WO2018106751A1 - Laser treatment of wounds - Google Patents

Laser treatment of wounds Download PDF

Info

Publication number
WO2018106751A1
WO2018106751A1 PCT/US2017/064805 US2017064805W WO2018106751A1 WO 2018106751 A1 WO2018106751 A1 WO 2018106751A1 US 2017064805 W US2017064805 W US 2017064805W WO 2018106751 A1 WO2018106751 A1 WO 2018106751A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser ablation
wound
full field
fractional
Prior art date
Application number
PCT/US2017/064805
Other languages
French (fr)
Inventor
Daniel K. Negus
James L. Hobart
Craig FORTIER
Sha Tong
Chris Rasmussen
Original Assignee
Sciton, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sciton, Inc. filed Critical Sciton, Inc.
Priority to US16/465,591 priority Critical patent/US11071588B2/en
Priority to JP2019531105A priority patent/JP7249942B2/en
Priority to EP17878364.3A priority patent/EP3551111A4/en
Publication of WO2018106751A1 publication Critical patent/WO2018106751A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00625Vaporization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20351Scanning mechanisms
    • A61B2018/20359Scanning mechanisms by movable mirrors, e.g. galvanometric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0642Irradiating part of the body at a certain distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0661Radiation therapy using light characterised by the wavelength of light used ultraviolet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0624Apparatus adapted for a specific treatment for eliminating microbes, germs, bacteria on or in the body

