WO2018105831A1 - 웨이퍼 캐리어 두께 측정장치 - Google Patents

웨이퍼 캐리어 두께 측정장치 Download PDF

Info

Publication number
WO2018105831A1
WO2018105831A1 PCT/KR2017/005870 KR2017005870W WO2018105831A1 WO 2018105831 A1 WO2018105831 A1 WO 2018105831A1 KR 2017005870 W KR2017005870 W KR 2017005870W WO 2018105831 A1 WO2018105831 A1 WO 2018105831A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer carrier
wafer
thickness
sensor
thickness measuring
Prior art date
Application number
PCT/KR2017/005870
Other languages
English (en)
French (fr)
Inventor
정석진
Original Assignee
에스케이실트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이실트론 주식회사 filed Critical 에스케이실트론 주식회사
Priority to US15/780,605 priority Critical patent/US11371829B2/en
Priority to CN201780004152.0A priority patent/CN108700405B/zh
Priority to JP2018527080A priority patent/JP6578442B2/ja
Priority to DE112017004821.4T priority patent/DE112017004821T5/de
Publication of WO2018105831A1 publication Critical patent/WO2018105831A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • G01B11/0633Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection using one or more discrete wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02042Confocal imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Definitions

  • the present invention relates to a wafer carrier thickness measuring apparatus capable of accurately measuring the inner and outer circumferential thickness of the wafer carrier in a non-contact manner.
  • a polishing process for mirroring the surface of the silicon wafer is performed.
  • Such a polishing process is performed by bending a micro surface by performing a mechanical and chemical reaction in order to improve the flatness of the wafer. control of nanotopography and roughness.
  • a double side polishing process (DSP: Double Side Polishing) is superior to the flatness of the wafer as compared to the single side polishing process, and this double side polishing process generally uses a double side polishing apparatus. To polish both sides of the wafer.
  • the two-side polishing device is a 4-way type in which four parts of an upper plate, a lower plate, a sun gear and an internal gear rotate, and polish both sides of a wafer mounted on a carrier. ) Is used a lot.
  • the carrier on which the wafer is mounted is subjected to a process of measuring its thickness several times before and after being put into the polishing process.
  • the thickness of the carrier may be measured, and then prepared as a carrier of the wafer to be actually processed.
  • the surface of the carrier is also polished along with the surface of the wafer. Since the carrier is used in the polishing process every 1 to 7 days, the thickness of the carrier is measured several times during the polishing process.
  • the thickness measurement of the carrier is more than 5um above the average level, it is determined that the carrier does not function, it is necessary to discard the existing carrier, and then insert a new carrier.
  • FIG. 1 is a view showing a typical wafer carrier
  • Figure 2 is a view showing a thickness measurement apparatus of a wafer carrier according to the prior art
  • Figure 3 is a graph showing the thickness measurement results of the wafer carrier according to the prior art.
  • a typical wafer carrier C is made of epoxy glass, as shown in FIG. 1, in which glass fiber (F) components are arranged in a lattice pattern on the surface to ensure strength.
  • the thickness measuring sensor 2 is installed on the surface plate 1 so as to be able to lift up and down.
  • a tip 2a which is a kind of contact sensor, is provided.
  • the tip 2a is similarly mounted on the surface plate ( At the point of contact with 1), the falling length of the sensor 2 is sensed as the measurement length L 1 .
  • the thickness t of the carrier C may be calculated by calculating the reference length L 0 and the measurement length L 1 measured as described above.
  • the thickness t of the wafer carrier is different for each position.
  • the thickness t of the carrier is measured at the point where the glass fibers are present, while the thickness of the carrier is measured at the point where the glass fibers are not present. (t) is measured thinly.
  • the thickness measuring apparatus of the wafer carrier may damage the surface of the wafer carrier because the tip comes down and comes into direct contact with the surface plate or the wafer carrier.
  • an object of the present invention is to provide a wafer carrier thickness measuring apparatus capable of accurately measuring the inner and outer circumferential thickness of the wafer carrier.
  • the present invention provides a rotatable and elevating device, comprising: a first table capable of supporting a central portion of a wafer carrier; A second table positioned outside the first table and rotatably installed to support an outer circumferential portion of the wafer carrier; An upper / lower sensor that calculates a thickness of the wafer carrier by measuring the distance to the upper and lower surfaces of the wafer carrier supported by one of the first and second tables in a non-contact manner; And a sensor driving means positioned on one side of the second table and moving the upper and lower sensors to the upper and lower sides of the wafer carrier supported by one of the first and second tables. do.
  • the sensor drive means the rotating shaft located in the vertical direction on one side of the second table, extending from the upper portion of the rotating shaft in the horizontal direction, the upper fixed end to which the upper sensor is fixed, And a lower fixed end extending in a horizontal direction from the lower side to which the lower sensor is fixed, and a rotating motor for rotating the rotary shaft.
  • the wafer may further include an alignment sensor provided with at least one alignment indicator, and configured to sense an alignment indicator of a wafer placed on one of the first and second tables.
  • the wafer carrier thickness measuring apparatus of the present invention selectively supports the inner and outer parts of the wafer carrier by the first and second tables, and simultaneously measures the distance to the upper and lower surfaces of the wafer carrier by the first and second sensors in a non-contact manner.
  • the thickness of the wafer carrier can be calculated.
  • the thickness of the wafer carrier can be accurately measured by directly measuring the distance to the upper and lower surfaces of the wafer carrier, thereby accurately measuring the thickness of the wafer carrier, and thus measuring accuracy ( accuracy).
  • the wafer carrier thickness measuring apparatus of the present invention detects an alignment mark provided on a wafer by an alignment sensor even when the wafer is loaded on one of the first and second tables, and measures the thickness of each wafer based on the alignment mark of the wafer. It can be measured.
  • the wafer carrier can be loaded at the same position every time, and thus the thickness can be measured at the same position for each wafer carrier, thereby improving measurement reproducibility.
  • FIG. 1 illustrates a typical wafer carrier.
  • Figure 2 is a view showing a thickness measuring device of the wafer carrier according to the prior art.
  • Figure 3 is a graph showing the result of measuring the thickness of the wafer carrier according to the prior art.
  • Figure 4 is a perspective view of the wafer carrier thickness measuring apparatus of the present invention.
  • FIG. 5 illustrates in detail the first table applied to FIG. 4.
  • FIG. 6 is a detail view of a second table applied to FIG. 4; FIG.
  • FIG. 7 is a view showing in detail the upper and lower sensors and sensor driving means applied to FIG.
  • FIG. 8 is a schematic diagram illustrating a principle of measuring the thickness of a wafer carrier according to the present invention.
  • 9A to 9I illustrate a thickness measurement process of a wafer carrier according to the present invention.
  • 4 to 7 is a view showing a wafer carrier thickness measuring apparatus of the present invention.
  • the wafer carrier thickness measuring apparatus of the present invention includes first and second tables 110 and 120 capable of selectively supporting the inner and outer portions of the wafer carrier, as shown in FIGS. 4 to 7, and up and down the wafer carrier.
  • the upper and lower sensors 131 and 132 capable of measuring the distance by non-contact measurement and calculating the thickness thereof, and the upper and lower sensors 131 and 132 to the upper and lower sides of the wafer carrier supported by the first and second tables 110 and 120. It is configured to include a sensor driving means 140 for moving, a monitor (M) and a control unit (not shown) for monitoring the sensor measurement process of the wafer carrier.
  • the first table 110 is configured to support the inner circumferential portion of the wafer carrier as shown in FIG. 5, and has a disc shape having a diameter smaller than that of the wafer carrier.
