WO2018097327A1 - Sound absorbing material comprising non-woven fabric - Google Patents

Sound absorbing material comprising non-woven fabric Download PDF

Info

Publication number
WO2018097327A1
WO2018097327A1 PCT/JP2017/042684 JP2017042684W WO2018097327A1 WO 2018097327 A1 WO2018097327 A1 WO 2018097327A1 JP 2017042684 W JP2017042684 W JP 2017042684W WO 2018097327 A1 WO2018097327 A1 WO 2018097327A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
long
fiber
absorbing material
sound
Prior art date
Application number
PCT/JP2017/042684
Other languages
French (fr)
Japanese (ja)
Inventor
伊林 邦彦
知生 平井
小西 宏明
峻之 椎名
遠藤 健
昌弘 若山
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017154344A external-priority patent/JP6968614B2/en
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to US16/462,761 priority Critical patent/US20200058282A1/en
Priority to CN201780073216.2A priority patent/CN109997184A/en
Priority to EP17873487.7A priority patent/EP3547306B1/en
Publication of WO2018097327A1 publication Critical patent/WO2018097327A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the present invention relates to a non-woven sound absorbing material, and more particularly to a non-woven sound absorbing material that can exhibit sound absorbing performance in a relatively low frequency band.
  • Patent Document 1 includes a relatively thick fine fiber and a relatively thin fine fiber, and the fine fiber distribution center of the thick fiber is the thin fiber.
  • a non-woven sound-absorbing material that is twice or more the fineness distribution center is described.
  • the nonwoven fabric sound absorbing material described in Patent Document 1 exhibits sound absorbing performance in a high frequency band, and cannot meet the needs for sound absorption in a relatively low frequency band of, for example, 4000 Hz or less.
  • an object of the present invention is to provide a non-woven fabric sound-absorbing material that can improve sound-absorbing performance in a relatively low frequency band as compared with the prior art.
  • the present inventor has found that sound absorption performance can be exhibited in a predetermined low frequency band of 4000 Hz or less by stacking a plurality of long fiber nonwoven fabrics satisfying specific conditions.
  • the present invention has been made based on such knowledge.
  • the sound absorbing material made of nonwoven fabric according to the present invention includes a nonwoven fabric laminate in which a plurality of long fiber nonwoven fabrics having a plurality of long fiber filaments stretched and arranged along one direction are stacked, and the fibers of the long fiber filaments
  • the mode of the diameter distribution is 1 to 4 ⁇ m.
  • nonwoven fabric sound absorbing material that can exhibit high sound absorbing performance in a predetermined low frequency band of 4000 Hz or less.
  • FIG. 1 shows schematic structure of the 1st manufacturing apparatus of the transverse arrangement long fiber nonwoven fabric which is 2nd Embodiment of the said nonwoven fabric for sound-absorbing materials. It is a figure which shows the principal part structure of the 2nd manufacturing apparatus of the manufacturing apparatus of the said horizontal array long fiber nonwoven fabric, (A) is a front view (partial sectional drawing) of the 2nd manufacturing apparatus of the said horizontal array long fiber nonwoven fabric, (B) is a side view (partial cross-sectional view) of a second production apparatus for the transversely aligned long-fiber nonwoven fabric. It is a figure which shows the spinning head used with the 2nd manufacturing apparatus of the said transversely-arranged long-fiber nonwoven fabric shown by FIG.
  • FIG. 5 is a cross-sectional view in a direction perpendicular to (A) of a spinning head according to a modification. It is a table
  • Example 1 It is a graph which shows the measurement result of the normal incidence sound absorption coefficient of Example 1 (Examples 1-1 and 1-2) and a comparative example. It is a graph which shows the measurement result of normal incidence sound absorption coefficient of Example 2 (Examples 2-1 and 2-2) and a comparative example. It is a graph which shows the measurement result of the normal incidence sound absorption coefficient of Example 3 (Examples 3-1, 3-2, 3-3), a reference example, and a comparative example.
  • the present invention provides a sound absorbing material made of nonwoven fabric.
  • a nonwoven fabric sound absorbing material according to the present invention includes a nonwoven fabric laminate in which a plurality of long fiber nonwoven fabrics having a plurality of long fiber filaments stretched and arranged in one direction are stacked, and the fiber diameter distribution of the long fiber filaments Is the mode value of 1 to 4 ⁇ m.
