WO2018097359A1 - Turbojet drone - Google Patents

Turbojet drone Download PDF

Info

Publication number
WO2018097359A1
WO2018097359A1 PCT/KR2016/013682 KR2016013682W WO2018097359A1 WO 2018097359 A1 WO2018097359 A1 WO 2018097359A1 KR 2016013682 W KR2016013682 W KR 2016013682W WO 2018097359 A1 WO2018097359 A1 WO 2018097359A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbo
propulsion
unit
drone
discharge
Prior art date
Application number
PCT/KR2016/013682
Other languages
French (fr)
Korean (ko)
Inventor
김기태
Original Assignee
김기태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김기태 filed Critical 김기태
Publication of WO2018097359A1 publication Critical patent/WO2018097359A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • B64D27/20Aircraft characterised by the type or position of power plant of jet type within or attached to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/12Propulsion using turbine engines, e.g. turbojets or turbofans

Definitions

  • the present technology relates to a drone, and more particularly, to a drone that is injected by jetting the compressor body.
  • a main body a main body, a plurality of arms provided on the circumference of the main body, a rotor provided on the arm and driven by a drive device is provided.
  • the drone of the wing type is to be flying by the lift generated by the rotor, it is disclosed in Republic of Korea Patent No. 10-1654799 (announced on September 06, 2016).
  • the wing type drone has a problem in that a plurality of rotors (wings) are easily broken from external impact.
  • a drone composed of a main body, an inlet means, a wind guide and a connecting duct.
  • the inlet means is accommodated in the main body is configured to introduce the wind.
  • One or more wind guides are spaced apart from the main body.
  • the connection duct allows the wind flowing from the inlet means to move to the wind guide.
  • the jet type drone is configured to give a lift force for the wind guide portion to fly the main body by the wind discharged by the connecting duct, it is disclosed in Korean Patent No. 10-1607816 (announced on March 31, 2016) have.
  • the jet drone has a problem that it is difficult to control the direction of movement of the drone as the wind is distributed by one inflow means.
  • the jet drone sucks and discharges the outside air by a conventional fan, which causes a problem of low output.
  • the technology disclosed herein is derived to solve the above problems of the prior art.
  • the technique disclosed herein provides a wingless turbo jet drone with improved flight output for flight of the drone.
  • a turbo jet drone in one embodiment, includes an engine unit that sucks and discharges external gas.
  • the gas discharged from the engine unit is compressed to include a propulsion unit discharged to the outside.
  • the gas discharged from the engine unit includes a turbo propulsion unit is compressed and selectively discharged to the outside.
  • the propulsion unit includes a propulsion compression unit in which gas discharged from the engine unit is compressed. And a propulsion discharge portion communicating with the outside of the compression portion.
  • the turbo propulsion unit includes a turbo compression unit in which gas discharged from the engine unit is compressed.
  • the turbo compression unit includes a turbo discharge unit in communication with the outside. It includes a turbo control unit for adjusting the size of the turbo discharge unit.
  • the turbo control unit may include a discharge cover part blocking the turbo discharge part and a cover moving part moving the discharge cover part.
  • the engine unit includes a turbojet fan in which one or more fans are overlapped.
  • turbo jet drones disclosed herein may be provided with additional propulsion force other than the propulsion portion by the turbo propulsion portion to improve flight power.
  • the size of the turbo discharge unit is adjusted by the turbo control unit to control the strength of the additional propulsion force, thereby controlling the direction of the turbo jet drone.
  • the engine unit including the turbojet fan in which one or more fans are superimposed can discharge more powerful air, and thus the flight power can be further improved.
  • FIG. 1 illustrates a turbo jet drone according to an exemplary embodiment.
  • FIG. 2 is a diagram illustrating a turbo jet drone according to another embodiment.
  • FIG. 3 is a diagram illustrating a turbo jet drone according to another embodiment.
  • placement in another component, it may include a case in which one component is directly disposed in the other component, as well as a case in which additional components are interposed therebetween.
  • one component When one component is referred to as "connecting" to another component, it may include a case in which the one component is directly connected to the other component, as well as a case in which additional components are interposed therebetween.
  • one component When one component is referred to as "forming" in another component, it may include a case in which one component is directly formed in the other component, as well as a case in which additional components are interposed therebetween.
  • one component When one component is referred to as being "coupled" to another component, it may include a case in which the one component is directly coupled to the other component, as well as a case in which additional components are interposed therebetween.
  • FIG. 1 illustrates a turbo jet drone according to an exemplary embodiment.
  • 2 is a diagram illustrating a turbo jet drone according to another embodiment.
  • 3 is a diagram illustrating a turbo jet drone according to another embodiment.
  • the turbo jet drone disclosed in the present specification largely includes an engine unit 100, the propulsion unit 200 and the turbo propulsion unit 300.
  • the turbo jet drone may optionally further include a coanda propulsion unit 400.
  • the turbo jet drone disclosed in the present specification sucks and discharges outside air (gas) through the engine unit 100.
  • the discharged air is compressed by the propulsion unit 200 to be strongly discharged toward the ground, thereby generating a propulsion force that can fly.
  • the turbo propulsion unit 300 is compressed by the air discharged through the engine unit 100 is discharged to the outside, to generate additional propulsion force.
  • thrust force is increased through the coanda propulsion unit (400). That is, the turbo jet drone disclosed in the present disclosure may increase the direction and basic propulsion force by the additional propulsion force of the turbo propulsion unit 300 while flying at the basic propulsion force by the propulsion unit 200.
  • the engine unit 100 may be configured to suck and discharge external gas (air) by a fan rotated by a conventional internal combustion engine or an electric motor.
  • the engine unit 100 may include a fan rotated by an electric motor, and the fan may be configured to suck the outside air (gas) from the upper portion and discharge the lower portion.
  • the engine unit 100 may provide a driving force necessary for the flight of the turbo jet drone.
  • the engine unit 100 may include a turbojet fan 110 in which one or more fans are overlapped.
  • the turbojet fan 110 may suck at least the outside air to discharge the compressed air to improve the driving force.
  • the turbojet fan 110 may be disposed inside the tubular body and the tubular body, and may include a rotating shaft that is rotated by the driving device. At least one fan is disposed on the rotating shaft, and may be disposed to be closer to the inner surface of the tube.
  • air sucked into the tubular body is moved to the other side along the tubular body by the fan. The moving air is compressed and discharged as the inner surface of the fan and pipe becomes narrower. That is, the turbojet fan 110 may suck the outside air and discharge the compressed air to improve the propulsive force of the turbo jet drone.
  • the engine unit 100 including the turbojet fan 110 may be in accordance with the compression structure of a conventional jet engine excluding the combustion chamber.
  • the engine unit 100 may implement the turbo jet drone disclosed herein even if it is replaced by a conventional compression device capable of compressing air by a piston operated by the internal combustion engine.
  • the propulsion unit 200 may be configured such that the gas (air) discharged from the engine unit 100 is compressed and discharged to the outside.
  • the propulsion unit 200 generates the propulsion force of the turbo jet drone by discharging at least the air supplied from the engine unit 100 to the lower portion of the turbo jet drone.
  • the driving unit 200 is connected to the lower engine portion 100.
  • the propulsion unit 200 includes a propulsion compression unit 210 in which gas discharged from the engine unit 100 is compressed.
  • Propulsion compression unit 210 may be configured to include a propulsion discharge unit 220 in communication with the outside.
  • the propulsion unit 200 discharges air compressed by the propulsion compression unit 210 through the propulsion discharge unit 220 to generate a propulsion force of the turbo jet drone.
  • the propulsion unit 200 may implement a turbo jet drone disclosed herein even when connected to the engine unit 100.
  • the turbo jet drone may optionally further include a propulsion control unit 230.
  • Propulsion control unit 230 is disposed corresponding to the propulsion discharge unit 220.
  • the propulsion control unit 230 may control the propulsion force of the turbo jet drone by adjusting the amount of air discharged by adjusting the size of the propulsion discharge unit 220.
  • the propulsion compression unit 210 may be configured as a cylinder in which the space is compressed air is formed therein. have.
  • the upper surface of the barrel may be configured to include a hole formed so that the air discharged from the engine unit 100 flows into the barrel.
  • the propulsion compression unit 210 is connected to the engine unit 100. That is, the propulsion compression unit 210 is compressed by entering the outside air discharged by the engine unit 100 into the inside.
  • the propulsion discharge part 220 may include four holes spaced apart from each other on the lower surface of the propulsion compression part 210.
  • Propulsion discharge unit 220 is preferably formed to face the ground.
  • the propulsion discharge part 220 induces the compressed air from the propulsion compression part 210 to be discharged downward.
  • the size of the propulsion discharge unit 220 is preferably formed to a size that can generate the propulsion force of the turbo jet drone while the air introduced by the engine unit 100 is sufficiently compressed in the propulsion compression unit 210.
  • the propulsion compression unit 210 may be subjected to the turbo jet drone disclosed herein even if only one propulsion discharge unit 220 is implemented. However, when it is desired to control the flight direction of the turbo jet drone through the propulsion discharge unit 220 it will be preferable to form at least two.
  • the propulsion control part 230 may include a discharge cover part 331 blocking the propulsion discharge part 220 and a cover moving part 332 for moving the discharge cover part 331.
  • the propulsion control unit 230 is disposed corresponding to each of the propulsion discharge unit 220, the same operation is collectively.
  • the propulsion control unit 230 may move the position of the discharge cover part 331 by the cover moving part 332 to cover the entire propulsion discharge unit 220, or to adjust the size of the opening and propulsion discharge unit 220. . That is, the propulsion force is generated when the propulsion discharge part 220 is opened by the propulsion control part 230. On the contrary, when the propulsion discharge part 220 is covered by the propulsion control part 230, the propulsion force is not generated.
  • the propulsion control unit 230 determines whether the size of the propulsion discharge unit 220 is adjusted by the propulsion control unit 230.
  • the amount of air discharged to the propulsion discharge unit 220 is adjusted to adjust the propulsion force according to Bernoulli's principle.
  • the propulsion control unit 230 is operated individually, it is possible to control the flight direction of the turbo jet drone.
  • the discharge cover part 331 is disposed to be freely moved inside the turbo compression unit 310, it may be configured as a plate formed larger than the turbo discharge unit 320. have.
  • the cover moving part 332 may be configured as a cylinder which is disposed inside the turbo compression part 310 to move the cover moving part 332 to be dropped or blocked from the turbo discharge part 320.
  • the propulsion control unit 230 may be configured to be driven by a motor and a rack gear structure in place of the cylinder.
  • the turbo propulsion unit 300 may be configured such that the gas discharged from the engine unit 100 is compressed and selectively discharged to the outside.
  • the turbo propulsion unit 300 is at least a gas discharged from the engine unit 100 is compressed to generate additional propulsion force independent of the propulsion unit 200.
  • the turbo propulsion unit 300 is connected to the propulsion unit 200.
  • the turbo propulsion unit 300 includes a turbo compression unit 310 in which air discharged from the engine unit 100 is compressed.
  • the turbo compression unit 310 includes a turbo discharge unit 320 in communication with the outside.
  • it includes a turbo adjustment unit 330 for adjusting the size of the turbo discharge unit 320.
  • the turbo propulsion unit 300 at least air discharged from the engine unit 100 flows into the turbo compression unit 310 through the propulsion unit 200 and is compressed.
  • the compressed air is discharged to the outside through the turbo discharge unit 320 to generate additional propulsion force, but when the entire turbo discharge unit 320 is closed by the turbo control unit 330, additional propulsion force may not be generated. have.
  • turbo compression unit 310 is configured in the same way as the propulsion compression unit 210, the compression compression It may be of a smaller size than the portion 210.
  • turbo discharge unit 320 may also be configured in the same manner as the propulsion discharge unit 220 and may operate in the same manner.
  • the turbo control unit 330 may include a discharge cover part 331 blocking the turbo discharge part 320 and a cover moving part 332 for moving the discharge cover part 331.
  • the turbo control unit 330 may be moved by the cover cover 331, the cover moving part 332 is moved to cover the entire turbo discharge unit 320, or open. That is, when the turbo discharge unit 320 is opened by the turbo control unit 330, an additional propulsion force is generated. On the contrary, if the turbo discharge unit 320 is covered by the turbo control unit 330, no additional driving force is generated.
  • the turbo adjustment unit 330 may be further disposed in the hole formed in the turbo compression unit 310 through which air is introduced through the propulsion compression unit 210.
  • the turbo adjuster 330 When the turbo adjuster 330 is compressed from the air pressure discharged from the engine unit 100 to a maximum value capable of compressing air in the turbo compressor 310, it operates to block the inflow of air.
  • the turbo adjustment unit 330 may prevent the air discharged from the engine unit 100 from flowing into the turbo compression unit 310, thereby preventing the driving force from being weakened.
  • the turbo adjusting unit 330 may prevent the air compressed in the turbo compression unit 310 from being lost to the propulsion compression unit 210 to store the compressed air for a long time.
  • the compressed air stored for a long time may be discharged to the outside when necessary according to the turbo control unit 330 installed in the turbo discharge unit 320 to generate additional propulsion force.
  • the discharge cover part 331 is disposed to be freely moved inside the turbo compression unit 310, but may be configured as a plate formed larger than the turbo discharge unit 320. have.
  • the cover moving part 332 may be configured as a cylinder which is disposed inside the turbo compression part 310 to move the cover moving part 332 to be dropped or blocked from the turbo discharge part 320.
  • the turbo adjustment unit 330 further disposed in the hole formed in the turbo compression unit 310 introduced through the propulsion compression unit 210 may be configured as a conventional check valve.
  • the propulsion control unit 230 may be configured to be driven by a motor and a rack gear structure in place of the cylinder.
  • Coanda propulsion unit 400 may be of a structure that is applied to the principle of the Bernoulli and the Coanda effect of the air flowing in ('Dyson's wingless fan).
  • the coanda propulsion unit 400 may increase a force (pulling force) from which the air introduced is discharged.
  • the coanda propulsion unit 400 includes a connection passage communicating with the propulsion discharge unit 220.
  • One side of the connection passage includes a coanda supply unit for supplying air passing through the connection passage.
  • a coanda discharge unit configured to discharge air supplied from the coanda supply unit to the outside.
  • Coanda propulsion unit 400 is the air discharged from the propulsion compression unit 210 is supplied to the coanda supply unit through the connection passage, the supplied air is discharged to the coanda discharge unit to generate a driving force.
  • the coanda supply unit may be formed in a ring shape, and a space in which air may move may be formed. It is desirable that the length of the ring shape be shaped so that the Coanda effect can be achieved.
  • the shape of the inner surface and the outer surface of the ring shape may also be formed to facilitate the Coanda effect as the outside air flows into the inside.
  • the coanda discharge portion is formed into a ring-shaped hole along the inner face of the coanda supply portion.
  • the ring-shaped hole is formed to face the inner surface of the coanda supply portion.
  • connection passage may be composed of conventional piping. It is connected to the other side of the coanda supply portion, the other side is connected to the propulsion compression unit (210).
  • the connecting passage is formed in a 'Y' shape, one side is connected to the propulsion compression unit 210, the other side is connected to the turbo compression unit 310, the other side may be connected to the coanda supply unit.
  • the connecting passage guides the air introduced from the propulsion compression unit 210 to be moved to the coanda supply unit, and guides the air introduced from the turbo compression unit 310 to the coanda supply unit. That is, the air flowing from the propulsion unit 200 and the air flowing from the turbo propulsion unit 300 may overlap to increase the driving force generated by the coanda propulsion unit 400.