  • the first table 110 is rotatably installed and installed at the same time.
  • the rotary shaft 111 is provided at the center of the lower surface of the first table 110, and the first table 110 is rotated as the rotary shaft 111 is rotated by a separate rotary motor (not shown). Can be rotated.
  • the guide rail 112 is provided in one side of the first table 110 in the vertical direction, and the guide 113 is provided in one side of the frame provided below the first table 110.
  • the first table 110 may be elevated, but is not limited thereto.
  • the second table 120 is provided at an outer circumference of the first table 110 to support an outer circumferential portion of the wafer carrier. It consists of the ring-shaped slider 121 larger than diameter.
  • the second table 120 is rotatably installed, but is located on a reference plane and does not move up and down separately.
  • a gear value is formed at an outer circumferential end of the slider 121, and a driving motor (not shown) is provided at one side of the lower side of the slider 121, and the gear value of the slider 121 and the driving motor (not shown).
  • the second table 120 may be rotated as it is engaged with the gear tooth rotated by c), but is not limited thereto.
  • the slider 121 may be provided with a pad 122 to increase frictional force at the portion in contact with the wafer carrier.
  • the slider 121 is provided with a ring plate-shaped groove (not shown) as the inner circumferential portion is formed stepped, and the pad 122 is made of urethane and adhered to the groove of the slider 121.
  • the bolt plate may be configured in a ring plate shape, but is not limited thereto.
  • a positioning pin that may fix the position of the wafer carrier. 123 may be further provided.
  • three positioning pins 123 are provided on the circumference smaller than the diameter of the wafer carrier of the second table 120 at a predetermined interval, and the positioning pins 123 are the sliders. It is provided on a separate bracket provided between the 121 and the pad 122 can be installed to be movable in a radial direction to be engaged with some of the grooves (h) formed at a predetermined interval on the outer circumference of the wafer carrier (C).
  • h the grooves formed at a predetermined interval on the outer circumference of the wafer carrier (C).
  • the bracket is elastically supported by a spring 124 provided in the center direction of the second table 120, and the outer circumference of the bracket is provided by an LM guide provided on the lower side and a cylinder 125 provided on the outer circumferential side. It may be installed to be movable in the direction, but is not limited.
  • the upper and lower sensors 131 and 132 are positioned on the upper and lower sides of the first and second tables 110 and 120 by the sensor driving unit 140 as shown in FIG. 7, and the upper sensor 131 is a wafer.
  • the distance to the upper surface of the carrier is measured in a non-contact manner, and the lower sensor 132 measures the distance to the lower surface of the wafer carrier in a non-contact manner.
  • the upper and lower sensors 131 and 132 are constituted by a chromatic confocal sensor, which is a kind of non-contact displacement sensor.
  • the confocal sensor disperses the light source into colors and disposes the arrangement according to the wavelength of the color. In this case, the distance can be accurately measured even if the wafer carrier is made of an opaque or translucent material.
  • the sensor driving unit 140 is configured to mount the upper and lower sensors 131 and 132 and to move the upper and lower sides of the first and second tables 110 and 120, and the upper and lower parts on the rotating shaft 141.
  • the fixed ends 142 and 143 are integrally provided, and a rotation motor 144 for rotating the rotation shaft 141 is included.
  • the rotation shaft 141 is positioned in one side of the second table 120 in an up and down direction, and the upper and lower fixing ends 142 and 143 extend in the horizontal direction in the upper and lower portions of the rotation shaft 141. It is integrally formed in a shape, and the upper and lower sensors 131 and 132 are fixed to the ends of the upper and lower fixed ends 142 and 143.
  • the upper and lower fixed ends 142 and 143 may be positioned on the upper and lower sides of the first and second tables 110 and 120, and the upper and lower fixed ends 142 and 143.
  • the first and second tables 110 and 120 do not interfere with each other in structure.
  • the sensor driving means 140 may be installed to be elevated so that the upper and lower fixed ends 142 and 143 may be positioned above and below the first table 110 even when the first table 110 is elevated. do.
  • the guide rail 145 is provided in one side of the rotary shaft 141 in the vertical direction, the guide 146 which is movable along the guide rail 145 is connected to the rotary shaft 141, A lifting motor (not shown) for elevating the guide 146 along the guide rail 145 may be further provided, but is not limited thereto.
  • the guide 146 rotatably supports the rotation shaft 141, and as the guide 146 is elevated, the upper and lower fixed ends 142 and 143 and the upper and lower sensors 131 and 132 are also elevated. .
  • the wafer carrier is provided with the largest mounting hole in which the wafer is mounted in an eccentric position, and a plurality of holes are provided around the mounting hole so that the slurry supplied during the polishing process can be accommodated.
  • the thickness should be measured at the same position.
  • the wafer carrier is loaded on the first and second tables 110 and 120, the wafer carrier must be aligned.
  • the wafer carrier is provided with a separate alignment indicator (not shown) at a specific position.
  • the alignment indicator may be variously configured with holes, grooves, markings, etc., which are provided in a specific outer peripheral portion of the wafer carrier. It is not limited.
  • an alignment sensor 133 for detecting the position of the alignment indicator on the wafer carrier is provided at the upper fixed end 142, wherein the alignment sensor 133 is a CCD camera or the like that detects the alignment indicator as an image. It may be configured in the form, but is not limited thereto.
  • the wafer carrier is rotated, and when the alignment sensor 133 detects the alignment indicator of the wafer carrier, the rotation of the wafer carrier is stopped.
  • the distance to the upper and lower surfaces of the wafer carrier can be measured at each point where the wafer carrier is rotated at an angle.
  • the present invention can load the wafer carrier at the same position each time, thereby measuring the thickness at the same position for each wafer carrier, thereby improving measurement reproducibility.
  • FIG. 8 is a schematic diagram illustrating a principle of measuring the thickness of a wafer carrier according to the present invention.
  • the standard specimen K having a known thickness k is loaded in advance, and the upper and lower sensors 131 and 132 are provided to the upper and lower surfaces of the standard specimen K.
  • the distance (c, d) to the top / bottom of the wafer carrier (C) by the upper / lower sensors (131, 132) do.
  • a calculation unit built in the upper and lower sensors 131 and 132 calculates a thickness t of the wafer carrier according to Equation 1 below.
  • a portion of the wafer carrier C is supported by one of the first and second tables as described above, and thickness measurements are made at other points of the wafer carrier C that are not supported by the first and second tables. .
  • 9A to 9I illustrate a thickness measurement process of a wafer carrier according to the present invention.
  • the first and second tables 110 and 120 are located on the same reference plane and the upper and lower sensors 131 and 132 are located on one side thereof. .
  • the second table 120 rotates at a set angle, and the upper / lower sensors 131 and 132 measure the thickness of each inner circumferential portion of the wafer carrier C each time the second table 120 is rotated. .
  • the first table 110 rotates at a set angle, and each time the upper / lower sensors 131 and 132 measure the thickness of the outer circumferential portion of the wafer carrier C. .
  • the present invention is capable of preventing damage to the wafer carrier and accurately measuring the thickness of the wafer carrier because the thickness measurement is made in a non-contact manner at the same time supporting the part of the carrier while the wafer carrier is not supported. This improves measurement accuracy.
  • the wafer carrier thickness measuring apparatus of the present invention can accurately measure the inner / outer thickness of the wafer carrier in a non-contact manner.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

