  • the sine wave voltage conversion circuit topology is its key circuit, and is a circuit capable of realizing AC-AC conversion. It can realize the function of buck-boost and stabilize voltage and frequency in AC-AC conversion.
  • most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability.
  • a certain high-frequency pulse signal exists on the output side of the circuit, thereby affecting the quality of the output voltage, and thus it is difficult to meet the conversion requirement.
  • the technical problem to be solved by the present invention is to provide an intelligent full-bridge sinusoidal voltage conversion circuit based on PFC and LLC resonance for improving the PF value of the voltage conversion device and improving the output voltage quality, and aiming at the deficiencies of the prior art. It can filter high frequency pulses on the output side to provide high quality power frequency sinusoidal AC power for the load.
  • the present invention adopts the following technical solutions.
  • An intelligent full-bridge sinusoidal voltage conversion circuit based on PFC and LLC resonance comprising an input rectifying unit for rectifying a grid voltage, a filtering unit for filtering a voltage outputted by an input rectifying unit, and a filtering unit a PFC boosting unit for boosting the voltage outputted by the unit, and: an LLC isolated converter unit including a first switching transistor, a second switching transistor, a first freewheeling diode, a second freewheeling diode, a transformer, and a resonance a capacitor and a discharge resistor, a drain of the first switch tube is connected to an output end of the PFC boost unit, a source of the first switch tube is connected to a first end of the transformer, and a second end of the transformer is resonant a capacitor is connected to the front end, a drain of the second switch tube is connected to a source of the first switch tube, a source of the second switch tube is connected to a front end through a discharge resistor, and a gate of the first switch tube The gate of the second
  • the center tap of the secondary winding of the transformer acts as an LLC isolating converter
  • An output terminal of the unit a DC voltage filtering unit comprising a first electrolytic capacitor, an anode of the first electrolytic capacitor is connected to an output end of the LLC isolating converter unit, and a cathode of the first electrolytic capacitor is connected to a rear end;
  • An inverter inverter unit is connected to an output end of the LLC isolation converter unit, and the inverter inverter unit includes an inverter composed of a fourth switch tube, a fifth switch tube, a sixth switch tube and a seventh switch tube a bridge and a filter inductor, the gate of the fourth switch, the gate of the fifth switch, the gate of the sixth switch, and the gate of the seventh switch are respectively used to access the PWM control signal, and the control
  • the fourth switch tube, the fifth switch tube, the sixth switch tube and the seventh switch tube are turned on or off, so that the inverter inverting unit outputs alternating current, and the output end of
  • the input rectifying unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor and a rectifier bridge, wherein the fuse is connected to a neutral or a live line of the socket, and the common mode suppression inductor
  • the front end is connected in parallel to the socket, and the lightning protection resistor is connected in parallel to the front end of the common mode suppression inductor.
  • the input terminals of the safety capacitor and the rectifier bridge are both connected in parallel to the rear end of the common mode suppression inductor, and the output end of the rectifier bridge is used. The output is pulsating DC voltage.
  • the filtering unit comprises a filtering capacitor connected between the output end of the input rectifying unit and the front end ground.
  • the PFC boosting unit includes a boosting inductor, a third switching transistor, a first rectifier diode and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the filtering unit, the boosting inductor
  • the back end is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal, the third switch tube
  • the drain is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is used as the output end of the PFC boosting unit, and the cathode of the first rectifier diode is connected to the anode of the second electrolytic capacitor, and the cathode of the second electrolytic capacitor Connect to the front end.
  • a third pull-down resistor is connected between the gate of the third switch tube and the front end ground.
  • an MCU control unit is further included, the gate of the first switch tube, the gate of the second switch tube and the gate of the third switch tube are respectively connected to the MCU control unit, and the MCU control unit is used for respectively And outputting a PWM signal to the first switch tube, the second switch tube and the third switch tube to control an on/off state of the first switch tube, the second switch tube and the third switch tube, wherein the MCU control unit is further used for inverting
  • the inverter unit outputs four PWM pulse signals to cause the inverter inverting unit to output an alternating current.
