WO2018098870A1 - 一种确定被测物电磁性能的测试装置 - Google Patents

一种确定被测物电磁性能的测试装置 Download PDF

Info

Publication number
WO2018098870A1
WO2018098870A1 PCT/CN2016/111864 CN2016111864W WO2018098870A1 WO 2018098870 A1 WO2018098870 A1 WO 2018098870A1 CN 2016111864 W CN2016111864 W CN 2016111864W WO 2018098870 A1 WO2018098870 A1 WO 2018098870A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
rod
limiting
fixed
driving
Prior art date
Application number
PCT/CN2016/111864
Other languages
English (en)
French (fr)
Inventor
韩栋
Original Assignee
深圳市新益技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市新益技术有限公司 filed Critical 深圳市新益技术有限公司
Publication of WO2018098870A1 publication Critical patent/WO2018098870A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals

Definitions

  • the present invention relates to the field of antenna testing technology, and more particularly to a test apparatus for determining the electromagnetic properties of a test object.
  • the object to be tested is usually detected by oversampling.
  • oversampling As is well known, as a planar near-field scan, in order to effectively derive a far field within a certain range, it is necessary to sample in the entire plane, and must satisfy the sampling point spacing L ⁇ lambda/2, where lambda is the wavelength of the radiated signal; and currently oversampling The method is only commonly used in spherical near-fields, and oversampling techniques have not been used in planar near-field testing.
  • test apparatus for determining the electromagnetic properties of a test object, which has the advantage of being able to achieve data oversampling.
  • a test device for determining electromagnetic properties of a test object including a stage and a bracket, the bracket including a stand disposed on both sides of the stage And a sliding bar coupled to the stand and capable of forming a sliding surface covering the stage, a plurality of probes disposed along an axial direction of the sliding bar; and a driving unit for driving the sliding
  • the object to be tested when testing, the object to be tested is first placed on the stage, the test device is activated, and the object to be tested is detected by the probe, and the plurality of probes can detect multiple sites of the object to be tested.
  • the sliding rod is located at a certain position and a set of data is measured, the sliding rod is driven by the lateral driving device to move a distance, and the probe is also moved by a distance to obtain a second set of data, and so on, which will slide.
  • the shifting rod After the shifting rod is moved from one side of the object to the other side, a set of data points covering the entire object to be measured and distributed in a matrix form is formed; then, the plurality of probes are driven by the axial driving device while sliding along Moving the axis of the shifting rod for a distance, the previously undetected portion can be re-detected, and the sliding rod is re-moved from one side of the object to the other side to form another set covering the entire Measuring data points distributed in a matrix form; adjusting the detection positions of the plurality of probes by the lateral driving device and the axial driving device, thereby forming a plurality of sets of data covering the measured objects and distributed in a matrix form Realized oversampled measured object, the sampling process is more simple, more densely sampled data point distribution, the detection result is more reliable.
  • the lateral driving device comprises a first driving motor fixed to the vertical frame, a driving wheel fixed on the rotating shaft of the first driving motor, a driven wheel rotatably connected to the vertical frame, And a conveyor belt sleeved on the driving wheel and the driven wheel and fixed to the sliding rod.
  • the first driving motor is started, and the conveyor belt can be driven to move. Since the sliding rod is fixed on the conveyor belt, the sliding rod can reciprocate along the vertical belt along the conveyor belt, thereby forming a covering on the entire stage.
  • the slip surface can form a detection site for the object to be measured in a rectangular array; and the sliding rod is driven by the conveyor belt, which has small occupied volume, large transmission distance and low cost.
  • the present invention is further configured to: the sliding rod includes an outer rod, an inner rod slidingly sleeved in the outer rod for fixing a plurality of the probes, and being opened on the outer rod for the probe to slip Chute.
  • the sliding inner rod can drive multiple probes to move at the same time, and the process of adjusting the probe is simple and convenient.
  • the axial driving device includes a second driving motor fixed to the outer rod, a driving gear fixed on a rotating shaft of the second driving motor, and a fixing to the inner rod and A drive rack in which the drive gears mesh.
  • the driving motor can be started to drive the driving gear to rotate, and the inner rod can reciprocally slide along the axial direction of the outer rod under the meshing action of the driving gear and the driving rack.
  • the invention is further provided that a positioning block for restricting the sliding rod is provided on the stand at a position close to the driving wheel and the driven wheel.
  • the sliding rod is slid by the driving of the conveyor belt, when sliding to the position of the driving wheel and the driven wheel, the sliding rod is likely to be in contact with the driving wheel and the driven wheel, thereby causing the driving wheel and the driving wheel.
  • the damage of the driven wheel is set by the positioning block, and the sliding rod is in conflict with the positioning block when moving to the limit position, so that the sliding rod does not have rigid contact with the driving wheel and the driven wheel, and the sliding rod is reduced to the driving wheel and The damage of the driven wheel.
  • an elastic damping member capable of contacting the sliding rod is disposed on a side of the positioning block facing the sliding rod.
  • the elastic shock absorbing member can reduce the phenomenon that the sliding rod directly hits the positioning block and causes the sliding rod and the positioning block to be damaged.
  • the invention is further provided that the sliding bar is provided with a limiting component for limiting the sliding distance of the inner rod.