Definitions

  • This invention relates lo systems and methods for the treatment of wounds and. in particular, to systems, devices, and methods for treating chronic wounds with lasers.
  • a method described herein can provide more complete and rapid healing of a wound, including a chronic wound. Additionally, a method described herein can prevent or reduce chronic infection and/or eliminate the need to amputate a wounded body party. A method described herein can also reduce the pain, discomfort, and malodor associated with a wound. Moreover, a method described herein can treat a wound more efficiently and cost-effectively, compared to some other methods.
  • a method described herein comprises treating a wound, such as a chronic wound, by performing a lull field laser ablation in a wound bed of ihe wound and subsequently performing a fractional laser ablation in the wound bed.
  • the fractional laser ablation step is carried out at substantially the same time as, or immediately following, the full field laser ablation step. For example, in some instances, the fractional laser ablation is begun 10 minutes or less after the full fteld laser ablation is ended.
  • the full field laser ablation removes at least 90% of biofilm and/or necrotic tissue present in the wound bed immediately prior to the full field laser ablation.
  • the full field laser ablation ami/or the fractional laser ablation of a method described herein is carried out using a laser scanner and/or using a laser having an erbium-doped yttrium aluminum garnet lasing medium (an KnYAG laser).
  • a method described herein further comprises performing debridement in the wound bed prior to performing the full field laser ablation in the wound bed.
  • Such "pre-treatmenf ' debridement in some cases, can be sharp debridement.
  • a method described herein also comprises carrying out one or more additional wound treatment steps following completion of treatment steps mentioned above.
  • a method described herein further comprises carrying out one or more additional wound treatment steps following debridement, full field laser ablation, and fractional laser ablation.
  • additional treatments can include applying an antibiotic to the wound, desiccating the wound, and/or irradiating the wound with ultraviolet (UV) light.
  • UV ultraviolet
  • a method described herein comprises treating a damaged tissue site other than a wound by performing a full field laser ablation in, at, or on a non-wound damaged tissue site and subsequently performing a fractional laser ablation in, at, or on the non-wound damaged tissue site.
  • such a system or device comprises a laser configured to selectively perform full field laser ablation and fractional laser ablation on a wound (or other damaged tissue site) of die same patient, including in an alternating or sequential manner.
  • the laser is configured to perform fractional laser ablation on the wound (or other damaged tissue site) after the laser performs full field laser ablation on the wound (or other damaged tissue site).
  • a system or device described herein comprises a plurality of lasers rather than a single laser.
  • a system or device comprises a first laser configured to perform till I field laser ablation and a second laser configured to perform fractional laser ablation.
  • the first laser and the second laser are configured to perform full field laser ablation and fractional laser ablation, respectively, on a wound (or other damaged tissue site) of the same patient sequentially, in particular, in some instances, the second laser is configured to perform fractional laser ablation on the wound (or other damaged tissue site) after the first laser performs full field laser ablation on the wound (or other damaged tissue site).
  • the laser (or the first laser and/or the second laser) of a system or device described herein comprises a laser scanner and/or an Er.YAG laser.
  • FIG. 1 schematically illustrates a full field laser ablation process according to one embodiment described herein.
  • FIG. 2 schematically illustrates a full field laser ablation process according to one embodiment described herein.
  • FIG. 3 schematically illustrates a sectional view of a wound following a full field laser ablation process according to one embodiment described herein.
  • FIG. 4 schematically illustrates a perspective view of the wound of FIG. 3.
  • FIG. 5 illustrates a sectional view of a wound following a fractional laser ablation process according to one embodiment described herein.
  • FIG. 6 illustrates a perspective view of the wound of FIG. 5.
  • FIG. 7 illustrates a perspective view of a laser treatment device according to one embodiment described herein.
  • FIG. 8 illustrates a plan view of the device of FIG. 7.
  • FIG. 9 illustrates a sectional view of the device of FIG. 8, taken along lines 9-9.
  • FIG. 10 illustrates a perspective view of a laser treatment device according to one embodiment described herein.
  • FIG. 11 illustrates a partially exploded view of the device of FIG. 10.
  • the phrase "up to” is used in connection with an amount or quantity, it is to be understood that the amount is at least a detectable amount or quantity.
  • a material present in an amount “up to " ' a specified amount can be present from a detectable amount and up to and including die specified amount.
  • a method described herein comprises treating a wound, such as a chronic wound, by performing a full field laser ablation in a wound bed of the wound and subsequently performing a fractional laser ablation in the wound bed.
  • the fractional laser ablation step is carried out at substantially the same lime as, or immediately following, the full field laser ablation step.
  • a method described herein further comprises performing debridement in the wound bed prior to performing the full field laser ablation in the wound bed.
  • a method described herein further comprises carrying out one or more additional treatments in the wound bed following
  • biofilm (consisting of various proteins such as fibrin) and exudate, as well as exhibiting biofslm, particularly a microbial biofilm.
  • a biofilm generally includes a large number of
  • microorganism cells adhered to one another and to a substrate. Additionally, in some cases, the adhered cells are embedded within an extracellular polymeric substance ('TPS,” also known as “slime”) produced by the microorganisms.
  • 'TPS extracellular polymeric substance
  • Such "residual' ' biofilm comprises biofilm components that do not necessarily form a mature or complete biofilm but that once were part of a mature or complete biofilm. Moreover, this residual biofilm can typically reform into mature biofilm in as little as 24-36 hours. Again noi intending to be bound by theory, it is believed that methods of treating a wound described herein can destroy such residual biofilm and/or hinder the ability of residual biofilm to reform quickly, thereby improving the effectiveness of antibiotics, other treatment modalities, and/or the host immune response in healing the wound. Thus, in some embodiments, a method described herein can "reset" the wound microbiota and the wound bed surface. [0029] Turning now to specific steps of methods, methods described herein comprise performing a full field laser ablation.
  • full field laser ablation refers to a laser ablation process in which laser interaction with tissue corresponds to 100% or substantially all of a targeted area being treated (e.g., a wound bed) by irradiation with an ablating laser beam
  • an "ablating" laser beam is understood to refer to a laser beam of sufficient peak power to ablate, vaporize, destroy, and/or remove biological tissue irradiated by the laser beam, in some cases, the ablating laser beam (which may have a spot size, for example, of about 4 mm ) covers or "scans" all or substantially all of the targeted area with an overlapping serpentine pattern of "passes" of the laser beam or spot.
  • the ablating laser beam covers or scans at least 90%, at least 95%, at least 98%, or at least 99% of the targeted area (e.g., the wound bed of the wound being treated). In some cases, the ablating laser beam coves or scans 100% of the targeted area. It is further to be understood that full Held laser ablation can be carried out with a variety of spot sizes, scan or exposure patterns, and lasers. In general, a full field laser ablation step described herein can be carried out in any manner not inconsistent with the objectives of the present disclosure.
  • FIGS. 1-4 An exemplary full field laser ablation process is illustrated in FIGS. 1-4.
  • FIG. 1 and FIG. 2 schematically illustrate a top or plan view of a scan or pattern of laser beam spots ( 10) during the course of carrying out a full field laser ablation according to one
  • the spots ( 10) cover an exterior surface (21 ) of a wound bed (20) of a host or patient (30).
  • the spots (10) overlap as the ablating laser beam (represented by spots (10)) traverses the surface (21) in a serpentine pattern, as indicated by the directional arrows overlaid on the spots ( 10) in FIG. 2.
  • the ablating laser beam traverses the surface (21 ), tissue and/or other material forming the surface (21) are ablated, vaporized, destroyed, or otherwise removed from the wound bed (20), causing the surface (21) to be "lowered” in a depth direction perpendicular to the surface (21) and perpendicular to an adjacent, non-treated surface (22) of the patient or host (30).
  • the ablating laser beam performs three back and forth "passes" in the wound bed (20). However, it is to be understood that any desired number of passes can be performed to cover the entire surface (21 ).
  • the entire surface (21 ) can be traversed as many times as needed to "lower” the surface (21 ) to a desired depth beneath the original surface of the wound bed or beneath the adjacent non-treated surface (22).
  • each pass of the ablating laser beam ablates, vaporizes, destroys, or removes tissue (such as necrotic tissue) from the wound bed, such that the depth of full field laser ablation corresponds to a depth of tissue ablated, vaporized, destroyed, or removed.
  • the depth of full field laser ablation is "dl
  • FIG. 3 illustrates a sectional view of the wound bed (20) after completion of the full field laser ablation to depth dl
  • FIG. 4 illustrates a perspective view of the same wound bed (20) after completion of the full field laser ablation to depth dl.
  • the depth of ablation in a full field laser ablation step can vary. Any depth not inconsistent with the objectives of the present disclosure may be used.
  • the full field laser ablation step removes at least 90%. at least 95%, at least 98%, or at least 99% of necrotic tissue in the wound bed to a depth of up to 1000 ⁇ or to a depth of up to 2000 ⁇ m..
  • the full field laser ablation step removes at least 90%, at least 95%, at least 98%, or at least 99% of tissue in the wound bed to a depth of 50-2000 ⁇ m., 50-1000 ⁇ m.. 50-500 ⁇ m. . 50-300 ⁇ m.
  • a full field laser ablation step of a method described herein removes or disrupts all or substantially all of various undesired components within a wound bed.
  • a full field laser ablation step removes at least 90% of biofilm and/or necrotic tissue present in the wound bed
  • removing' * biofilm and/or necrotic tissue includes ablating, vaporizing, destroying, and otherwise removing the biofilm and/or necrotic tissue.
  • a full field laser ablation step removes at least 95%, at least 98%, or at least 99% of biofilm and/or necrotic tissue present in the wound bed immediately prior to the full field laser ablation.
  • a full field laser ablation step removes 90-100%. 90-99%. 90-95%, 95- 100%, 95-99%, or 98-100% of biofilm and/or necrotic tissue present in the wound bed immediately prior lo the full field laser ablation.
  • the spot size of a full field laser ablation step may also vary. Any spot size not inconsistent with the objectives of the present disclosure may be used. In some cases, for instance, the spot size is 0.5-10 mm, 0.5-5 mm, I -10 mm, or 1 -5 mm. Other spot sizes may also be used.
  • a laser or laser beam used for a full field laser ablation step described herein can have any power and any peak or average emission wavelength not inconsistent with the objectives of the present disclosure.
  • a laser or laser beam used for full Held laser ablation has a peak or average emission wavelength in the infrared (1R) region of the electromagnetic spectrum, in some such cases, a laser or laser beam used for full field laser ablation has a peak or average emission wavelength in the range of I -4 ⁇ m., 1-3 Mm, 2-4 jim, 2-3 ⁇ m., 8-12 jim, or 9-1 1 ⁇ m..