  • the nonwoven fabric sound-absorbing material according to the present invention can exhibit higher sound-absorbing performance than the conventional one in a predetermined low frequency band of 4000 Hz or less.
  • the long-fiber non-woven fabric constituting the non-woven fabric laminate that is, the long-fiber non-woven fabric having a plurality of long-fiber filaments stretched and arranged along one direction is stretched, for example.
  • it may be a “unidirectionally arranged non-woven fabric” in which a plurality of long fiber filaments are arranged along one direction.
  • the one direction does not have to be strictly one direction, and may be generally one direction.
  • Such a unidirectionally arranged nonwoven fabric is produced through a production process including, for example, arranging a plurality of long fiber filaments along one direction and stretching the arranged plurality of long fiber filaments in the one direction. Can be done.
  • arranging a plurality of long fiber filaments along one direction means arranging a plurality of long fiber filaments so that each length direction (axial direction) is one direction, that is, arrangement That is, each of the plurality of long fiber filaments extended substantially in one direction.
  • the one direction is a longitudinal direction of the long sheet (also referred to as a vertical direction), a direction inclined from the longitudinal direction of the long sheet, It may be a direction inclined from a width direction (also referred to as a horizontal direction) of the long sheet or a horizontal direction of the long sheet.
  • stretching a plurality of arranged long fiber filaments in the one direction means stretching each of the arranged long fiber filaments generally in the axial direction thereof.
  • the constituent molecules of each long fiber filament are stretched in one direction, that is, the axial direction of each long fiber filament. Will be arranged.
  • FIG. 1 is an enlarged photograph (magnification: 1000 times) of an example of the unidirectionally arranged nonwoven fabric by a scanning electron microscope.
  • each of the plurality of long fiber filaments is generally arranged along the vertical direction.
  • the long fiber nonwoven fabric used for the sound absorbing material made of nonwoven fabric according to the present invention is stretched and stretched in addition to the plurality of long fiber filaments (first long fiber filaments) arranged along one direction, and the You may further have a some 2nd long fiber filament arranged along the direction orthogonal to one direction. That is, the long-fiber non-woven fabric used in the non-woven fabric sound-absorbing material according to the present invention is an “orthogonal array non-woven fabric” having a configuration in which each of a plurality of stretched long-fiber filaments is aligned along one of two orthogonal directions. obtain. The two orthogonal directions do not need to be strictly orthogonal, but may be approximately orthogonal.
  • Such an orthogonally arranged nonwoven fabric can be produced, for example, by laminating and fusing two unidirectionally arranged nonwoven fabrics so that their long fiber filaments are orthogonal to each other.
  • the mode value of the fiber diameter distribution of the plurality of first long fiber filaments arranged along the one direction may be 1 to 4 ⁇ m, and orthogonal to the one direction.
  • the mode value of the fiber diameter distribution of the plurality of second long filaments arranged in the direction to be not necessarily required to be 1 to 4 ⁇ m.
  • the mode value of the fiber diameter distribution of the plurality of first long fiber filaments arranged along the one direction is 1 to 4 ⁇ m, while the direction orthogonal to the one direction
  • the mode value of the fiber diameter distribution of the plurality of second long fiber filaments arranged along the line may be 4 to 11 ⁇ m.
  • the non-woven fabric sound-absorbing material according to the present invention includes a non-woven fabric laminate in which a plurality of the long-fiber non-woven fabrics are stacked as described above.
  • the nonwoven fabric laminate is formed by stacking, for example, 50 or more, preferably 100 or more, long fiber nonwoven fabrics.
  • the axial direction of the long fiber filament of each laminated nonwoven fabric may be the same, and may be random.
  • the non-woven fabric laminate only needs to be formed by stacking a plurality of the long-fiber non-woven fabrics in the thickness direction, and may be a state in which the plurality of long-fiber non-woven fabrics are simply stacked (non-compressed state). Alternatively, a plurality of the long fiber nonwoven fabrics may be stacked and compressed (compressed state). Further, in the nonwoven fabric laminate, the plurality of long fiber nonwoven fabrics may be in a state of being separable from each other, for example, by fixing the edges of each other (including fusion or adhesion). Part or all may be integrated.
  • the said nonwoven fabric laminated body can be comprised by the number of said long-fiber nonwoven fabrics from which it differs with respect to the same installation space (height dimension) etc., for example.