Abstract

The present technique relates to a drone and, more specifically, to a drone which flies by jetting compressed gas. According to one embodiment, a turbojet drone is disclosed. The turbojet drone comprises an engine part for intaking and discharging external gas. A propulsion part, in which the gas discharged from the engine part is compressed and discharged to the outside, is included. A turbo propulsion part, in which the gas discharged from the engine part is compressed and selectively discharged to the outside, is included. The turbojet drone disclosed in the present specification receives additional propulsion power, different from that of the propulsion part, provided by the turbo propulsion part, thereby enabling flight power to be improved. In addition, the size of a turbo discharge part is adjusted by a turbo adjustment unit such that the strength of the additional propulsion power is controlled, thereby controlling the direction of the turbojet drone. In addition, a much stronger air can be discharged by the engine part comprising a turbojet fan in which one or more fans overlap, thereby further improving flight power.

Description

터보 제트 드론Turbo jet drone
본 기술은 드론에 관한 것으로, 더욱 상세하게는 압축기체를 분사하여 비행되는 드론에 관한 것이다.The present technology relates to a drone, and more particularly, to a drone that is injected by jetting the compressor body.
일반적으로 통용되고 있는 드론은 프로펠러를 통해서 양력을 부여하는 날개타입과 강한 바람을 통해서 양력을 부여하는 제트타입으로 구분된다.Commonly used drones are classified into wing type to give lift through propeller and jet type to give lift through strong wind.
상기 날개타입의 드론을 살펴보면, 본체와, 상기 본체의 둘레부에 구비된 복수개의 아암, 상기 아암에 구비되며 구동장치에 의해 구동되는 로터가 구비되어 구성된다.Looking at the wing type drone, a main body, a plurality of arms provided on the circumference of the main body, a rotor provided on the arm and driven by a drive device is provided.
상기와 날개타입의 드론은 로터에 의해서 발생하는 양력에 의해서 비행되는 것으로, 대한민국특허 제10-1654799호(2016년09월06일 공고)에 개시되어 있다.The drone of the wing type is to be flying by the lift generated by the rotor, it is disclosed in Republic of Korea Patent No. 10-1654799 (announced on September 06, 2016).
하지만, 상기 날개타입의 드론은 외부 충격으로부터 다수개의 로터(날개)가 파손되는 손쉽게 파손되는 문제점이 있다.However, the wing type drone has a problem in that a plurality of rotors (wings) are easily broken from external impact.
상기 제트타입 드론을 살펴보면, 본체와 유입수단, 바람안내부 및 연결덕트로 구성된 드론이 개시되어 있다. 좀 더 상세히 설명하면, 유입수단은 상기 본체에 수용되며 바람을 유입시키도록 구성된다. 바람안내부는 상기 본체와 이격되어 하나 이상 배치된다. 연결덕트는 상기 유입수단에서 유입되는 바람이 상기 바람안내부로 이동되도록 한다.Looking at the jet type drone, there is disclosed a drone composed of a main body, an inlet means, a wind guide and a connecting duct. In more detail, the inlet means is accommodated in the main body is configured to introduce the wind. One or more wind guides are spaced apart from the main body. The connection duct allows the wind flowing from the inlet means to move to the wind guide.
상기 제트타입 드론은 바람안내부가 상기 연결덕트로에 의해서 바람이 배출되어 상기 본체를 비행시킬 수 있는 양력를 부여하도록 구성된 것으로, 대한민국특허 제10-1607816호(2016년03월31일 공고)에 개시되어 있다.The jet type drone is configured to give a lift force for the wind guide portion to fly the main body by the wind discharged by the connecting duct, it is disclosed in Korean Patent No. 10-1607816 (announced on March 31, 2016) have.
하지만, 상기 제트 드론은 하나의 유입수단에 의해서 바람이 분배됨에 따라서, 드론의 이동방향을 제어하기가 난해한 문제점이 있다. 또한, 상기 제트 드론은 통상의 팬에 의해서 외부의 공기를 흡입하여 배출하는 것으로 그 출력이 낮은 문제점이 있다.However, the jet drone has a problem that it is difficult to control the direction of movement of the drone as the wind is distributed by one inflow means. In addition, the jet drone sucks and discharges the outside air by a conventional fan, which causes a problem of low output.
본 명세서에서 개시하는 기술은 상기한 종래 기술의 문제점을 해결하기 위하여 도출된 것이다. 본 명세서에서 개시하는 기술은 드론의 비행을 위한 비행출력이 향상되되, 날개가 없는 터보 제트 드론을 제공한다.The technology disclosed herein is derived to solve the above problems of the prior art. The technique disclosed herein provides a wingless turbo jet drone with improved flight output for flight of the drone.
일 실시 예에서, 터보 제트 드론이 개시(disclosure)된다. 터보 제트 드론은 외부의 기체를 흡입하여 배출하는 엔진부를 포함한다. 상기 엔진부에서 배출되는 기체가 압축되어 외부로 배출되는 추진부를 포함한다. 상기 엔진부에서 배출되는 기체가 압축되어 선택적으로 외부로 배출되는 터보추진부를 포함한다.In one embodiment, a turbo jet drone is disclosed. The turbo jet drone includes an engine unit that sucks and discharges external gas. The gas discharged from the engine unit is compressed to include a propulsion unit discharged to the outside. The gas discharged from the engine unit includes a turbo propulsion unit is compressed and selectively discharged to the outside.
상기 추진부는 상기 엔진부에서 배출되는 기체가 압축되는 추진압축부를 포함한다. 상기 압축부에 외부와 연통하는 추진배출부를 포함한다.The propulsion unit includes a propulsion compression unit in which gas discharged from the engine unit is compressed. And a propulsion discharge portion communicating with the outside of the compression portion.
상기 터보추진부는 상기 엔진부에서 배출되는 기체가 압축되는 터보압축부를 포함한다. 상기 터보압축부에 외부와 연통하는 터보배출부를 포함한다. 상기 터보배출부의 크기를 조절하는 터보조절부를 포함한다.The turbo propulsion unit includes a turbo compression unit in which gas discharged from the engine unit is compressed. The turbo compression unit includes a turbo discharge unit in communication with the outside. It includes a turbo control unit for adjusting the size of the turbo discharge unit.
상기 터보조절부는 상기 터보배출부를 막는 배출덮개부 및 상기 배출덮개부를 이동시키는 덮개이동부를 포함한다.The turbo control unit may include a discharge cover part blocking the turbo discharge part and a cover moving part moving the discharge cover part.
상기 엔진부는 하나 이상의 팬이 중첩된 터보제트팬을 포함한다.The engine unit includes a turbojet fan in which one or more fans are overlapped.
본 명세서에서 개시하는 터보 제트 드론은 터보추진부에 의해서 추진부와 다른 추가 추진력이 제공됨으로써 비행출력이 향상될 수 있다.The turbo jet drones disclosed herein may be provided with additional propulsion force other than the propulsion portion by the turbo propulsion portion to improve flight power.
그리고 터보조절부에 의해서 터보배출부의 크기가 조절되어 추가 추진력의 강약이 제어되는바, 터보 제트 드론의 방향을 제어할 수 있다.In addition, the size of the turbo discharge unit is adjusted by the turbo control unit to control the strength of the additional propulsion force, thereby controlling the direction of the turbo jet drone.
또한, 하나 이상의 팬이 중첩된 터보제트팬을 포함하는 엔진부에 의해서 더욱 강한 공기를 배출할 수 있어서, 비행출력이 더욱 향상될 수 있다.In addition, the engine unit including the turbojet fan in which one or more fans are superimposed can discharge more powerful air, and thus the flight power can be further improved.
전술한 내용은 이후에 보다 자세하게 기술되는 사항에 대해 간략화된 형태로 선택적인 개념만을 제공한다. 본 내용은 특허 청구 범위의 주요 특징 또는 필수적 특징을 한정하거나, 특허청구범위의 범위를 제한할 의도로 제공되는 것은 아니다.The foregoing provides only optional concepts in a simplified form for the details that follow. This disclosure is not intended to limit the main or essential features of the claims or to limit the scope of the claims.