본 발명은 웨이퍼 캐리어의 내/외주 두께를 비접촉식으로 정확하게 측정할 수 있는 웨이퍼 캐리어 두께 측정장치에 관한 것이다. 본 발명은 회전 및 승강 가능하게 설치되고, 웨이퍼 캐리어의 중심 부분을 지지할 수 있는 제1테이블; 상기 제1테이블 외측에 위치되어 회전 가능하게 설치되고, 웨이퍼 캐리어의 외주 부분을 지지할 수 있는 제2테이블; 상기 제1,2테이블 중 하나에 지지된 웨이퍼 캐리어의 상/하면까지 거리를 비접촉식으로 측정하여 웨이퍼 캐리어의 두께를 산출하는 상/하부 센서; 및 상기 제2테이블 일측에 위치되고, 상기 상/하부 센서를 상기 제1,2테이블 중 하나에 지지된 웨이퍼 캐리어의 상/하측으로 이동시키는 센서 구동수단;을 포함하는 웨이퍼 캐리어 두께측정장치를 제공한다.

Description

웨이퍼 캐리어 두께 측정장치
본 발명은 웨이퍼 캐리어의 내/외주 두께를 비접촉식으로 정확하게 측정할 수 있는 웨이퍼 캐리어 두께 측정장치에 관한 것이다.
일반적으로 실리콘 웨이퍼를 제조하는 공정 중 실리콘 웨이퍼의 표면을 경면화하는 연마(polishing)공정을 수행하고 있는데, 이러한 연마공정은 웨이퍼의 평탄도를 향상시키기 위하여 기계적, 화학적 반응을 병행하여 미세표면의 굴곡(nanotopography) 및 거칠기(roughness)를 제어한다.
이와 같이, 평탄도를 향상시키기 위한 방법으로서, 단면 연마공정에 비해 웨이퍼의 평탄도가 우수한 양면 연마 공정(DSP : Double Side Polishing)으로 진행하고 있으며, 이러한 양면 연마공정은 통상적으로 양면 연마장치를 사용하여 웨이퍼의 양면을 연마하고 있다.
보통, 양면 연마장치는 상정반, 하정반, 선기어(Sun Gear) 및 인터널기어(Internal Gear)의 4부분이 회전하며 캐리어에 장착된 웨이퍼의 양면을 연마하는 4-웨이 타입(4-Way Type)이 많이 사용되고 있다.
그런데, 웨이퍼가 장착되는 캐리어는 연마 공정에 투입되기 전후에 여러 번에 걸쳐 그 두께를 측정하는 과정을 거치게 된다.
먼저, 캐리어 제품이 입고되는 시점에 캐리어의 두께를 측정하고, 비슷한 범위 내의 두께를 가진 캐리어들을 사용함으로써, 연마 공정 중 웨이퍼의 가공 편차를 줄일 수 있다.
또한, 표면에 미세 이물질을 제거하기 위한 시즈닝 공정 후에 캐리어의 두께를 측정한 다음, 실제 가공될 웨이퍼의 캐리어로 준비될 수 있다.
또한, 웨이퍼 연마 공정이 반복될수록 웨이퍼의 표면과 함께 캐리어의 표면도 연마되는데, 캐리어가 1일 ~ 7일을 주기로 연마 공정에 사용되기 때문에 연마 공정 중 캐리어의 두께를 여러 차례에 걸쳐 측정한다.
물론, 캐리어의 두께 측정값이 평균 수준보다 5um 이상 벗어나면, 캐리어의 역할을 수행하지 못하는 것으로 판단하고, 기존의 캐리어를 폐기한 다음, 새로운 캐리어를 투입해야 한다.
도 1은 일반적인 웨이퍼 캐리어가 도시된 도면이고, 도 2는 종래 기술에 따른 웨이퍼 캐리어의 두께 측정장치가 도시된 도면이며, 도 3은 종래 기술에 따른 웨이퍼 캐리어의 두께 측정 결과가 도시된 그래프이다.
일반적인 웨이퍼 캐리어(C)는 도 1에 도시된 바와 같이 에폭시 글래스(Epoxy glass)로 제작되는데, 강도를 보장하기 위하여 표면에 유리 섬유(Glass fiber : F) 성분이 격자 무늬로 배열되어 있다.
이러한 웨이퍼 캐리어의 두께(t)를 측정하기 위한 종래의 웨이퍼 두께 측정장치는 도 2에 도시된 바와 같이 정반(1) 위에 두께 측정용 센서(2)가 상하 방향으로 승강 가능하게 설치되고, 상기 센서(2)의 하측에 일종의 접촉 센서인 팁(2a)이 구비된다.
먼저, 상기 정반(1) 위에 캐리어(C)가 없는 상태에서 상기 센서(2)를 하강시키면, 상기 팁(2a)이 상기 정반(1)과 접촉한 시점에 상기 센서(2)의 하강 길이를 기준 길이(L0)로 감지한다.
다음, 작업자가 상기 정반(1) 위에 캐리어(C)를 놓고, 상기 정반(1) 위에 캐리어(C)가 있는 상태에서 상기 센서(2)를 하강시키면, 마찬가지로 상기 팁(2a)이 상기 정반(1)과 접촉한 시점에 상기 센서(2)의 하강 길이를 측정 길이(L1)로 감지한다.
상기와 같이 측정된 기준 길이(L0)와 측정 길이(L1)를 연산하여 캐리어(C)의 두께(t)를 산출할 수 있다.
그런데, 웨이퍼 캐리어는 도 3에 도시된 바와 같이 위치별로 그 두께(t)가 다르게 나타나는데, 유리 섬유가 있는 지점에서 캐리어의 두께(t)가 두껍게 측정되는 반면, 유리 섬유가 없는 지점에서 캐리어의 두께(t)가 얇게 측정된다.
이때, 4~5개의 유리 섬유를 포함하는 길이를 기본 측정 길이로 설정하고, 기본 측정 길이에 해당되는 캐리어의 두께 측정값을 평균하여 웨이퍼 캐리어의 두께(t)를 산출함으로써, 두께 측정값의 최대값(peak)과 최소값(valley)이 미치는 영향을 줄일 수 있다.
하지만, 종래 기술에 따른 웨이퍼 캐리어의 두께 측정장치는 팁이 정반 또는 웨이퍼 캐리어까지 내려와 직접 접촉하기 때문에 웨이퍼 캐리어의 표면을 손상시킬 수 있다.
또한, 종래 기술에 따르면, 웨이퍼 캐리어의 하면이 정반 위에 접촉되고, 웨이퍼 캐리어의 상면에서 측정이 이뤄지기 때문에 웨이퍼 캐리어와 정반 사이의 미세한 갭이 존재하여 웨이퍼 캐리어의 두께를 정확하게 측정할 수 없다.