  • the limiting component comprises a mounting groove formed on the outer rod and a sliding connection a limiting block in the mounting slot, a sliding slope formed on a side of the limiting block facing the vertical frame, and two ends fixed to the limiting block and the bottom wall of the mounting slot, respectively, and are always in a compressed state a first elastic member and a limiting slot formed on the inner rod, and the limiting block is embedded in the limiting slot when the probe located at the outermost side is adjacent to the vertical frame.
  • the limiting block when the inner rod slides within the normal sliding distance, the limiting block is compressed in the mounting groove by the inner rod, and when the inner rod slides to the limit groove and the limiting block are aligned
  • the limiting block is embedded in the limiting slot by the elastic force of the first elastic member, so that the inner rod cannot continue to move forward, so that the probe does not hit the vertical frame; and because the limiting block faces the vertical frame
  • One side is provided with a sliding slope, the inner rod can be reversely slipped and the time limit block is disengaged from the limit groove, so that the inner rod does not slip within the normal slip distance.
  • the limiting assembly comprises a limiting projection fixed to the probe on the inner rod and located near the outermost side and passing through the sliding slot.
  • the limiting protrusion can resist the vertical frame, thereby restricting the inner rod from continuing to move forward, so that the probe does not hit the vertical frame.
  • the invention is further provided that a side of the limiting protrusion facing the vertical frame is fixed with a second elastic member capable of contacting the vertical frame.
  • the second elastic member reduces the occurrence of rigid contact between the limiting protrusion and the vertical frame, thereby causing damage of the limiting protrusion and the standing frame.
  • the present invention has the following beneficial effects:
  • the detection positions of the plurality of probes are adjusted by the lateral driving device and the axial driving device, thereby forming a plurality of sets of data sets covering the measured objects and distributed in a matrix form, thereby realizing oversampling of the measured objects.
  • the sampling process is simpler and more convenient, the data points of the sampling are more densely distributed, and the detection result is more reliable;
  • the sliding rod is composed of an outer rod and an inner rod slidingly sleeved on the outer rod, so that the inner rod can be slipped by sliding the inner rod, and the process of adjusting the probe is simple and convenient;
  • the positioning block and the elastic damping member are arranged to reduce the damage of the driving wheel, the driven wheel and the sliding rod;
  • the setting of the limit component reduces the phenomenon that the probe located on the outermost side hits the stand during the slippage of the inner rod and causes the probe to be damaged.
  • FIG. 1 is a schematic structural view of a case when the cover is opened
  • FIG. 2 is a schematic structural view of a sliding rod in the first embodiment, for displaying an outer rod, an inner rod and a chute;
  • FIG. 3 is a schematic structural view of the first embodiment after removing the box
  • Figure 4 is an enlarged view of a portion A of Figure 3;
  • Figure 5 is an enlarged view of a portion B of Figure 3;
  • Figure 6 is an enlarged view of a portion C of Figure 3;
  • Figure 7 is a cross-sectional view of the slide bar of the first embodiment along the axial direction of the mounting groove
  • Figure 8 is an enlarged view of a portion D of Figure 7;
  • FIG. 9 is a schematic structural view of the second embodiment after removing the box
  • Fig. 10 is an enlarged view of a portion E of Fig. 9;
  • Embodiment 1 A test device for determining the electromagnetic performance of a test object. As shown in FIG. 1 , a box cover 11 is hinged on the box body 1 , and the box cover 11 is covered with the box body 1 to form a sealed detection space.
  • the casing 1 may not be provided; at the bottom of the casing 1, a stage 2 for placing the object to be tested is fixed, and the stage is fixed. 2 on both sides of the bracket 3;
  • the bracket 3 includes a stand 31 disposed on both sides of the stage 2 and a slide bar 32 slidably coupled to the stand 31.
  • the stand 31 is welded to the vertical rod 311 at the bottom of the case 1 and welded.
  • a cross bar 312 on the vertical rod 311 is formed, and a notch for sliding the sliding rod 32 is opened on the cross bar 312, and a slider is fixed at both ends of the sliding rod 32 by screws, and the slider is embedded in the slot, thereby A sliding connection of the sliding bar 32 and the cross bar 312 is formed.
  • the sliding bar 32 is located directly above the stage 2, and the sliding bar 32 can be formed to cover the entire load when sliding from one end of the cross bar 312 to the other end.
  • the sliding rod 32 includes an outer rod 321 and an inner rod 322 slidingly sleeved on the outer rod 321, and a plurality of probes 4 are fixed on the inner rod 322.
  • the plurality of probes 4 are along the axial direction of the inner rod 322.
  • the probe 4 passes through the sliding groove 323 and is vertically downward, thereby detecting the object to be tested; and the inner rod 322 is inserted by means
  • a plurality of radio frequency interfaces are fixed, the radio frequency interfaces are evenly distributed along the axial direction of the inner rod 322, and the probe 4 is inserted into the radio frequency interface, thereby realizing a fixed and electrical connection with the radio frequency interface.
  • a lateral driving device for driving the sliding rod 32 to slide along the crossbar 312 is provided on the vertical frame 31, and the lateral driving device includes a first driving motor 51, a driving wheel 52, a driven wheel 53 and a conveyor belt 54; a fixing groove is formed on one end of the cross bar 312 and adjacent to the cross bar 312, and the first driving motor 51 is embedded in the fixing groove and passes through the screw
  • the first driving motor 51 is fixed to the crossbar 312, and the driving wheel 52 is provided with a fixing hole.