도 1은 일 실시 예에 따른 터보 제트 드론을 도시한 도면이다.1 illustrates a turbo jet drone according to an exemplary embodiment.
도 2는 또 다른 일 실시 예에 따른 터보 제트 드론을 도시한 도면이다.2 is a diagram illustrating a turbo jet drone according to another embodiment.
도 3은 또 다른 일 실시 예에 따른 터보 제트 드론을 도시한 도면이다.3 is a diagram illustrating a turbo jet drone according to another embodiment.
이하, 본 명세서에 개시된 실시 예들을 도면을 참조하여 상세하게 설명하고자 한다. 본문에서 달리 명시하지 않는 한, 도면의 유사한 참조번호들은 유사한 구성요소들을 나타낸다. 상세한 설명, 도면들 및 청구항들에서 상술하는 예시적인 실시 예들은 한정을 위한 것이 아니며, 다른 실시 예들이 이용될 수 있으며, 여기서 개시되는 기술의 사상이나 범주를 벗어나지 않는 한 다른 변경들도 가능하다. 당업자는 본 개시의 구성요소들, 즉 여기서 일반적으로 기술되고, 도면에 기재되는 구성요소들을 다양하게 다른 구성으로 배열, 구성, 결합, 도안할 수 있으며, 이것들의 모두는 명백하게 고안되며, 본 개시의 일부를 형성하고 있음을 용이하게 이해할 수 있을 것이다. 도면에서 여러 층(또는 막), 영역 및 형상을 명확하게 표현하기 위하여 구성요소의 폭, 길이, 두께 또는 형상 등은 과장되어 표현될 수도 있다.Hereinafter, exemplary embodiments disclosed herein will be described in detail with reference to the accompanying drawings. Unless otherwise indicated in the text, like reference numerals in the drawings indicate like elements. The illustrative embodiments described above in the detailed description, drawings, and claims are not meant to be limiting, other embodiments may be utilized, and other changes may be made without departing from the spirit or scope of the technology disclosed herein. Those skilled in the art may arrange, configure, combine, and designate the components of the present disclosure, that is, the components generally described herein and described in the figures, in a variety of different configurations, all of which are expressly devised and It will be readily understood that they form part. In order to clearly express various layers (or layers), regions, and shapes in the drawings, the width, length, thickness, or shape of the components may be exaggerated.
일 구성요소가 다른 구성요소에 "배치"라고 언급되는 경우, 상기 일 구성요소가 상기 다른 구성요소에 직접 배치되는 경우는 물론, 이들 사이에 추가적인 구성요소가 개재되는 경우도 포함할 수 있다.When one component is referred to as "placement" in another component, it may include a case in which one component is directly disposed in the other component, as well as a case in which additional components are interposed therebetween.
일 구성요소가 다른 구성요소에 "연결"이라고 언급되는 경우, 상기 일 구성요소가 상기 다른 구성요소에 직접 연결되는 경우는 물론, 이들 사이에 추가적인 구성요소가 개재되는 경우도 포함할 수 있다.When one component is referred to as "connecting" to another component, it may include a case in which the one component is directly connected to the other component, as well as a case in which additional components are interposed therebetween.
일 구성요소가 다른 구성요소에 "형성"이라고 언급되는 경우, 상기 일 구성요소가 상기 다른 구성요소에 직접 형성되는 경우는 물론, 이들 사이에 추가적인 구성요소가 개재되는 경우도 포함할 수 있다.When one component is referred to as "forming" in another component, it may include a case in which one component is directly formed in the other component, as well as a case in which additional components are interposed therebetween.
일 구성요소가 다른 구성요소에 "결합"이라고 언급되는 경우, 상기 일 구성요소가 상기 다른 구성요소에 직접 결합하는 경우는 물론, 이들 사이에 추가적인 구성요소가 개재되는 경우도 포함할 수 있다.When one component is referred to as being "coupled" to another component, it may include a case in which the one component is directly coupled to the other component, as well as a case in which additional components are interposed therebetween.
개시된 기술에 관한 설명은 구조적 내지 기능적 설명을 위한 실시 예에 불과하므로, 개시된 기술의 권리범위는 본문에 설명된 실시 예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시 예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 개시된 기술의 권리범위는 기술적 사상을 실현할 수 있는 균등물을 포함하는 것으로 이해되어야 한다.Description of the disclosed technology is only an embodiment for structural or functional description, the scope of the disclosed technology should not be construed as limited by the embodiments described in the text. That is, the embodiments may be variously modified and may have various forms, and thus, the scope of the disclosed technology should be understood to include equivalents capable of realizing the technical idea.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, “포함하다.” 또는 “가지다.” 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions should be understood to include plural expressions unless the context clearly indicates otherwise, and the terms “comprises” or “haves” include such features, numbers, steps, operations, components, and parts. Or combinations thereof, it is to be understood that they do not preclude the existence or addition of one or more other features or numbers, steps, actions, components, parts or combinations thereof.
여기서 사용된 모든 용어들은 다르게 정의되지 않는 한, 개시된 기술이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 일반적으로 사용되는 사전에 정의되어 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미가 있는 것으로 해석될 수 없다.Unless otherwise defined, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosed technology belongs. The terms defined in the commonly used dictionaries should be interpreted to coincide with the meanings in the context of the related art, and should not be interpreted as having ideal or overly formal meanings unless explicitly defined in the present application.
도 1은 일 실시 예에 따른 터보 제트 드론을 도시한 도면이다. 도 2는 또 다른 일 실시 예에 따른 터보 제트 드론을 도시한 도면이다. 도 3은 또 다른 일 실시 예에 따른 터보 제트 드론을 도시한 도면이다.1 illustrates a turbo jet drone according to an exemplary embodiment. 2 is a diagram illustrating a turbo jet drone according to another embodiment. 3 is a diagram illustrating a turbo jet drone according to another embodiment.
이하 도면을 참조하면, 본 명세서에서 개시하는 터보 제트 드론은 크게 엔진부(100)와 추진부(200) 및 터보추진부(300)를 포함한다. 몇몇 다른 실시 예들에 있어서, 터보 제트 드론은 선택적으로(optionally) 코안다추진부(400)를 더 포함할 수 있다. 본 명세서에서 개시하는 터보 제트 드론은 엔진부(100)를 통해서 외부의 공기(기체)를 흡입하여 배출한다. 배출되는 공기는 추진부(200)에 의해서 압축되어 지면을 향하여 강하게 배출되어, 비행할 수 있는 추진력을 생성한다. 터보추진부(300)는 엔진부(100)를 통해서 배출되는 공기가 압축되어 외부로 배출되어, 추가적인 추진력을 생성한다. 그리고 코안다추진부(400)를 통해서 추진력이 증대된다. 즉, 본 명세서에서 개시하는 터보 제트 드론은 추진부(200)에 의한 기본적인 추진력으로 비행하면서, 터보추진부(300)의 추가 추진력으로 방향전환 및 기본적인 추진력을 증대시킬 수 있다.Referring to the drawings, the turbo jet drone disclosed in the present specification largely includes an engine unit 100, the propulsion unit 200 and the turbo propulsion unit 300. In some other embodiments, the turbo jet drone may optionally further include a coanda propulsion unit 400. The turbo jet drone disclosed in the present specification sucks and discharges outside air (gas) through the engine unit 100. The discharged air is compressed by the propulsion unit 200 to be strongly discharged toward the ground, thereby generating a propulsion force that can fly. The turbo propulsion unit 300 is compressed by the air discharged through the engine unit 100 is discharged to the outside, to generate additional propulsion force. And thrust force is increased through the coanda propulsion unit (400). That is, the turbo jet drone disclosed in the present disclosure may increase the direction and basic propulsion force by the additional propulsion force of the turbo propulsion unit 300 while flying at the basic propulsion force by the propulsion unit 200.