  • the nonwoven fabric sound-absorbing material according to the present invention can adjust the number of the long-fiber nonwoven fabrics constituting the laminate when installed in a predetermined installation space or the like.
  • the orthogonally arranged nonwoven fabric can be said to be the long fiber nonwoven fabric constituting the nonwoven fabric laminate, and the two unidirectionally arranged nonwoven fabrics are laminated so that the long fiber filaments are orthogonal to each other and fused as described above. It can be said that it is the said nonwoven fabric laminated body when produced by doing.
  • the sound absorbing material made of nonwoven fabric according to the present invention can be formed only of the nonwoven fabric laminate.
  • it can be formed with the said nonwoven fabric laminated body and the member which accommodates or hold
  • the package which packages the said nonwoven fabric laminated body corresponds, for example.
  • the packaging body only needs to be formed of a material that does not impair the sound absorption performance of the nonwoven fabric laminate, for example, the long-fiber nonwoven fabric constituting the nonwoven fabric laminate or a nonwoven fabric with higher air permeability or porosity than that. Can be done.
  • the nonwoven fabric sound absorbing material according to the present invention can be used in combination with other sound absorbing materials such as a porous sound absorbing material.
  • the nonwoven fabric sound absorbing material according to the present invention can be stacked on another sound absorbing material (arranged on the surface of the other sound absorbing material) or be disposed between two other sound absorbing materials.
  • FIG. 2 (A) is a schematic cross-sectional view showing a first embodiment of a nonwoven fabric sound absorbing material according to the present invention
  • FIG. 2 (B) is a schematic cross section showing a second embodiment of the nonwoven sound absorbing material according to the present invention
  • FIG. 2A the nonwoven fabric sound absorbing material according to the first embodiment is formed by stacking a plurality of long fiber nonwoven fabrics 51 having a configuration in which a plurality of stretched long fiber filaments are arranged along one direction. It consists of the non-woven fabric laminate 52.
  • the nonwoven fabric sound-absorbing material according to the first embodiment can be installed, for example, in a predetermined installation space in an uncompressed state or a compressed state.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a nonwoven fabric sound absorbing material according to the present invention
  • FIG. 2 (B) is a schematic cross section showing a second embodiment of the nonwoven sound absorbing material according to the present invention.
  • FIG. 2A the nonwoven
  • the nonwoven fabric sound absorbing material according to the second embodiment includes a plurality of long fiber nonwoven fabrics 51 having a configuration in which a plurality of stretched long fiber filaments are arranged along one direction.
  • the laminated nonwoven fabric 52 and the package 53 which packages the nonwoven fabric laminated body 52 are included.
  • the nonwoven fabric sound-absorbing material according to the second embodiment may be installed side by side in a non-compressed state or a compressed state in a predetermined installation space, or may be installed in an overlapping manner.
  • the long fiber nonwoven fabric constituting the nonwoven fabric laminate may be the unidirectionally aligned nonwoven fabric or the orthogonally aligned nonwoven fabric.
  • “longitudinal direction” refers to the machine direction (MD direction) when producing the long fiber nonwoven fabric, that is, the feeding direction (corresponding to the length direction of the long fiber nonwoven fabric)
  • the “lateral direction” refers to a direction perpendicular to the longitudinal direction (TD direction), that is, a direction orthogonal to the feeding direction (corresponding to the width direction of the long fiber nonwoven fabric).
  • the long fiber filament may be simply referred to as a filament.
  • a longitudinal long fiber nonwoven fabric which is an example of the unidirectionally aligned nonwoven fabric, has a plurality of long fiber filaments made of thermoplastic resin arranged along the vertical direction, that is, the length direction of each long fiber filament. It is obtained by arranging so that (axial direction) substantially coincides with the longitudinal direction, and stretching a plurality of arranged long fiber filaments in the longitudinal direction (axial direction). In such a longitudinally aligned long fiber nonwoven fabric, the constituent molecules of each long fiber filament are oriented in the longitudinal direction.
  • the stretching ratio of the plurality of long fiber filaments in the longitudinal direction is 3 to 6 times.
  • the mode value of the fiber diameter distribution of the plurality of long fiber filaments (that is, a plurality of drawn long fiber filaments) constituting the longitudinally aligned long fiber nonwoven fabric is 1 to 4 ⁇ m, preferably 2 to 3 ⁇ m. is there.