  • the driving wheel 52 is sleeved on the rotating shaft of the first driving motor 51, and the driven wheel 53 is rotatably connected to the crossbar 312.
  • the other end of the conveyor belt 54 is sleeved on the driving wheel 52 and the driven wheel 53, and is in a tight state, thereby realizing the function of power transmission.
  • One end of the sliding rod 32 is fixed with a connecting plate by bolts, the connecting plate and the conveyor belt 54. The screws are fastened together so that the conveyor belt 54 can move the slide bar 32 while moving.
  • a positioning block 7 is welded on the cross bar 312 at a position close to the driving wheel 52 and the driven wheel 53, and the positioning block 7 is oriented at the positioning block 7.
  • One side surface of the slide bar 32 is welded with an elastic damper 71, and the elastic damper 71 is a spring.
  • an axial driving device 6 for driving the inner rod 322 to slide in the axial direction of the outer rod 321 is further provided on the vertical frame 31, and the axial driving device 6 is fixed to the outer rod 321 a second drive motor 61, a drive gear 62 fixed to the rotating shaft of the second drive motor 61, and a drive rack 63 fixed to the inner rod 322 and meshing with the drive gear 62; the second drive motor 61 is a servo motor.
  • a through groove penetrating the outer rod 321 is formed on the upper surface of the outer rod 321 , the driving rack 63 is welded to the inner rod 322 and passes through the through groove, and the driving rack 63 can be When the driving motor drives the driving rack 63 to slide, the inner rod 322 can be driven to slide in the outer rod 321 by sliding back and forth in the through groove.
  • a limit for restricting the slip distance of the inner rod 322 is provided on the slide bar 32.
  • the positional component includes a mounting groove 81 formed on the outer rod 321 , a limiting block 82 slidably connected in the mounting groove 81 , a sliding inclined surface 83 formed on the side of the limiting block 82 facing the standing frame 31 , and two ends
  • the first elastic member 84 is fixed to the bottom wall of the limiting block 82 and the mounting groove 81 and is always in a compressed state, and the limiting slot 85 is formed on the inner rod 322.
  • the limiting block 82 has a wedge shape, and the limiting slot 85 is a wedge-shaped groove that cooperates with the limiting block 82, and when the probe 4 located at the outermost side is located near the vertical frame 31, the limiting block 82 can be embedded in the limiting groove 85, and the first elastic member 84 is a spring;
  • the limiting block 82 When the inner rod 322 slides within the normal sliding distance, the limiting block 82 is compressed by the inner rod 322 in the mounting groove 81, and the inner rod 322 is slid to the limiting slot 85 and aligned with the limiting block 82.
  • the limiting block 82 When the limiting block 82 is inserted into the limiting slot 85 by the elastic force of the first elastic member 84, the inner rod 322 cannot continue to move forward, so that the probe 4 does not hit the vertical frame 31;
  • a sliding ramp 83 is disposed on a side of the limiting block 82 facing the stand 31. The inner rod 322 can slide backwards and the time limit block 82 is disengaged from the limiting slot 85 so as not to affect the normal sliding distance of the inner rod 322. Slip inside.
  • the object to be tested is first placed on the stage 2, the test device is activated, and the object to be tested is probed through the probe 4.
  • the plurality of probes 4 can detect a plurality of sites of the object to be tested.
  • the first driving motor 51 is activated to drive the sliding bar 32 to move a distance.
  • the probe 4 is also moved a distance to obtain a second set of data, and so on, after the sliding rod 32 is moved from one side of the object to the other side, a set of covers can be formed to cover the entire measured
  • the data points are distributed in a matrix form; then the second driving motor 61 is activated to drive the inner rod 322 to slide along the axial direction of the outer rod 321 by a distance, that is, to drive the plurality of probes 4 to move along the axial direction of the outer rod 321 Then, the previously undetected portion can be detected again, and the sliding rod 32 can be moved from one side of the object to the other side to form another group covering the entire object to be measured and distributed in a matrix form.
  • the detection positions of the plurality of probes 4 are adjusted by the lateral driving device and the axial driving device 6, thereby forming a plurality of sets of data sets covering the objects to be measured and distributed in a matrix form, thereby realizing the object to be measured Oversampling, the sampling process is much simpler Then, the data points sampled more densely distributed, the test results more reliable.
  • Embodiment 2 A test device for determining the electromagnetic performance of a test object, as shown in FIG. 9 and FIG. 10, is different from the first embodiment in that the limit assembly includes a limit protrusion fixed on the inner rod 322. 86, the limiting protrusion 86 is located near the outermost probe 4 and extends downward through the sliding slot 323; in order to reduce the rigid contact between the limiting protrusion 86 and the stand 31, the limiting protrusion 86 and The phenomenon that the frame 31 is damaged occurs.
  • the second elastic member 87 is fixed on the side of the limiting protrusion 86 facing the stand 31, the second elastic member 87 is a spring, and the second elastic member 87 is aligned with the cross bar 312. Therefore, when the outermost probe 4 is located near the stand 31, the second elastic member 87 can be in contact with the cross bar 312;
  • the limiting protrusion 86 and the second elastic member 87 do not contact the cross rod 312, and the inner rod 322 slides to the outermost probe 4 near the vertical frame.
  • the second elastic member 87 abuts against the crossbar 312, so that the inner rod 322 cannot continue to move forward, that is, the probe 4 does not hit the stand 31.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种确定被测物电磁性能的测试装置,包括箱体(1)、载物台(2)、支架(3),支架(3)包括立架(31)和滑移杆(32),沿滑移杆(32)的轴线方向设有多个探头(4);还包括用于驱动滑移杆(32)沿立架(31)移动的横向驱动装置和用于驱动多个探头(4)同时沿滑移杆(32)的轴线方向移动的轴向驱动装置(6)。使用多探头,每次进行平面上多个点的扫描,通过两种位移装置,提供迅速构建平面场的快速扫描方法,具有能实现对被测物的过采样、采样过程更加简单方便、采样的数据点分布的更加密集、检测结果更加可靠等优点。