엔진부(100)는 통상의 내연기관 또는 전기모터 등에 의해서 회전되는 팬에 의해서 외부의 기체(공기)를 흡입하여 배출하도록 구성될 수 있다.The engine unit 100 may be configured to suck and discharge external gas (air) by a fan rotated by a conventional internal combustion engine or an electric motor.
일 실시 예에 따르면, 엔진부(100)는 전기모터에 의해서 회전되는 팬으로 구성되고, 팬은 상부 존재하는 외부의 공기(기체)를 흡입하여 하부로 배출되도록 구성할 수 있다. 엔진부(100)는 터보 제트 드론의 비행에 필요한 추진력을 제공할 수 있다.According to an embodiment of the present disclosure, the engine unit 100 may include a fan rotated by an electric motor, and the fan may be configured to suck the outside air (gas) from the upper portion and discharge the lower portion. The engine unit 100 may provide a driving force necessary for the flight of the turbo jet drone.
다른 실시예에 따르면, 엔진부(100)는 하나 이상의 팬이 중첩된 터보제트팬(110)을 포함할 수 있다. 터보제트팬(110)은 적어도 외부의 공기를 흡입하여 압축된 공기를 배출하여 추진력을 향상시킬 수 있다. 터보제트팬(110)은 관체와 관체 내부에 배치되되, 구동장치에 의해서 회전하는 회전축를 포함할 수 있다. 회전축에는 하나 이상의 팬이 배치되되, 관체의 내면과 점점 가까워지도록 배치될 수 있다. 터보제트팬(110)은 관체 내부로 흡입되는 공기가 팬에 의해서 관체를 따라서 다른 한쪽으로 이동된다. 이동되는 공기는 팬과 관체 내면이 점점 좁아짐에 따라서 압축되어 배출된다. 즉, 터보제트팬(110)은 외부의 공기를 흡입하여 압축된 공기를 배출함으로써 터보 제트 드론의 추진력이 향상될 수 있다.According to another embodiment, the engine unit 100 may include a turbojet fan 110 in which one or more fans are overlapped. The turbojet fan 110 may suck at least the outside air to discharge the compressed air to improve the driving force. The turbojet fan 110 may be disposed inside the tubular body and the tubular body, and may include a rotating shaft that is rotated by the driving device. At least one fan is disposed on the rotating shaft, and may be disposed to be closer to the inner surface of the tube. In the turbojet fan 110, air sucked into the tubular body is moved to the other side along the tubular body by the fan. The moving air is compressed and discharged as the inner surface of the fan and pipe becomes narrower. That is, the turbojet fan 110 may suck the outside air and discharge the compressed air to improve the propulsive force of the turbo jet drone.
상기 터보제트팬(110)을 포함하는 엔진부(100)는 연소실을 제외한 통상의 제트엔진의 압축구조를 따르는 것이 타당할 것이다. 한편, 엔진부(100)는 내연기관에 의해서 작동하는 피스톤에 의해서 공기를 압축할 수 있는 통상의 압축장치로 대체되어도 본 명세서에서 개시하는 터보 제트 드론을 실시할 수 있을 것이다.The engine unit 100 including the turbojet fan 110 may be in accordance with the compression structure of a conventional jet engine excluding the combustion chamber. On the other hand, the engine unit 100 may implement the turbo jet drone disclosed herein even if it is replaced by a conventional compression device capable of compressing air by a piston operated by the internal combustion engine.
추진부(200)는 엔진부(100)에서 배출되는 기체(공기)가 압축되어 외부로 배출되도록 구성될 수 있다. 추진부(200)는 적어도 엔진부(100)에서 공급받은 공기를 터보 제트 드론 하부로 배출시켜 터보 제트 드론의 추진력을 생성한다.The propulsion unit 200 may be configured such that the gas (air) discharged from the engine unit 100 is compressed and discharged to the outside. The propulsion unit 200 generates the propulsion force of the turbo jet drone by discharging at least the air supplied from the engine unit 100 to the lower portion of the turbo jet drone.
일 실시 예에 따르면, 추진부(200)는 엔진부(100) 하부에 연결된다. 추진부(200)는 상기 엔진부(100)에서 배출되는 기체가 압축되는 추진압축부(210)를 포함한다. 추진압축부(210)에 외부와 연통하는 추진배출부(220)를 포함하여 구성될 수 있다. 추진부(200)는 추진압축부(210)에서 압축된 공기가 추진배출부(220)를 통해서 배출되어 터보 제트 드론의 추진력을 생성한다. 한편, 추진부(200)는 엔진부(100) 상부에 연결되어도 본 명세서에서 개시하는 터보 제트 드론을 실시할 수 있다.According to one embodiment, the driving unit 200 is connected to the lower engine portion 100. The propulsion unit 200 includes a propulsion compression unit 210 in which gas discharged from the engine unit 100 is compressed. Propulsion compression unit 210 may be configured to include a propulsion discharge unit 220 in communication with the outside. The propulsion unit 200 discharges air compressed by the propulsion compression unit 210 through the propulsion discharge unit 220 to generate a propulsion force of the turbo jet drone. On the other hand, the propulsion unit 200 may implement a turbo jet drone disclosed herein even when connected to the engine unit 100.
몇몇 다른 실시 예들에 있어서, 터보 제트 드론은 선택적으로(optionally) 추진조절부(230)를 더 포함할 수 있다. 추진조절부(230)는 추진배출부(220)에 대응하여 배치된다. 추진조절부(230)는 추진배출부(220)의 크기를 조절하여 배출되는 공기의 양을 조절함으로써, 터보 제트 드론의 추진력을 제어할 수 있다.In some other embodiments, the turbo jet drone may optionally further include a propulsion control unit 230. Propulsion control unit 230 is disposed corresponding to the propulsion discharge unit 220. The propulsion control unit 230 may control the propulsion force of the turbo jet drone by adjusting the amount of air discharged by adjusting the size of the propulsion discharge unit 220.
일례로, 상기 추진압축부(210)와 추진배출부(220) 및 추진조절부(230)를 더욱 상세히 설명하면, 추진압축부(210)는 내부에 공기가 압축되는 공간이 형성된 통으로 구성될 수 있다. 통의 상부 면에는 엔진부(100)에서 배출되는 공기가 통 내부로 유입되도록 구멍이 형성된 것을 포함하여 구성될 수 있다. 추진압축부(210)는 엔진부(100)와 연결된다. 즉, 추진압축부(210)는 엔진부(100)에 의해서 배출되는 외부의 공기가 내부로 유입되어 압축된다.For example, the propulsion compression unit 210, the propulsion discharge unit 220 and the propulsion control unit 230 will be described in more detail, the propulsion compression unit 210 may be configured as a cylinder in which the space is compressed air is formed therein. have. The upper surface of the barrel may be configured to include a hole formed so that the air discharged from the engine unit 100 flows into the barrel. The propulsion compression unit 210 is connected to the engine unit 100. That is, the propulsion compression unit 210 is compressed by entering the outside air discharged by the engine unit 100 into the inside.
추진배출부(220)는 추진압축부(210) 하부 면에 네 개의 구멍이 서로 떨어져서 형성된 것을 포함할 수 있다. 추진배출부(220)는 지면을 향하도록 형성됨이 바람직하다. 추진배출부(220)는 추진압축부(210)에서 압축된 공기가 하부방향으로 배출되도록 유도한다. 추진배출부(220)의 크기는 엔진부(100)에 의해서 유입되는 공기가 추진압축부(210)에서 충분히 압축되면서 터보 제트 드론의 추진력이 생성될 수 있는 크기로 형성됨이 바람직하다.The propulsion discharge part 220 may include four holes spaced apart from each other on the lower surface of the propulsion compression part 210. Propulsion discharge unit 220 is preferably formed to face the ground. The propulsion discharge part 220 induces the compressed air from the propulsion compression part 210 to be discharged downward. The size of the propulsion discharge unit 220 is preferably formed to a size that can generate the propulsion force of the turbo jet drone while the air introduced by the engine unit 100 is sufficiently compressed in the propulsion compression unit 210.