  • the method further includes an AC sampling unit connected between the input end of the input rectifying unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input rectifying unit and feed back to the MCU control. unit.
  • a first sampling resistor is connected between the source and the front end of the third switching tube, and the third switch
  • the source of the tube is connected to the MCU control unit, and the MCU control unit acquires an electrical signal of the source of the third switching tube by the first sampling resistor.
  • the method further includes a DC voltage sampling unit, the DC voltage sampling unit includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to an output of the LLC isolation converter unit.
  • the back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit acquires an electrical signal of the output of the LLC isolated converter unit by the second sampling resistor and the third sampling resistor.
  • a first pull-down resistor is connected between the gate and the source of the first switch, and a second pull-down resistor is connected between the gate and the source of the second switch.
  • the input rectifying unit rectifies the grid voltage, and then filters the pulsating DC voltage through the filtering unit, and then uses the PFC boosting unit to pulsate DC The voltage is boosted.
  • the LLC isolating converter unit the first switching transistor, the second switching transistor, the resonant capacitor, the discharge resistance and the leakage inductance of the primary side of the transformer and the primary exciting inductance constitute an LLC resonant circuit, and are resonant at LLC.
  • the power is transmitted to the secondary winding of the transformer, and is rectified into a unidirectional ripple level by the first freewheeling diode and the second freewheeling diode, and can be adjusted by changing the turns ratio of the primary winding of the transformer.
  • the output voltage is high or low, which in turn enables step-up or step-down conversion.
  • the present invention not only realizes the isolated transmission of voltage, but also improves the PF value of the step-up/step-down conversion device, and also improves the output voltage quality, making the voltage conversion process more secure and reliable.
  • the invention provides a filter inductor at the output end of the inverter inverter unit, and the filter inductor can filter the high frequency pulse in the alternating current, so that the load can obtain high quality power frequency sinusoidal alternating current, thereby improving the output voltage quality. To meet the power supply needs.
  • FIG. 1 is a schematic diagram of a full bridge sinusoidal voltage conversion circuit of the present invention.
  • FIG. 2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
  • the invention discloses an intelligent full-bridge sinusoidal voltage conversion circuit based on PFC and LLC resonance, which is combined with FIG. 1 to FIG. 3, and includes an input rectifying unit 10 for rectifying a grid voltage for rectifying an input.
  • the filtering unit 20 that filters the voltage output by the unit 10, the PFC boosting unit 30 that performs boost conversion on the voltage output by the filtering unit 20, and:
  • An LLC isolation converter unit 40 includes a first switching transistor Q6, a second switching transistor Q7, a first freewheeling diode D6, a second freewheeling diode D5, a transformer T1, a resonant capacitor C4, and a discharging resistor R2B.
  • the drain of a switch Q6 is connected to the output of the PFC boost unit 30.
  • the source of the first switch Q6 is connected to the first end of the transformer T1, and the second end of the transformer T1 is connected through the resonant capacitor C4.
  • the front end of the second switch tube Q7 has a drain connected to the source of the first switch tube Q6, and the source of the second switch tube Q7 is connected to the front end through a discharge resistor R2B, the first switch tube Q6
  • the gates of the gates and the second switching transistors Q7 are used to load two PWM pulse signals of opposite phases to alternately conduct the first switching transistor Q6 and the second switching transistor Q7, and the secondary winding of the transformer T1
  • the first end is connected to the anode of the first freewheeling diode D6, the second end of the secondary winding of the transformer T1 is connected to the anode of the second freewheeling diode D5, the cathode of the first freewheeling diode D6 and the second continuation
  • the cathode of the flow diode D5 is connected to the rear end ground, and the secondary winding of the transformer T1 Intermediate tap output of the isolation transformer as the LLC unit 40;
  • a DC voltage filtering unit 50 includes a first electrolytic capacitor C3, an anode of the first electrolytic capacitor C3 is connected to an output end of the LLC isolation converter unit 40, and a cathode of the first electrolytic capacitor C3 is connected to a rear end;
  • the inverter inverting unit 70 is connected to an output end of the LLC isolating converter unit 40.