또한, 종래 기술에 따르면, 작업자가 정반 위에 웨이퍼 캐리어를 로딩시키기 때문에 웨이퍼 캐리어를 매번 동일한 위치에 로딩시키기 어렵고, 그로 인하여 웨이퍼 캐리어 별로 동일한 위치에서 그 두께를 측정하기 어려운 문제점이 있다.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 웨이퍼 캐리어의 내/외주 두께를 비접촉식으로 정확하게 측정할 수 있는 웨이퍼 캐리어 두께 측정장치를 제공하는데 그 목적이 있다.
본 발명은 회전 및 승강 가능하게 설치되고, 웨이퍼 캐리어의 중심 부분을 지지할 수 있는 제1테이블; 상기 제1테이블 외측에 위치되어 회전 가능하게 설치되고, 웨이퍼 캐리어의 외주 부분을 지지할 수 있는 제2테이블; 상기 제1,2테이블 중 하나에 지지된 웨이퍼 캐리어의 상/하면까지 거리를 비접촉식으로 측정하여 웨이퍼 캐리어의 두께를 산출하는 상/하부 센서; 및 상기 제2테이블 일측에 위치되고, 상기 상/하부 센서를 상기 제1,2테이블 중 하나에 지지된 웨이퍼 캐리어의 상/하측으로 이동시키는 센서 구동수단;을 포함하는 웨이퍼 캐리어 두께 측정장치를 제공한다.
또한, 본 발명에서, 상기 센서 구동수단은, 상기 제2테이블 일측에 상하 방향으로 위치된 회전축과, 상기 회전축의 상부로부터 수평 방향으로 연장되고, 상기 상부 센서가 고정되는 상부 고정단과, 상기 회전축의 하부로부터 수평 방향으로 연장되고, 상기 하부 센서가 고정되는 하부 고정단과, 상기 회전축을 회전시키는 회전 모터를 포함한다.
또한, 본 발명에서, 상기 웨이퍼는 적어도 하나 이상의 정렬 표시부가 구비되고, 상기 제1,2테이블 중 하나에 올려진 웨이퍼의 정렬 표시부를 감지하는 얼라인 센서를 더 포함한다.
본 발명의 웨이퍼 캐리어 두께 측정장치는 웨이퍼 캐리어의 내/외주 부분을 제1,2테이블에 의해 선택적으로 지지하고, 제1,2센서에 의해 웨이퍼 캐리어의 상/하면까지 거리를 동시에 비접촉식으로 측정하여 웨이퍼 캐리어의 두께를 산출할 수 있다.
따라서, 웨이퍼 캐리어의 두께 측정 시에 웨이퍼 캐리어의 손상을 방지할 수 있고, 웨이퍼 캐리어의 상/하면까지 거리를 직접 측정하여 그 두께를 산출함으로써, 웨이퍼 캐리어의 두께를 정확하게 측정할 수 있어 측정 정확도(accuracy)를 높일 수 있다.
본 발명의 웨이퍼 캐리어 두께 측정장치는, 웨이퍼가 제1,2테이블 중 하나에 로딩되더라도 얼라인 센서에 의해 웨이퍼에 구비된 정렬 표시부를 감지하고, 웨이퍼의 정렬 표시부를 기준으로 웨이퍼의 위치별 두께를 측정할 수 있다.
따라서, 웨이퍼 캐리어를 매번 동일한 위치로 로딩시킬 수 있고, 그로 인하여 웨이퍼 캐리어 별로 동일한 위치에서 그 두께를 측정할 수 있어 측정 재현성(reproducibility)을 높일 수 있다.
도 1은 일반적인 웨이퍼 캐리어가 도시된 도면.
도 2는 종래 기술에 따른 웨이퍼 캐리어의 두께 측정장치가 도시된 도면.
도 3은 종래 기술에 따른 웨이퍼 캐리어의 두께 측정 결과가 도시된 그래프.
도 4는 본 발명의 웨이퍼 캐리어 두께 측정장치가 도시된 사시도.
도 5는 도 4에 적용된 제1테이블이 상세하게 도시된 도면.
도 6은 도 4에 적용된 제2테이블이 상세하게 도시된 도면.
도 7은 도 4에 적용된 상/하부 센서 및 센서 구동수단이 상세하게 도시된 도면.
도 8은 본 발명에 따른 웨이퍼 캐리어의 두께 측정 원리가 도시된 개략도.
도 9a 내지 도 9i는 본 발명에 따른 웨이퍼 캐리어의 두께 측정 과정이 도시된 도면.
이하에서는, 본 실시예에 대하여 첨부되는 도면을 참조하여 상세하게 살펴보도록 한다. 다만, 본 실시예가 개시하는 사항으로부터 본 실시예가 갖는 발명의 사상의 범위가 정해질 수 있을 것이며, 본 실시예가 갖는 발명의 사상은 제안되는 실시예에 대하여 구성요소의 추가, 삭제, 변경 등의 실시변형을 포함한다고 할 것이다.
도 4 내지 도 7은 본 발명의 웨이퍼 캐리어 두께 측정장치가 도시된 도면이다.
본 발명의 웨이퍼 캐리어 두께 측정장치는 도 4 내지 도 7에 도시된 바와 같이 웨이퍼 캐리어의 내/외주 부분을 선택적으로 지지할 수 있는 제1,2테이블(110,120)과, 웨이퍼 캐리어의 상/하면까지 거리를 비접촉식으로 측정하여 그 두께를 산출할 수 있는 상/하부 센서(131,132)와, 상기 상/하부 센서(131,132)를 상기 제1,2테이블(110,120)에 지지된 웨이퍼 캐리어의 상/하측으로 이동시키는 센서 구동수단(140)과, 웨이퍼 캐리어의 센서 측정 과정을 모니터링할 수 있는 모니터(M) 및 제어부(미도시)를 포함하도록 구성된다.
상기 제1테이블(110)은 도 5에 도시된 바와 같이 웨이퍼 캐리어의 내주 부분을 지지하도록 구성되는데, 직경이 웨이퍼 캐리어의 직경보다 작은 원판 형상으로 구성된다.
또한, 상기 제1테이블(110)은 회전 가능하게 설치되는 동시에 승강 가능하게 설치된다.
실시예에서, 상기 제1테이블(110)의 하면 중심에 회전축(111)이 구비되고, 상기 회전축(111)이 별도의 회전 모터(미도시)에 의해 회전됨에 따라 상기 제1테이블(110)이 회전될 수 있다.
실시예에서, 상기 제1테이블(110)의 일측에 상하 방향으로 길게 가이드 레일(112)이 구비되고, 상기 제1테이블(110)의 하측에 구비된 프레임 일측에 가이드(113)가 구비되는데, 상기 가이드(113)가 별도의 승강 모터(미도시)에 의해 상기 가이드 레일(112)을 따라 왕복 직선 운동됨에 따라 상기 제1테이블(110)이 승강될 수 있으나, 한정되지 아니한다.