한편, 상기 추진압축부(210)에는 추진배출부(220)를 하나만 실시하여도 본 명세서에서 개시하는 터보 제트 드론을 실시하여도 무방할 것이다. 다만, 추진배출부(220)를 통해서 터보 제트 드론의 비행방향을 제어하고자 할 경우에는 적어도 두 개 이상으로 형성함이 바람직할 것이다.On the other hand, the propulsion compression unit 210 may be subjected to the turbo jet drone disclosed herein even if only one propulsion discharge unit 220 is implemented. However, when it is desired to control the flight direction of the turbo jet drone through the propulsion discharge unit 220 it will be preferable to form at least two.
추진조절부(230)는 추진배출부(220)를 막는 배출덮개부(331)와 배출덮개부(331)를 이동시키는 덮개이동부(332)를 포함하여 구성할 수 있다. 추진조절부(230)는 각각의 추진배출부(220)에 대응하여 배치되어, 일괄적으로 동일하게 작동된다. 추진조절부(230)는 배출덮개부(331)가 덮개이동부(332)에 의해서 위치가 이동되어 추진배출부(220) 전체를 덮거나, 개방 및 추진배출부(220)의 크기를 조절할 수 있다. 즉, 추진조절부(230)에 의해서 추진배출부(220)가 개방되면 추진력이 생성된다. 반대로, 추진조절부(230)에 의해서 추진배출부(220)가 덮이면 추진력이 생성되지 않게된다. 나아가, 추진배출부(220)의 크기가 추진조절부(230)에 의해서 조절되면, 추진배출부(220)로 배출되는 공기의 양이 조절되어 베르누이의 원리에 따라서 추진력이 조절된다. 나아가, 추진조절부(230)가 개별적으로 작동할 경우에는 터보 제트 드론의 비행 방향을 제어할 수도 있다.The propulsion control part 230 may include a discharge cover part 331 blocking the propulsion discharge part 220 and a cover moving part 332 for moving the discharge cover part 331. The propulsion control unit 230 is disposed corresponding to each of the propulsion discharge unit 220, the same operation is collectively. The propulsion control unit 230 may move the position of the discharge cover part 331 by the cover moving part 332 to cover the entire propulsion discharge unit 220, or to adjust the size of the opening and propulsion discharge unit 220. . That is, the propulsion force is generated when the propulsion discharge part 220 is opened by the propulsion control part 230. On the contrary, when the propulsion discharge part 220 is covered by the propulsion control part 230, the propulsion force is not generated. Furthermore, if the size of the propulsion discharge unit 220 is adjusted by the propulsion control unit 230, the amount of air discharged to the propulsion discharge unit 220 is adjusted to adjust the propulsion force according to Bernoulli's principle. In addition, when the propulsion control unit 230 is operated individually, it is possible to control the flight direction of the turbo jet drone.
일례로, 추진조절부(230)를 더욱 상세히 설명하면, 배출덮개부(331)는 터보압축부(310) 내부에 자유 이동되도록 배치되되, 터보배출부(320)보다 크게 형성된 판으로 구성할 수 있다. 덮개이동부(332)는 터보압축부(310) 내부에 배치되어 덮개이동부(332)를 터보배출부(320)로부터 떨어뜨리거나 막을 수 있도록 이동시키는 실린더로 구성할 수 있다. 한편, 추진조절부(230)는 실린더를 대신하여 모터 및 렉기어구조로 구동되도록 구성하여도 무방할 것이다.For example, when the propulsion control unit 230 is described in more detail, the discharge cover part 331 is disposed to be freely moved inside the turbo compression unit 310, it may be configured as a plate formed larger than the turbo discharge unit 320. have. The cover moving part 332 may be configured as a cylinder which is disposed inside the turbo compression part 310 to move the cover moving part 332 to be dropped or blocked from the turbo discharge part 320. On the other hand, the propulsion control unit 230 may be configured to be driven by a motor and a rack gear structure in place of the cylinder.
터보추진부(300)는 엔진부(100)에서 배출되는 기체가 압축되어 선택적으로 외부로 배출되도록 구성될 수 있다. 터보추진부(300)는 적어도 엔진부(100)에서 배출된 기체가 압축되어 추진부(200)와 별개로 독립적인 추가 추진력을 생성한다.The turbo propulsion unit 300 may be configured such that the gas discharged from the engine unit 100 is compressed and selectively discharged to the outside. The turbo propulsion unit 300 is at least a gas discharged from the engine unit 100 is compressed to generate additional propulsion force independent of the propulsion unit 200.
일 실시 예에 따르면, 터보추진부(300)는 추진부(200)와 연결된다. 터보추진부(300)는 엔진부(100)에서 배출되는 공기가 압축되는 터보압축부(310)를 포함한다. 그리고 터보압축부(310)에 외부와 연통하는 터보배출부(320)를 포함한다. 또한, 터보배출부(320)의 크기를 조절하는 터보조절부(330)를 포함한다. 터보추진부(300)는 적어도 엔진부(100)에서 배출되는 공기가 추진부(200)를 거쳐서 터보압축부(310)으로 유입되어 압축된다. 그리고 압축된 공기는 터보배출부(320)를 통해서 외부로 배출되어 추가적인 추진력이 생성되되, 터보조절부(330)에 의해서 터보배출부(320) 전체가 닫힐 경우에는 추가적인 추진력이 생성되지 않도록 할 수 있다.According to an embodiment, the turbo propulsion unit 300 is connected to the propulsion unit 200. The turbo propulsion unit 300 includes a turbo compression unit 310 in which air discharged from the engine unit 100 is compressed. And the turbo compression unit 310 includes a turbo discharge unit 320 in communication with the outside. In addition, it includes a turbo adjustment unit 330 for adjusting the size of the turbo discharge unit 320. In the turbo propulsion unit 300, at least air discharged from the engine unit 100 flows into the turbo compression unit 310 through the propulsion unit 200 and is compressed. In addition, the compressed air is discharged to the outside through the turbo discharge unit 320 to generate additional propulsion force, but when the entire turbo discharge unit 320 is closed by the turbo control unit 330, additional propulsion force may not be generated. have.
일례로, 터보압축부(310)와 터보배출부(320) 및 터보조절부(330)를 더욱 상세히 설명하면, 터보압축부(310)는 추진압축부(210)와 동일하게 구성되되, 추진압축부(210)보다 작은 크기로 구성될 수 있다. 터보배출부(320) 또한 추진배출부(220)와 동일하게 구성되어 동일하게 작동될 수 있다.For example, the turbo compression unit 310, the turbo discharge unit 320 and the turbo control unit 330 will be described in more detail, the turbo compression unit 310 is configured in the same way as the propulsion compression unit 210, the compression compression It may be of a smaller size than the portion 210. The turbo discharge unit 320 may also be configured in the same manner as the propulsion discharge unit 220 and may operate in the same manner.
터보조절부(330)는 상기 터보배출부(320)를 막는 배출덮개부(331) 및 상기 배출덮개부(331)를 이동시키는 덮개이동부(332)를 포함하여 구성할 수 있다. 터보조절부(330)는 배출덮개부(331)가 덮개이동부(332)에 의해서 위치가 이동되어 터보배출부(320) 전체를 덮거나, 개방할 수 있다. 즉, 터보조절부(330)에 의해서 터보배출부(320)가 개방되면 추가적인 추진력이 생성된다. 반대로, 터보조절부(330)에 의해서 터보배출부(320)가 덮이면 추가적인 추진력이 생성되지 않는다.The turbo control unit 330 may include a discharge cover part 331 blocking the turbo discharge part 320 and a cover moving part 332 for moving the discharge cover part 331. The turbo control unit 330 may be moved by the cover cover 331, the cover moving part 332 is moved to cover the entire turbo discharge unit 320, or open. That is, when the turbo discharge unit 320 is opened by the turbo control unit 330, an additional propulsion force is generated. On the contrary, if the turbo discharge unit 320 is covered by the turbo control unit 330, no additional driving force is generated.
