WO2018107307A1 - 超大功率的激光空间合束系统及其相关系统 - Google Patents

超大功率的激光空间合束系统及其相关系统 Download PDF

Info

Publication number
WO2018107307A1
WO2018107307A1 PCT/CN2016/000682 CN2016000682W WO2018107307A1 WO 2018107307 A1 WO2018107307 A1 WO 2018107307A1 CN 2016000682 W CN2016000682 W CN 2016000682W WO 2018107307 A1 WO2018107307 A1 WO 2018107307A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
mirror
ultra
high power
optical path
Prior art date
Application number
PCT/CN2016/000682
Other languages
English (en)
French (fr)
Inventor
徐海军
Original Assignee
徐海军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐海军 filed Critical 徐海军
Priority to PCT/CN2016/000682 priority Critical patent/WO2018107307A1/zh
Publication of WO2018107307A1 publication Critical patent/WO2018107307A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Definitions

  • the invention relates to the field of laser technology, in particular to an ultra-high power laser space combining system, an ultra-high power space combining laser system and a group central computer control system.
  • the existing traditional high-power laser systems in China mainly have the following disadvantages: (1) the total output power is low, the single-pulse energy is low, and the laser application is restricted; (2) the high-power multi-mode laser beam mode difference restricts the laser power improvement. (3) The long-distance output attenuation of the laser beam energy leads to the limited total power density of the long-distance transmission, which restricts the application of the laser in the defense field, such as the interception of missiles, rockets, drones, and military aircraft.
  • a super-power laser space combining is provided. system.
  • an ultra-high power space combined laser system and a group central computer control system are also provided.
  • An ultra-high power laser space combining system comprising: a plurality of lasers, a plurality of optical path adjusting modules, an angle swinging head, a rotating table and a numerical control system, wherein the optical path adjusting module comprises a beam expanding mirror, a collimating mirror and a mirror
  • the plurality of optical path adjustment modules form an overall optical road surface array, the optical road surface array is mounted on the angle swing head, and the angle swing head is mounted on the rotary table; the numerical control system controls the rotary table, the angle swing head and the optical path adjustment modules on the optical road surface array to be linked,
  • the laser beams emitted by the plurality of lasers are concentrated at a point in a spatial combination.
  • the plurality of optical path adjustment modules form a stepped integrated optical road surface array.
  • the plurality of lasers are a combination of a plurality of high power single mode fiber lasers.
  • the optical path adjustment module comprises a motor;
  • the numerical control system controls the collimation mirror and the linkage of the mirrors to cause the laser beams emitted by the laser to converge at a point in a spatial combination manner, which can be realized by:
  • the beam expander is fixed, and the collimator mirror and the mirror are controlled by the numerical control system and driven by the motor to realize the focal length adjustment and angle adjustment of the laser beam space, thereby concentrating the laser beam at a point.
  • the motor in the optical path adjustment module is a piezoelectric ceramic motor.
  • the focal length adjustment of the space of the laser beam is achieved in the following manner:
  • the collimating mirror is controlled by the numerical control system and driven by the motor to move axially, thereby realizing the focal length adjustment of the space of the laser beam.
  • the mirror is at least two pieces
  • the angular adjustment of the space of the laser beam is achieved by:
  • the two mirrors are controlled by the numerical control system and oscillated left and right under the driving of the motor.
  • the swing axes of the two mirrors are perpendicular to each other to control the lateral and longitudinal oscillation of the laser beam to realize the spatial adjustment of the laser beam.
  • the beam expander is a convex lens or a concave lens.
  • the collimating mirror is a convex lens.
  • the collimating mirror is coaxial with the beam expanding mirror, and the collimating mirror is controlled by the numerical control system and driven by the motor for axial movement.
  • the system comprises a first piezoelectric ceramic motor for uniaxial linear motion and a first rotary piezoelectric ceramic motor and a second rotary piezoelectric ceramic motor for rotational motion;
  • the mirror comprises at least a first mirror and a second reflector a mirror; an axis of the first piezoelectric ceramic motor and an axis of the collimating mirror are parallel to each other, an axis of the first rotating piezoelectric ceramic motor is perpendicular to an axis of the collimating mirror, and an axis of the second rotating piezoelectric ceramic motor
  • the axis of a rotating piezoelectric ceramic motor is perpendicular to each other in space; wherein the numerical control system controls the first piezoelectric ceramic motor to drive the collimating mirror to perform single-axis linear motion, and controls the first rotating piezoelectric ceramic motor to drive the first mirror to swing, And controlling the second rotating piezoelectric ceramic motor to drive the second mirror to swing.
  • the angle swing head comprises a swing head frame, an oil floating bearing, a grating ruler and a first motor;
  • the rotary table comprises a base, a platform, an oil floating bearing, a grating ruler and a second motor;
  • the angle swing head and the rotary table are controlled by a numerical control system
  • the oscillating motion and the rotational motion are respectively driven by the first motor and the second motor.
  • the first motor and the second motor in the angle swing head and the rotary table are torque motors.
  • a second aspect provides an ultra-high power spatial beam combining laser system comprising a plurality of the above-described ultra-high power laser space combining systems.
  • a third aspect provides a group central computer control system including a plurality of the above-described ultra-high power laser space combining systems.
  • the invention provides a super-power laser space combining system, an ultra-high power space combining laser system and a group central computer control system.
  • the ultra-high power laser space combining system comprises: a plurality of lasers, a plurality of optical path adjusting modules, an angle swinging head, a rotating table and a numerical control system, wherein the optical path adjusting module comprises a beam expanding mirror, a collimating mirror and a mirror,
  • the plurality of optical path adjustment modules form an overall optical road surface array, the optical road surface array is mounted on the angle swing head, and the angle swing head is mounted on the rotary table;
  • the numerical control system controls the rotary table, the angle swing head and the optical path adjustment modules on the optical road surface array to be linked, so that The laser beams from multiple lasers converge at a point in a spatially combined manner.
  • a plurality of optical path adjustment modules are integrated into one body through an optical road surface array, and then controlled by a numerical control system, each of the optical path adjustment modules on the rotary table, the angle swing head and the optical road surface array, and the laser beam is sequentially passed through the beam expander,
  • the collimating mirror and the mirror output complete the spatial beam combining and focusing of the laser beams emitted by the lasers, thereby concentrating the laser beams emitted by the lasers in a spatial combination to point to any target;
  • the adjustment module constitutes an optical road surface array, forming an area array combined structure, so that the laser power has no upper limit, the single pulse energy is super high, the power size can be determined as needed, and the rated power is determined by the size of the area array combination; How to centralize all laser energy under computer command to implement intelligent tracking illumination for arbitrary targets and to make the laser beam output at a long distance, for laser application to the defense field, such as missiles, rockets, drones, military aircraft inter
  • 1a is a schematic diagram showing the principle of an optical path adjusting module acting on an optical path according to an embodiment of the present invention
  • 1b is a schematic diagram showing the principle of an optical path adjusting module acting on an optical path according to another embodiment of the present invention
  • 1c is a schematic diagram showing the principle of an optical path adjusting module acting on an optical path according to still another embodiment of the present invention
  • 2a is a schematic diagram showing the principle of the optical path adjusting module acting on the optical path when the beam expander mirror adopts a fixed concave lens and the collimating mirror adopts a movable convex lens according to an embodiment of the invention
  • 2b is a schematic diagram showing the principle of the optical path adjustment module acting on the optical path when the beam expander mirror adopts a fixed concave lens and the collimator lens adopts a movable convex lens according to another embodiment of the present invention
  • 2c is a schematic diagram showing the principle of the optical path adjusting module acting on the optical path when the beam expander mirror adopts a fixed concave lens and the collimating mirror adopts a movable convex lens according to another embodiment of the present invention
  • 3a is a schematic diagram showing the principle of the optical path adjusting module acting on the optical path when the beam expander mirror adopts a fixed convex lens and the collimating mirror adopts a movable convex lens according to an embodiment of the invention
  • FIG. 3b is a schematic diagram showing the principle of the optical path adjusting module acting on the optical path when the beam expander mirror adopts a fixed convex lens and the collimating mirror adopts a movable convex lens according to another embodiment of the present invention
  • 3c is a schematic diagram showing the principle of the optical path adjusting module acting on the optical path when the beam expander mirror adopts a fixed convex lens and the collimating mirror adopts a movable convex lens according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of an optical path of a laser beam in combination with a mirror when a beam expander is used in a light path adjusting module according to an embodiment of the present invention; and the collimating lens uses a movable convex lens;
  • FIG. 5 is a schematic diagram of an optical path of a laser beam that cooperates with a mirror when a beam expander adopts a fixed convex lens and a collimating lens adopts a movable convex lens according to an embodiment of the invention
  • FIG. 6 is a schematic diagram of a three-dimensional optical path of a collimating mirror and a mirror cooperated with a piezoelectric ceramic motor in accordance with an embodiment of the present invention
  • Figure 7 is a cross-sectional view showing the assembly of the rotary table and the angle swing head according to an embodiment of the present invention.
  • FIG. 8 is a three-dimensional schematic view of a rotary table and an angle swing head assembled according to an embodiment of the present invention
  • FIG. 9a is a schematic view showing a spatial beam combining focus of an optical road surface array according to an embodiment of the present invention.