  • the inverter inverting unit 70 includes a fourth switching tube Q1, a fifth switching tube Q2, a sixth switching tube Q3, and a seventh
  • the inverter bridge composed of the switch tube Q4 and the filter inductor L3, the gate of the fourth switch tube Q1, the gate of the fifth switch tube Q2, the gate of the sixth switch tube Q3, and the gate of the seventh switch tube Q4 Used to access the PWM control signal, and control the fourth switching transistor Q1, the fifth switching transistor Q2, the sixth switching transistor Q3, and the seventh switching transistor Q4 to be turned on or off, so that the inverter inverting unit 70 outputs AC power, an output end of the inverter bridge is connected to a front end of the filter inductor L3, a rear end of the filter inductor L3 is connected to a load, and the filter inductor L3 is used for filtering a high frequency pulse in the alternating current and is a load Provides
  • the input rectifying unit 10 rectifies the grid voltage, and then filters the filter unit 20 to output a pulsating DC voltage, and then uses the PFC boosting unit 30 to boost the pulsating DC voltage.
  • the LLC isolated converter unit 40 the first switching transistor Q6, the second switching transistor Q7, the resonant capacitor C4, the discharging resistor R2B, and the leakage inductance of the primary side of the transformer T1 and the primary exciting inductance constitute an LLC resonant circuit, and are in the LLC resonant circuit.
  • the present invention not only realizes the isolated transmission of voltage, but also improves the PF value of the step-up/step-down conversion device, and also improves the output voltage quality, making the voltage conversion process more secure and reliable.
  • the invention provides a filter inductor L3 at the output end of the inverter inverting unit 70, and the filter inductor L3 can filter out the high frequency pulse in the alternating current, so that the load can obtain high quality power frequency sinusoidal alternating current, thereby improving Output voltage quality to meet power supply requirements.
  • the input rectifying unit 10 includes a socket, a fuse F2, a lightning protection resistor RV1, a common mode suppression inductor L1, a safety capacitor CX1, and a rectifier bridge DB1, and the fuse F2 is connected to the neutral line of the socket.
  • the front end of the common mode suppression inductor L1 is connected in parallel to the socket
  • the lightning protection resistor RV1 is connected in parallel to the front end of the common mode suppression inductor L1
  • the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are connected in parallel
  • the mode suppresses the rear end of the inductor L1, and the output of the rectifier bridge DB1 is used to output a pulsating DC voltage.
  • the filtering unit 20 includes a filtering capacitor C1 connected between the output end of the input rectifying unit 10 and the front end ground.
  • the PFC boosting unit 30 includes a boosting inductor L2, a third switching transistor Q5, a first rectifier diode D1, and a second electrolytic capacitor C2.
  • the front end of the boosting inductor L2 is connected to the filtering unit 20
  • the output end of the boosting inductor L2 is connected to the drain of the third switching transistor Q5, the source of the third switching transistor Q5 is connected to the front end, and the gate of the third switching transistor Q5 is used for A PWM control signal is connected, a drain of the third switching transistor Q5 is connected to an anode of the first rectifier diode D1, a cathode of the first rectifier diode D1 is used as an output end of the PFC boosting unit 30, and the first rectification is performed.
  • the cathode of the diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end. Further, a third pull-down resistor R22 is connected between the gate of the third switching transistor Q5 and the front end ground.
  • the PFC boosting unit 30 when the C1 output half-wave AC voltage is detected, the PFC enters the boost mode to improve the PF value of the AC-to-AC intelligent buck conversion topology circuit, and the voltage after the boosting is C2 filtered. 400V.
  • the specific boosting principle is as follows: When Q5 is turned on, the current on C1 forms a loop through the boost inductors L2 and Q5 to GND, and the boost inductor L2 stores energy; when Q5 is turned off, the boost inductor forms a specific input voltage.
  • the induced electromotive force is rectified by the freewheeling tube D1 to form a unidirectional pulse voltage and then sent to the C2 capacitor for filtering, and filtered into a DC voltage of 400V.
  • Q5 is based on the input AC sine wave change taken by the MCU control unit 80 to increase or decrease the on-time of Q5, so that the current and voltage phases are consistent to increase the PF value.