Description

一种确定被测物电磁性能的测试装置 技术领域
本发明涉及天线测试技术领域,更具体地说,它涉及一种确定被测物电磁性能的测试装置。
背景技术
在对天线的电磁性能进行测试时,需要对被测物进行多个位点的检测,测试出多组数据从而可以更加全面的反映出被测物的电磁性能,为了提高检测结果的精确度,通常采用过采样的方式对被测物进行检测。众所周知,作为平面近场扫描,为了有效推导出一定范围内的远场,必须在整个平面内采样,并且必须满足采样点间距L<lambda/2,其中lambda为辐射信号的波长;而目前过采样的方法只在球面近场中普遍使用,在平面近场测试中还没有使用过采样技术。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种确定被测物电磁性能的测试装置,具有能够实现数据过采样的优点。
本发明的上述技术目的是通过以下技术方案得以实现的:一种确定被测物电磁性能的测试装置,包括载物台和支架,所述支架包括设置在所述载物台两侧的立架和滑移连接于所述立架且能够形成覆盖所述载物台的滑移面的滑移杆,沿所述滑移杆的轴线方向设有多个探头;还包括用于驱动所述滑移杆沿所述立架移动的横向驱动装置和用于驱动多个所述探头同时沿所述滑移杆的轴线方向移动的轴向驱动装置。
通过采用上述技术方案,测试时,先将被测物放置在载物台上,启动测试装置,通过探头对被测物进行探测,多个探头可以对被测物的多个位点进行探测,当滑移杆位于某一位置测得一组数据后,通过横向驱动装置驱动滑移杆移动一段距离,探头也随之移动一段距离,即可得出第二组数据,以此类推,将滑移杆由被测物的一侧移动至另一侧后,即可形成一组覆盖整个被测物并呈矩阵形式分布的数据点;随后通过轴向驱动装置,驱动多个探头同时沿着滑移杆的轴线方向移动一段距离,即可对前次未检测到的部分进行再次检测,将滑移杆重新由被测物的一侧移动至另一侧,即可形成另一组覆盖整个被测物并呈矩阵形式分布的数据点;通过横向驱动装置和轴向驱动装置,对多个探头的检测位置进行调节,从而形成多组覆盖被测物并呈矩阵形式分布的数据组,实现了对被测物的过采样,采样过程更加简单方便,采样的数据点分布的更加密集,检测结果更加可靠。
本发明进一步设置为:所述横向驱动装置包括固定于所述立架的第一驱动电机、固定在所述第一驱动电机转轴上的主动轮、转动连接在所述立架上的从动轮、以及套设于所述主动轮和从动轮且固定于所述滑移杆的传送带。
通过采用上述技术方案,启动第一驱动电机,即可带动传送带移动,由于滑移杆固定在传送带上,滑移杆可以随着传送带沿着立架往复滑移,从而形成覆盖整个在载物台的滑移面,探头即可形成对被测物呈矩形阵列分布的检测位点;而且通过传送带的形式驱动滑移杆滑移,其占用体积小,传送距离大,成本低。
本发明进一步设置为:所述滑移杆包括外杆、滑动套接在所述外杆内用于固定多个所述探头的内杆、以及开设在所述外杆上供所述探头滑移的滑槽。
通过采用上述技术方案,滑动内杆即可带动多个探头同时移动,调节探头的过程简单方便。
本发明进一步设置为:所述轴向驱动装置包括固定于所述外杆的第二驱动电机、固定在所述第二驱动电机的转轴上的驱动齿轮、以及固定于所述内杆且与所述驱动齿轮相啮合的驱动齿条。
通过采用上述技术方案,启动驱动电机,即可带动驱动齿轮转动,在驱动齿轮与驱动齿条的啮合作用下,即可使内杆沿着外杆的轴线方向往复滑移。
本发明进一步设置为:所述立架上位于靠近所述主动轮和所述从动轮的位置设有用于限制滑移杆的定位块。
通过采用上述技术方案,由于滑移杆通过传送带的驱动进行滑移,在滑移至主动轮和从动轮的位置时,易出现滑移杆抵触在主动轮和从动轮上,从而造成主动轮和从动轮的损伤,通过设置定位块,滑移杆移动至极限位置时与定位块相抵触,从而使滑移杆不会与主动轮和从动轮发生刚性接触,减少了滑移杆对主动轮和从动轮的损伤。
本发明进一步设置为:所述定位块上位于面向所述滑移杆的一侧设有能够抵触于所述滑移杆的弹性减震件。
通过采用上述技术方案,弹性减震件可以减少滑移杆直接撞击定位块而导致滑移杆和定位块损伤的现象发生。
本发明进一步设置为:所述滑移杆上设有用于限制所述内杆滑移距离的限位组件。
通过采用上述技术方案,减少了位于最外侧的探头在内杆滑移的过程中撞击到立架上而造成探头损坏的现象发生。