  • 9b is a schematic plan view of a stepped plane formed by a plurality of optical path adjusting modules according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the principle of spatial beam combining focusing of an area array laser beam output by a super-power laser space combining system according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram showing the assembly of a super-power laser space combining system according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a plurality of ultra-high power laser space combining systems jointly locking the same target point according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of an application structure of an ultra-high power spatial beam combining laser system using an ultra-high power laser space combining system according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of a group central computer control system constructed by using a plurality of ultra-high power laser space combining systems according to an embodiment of the present invention.
  • Embodiments of the present invention provide an ultra-high power laser space combining system.
  • the system may include: a plurality of lasers, a plurality of optical path adjusting modules, an angle swinging head, a rotating table, and a numerical control system, wherein the optical path adjusting module comprises a beam expanding mirror, a collimating mirror, a mirror, and the plurality of optical path adjusting modules form an integral body.
  • the light road surface array is mounted on the angle swing head, and the angle swing head is mounted on the rotary table; the numerical control system controls the rotary table, the angle swing head and the optical path adjustment modules on the optical road surface array to link the laser beam emitted by the laser to the space
  • the convergence method is concentrated at one point.
  • the laser is the core of the laser energy of the system, and the laser is preferably a single mode fiber laser. More preferably, the plurality of lasers are a combination of a plurality of high power single mode fiber lasers.
  • the laser beam of the single-mode fiber laser is sequentially output through an optical path adjustment module composed of a beam expander, a collimator mirror, and a mirror.
  • the number of lasers can be several hundred or thousands, or even tens of thousands, as long as it can be implemented in practical applications. Thereby, the problem that the laser beams of a plurality of high-power single-mode fiber lasers are difficult to couple is avoided, and the technical constraint of the development of the ultra-high power laser system is eliminated.
  • the optical path adjustment module is an optical path component of the system that is responsible for the output of the laser beam and performs spatial combining and focusing of the laser beam of the system.
  • the optical path adjustment module acts on the laser beam output of its corresponding laser, and cooperates with other optical path adjustment modules to complete the spatial combining and focusing of the laser beam.
  • the plurality of optical path adjustment modules form a stepped integrated optical road surface array. The focus of all laser beams on the optical road array can be concentrated at the same point, can point to the same target, and can be focused in any space.
  • the numerical control system can be controlled by the upper computer to receive the command sent by the upper computer, and control the above embodiment to realize the tracking illumination of the target, especially the moving target.
  • the plurality of optical path adjusting modules are integrated into one body through the optical road surface array, and then controlled by the numerical control system to control the rotary table, the angle swing head and the optical path adjusting modules on the optical road surface array, and the laser beam is sequentially passed through the beam expander mirror.
  • the collimating mirror and the mirror output complete the spatial beam combining and focusing of the laser beams emitted by the lasers, thereby concentrating the laser beams emitted by the lasers in a spatial combination to point to any target; wherein, due to the multiple optical paths
  • the adjustment module constitutes a light road surface array, forming an area array combined structure, so that the laser power has no upper limit, the single pulse energy is super high, the power size can be determined as needed, and the rated power is determined by the size of the area array combination; Under the command of the computer, all the laser energy is concentrated to perform intelligent tracking illumination on any target, and the laser energy attenuation is extremely low, so that the laser beam can be outputted at a long distance.
  • concentrating the laser beams emitted by the lasers in a spatially combined manner can be achieved in the following manner:
  • the optical path adjusting module comprises a motor; the beam expander is fixed, the collimating mirror and the mirror are controlled by a numerical control system and driven by a motor to realize a focal length adjustment and an angle adjustment of the space of the laser beam.
  • the motor in the optical path adjustment module is a piezoelectric ceramic motor.
  • the collimating mirror is controlled by the numerical control system and driven by the motor to move axially, thereby realizing the focal length adjustment of the space of the laser beam.
  • the mirror is at least two pieces, and the two mirrors are controlled by the numerical control system and oscillated left and right under the driving of the motor, and the swing axes of the two mirrors are perpendicular to each other to control the lateral and longitudinal oscillation of the laser beam. Thereby achieving an angular adjustment of the space of the laser beam.
  • the embodiment of the present invention can drive the laser beam to perform high-precision tracking illumination on the high-speed moving target by adjusting each optical path adjusting module.
  • optical path adjustment module is controlled by the numerical control system and is linked with the angle swing head and the rotary table.
  • Figures 1a-1c exemplarily show a schematic diagram of the principle of the optical path adjustment module acting on the optical path.
  • the collimating mirror 3 is coaxial with the beam expander 2, the beam expander 2 is fixed, the focus 4 is the (virtual) focus of the beam expander 2, and the focal length of the beam expander 2 is f1;
  • Straight mirror 3 It can be moved axially by a piezoelectric ceramic motor.
  • the focus of the collimator lens 3 coincides with the focus 4 of the beam expander 2, the distance from the collimator lens 3 to the focus 4 of the beam expander 2 is the focal length f2 of the collimator lens 3.
  • the collimator lens 3 when the distance from the collimator lens 3 to the focus 4 of the beam expander 2 is equal to the focal length f2 of the collimator lens 3, the collimator lens 3 outputs a parallel beam of light 5.
  • the collimator lens 3 outputs the combined beam 5 of light.
  • the collimator lens 3 outputs a divergent light beam 5.
  • the beam expander is a convex or concave lens.
  • the collimating mirror is a convex lens.
  • a fixed concave lens is used as the beam expanding mirror, and a movable convex lens is used as an example.
  • the working principle of the optical path adjusting module acting on the optical path will be described in detail with reference to the accompanying drawings.
  • 2a-2c exemplarily show a schematic diagram of another optical path adjustment module acting on an optical path.
  • the beam expander 2 is a concave lens and is fixed, the focus 4 is its virtual focus, and the focal length is f1;
  • the collimator 3 is a convex lens and is driven by a piezoelectric ceramic motor, the collimator 3 and the beam expander
  • the mirror 2 is coaxial, and the focal length of the collimator lens 3 is f2.
  • the parallel light 1 passes through the beam expander 2 and then diverges to reach the collimating mirror 3, at which time it is output through the collimating mirror 3. It is a parallel light beam 5.
  • the focus of the collimator lens 3 leaves the focus 4 of the beam expander 2, and the collimator lens 3 reaches the beam expander 2.
  • the distance f2+ of the focus 4 is larger than the focal length f2 of the collimator lens 3.
  • the parallel light 1 is diverged after passing through the beam expander 2, and when the collimator lens 3 is passed, the combined beam 5 is output, and the beam is merged at this time. 5 is closed, the focus is C, and the focal length is fc1.
  • a fixed convex lens is used as the beam expander mirror, and a movable convex lens is used as an example.
  • the working principle of the light path adjusting module acting on the optical path will be described in detail with reference to the accompanying drawings.
  • the beam expander 2 is fixed and fixed, the focus 4 is the actual focus, and the focal length is f1;
  • the collimator 3 is a convex lens and is driven by a piezoelectric ceramic motor, and the collimator 3 is expanded.
  • the mirror 2 is coaxial, and the focal length of the collimator lens 3 is f2.
  • the parallel light 1 is merged to the focus 4 by the beam expander 2, and then diverged to reach the collimator lens 3, at which time
  • the collimator lens 3 outputs a parallel light beam 5.
  • the focus of the collimator lens 3 leaves the focus 4 of the beam expander 2, and the collimator lens 3 reaches the beam expander 2
  • the distance f2+ of the focus 4 is larger than the focal length f2 of the collimator lens 3.
  • the parallel light 1 reaches the collimator lens 3 through the beam expander 2
  • the combined light beam 5 is output, and the combined beam 5 is converged.
  • the focus is C and the focal length is fc1.
  • the focus 4 of the beam expander 2 is between the beam expander 2 and the two lenses of the collimator 3, and is a real focus.
  • the convex lens is used as the beam expander 2 only when the laser power is not too high.
  • the beam expander is a fixed concave lens and the collimator lens is a movable convex lens
  • the laser beam is combined with the mirror, and the optical path adjustment module is applied to the optical path in detail with reference to FIG. 4 . How it works.
  • the beam expander 2 adopts a concave lens and is fixed, the focus 4 is its virtual focus, and the focal length is f1;
  • the collimator lens 3 is a convex lens and is driven by a piezoelectric ceramic motor, the collimator lens 3 and the beam expander 2 coaxial.
  • the distance f2+ of the collimator lens 3 to the focus 4 of the beam expander 2 is larger than the focal length f2 of the collimator lens 3.
  • the parallel light 1 is expanded.
  • the beam mirror 2 is diverged and reaches the collimator lens 3, the combined beam light beam 5 is output.
  • the combined beam 5 output from the collimating mirror 3 is reflected by the mirror 6 to the other direction before being focused to the focus A, and is focused on the focus B; likewise, the beam is again reflected before the beam is focused to the focus B.
  • the mirror 7 is reflected to the other direction, and the combined light 8 is formed and then focused to the focus 9.
  • the focus 9 will be displaced in a straight line with the movement of the collimator 3.
  • the mirror 6 and the mirror 7 are driven and rotated by the piezoelectric ceramic motor controlled by the numerical control system, and the piezoelectric ceramic motors respectively driving the mirror 6 and the mirror 7 are perpendicular to each other in the axial direction, via two piezoelectric ceramic motors.
  • the change of the mirror 6 and the mirror 7 will cause the focus 9 of the combined beam 8 to be constantly displaced on a spherical surface; when the collimating mirror 3 is also linked at the same time, the focus 9 will be in a three-dimensional partial sphere.
  • the displacement in the type area is provided.
  • the piezoelectric ceramic motor described above is preferably a piezoelectric ceramic rotating electrical machine.
  • the beam expander is a fixed convex lens and the collimator lens is a movable convex lens
  • the laser beam is combined with the mirror, and the optical path adjustment module is applied to the optical path in detail with reference to FIG. 5 . How it works.
  • the beam expander 2 is a convex lens and is fixed.