나아가, 상기 터보조절부(330)는 공기가 추진압축부(210)를 통해서 유입되는 터보압축부(310)에 형성된 구멍에 더 배치될 수 있다. 터보조절부(330)는 엔진부(100)에서 배출되는 공기압으로부터 터보압축부(310)에서 공기를 압축할 수 있는 최대치까지 압축될 때, 작동하여 공기의 유입을 차단한다. 터보조절부(330)는 엔진부(100)에서 배출되는 공기가 터보압축부(310)로 유입되는 것을 방지하여, 추진력이 약화 되는 것을 방지할 수 있다. 그리고 터보조절부(330)는 터보압축부(310)에 압축된 공기가 추진압축부(210)로 유실되는 것을 방지하여 장시간 압축된 공기를 보관할 수 있다. 장시간 보관되는 압축 공기는 터보배출부(320)에 설치된 터보조절부(330)에 따라서 필요시에 외부로 배출되어 추가적인 추진력을 생성할 수 있다.Further, the turbo adjustment unit 330 may be further disposed in the hole formed in the turbo compression unit 310 through which air is introduced through the propulsion compression unit 210. When the turbo adjuster 330 is compressed from the air pressure discharged from the engine unit 100 to a maximum value capable of compressing air in the turbo compressor 310, it operates to block the inflow of air. The turbo adjustment unit 330 may prevent the air discharged from the engine unit 100 from flowing into the turbo compression unit 310, thereby preventing the driving force from being weakened. In addition, the turbo adjusting unit 330 may prevent the air compressed in the turbo compression unit 310 from being lost to the propulsion compression unit 210 to store the compressed air for a long time. The compressed air stored for a long time may be discharged to the outside when necessary according to the turbo control unit 330 installed in the turbo discharge unit 320 to generate additional propulsion force.
일례로, 터보조절부(330)를 더욱 상세히 설명하면, 배출덮개부(331)는 터보압축부(310) 내부에 자유 이동되도록 배치되되, 터보배출부(320)보다 크게 형성된 판으로 구성할 수 있다. 덮개이동부(332)는 터보압축부(310) 내부에 배치되어 덮개이동부(332)를 터보배출부(320)로부터 떨어뜨리거나 막을 수 있도록 이동시키는 실린더로 구성할 수 있다. 한편, 상기 추진압축부(210)를 통해서 유입되는 터보압축부(310)에 형성된 구멍에 더 배치되는 터보조절부(330)는 통상의 체크밸브로 구성하여도 무방하다. 한편, 추진조절부(230)는 실린더를 대신하여 모터 및 렉기어구조로 구동되도록 구성하여도 무방할 것이다.For example, when the turbo control unit 330 is described in more detail, the discharge cover part 331 is disposed to be freely moved inside the turbo compression unit 310, but may be configured as a plate formed larger than the turbo discharge unit 320. have. The cover moving part 332 may be configured as a cylinder which is disposed inside the turbo compression part 310 to move the cover moving part 332 to be dropped or blocked from the turbo discharge part 320. On the other hand, the turbo adjustment unit 330 further disposed in the hole formed in the turbo compression unit 310 introduced through the propulsion compression unit 210 may be configured as a conventional check valve. On the other hand, the propulsion control unit 230 may be configured to be driven by a motor and a rack gear structure in place of the cylinder.
코안다추진부(400)는 유입되는 공기를 베르누이의 원리와 코안다 효과가 적용되는 구조('다이슨'사의 날개 없는 선풍기)로 구성될 수 있다. 코안다추진부(400)는 유입되는 공기가 배출되는 힘(추진력)을 증대할 수 있다. Coanda propulsion unit 400 may be of a structure that is applied to the principle of the Bernoulli and the Coanda effect of the air flowing in ('Dyson's wingless fan). The coanda propulsion unit 400 may increase a force (pulling force) from which the air introduced is discharged.
일 실시 예에 따르면, 코안다추진부(400)는 추진배출부(220)와 연통하는 연결통로를 포함한다. 연결통로의 한쪽에는 연결통로를 통과하는 공기가 공급되는 코안다공급부를 포함한다. 코안다공급부에서 공급되는 공기가 외부로 배출되도록 하는 코안다배출부를 포함한다. 코안다추진부(400)는 추진압축부(210)에서 배출되는 공기가 연결통로를 통해서 코안다공급부로 공급되고, 공급된 공기가 코안다배출부로 배출되어 추진력이 생성된다.According to an embodiment, the coanda propulsion unit 400 includes a connection passage communicating with the propulsion discharge unit 220. One side of the connection passage includes a coanda supply unit for supplying air passing through the connection passage. And a coanda discharge unit configured to discharge air supplied from the coanda supply unit to the outside. Coanda propulsion unit 400 is the air discharged from the propulsion compression unit 210 is supplied to the coanda supply unit through the connection passage, the supplied air is discharged to the coanda discharge unit to generate a driving force.
일례로, 상기 연결통로와 코안다공급부 및 코안다배출부를 더욱 상세히 설명하면, 코안다공급부는 링 형상으로 형성되되, 내부에는 공기가 이동될 수 있는 공간이 형성될 수 있다. 링 형상의 길이는 코안다 효과가 달성될 수 있도록 형성됨이 바람직할 것이다. 링형상의 안쪽 면과 바깥쪽 면의 형상 또한 외부의 공기가 내부로 유입되면서 코안다 효과가 용이하게 이루어질 수 있는도록 형성함이 바람직할 것이다.For example, when the connection passage, the coanda supply unit and the coanda discharger are described in more detail, the coanda supply unit may be formed in a ring shape, and a space in which air may move may be formed. It is desirable that the length of the ring shape be shaped so that the Coanda effect can be achieved. The shape of the inner surface and the outer surface of the ring shape may also be formed to facilitate the Coanda effect as the outside air flows into the inside.
코안다배출부는 코안다공급부의 안쪽 면을 따라서 링 형상의 구멍으로 형성된다. 링 형상의 구멍은 코안다공급부의 안쪽면을 향하도록 형성된다.The coanda discharge portion is formed into a ring-shaped hole along the inner face of the coanda supply portion. The ring-shaped hole is formed to face the inner surface of the coanda supply portion.
연결통로는 통상의 배관으로 구성될 수 있다. 코안다공급부의 다른 한쪽에 연결되고, 다른 한쪽은 추진압축부(210)에 연결된다.The connection passage may be composed of conventional piping. It is connected to the other side of the coanda supply portion, the other side is connected to the propulsion compression unit (210).
한편, 연결통로는 'Y'자 모양으로 형성되되, 한쪽은 추진압축부(210)에 연결되고, 다른 한쪽은 터보압축부(310)에 연결되며, 다른 한쪽은 코안다공급부에 연결될 수 있다. 연결통로는 추진압축부(210)에서 유입되는 공기를 코안다공급부로 이동되도록 안내하고, 터보압축부(310)에서 유입되는 공기를 코안다공급부로 이동되도록 안내한다. 즉, 추진부(200)에서 유입되는 공기와 터보추진부(300)에서 유입되는 공기가 중첩되어 코안다추진부(400)에서 생성할 수 있는 추진력이 증대될 수 있다.On the other hand, the connecting passage is formed in a 'Y' shape, one side is connected to the propulsion compression unit 210, the other side is connected to the turbo compression unit 310, the other side may be connected to the coanda supply unit. The connecting passage guides the air introduced from the propulsion compression unit 210 to be moved to the coanda supply unit, and guides the air introduced from the turbo compression unit 310 to the coanda supply unit. That is, the air flowing from the propulsion unit 200 and the air flowing from the turbo propulsion unit 300 may overlap to increase the driving force generated by the coanda propulsion unit 400.
상기로부터, 본 개시의 다양한 실시 예들이 예시를 위해 기술되었으며, 아울러 본 개시의 범주 및 사상으로부터 벗어나지 않고 가능한 다양한 변형 예들이 존재함을 이해할 수 있을 것이다. 그리고 개시되고 있는 상기 다양한 실시 예들은 본 개시된 사상을 한정하기 위한 것이 아니며, 진정한 사상 및 범주는 하기의 청구항으로부터 제시될 것이다.From the above, various embodiments of the present disclosure have been described for purposes of illustration, and it will be understood that various modifications are possible without departing from the scope and spirit of the present disclosure. And the various embodiments disclosed are not intended to limit the present disclosure, the true spirit and scope will be presented from the following claims.