  • the full field laser ablation is preferably carried out using an BrrYAG laser or laser beam, including a neodymium-doped EnYAG laser or laser beam having a peak or average emission wavelength of 2940 nro.
  • the full field laser ablation is carried out using a carbon dioxide laser or laser beam.
  • a laser or laser beam used for full field laser ablation has an average power of 5 to 200 W.
  • a full field laser ablation is carried out using a laser scanner.
  • a typical construction of this apparatus involves an opto-mechanical arrangement of two orthogonal motors with mirrors mounted on them which receive the laser beam and are controlled by a computer control system.
  • Bach motor or actuator is capable of directing the beam in an axis.
  • the combination of two orthogonal motors/mirrors allows the scanner to draw any arbitrary pattern in two dimensions (e.g., x and y) on the tissue or other targeted area.
  • a full field laser ablation step described herein can be carried out using any laser system not inconsistent with the objectives of the present disclosure.
  • a system may, for instance, include a laser operable to j>roduce a laser beam having characteristics described hereinabove, as well as one or more lenses, minors, actuators, or other hardware or software for directing the laser beam to a desired location on a patient and/or within a wound bed.
  • a laser operable to j>roduce a laser beam having characteristics described hereinabove as well as one or more lenses, minors, actuators, or other hardware or software for directing the laser beam to a desired location on a patient and/or within a wound bed.
  • One exemplary system is described further hereinbelow in Section II.
  • Methods described herein also comprise performing a fractional laser ablation.
  • Fractional laser ablation or coagulation refers to a laser ablation or coagulation process in which an ablating or coagulating laser beam is used 10 selectively ablate, coagulate, vaporize, destroy, or remove columns of tissue, or "drill holes," in a targeted area such as a wound bed. Further, such coagulated columns or columnar vacancies or “holes” formed by fractional laser ablation can define a pattern or array of columns or vacancies or holes in the targeted area, where the columns or vacancies or holes have a desired diameter, depth, and areal density (of less than 100%) on a surface of the wound bed. Fractional laser ablation can be carried out with a variety of spot sizes, scan or exposure patterns, and lasers. In general, a fractional laser ablation step described herein can be carried out in any manner not inconsistent with the objectives of the present disclosure.
  • FIG. 5 and FIG. 6 schematically illustrate the results of a fractional laser ablation step carried out in a wound bed (20) of a host (30) following the full field laser ablation step illustrated in FIGS. 1-4.
  • a fractional laser ablation beam (not shown) forms columnar vacancies or holes (40) having a depth (d2) below the exterior surface ( 21 ) of the wound bed (20).
  • the ablating laser beam forms a 2 x 2 array of holes (40) in the wound bed (20).
  • FIG. 5 illustrates a sectional view of the wound bed (20).
  • FIG. 6 illustrates a perspective view of the same wound bed (20) after completion of the fractional laser ablation to depth d2.
  • the depth and areal density of ablation in a fractional laser ablation step described herein can vary. Any depth and areal density not inconsistent with the objectives of the present disclosure may be used. Tor example, in some preferred embodiments, the fractional laser ablation generates holes in up to 25% or up to 35% of the surface area of the wound bed, the holes having an average diameter of 150-600 ⁇ m. and an average depth of up to 2 mm.
  • the fractional laser ablation generates holes in 15-35%, 15-30%, 15-25%, 20-35%, or 20- 30% of the surface area of the wound bed, wherein the holes have an average diameter of 150- 500 ⁇ m., 150-450 ⁇ m., 150-400 ⁇ m., 200-600 ⁇ m., 200-500 ⁇ m., 200-450 ⁇ m., 200-400 ⁇ m., 250- 600 ⁇ m., 250-500 ⁇ m., 250-450 ⁇ m., 250-400 ⁇ m., 300-600 ⁇ m., 300-500 ⁇ m., 300-450 ⁇ m., 300- 400 ⁇ m., 400-600 ⁇ m., 400-500 ⁇ m., or 450-600 ⁇ , and a depth of 0.3-2.5 mm, 0.3-2 mm. 0.3- 1.5 mm, 0.3-1 mm, 0.5-2.5 mm, 0.5-2 mm, 0.5-1.5 mm, 0.5-1 mm, 1-2.5 mm
  • the spot size of a fractional laser ablation may also vary. Any spot size not inconsistent with the objectives of the present disclosure may be used. In some cases, for instance, the spot size is 0.1-1 mm or 0.1-0.5 mm.
  • a laser or laser beam used for a fractional laser ablation step described herein can have any power and any peak or average emission wavelength not inconsistent with the objectives of the present disclosure.
  • a laser or laser beam used for fractional laser ablation has a peak or average emission wavelength in the IK region of the electromagnetic spectrum.
  • a laser or laser beam used for fractional laser ablation has a peak or average emission wavelength in the range of 1 -4 ⁇ m., 1 -3 ⁇ m., 2-4 m,.2-3 ⁇ m.. 8-12 ⁇ m., or 9-1 1 ⁇ m..
  • the fractional laser ablation is preferably carried out using an Er:Y AG laser or laser beam.
  • the fractional laser ablation is carried out using a carbon dioxide laser or laser beam.
  • a laser or laser beam used for fractional laser ablation or coagulation has an average power of 1 to 100 W.
  • a fractional laser ablation is carried out using a laser scanner.
  • a laser scanner refers to an apparatus similar to or the same as that described above in the context of full field laser ablation.
  • a fractional scanner may have elements which either deliver a single small beam to a portion of the area of interest or an array of multiple small spots which can be directed as a pattern to interact with a fraction of the area of interest.
  • Such a fractional scanner may be similar to the lull field scanner with additional optical components, removed, added or adjusted accordingly.
  • a fractional laser ablation step described herein can be carried out using any laser system not inconsistent with the objectives of the present disclosure.
  • a system may. for instance, include a laser operable to produce a laser beam having characteristics described hereinabove for fractional laser ablation, as well as one or more lenses, minors, actuators, or other hardware or software for directing the laser beam to a desired location on a patient and/or within a wound bed.
  • a laser operable to produce a laser beam having characteristics described hereinabove for fractional laser ablation, as well as one or more lenses, minors, actuators, or other hardware or software for directing the laser beam to a desired location on a patient and/or within a wound bed.
  • One exemplary system is described further hereinbelow in Section II.
  • the fractional laser ablation of a method described herein is begun at essentially "the same time" as the full field laser ablation is ended, and the two treatment modalities are delivered sequentially, from a clinical perspective. l ;* or instance, in some cases, the fractional laser ablation is begun 1 hour or less, 30 minutes or less, 20 minutes or less, 15 minutes or less, 10 minutes or less, 5 minutes or less, 3 minutes or less, or I minute or less after the full field laser ablation is ended. It is also possible, in some cases, tor the fractional laser ablation to be carried out simultaneously or nearly simultaneously with the full field laser ablation, or partially temporally overlapping the full field laser ablation.
  • a laser described herein has a beam shape that simultaneously contains the properties necessary (e.g., peak power, number of spots, spot size, spot location) to treat a wound bed in both a full field and a fractional manner in the same laser firing.
  • a laser scanner is controlled or configured to switch rapidly between two optical configurations, namely, a full field mode and a fractional mode during the scan itself.
  • fractional ablation is begun in the wound bed (e.g., in a first region or location within the wound bed) while full field ablation is finishing elsewhere (e.g., in a second region or location within the wound bed).
  • any blood that enters the wound bed after or due to full field ablation is removed prior to beginning fractional laser ablation.
  • any such blood is removed by blotting or wiping in between performing full field laser ablation and fractional laser ablation in a given location or region within the wound bed.
  • Methods described herein further comprise performing debridement in the wound bed. including prior to performing full field laser ablation in the wound bed. Moreover, in some cases, performing debridement produces punctate bleeding in the wound bed. Performing debridement can prepare the wound bed for subsequent steps of a method described herein. Moreover, such a debridement "pre-treatmenf can be used to remove substantial amounts of callous dead tissue from the wound bed, particularly at the wound edge.
  • debridement can remove up to 2 mm or up to 3 mm of tissue, where the recited length corresponds to a depth from the surface of the wound or wound bed prior to debridement, in some embodiments, the debridement step removes 0.5-3 mm, 0.5-2.5 mm, 0.5-2 mm, 1-3 mm, 1-2.5 mm, 1-2 mm, or 2-3 mm of tissue from the wound bed.
  • Debridement can be performed in any manner not inconsistent with the objectives of the present disclosure.
  • performing debridement comprises performing sharp debridement.
  • performing debridement comprises performing laser debridement.
  • laser debridement as a "pre-treatment " debridement step can differ from other laser treatment steps of methods described herein.
  • such laser debridement differs from full field laser ablation and fractional laser ablation steps described herein.
  • debridement can be entirely omitted from a method described herein.
  • less severe wounds may be treated by eliminating or omitting a debridement step such as a sharp debridement step and can instead use a foil field laser ablation step, such as described above, to sufficiently prepare the otherwise untreated wound bed for fractional laser ablation.
  • the full field laser ablation can be earned out using a scan depth and desired number of "passes" of the full field laser as is necessary to remove tissue to the point of punctate bleeding.
  • a method described herein can dramatically improve wound healing, especially chronic wound healing, by hindering or destroying the ability of biofilm present in a wound bed from reforming and/or otherwise limiting the effectiveness of antibiotic treatments, other treatments, and host immune responses to the wound.
  • a method described herein can "reset" the woiuid microbiota and the wound bed surface.
  • the method removes at least 85% of biofilm or residual biofilm present in the wound bed prior to performing the full field laser ablation.
  • the method removes at least 90%, at least 95%, or at least 98% of biofilm or residual biofilm in the wound bed immediately prior to performing the full field laser ablation.
  • methods described herein further comprise carrying out one or more additional treatments in the wound bed following debridement, full field laser ablation. and/or fractional laser ablation steps. Any such additional treatments not inconsistent with the objectives of the present disclosure can be used.
  • an additional treatment includes applying an antibiotic to the wound, desiccating the wound, and/or irradiating the wound with UV light.
  • performing full field and fractional laser ablation steps described herein can not only enable the host to self-heal a treated wound, but can also increase the efficacy of traditional, non-laser ablation wound treatments, such as antibiotic treatments.
  • a method described herein comprises treating a damaged tissue site other than a wound by performing a full field laser ablation in. at, or on a non-wound damaged tissue site and subsequently performing a fractional laser ablation in, at, or on the non-wound damaged tissue site.
  • any of the steps described above for treating a wound can be performed in the same way or substantially the same way for treating a non-wound damaged tissue site.
  • a method described herein can include any combination of steps or other features described above not inconsistent with the objectives of the present disclosure.
  • any debridement step described herein can be combined with any full field or fractional laser ablation step and/or laser feature described herein.