  • the embodiment further includes an MCU control unit 80.
  • the gate of the first switch tube Q6, the gate of the second switch tube Q7 and the gate of the third switch tube Q5 are respectively connected to the MCU control unit. 80.
  • the MCU control unit 80 is configured to output PWM signals to the first switch tube Q6, the second switch tube Q7, and the third switch tube Q5, respectively, to control the first switch tube Q6, the second switch tube Q7, and the third switch.
  • the tube Q5 is in an on-off state
  • the MCU control unit 80 is further configured to output four PWM pulse signals to the inverter inverting unit 70 to cause the inverter inverting unit 70 to output an alternating current.
  • the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
  • an AC sampling unit 90 is further included.
  • the AC sampling unit 90 is connected between the input end of the input rectifying unit 10 and the MCU control unit 80.
  • the AC sampling unit 90 is used.
  • the voltage on the AC side of the input rectification unit 10 is collected and fed back to the MCU control unit 80.
  • the AC sampling unit 90 includes an operational amplifier U9B, and two input ends of the operational amplifier U9B are respectively connected to an input end of the input rectifying unit 10 through a current limiting resistor, The output of the operational amplifier U9B is connected to the MCU control unit 80.
  • a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to the MCU control unit 80.
  • the first sampling resistor R2A causes the MCU control unit 80 to collect an electrical signal of the source of the third switching transistor Q5.
  • the embodiment further includes a DC voltage sampling unit 60, and the DC voltage sampling unit 60 includes a second sampling resistor R13 and a third sampling resistor R15 connected in series.
  • the front end of the second sampling resistor R13 is connected to the output end of the LLC isolation converter unit 40, and the rear end of the third sampling resistor R15 is connected to the MCU control unit 80, and the second sampling resistor R13 and the The three-sampling resistor R15 causes the MCU control unit 80 to acquire an electrical signal at the output of the LLC isolated converter unit 40.
  • a first pull-down resistor R25 is connected between the gate and the source of the first switching transistor Q6, and the second switching transistor Q7 is connected.
  • a second pull-down resistor R26 is connected between the gate and the source.
  • the inverter inverting unit 70 in this embodiment is composed of Q1, Q2, Q3, Q4, and L3, and the DC voltage filtered by C3 is looped through Q1, L4, load, and Q4 to supply power to the load to form the first high frequency pulse.
  • Level; the second high-frequency pulse level forms a loop through Q2, L3, load, Q3, and filters the blocking effect of high-frequency pulse level through L3, forming a complete power-frequency sine wave communication on the load.
  • the PWM signal outputted by the control chip U1 is sent to the GATE poles of Q1, Q2, Q3, and Q4 by the PWM1H, PWM1L, PWM2H, and PWM2L through the driving circuit.
  • the phase and frequency in the inverter inverter circuit operate according to the mode set in the control chip, and Q1, Q2, Q3, and Q4 operate through the power frequency modulation high frequency PWM mode, and the inductor L3 filters the high frequency pulse level. In addition, leaving the power frequency sinusoidal AC power to the load.
  • the invention discloses an intelligent full-bridge sinusoidal voltage conversion circuit based on PFC and LLC resonance, which is compared with the prior art.
  • the invention has a high PF value, realizes isolation between the power grid and the output end, and has high security.
  • the output voltage can be automatically adjusted within the input full voltage range, and the output frequency is fixed.
  • the output voltage is sinusoidal output, and the AC voltage has an automatic shaping function.