本发明进一步设置为:所述限位组件包括开设在所述外杆上的安装槽、滑动连接在所 述安装槽内限位块、形成于所述限位块上面向所述立架一侧的滑移斜面、两端分别固定于所述限位块和所述安装槽底壁且始终处于压缩状态的第一弹性件、以及开设在所述内杆上的限位槽,且当位于最外侧的所述探头靠近所述立架时,所述限位块嵌入所述限位槽内。
通过采用上述技术方案,内杆在正常的滑移距离内滑移时,限位块受内杆的抵触被压缩在安装槽内,当内杆滑移至限位槽与限位块相对齐时,限位块受第一弹性件的弹性力作用而嵌入限位槽内,从而使内杆无法继续向前移动,使探头不会撞击到立架上;而由于在限位块上面向立架的一侧设有滑移斜面,内杆可以反向滑移而时限位块脱离限位槽,从而不会影响内杆在正常滑移距离内滑移。
本发明进一步设置为:所述限位组件包括固定在所述内杆上位于靠近最外侧的所述探头处且穿过所述滑槽的限位凸起。
通过采用上述技术方案,当内杆滑移至探头靠近立架时,限位凸起可以抵触在立架上,从而限制内杆继续向前移动,使探头不会撞击到立架上。
本发明进一步设置为:所述限位凸起面向所述立架的一侧固定有能够抵触于所述立架的第二弹性件。
通过采用上述技术方案,第二弹性件减少了限位凸起与立架之间发生刚性接触而造成限位凸起和立架损伤的现象发生。
综上所述,本发明具有以下有益效果:
其一,通过横向驱动装置和轴向驱动装置,对多个探头的检测位置进行调节,从而形成多组覆盖被测物并呈矩阵形式分布的数据组,实现了对被测物的过采样,采样过程更加简单方便,采样的数据点分布的更加密集,检测结果更加可靠;
其二,滑移杆由外杆和滑动套接于外杆的内杆组成,从而滑移内杆即可实现探头的同时滑移,探头调节的过程简单方便;
其三,设置定位块和弹性减震件,减少了主动轮、从动轮和滑移杆的损伤;
其四,设置限位组件,减少了位于最外侧的探头在内杆滑移的过程中撞击到立架上而造成探头损坏的现象发生。
附图说明
图1为实施例一箱盖打开时的结构示意图;
图2为实施例一中滑移杆的结构示意图,用于显示外杆、内杆和滑槽;
图3为实施例一中去除箱体后的结构示意图;
图4为图3的A部放大图;
图5为图3的B部放大图;
图6为图3的C部放大图;
图7为实施例一中的滑移杆沿安装槽的轴线方向的剖视图;
图8为图7的D部放大图;
图9为实施例二去除箱体后的结构示意图;
图10为图9的E部放大图。
图中:1、箱体;11、箱盖;2、载物台;3、支架;31、立架;311、竖杆;312、横杆;32、滑移杆;321、外杆;322、内杆;323、滑槽;4、探头;51、第一驱动电机;52、主动轮;53、从动轮;54、传送带;6、轴向驱动装置;61、第二驱动电机;62、驱动齿轮;63、驱动齿条;7、定位块;71、弹性减震件;81、安装槽;82、限位块;83、滑移斜面;84、第一弹性件;85、限位槽;86、限位凸起;87、第二弹性件。
具体实施方式
下面结合附图和实施例,对本发明进行详细描述。
实施例一:一种确定被测物电磁性能的测试装置,如图1所示,箱体1上铰接有箱盖11,箱盖11盖合于箱体1从而形成密闭的检测空间,在其他实施例中,若平面近场测试场地带有暗室或具有屏蔽功能的壳体,可以不设置箱体1;在箱体1的底部固定有用于放置被测物的载物台2,载物台2的两侧设有支架3;
如图1所示,支架3包括设置在载物台2两侧的立架31和滑动连接在立架31上的滑移杆32,立架31焊接在箱体1底部的竖杆311和焊接竖杆311上的横杆312组成,在横杆312上开设有供滑移杆32滑移的槽口,在滑移杆32的两端通过螺钉固定有滑块,滑块嵌入槽口内,从而形成了滑移杆32与横杆312的滑动连接,滑移杆32位于载物台2的正上方,且滑移杆32自横杆312的一端滑移至另一端时可以形成覆盖整个载物台2的滑移面;
如图2所示,滑移杆32包括外杆321和滑动套接于外杆321的内杆322,在内杆322上固定有多个探头4,多个探头4沿内杆322的轴线方向均匀分布,且在外杆321上开设有供探头4滑移的滑槽323,探头4穿过滑槽323且竖直朝下,从而对被测物进行检测;内杆322上通过卡嵌的方式固定有多个射频接口,射频接口沿内杆322的轴线方向均匀分布,探头4插接在射频接口内,从而实现了与射频接口的固定和电性连接。