상기 제2테이블(120)은 도 6에 도시된 바와 같이 상기 제1테이블(110) 외주에 구비되어 웨이퍼 캐리어의 외주 부분을 지지하도록 구성되는데, 내경이 웨이퍼 캐리어의 직경보다 작고 외경이 웨이퍼 캐리어의 직경보다 큰 링 판 형상의 슬라이더(121)로 구성된다.
또한, 상기 제2테이블(120)은 회전 가능하게 설치되지만, 기준면 상에 위치하며 별도로 승강하지 않는다.
실시예에서, 상기 슬라이더(121)의 외주단에 기어치가 형성되고, 상기 슬라이더(121) 하부 일측에 구동 모터(미도시)가 구비되는데, 상기 슬라이더(121)의 기어치와 상기 구동 모터(미도시)에 의해 회전되는 기어치와 맞물려 회전됨에 따라 상기 제2테이블(120)이 회전될 수 있으나, 한정되지 아니한다.
또한, 웨이퍼 캐리어가 상기 슬라이더(121) 위에 올려지더라도 접촉되는 부분이 한정되기 때문에 상기 슬라이더(121)에는 웨이퍼 캐리어와 접촉되는 부분에 마찰력을 높이기 위하여 패드(122)가 구비될 수 있다.
실시예에서, 상기 슬라이더(121)는 내주 부분이 단차지게 형성됨에 따라 링 판 형상의 홈(미도시)이 구비되고, 상기 패드(122)는 우레탄 재질로 상기 슬라이더(121)의 홈에 접착 또는 볼트 체결되는 링 판 형상으로 구성될 수 있으나, 한정되지 아니한다.
또한, 웨이퍼 캐리어가 상기 패드(122)와 접촉되더라도 마찰력에 한계가 있고, 상기 슬라이더(121)의 회전 시에 웨이퍼 캐리어가 탈거될 수 있기 때문에 웨이퍼 캐리어의 위치를 고정시켜 줄 수 있는 위치 결정용 핀(123)이 더 구비될 수 있다.
실시예에서, 상기 위치 결정용 핀(123)은 상기 제2테이블(120) 중 웨이퍼 캐리어의 직경보다 작은 원주 상에 세 개가 일정 간격을 두고 구비되는데, 상기 위치 결정용 핀(123)은 상기 슬라이더(121)와 패드(122) 사이에 설치된 별도의 브라켓에 구비되어 웨이퍼 캐리어(C)의 외주에 일정 간격을 두고 형성된 홈들(h) 중 일부와 맞물릴 수 있도록 반경 방향으로 이동 가능하게 설치될 수 있으나, 한정되지 아니한다.
상세하게, 상기 브라켓이 상기 제2테이블(120)의 중심 방향에 설치된 스프링(124)에 의해 탄성 지지되고, 상기 브라켓이 하측에 구비된 LM 가이드 및 외주 측에 구비된 실린더(125)에 의해 외주 방향으로 이동 가능하게 설치될 수 있으나, 한정되지 아니한다.
상기 상/하부 센서(131,132)는 도 7에 도시된 바와 같이 상기 센서 구동수단(140)에 의해 상기 제1,2테이블(110,120)의 상/하측에 위치하는데, 상기 상부 센서(131)는 웨이퍼 캐리어의 상면까지 거리를 비접촉식으로 측정하고, 상기 하부 센서(132)는 웨이퍼 캐리어의 하면까지 거리를 비접촉식으로 측정한다.
실시예에서, 상기 상/하부 센서(131,132)는 일종의 비접촉 변위센서인 공초점 센서(Chromatic Confocal Sensor)로 구성되는데, 이러한 공초점 센서는 광원을 색으로 분산시키고, 색의 파장에 따른 배열을 거리로 환산하기 때문에 웨이퍼 캐리어가 불투명 또는 반투명한 재질로 구성되더라도 정확하게 거리를 측정할 수 있다.
상기 센서 구동수단(140)은 상기 상/하부 센서(131,132)를 장착시키는 동시에 상기 제1,2테이블(110,120)의 상/하측으로 이동시킬 수 있도록 구성되는데, 회전축(141) 상에 상/하부 고정단(142,143)이 일체로 구비되고, 상기 회전축(141)을 회전시키는 회전 모터(144)가 포함된다.
상세하게, 상기 회전축(141)은 상기 제2테이블(120) 일측에 상하 방향으로 위치되는데, 상기 상/하부 고정단(142,143)이 상기 회전축(141)의 상/하부에 수평 방향으로 연장된 외팔보 형태로 일체로 형성되고, 상기 상/하부 센서(131,132)가 상기 상/하부 고정단(142,143)의 단부에 고정된다.
물론, 상기 회전축(141)이 회전됨에 따라 상기 상/하부 고정단(142,143)이 상기 제1,2테이블(110,120)의 상/하측에 위치될 수 있는데, 상기 상/하부 고정단(142,143)과 상기 제1,2테이블(110,120)이 구조상 서로 간섭되지 아니한다.
또한, 상기 센서 구동수단(140)은 상기 제1테이블(110)이 승강되더라도 상기 상/하부 고정단(142,143)이 상기 제1테이블(110)의 상/하측에 위치될 수 있도록 승강 가능하게 설치된다.
실시예에서, 상기 회전축(141) 일측에 상하 방향으로 길게 가이드 레일(145)이 구비되고, 상기 가이드 레일(145)을 따라 움직일 수 있는 가이드(146)가 상기 회전축(141)과 연결되며, 상기 가이드(146)를 상기 가이드 레일(145)을 따라 승강시키는 승강 모터(미도시)가 추가로 더 구비될 수 있으나, 한정되지 아니한다.
물론, 상기 가이드(146)는 상기 회전축(141)을 회전 가능하게 지지하며, 상기 가이드(146)가 승강됨에 따라 상기 상/하부 고정단(142,143) 및 상/하부 센서(131,132)도 같이 승강된다.
보통, 웨이퍼 캐리어는 편심된 위치에 웨이퍼가 장착되는 가장 큰 장착홀이 구비되고, 연마 공정 시에 공급되는 슬러리가 수용될 수 있도록 장착홀 주변에 복수개의 홀이 구비된다.