  • the present invention includes a voltage and current sampling circuit. It can prevent surge voltage and current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

La présente invention concerne un circuit de conversion de tension en pont complet intelligent basé sur la résonance PFC et LLC, comprenant : une unité de redressement d'entrée (10), une unité de filtrage (20), une unité d'amplification de tension PFC (30), et une unité de convertisseur d'isolation LLC (40), une unité de filtrage de tension continue (50), et une unité d'onduleur (70). L'unité de convertisseur d'isolation LLC comprend un premier transistor de commutation (Q6), un deuxième transistor de commutation (Q7), une première diode de roue libre (D6), une seconde diode de roue libre (D5), un transformateur (T1), un condensateur résonant (C4), et une résistance de décharge (R2B). L'unité d'onduleur comprend un pont onduleur constitué d'un quatrième transistor de commutation (Q1), d'un cinquième transistor de commutation (Q2), d'un sixième transistor de commutation (Q3), et d'un septième transistor de commutation (Q4) et d'un inducteur de filtrage (L3), l'extrémité de sortie du pont onduleur étant connectée à l'extrémité avant de l'inducteur de filtrage, l'extrémité arrière de l'inducteur de filtrage étant connectée à une charge, et l'inducteur de filtrage étant utilisé pour filtrer une impulsion haute fréquence en courant alternatif et fournir un courant alternatif sinusoïdal de fréquence industrielle à la charge. Le circuit de conversion de tension peut améliorer une valeur de facteur de puissance et peut également filtrer une impulsion haute fréquence au niveau d'un côté de sortie, de manière à fournir un courant alternatif sinusoïdal de fréquence industrielle de haute qualité à une charge.
PCT/CN2017/079185 2016-12-15 2017-04-01 Circuit de conversion de tension sinusoïdale en pont complet intelligent basé sur la résonance pfc et llc WO2018107619A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611160042.7A CN106533195A (zh) 2016-12-15 2016-12-15 基于pfc与llc谐振的智能全桥正弦波电压转换电路
CN201611160042.7 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018107619A1 true WO2018107619A1 (fr) 2018-06-21

Family

ID=58339641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079185 WO2018107619A1 (fr) 2016-12-15 2017-04-01 Circuit de conversion de tension sinusoïdale en pont complet intelligent basé sur la résonance pfc et llc

Country Status (2)

Country Link
CN (1) CN106533195A (fr)
WO (1) WO2018107619A1 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217680A (zh) * 2018-11-23 2019-01-15 芜湖国睿兆伏电子有限公司 一种固态调制器直流电源
CN109302811A (zh) * 2018-09-28 2019-02-01 天津斌德鑫力电子科技有限公司 一种悬浮轨道车辆静态调试系统
CN109546859A (zh) * 2018-12-20 2019-03-29 北京大豪科技股份有限公司 电压变换电路
CN109546865A (zh) * 2019-01-10 2019-03-29 红河学院 一种基于恒能量斩波技术的脉冲功率合成电路
CN109818506A (zh) * 2019-03-08 2019-05-28 中国科学院合肥物质科学研究院 一种带能量回馈的且效率极高的超导磁体开关电源