  • a system or device for treating a wound (or other damaged tissue site) is described herein. It is to be understood that such systems or devices can be used to carry out a method described hereinabove in Section I.
  • a system or device comprises a laser configured to selectively perform full field laser ablation and fractional laser ablation on a wound (or other damaged tissue site) of the same patient, including in an alternating or sequential manner.
  • the laser is configured to perform fractional laser ablation on the wound (or other damaged tissue site) after the laser performs full field laser ablation on the wound (or other damaged tissue site).
  • a system or device described herein comprises a plurality of lasers rather than a single laser. For i tis lance, in some embodiments, a system or device comprises a first, laser configured to perform full field laser ablation, and a second laser configured to perform fractional laser ablation.
  • the system or device further comprises one or more first lenses, mirrors, actuators, or other hardware or software for directing a first laser beam generated by a laser of the system or device (such as by a first laser) to a desired location on a patient and/or within a wound bed (or non-wound damaged tissue site).
  • the system or device may also comprise one or more second lenses, mirrors, actuators, or other hardware or software for directing a second laser beam generated by a laser of t he system or device (such as by the same laser used to generate the first laser beam, or by a second laser) to a desired location on a patient and/or within a wound bed (or non-wound damaged tissue site).
  • a system or device described herein further comprises hardware and/or software for coordinating or automating the operation of one or more lasers of the system or device (such as first and second lasers), including to provide a plurality of laser beams (such as first and second laser beams) in a simultaneous or sequential manner described herein.
  • one or more lasers of the system or device such as first and second lasers
  • a plurality of laser beams such as first and second laser beams
  • a laser or plurality of lasers e.g., the first laser and the second laser
  • a laser or plurality of lasers perform full field laser ablation and fractional laser ablation on a wound of the same patient sequentially, in some such instances, for example, a laser (or a second laser) performs fractional laser ablation on the wound after the same laser (or a first laser) performs full field laser ablation on the wound, it is also possible, in some cases, for the fractional laser ablation to be carried out simultaneously or nearly simultaneously with the full field laser ablation, or partially temporally overlapping the full field laser ablation, as described above in Section 1.
  • FIGS. 7-9 One exemplary device, generally designated 50, according to the present disclosure is illustrated schematically in FIGS. 7-9.
  • FIG. 7 illustrates an external asymmetric view of a "combination" full field and fractional scanning handpiece device.
  • FIG. 8 shows a top view of the combination scanning handpiece device.
  • FIG. 9 illustrates a sectional view of the device of FIG. 8. taken along the elongated axis of the tube 66 as viewed along lines 9-9.
  • both the full field scanner and the fractional scanner employ common elements consisting of the electrical connector 52, x-galvo 54, y-galvo 56. x-mirror 58, y-mirror 59 and focusing lens 60.
  • the moveable lens 62 can be moved out of the active optical path to create a fractionated beam array at the wound.
  • ⁇ full field large beam can be achieved in at least two ways.
  • both ihe Fly ' s eye assembly 64 and the movable lens 62 can be removed from the active beam path resulting in a full field (non- fractionated) beam.
  • both the Fly's eye assembly 64 and the moveable lens 62 are left in the beam path.
  • the focusing lens 60 and moveable lens 62 can be readjusted along the axis of the tube 66 to determine the proper beam parameters for the two scanning modes, fractional and full field.
  • the bayonet standoff 68 insures a desired distance from the scanning handpiece to the area targeted for ablation.
  • One or more fixed lenses 69 can be disposed proximate the bayonet standoff 68 and spaced apart from the area targeted for ablation.
  • FIGS. 10-11 A further exemplary device, generally designated 70. is illustrated in FIGS. 10-11.
  • the device 70 comprises a lens housing 72 configured to house a movable assembly 74 therein.
  • the assembly 74 can comprise a movable lens and a Fly's eye lens, which are individually or simultaneously movable relative to an optical path formed inside the tube 79.
  • I he housing 72 and assembly 74 can be at least partially sealed between a front cover 76 and a rear cover 78.
  • the assembly 74, or portions thereof, can be positionable in or out of the active optical path using an actuator 80.
  • either the moveable lens or the Fly's eye lens of the movable assembly 74 can be moved out of the active optical path to create a fractionated beam array at the wound.
  • a full field large beam can be achieved via actuating the moveable lens and ihe Fly's eye lens of the assembly 74 out of the active beam path resulting in a full field (non-fractionated) beam.
  • both the moveable and Fly's eye lenses of the assembly 74 can be left in the beam path.
  • the bayonet standoff 82 insures a desired distance from the scanning handpiece device 70 to the area targeted for ablation.
  • a system or device described herein comprises one or more lasers, such as a first laser and a second la,ser.
  • a laser can refer lo a single device that produces a single beam of laser light from a single lasting medium.
  • Any laser not inconsistent with the objectives of the present disclosure may be used for the first laser and/or the second laser.
  • any laser described hereinabove in Section I may be used.
  • a laser (such as the first laser and/or the second laser) comprises a laser scanner.
  • a laser (such as the first laser and/or the second laser) comprises an Er:YAG laser.
  • a system or device described herein further comprises one or more lenses, mirrors, actuators, or other hardware or software for directing one or more laser beams to a desired location. Any lenses, mirrors, actuators, or other hardware or software not inconsistent with the objectives of the present disclosure may be used. Many suitable lenses, mirrors, actuators, or other hardware or software will be readily apparent to those of ordinary skill in the art.
  • a system or device described herein further comprises hardware and/or software for coordinating or automating the operation of one or more lasers of the system or device (such as first and second lasers of a system described herein). Any such hardware and/or software not inconsistent with the object! s'es of the present disclosure may be used. Moreover, various suitable hardware and software components will be readily apparent to those of ordinary skill in the art.
  • a system or device described herein can include any combination of components or features described above.
  • any laser (or combination of lasers) described above can be used in combination with any additional hardware and/or software described herein.
  • a method of treating a chronic wound according to one embodiment described herein was carried out as follows. Hie patient was a very pleasant 50-year-old diabetic with severe peripheral neuropathy and peripheral vascular disease. The patient had had a right below knee amputation, The patient developed a severe Wagner's HI diabetic foot ulcer of the left lateral foot in September 2015. The patient underwent biofilm based wound management and, on October 23, 2015. the patient continued to have a deep diabetic foot ulcer which involved the metatarsal of the left lateral loot. The patient was started on laser ablation treatments as described herein in Section 1. Within one month the wound had tilled in, covering the bone, and was almost up to the wound surface. By December 23, 2015, the patient's wound was healed. Prior to the beginning of treatment according to a method described herein, the patient was recommended to have his left leg amputated. Such amputation was not needed due to the efficacy of the wound treatment described herein.
  • a method of treating a chronic wound according to one embodiment described herein was carried out as follows.
  • the patient was a very pleasant 59-year-old male with severe diabetes mellitus which is uncontrolled.
  • the patient developed a Wagner's IV diabetic foot ulcer of the left lower leg.
  • the patient had involvement of the calcaneus and the Achilles tendon and was recommended to have a major limb amputation, either above knee, or at the very minimum, below knee.
  • On December 14, 2015 there was involvement of the calcaneus and the Achilles tendon along with significant loss of skin of the calf and significant slough and maceration on and around the peri wound area.
  • Embodiment 1 A method of treating a wound, the method comprising:
  • Embodiment 2 The method of Embodiment 1 , wherein the fractional laser ablation is begun 10 minutes or less after the full field laser ablation is ended.
  • Embodiment 3 The method of any of the preceding Embodiments, wherein the full field laser ablation removes at least 90% of biofilm and/or necrotic tissue present in the wound bed immediately prior to the full field laser ablation.
  • Embodiment 4 The method of any of the preceding Embodiments, wherein the fractional laser ablation generates holes in up to 35% of the surface area of the wound bed, the holes having an average diameter of 150-600 ⁇ m. and an average depth of up to 2 mm.
  • Embodiment 5 The method of any of the preceding Embodiments, wherein the full field laser ablation and/or the fractional laser ablation is carried out using a laser scanner.
  • Embodiment 6 The method of Embodiment 5, wherein both the full field laser ablation and the fractional laser ablation are carried out using a laser scanner.
  • Embodiment 7 The method of any of the preceding Embodiments, wherein the full field laser ablation and/or the fractional laser ablation is carried out using an Er: YAG laser.
  • Embodiment 8 The method of Embodiment 7, wherein both the full field laser ablation and the fractional laser ablation are carried out using an En YAG laser.
  • Embodiment 9 The method of any of the preceding Embodiments further comprising performing debridement in the wound bed prior to performing the full field laser ablation in the wound bed.
  • Embodiment 10 The method of Embodiment 9, wherein performing debridement produces punctate bleeding in the wound bed.
  • Embodiment 1 1 The method of Embodiment 9, wherein performing debridement comprises performing sharp debridement.
  • Embodiment 12 The method of Embodiment 9. wherein performing debridement comprises performing laser debridement.
  • Embodiment! 3 The method of any of the preceding Embodiments, wherein the method removes at least 85% of biofilm or residual biofilm present in the wound bed prior to performing the full field laser ablation.
  • Embodiment 14 The method of any of the preceding Embodiments, wherein the wound is a chronic wound.
  • Embodiment 15 A device for treating a wound, the device comprising:
  • a laser configured to perform full field laser ablation and fractional laser ablation.
  • Embodiment 16 The device of Embodiment 15, wherein the laser performs full field laser ablation and fractional laser ablation on a wound of the same patient sequentially.
  • Embodiment 17 The device of Embodiment 16, wherein the laser performs fractional laser ablation on the wound after the laser performs full field laser ablation on the wound.
  • Embodiment 18 The device of any of the preceding Embodiments, wherein the laser comprises a laser scanner.
  • Embodiment 19 The device of any of ihe preceding Embodiments, wherein the laser comprises an Er:YAG laser.
  • Embodiment 20 The device of any of the preceding Embodiments, wherein the device further comprises one or more lenses, mirrors, and/or actuators for directing one or more laser beams produced by the laser to one or more desired locations on a patient having the wound and/or within a wound bed of the wound.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Otolaryngology (AREA)
  • Electromagnetism (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Laser Surgery Devices (AREA)
  • Surgical Instruments (AREA)
  • Laser Beam Processing (AREA)