  • the plurality of long fiber filaments constituting the longitudinally arranged long fiber nonwoven fabric have an average fiber diameter of 1 to 4 ⁇ m, preferably 2 to 3 ⁇ m, and the plurality of long fibers constituting the longitudinally arranged long fiber nonwoven fabric.
  • the variation coefficient of the fiber diameter distribution of the filament is 0.1 to 0.3, preferably 0.15 to 0.25.
  • the coefficient of variation is a value obtained by dividing the standard deviation of the fiber diameters of the plurality of long fiber filaments constituting the longitudinally aligned long fiber nonwoven fabric by the average (average fiber diameter).
  • the long fiber filament is not particularly limited as long as it is substantially a long fiber, but may be a fiber (filament) having an average length exceeding 100 mm, for example.
  • the long fiber filaments may have an average fiber diameter in the range of 1 to 4 ⁇ m.
  • the longitudinally aligned long fiber nonwoven fabric may be a long fiber filament having a fiber diameter of less than 1 ⁇ m or a long fiber filament having a fiber diameter of more than 4 ⁇ m. May be included.
  • the length and the fiber diameter of the long fiber filament can be measured from, for example, an enlarged photograph of the longitudinally aligned long fiber nonwoven fabric photographed by a scanning electron microscope, and from N (for example, 50) measured values. An average fiber diameter and a standard deviation can be obtained, and a coefficient of variation in fiber diameter distribution can be obtained by dividing the standard deviation by the average fiber diameter.
  • the weight basis weight (hereinafter referred to as “weight basis”) w of the longitudinally aligned long-fiber nonwoven fabric is 5 to 60 g / m 2 , preferably 5 to 40 g / m 2 , more preferably 10 to 30 g / m 2 .
  • the basis weight is calculated from an average value of, for example, preparing a plurality of non-woven sheets cut out to 300 mm ⁇ 300 mm, measuring the respective weights.
  • the thickness t of the longitudinally aligned long fiber nonwoven fabric is 10 to 110 ⁇ m, preferably 25 to 60 ⁇ m
  • the specific volume t / w which is a value obtained by dividing the thickness t of the longitudinally aligned long fiber nonwoven fabric by the basis weight w. (Cm 3 / g) is 2.0 to 3.5.
  • the specific volume t / w is in the range of 2.0 to 3.5, it means that the length of the longitudinally aligned long fiber nonwoven fabric is thinner than the basis weight.
  • the air permeability of the longitudinally aligned long fiber nonwoven fabric is 5 to 250 cm 3 / cm 2 / s, preferably 10 to 70 cm 3 / cm 2 / s.
  • the folding width of the filament when producing the longitudinally aligned long fiber nonwoven fabric is preferably 300 mm or more. This is because the folding width needs to be large to some extent in order for the filament to function as a long fiber.
  • the folding width of the filament is an average length of a substantially straight line portion between the turning points when the spun filament is vibrated in the vertical direction and placed on the conveyor as described later, It shall be the length that can be visually observed in the state of being drawn into the longitudinally aligned long-fiber nonwoven fabric.
  • Such a folding width can be changed in the manufacturing method (manufacturing apparatus) described later depending on, for example, the flow velocity of the high-speed airflow and / or the rotational speed of the airflow vibration mechanism.
  • the long fiber filament is obtained by melt spinning a thermoplastic resin.
  • the thermoplastic resin is not particularly limited as long as it is a resin that can be melt-spun, but is mainly polyester, and particularly has an intrinsic viscosity IV of 0.43 to 0.63, preferably 0.48 to 0.00.
  • Polyethylene terephthalate which is 58 is used.
  • polypropylene may be used as the thermoplastic resin. This is because the spinnability in the melt blow method is good.
  • the thermoplastic resin may contain about 0.01 to 2% by weight of additives such as antioxidants, weathering agents and colorants.
  • a flame retardant resin for example, a flame retardant polyester made flame retardant by copolymerizing a phosphorus-based flame retardant component may be used.
  • the method for producing the longitudinally aligned long fiber nonwoven fabric includes a step of producing a nonwoven fabric web having a configuration in which a plurality of long fiber filaments are arranged along the longitudinal direction, and the produced nonwoven fabric web (that is, aligned along the longitudinal direction). A plurality of long fiber filaments) are uniaxially stretched in the machine direction to obtain a longitudinally arranged long fiber nonwoven fabric.