CN109822193A (zh) * 2019-03-26 2019-05-31 华南理工大学 基于llc的一体化脉冲mig焊电源系统及其控制方法
CN110061639A (zh) * 2019-03-26 2019-07-26 深圳市航嘉聚源科技股份有限公司 一种输出可调电源电路
CN110708820A (zh) * 2019-10-31 2020-01-17 苏州锴威特半导体股份有限公司 一种通过llc谐振控制的led恒流驱动电路
CN111251893A (zh) * 2020-03-09 2020-06-09 科博达技术股份有限公司 新能源汽车的高压母线电容的预充电装置
CN111669039A (zh) * 2020-07-07 2020-09-15 湖北省电力装备有限公司 一种岸电系统逆变器过流保护系统
CN112257176A (zh) * 2020-10-19 2021-01-22 北京交通大学 一种城轨列车系统的故障传播的分析方法
CN113572371A (zh) * 2021-08-12 2021-10-29 乐清市乐翔电气有限公司 一种纯正弦波交流恒压稳定电源
CN113595412A (zh) * 2021-08-27 2021-11-02 康佳集团股份有限公司 一种llc电路及开关电源
CN113809938A (zh) * 2020-06-12 2021-12-17 上海正泰智能科技有限公司 小型断路器开关电源电路
CN113965091A (zh) * 2021-11-03 2022-01-21 上海交通大学 一种基于级联全桥的均流电路及其控制方法
CN114039497A (zh) * 2021-10-12 2022-02-11 清华大学 一种交流漏磁检测用正弦波励磁电源
CN114039490A (zh) * 2021-11-02 2022-02-11 湖北三江航天万峰科技发展有限公司 数字变频调压装置及其控制方法
CN114172385A (zh) * 2021-11-10 2022-03-11 漳州科华技术有限责任公司 一种三桥臂拓扑电路的调制方法
CN114614444A (zh) * 2022-04-12 2022-06-10 青岛理工大学 一种具有过流降压的大功率电源
CN115149826A (zh) * 2022-06-10 2022-10-04 南昌航空大学 一种三相隔离ac/dc高频变压器
CN115694204A (zh) * 2022-11-24 2023-02-03 深圳威泰科智能科技有限公司 一种车载隔离稳压电源电路
CN115765514A (zh) * 2022-11-17 2023-03-07 深圳市迪威电气有限公司 一种可双向变换的三相隔离型变换器及其控制方法
CN116131618A (zh) * 2022-12-13 2023-05-16 深圳市麦格米特驱动技术有限公司 一种老化测试装置、方法及系统
CN116207811A (zh) * 2022-12-15 2023-06-02 苏州博沃创新能源科技有限公司 7kW双向电动汽车非车载直流充电模块

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787793A (zh) * 2016-12-15 2017-05-31 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥修正波电压转换电路
CN106533195A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥正弦波电压转换电路
CN108832833A (zh) * 2017-05-04 2018-11-16 西华大学 一种忆阻器逆变电源
CN107517017A (zh) * 2017-09-25 2017-12-26 黎明职业大学 一种单相调压正弦波变频逆变电源
CN109661072B (zh) * 2019-01-21 2024-07-19 杭州士兰微电子股份有限公司 Llc谐振变换器、led驱动电路及其控制方法
CN110146828B (zh) * 2019-05-27 2024-05-17 深圳市科赛电子有限公司 一种用于逆变电源老化测试的交流电子负载模块及老化测试系统
CN110829947B (zh) * 2019-10-11 2024-07-02 新乡航空工业(集团)有限公司 一种基于航空三相pfc的电机控制系统
CN110995012B (zh) * 2019-12-26 2021-05-14 深圳市英威腾电气股份有限公司 一种中继式llc谐振拓扑电路及开关电源
CN111614273A (zh) * 2020-06-23 2020-09-01 山东泰开高压开关有限公司 用于共高频母线变换器中抑制高频振荡的装置及变换器
CN113346759A (zh) * 2021-06-28 2021-09-03 天津铁路信号有限责任公司 一种用于铁路信号电源屏的acac交流电源模块
CN114070036B (zh) * 2021-11-15 2023-11-03 英飞特电子(杭州)股份有限公司 一种共模干扰抑制电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505107A (zh) * 2009-01-20 2009-08-12 华南理工大学 基于llc串联谐振的低电压应力单级ac-dc变换器
CN105006957A (zh) * 2015-08-14 2015-10-28 南京理工大学 一种单相交错反激逆变器输入电流脉动抑制的装置及方法
CN106533195A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥正弦波电压转换电路
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724152B2 (en) * 2002-07-19 2004-04-20 Donald K. Gladding Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply
CN101527520B (zh) * 2009-01-20 2011-06-15 华南理工大学 基于llc串联谐振的单级单相ac-dc变换器
CN103117642A (zh) * 2012-05-25 2013-05-22 深圳市中兴昆腾有限公司 一种llc谐振变换器控制系统及控制方法
CN106208638A (zh) * 2015-04-30 2016-12-07 神华集团有限责任公司 电能转换装置及相应的电能管理连接系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505107A (zh) * 2009-01-20 2009-08-12 华南理工大学 基于llc串联谐振的低电压应力单级ac-dc变换器