Abstract

In one aspect, methods of treating a wound are described herein. A method described herein, in some embodiments, comprises treating a wound, such as a chronic wound, by performing a fu!I field laser ablation in a wound bed of the wound and subsequently performing a fractional laser abiation in the wound bed. Additionally, in some cases, the fractional laser ablation step is carried out at substantially the same time as, or immediately following, the full field laser ablation step. In addition, in some instances, a method described herein further comprises performing debridement in the wound bed prior to performing the full field laser ablation in the wound bed.

Description

LASER TREATMENT OF WOUNDS
CROSS REFERENCE TO RELA TED APPLICATIONS
[0001] This application claims priority pursuant to 35 U.S.C. § 1 19 to U.S. Provisional Patent Application No. 62/431,078, filed on December 7, 2016, which is incorporated by reference herein in its entirety.
FIELD
[0002] This invention relates lo systems and methods for the treatment of wounds and. in particular, to systems, devices, and methods for treating chronic wounds with lasers.
BACKGROUND
[0003] Many wounds, including chronic wounds, are not easily healed by "normal" wound treatment methods, such as cleaning of the wound, treatment with antibiotics, and/or reliance on the patient's or host's own immune system response. Additionally, some wounds associated with an underlying condition or disease, such as diabetic ulcers, resist healing even upon treatment of the underlying condition or disease. Such chronic wounds frequently lead to chronic infection and amputation, as well as other challenges such as pain, discomfort, and malodor. Accordingly, there is a need for improved methods, systems, and devices for the treatment of wounds, particularly chronic wounds.
SUMMARY
[0004] In one aspect, methods of treating a wound are described herein which, in some cases, can provide one or more advantages compared to some other methods. For example, in some embodiments, a method described herein can provide more complete and rapid healing of a wound, including a chronic wound. Additionally, a method described herein can prevent or reduce chronic infection and/or eliminate the need to amputate a wounded body party. A method described herein can also reduce the pain, discomfort, and malodor associated with a wound. Moreover, a method described herein can treat a wound more efficiently and cost-effectively, compared to some other methods. [0005] A method described herein, in some embodiments, comprises treating a wound, such as a chronic wound, by performing a lull field laser ablation in a wound bed of ihe wound and subsequently performing a fractional laser ablation in the wound bed. Additionally, in some cases, the fractional laser ablation step is carried out at substantially the same time as, or immediately following, the full field laser ablation step. For example, in some instances, the fractional laser ablation is begun 10 minutes or less after the full fteld laser ablation is ended. Moreover, in some cases, the full field laser ablation removes at least 90% of biofilm and/or necrotic tissue present in the wound bed immediately prior to the full field laser ablation.
Further, in some instances, the full field laser ablation ami/or the fractional laser ablation of a method described herein is carried out using a laser scanner and/or using a laser having an erbium-doped yttrium aluminum garnet lasing medium (an KnYAG laser).
[0006] In addition, in some embodiments, a method described herein further comprises performing debridement in the wound bed prior to performing the full field laser ablation in the wound bed. Such "pre-treatmenf ' debridement, in some cases, can be sharp debridement.
|U007j Moreover, in some cases, a method described herein also comprises carrying out one or more additional wound treatment steps following completion of treatment steps mentioned above. For example, in some embodiments, a method described herein further comprises carrying out one or more additional wound treatment steps following debridement, full field laser ablation, and fractional laser ablation. Such additional treatments can include applying an antibiotic to the wound, desiccating the wound, and/or irradiating the wound with ultraviolet (UV) light.
[0008] It should be further noted that methods described herein can also be used to treat damaged tissue that may or may not constitute a "wound" per se. For example, in some cases, a method described herein comprises treating a damaged tissue site other than a wound by performing a full field laser ablation in, at, or on a non-wound damaged tissue site and subsequently performing a fractional laser ablation in, at, or on the non-wound damaged tissue site.
[0009] In another aspect, systems or devices for treating a wound (or non-wound damaged tissue site) are described herein. In some embodiments, such a system or device comprises a laser configured to selectively perform full field laser ablation and fractional laser ablation on a wound (or other damaged tissue site) of die same patient, including in an alternating or sequential manner. In some such instances, the laser is configured to perform fractional laser ablation on the wound (or other damaged tissue site) after the laser performs full field laser ablation on the wound (or other damaged tissue site). Moreover, in some cases, a system or device described herein comprises a plurality of lasers rather than a single laser. For instance, in some embodiments, a system or device comprises a first laser configured to perform till I field laser ablation and a second laser configured to perform fractional laser ablation. Additionally, in some cases, the first laser and the second laser are configured to perform full field laser ablation and fractional laser ablation, respectively, on a wound (or other damaged tissue site) of the same patient sequentially, in particular, in some instances, the second laser is configured to perform fractional laser ablation on the wound (or other damaged tissue site) after the first laser performs full field laser ablation on the wound (or other damaged tissue site). Moreover, in some embodiments, the laser (or the first laser and/or the second laser) of a system or device described herein comprises a laser scanner and/or an Er.YAG laser.
[0010] These and other embodiments are described in more detail in the detailed description which follows.
BRIEF DESCRIPTION OF THE FIGURES
[0011] FIG. 1 schematically illustrates a full field laser ablation process according to one embodiment described herein.
[0012] FIG. 2 schematically illustrates a full field laser ablation process according to one embodiment described herein.
[0013] FIG. 3 schematically illustrates a sectional view of a wound following a full field laser ablation process according to one embodiment described herein.
[0014] FIG. 4 schematically illustrates a perspective view of the wound of FIG. 3.
[0015] FIG. 5 illustrates a sectional view of a wound following a fractional laser ablation process according to one embodiment described herein.
[0016] FIG. 6 illustrates a perspective view of the wound of FIG. 5.
[0017] FIG. 7 illustrates a perspective view of a laser treatment device according to one embodiment described herein.
[0018] FIG. 8 illustrates a plan view of the device of FIG. 7.
[0019] FIG. 9 illustrates a sectional view of the device of FIG. 8, taken along lines 9-9. [0020] FIG. 10 illustrates a perspective view of a laser treatment device according to one embodiment described herein.
[0021] FIG. 11 illustrates a partially exploded view of the device of FIG. 10.
DETAILED DESCRIPTION
[0022] Embodiments described herein can be understood more readily by reference to the following detailed description, examples, and figures. Elements, apparatus, and methods described herein, however, are not limited to the specific embodiments presented in the detailed description, examples, and figures. It should be recognized that these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptations will be readily apparent to those of skill in the art without departing from the spirit and scope of the invention.
[0023] In addition, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of "1.0 to 10.0V should be considered to include any and all subranges beginning with a minimum value of 1.0 or more and ending with a maximum value of 10.0 or less, e.g., 1.0 to 5.3, or 4.7 to 10.0, or 3.6 to 7.9. Similarly, a stated range of "1 to 10" should be considered to include any and all subranges beginning with a minimum value of I or more and ending with a maximum value of 10 or less, e.g., 1 to 5. or 4 to 10. or 3 to 7, or 5 to 8.
[0024] All ranges disclosed herein are also to be considered to include the end points of the range, unless expressly stated otherwise. For example, a range of ''between 5 and 10" or "from 5 to 10" or "5-10" should generally be considered to include the end points 5 and 10.
[0025] Further, when the phrase "up to" is used in connection with an amount or quantity, it is to be understood that the amount is at least a detectable amount or quantity. For example, a material present in an amount "up to"' a specified amount, can be present from a detectable amount and up to and including die specified amount.
1. Methods of Treating a Wound
[0026] In one aspect, methods of treating a wound are described herein. As stated above, a method described herein, in some embodiments, comprises treating a wound, such as a chronic wound, by performing a full field laser ablation in a wound bed of the wound and subsequently performing a fractional laser ablation in the wound bed. In some eases, the fractional laser ablation step is carried out at substantially the same lime as, or immediately following, the full field laser ablation step. In addition, in some instances, a method described herein further comprises performing debridement in the wound bed prior to performing the full field laser ablation in the wound bed. Moreover, in some cases, a method described herein further comprises carrying out one or more additional treatments in the wound bed following
debridement, full field laser ablation, and/or fractional laser ablation steps described herein.
[0027] Many wounds, including chronic wounds, exhibit an accumulation of slough
(consisting of various proteins such as fibrin) and exudate, as well as exhibiting biofslm, particularly a microbial biofilm. Such a biofilm generally includes a large number of
microorganism cells adhered to one another and to a substrate. Additionally, in some cases, the adhered cells are embedded within an extracellular polymeric substance ('TPS," also known as "slime") produced by the microorganisms.
[0028] Not intending to be bound by theory, it is believed that methods described herein can dramatically improve wound healing, especially chronic wound healing, by hindering or destroying the ability of biofilm present in a wound bed from reforming and/or otherwise limiting the effectiveness of antibiotic treatments, other treatments, host immune responses to the wound. In wound treatment, particularly chronic wound treatment, all or substantially all slough, slime, necrosis, and the like are generally removed from a wound via scissors, curette, and wiping to the greatest extent possible without traumatizing the wound bed. Unfortunately, even with thorough scraping, wiping, and other such treatments, some amount of biofilm typically remains in a chronic wound bed. Such "residual'' biofilm comprises biofilm components that do not necessarily form a mature or complete biofilm but that once were part of a mature or complete biofilm. Moreover, this residual biofilm can typically reform into mature biofilm in as little as 24-36 hours. Again noi intending to be bound by theory, it is believed that methods of treating a wound described herein can destroy such residual biofilm and/or hinder the ability of residual biofilm to reform quickly, thereby improving the effectiveness of antibiotics, other treatment modalities, and/or the host immune response in healing the wound. Thus, in some embodiments, a method described herein can "reset" the wound microbiota and the wound bed surface. [0029] Turning now to specific steps of methods, methods described herein comprise performing a full field laser ablation. As understood by one of ordinary skill in the art, "full field" laser ablation refers to a laser ablation process in which laser interaction with tissue corresponds to 100% or substantially all of a targeted area being treated (e.g., a wound bed) by irradiation with an ablating laser beam, where an "ablating" laser beam is understood to refer to a laser beam of sufficient peak power to ablate, vaporize, destroy, and/or remove biological tissue irradiated by the laser beam, in some cases, the ablating laser beam (which may have a spot size, for example, of about 4 mm ) covers or "scans" all or substantially all of the targeted area with an overlapping serpentine pattern of "passes" of the laser beam or spot. For instance, in some embodiments, the ablating laser beam covers or scans at least 90%, at least 95%, at least 98%, or at least 99% of the targeted area (e.g., the wound bed of the wound being treated). In some cases, the ablating laser beam coves or scans 100% of the targeted area. It is further to be understood that full Held laser ablation can be carried out with a variety of spot sizes, scan or exposure patterns, and lasers. In general, a full field laser ablation step described herein can be carried out in any manner not inconsistent with the objectives of the present disclosure.
[0030] An exemplary full field laser ablation process is illustrated in FIGS. 1-4. Specifically, FIG. 1 and FIG. 2 schematically illustrate a top or plan view of a scan or pattern of laser beam spots ( 10) during the course of carrying out a full field laser ablation according to one
embodiment described herein. As further illustrated in FIG.3 and FIG. 4, the spots ( 10) cover an exterior surface (21 ) of a wound bed (20) of a host or patient (30). With reference once more to FIG. 1 and FIG. 2, the spots (10) overlap as the ablating laser beam (represented by spots (10)) traverses the surface (21) in a serpentine pattern, as indicated by the directional arrows overlaid on the spots ( 10) in FIG. 2. As the ablating laser beam traverses the surface (21 ), tissue and/or other material forming the surface (21) are ablated, vaporized, destroyed, or otherwise removed from the wound bed (20), causing the surface (21) to be "lowered" in a depth direction perpendicular to the surface (21) and perpendicular to an adjacent, non-treated surface (22) of the patient or host (30). As specifically illustrated in FIG. 1 and FIG. 2. the ablating laser beam performs three back and forth "passes" in the wound bed (20). However, it is to be understood that any desired number of passes can be performed to cover the entire surface (21 ). Similarly, the entire surface (21 ) can be traversed as many times as needed to "lower" the surface (21 ) to a desired depth beneath the original surface of the wound bed or beneath the adjacent non-treated surface (22). It is further to be understood that each pass of the ablating laser beam ablates, vaporizes, destroys, or removes tissue (such as necrotic tissue) from the wound bed, such that the depth of full field laser ablation corresponds to a depth of tissue ablated, vaporized, destroyed, or removed. As illustrated in FIG. 3, the depth of full field laser ablation is "dl It should be noted that FIG. 3 illustrates a sectional view of the wound bed (20) after completion of the full field laser ablation to depth dl, while FIG. 4 illustrates a perspective view of the same wound bed (20) after completion of the full field laser ablation to depth dl.