  • the present embodiment is different from the beam expander 2 in the embodiment shown in FIG. 4, and the two are convex and concave, and the other contents are the same.
  • the principle of the optical path change outputted by the collimator lens 3 is identical to that of the embodiment shown in FIG.
  • the system includes a first piezoelectric ceramic motor that performs a single-axis linear motion and a first rotary piezoelectric ceramic motor and a second rotary piezoelectric ceramic motor that perform rotational motion;
  • the mirror includes at least a first a mirror and a second mirror;
  • the axis of the first piezoelectric ceramic motor is parallel to the axis of the collimating mirror, and the axis of the first rotating piezoelectric ceramic motor is perpendicular to the axis of the collimating mirror, and the second rotating piezoelectric
  • the axis of the ceramic motor and the axis of the first rotating piezoelectric ceramic motor are perpendicular to each other in space; wherein the first piezoelectric ceramic motor controls the first piezoelectric ceramic motor to drive the collimating mirror to perform single-axis linear motion, and controls the first rotating piezoelectric ceramic motor drive The first mirror swings and controls the second rotating piezoelectric ceramic motor to drive the second mirror to swing.
  • the piezoelectric ceramic motor 10 can perform single-axis linear motion.
  • the rotary piezoelectric ceramic motor 11 and the rotary piezoelectric ceramic motor 12 can perform a rotational motion.
  • the numerical control system controls the piezoelectric ceramic motor 10 to drive the collimator lens 3 to perform single-axis linear motion, and controls the rotary piezoelectric ceramic motor 11 to drive the mirror 6 to swing, and also controls the rotary piezoelectric ceramic motor 12 to drive the mirror. 7 swing; the axis of the piezoelectric ceramic motor 10 and the axis of the collimator lens 3 are parallel to each other, and the axis of the rotary piezoelectric ceramic motor 11 is perpendicular to the axis of the collimator lens 3, and the motor axis of the piezoelectric ceramic motor 12 is rotated and The motor axes of the rotary piezoelectric ceramic motor 11 are spatially perpendicular to each other.
  • the parallel light 1 is diverged by the beam expander 2 to the collimating mirror 3, which is driven away from the beam expander 2 by a single-axis linearly moving piezoelectric ceramic motor 10, at this time
  • the beam outputted by the collimating mirror 3 is a combined beam 5, and the combined beam 5 reaches the mirror 6, is reflected by the mirror 6 to reach the mirror 7, and is reflected by the mirror 7 to form a combined beam 8 and then focused to the focus.
  • the piezoelectric ceramic motor 10 drives the collimator lens 3 to move, and the rotary piezoelectric ceramic motor 11 and the rotary piezoelectric ceramic motor 12 are stationary, the focus 9 moves linearly; when the piezoelectric ceramic motor 10 is stationary The straight mirror 3 does not move, the rotating piezoelectric ceramic motor 12 is stationary, and the rotating piezoelectric ceramic motor 11 drives the mirror 6 to rotate, the focus 9 changes on the arc; when the piezoelectric ceramic motor 10 is stationary collimating mirror 3 does not move, the rotating piezoelectric ceramic motor 11 stationary mirror 6 does not move, when the rotating piezoelectric ceramic motor 12 drives the mirror 7 to rotate, the focus 9 changes on the arc; when the piezoelectric ceramic motor 10 is stationary, the collimator 3 does not When the rotating piezoelectric ceramic motor 11 and the rotary piezoelectric ceramic motor 12 drive the mirrors 6, 7 to rotate, the focus 9 changes on the spherical surface; when the piezoelectric ceramic motor 10 drives the collimator lens 3 to move, the piezo
  • the angle swing head may include a oscillating head frame, an oil floating bearing, a grating scale, and a first motor;
  • the rotating table may include a base, a platform, an oil floating bearing, a grating scale, and a second motor; the angle swing head
  • the rotary table and the rotary table are controlled by the numerical control system and are respectively driven by the first and second motors to perform an oscillating motion and a rotary motion.
  • the first motor and the second motor in the angle swing head and the rotary table are torque motors.
  • Fig. 7 exemplarily shows a schematic cross-sectional view of the rotary table and the angle swing head assembled.
  • the brake 22 and the hydraulic oil distributor 23 are mounted in position based on the rotary table base 13, and the torque motor inner stator 15, the oil floating bearing lower sleeve 17, and the outer casing 18 are respectively attached to the rotary table base 13,
  • the torque motor outer rotor 16 is mounted to the inner sleeve of the driving shaft 20, the two are mounted on the upper surface of the oil floating bearing lower sleeve 17, the oil floating bearing outer casing 18, and then the oil floating bearing upper sleeve 19 is installed in position;
  • the encoder 21 is mounted to the portion of the rotary table 14 as shown in Fig. 7, and then mounted to the drive shaft 20, and then connected to the brake 22 at the core hole of the rotary table 14.
  • two oil floating bearings 27 and an angle swing optical axis 26 are sequentially mounted to the bearing housing 28, and then the fixing sleeves 31 of the stator 29 of the torque motor are respectively mounted to the angle swing optical axis 26. Then, the stator 29 of the torque motor is mounted on the fixed sleeve 31, and the outer rotor 30 of the torque motor is mounted on the bearing casing 28 to constitute an oscillating device of the angle swing head.
  • the angle swing base 24 is mounted on the rotary table 14 on the basis of the rotary table, and then the angle swing optical axis 26 in the swinging device of the angle swing is fixed to the swing base 24.
  • the inside of the mounting hole is fixed by the gland 25.
  • Fig. 8 exemplarily shows a three-dimensional schematic view of the assembly of the rotary table and the angle swing.
  • the rotary table 36 will drive the angle swing head 37 to rotate 360 degrees under the driving of the torque motor, and the swinging device of the angle swing head 37 will perform a positive and negative 100 degree swing under the driving of the torque motor.
  • the above-mentioned ultra-high power laser space combining system can drive the laser beam to track and illuminate any moving target by adjusting the angle swing head and the rotating table, thereby improving the dynamic performance and accuracy of the laser system.
  • Fig. 9a exemplarily shows a spatial beam focusing view of an optical road surface array.
  • Fig. 9b exemplarily shows a stepped plane pattern composed of a plurality of optical path adjusting modules.
  • each optical path adjustment module 33 is mounted in position based on the optical road surface substrate 32.
  • each of the optical path adjustment modules 33 outputs a laser beam 34 and focuses the laser beam 34 to a focus 35, thereby collecting more intense laser energy. It can be seen that the embodiments of the present invention are not fiber coupling of the output laser beams of the single mode fiber lasers.
  • the spatial beam combining focusing principle of the area array laser beam output by the ultra-high power laser space combining system will be described in detail below in the manner of a preferred embodiment.
  • the optical road surface array integrated with the optical road surface substrate 32 and the optical path adjusting module 33 is mounted on the angle swing head 37, so that the surface laser beam output of the ultra-high power laser space combining system can be combined. system.
  • the area array laser beam output system When the area array laser beam output system is operated, the laser beam outputted by each single mode fiber laser is output through the optical path adjustment module 33 on the optical road surface array, and then the numerical control system controls the rotary table 36, the angle swing head 37, and the optical path adjustment module 33 to each other. In conjunction, a combined laser beam 34 is formed and focused to focus 35.
  • the embodiments of the present invention can be applied to the field of national defense, and can provide technical support for fields such as missiles, rockets, drones, and military aircraft interception.
  • Fig. 11 exemplarily shows an assembly schematic of an ultra-high power laser space combining system.
  • the trolley 39, the single mode fiber laser set 38, the rotary table 36, the angle swing head 37, and the face array 32 and the optical path adjustment module 33 constituting the optical road surface array are included.
  • the operation of the super-power laser space combining system is completed by the computer through the numerical control system console car 39, the single-mode fiber laser group 38, the rotating table 36, the angle swing head 37, the optical road surface matrix body 32 and the optical path adjusting module 33.
  • a plurality of the above-mentioned ultra-high power laser space combining systems can be arranged in a manner without different positions of the array, and receive the same control signal sent by the upper computer, and simultaneously lock any same target point, thereby Gather up to a stronger laser energy.
  • Figure 12 exemplarily shows a schematic diagram of a plurality of ultra-high power laser spatial beam combining systems jointly locking the same target point.
  • a plurality of ultra-high power laser space combining systems without different positions of the array can simultaneously lock any same target point under the same signal given by the upper computer at the same time, so that a stronger laser energy is collected.
  • This embodiment can Under the control of the computer, many other super-power laser space combining systems that are not in the same place cooperate with each other to track and illuminate the same target, forming more powerful laser energy at the same target point.
  • the defense field for example, it can be applied to laser cannons, which can destroy missiles, airplanes, drones, rockets, and ground armored vehicles, tanks, and the like.
  • FIG. 13 exemplarily shows an application structure diagram of an ultra-high power spatial beam combining laser system using the ultra-high power laser space combining system provided by the embodiment of the present invention.
  • the ultra high power spatial beam combining laser system comprises a computer and an ultra high power laser space combining system provided by an embodiment of the invention.
  • the numerical control system can control the cooling system, the rotating platform torque motor driver, the plurality of oscillating torque motor drivers and several control cards; the rotating platform torque motor driver can drive the rotating platform torque motor; the oscillating torque motor driver can drive the oscillating torque The motor; the control card can control the laser power supply and the piezoelectric ceramic motor driver, the laser power supply can supply the single mode fiber laser; the piezoelectric ceramic motor driver can drive the collimating mirror linear piezoelectric ceramic motor and the mirror rotating piezoelectric ceramic motor.
  • FIG. 14 exemplarily shows a structural diagram of a group central computer control system using a plurality of ultra-high power laser space combining systems provided by embodiments of the present invention. This includes a plurality of ultra high power spatial beam combining laser systems as shown in FIG.
  • FIG. 12 to FIG. 14 can be selected according to actual conditions, which is not limited by the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种超大功率的激光空间合束系统、超高功率空间合束激光系统及集团中央计算机控制系统。其中,超大功率的激光空间合束系统中,光路调节模块(33)包括扩束镜(2)、准直镜(3)和反光镜(6,7),多个光路调节模块(33)构成光路面阵,光路面阵安装于角度摆头(37),角度摆头(37)安装于旋转台(36);数控系统控制旋转台(36)、角度摆头(37)和光路面阵上的各光路调节模块(33)联动,使得多个激光器发出的激光束以空间合束方式汇聚于一点。通过将多个光路调节模块(33)集合成一体,再通过数控系统控制旋转台(36)、角度摆头(37)和各个光路调节模块(33)进行联动。由此,解决了如何在计算机指挥下集中所有激光器能量对任意目标实施智能跟踪照射并使激光束远距离输出的技术问题。