CN105006957A (zh) * 2015-08-14 2015-10-28 南京理工大学 一种单相交错反激逆变器输入电流脉动抑制的装置及方法
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN106533195A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥正弦波电压转换电路

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302811A (zh) * 2018-09-28 2019-02-01 天津斌德鑫力电子科技有限公司 一种悬浮轨道车辆静态调试系统
CN109302811B (zh) * 2018-09-28 2023-08-22 天津斌德鑫力电子科技有限公司 一种悬浮轨道车辆静态调试系统
CN109217680A (zh) * 2018-11-23 2019-01-15 芜湖国睿兆伏电子有限公司 一种固态调制器直流电源
CN109546859A (zh) * 2018-12-20 2019-03-29 北京大豪科技股份有限公司 电压变换电路
CN109546865A (zh) * 2019-01-10 2019-03-29 红河学院 一种基于恒能量斩波技术的脉冲功率合成电路
CN109546865B (zh) * 2019-01-10 2023-12-29 红河学院 一种基于恒能量斩波技术的脉冲功率合成电路
CN109818506A (zh) * 2019-03-08 2019-05-28 中国科学院合肥物质科学研究院 一种带能量回馈的且效率极高的超导磁体开关电源
CN109818506B (zh) * 2019-03-08 2024-01-05 中国科学院合肥物质科学研究院 一种带能量回馈的超导磁体开关电源
CN109822193A (zh) * 2019-03-26 2019-05-31 华南理工大学 基于llc的一体化脉冲mig焊电源系统及其控制方法
CN110061639A (zh) * 2019-03-26 2019-07-26 深圳市航嘉聚源科技股份有限公司 一种输出可调电源电路
CN110708820A (zh) * 2019-10-31 2020-01-17 苏州锴威特半导体股份有限公司 一种通过llc谐振控制的led恒流驱动电路
CN111251893A (zh) * 2020-03-09 2020-06-09 科博达技术股份有限公司 新能源汽车的高压母线电容的预充电装置
CN111251893B (zh) * 2020-03-09 2024-05-14 科博达技术股份有限公司 新能源汽车的高压母线电容的预充电装置
CN113809938A (zh) * 2020-06-12 2021-12-17 上海正泰智能科技有限公司 小型断路器开关电源电路
CN111669039A (zh) * 2020-07-07 2020-09-15 湖北省电力装备有限公司 一种岸电系统逆变器过流保护系统
CN112257176A (zh) * 2020-10-19 2021-01-22 北京交通大学 一种城轨列车系统的故障传播的分析方法
CN112257176B (zh) * 2020-10-19 2023-11-07 北京交通大学 一种城轨列车系统的故障传播的分析方法
CN113572371B (zh) * 2021-08-12 2022-11-15 乐清市乐翔电气有限公司 一种纯正弦波交流恒压稳定电源
CN113572371A (zh) * 2021-08-12 2021-10-29 乐清市乐翔电气有限公司 一种纯正弦波交流恒压稳定电源
CN113595412A (zh) * 2021-08-27 2021-11-02 康佳集团股份有限公司 一种llc电路及开关电源
CN113595412B (zh) * 2021-08-27 2023-08-18 康佳集团股份有限公司 一种llc电路及开关电源
CN114039497B (zh) * 2021-10-12 2024-06-11 清华大学 一种交流漏磁检测用正弦波励磁电源
CN114039497A (zh) * 2021-10-12 2022-02-11 清华大学 一种交流漏磁检测用正弦波励磁电源
CN114039490A (zh) * 2021-11-02 2022-02-11 湖北三江航天万峰科技发展有限公司 数字变频调压装置及其控制方法
CN113965091B (zh) * 2021-11-03 2023-10-27 上海交通大学 一种基于级联全桥的均流电路及其控制方法
CN113965091A (zh) * 2021-11-03 2022-01-21 上海交通大学 一种基于级联全桥的均流电路及其控制方法
CN114172385A (zh) * 2021-11-10 2022-03-11 漳州科华技术有限责任公司 一种三桥臂拓扑电路的调制方法
CN114614444A (zh) * 2022-04-12 2022-06-10 青岛理工大学 一种具有过流降压的大功率电源
CN114614444B (zh) * 2022-04-12 2024-01-05 青岛理工大学 一种具有过流降压的大功率电源
CN115149826A (zh) * 2022-06-10 2022-10-04 南昌航空大学 一种三相隔离ac/dc高频变压器
CN115765514B (zh) * 2022-11-17 2023-08-11 深圳市迪威电气有限公司 一种可双向变换的三相隔离型变换器及其控制方法
CN115765514A (zh) * 2022-11-17 2023-03-07 深圳市迪威电气有限公司 一种可双向变换的三相隔离型变换器及其控制方法
CN115694204A (zh) * 2022-11-24 2023-02-03 深圳威泰科智能科技有限公司 一种车载隔离稳压电源电路
CN116131618A (zh) * 2022-12-13 2023-05-16 深圳市麦格米特驱动技术有限公司 一种老化测试装置、方法及系统
CN116131618B (zh) * 2022-12-13 2024-04-19 深圳麦格米特电气股份有限公司 一种老化测试装置、方法及系统
CN116207811A (zh) * 2022-12-15 2023-06-02 苏州博沃创新能源科技有限公司 7kW双向电动汽车非车载直流充电模块
CN116207811B (zh) * 2022-12-15 2024-04-05 苏州博沃创新能源科技有限公司 7kW双向电动汽车非车载直流充电模块

Also Published As