[0031] The depth of ablation in a full field laser ablation step can vary. Any depth not inconsistent with the objectives of the present disclosure may be used. For example, in some embodiments, the full field laser ablation step removes at least 90%. at least 95%, at least 98%, or at least 99% of necrotic tissue in the wound bed to a depth of up to 1000 μχη or to a depth of up to 2000 μm.. In some cases, the full field laser ablation step removes at least 90%, at least 95%, at least 98%, or at least 99% of tissue in the wound bed to a depth of 50-2000 μm., 50-1000 μm.. 50-500 μm. . 50-300 μm. 50-200μm.ι, 100-2000 μm., 100-1000 μm , 100-500μm. ». 100-300 μm., 100-200 μm. 200-2000 μm.- 200-1000 μm., 200-500 μm., 400-2000 μm.. 400-1000 μm., 500- 2000 μm.. 500-1000 μm.. or 1000-2000 μm..
[0032] Additionally, in some embodiments, a full field laser ablation step of a method described herein removes or disrupts all or substantially all of various undesired components within a wound bed. In certain preferred embodiments, for example, a full field laser ablation step removes at least 90% of biofilm and/or necrotic tissue present in the wound bed
immediately prior to the full field laser ablation, where "removing'* biofilm and/or necrotic tissue includes ablating, vaporizing, destroying, and otherwise removing the biofilm and/or necrotic tissue. In some cases, a full field laser ablation step removes at least 95%, at least 98%, or at least 99% of biofilm and/or necrotic tissue present in the wound bed immediately prior to the full field laser ablation. In some instances, a full field laser ablation step removes 90-100%. 90-99%. 90-95%, 95- 100%, 95-99%, or 98-100% of biofilm and/or necrotic tissue present in the wound bed immediately prior lo the full field laser ablation. Not intending to be bound by theory, it believed that removing biofilm and/or necrotic tissue in this manner can facilitate and/or improve the effectiveness of subsequent stimulation of host wound-healing and/or immune responses, such as through fractional laser ablation. [0033] The spot size of a full field laser ablation step may also vary. Any spot size not inconsistent with the objectives of the present disclosure may be used. In some cases, for instance, the spot size is 0.5-10 mm, 0.5-5 mm, I -10 mm, or 1 -5 mm. Other spot sizes may also be used.
[0034] Moreover, a laser or laser beam used for a full field laser ablation step described herein can have any power and any peak or average emission wavelength not inconsistent with the objectives of the present disclosure. For example, in some embodiments, a laser or laser beam used for full Held laser ablation has a peak or average emission wavelength in the infrared (1R) region of the electromagnetic spectrum, in some such cases, a laser or laser beam used for full field laser ablation has a peak or average emission wavelength in the range of I -4 μm., 1-3 Mm, 2-4 jim, 2-3 μm., 8-12 jim, or 9-1 1 μm.. For example, in some embodiments, the full field laser ablation is preferably carried out using an BrrYAG laser or laser beam, including a neodymium-doped EnYAG laser or laser beam having a peak or average emission wavelength of 2940 nro. In other eases, the full field laser ablation is carried out using a carbon dioxide laser or laser beam. Further, in some instances, a laser or laser beam used for full field laser ablation has an average power of 5 to 200 W.
[0035] Additionally, in some preferred embodiments, a full field laser ablation is carried out using a laser scanner. A "laser scanner," for reference purposes herein, reiers to an apparatus which can be attached to a laser system for delivery of a laser beam over an area defined by the operator and assisted by a computer control system which is larger than a single spot of the laser beam. A typical construction of this apparatus involves an opto-mechanical arrangement of two orthogonal motors with mirrors mounted on them which receive the laser beam and are controlled by a computer control system. Bach motor or actuator is capable of directing the beam in an axis. The combination of two orthogonal motors/mirrors allows the scanner to draw any arbitrary pattern in two dimensions (e.g., x and y) on the tissue or other targeted area.
[0036] It is further to be understood that a full field laser ablation step described herein can be carried out using any laser system not inconsistent with the objectives of the present disclosure. Such a system may, for instance, include a laser operable to j>roduce a laser beam having characteristics described hereinabove, as well as one or more lenses, minors, actuators, or other hardware or software for directing the laser beam to a desired location on a patient and/or within a wound bed. One exemplary system is described further hereinbelow in Section II. [0037] Methods described herein also comprise performing a fractional laser ablation.
"Fractional" laser ablation or coagulation, as understood by one of ordinary skill in the art, refers to a laser ablation or coagulation process in which an ablating or coagulating laser beam is used 10 selectively ablate, coagulate, vaporize, destroy, or remove columns of tissue, or "drill holes," in a targeted area such as a wound bed. Further, such coagulated columns or columnar vacancies or "holes" formed by fractional laser ablation can define a pattern or array of columns or vacancies or holes in the targeted area, where the columns or vacancies or holes have a desired diameter, depth, and areal density (of less than 100%) on a surface of the wound bed. Fractional laser ablation can be carried out with a variety of spot sizes, scan or exposure patterns, and lasers. In general, a fractional laser ablation step described herein can be carried out in any manner not inconsistent with the objectives of the present disclosure.
[0038] An exemplary fractional laser ablation process is illustrated in FIG. 5 and FIG. 6. In particular, FIG. 5 and FIG. 6 schematically illustrate the results of a fractional laser ablation step carried out in a wound bed (20) of a host (30) following the full field laser ablation step illustrated in FIGS. 1-4. As illustrated in FIG. 5 and FIG. 6, a fractional laser ablation beam (not shown) forms columnar vacancies or holes (40) having a depth (d2) below the exterior surface ( 21 ) of the wound bed (20). As specifically illustrated in FIG.5 and FIG. 6. the ablating laser beam forms a 2 x 2 array of holes (40) in the wound bed (20). However, this particular array is shown for illustration purposes only; it is to be understood that any desired number or pattern of holes (40) can be provided by a fractional laser ablation step described herein. It should further be noted that FIG. 5 illustrates a sectional view of the wound bed (20). while FIG. 6 illustrates a perspective view of the same wound bed (20) after completion of the fractional laser ablation to depth d2.
[0039] The depth and areal density of ablation in a fractional laser ablation step described herein can vary. Any depth and areal density not inconsistent with the objectives of the present disclosure may be used. Tor example, in some preferred embodiments, the fractional laser ablation generates holes in up to 25% or up to 35% of the surface area of the wound bed, the holes having an average diameter of 150-600 μm. and an average depth of up to 2 mm. In other cases, the fractional laser ablation generates holes in 15-35%, 15-30%, 15-25%, 20-35%, or 20- 30% of the surface area of the wound bed, wherein the holes have an average diameter of 150- 500 μm., 150-450 μm., 150-400 μm., 200-600 μm., 200-500 μm., 200-450 μm., 200-400 μm., 250- 600 μm., 250-500 μm., 250-450 μm., 250-400 μm., 300-600 μm., 300-500 μm., 300-450 μm., 300- 400 μm., 400-600 μm., 400-500 μm., or 450-600 μτη, and a depth of 0.3-2.5 mm, 0.3-2 mm. 0.3- 1.5 mm, 0.3-1 mm, 0.5-2.5 mm, 0.5-2 mm, 0.5-1.5 mm, 0.5-1 mm, 1-2.5 mm, or 1-2 mm.
[0040] The spot size of a fractional laser ablation may also vary. Any spot size not inconsistent with the objectives of the present disclosure may be used. In some cases, for instance, the spot size is 0.1-1 mm or 0.1-0.5 mm.
[0041] Moreover, a laser or laser beam used for a fractional laser ablation step described herein can have any power and any peak or average emission wavelength not inconsistent with the objectives of the present disclosure. For example, in some embodiments, a laser or laser beam used for fractional laser ablation has a peak or average emission wavelength in the IK region of the electromagnetic spectrum. In some such cases, a laser or laser beam used for fractional laser ablation has a peak or average emission wavelength in the range of 1 -4 μm., 1 -3 μm., 2-4 m,.2-3 μm.. 8-12 μm., or 9-1 1 μm.. For example, in some embodiments, the fractional laser ablation is preferably carried out using an Er:Y AG laser or laser beam. In other cases, the fractional laser ablation is carried out using a carbon dioxide laser or laser beam. Further, in some instances, a laser or laser beam used for fractional laser ablation or coagulation has an average power of 1 to 100 W.
[0042] Additionally, in some preferred embodiments, a fractional laser ablation is carried out using a laser scanner. Such a "laser scanner" refers to an apparatus similar to or the same as that described above in the context of full field laser ablation. In addition, a fractional scanner may have elements which either deliver a single small beam to a portion of the area of interest or an array of multiple small spots which can be directed as a pattern to interact with a fraction of the area of interest. Such a fractional scanner may be similar to the lull field scanner with additional optical components, removed, added or adjusted accordingly.
[0043] It is further to be understood that a fractional laser ablation step described herein can be carried out using any laser system not inconsistent with the objectives of the present disclosure. Such a system may. for instance, include a laser operable to produce a laser beam having characteristics described hereinabove for fractional laser ablation, as well as one or more lenses, minors, actuators, or other hardware or software for directing the laser beam to a desired location on a patient and/or within a wound bed. One exemplary system is described further hereinbelow in Section II. [0044] Not intending to be bound by theory, it is believed that carrying out a fractional laser ablation step described herein can .stimulate host immune responses or other wound-healing response* of the host, such as responses leading to angiogenesis, host ECM formation, reduction of inflammation, reduction in cellular senescence in the wound bed, and/or improved number and/or penetration of host neutrophils, other white blood cells, cytokines, and/or growth factors into the wound bed from deeper, healthier host tissue.
[0045] Moreover, in some embodiments, the fractional laser ablation of a method described herein is begun at essentially "the same time" as the full field laser ablation is ended, and the two treatment modalities are delivered sequentially, from a clinical perspective. l;*or instance, in some cases, the fractional laser ablation is begun 1 hour or less, 30 minutes or less, 20 minutes or less, 15 minutes or less, 10 minutes or less, 5 minutes or less, 3 minutes or less, or I minute or less after the full field laser ablation is ended. It is also possible, in some cases, tor the fractional laser ablation to be carried out simultaneously or nearly simultaneously with the full field laser ablation, or partially temporally overlapping the full field laser ablation. For example, in some embodiments, a laser described herein has a beam shape that simultaneously contains the properties necessary (e.g., peak power, number of spots, spot size, spot location) to treat a wound bed in both a full field and a fractional manner in the same laser firing. In other cases, a laser scanner is controlled or configured to switch rapidly between two optical configurations, namely, a full field mode and a fractional mode during the scan itself. In still other instances, fractional ablation is begun in the wound bed (e.g., in a first region or location within the wound bed) while full field ablation is finishing elsewhere (e.g., in a second region or location within the wound bed). Moreover, in some embodiments, any blood that enters the wound bed after or due to full field ablation is removed prior to beginning fractional laser ablation. For instance, in some cases, any such blood is removed by blotting or wiping in between performing full field laser ablation and fractional laser ablation in a given location or region within the wound bed.
[0046] Methods described herein, in some embodiments, further comprise performing debridement in the wound bed. including prior to performing full field laser ablation in the wound bed. Moreover, in some cases, performing debridement produces punctate bleeding in the wound bed. Performing debridement can prepare the wound bed for subsequent steps of a method described herein. Moreover, such a debridement "pre-treatmenf can be used to remove substantial amounts of callous dead tissue from the wound bed, particularly at the wound edge. For instance, in some cases, debridement can remove up to 2 mm or up to 3 mm of tissue, where the recited length corresponds to a depth from the surface of the wound or wound bed prior to debridement, in some embodiments, the debridement step removes 0.5-3 mm, 0.5-2.5 mm, 0.5-2 mm, 1-3 mm, 1-2.5 mm, 1-2 mm, or 2-3 mm of tissue from the wound bed.
[0047] Debridement can be performed in any manner not inconsistent with the objectives of the present disclosure. For example, in some cases, performing debridement comprises performing sharp debridement. Alternatively, in other instances, performing debridement comprises performing laser debridement. It is to be understood that such laser debridement as a "pre-treatment " debridement step can differ from other laser treatment steps of methods described herein. In particular, such laser debridement differs from full field laser ablation and fractional laser ablation steps described herein.
[0048] II is further to be understood that, in some cases, debridement can be entirely omitted from a method described herein. In some embodiments, for example, less severe wounds may be treated by eliminating or omitting a debridement step such as a sharp debridement step and can instead use a foil field laser ablation step, such as described above, to sufficiently prepare the otherwise untreated wound bed for fractional laser ablation. In some such instances, the full field laser ablation can be earned out using a scan depth and desired number of "passes" of the full field laser as is necessary to remove tissue to the point of punctate bleeding.
[0049] As stated above, it is believed that methods described herein can dramatically improve wound healing, especially chronic wound healing, by hindering or destroying the ability of biofilm present in a wound bed from reforming and/or otherwise limiting the effectiveness of antibiotic treatments, other treatments, and host immune responses to the wound. Thus, in some embodiments, a method described herein can "reset" the woiuid microbiota and the wound bed surface. Again not intending to be bound by theory, it is believed that a method described herein can provide this benefit in a number of ways. For instance, in some cases, the method removes at least 85% of biofilm or residual biofilm present in the wound bed prior to performing the full field laser ablation. In some instances, the method removes at least 90%, at least 95%, or at least 98% of biofilm or residual biofilm in the wound bed immediately prior to performing the full field laser ablation.