Description

超大功率的激光空间合束系统及其相关系统 技术领域
本发明涉及激光技术领域,具体而言,涉及一种超大功率的激光空间合束系统、超高功率空间合束激光系统及集团中央计算机控制系统。
背景技术
目前国内现存的传统的高功率激光系统主要存在以下不足:(1)输出总功率偏低,单脉冲能量低,激光应用受到制约;(2)大功率多模激光光束模式差制约激光功率的提升;(3)激光光束能量远距离输出衰减太多导致远距离传输总功率密度受限,制约激光在国防领域,如对导弹、火箭弹、无人机、军用飞机拦截的应用。
目前本领域还没有将多个激光器组合成一起合用的先例。
有鉴于此,特提出本发明。
发明内容
为了解决现有技术中的上述问题,即为了解决如何在计算机指挥下集中所有激光器能量对任意目标实施智能跟踪照射并使激光束远距离输出的技术问题,提供一种超大功率的激光空间合束系统。另外,为此,还提供一种超高功率空间合束激光系统及集团中央计算机控制系统。
为了实现上述目的,第一方面,提供以下技术方案:
一种超大功率的激光空间合束系统,其包括:多个激光器、多个光路调节模块、角度摆头、旋转台和数控系统,其中,光路调节模块包括扩束镜、准直镜和反光镜,多个光路调节模块构成整体的光路面阵,光路面阵安装于角度摆头,角度摆头安装于旋转台;数控系统控制旋转台、角度摆头和光路面阵上的各光路调节模块联动,使得多个激光器发出的激光束以空间合束方式汇聚于一点。
优选地,多个光路调节模块构成阶梯式的一体的光路面阵。
优选地,多个激光器为多个高功率单模光纤激光器的组合。
优选地,光路调节模块包括电机;数控系统控制准直镜和各反光镜联动,使得激光器发出的激光束以空间合束方式汇聚于一点,可以通过以下方式来实现:
扩束镜固定,准直镜和反光镜由数控系统控制并由电机驱动,来实现激光束的空间的焦距调节和角度调节,从而使激光束汇聚于一点。
优选地,光路调节模块中的电机为压电陶瓷电机。
优选地,激光束的空间的焦距调节通过以下方式来实现:
准直镜由数控系统控制并由电机驱动做轴向移动,从而实现激光束的空间的焦距调节。
优选地,反光镜至少为二片;
激光束的空间的角度调节通过以下方式来实现:
二片反光镜由数控系统控制并在电机的驱动下左右摆动,二片反光镜的摆动轴空间互相垂直,以控制激光束的横向和纵向摆动,实现激光束的空间的角度调节。
优选地,扩束镜为凸透镜或凹透镜。
优选地,准直镜为凸透镜。
优选地,准直镜与扩束镜同轴,且准直镜由数控系统控制并由电机驱动做轴向移动。
优选地,系统包括做单轴直线运动的第一压电陶瓷电机及做旋转运动的第一旋转压电陶瓷电机和第二旋转压电陶瓷电机;反光镜至少包括第一反光镜和第二反光镜;第一压电陶瓷电机的轴线与准直镜的轴线相互平行,第一旋转压电陶瓷电机的轴线与准直镜的轴线在平面内垂直,第二旋转压电陶瓷电机的轴线和第一旋转压电陶瓷电机的轴线在空间相互垂直;其中,数控系统控制第一压电陶瓷电机驱动准直镜做单轴直线运动,以及控制第一旋转压电陶瓷电机驱动第一反光镜摆动,并控制第二旋转压电陶瓷电机驱动第二反光镜摆动。
优选地,角度摆头包括摆头架、油浮轴承、光栅尺和第一电机;旋转台包括底座、平台、油浮轴承、光栅尺和第二电机;角度摆头和旋转台由数控系统控制分别由第一电机和第二电机驱动做摆动运动、旋转运动。
优选地,角度摆头和旋转台中的第一电机和第二电机为力矩电机。
为了实现上述目的,第二方面,提供一种超高功率空间合束激光系统,包括多个上述超大功率的激光空间合束系统。
为了实现上述目的,第三方面,提供一种集团中央计算机控制系统,包括多个上述超大功率的激光空间合束系统。
本发明提供一种超大功率的激光空间合束系统、超高功率空间合束激光系统及集团中央计算机控制系统。其中,该超大功率的激光空间合束系统包括:多个激光器、多个光路调节模块、角度摆头、旋转台和数控系统,其中,光路调节模块包括扩束镜、准直镜和反光镜,多个光路调节模块构成整体的光路面阵,光路面阵安装于角度摆头,角度摆头安装于旋转台;数控系统控制旋转台、角度摆头和光路面阵上的各光路调节模块联动,使得多个激光器发出的激光束以空间合束方式汇聚于一点。在该方案中,通过光路面阵将多个光路调节模块集合成一体,再通过数控系统控制旋转台、角度摆头和光路面阵上的各个光路调节模块进行联动,激光束依次经由扩束镜、准直镜和反光镜输出,完成各激光器发出的激光光束的空间合束与聚焦,从而将各激光器发出的激光束以空间合束方式汇聚于一点再指向任意目标;其中,由于将多个光路调节模块构成光路面阵,形成面阵式组合结构,使得激光功率无上限,单脉冲能量超高,功率大小可以按需而定,额定功率的高低由面阵组合的大小决定;由此,解决了如何在计算机指挥下集中所有激光器能量对任意目标实施智能跟踪照射并使激光束远距离输出的技术问题,为激光应用到国防领域,如在导弹、火箭弹、无人机、军用飞机拦截等领域的应用,提供了技术支持。
附图说明
图1a是根据本发明实施例的光路调节模块作用于光路的原理示意图;
图1b是根据本发明另一实施例的光路调节模块作用于光路的原理示意图;
图1c是根据本发明再一实施例的光路调节模块作用于光路的原理示意图;
图2a是根据本发明实施例的扩束镜采用固定的凹透镜、准直镜采用可动的凸透镜时光路调节模块作用于光路的原理示意图;
图2b是根据本发明另一实施例的扩束镜采用固定的凹透镜、准直镜采用可动的凸透镜时光路调节模块作用于光路的原理示意图;
图2c是根据本发明再一实施例的扩束镜采用固定的凹透镜、准直镜采用可动的凸透镜时光路调节模块作用于光路的原理示意图;
图3a是根据本发明实施例的扩束镜采用固定的凸透镜、准直镜采用可动的凸透镜时光路调节模块作用于光路的原理示意图;
图3b是根据本发明另一实施例的扩束镜采用固定的凸透镜、准直镜采用可动的凸透镜时光路调节模块作用于光路的原理示意图;
图3c是根据本发明再一实施例的扩束镜采用固定的凸透镜、准直镜采用可动的凸透镜时光路调节模块作用于光路的原理示意图;
图4是根据本发明实施例的光路调节模块中扩束镜采用固定的凹透镜、准直镜采用可动的凸透镜时与反光镜配合作用激光束的光路原理示意图;
图5是根据本发明实施例的光路调节模块中扩束镜采用固定的凸透镜、准直镜采用可动的凸透镜时与反光镜配合作用激光束的光路原理示意图;
图6是根据本发明实施例的光路调节模块中的准直镜、反光镜在压电陶瓷电机的驱动下配合作用激光束的三维光路示意图;
图7是根据本发明实施例的旋转台与角度摆头装配后的剖视示意图;
图8是根据本发明实施例的旋转台与角度摆头装配后的三维示意图;
图9a是根据本发明实施例的光路面阵空间合束聚焦示意图;
图9b是根据本发明实施例的由多个光路调节模块构成的阶梯面阵示意图;
图10是根据本发明实施例的超大功率的激光空间合束系统输出的面阵式激光光束时的空间合束聚焦原理示意图;
图11是根据本发明实施例的超大功率的激光空间合束系统的组配示意图;
图12是根据本发明实施例的多个超大功率的激光空间合束系统联合锁定同一目标点位的示意图;
图13是根据本发明实施例的利用本发明实施例提供的超大功率的激光空间合束系统来构成超高功率空间合束激光系统的应用结构示意图;
图14是根据本发明实施例的利用本发明实施例提供的多个超大功率的激光空间合束系统来构成集团中央计算机控制系统的结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
本发明实施例提供一种超大功率的激光空间合束系统。该系统可以包括:多个激光器、多个光路调节模块、角度摆头、旋转台、数控系统,其中,光路调节模块包括扩束镜、准直镜、反光镜,多个光路调节模块构成整体的光路面阵,该光路面阵安装于角度摆头,角度摆头安装于旋转台;数控系统控制旋转台、角度摆头和光路面阵上的各个光路调节模块联动,使得激光器发出的激光束以空间合束方式汇聚于一点。
在上述实施例中,激光器是该系统激光能量的核心,激光器优选为单模光纤激光器。更优选地,上述多个激光器为多个高功率单模光纤激光器的组合。单模光纤激光器的激光束依次经由扩束镜、准直镜、反光镜组成的光路调节模块输出。激光器的数量既可以为几百台,也可以为上千台,甚至为上万台,只要在实际应用中能够实施即可。由此,避开了多个大功率单模光纤激光器激光光束难以耦合的问题,解除了超高功率激光系统发展的技术束缚。