이러한 형상의 웨이퍼 캐리어는 두께를 측정할 때에 동일한 위치에서 두께 측정이 이루어져야 하는데, 상기 제1,2테이블(110,120) 위에 웨이퍼 캐리어가 로딩되면, 웨이퍼 캐리어의 위치를 정렬하는 과정을 거쳐야 한다.
실시예에서, 웨이퍼 캐리어는 특정 위치에 별도의 정렬 표시부(미도시)가 구비되는데, 상기 정렬 표시부는 웨이퍼 캐리어의 특정한 외주 부분에 구비된 홀이나 홈 또는 마킹 표시 등으로 다양하게 구성될 수 있으며, 한정되지 아니한다.
또한, 상기 웨이퍼 캐리어 상에서 정렬 표시부 위치를 감지하는 얼라인 센서(133)가 상기 상부 고정단(142)에 구비되는데, 상기 얼라인 센서(133)는 상기 정렬 표시부를 영상으로 감지하는 CCD 카메라 등의 형태로 구성될 수 있으며, 마찬가지로 한정되지 아니한다.
따라서, 상기 제1,2테이블(110,120) 중 하나에 웨이퍼 캐리어가 로딩되면, 웨이퍼 캐리어를 회전시키고, 상기 얼라인 센서(133)가 웨이퍼 캐리어의 정렬 표시부를 감지하면, 웨이퍼 캐리어의 회전을 중단하고, 웨이퍼 캐리어를 일정 각도로 회전시킨 지점마다 웨이퍼 캐리어의 상/하면까지 거리를 측정할 수 있다.
이와 같이, 본 발명은, 웨이퍼 캐리어를 매번 동일한 위치로 로딩시킬 수 있고, 그로 인하여 웨이퍼 캐리어 별로 동일한 위치에서 그 두께를 측정할 수 있어 측정 재현성(reproducibility)을 높일 수 있다.
도 8은 본 발명에 따른 웨이퍼 캐리어의 두께 측정 원리가 도시된 개략도이다.
본 발명에 따르면, 도 8에 도시된 바와 같이 사전에 두께(k)를 알고 있는 표준 시편(K)을 로딩시키고, 상기 상/하부 센서(131,132)에 의해 표준 시편(K)의 상/하면까지의 거리(a,b)를 측정한 다음, 웨이퍼 캐리어(C)를 로딩시키고, 상기 상/하부 센서(131,132)에 의해 웨이퍼 캐리어(C)의 상/하면까지의 거리(c,d)를 측정한다.
이후, 상기 상/하부 센서(131,132)에 내장된 연산부(미도시)는 하기의 [수학식 1]에 따라 웨이퍼 캐리어의 두께(t)를 산출한다.
Figure PCTKR2017005870-appb-M000001
물론, 웨이퍼 캐리어(C)의 일부는 상기에서 설명한 바와 같이 제1,2테이블 중 하나에 의해 지지되고, 제1,2테이블에 의해 지지되지 않는 웨이퍼 캐리어(C)의 다른 지점에서 두께 측정이 이루어진다.
도 9a 내지 도 9i는 본 발명에 따른 웨이퍼 캐리어의 두께 측정 과정이 도시된 도면이다.
본 발명에 따른 캐리어의 두께 측정 과정을 살펴보면, 도 9a에 도시된 바와 같이 상기 제1,2테이블(110,120)이 동일한 기준면 상에 위치되는 동시에 상기 상/하부 센서(131,132)가 그 일측에 위치된다.
다음, 도 9b에 도시된 바와 같이 웨이퍼 캐리어(C)가 상기 제1,2테이블(110,120) 위에 로딩되면, 상기에서 설명한 바와 같이 얼라인 과정을 거치면서 웨이퍼 캐리어(C)의 위치가 정렬된다.
다음, 도 9c에 도시된 바와 같이 상기 제1테이블(110)이 상기 제2테이블(120)보다 하강하면, 웨이퍼 캐리어(C)의 외주 부분이 상기 제2테이블(120)에 의해 지지된다.
다음, 도 9d에 도시된 바와 같이 상기 회전축(141)이 반시계 방향으로 회전되면, 상기 상/하부 고정단(142,143)이 상기 제2테이블(120) 상/하측에 위치되고, 상기 상/하부 센서(131,132)가 웨이퍼 캐리어(C)의 내주 부분 상/하측에 위치된다.
다음, 도 9e에 도시된 바와 같이 상기 제2테이블(120)이 설정된 각도로 회전하고, 회전될 때마다 상기 상/하부 센서(131,132)가 웨이퍼 캐리어(C)의 내주 부분 위치별로 두께를 측정한다.
이와 같이, 웨이퍼 캐리어(C)의 내주 부분 위치별로 두께 측정이 완료된 다음, 도 9f에 도시된 바와 같이 상기 회전축(141)이 시계 방향으로 회전되면, 상기 상/하부 고정단(142,143)과 상/하부 센서(131,132)가 상기 제1,2테이블(110,120) 일측에 간섭되지 않은 위치로 이동된다.
다음, 도 9g에 도시된 바와 같이 상기 제1테이블(110)이 상기 제2테이블(120)보다 승강하면, 웨이퍼 캐리어(C)의 내주 부분이 상기 제1테이블(110)에 의해 지지되고, 상기 회전축(141)도 상기 제1테이블(110)이 상기 제2테이블(120)보다 상승한 높이만큼 같이 승강한다.
다음, 도 9h에 도시된 바와 같이 상기 회전축(141)이 반시계 방향으로 회전되면, 상기 상/하부 고정단(142,143)이 상기 제1테이블(110) 상/하측에 위치되고, 상기 상/하부 센서(131,132)가 웨이퍼 캐리어(C)의 외주 부분 상/하측에 위치된다.
다음, 도 9i에 도시된 바와 같이 상기 제1테이블(110)이 설정 각도로 회전하고, 회전될 때마다 상기 상/하부 센서(131,132)가 웨이퍼 캐리어(C)의 외주 부분 위치별로 두께를 측정한다.
상기와 같이, 본 발명은, 캐리어의 일부를 지지하는 동시에 웨이퍼 캐리어의 지지되지 않는 지점에서 비접촉식으로 두께 측정이 이뤄지기 때문에 웨이퍼 캐리어의 손상을 방지할 수 있고, 웨이퍼 캐리어의 두께를 정확하게 측정할 수 있어 측정 정확도(accuracy)를 높일 수 있다.
본 발명의 웨이퍼 캐리어 두께 측정장치는 웨이퍼 캐리어의 내/외주 두께를 비접촉식으로 정확하게 측정할 수 있다.