如图3和图4和图5所示,在立架31上设有用于驱动滑移杆32沿横杆312滑移的横向驱动装置,横向驱动装置包括第一驱动电机51、主动轮52、从动轮53和传送带54;在横杆312上且靠近横杆312的一端开设有固定槽,第一驱动电机51嵌设在固定槽内,且通过螺 栓固定在横杆312上,第一驱动电机51采用伺服电机;主动轮52上开设有固定孔,主动轮52套设在第一驱动电机51的转轴上,从动轮53转动连接在横杆312的另一端;传送带54套设于主动轮52和从动轮53,并处于绷紧的状态,从而实现了动力传输的功能,滑移杆32的一端通过螺栓固定有连接板,连接板与传送带54通过螺钉紧固在一起,从而传送带54在移动的过程中可以带动滑移杆32同时移动。
如图4所示,为了防止滑移杆32与主动轮52和从动轮53发生碰撞,在横杆312上位于靠近主动轮52和从动轮53的位置焊接有定位块7,在定位块7朝向滑移杆32的一侧表面上焊接有弹性减震件71,弹性减震件71采用弹簧,当滑移杆32滑移至靠近主动轮52和从动轮53的位置时,弹性减震件71抵触在滑移杆32上,从而减少滑移杆32直接撞击主动轮52和从动轮53而导致滑移杆32、主动轮52和从动轮53损伤的现象发生。
如图3和图6所示,在立架31上还设有用于驱动内杆322沿外杆321的轴线方向滑移的轴向驱动装置6,轴向驱动装置6包括固定在外杆321上的第二驱动电机61、固定在第二驱动电机61的转轴上的驱动齿轮62、以及固定在内杆322上且与驱动齿轮62相啮合的驱动齿条63;第二驱动电机61采用伺服电机,并通过螺栓固定在外杆321的上表面;在外杆321的上表面上开设有贯穿外杆321的通槽,驱动齿条63焊接在内杆322上且穿过通槽,且驱动齿条63可以在通槽内往复滑移,从而驱动电机带动驱动齿条63滑移时即可带动内杆322在外杆321内滑移。
如图7和图8所示,为了防止位于最外侧的探头4在内杆322滑移的过程中撞击到立架31,在滑移杆32上设有用于限制内杆322滑移距离的限位组件,限位组件包括开设在外杆321上的安装槽81、滑动连接在安装槽81内限位块82、形成于限位块82上面向立架31一侧的滑移斜面83、两端分别固定于限位块82和安装槽81底壁且始终处于压缩状态的第一弹性件84、以及开设在内杆322上的限位槽85,限位块82呈楔形,限位槽85为与限位块82相配合的楔形槽,且当位于最外侧的探头4位于靠近立架31的位置时,限位块82能够嵌入限位槽85内,第一弹性件84采用弹簧;
内杆322在正常的滑移距离内滑移时,限位块82受内杆322的抵触被压缩在安装槽81内,当内杆322滑移至限位槽85与限位块82相对齐时,限位块82受第一弹性件84的弹性力作用而嵌入限位槽85内,从而使内杆322无法继续向前移动,使探头4不会撞击到立架31上;而由于在限位块82上面向立架31的一侧设有滑移斜面83,内杆322可以反向滑移而时限位块82脱离限位槽85,从而不会影响内杆322在正常滑移距离内滑移。
测试时,先将被测物放置在载物台2上,启动测试装置,通过探头4对被测物进行探 测,多个探头4可以对被测物的多个位点进行探测,当滑移杆32位于某一位置测得一组数据后,启动第一驱动电机51驱动滑移杆32移动一段距离,探头4也随之移动一段距离,即可得出第二组数据,以此类推,将滑移杆32由被测物的一侧移动至另一侧后,即可形成一组覆盖整个被测物并呈矩阵形式分布的数据点;随后启动第二驱动电机61,驱动内杆322沿外杆321的轴线方向滑移一段距离,即带动多个探头4同时沿着外杆321的轴线方向移动,即可对前次未检测到的部分进行再次检测,将滑移杆32重新由被测物的一侧移动至另一侧,即可形成另一组覆盖整个被测物并呈矩阵形式分布的数据点;通过横向驱动装置和轴向驱动装置6,对多个探头4的检测位置进行调节,从而形成多组覆盖被测物并呈矩阵形式分布的数据组,实现了对被测物的过采样,采样过程更加简单方便,采样的数据点分布的更加密集,检测结果更加可靠。
实施例二:一种确定被测物电磁性能的测试装置,如图9和图10所示,与实施例一的不同之处在于,限位组件包括固定在内杆322上的限位凸起86,限位凸起86位于靠近最外侧的探头4处且穿过滑槽323向下延伸;为了减少了限位凸起86与立架31之间发生刚性接触而造成限位凸起86和立架31损伤的现象发生,在限位凸起86面向立架31的一侧固定有第二弹性件87,第二弹性件87采用弹簧,且第二弹性件87与横杆312相对齐,从而位于最外侧的探头4位于靠近立架31的位置时,第二弹性件87能够抵触在横杆312上;