在上述实施例中,光路调节模块是该系统的光路元件,负责激光束的输出并完成该系统激光束的空间合束与聚焦。光路调节模块既作用于其相应的激光器的激光束输出,又与其它各光路调节模块相互协同,共同完成激光光束的空间合束与聚焦。优选地,多个光路调节模块构成阶梯式的一体的光路面阵。光路面阵上的所有激光束的焦点能够汇聚于同一点,可以指向同一目标,还可以在任意空间聚焦。
在上述实施例中,数控系统可以由上位机控制,接收上位机发送来的指令,控制上述实施例实现对目标特别是移动目标的跟踪照射。
在上述实施例中,通过光路面阵将多个光路调节模块集合成一体,再通过数控系统控制旋转台、角度摆头和光路面阵上的各个光路调节模块进行联动,激光束依次经由扩束镜、准直镜和反光镜输出,完成各激光器发出的激光光束的空间合束与聚焦,从而将激光器发出的激光束以空间合束方式汇聚于一点再指向任意目标;其中,由于将多个光路调节模块构成光路面阵,形成面阵式组合结构,使得激光功率无上限,单脉冲能量超高,功率大小可以按需而定,额定功率的高低由面阵组合的大小决定;由此,可以在计算机指挥下集中所有激光器能量对任意目标实施智能跟踪照射,并且激光能量衰减极低,能够使激光束远距离输出。
在一些优选的实施例中,将激光器发出的激光束以空间合束方式汇聚于一点可以通过以下方式来实现:
上述光路调节模块包括电机;扩束镜固定,准直镜和反光镜由数控系统控制并由电机驱动,来实现激光束的空间的焦距调节和角度调节。
优选地,上述光路调节模块中的电机为压电陶瓷电机。
在上述方式中,准直镜由数控系统控制并由电机驱动做轴向移动,从而实现激光束的空间的焦距调节。
在上述方式中,反光镜至少为两片,该两片反光镜由数控系统控制并在电机的驱动下左右摆动,两片反光镜的摆动轴空间互相垂直,以控制激光束的横向和纵向摆动,从而实现激光束的空间的角度调节。
本发明实施例采取上述方式,通过调节各个光路调节模块,可以驱使激光束对高速移动目标进行高精度的跟踪照射。
下面以优选实施例的方式结合附图对光路调节模块的工作原理进行详细说明。其中,光路调节模块受数控系统的控制并与角度摆头和旋转台进行联动。
图1a-1c示例性地示出了光路调节模块作用于光路的原理示意图。
在图1a-1c中,准直镜3与扩束镜2同轴,扩束镜2固定不动,焦点4是扩束镜2的(虚)焦点,扩束镜2的焦距为f1;准直镜3 由压电陶瓷电机驱动可以轴向移动。当准直镜3的焦点与扩束镜2的焦点4重合时,准直镜3到扩束镜2的焦点4的距离为准直镜3的焦距f2。
如图1a所示,当准直镜3到扩束镜2的焦点4的距离等于准直镜3的焦距f2时,准直镜3输出的是平行光光束5。
如图1b所示,当准直镜3到扩束镜2的焦点4的距离f2+大于准直镜3的焦距f2时,准直镜3输出的是合束光光束5。
如图1c所示,当准直镜3到扩束镜2的焦点4的距离f2-小于准直镜3的焦距f2时,准直镜3输出的是发散光光束5。
在一些优选的实施例中,扩束镜为凸透镜或凹透镜。
在一些优选的实施例中,准直镜为凸透镜。
下面以优选实施例的方式,以扩束镜采用固定的凹透镜、准直镜采用可动的凸透镜为例,结合附图来详细说明光路调节模块作用于光路的工作原理。
图2a-2c示例性地示出了另一光路调节模块作用于光路的原理示意图。
在图2a-2c中,扩束镜2采用凹透镜并固定不动,焦点4是其虚焦点,焦距为f1;准直镜3采用凸透镜并由压电陶瓷电机驱动,准直镜3与扩束镜2同轴,准直镜3的焦距为f2。
如图2a所示,当准直镜3的焦点与扩束镜2的焦点4重合时,平行光1通过扩束镜2后发散,到达准直镜3,此时通过准直镜3输出的是平行光光束5。
如图2b所示,当准直镜3在压电陶瓷电机的驱动下远离扩束镜2时,准直镜3的焦点离开扩束镜2的焦点4,准直镜3到扩束镜2的焦点4的距离f2+大于准直镜3的焦距f2,此时平行光1通过扩束镜2后发散,再通过准直镜3时输出的是合束光光束5,此时合束光光束5收束,焦点是C,焦距为fc1。
如图2c所示,在图2b所示情况的基础上,当准直镜3在压电陶瓷电机驱动下继续远离扩束镜2时,准直镜3到扩束镜2的焦点4的距离f2++大于f2+,此时通过准直镜3输出的合束光光束5再次收束,合束光光束5的焦点C渐近准直镜3,合束光光束5的焦距fc2变短,即:fc2小于fc1。
由此可见,准直镜3的轴向移动将直接调节合束光光束5的焦距长短。
下面以优选实施例的方式,以扩束镜采用固定的凸透镜、准直镜采用可动的凸透镜为例,结合附图来详细说明光路调节模块作用于光路的工作原理。
如图3a-3c所示,扩束镜2采用凸透镜且固定不动,焦点4为其实焦点,焦距为f1;准直镜3采用凸透镜并由压电陶瓷电机驱动,准直镜3与扩束镜2同轴,准直镜3的焦距为f2。
如图3a所示,当准直镜3的焦点与扩束镜2的焦点4重合时,平行光1通过扩束镜2合束到焦点4后,再发散到达准直镜3,此时通过准直镜3输出的是平行光光束5。
如图3b所示,当准直镜3在压电陶瓷电机驱动下远离扩束镜2时,准直镜3的焦点离开扩束镜2的焦点4,准直镜3到扩束镜2的焦点4的距离f2+大于准直镜3的焦距f2,此时,平行光1通过扩束镜2达到准直镜3时输出的是合束光光束5,此时合束光光束5收束,焦点是C,焦距为fc1。
如图3c所示,在图3b所示情况的基础上,当准直镜3在压电陶瓷电机驱动下继续远离扩束镜2时,准直镜3到扩束镜2的焦点4的距离f2++大于f2+,此时通过准直镜3输出的合束光光束5再次收束,合束光光束5的焦点C渐近准直镜3,合束光光束5的焦距fc2变短,即:fc2小于fc1。
由此可见,准直镜3的轴向移动将直接调节合束光光束5的焦距长短。
需要说明的是,如图3a-3c所示,扩束镜2的焦点4在扩束镜2与准直镜3的两透镜之间,而且是实焦点。当激光功率太高时,在扩束镜2的焦点4处易形成空气电离,有害于透镜,影响设备的性能,一般只在激光功率不太高时采用凸透镜作为扩束镜2。
下面以优选实施例的方式,以扩束镜为固定的凹透镜、准直镜为可动的凸透镜时与反光镜配合作用激光束为例,并结合附图4来详细说明光路调节模块作用于光路的工作原理。
如图4所示,扩束镜2采用凹透镜且固定不动,焦点4是其虚焦点,焦距为f1;准直镜3采用凸透镜并由压电陶瓷电机驱动,准直镜3与扩束镜2同轴。
当准直镜3在压电陶瓷电机驱动下远离扩束镜2时,准直镜3到扩束镜2焦点4的距离f2+大于准直镜3的焦距f2,此时,平行光1通过扩束镜2后发散到达准直镜3时输出的是合束光光束5。
准直镜3输出的合束光光束5在聚焦到焦点A前被反光镜6反射到另一方向,而聚焦到焦点B上;同样,在合束光光束聚焦到焦点B前,再次被反光镜7反射到另一方向,而形成合束光8再聚焦到焦点9。
在反光镜6和反光镜7不动情况下,焦点9将随准直镜3的运动而在一直线上变位。
反光镜6和反光镜7受数控系统控制由压电陶瓷电机驱动并旋转,分别驱动反光镜6和反光镜7的压电陶瓷电机在轴向上空间相互垂直,经由两个压电陶瓷电机的联动,通过反光镜6和反光镜7的变化,将使合束光8的焦点9在一球面上不断变位;当准直镜3也同时联动时,则焦点9将在一立体的部分球型区域内随动变位。
上述压电陶瓷电机优选为压电陶瓷旋转电机。
下面以优选实施例的方式,以扩束镜为固定的凸透镜、准直镜为可动的凸透镜时与反光镜配合作用激光束为例,并结合附图5来详细说明光路调节模块作用于光路的工作原理。
如图5所示,扩束镜2采用凸透镜且固定不动,本实施例区别于图4所示实施例中的扩束镜2,两者一凸一凹,其它内容都相同,本实施例通过准直镜3输出的光路变化原理与图4所示实施例完全相同。
在一些优选的实施例中,上述系统包括做单轴直线运动的第一压电陶瓷电机及做旋转运动的第一旋转压电陶瓷电机和第二旋转压电陶瓷电机;反光镜至少包括第一反光镜和第二反光镜;第一压电陶瓷电机的轴线与准直镜的轴线相互平行,第一旋转压电陶瓷电机的轴线与准直镜的轴线在平面内垂直,第二旋转压电陶瓷电机的轴线和第一旋转压电陶瓷电机的轴线在空间相互垂直;其中由数控系统控制第一压电陶瓷电机驱动准直镜做单轴直线运动,以及控制第一旋转压电陶瓷电机驱动第一反光镜摆动,并控制第二旋转压电陶瓷电机驱动第二反光镜摆动。