[0050] Moreover, methods described herein, in some cases, further comprise carrying out one or more additional treatments in the wound bed following debridement, full field laser ablation. and/or fractional laser ablation steps. Any such additional treatments not inconsistent with the objectives of the present disclosure can be used. For example, in some instances, an additional treatment includes applying an antibiotic to the wound, desiccating the wound, and/or irradiating the wound with UV light. As described further herein, it is believed that performing full field and fractional laser ablation steps described herein can not only enable the host to self-heal a treated wound, but can also increase the efficacy of traditional, non-laser ablation wound treatments, such as antibiotic treatments.
[0051] Additionally, as stated above, it should be further noted that methods described herein can also be used to treat damaged tissue that may or may not constitute a "wound" per se. For example, in some cases, a method described herein comprises treating a damaged tissue site other than a wound by performing a full field laser ablation in. at, or on a non-wound damaged tissue site and subsequently performing a fractional laser ablation in, at, or on the non-wound damaged tissue site. In such instances, it is further to be understood that any of the steps described above for treating a wound can be performed in the same way or substantially the same way for treating a non-wound damaged tissue site.
[0052] Moreover, it is further to be understood that a method described herein can include any combination of steps or other features described above not inconsistent with the objectives of the present disclosure. For example, any debridement step described herein can be combined with any full field or fractional laser ablation step and/or laser feature described herein.
Similarly, a method described herein can be carried out with any system or device described herein.
II- Systems or Devices for Treating a Wound
[0053] In another aspect, systems or devices for treating a wound (or other damaged tissue site) are described herein. It is to be understood that such systems or devices can be used to carry out a method described hereinabove in Section I. In some cases, such a system or device comprises a laser configured to selectively perform full field laser ablation and fractional laser ablation on a wound (or other damaged tissue site) of the same patient, including in an alternating or sequential manner. In some such instances, the laser is configured to perform fractional laser ablation on the wound (or other damaged tissue site) after the laser performs full field laser ablation on the wound (or other damaged tissue site). Moreover, in some cases, a system or device described herein comprises a plurality of lasers rather than a single laser. For i tis lance, in some embodiments, a system or device comprises a first, laser configured to perform full field laser ablation, and a second laser configured to perform fractional laser ablation.
Additionally, in some embodiments, the system or device further comprises one or more first lenses, mirrors, actuators, or other hardware or software for directing a first laser beam generated by a laser of the system or device (such as by a first laser) to a desired location on a patient and/or within a wound bed (or non-wound damaged tissue site). The system or device may also comprise one or more second lenses, mirrors, actuators, or other hardware or software for directing a second laser beam generated by a laser of t he system or device (such as by the same laser used to generate the first laser beam, or by a second laser) to a desired location on a patient and/or within a wound bed (or non-wound damaged tissue site). Moreover, in some instances, a system or device described herein further comprises hardware and/or software for coordinating or automating the operation of one or more lasers of the system or device (such as first and second lasers), including to provide a plurality of laser beams (such as first and second laser beams) in a simultaneous or sequential manner described herein.
[0054] In some cases, a laser or plurality of lasers (e.g., the first laser and the second laser) of a system or device described herein perform full field laser ablation and fractional laser ablation on a wound of the same patient sequentially, in some such instances, for example, a laser (or a second laser) performs fractional laser ablation on the wound after the same laser (or a first laser) performs full field laser ablation on the wound, it is also possible, in some cases, for the fractional laser ablation to be carried out simultaneously or nearly simultaneously with the full field laser ablation, or partially temporally overlapping the full field laser ablation, as described above in Section 1.
[0055] One exemplary device, generally designated 50, according to the present disclosure is illustrated schematically in FIGS. 7-9. FIG. 7 illustrates an external asymmetric view of a "combination" full field and fractional scanning handpiece device. FIG. 8 shows a top view of the combination scanning handpiece device. FIG. 9 illustrates a sectional view of the device of FIG. 8. taken along the elongated axis of the tube 66 as viewed along lines 9-9. With specific reference to FIG. 9. both the full field scanner and the fractional scanner employ common elements consisting of the electrical connector 52, x-galvo 54, y-galvo 56. x-mirror 58, y-mirror 59 and focusing lens 60. In a fractional scenario, the moveable lens 62 can be moved out of the active optical path to create a fractionated beam array at the wound. Λ full field large beam can be achieved in at least two ways. In the first scenario, both ihe Fly's eye assembly 64 and the movable lens 62 can be removed from the active beam path resulting in a full field (non- fractionated) beam. In a second full field scenario, both the Fly's eye assembly 64 and the moveable lens 62 are left in the beam path. Additionally, the focusing lens 60 and moveable lens 62 can be readjusted along the axis of the tube 66 to determine the proper beam parameters for the two scanning modes, fractional and full field. The bayonet standoff 68 insures a desired distance from the scanning handpiece to the area targeted for ablation. One or more fixed lenses 69 can be disposed proximate the bayonet standoff 68 and spaced apart from the area targeted for ablation.
[0056] A further exemplary device, generally designated 70. is illustrated in FIGS. 10-11. With specific reference to FIG. 11, the device 70 comprises a lens housing 72 configured to house a movable assembly 74 therein. The assembly 74 can comprise a movable lens and a Fly's eye lens, which are individually or simultaneously movable relative to an optical path formed inside the tube 79. I he housing 72 and assembly 74 can be at least partially sealed between a front cover 76 and a rear cover 78. The assembly 74, or portions thereof, can be positionable in or out of the active optical path using an actuator 80. In a fractional scenario, either the moveable lens or the Fly's eye lens of the movable assembly 74 can be moved out of the active optical path to create a fractionated beam array at the wound. In another full field scenario, a full field large beam can be achieved via actuating the moveable lens and ihe Fly's eye lens of the assembly 74 out of the active beam path resulting in a full field (non-fractionated) beam. Alternatively, both the moveable and Fly's eye lenses of the assembly 74 can be left in the beam path. The bayonet standoff 82 insures a desired distance from the scanning handpiece device 70 to the area targeted for ablation.
[0057] Turning now to specific components of systems or devices described herein, a system or device described herein comprises one or more lasers, such as a first laser and a second la,ser. It is to be understood that a "laser" can refer lo a single device that produces a single beam of laser light from a single lasting medium. Any laser not inconsistent with the objectives of the present disclosure may be used for the first laser and/or the second laser. In particular, any laser described hereinabove in Section I may be used. For example, in some preferred embodiments, a laser (such as the first laser and/or the second laser) comprises a laser scanner. Additionally, in some preferred embodiments, a laser (such as the first laser and/or the second laser) comprises an Er:YAG laser.
[0058] A system or device described herein, in some embodiments, further comprises one or more lenses, mirrors, actuators, or other hardware or software for directing one or more laser beams to a desired location. Any lenses, mirrors, actuators, or other hardware or software not inconsistent with the objectives of the present disclosure may be used. Many suitable lenses, mirrors, actuators, or other hardware or software will be readily apparent to those of ordinary skill in the art.
[0059] Moreover, in some instances, a system or device described herein further comprises hardware and/or software for coordinating or automating the operation of one or more lasers of the system or device (such as first and second lasers of a system described herein). Any such hardware and/or software not inconsistent with the object! s'es of the present disclosure may be used. Moreover, various suitable hardware and software components will be readily apparent to those of ordinary skill in the art.
[0060] Additionally, it is to be understood that a system or device described herein can include any combination of components or features described above. For example, any laser (or combination of lasers) described above can be used in combination with any additional hardware and/or software described herein.
[006] j Some embodiments described herein are further illustrated in the following non- limiting examples.
EXAMPLE 1
Method of Treating a Chronic Wound
[0062] A method of treating a chronic wound according to one embodiment described herein was carried out as follows. Hie patient was a very pleasant 50-year-old diabetic with severe peripheral neuropathy and peripheral vascular disease. The patient had had a right below knee amputation, The patient developed a severe Wagner's HI diabetic foot ulcer of the left lateral foot in September 2015. The patient underwent biofilm based wound management and, on October 23, 2015. the patient continued to have a deep diabetic foot ulcer which involved the metatarsal of the left lateral loot. The patient was started on laser ablation treatments as described herein in Section 1. Within one month the wound had tilled in, covering the bone, and was almost up to the wound surface. By December 23, 2015, the patient's wound was healed. Prior to the beginning of treatment according to a method described herein, the patient was recommended to have his left leg amputated. Such amputation was not needed due to the efficacy of the wound treatment described herein.
EXAMPLE 2
Method of Treating a Chronic Wound
[0063] A method of treating a chronic wound according to one embodiment described herein was carried out as follows. The patient was a very pleasant 59-year-old male with severe diabetes mellitus which is uncontrolled. The patient developed a Wagner's IV diabetic foot ulcer of the left lower leg. The patient had involvement of the calcaneus and the Achilles tendon and was recommended to have a major limb amputation, either above knee, or at the very minimum, below knee. The patient wanted to try conservative management first. On December 14, 2015, there was involvement of the calcaneus and the Achilles tendon along with significant loss of skin of the calf and significant slough and maceration on and around the peri wound area. The patient was started with laser ablation treatment as described hereinabove in Section 1 laser management and has had 5 treatments to date. By roughly three weeks after initiation of treatment, the maceration was gone, the wound bed had markedly improved and there was reepithelialization across the call" region. By February 1 , 2016, most of the defect deep around the calcaneus had healed. There had been reepithelialization of over 80% of the wound. There was still slough formation in the calcaneal region but clear evidence of healing. It was clear that this wound would heal and the patient would not lose his limb.
[0064] Additional exemplary embodiments contemplated herein are as follows:
Embodiment 1 : A method of treating a wound, the method comprising:
performing a full field laser ablation in a wound bed of the wound; and
subsequently performing a fractional laser ablation in the wound bed.
Embodiment 2: The method of Embodiment 1 , wherein the fractional laser ablation is begun 10 minutes or less after the full field laser ablation is ended.
Embodiment 3 : The method of any of the preceding Embodiments, wherein the full field laser ablation removes at least 90% of biofilm and/or necrotic tissue present in the wound bed immediately prior to the full field laser ablation. Embodiment 4: The method of any of the preceding Embodiments, wherein the fractional laser ablation generates holes in up to 35% of the surface area of the wound bed, the holes having an average diameter of 150-600 μm. and an average depth of up to 2 mm.
Embodiment 5: The method of any of the preceding Embodiments, wherein the full field laser ablation and/or the fractional laser ablation is carried out using a laser scanner.
Embodiment 6: The method of Embodiment 5, wherein both the full field laser ablation and the fractional laser ablation are carried out using a laser scanner.
Embodiment 7: The method of any of the preceding Embodiments, wherein the full field laser ablation and/or the fractional laser ablation is carried out using an Er: YAG laser.
Embodiment 8: The method of Embodiment 7, wherein both the full field laser ablation and the fractional laser ablation are carried out using an En YAG laser.
Embodiment 9: The method of any of the preceding Embodiments further comprising performing debridement in the wound bed prior to performing the full field laser ablation in the wound bed.
Embodiment 10: The method of Embodiment 9, wherein performing debridement produces punctate bleeding in the wound bed.
Embodiment 1 1 : The method of Embodiment 9, wherein performing debridement comprises performing sharp debridement.
Embodiment 12: The method of Embodiment 9. wherein performing debridement comprises performing laser debridement.
Embodiment! 3: The method of any of the preceding Embodiments, wherein the method removes at least 85% of biofilm or residual biofilm present in the wound bed prior to performing the full field laser ablation.
Embodiment 14: The method of any of the preceding Embodiments, wherein the wound is a chronic wound.
Embodiment 15: A device for treating a wound, the device comprising:
a laser configured to perform full field laser ablation and fractional laser ablation.
Embodiment 16: The device of Embodiment 15, wherein the laser performs full field laser ablation and fractional laser ablation on a wound of the same patient sequentially.
Embodiment 17: The device of Embodiment 16, wherein the laser performs fractional laser ablation on the wound after the laser performs full field laser ablation on the wound. Embodiment 18: The device of any of the preceding Embodiments, wherein the laser comprises a laser scanner.
Embodiment 19: The device of any of ihe preceding Embodiments, wherein the laser comprises an Er:YAG laser.
Embodiment 20: The device of any of the preceding Embodiments, wherein the device further comprises one or more lenses, mirrors, and/or actuators for directing one or more laser beams produced by the laser to one or more desired locations on a patient having the wound and/or within a wound bed of the wound.
[0065] Various embodiments of the present invention have been described in fulfillment of the various objectives of the invention. It should be recognized that these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptations thereof will be readily apparent to those skilled in the art without departing from the spirit and scope of the invention.