  • the step of producing the nonwoven web includes a nozzle group for extruding a plurality (many) of filaments, a conveyor belt for collecting and transporting the filaments extruded from the nozzle groups, and a high-speed air current blown to the filaments.
  • a step of preparing an airflow vibration means for vibrating the nozzles a step of pushing a plurality (a large number) of filaments from the nozzle group toward the conveyor belt, and a step of causing each filament pushed from the nozzle group to accompany the high-speed airflow.
  • a nonwoven web arranged along the direction (longitudinal direction) is produced.
  • the process of obtaining the said longitudinally-arranged long fiber nonwoven fabric uniaxially stretches the nonwoven fabric web produced at the process of producing the said nonwoven fabric web to the vertical direction, and thereby obtains the said longitudinally-arranged long fiber nonwoven fabric.
  • the draw ratio is 3 to 6 times.
  • the nozzle hole diameter D is 0.1 to 0. .2 mm and L / D are preferably 10 to 40.
  • FIG. 3 is a schematic configuration diagram of an example of an apparatus for producing the longitudinally aligned long fiber nonwoven fabric.
  • the production apparatus shown in FIG. 3 is configured to produce the longitudinally aligned long-fiber nonwoven fabric by the melt blow method, and includes a melt blow die 1, a conveyor belt 7, an air flow vibration mechanism 9, stretching cylinders 12a and 12b, and a take-off nip roller 16a. 16b and the like.
  • thermoplastic resin here, a thermoplastic resin mainly composed of polyester or polypropylene
  • extruder not shown
  • melt blow die 1 a thermoplastic resin mainly composed of polyester or polypropylene
  • the melt blow die 1 has a large number of nozzles 3 arranged at the front end (lower end) thereof in a direction perpendicular to the paper surface, that is, perpendicular to the running direction of the conveyor belt 7.
  • a large number of filaments 11 are formed (spun) by the molten resin 2 sent to the meltblowing die 1 being pushed out from each nozzle 3 by a gear pump (not shown) or the like.
  • the melt blow die 1 is shown in a sectional view, so that only one nozzle 3 is shown.
  • air reservoirs 5a and 5b are provided on both sides of each nozzle 3, respectively.
  • the high-pressure heated air heated to the melting point of the thermoplastic resin or higher is fed into the air reservoirs 5a and 5b, and then communicated with the air reservoirs 5a and 5b and opened at the tip of the melt blow die 1 with slits 6a and 6b. Erupted from.
  • a high-speed air flow that is substantially parallel to the extrusion direction of the filament 11 from the nozzle 3 is formed below the nozzle 3.
  • the filament 11 extruded from the nozzle 3 is maintained in a draftable molten state by the high-speed airflow, and the filament 11 is drafted (ie, the filament 11 is pulled) by the frictional force of the high-speed airflow. 11 is reduced in diameter.
  • the diameter of the filament 11 immediately after spinning is preferably 10 ⁇ m or less.
  • the temperature of the high-speed airflow formed below the nozzle 3 is set to be 20 ° C. or higher, preferably 40 ° C. or higher, higher than the spinning temperature of the filament 11.
  • the temperature of the filament 11 immediately after being extruded from the nozzle 3 can be made sufficiently higher than the melting point of the filament 11 by increasing the temperature of the high-speed airflow. This makes it possible to reduce the diameter of the filament 11.
  • a conveyor belt 7 is disposed below the meltblowing die 1.
  • the conveyor belt 7 is wound around a conveyor roller 13 and other rollers that are rotated by a drive source (not shown). By driving the conveyor belt 7 by the rotation of the conveyor roller 13, the filament 11 extruded from the nozzle 3 and collected on the conveyor belt 7 is conveyed in the arrow direction (right direction) in FIG. 3.
  • the airflow vibration mechanism 9 has an elliptical column part having an elliptical section and a support shaft 9a extending from each of both ends of the elliptical column part, and the conveying direction of the filament 11 by the conveyor belt 7 (the traveling direction of the conveyor belt 7). Is arranged substantially parallel to the width direction of the longitudinally aligned long-fiber nonwoven fabric to be manufactured.
  • the airflow vibration mechanism 9 is configured such that the elliptical column portion rotates in the direction of arrow A when the support shaft 9a is rotated.
  • the direction of the high-speed airflow can be changed using the Coanda effect as will be described later.