Claims (5)

  1. 드론에 있어서,In the drone,
    외부의 기체를 흡입하여 배출하는 엔진부;An engine unit for sucking and discharging external gas;
    상기 엔진부에서 배출되는 기체가 압축되어 외부로 배출되는 추진부; 및A propulsion unit compressed with the gas discharged from the engine unit and discharged to the outside; And
    상기 엔진부에서 배출되는 기체가 압축되어 선택적으로 외부로 배출되는 터보추진부를 포함하는 터보 제트 드론.And a turbo propulsion unit configured to discharge the gas discharged from the engine unit and selectively discharge the gas to the outside.
  2. 제1항에 있어서,The method of claim 1,
    상기 추진부는The propulsion unit
    상기 엔진부에서 배출되는 기체가 압축되는 추진압축부(210); 및A propulsion compressor 210 in which the gas discharged from the engine unit is compressed; And
    상기 추진압축부에 외부와 연통하는 추진배출부를 포함하는 터보 제트 드론.Turbo jet drone including a propulsion discharge portion in communication with the outside in the propulsion compression.
  3. 제1항에 있어서,The method of claim 1,
    상기 터보추진부는The turbo propulsion unit
    상기 엔진부에서 배출되는 기체가 압축되는 터보압축부;A turbo compression unit configured to compress the gas discharged from the engine unit;
    상기 터보압축부에 외부와 연통하는 터보배출부; 및A turbo discharge unit communicating with an outside of the turbo compression unit; And
    상기 터보배출부의 크기를 조절하는 터보조절부를 포함하는 터보 제트 드론.Turbo jet drone including a turbo control unit for adjusting the size of the turbo discharge unit.
  4. 제3항에 있어서,The method of claim 3,
    터보조절부는Turbo adjuster
    상기 터보배출부를 막는 배출덮개부; 및A discharge cover part blocking the turbo discharge part; And
    상기 배출덮개부를 이동시키는 덮개이동부를 포함하는 터보 제트 드론.Turbo jet drone including a cover moving portion for moving the discharge cover.
  5. 제1항 내지 4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    엔진부는 하나 이상의 팬이 중첩된 터보제트팬을 포함하는 터보 제트 드론.An engine unit includes a turbojet fan in which at least one fan is superimposed.
PCT/KR2016/013682 2016-11-25 2016-11-25 Turbojet drone WO2018097359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160157949A KR101775847B1 (en) 2016-11-25 2016-11-25 Turbojet drones
KR10-2016-0157949 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018097359A1 true WO2018097359A1 (en) 2018-05-31