Claims

1. A method of treating a wound the method comprising:
performing a full Held laser ablation in a wound bed of the wound; and
subsequently performing a fractional laser ablation in the wound bed.
2. The method of claim 1. wherein the fractional laser ablation is begun 10 minutes or less after the full field laser ablation is ended.
3. The method of claim 1 , wherein the lull field laser ablation removes at least 90% of biofilm and/or necrotic tissue present in the wound bed immediately prior to the full field laser ablation.
4. The method of claim 1 , wherein the fractional laser ablation generates holes in up to 35% of the surface area of the wound bed, the holes having an average diameter of 150-600 μm. and an average depth of up to 2 mm.
5. The method of claim 1 , wherein the full field laser ablation and/or the fractional laser ablation is carried out using a laser scanner.
6. The method of claim 5, wherein both the full field laser ablation and the fractional laser ablation are carried out using a laser scanner.
7. The method of claim 1 , wherein at least one of the full field laser ablation and the fractional laser ablation is carried out using an Hr:YAG laser.
8. The method of claim 7, wherein both the full field laser ablation and the fractional laser ablation are carried out using an Kr:YAG laser.
9. The method of claim I further comprising performing debridement in the wound bed prior to performing the full field laser ablation in the wound bed.
10. The method of claim 9. wherein performing debridement produces punctate bleeding in the wound bed.
1 1. The method of claim 9, wherein perforating debridement comprises performing sharp debridement.
12. The method of claim 9, wherein performing debridement comprises performing laser debridement.
13. The method of claim 1. wherein the method removes at least 85% of biotilm or residual biofilm present in the wound bed prior to performing the full field laser ablation.
14. The method of claim 1 , wherein the wound is a chronic wound.
15. A device for treating a wound, the device comprising:
a laser configured to perform full field laser ablation and fractional laser ablation.
16. The device of claim 15. wherein the laser performs full field laser ablation and fractional laser ablation on a wound of the same patient sequentially.
17. T he device of claim 16, wherein the laser performs fractional laser ablation on the wound after the laser performs full field laser ablation on the wound.
18. The device of claim 15, wherein the laser comprises a laser scanner.
19. The device of claim 15, wherein the laser comprises an Er: YAG laser.
20. The device of claim 15, wherein the device further comprises one or more lenses, mirrors, and/or actuators for directing one or more laser beams produced by the laser to one or more desired locations on a patient having the wound and/or within a wound bed of the wound.
PCT/US2017/064805 2016-12-07 2017-12-06 Laser treatment of wounds WO2018106751A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/465,591 US11071588B2 (en) 2016-12-07 2017-12-06 Laser treatment of wounds
JP2019531105A JP7249942B2 (en) 2016-12-07 2017-12-06 Apparatus for treating wounds
EP17878364.3A EP3551111A4 (en) 2016-12-07 2017-12-06 Laser treatment of wounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662431078P 2016-12-07 2016-12-07
US62/431,078 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018106751A1 true WO2018106751A1 (en) 2018-06-14

Family

ID=62492135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/064805 WO2018106751A1 (en) 2016-12-07 2017-12-06 Laser treatment of wounds

Country Status (4)

Country Link
US (1) US11071588B2 (en)
EP (1) EP3551111A4 (en)
JP (1) JP7249942B2 (en)
WO (1) WO2018106751A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600092814A1 (en) * 2016-09-15 2018-03-15 El En Spa METHOD AND DEVICE FOR THE TREATMENT OF SKIN ULCERS
US11871978B2 (en) * 2017-04-20 2024-01-16 Boise State University Plasma scalpel for selective removal of microbes and microbial biofilms

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544256B1 (en) 1998-04-24 2003-04-08 Biolase Technology, Inc. Electromagnetically induced cutting with atomized fluid particles for dermatological applications
ES2441407T3 (en) * 2003-03-27 2014-02-04 The General Hospital Corporation Device for dermatological treatment and fractional skin rejuvenation
WO2010102255A1 (en) * 2009-03-05 2010-09-10 Cynosure, Inc. Non-uniform beam optical treatment methods and systems
WO2011031977A1 (en) * 2009-09-11 2011-03-17 Follica, Inc. Intermittent and pulse lithium treatments for scar revision and wound healing
EP2547394A4 (en) 2010-03-16 2013-09-11 Ronald L Moy Light treatment of wounds to reduce scar formation
US20150202007A1 (en) * 2012-08-10 2015-07-23 The General Hospital Corporation Method and apparatus for dermatological treatment
US20140074068A1 (en) * 2012-09-12 2014-03-13 Richard Ty Olmstead Multi-component method for regenerative repair of wounds implementing photonic wound debridement and stem cell deposition
US20140276201A1 (en) * 2013-03-15 2014-09-18 Arthrocare Corporation System and method for detecting tissue state and infection during electrosurgical treatment of wound tissue
GB2512585B (en) 2013-04-01 2015-12-02 Lumenis Ltd Medical laser apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAZAROV, I ET AL.: "Laser Debridement: Can It have an impact for Chronic Wounds?", PODIATRY TODAY, vol. 27, no. 5, 22 April 2014 (2014-04-22), pages 50 - 56, XP055512093, Retrieved from the Internet <URL:https://www.podiatrytoday.com/laser-debridement-can-it-have-impact-chronic-wounds> *
BOWEN, R, MD: "Periorbital Rejuvenation with the Contour TRL™ and ProFractional-XC™ Laser Devices", SCITON WHITE PAPER, 13 April 2010 (2010-04-13), Marinsburg, XP055512073 *
SCITON: "Contour TRL with MicroLaserPeel & ProFractional Therapy: Complete Resurfacing Solutions from Sciton", THE SCITON EDGE., 5 June 2014 (2014-06-05), XP055512068 *
See also references of EP3551111A4 *

Also Published As

Publication number Publication date
EP3551111A1 (en) 2019-10-16
JP2020511181A (en) 2020-04-16
US20190380779A1 (en) 2019-12-19
EP3551111A4 (en) 2020-06-24
US11071588B2 (en) 2021-07-27
JP7249942B2 (en) 2023-03-31

Similar Documents

Publication Publication Date Title
US5611795A (en) Laser facial rejuvenation
RU2644538C2 (en) Device for treating vaginal canal or other natural or surgically obtained orifices, and related system
US9351792B2 (en) Method and apparatus for dermatological treatment and fractional skin resurfacing
US8323253B2 (en) Method and device for tightening tissue using electromagnetic radiation
JP2002537940A (en) Reduction of skin wrinkles using pulsed light
EP3254730B1 (en) Imaging dot matrix laser treatment instrument
US20070239147A1 (en) Method, system and apparatus for dermatological treatment and fractional skin resurfacing
JP2007522854A (en) Apparatus and method for reducing and / or removing skin wrinkles
US20030125783A1 (en) Device and method for wound healing and debridement
US11071588B2 (en) Laser treatment of wounds
US11219485B2 (en) Devices for image-guided light treatment of skin
EP3053538A1 (en) Fractional laser surgical equipment having multiple purposes including treatment of vagina
CN105120787A (en) Medical laser apparatus
KR101468425B1 (en) Medical laser handpiece
RU2044552C1 (en) Method of surgical treatment of dermal diseases
WO2018213716A1 (en) Systems and methods for treating skin
CN109715100B (en) Device for treating skin ulcers
US11998268B2 (en) System and methods for treating skin
RU2409329C1 (en) Method of surgical treatment of verrucous leukoplakia of oral cavity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878364

Country of ref document: EP

Effective date: 20190708