内杆322在正常的滑移距离内滑移时,限位凸起86和第二弹性件87不会与横杆312相接触,当内杆322滑移至位于最外侧的探头4靠近立架31时,第二弹性件87抵触在横杆312上,从而使内杆322无法继续向前移动,即探头4不会撞击到立架31上。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种确定被测物电磁性能的测试装置,包括载物台(2)和支架(3),其特征在于:所述支架(3)包括设置在所述载物台(2)两侧的立架(31)和滑移连接于所述立架(31)且能够形成覆盖所述载物台(2)的滑移面的滑移杆(32),沿所述滑移杆(32)的轴线方向设有多个探头(4);还包括用于驱动所述滑移杆(32)沿所述立架(31)移动的横向驱动装置和用于驱动多个所述探头(4)同时沿所述滑移杆(32)的轴线方向移动的轴向驱动装置(6)。
  2. 根据权利要求1所述的一种确定被测物电磁性能的测试装置,其特征在于:所述横向驱动装置包括固定于所述立架(31)的第一驱动电机(51)、固定在所述第一驱动电机(51)转轴上的主动轮(52)、转动连接在所述立架(31)上的从动轮(53)、以及套设于所述主动轮(52)和从动轮(53)且固定于所述滑移杆(32)的传送带(54)。
  3. 根据权利要求1所述的一种确定被测物电磁性能的测试装置,其特征在于:所述滑移杆(32)包括外杆(321)、滑动套接在所述外杆(321)内用于固定多个所述探头(4)的内杆(322)、以及开设在所述外杆(321)上供所述探头(4)滑移的滑槽(323)。
  4. 根据权利要求3所述的一种确定被测物电磁性能的测试装置,其特征在于:所述轴向驱动装置(6)包括固定于所述外杆(321)的第二驱动电机(61)、固定在所述第二驱动电机(61)的转轴上的驱动齿轮(62)、以及固定于所述内杆(322)且与所述驱动齿轮(62)相啮合的驱动齿条(63)。
  5. 根据权利要求2所述的一种确定被测物电磁性能的测试装置,其特征在于:所述立架(31)上位于靠近所述主动轮(52)和所述从动轮(53)的位置设有用于限制滑移杆(32)的定位块(7)。
  6. 根据权利要求5所述的一种确定被测物电磁性能的测试装置,其特征在于:所述定位块(7)上位于面向所述滑移杆(32)的一侧设有能够抵触于所述滑移杆(32)的弹性减震件(71)。
  7. 根据权利要求3或4所述的一种确定被测物电磁性能的测试装置,其特征在于:所述滑移杆(32)上设有用于限制所述内杆(322)滑移距离的限位组件。
  8. 根据权利要求7所述的一种确定被测物电磁性能的测试装置,其特征在于:所述限位组件包括开设在所述外杆(321)上的安装槽(81)、滑动连接在所述安装槽(81)内限位块(82)、形成于所述限位块(82)上面向所述立架(31)一侧的滑移斜面(83)、两端分别固定于所述限位块(82)和所述安装槽(81)底壁且始终处于压缩状态 的第一弹性件(84)、以及开设在所述内杆(322)上的限位槽(85),且当位于最外侧的所述探头(4)靠近所述立架(31)时,所述限位块(82)嵌入所述限位槽(85)内。
  9. 根据权利要求7所述的一种确定被测物电磁性能的测试装置,其特征在于:所述限位组件包括固定在所述内杆(322)上位于靠近最外侧的所述探头(4)处且穿过所述滑槽(323)的限位凸起(86)。
  10. 根据权利要求9所述的一种确定被测物电磁性能的测试装置,其特征在于:所述限位凸起(86)面向所述立架(31)的一侧固定有能够抵触于所述立架(31)的第二弹性件(87)。
PCT/CN2016/111864 2016-12-01 2016-12-24 一种确定被测物电磁性能的测试装置 WO2018098870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611088914.3A CN108132388B (zh) 2016-12-01 2016-12-01 一种确定被测物电磁性能的测试装置
CN201611088914.3 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018098870A1 true WO2018098870A1 (zh) 2018-06-07