下面以优选实施例的方式,结合附图6来详细说明光路调节模块中的准直镜、反光镜在压电陶瓷电机的驱动下配合作用的三维光路的工作原理。
其中,压电陶瓷电机10可以进行单轴直线运动。旋转压电陶瓷电机11和旋转压电陶瓷电机12可以进行旋转运动。
如图6所示,数控系统控制压电陶瓷电机10驱动准直镜3进行单轴直线运动,并控制旋转压电陶瓷电机11驱动反光镜6摆动,还控制旋转压电陶瓷电机12驱动反光镜7摆动;压电陶瓷电机10的轴线与准直镜3的轴线相互平行,旋转压电陶瓷电机11的轴线与准直镜3的轴线在平面内垂直,旋转压电陶瓷电机12的电机轴线和旋转压电陶瓷电机11的电机轴线在空间上相互垂直。
在上述优选实施例中,平行光1通过扩束镜2发散到准直镜3,准直镜3在单轴直线运动的压电陶瓷电机10的驱动下,远离扩束镜2,此时从准直镜3输出的光束是合束光束5,合束光束5达到反光镜6,再经反光镜6的反射达到反光镜7,又经反光镜7反射而形成合束光8再聚焦到焦点9。当压电陶瓷电机10驱动准直镜3移动,旋转压电陶瓷电机11和旋转压电陶瓷电机12静止反光镜6、7不动时,焦点9作直线移动;当压电陶瓷电机10静止准直镜3不动,旋转压电陶瓷电机12静止反光镜7不动,旋转压电陶瓷电机11驱动反光镜6转动时,焦点9在圆弧上变动;当压电陶瓷电机10静止准直镜3不动,旋转压电陶瓷电机11静止反光镜6不动,旋转压电陶瓷电机12驱动反光镜7转动时,焦点9在圆弧上变动;当压电陶瓷电机10静止准直镜3不动,旋转压电陶瓷电机11和旋转压电陶瓷电机12驱动反光镜6、7转动时,焦点9在球面上变动;当压电陶瓷电机10驱动准直镜3移动,旋转压电陶瓷电机11驱动反光镜6转动,旋转压电陶瓷电机12驱动反光镜7转动时,焦点9在部分球体区域内变动。
在一些优选的实施例中,角度摆头可以包括摆头架、油浮轴承、光栅尺和第一电机;旋转台可以包括底座、平台、油浮轴承、光栅尺和第二电机;角度摆头和旋转台由数控系统控制并分别由第一和第二电机驱动做摆动运动、旋转运动。
优选地,角度摆头和旋转台中的第一电机和第二电机为力矩电机。
下面以优选实施例的方式,结合图7详细说明旋转台与角度摆头装配结构。
图7示例性地示出了旋转台与角度摆头装配后的剖视示意图。
如图7所示,以旋转台底座13为基础,将制动器22、液压油分配器23安装到位,将力矩电机内定子15、油浮轴承下套17、外套18分别安装到旋转台底座13上,将力矩电机外转子16安装到主动轴20的内套后,再将二者安装到油浮轴承下套17的上面、油浮轴承外套18的内部,接着将油浮轴承上套19安装到位;将编码器21安装到旋转台台面14的如图7所示部位,再将二者安装到主动轴20上,接着在旋转台面14的芯孔处将其与制动器22连接。
如图7所示,将两个油浮轴承27和角度摆头光轴26按次序安装到轴承外套28上,然后将力矩电机内定子29的固定套31分别安装到角度摆头光轴26上,接着将力矩电机内定子29安装到固定套31上,再将力矩电机外转子30安装到轴承外套28上,组成角度摆头的摆动装置。
如图7所示,再以旋转台为基础,将角度摆头底座24安装到旋转台台面14上,接着将角度摆头的摆动装置中的角度摆头光轴26固定到摆头底座24的安装孔内,用压盖25固定压紧。
图8示例性地示出了旋转台与角度摆头装配后的三维示意图。
如图8所示,旋转台36在力矩电机的驱动下,将会驱动角度摆头37做360度旋转,角度摆头37的摆动装置将在力矩电机的驱动下做正负100度摆动。
上述超大功率的激光空间合束系统可以通过调节角度摆头和旋转台,来驱使激光束对任意移动目标进行跟踪照射,提高了该激光系统的能动性与精准性。
下面以优选实施例的方式,结合图9a-9b详细说明超大功率的激光空间合束系统中光路面阵空间合束聚焦的工作原理。
图9a示例性地示出了光路面阵空间合束聚焦示意图。图9b示例性地示出了由多个光路调节模块构成的阶梯面阵示意图。如图9a所示,以光路面阵基体32为基础,将各光路调节模块33安装到位,组 成光路面阵;在超大功率的激光空间合束系统运行时,各光路调节模块33输出激光光束34并将激光光束34聚焦到焦点35,从而集合到更强的激光能量。可见,本发明实施例不是各单模光纤激光器输出激光光束的光纤耦合。
下面以优选实施例的方式,结合图10详细说明超大功率的激光空间合束系统输出的面阵式激光光束时的空间合束聚焦原理。
如图10所示,将以光路面阵基体32和光路调节模块33集成的光路面阵安装到角度摆头37上,这样可以组合成超大功率的激光空间合束系统的面阵式激光光束输出系统。当面阵式激光光束输出系统运行时,各单模光纤激光器输出的激光光束通过光路面阵上的光路调节模块33输出,再由数控系统控制旋转台36、角度摆头37、光路调节模块33相互联动,形成合束激光光束34,且聚焦到焦点35。
在实际应用中,当要使焦点35欲锁定或拦截某一移动目标时,通过数控系统控制旋转台36、角度摆头37和各光路调节模块33共同协作联动来锁定或拦截目标。可见,本发明实施例可以应用到国防领域,可以为诸如导弹、火箭弹、无人机、军用飞机拦截等领域提供技术支持。
图11示例性地示出了超大功率的激光空间合束系统的组配示意图。
如图11所示,其中包括台车39、单模光纤激光器组38、旋转台36、角度摆头37及组成光路面阵的面阵体32和光路调节模块33。由计算机通过数控系统控制台车39、单模光纤激光器组38、旋转台36、角度摆头37及光路面阵基体32和光路调节模块33联动共同完成超大功率的激光空间合束系统的运行。
在实际应用中,可以将多个上述超大功率的激光空间合束系统以无阵序不同点位的方式进行布置,并接收上位机发送的同一控制信号,同时锁定任意的同一目标点位,从而集合到更强的激光能量。
图12示例性地示出了多个超大功率的激光空间合束系统联合锁定同一目标点位的示意图。
其中,无阵序的不同点位的多个超大功率的激光空间合束系统在上位机同时给予的同一信号下,能够同时锁定任意的同一目标点位,这样会集合到更强的激光能量,以实施对目标照射。该实施例可 以同不在同一地点的其它众多超大功率的激光空间合束系统在计算机的控制下,相互配合跟踪照射同一目标,在同一目标点位形成更加强大的激光能量。当应用到国防领域时,例如可以应用于激光炮,这种激光能量能够击毁导弹、飞机、无人机、火箭弹以及地面装甲车、坦克等。
图13示例性地示出了利用本发明实施例提供的超大功率的激光空间合束系统来构成超高功率空间合束激光系统的应用结构示意图。该超高功率空间合束激光系统包括计算机和本发明实施例提供的超大功率的激光空间合束系统。其中,数控系统可以控制冷却系统、旋转平台力矩电机驱动器、若干个摆头力矩电机驱动器和若干个控制卡;旋转平台力矩电机驱动器可以驱动旋转平台力矩电机;摆头力矩电机驱动器可以驱动摆头力矩电机;控制卡可以控制激光电源和压电陶瓷电机驱动器,激光电源可以为单模光纤激光器供电;压电陶瓷电机驱动器可以驱动准直镜直线压电陶瓷电机和反光镜旋转压电陶瓷电机。
图14示例性地示出了利用本发明实施例提供的多个超大功率的激光空间合束系统来构成集团中央计算机控制系统的结构示意图。其中包括多个图13所示超高功率空间合束激光系统。
需要说明的是,图12-图14中所示部件或系统或结构件的数量可以根据实际情况进行选取,本发明对此不做限定。
以上对本发明的示例实施例的详细描述是为了说明和描述的目的而提供。不是为了穷尽或将本发明限制为所描述的精确形式。显然,许多变型和改变对本领域技术人员而言是显而易见的。实施例的选择和描述是为了最佳地说明本发明的原理及其实际应用,从而使本领域其他技术人员能够理解本发明的各种实施例和适于特定使用预期的各种变型。本发明的实施例可以省略上述技术特征中的一些技术特征,仅解决现有技术中存在的部分技术问题。而且,所描述的技术特征可以进行任意组合。本发明的范围由所附权利要求及其等价物来限定,本领域技术其他人员可以对所附权利要求中所描述的技术方案进行各种变型或替换和组合,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (16)