Claims (14)

  1. 회전 및 승강 가능하게 설치되고, 웨이퍼 캐리어의 중심 부분을 지지할 수 있는 제1테이블;
    상기 제1테이블 외측에 위치되어 회전 가능하게 설치되고, 웨이퍼 캐리어의 외주 부분을 지지할 수 있는 제2테이블;
    상기 제1,2테이블 중 하나에 지지된 웨이퍼 캐리어의 상/하면까지 거리를 비접촉식으로 측정하여 웨이퍼 캐리어의 두께를 산출하는 상/하부 센서; 및
    상기 제2테이블 일측에 위치되고, 상기 상/하부 센서를 상기 제1,2테이블 중 하나에 지지된 웨이퍼 캐리어의 상/하측으로 이동시키는 센서 구동수단;을 포함하는 웨이퍼 캐리어 두께 측정장치.
  2. 제1항에 있어서,
    상기 제2테이블은,
    내경이 웨이퍼 캐리어의 직경보다 작고, 외경이 웨이퍼 캐리어의 직경보다 큰 링 판 형상으로 구성되는 웨이퍼 캐리어 두께 측정장치.
  3. 제2항에 있어서,
    상기 제2테이블은,
    외주단에 형성된 기어치가 구동모터에 의해 회전되는 기어치와 맞물려 회전하는 슬라이더로 구성되는 웨이퍼 캐리어 두께 측정장치.
  4. 제1항에 있어서,
    상기 제2테이블은,
    웨이퍼 캐리어와 맞닿는 일부분에 마찰력을 높일 수 있는 패드가 더 구비되는 웨이퍼 캐리어 두께 측정장치.
  5. 제4항에 있어서,
    상기 패드는,
    상기 제2테이블의 내주단에 안착되는 우레탄 재질의 링 판 형상인 웨이퍼 캐리어 두께 측정장치.
  6. 제1항에 있어서,
    상기 제2테이블은,
    웨이퍼 캐리어의 외주에 형성된 홈들과 맞물릴 수 있는 적어도 두 개 이상의 위치 결정용 핀이 더 구비되는 웨이퍼 캐리어 두께 측정장치.
  7. 제6항에 있어서,
    상기 위치 결정용 핀은,
    상기 제2테이블의 중심 방향에 탄성 지지되는 웨이퍼 캐리어 두께 측정장치.
  8. 제1항에 있어서
    상기 위치 결정용 핀은,
    상기 제2테이블의 외주 방향으로 이동시킬 수 있는 실린더가 연결되는 웨이퍼 캐리어 두께 측정장치.
  9. 제1항에 있어서,
    상기 상/하부 센서는,
    공초점 센서(Chromatic Confocal Sensor)로 구성되는 웨이퍼 캐리어 두께 측정장치.
  10. 제9항에 있어서,
    상기 상/하부 센서는,
    표준 시편의 두께(K)와 표준 시편의 상/하면까지의 측정 거리(a,b) 및 웨이퍼 캐리어의 상/하면까지의 측정 거리(c,d)를 고려하여 웨이퍼 캐리어의 두께(T)를 산출하는 연산부를 포함하는 웨이퍼 캐리어 두께 측정장치.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 센서 구동수단은,
    상기 제2테이블 일측에 상하 방향으로 위치된 회전축과,
    상기 회전축의 상부로부터 수평 방향으로 연장되고, 상기 상부 센서가 고정되는 상부 고정단과,
    상기 회전축의 하부로부터 수평 방향으로 연장되고, 상기 하부 센서가 고정되는 하부 고정단과,
    상기 회전축을 회전시키는 회전 모터를 포함하는 웨이퍼 캐리어 두께 측정장치.
  12. 제11항에 있어서,
    상기 센서 구동수단은,
    상기 회전축 일측에 상하 방향으로 길게 구비된 가이드 레일과,
    상기 가이드 레일을 따라 움직이고, 상기 회전축을 회전 가능하게 지지하는 가이드와,
    상기 가이드를 상기 가이드 레일을 따라 승강시키는 승강 모터를 더 포함하는 웨이퍼 캐리어 두께 측정장치.
  13. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 웨이퍼는 적어도 하나 이상의 정렬 표시부가 구비되고,
    상기 제1,2테이블 중 하나에 올려진 웨이퍼의 정렬 표시부를 감지하는 얼라인 센서를 더 포함하는 웨이퍼 캐리어 두께 측정장치.
  14. 제13항에 있어서,
    상기 정렬 표시부는 상기 웨이퍼의 외주 부분에 홀 형태로 구비되고,
    상기 얼라인 센서는 상기 정렬 표시부를 영상으로 감지하는 카메라로 구성되는 웨이퍼 캐리어 두께 측정장치.
PCT/KR2017/005870 2016-12-06 2017-06-05 웨이퍼 캐리어 두께 측정장치 WO2018105831A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/780,605 US11371829B2 (en) 2016-12-06 2017-06-05 Wafer carrier thickness measuring device
CN201780004152.0A CN108700405B (zh) 2016-12-06 2017-06-05 晶圆载体厚度测量装置
JP2018527080A JP6578442B2 (ja) 2016-12-06 2017-06-05 ウェーハキャリアの厚さ測定装置
DE112017004821.4T DE112017004821T5 (de) 2016-12-06 2017-06-05 Vorrichtung zum Messen der Dicke eines Waferträgers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160165367A KR101856875B1 (ko) 2016-12-06 2016-12-06 웨이퍼 캐리어 두께 측정장치
KR10-2016-0165367 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018105831A1 true WO2018105831A1 (ko) 2018-06-14

Family

ID=62184714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005870 WO2018105831A1 (ko) 2016-12-06 2017-06-05 웨이퍼 캐리어 두께 측정장치

Country Status (6)