Family

ID=62242028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111864 WO2018098870A1 (zh) 2016-12-01 2016-12-24 一种确定被测物电磁性能的测试装置

Country Status (2)

Country Link
CN (1) CN108132388B (zh)
WO (1) WO2018098870A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444695A (zh) * 2020-11-11 2021-03-05 安徽锦希自动化科技有限公司 一种电气自动化设备的检测装置
CN113049954A (zh) * 2021-03-08 2021-06-29 北京博华鑫诺科技有限公司 一种电机电气性能测试装置
CN113064405A (zh) * 2021-03-31 2021-07-02 北京品驰医疗设备有限公司 植入式医疗仪器用体外控制设备的可靠性测试装置
CN117214805A (zh) * 2023-11-07 2023-12-12 南京飞腾电子科技有限公司 一种电能表的精准测温装置
CN117388585A (zh) * 2023-12-12 2024-01-12 南京捷希科技有限公司 一种暗室测试系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374278A (zh) * 2018-11-27 2019-02-22 广东顶固集创家居股份有限公司 吊轮测试设备
CN112504636A (zh) * 2020-11-27 2021-03-16 江苏高明安光电有限公司 基于ca-210辉度计的条形屏辉度自动检测机
CN113030594A (zh) * 2021-03-24 2021-06-25 中国舰船研究设计中心 电磁场二维分布测量装置
CN117233670B (zh) * 2023-11-13 2024-03-19 之江实验室 一种用于弱电磁屏蔽内的高精度无磁平面扫描装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875095B1 (ko) * 2008-04-11 2008-12-19 (특수법인)한국전파진흥협회 인쇄회로기판 전자파 측정 장치
CN202305669U (zh) * 2011-06-28 2012-07-04 苏州方林科技电子材料有限公司 一种检测物件电阻的装置
CN202548307U (zh) * 2012-03-21 2012-11-21 深圳市创益科技发展有限公司 一种平面靶磁场强度的检测装置
CN203479904U (zh) * 2013-07-19 2014-03-12 中航锂电(洛阳)有限公司 一种锂电池膜片用电阻检测装置
CN203535124U (zh) * 2013-10-14 2014-04-09 浙江大学 一种电磁兼容扫描仪的扫描机构
CN104714056A (zh) * 2013-12-13 2015-06-17 旺矽科技股份有限公司 电性检测机台

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840037B1 (ko) * 2006-11-10 2008-06-19 (특수법인)한국전파진흥협회 원격 피씨비 전자파 측정 장치
CN206440774U (zh) * 2016-12-01 2017-08-25 深圳市新益技术有限公司 一种确定被测物电磁性能的测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875095B1 (ko) * 2008-04-11 2008-12-19 (특수법인)한국전파진흥협회 인쇄회로기판 전자파 측정 장치
CN202305669U (zh) * 2011-06-28 2012-07-04 苏州方林科技电子材料有限公司 一种检测物件电阻的装置
CN202548307U (zh) * 2012-03-21 2012-11-21 深圳市创益科技发展有限公司 一种平面靶磁场强度的检测装置
CN203479904U (zh) * 2013-07-19 2014-03-12 中航锂电(洛阳)有限公司 一种锂电池膜片用电阻检测装置
CN203535124U (zh) * 2013-10-14 2014-04-09 浙江大学 一种电磁兼容扫描仪的扫描机构
CN104714056A (zh) * 2013-12-13 2015-06-17 旺矽科技股份有限公司 电性检测机台

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444695A (zh) * 2020-11-11 2021-03-05 安徽锦希自动化科技有限公司 一种电气自动化设备的检测装置
CN113049954A (zh) * 2021-03-08 2021-06-29 北京博华鑫诺科技有限公司 一种电机电气性能测试装置
CN113049954B (zh) * 2021-03-08 2022-10-25 北京博华鑫诺科技有限公司 一种电机电气性能测试装置
CN113064405A (zh) * 2021-03-31 2021-07-02 北京品驰医疗设备有限公司 植入式医疗仪器用体外控制设备的可靠性测试装置
CN117214805A (zh) * 2023-11-07 2023-12-12 南京飞腾电子科技有限公司 一种电能表的精准测温装置
CN117214805B (zh) * 2023-11-07 2024-01-30 南京飞腾电子科技有限公司 一种电能表的精准测温装置
CN117388585A (zh) * 2023-12-12 2024-01-12 南京捷希科技有限公司 一种暗室测试系统
CN117388585B (zh) * 2023-12-12 2024-04-26 南京捷希科技股份有限公司 一种暗室测试系统

Also Published As

Publication number Publication date
CN108132388A (zh) 2018-06-08
CN108132388B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2018098870A1 (zh) 一种确定被测物电磁性能的测试装置
CN109406312B (zh) 真三轴霍普金森杆固体动态损伤与超声波传播测试方法
JPH0389828A (ja) 発電機ステータウェッジの締まり具合を測定する装置
JP6860256B1 (ja) 梁柱構造部材の耐衝撃性を試験する装置
CN110907539B (zh) 管道无损探伤设备
CN110631788A (zh) 一种刚度测试装置及测试方法
CN116773942A (zh) 一种电磁兼容emc测试仪
CN206440774U (zh) 一种确定被测物电磁性能的测试装置
CN209927779U (zh) 管道探伤定位架
CN117214678B (zh) 一种配电抽屉自动检测装置
CN216558879U (zh) 弧形面无损检测架
CN215415330U (zh) 一种便携式无损检测设备
CN109975427A (zh) 热轧合金钢的无损检测设备
CN110044411A (zh) 一种可以同时测量扭力及转速的装置
CN221506192U (zh) 一种软磁矫顽力测量装置
CN217424979U (zh) 一种水表壳耐压检测装置
CN216361779U (zh) 一种便于携带的智能化管道无损检测装置
CN214097016U (zh) 便于定位的混凝土回弹仪
CN214883928U (zh) 一种用于桩基检测中连接装置
US11385257B2 (en) Apparatus for testing electronic components
CN219915783U (zh) 一种二维旋转联动平台
CN207867330U (zh) 整车控制器的检测装置
CN212980912U (zh) 一种质量检测仪器保护装置
CN221174257U (zh) 一种混凝土强度检测机构
CN112082937B (zh) 一种基于fbg光纤传感的界面脱粘检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16922940

Country of ref document: EP

Kind code of ref document: A1