  1. 一种超大功率的激光空间合束系统,其包括:多个激光器、多个光路调节模块、角度摆头、旋转台和数控系统,其中,所述光路调节模块包括扩束镜、准直镜和反光镜;其特征在于,所述多个光路调节模块构成光路面阵,所述光路面阵安装于所述角度摆头,所述角度摆头安装于所述旋转台,所述数控系统控制所述旋转台、所述角度摆头和所述光路面阵上的各所述光路调节模块联动,使得所述多个激光器发出的激光束以空间合束方式汇聚于一点。
  2. 根据权利要求1的超大功率的激光空间合束系统,其特征在于,所述多个光路调节模块构成阶梯式的一体的光路面阵。
  3. 根据权利要求1的超大功率的激光空间合束系统,其特征在于,所述多个激光器为多个高功率单模光纤激光器的组合。
  4. 根据权利要求1的超大功率的激光空间合束系统,其特征在于,所述光路调节模块包括电机;所述数控系统控制所述准直镜、和各反光镜联动,使得所述激光器发出的激光束以空间合束方式汇聚于一点,可以通过以下方式来实现:
    所述扩束镜固定,所述准直镜和所述反光镜由所述数控系统控制并由所述电机驱动,来实现激光束的空间的焦距调节和角度调节,从而使所述激光束汇聚于一点。
  5. 根据权利要求4的超大功率的激光空间合束系统,其特征在于,所述光路调节模块中的所述电机为压电陶瓷电机。
  6. 根据权利要求4的超大功率的激光空间合束系统,其特征在于,所述激光束的空间的焦距调节通过以下方式来实现:
    所述准直镜由所述数控系统控制并由所述电机驱动做轴向移动,从而实现所述激光束的空间的焦距调节。
  7. 根据权利要求4的超大功率的激光空间合束系统,其特征在于,所述反光镜至少为二片;
    所述激光束的空间的角度调节通过以下方式来实现:
    所述二片反光镜由所述数控系统控制并在所述电机的驱动下左右摆动,所述二片反光镜的摆动轴空间互相垂直,以控制所述激光束的横向和纵向摆动,实现所述激光束的空间的角度调节。
  8. 根据权利要求4的超大功率的激光空间合束系统,其特征在于,所述激光束依次经由扩束镜、准直镜和各反光镜来输出。
  9. 根据权利要求1的超大功率的激光空间合束系统,其特征在于,所述扩束镜为凸透镜或凹透镜。
  10. 根据权利要求1的超大功率的激光空间合束系统,其特征在于,所述准直镜为凸透镜。
  11. 根据权利要求4的超大功率的激光空间合束系统,其特征在于,所述准直镜与所述扩束镜同轴,且所述准直镜由所述数控系统控制并由所述电机驱动做轴向移动。
  12. 根据权利要求1的超大功率的激光空间合束系统,其特征在于,所述系统包括做单轴直线运动的第一压电陶瓷电机及做旋转运动的第一旋转压电陶瓷电机和第二旋转压电陶瓷电机;所述反光镜至少包括第一反光镜和第二反光镜;所述第一压电陶瓷电机的轴线与所述准直镜的轴线相互平行,所述第一旋转压电陶瓷电机的轴线与所述准直镜的所述轴线在平面内垂直,所述第二旋转压电陶瓷电机的轴线和所述第一旋转压电陶瓷电机的轴线在空间相互垂直;其中,所述数控系统控制所述第一压电陶瓷电机驱动所述准直镜做单轴直线运动,以及控制所述第一旋转压电陶瓷电机驱动所述第一反光镜摆动,并控制所述第二旋转压电陶瓷电机驱动所述第二反光镜摆动。
  13. 根据权利要求1的超大功率的激光空间合束系统,其特征在于,所述角度摆头包括摆头架、油浮轴承、光栅尺和第一电机;所述旋转台包括底座、平台、油浮轴承、光栅尺和第二电机;所述角度摆头和所述旋转台由所述数控系统控制分别由所述第一电机和所述第二电机驱动做摆动运动、旋转运动。
  14. 根据权利要求13的超大功率的激光空间合束系统,其特征在于,所述角度摆头和所述旋转台中的所述第一电机和所述第二电机为力矩电机。
  15. 一种超高功率空间合束激光系统,其特征在于,包括多个如权利要求1-14中任一的超大功率的激光空间合束系统。
  16. 一种集团中央计算机控制系统,其特征在于,包括多个如权利要求1-14中任一的超大功率的激光空间合束系统。
PCT/CN2016/000682 2016-12-14 2016-12-14 超大功率的激光空间合束系统及其相关系统 WO2018107307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000682 WO2018107307A1 (zh) 2016-12-14 2016-12-14 超大功率的激光空间合束系统及其相关系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000682 WO2018107307A1 (zh) 2016-12-14 2016-12-14 超大功率的激光空间合束系统及其相关系统