Publication number Publication date
CN106533195A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2018107619A1 (fr) Circuit de conversion de tension sinusoïdale en pont complet intelligent basé sur la résonance pfc et llc
WO2018107623A1 (fr) Circuit de conversion de tension d'onde sinusoïdale intelligent basé sur un double pont complet pfc
WO2018107600A1 (fr) Circuit de conversion de tension à onde modifiée intelligent basé sur un pont complet direct pfc
WO2018129825A1 (fr) Circuit de conversion de tension à onde sinusoïdale en demi-pont intelligent fondé sur un convertisseur indirect entrelacé pfc
WO2018107599A1 (fr) Circuit de conversion de tension sinusoïdale intelligent basé sur un pont complet direct pfc
WO2018120483A1 (fr) Circuit de conversion de tension sinusoïdale intelligent basé sur un pont complet à tranfert en retour entrelacé de pfc
WO2018107621A1 (fr) Circuit de conversion de tension sinusoïdale intelligent basé sur un pont complet indirect pfc
WO2018120523A1 (fr) Circuit de conversion de tension sinusoïdale intelligent à demi-pont de conversion de transfert direct de pfc
WO2018126557A1 (fr) Circuit de conversion de tension d'onde sinusoïdale en demi-pont intelligent basé sur la résonance llc et la pfc
WO2018107620A1 (fr) Circuit de conversion de tension d'onde de correction intelligente basé sur un pont complet indirect pfc
CN103812359B (zh) 一种交流-直流变换电路及其控制方法
CN101854120B (zh) 一种高效率多功能反激变换器
WO2018129824A1 (fr) Circuit de conversion de tension à onde modifiée en demi-pont intelligent basé sur un transfert indirect entrelacé pfc
WO2018126554A1 (fr) Circuit de conversion de tension d'onde de correction intelligente basé sur pfc, pont complet et demi-pont
WO2018107622A1 (fr) Circuit de conversion de tension d'onde de correction intelligent basé sur un double pont complet de pfc
WO2018120482A1 (fr) Circuit de conversion de tension d'onde de correction intelligent basé sur un pont complet à transfert en retour étagé de pfc
WO2018126555A1 (fr) Circuit de conversion de tension sinusoïdale intelligent basé sur un pont complet et un demi-pont à pfc
WO2018126556A1 (fr) Circuit de conversion de tension d'ondes de correction de demi-ponts intelligents sur la base de résonances pfc et llc
WO2018120522A1 (fr) Circuit de conversion de tension d'onde sinusoïdale modifié intelligent basé sur un demi-pont de conversion directe pfc
CN206620058U (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
CN208508805U (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018129832A1 (fr) Circuit de conversion de tension à onde modifiée en demi-pont intelligent basé sur une pfc de vienne
WO2018129835A1 (fr) Circuit de conversion de tension d'onde sinusoïdale en demi-pont intelligent à base de pfc de vienne
CN206364711U (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN206364710U (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881669

Country of ref document: EP

Kind code of ref document: A1