Family

ID=59925843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013682 WO2018097359A1 (en) 2016-11-25 2016-11-25 Turbojet drone

Country Status (2)

Country Link
KR (1) KR101775847B1 (en)
WO (1) WO2018097359A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102286004B1 (en) * 2017-01-04 2021-08-05 한화디펜스 주식회사 Unmanned aerial vehicle
KR101983297B1 (en) 2017-11-29 2019-05-29 이미경 Apparatus of drone having underwater shooting function
KR102095209B1 (en) * 2018-06-14 2020-03-31 박명준 Disk-shaped vehicle
KR102385180B1 (en) 2020-12-21 2022-04-08 이정용 Multi-directional jet propulsion drone
CN114608548B (en) * 2022-03-22 2023-11-17 山东翔林规划设计有限公司 Forestry investigation planning is with portable measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170963A (en) * 1991-09-24 1992-12-15 August H. Beck Foundation Company VTOL aircraft
JP2008189043A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Vertical takeoff and landing aircraft
KR20110123319A (en) * 2010-05-07 2011-11-15 경종만 Secondary tail pipe of jet engine
KR101130203B1 (en) * 2009-09-17 2012-03-30 한국생산기술연구원 Apparatus for helping take-off and landing of flight
KR101607816B1 (en) * 2015-10-26 2016-03-31 이진우 Drone with air guide part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170963A (en) * 1991-09-24 1992-12-15 August H. Beck Foundation Company VTOL aircraft
JP2008189043A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Vertical takeoff and landing aircraft
KR101130203B1 (en) * 2009-09-17 2012-03-30 한국생산기술연구원 Apparatus for helping take-off and landing of flight
KR20110123319A (en) * 2010-05-07 2011-11-15 경종만 Secondary tail pipe of jet engine
KR101607816B1 (en) * 2015-10-26 2016-03-31 이진우 Drone with air guide part

Also Published As

Publication number Publication date
KR101775847B1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2018097359A1 (en) Turbojet drone
JP5344917B2 (en) System and associated method for aerodynamic flow
US9254924B2 (en) Pressure influencing assembly for an aircraft auxiliary system
EP1847458B1 (en) Diffusing air inlet door assembly
US11149637B2 (en) Nacelle for a turbofan engine
CN109110138A (en) Method for the propulsion system of aircraft and for operating it
US9587585B1 (en) Augmented propulsion system with boundary layer suction and wake blowing
JP4989463B2 (en) Aircraft having a fluid pipe system
JP2011126517A (en) Morphing ducted fan for vertical take-off and landing vehicle
WO2013117145A1 (en) Supercharging device and turbine engine
US20220017220A1 (en) Movable device usable for cleaning and movable device control method
CN107512397A (en) One kind investigation BFR
US8205821B2 (en) Engine propulsion system and methods of assembling the same
US20200172237A1 (en) Electric reaction control system
KR101864467B1 (en) Funnel structure to facilitate the emission
CN202337358U (en) Noise suppression device of stationary micro jet weapon bay
WO2021025289A1 (en) Aircraft controlled by compressed air
WO2009068835A1 (en) Static wing for an aircraft
CN110494359A (en) The air admission unit of aircraft engine
GB2438848A (en) Static wing for an aircraft
WO2023072201A1 (en) Modulatable double-layer telescopic sheet cavitator structure
US2841956A (en) Combination variable area converging-diverging nozzle and thrust destroyer
CN101850845A (en) Vertical landing lifting system of vertical landing plane
CN112400051A (en) Aircraft turbine and method of controlling movement of a variable bypass valve of such a turbine
GB862032A (en) Aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922109

Country of ref document: EP

Kind code of ref document: A1