Country Link
US (1) US11371829B2 (ko)
JP (1) JP6578442B2 (ko)
KR (1) KR101856875B1 (ko)
CN (1) CN108700405B (ko)
DE (1) DE112017004821T5 (ko)
WO (1) WO2018105831A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817539B (zh) * 2019-01-25 2020-12-25 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 晶圆测厚装置及晶圆测厚系统
CN110108716A (zh) * 2019-05-06 2019-08-09 华侨大学 一种自动化衬底晶片缺陷及厚度检测系统
CN110926397B (zh) * 2019-12-25 2021-06-04 中国计量科学研究院 一种共焦测厚中双传感器位姿的透明圆孔标定方法
CN112635386A (zh) * 2019-12-26 2021-04-09 南京力安半导体有限公司 气浮卡盘
CN110962022A (zh) * 2019-12-31 2020-04-07 浙江芯晖装备技术有限公司 一种抛光设备
KR102428891B1 (ko) * 2020-01-23 2022-08-03 주식회사 그란테크 디스크 검사장치
CN113739737B (zh) * 2020-05-28 2024-06-14 深圳市索恩达电子有限公司 双头测厚装置
CN111805410A (zh) * 2020-06-01 2020-10-23 长江存储科技有限责任公司 研磨系统
CN111750786B (zh) * 2020-07-06 2022-03-01 上海新昇半导体科技有限公司 厚度量测设备、抛光系统及抛光物料管理方法
JP7425411B2 (ja) 2020-10-12 2024-01-31 株式会社Sumco キャリア測定装置、キャリア測定方法、及びキャリア管理方法
CN112539706B (zh) * 2020-12-09 2022-09-30 深圳友讯达科技股份有限公司 一种晶圆薄片切割质量检测设备
KR20220112463A (ko) * 2021-02-04 2022-08-11 주식회사 엘지에너지솔루션 라미네이션 장치 및 라미네이션 장치의 불량 전극 셀 조립체 배출방법
CN114459363A (zh) * 2022-01-14 2022-05-10 江苏汇成光电有限公司 一种晶圆厚薄双向量测方法
KR102558478B1 (ko) * 2022-12-05 2023-07-21 (주)에스와이이엔지 반도체 웨이퍼의 두께 측정시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649958U (ja) * 1992-10-01 1994-07-08 京セラ株式会社 半導体ウェハ厚さ測定機
JPH10125753A (ja) * 1996-09-02 1998-05-15 Murata Mfg Co Ltd 半導体のキャリア濃度測定方法、半導体デバイス製造方法及び半導体ウエハ
KR100872755B1 (ko) * 2000-05-25 2008-12-08 가부시키가이샤 니콘 캐리어 형상 측정기
KR101322591B1 (ko) * 2009-10-06 2013-10-28 가부시키가이샤 코베루코 카겐 반도체 캐리어 수명 측정 장치 및 그 방법
KR101361382B1 (ko) * 2006-12-14 2014-02-10 아이에스 테크놀로지 재팬 가부시키가이샤 원판 보유 지지 장치 및 결함 이물질 검출 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649958A (ja) 1992-07-28 1994-02-22 Ig Tech Res Inc 新生瓦屋根の谷部改修構造
JP4675451B2 (ja) * 2000-04-14 2011-04-20 株式会社ディスコ 切削装置
JP2002323289A (ja) * 2001-04-25 2002-11-08 Ono Sokki Co Ltd 遠心式乾燥装置
JP4959318B2 (ja) * 2006-12-20 2012-06-20 株式会社ディスコ ウエーハの計測装置およびレーザー加工機
JP2008235650A (ja) * 2007-03-22 2008-10-02 Disco Abrasive Syst Ltd デバイスの製造方法
CN101216686B (zh) 2008-01-10 2010-08-25 上海微电子装备有限公司 一种晶片预对准平台及使用该平台的晶片预对准方法
CN201166564Y (zh) * 2008-01-17 2008-12-17 上海星纳电子科技有限公司 太阳能晶片无接触式测试系统
JP5165450B2 (ja) * 2008-04-22 2013-03-21 株式会社ディスコ 研削装置及び板状物の厚み算出方法
JP5324232B2 (ja) * 2009-01-08 2013-10-23 日東電工株式会社 半導体ウエハのアライメント装置
CN201562672U (zh) * 2009-11-17 2010-08-25 中芯国际集成电路制造(上海)有限公司 晶圆承放台
JP6040757B2 (ja) * 2012-10-15 2016-12-07 東京エレクトロン株式会社 搬送機構の位置決め方法、被処理体の位置ずれ量算出方法及び搬送機構のティーチングデータの修正方法
CN105289923A (zh) * 2014-05-30 2016-02-03 盛美半导体设备(上海)有限公司 一种晶圆涂胶机和涂胶方法
CN105185722A (zh) * 2014-05-30 2015-12-23 盛美半导体设备(上海)有限公司 晶圆固持装置
US9396983B2 (en) 2014-06-02 2016-07-19 Epistar Corporation Susceptor
KR101655074B1 (ko) * 2014-11-04 2016-09-07 주식회사 케이씨텍 화학 기계적 연마 장치 및 와전류 센서를 이용한 웨이퍼 도전층 두께 측정 방법
CN105990174B (zh) * 2015-02-15 2020-02-07 盛美半导体设备(上海)有限公司 半导体晶圆的测量装置及方法
JP6492736B2 (ja) * 2015-02-17 2019-04-03 東京エレクトロン株式会社 基板処理装置及び基板処理方法並びに記憶媒体
JP6441737B2 (ja) * 2015-04-28 2018-12-19 株式会社ディスコ 切削装置
CN105161438B (zh) * 2015-07-16 2017-11-24 北京工业大学 一种大尺寸磨削晶圆厚度测量夹具
WO2017204082A1 (ja) * 2016-05-24 2017-11-30 三益半導体工業株式会社 回転テーブル用ウェーハ保持機構及び方法並びにウェーハ回転保持装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649958U (ja) * 1992-10-01 1994-07-08 京セラ株式会社 半導体ウェハ厚さ測定機
JPH10125753A (ja) * 1996-09-02 1998-05-15 Murata Mfg Co Ltd 半導体のキャリア濃度測定方法、半導体デバイス製造方法及び半導体ウエハ
KR100872755B1 (ko) * 2000-05-25 2008-12-08 가부시키가이샤 니콘 캐리어 형상 측정기
KR101361382B1 (ko) * 2006-12-14 2014-02-10 아이에스 테크놀로지 재팬 가부시키가이샤 원판 보유 지지 장치 및 결함 이물질 검출 장치
KR101322591B1 (ko) * 2009-10-06 2013-10-28 가부시키가이샤 코베루코 카겐 반도체 캐리어 수명 측정 장치 및 그 방법

Also Published As

Publication number Publication date
KR101856875B1 (ko) 2018-05-10
US11371829B2 (en) 2022-06-28
JP6578442B2 (ja) 2019-09-18
CN108700405A (zh) 2018-10-23
US20210164769A1 (en) 2021-06-03
DE112017004821T5 (de) 2019-06-13
CN108700405B (zh) 2020-12-25
JP2019509465A (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2018105831A1 (ko) 웨이퍼 캐리어 두께 측정장치
WO2016080629A1 (ko) 웨이퍼 연마장비의 웨이퍼 로딩장치 및 웨이퍼 로딩위치 조정 방법
US4818169A (en) Automated wafer inspection system
US4491787A (en) Flatness measuring device
WO2018146659A1 (ko) 검사 장치
JP4836684B2 (ja) 検査ステージ及び検査装置
WO2014081074A1 (ko) 강판의 스케일 두께 측정장치
CN112729418B (zh) 一种高精密检测设备
WO2019143091A1 (ko) 웨이퍼 프로버
CN211060814U (zh) 一种大理石平面度检测装置
WO2016018049A1 (ko) 웨이퍼의 결함 측정장치
WO2020179980A1 (ko) 웨이퍼 티칭 지그
KR20230127552A (ko) 검사장치, 이를 포함하는 검사설비 및 검사 방법
CN109000537B (zh) 一种离合器片组厚度测量系统及厚度自动测量方法
CN219799200U (zh) 装夹装置及检测设备
CN210638813U (zh) 红外焦平面阵列探测器参数性能自动化测试设备
CN218847178U (zh) 一种步进电机磁环同心度检测装置
CN215644395U (zh) 一种晶圆测试仪
CN217484429U (zh) 一种具有隔绝功能的电子元件检测装置
CN210154951U (zh) 一种玻璃及玻璃组件用弯曲强度试验装置
CN212301756U (zh) 半导体测试装置
CN212364494U (zh) 端子台功能检测设备
CN207457055U (zh) 瓷砖色差检测设备
WO2024177298A1 (ko) 필름 처짐 측정장치
WO2024117283A1 (ko) Zt 스테이지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527080

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879535

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17879535

Country of ref document: EP

Kind code of ref document: A1