Publications (1)

Publication Number Publication Date
WO2018107307A1 true WO2018107307A1 (zh) 2018-06-21

Family

ID=62557819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000682 WO2018107307A1 (zh) 2016-12-14 2016-12-14 超大功率的激光空间合束系统及其相关系统

Country Status (1)

Country Link
WO (1) WO2018107307A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108723609A (zh) * 2018-07-24 2018-11-02 廊坊西波尔钻石技术有限公司 激光刻蚀机及超硬材料加工方法
CN110694184A (zh) * 2019-10-14 2020-01-17 深圳大学 一种激光功率密度调节方法、装置及存储介质
CN112202047A (zh) * 2020-09-23 2021-01-08 广东粤港澳大湾区硬科技创新研究院 激光器
CN114415389A (zh) * 2022-01-26 2022-04-29 西安应用光学研究所 一种含有多个反射镜的光机系统装调方法
CN114819111A (zh) * 2022-06-24 2022-07-29 济钢防务技术有限公司 空间合成激光排爆系统的调焦控制神经网络输入采样方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090180498A1 (en) * 2008-01-16 2009-07-16 General Atomics Coherent Beam Combiner Based on Parametric Conversion
CN102621695A (zh) * 2012-03-22 2012-08-01 华中科技大学 一种脉冲激光合束方法
CN102931585A (zh) * 2012-10-31 2013-02-13 中国科学院长春光学精密机械与物理研究所 一种外腔合束半导体激光光纤耦合模块
CN104625397A (zh) * 2014-12-23 2015-05-20 中国科学院力学研究所 多束光合成聚焦控制系统及控制方法
US9343868B2 (en) * 2012-08-28 2016-05-17 Optical Engines Inc. Efficient generation of intense laser light from multiple laser light sources using misaligned collimating optical elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090180498A1 (en) * 2008-01-16 2009-07-16 General Atomics Coherent Beam Combiner Based on Parametric Conversion
CN102621695A (zh) * 2012-03-22 2012-08-01 华中科技大学 一种脉冲激光合束方法
US9343868B2 (en) * 2012-08-28 2016-05-17 Optical Engines Inc. Efficient generation of intense laser light from multiple laser light sources using misaligned collimating optical elements
CN102931585A (zh) * 2012-10-31 2013-02-13 中国科学院长春光学精密机械与物理研究所 一种外腔合束半导体激光光纤耦合模块
CN104625397A (zh) * 2014-12-23 2015-05-20 中国科学院力学研究所 多束光合成聚焦控制系统及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG: "Research on the Intelligent Muti-beam Couping Technique", CHINA MASTER´S THESES FULL-TEXT DATABASES, no. 4, 15 April 2012 (2012-04-15) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108723609A (zh) * 2018-07-24 2018-11-02 廊坊西波尔钻石技术有限公司 激光刻蚀机及超硬材料加工方法
CN108723609B (zh) * 2018-07-24 2024-06-14 廊坊西波尔钻石技术有限公司 激光刻蚀机及超硬材料加工方法
CN110694184A (zh) * 2019-10-14 2020-01-17 深圳大学 一种激光功率密度调节方法、装置及存储介质
CN112202047A (zh) * 2020-09-23 2021-01-08 广东粤港澳大湾区硬科技创新研究院 激光器
CN114415389A (zh) * 2022-01-26 2022-04-29 西安应用光学研究所 一种含有多个反射镜的光机系统装调方法
CN114415389B (zh) * 2022-01-26 2023-11-14 西安应用光学研究所 一种含有多个反射镜的光机系统装调方法
CN114819111A (zh) * 2022-06-24 2022-07-29 济钢防务技术有限公司 空间合成激光排爆系统的调焦控制神经网络输入采样方法
CN114819111B (zh) * 2022-06-24 2022-09-02 济钢防务技术有限公司 空间合成激光排爆系统的调焦控制神经网络输入采样方法

Similar Documents

Publication Publication Date Title
WO2018107307A1 (zh) 超大功率的激光空间合束系统及其相关系统
KR102651276B1 (ko) 가공 장치
CN103317233B (zh) 一种用于激光加工的光束运动轨迹控制装置
CN107966768B (zh) 光束分支装置
JP4691166B2 (ja) スキャナヘッド及び当該スキャナヘッドを用いた加工機器
US8879875B2 (en) Optical switch
CN103846546B (zh) 加工装置、加工机和用于使加工头运动的方法
KR102150575B1 (ko) 광전자 컴포넌트
CN107132635B (zh) 高精度的反射镜切换装置
US8400700B2 (en) Risley integrated steering module
CN203343612U (zh) 一种用于激光加工的光束运动轨迹控制装置
CN112068309B (zh) 一种含双抛物面镜动态聚焦模块的三维扫描系统
CN104379296B (zh) 激光加工装置
CN105607248B (zh) 光学装置、加工装置以及物品制造方法
CN107073645A (zh) 具有平行错位单元的激光材料加工设备
KR101858986B1 (ko) 쿠데형 비축 망원경 및 그 정렬 방법
CN102574240B (zh) 具有冗余轴的激光加工机
CN213637752U (zh) 一种空间激光通信的指向校准子系统
CN107656376A (zh) 超大功率的激光空间合束系统及其相关系统
CN105974579A (zh) 基于离轴抛物面镜大口径平行光束的角度改变装置
CN206532042U (zh) 超大功率的激光空间合束系统及其相关系统
CN115453766A (zh) 一种变高宽比扩束镜头以及含有该镜头的激光通信终端
US7311409B2 (en) Two axis independent driven single hinged gimbaled mirror beam steerer
JPH03264911A (ja) 光ビーム制御機構
CN114985911A (zh) 一种用于三维五轴激光切割头的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924014

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16924014

Country of ref document: EP

Kind code of ref document: A1