  • the number of airflow vibration mechanisms 9 is not limited to one, and a plurality of airflow vibration mechanisms 9 may be provided as necessary to increase the swing width of the filament 11.
  • the filament 11 flows along the high-speed airflow.
  • the high-speed airflow is formed by the combination of high-pressure heated air ejected from the slits 6 a and 6 b and flows in a direction substantially perpendicular to the conveying surface of the conveyor belt 7.
  • the airflow vibration mechanism 9 uses the Coanda effect to change the direction of the high-speed airflow, that is, the flow of the filament 11.
  • the width of the airflow vibration mechanism 9 (the elliptical column part), that is, the length of the airflow vibration mechanism 9 in the direction parallel to the support shaft 9a is 100 mm or more larger than the width of the filament group spun by the melt blow die 1. desirable. If the width of the airflow vibration mechanism 9 is smaller than this, the flow direction of the high-speed airflow cannot be sufficiently changed at both ends of the filament group, and the arrangement along the longitudinal direction of the filament 11 at both ends of the filament group is not good. This is because there is a risk of becoming sufficient.
  • the distance between the peripheral wall surface 9b of the airflow vibration mechanism 9 (the elliptical column portion) and the airflow axis 100 of the high-speed airflow is 25 mm or less, preferably 15 mm or less at the minimum. If the distance between the airflow vibration mechanism 9 and the airflow shaft 100 is longer than this, the effect that the high-speed airflow is attracted to the airflow vibration mechanism 9 is reduced, and the filament 11 may not be sufficiently shaken. is there.
  • the swing width of the filament 11 depends on the flow velocity of the high-speed airflow and the rotational speed of the airflow vibration mechanism 9. Therefore, the speed of the high-speed air flow is set to be 10 m / sec or more, preferably 15 m / sec or more. If the speed is less than this, the high-speed air current is not sufficiently attracted to the peripheral wall surface 9b of the air-flow vibration mechanism 9, and as a result, the filament 11 may not be sufficiently shaken.
  • the rotational speed of the airflow vibration mechanism 9 may be set such that the frequency of the peripheral wall surface 9b is the frequency that maximizes the swing width of the filament 11. Such a frequency varies depending on the spinning conditions, and therefore is appropriately determined according to the spinning conditions.
  • a spray nozzle 8 is provided between the melt blow die 1 and the conveyor belt 7.
  • the spray nozzle 8 sprays mist-like water or the like in the high-speed air stream, and the filament 11 is cooled by the spray of water or the like by the spray nozzle 8 and rapidly solidifies.
  • a plurality of spray nozzles 8 are actually installed, only one spray nozzle 8 is shown in FIG. 3 in order to avoid complexity.
  • the solidified filaments 11 are accumulated on the conveyor belt 7 while being shaken in the vertical direction, and are partially folded in the vertical direction and continuously collected.
  • the filament 11 on the conveyor belt 7 is conveyed by the conveyor belt 7 in the arrow direction (right direction) in FIG. 3, and is nipped between the stretching cylinder 12a and the pressing roller 14 heated to the stretching temperature, and transferred to the stretching cylinder 12a. It is. Thereafter, the filament 11 is nipped between the stretching cylinder 12b and the pressing rubber roller 15 and transferred to the stretching cylinder 12b, and is in close contact with the two stretching cylinders 12a and 12b. In this way, the filament 11 is sent while being in close contact with the drawing cylinders 12a and 12b, so that the filament 11 becomes a nonwoven fabric web in which adjacent filaments are fused while being partially folded in the vertical direction. .
  • the non-woven web is then taken up by take-up nip rollers 16a and 16b (the take-up nip roller 16b in the subsequent stage is made of rubber).
  • the peripheral speed of the take-up nip rollers 16a and 16b is set to be larger than the peripheral speed of the stretching cylinders 12a and 12b, and the nonwoven web is stretched 3 to 6 times in the longitudinal direction. In this way, the longitudinally aligned long fiber nonwoven fabric 18 is manufactured.
  • the nonwoven web may be further subjected to post-treatment such as partial adhesion treatment such as heat treatment or hot embossing as necessary.
  • a draw ratio can be defined by the following formula with the mark put into the nonwoven fabric web before extending
  • interval, for example. Stretch ratio “Length between marks after stretching” / “Length between marks before stretching”
  • the average fiber diameter of the filaments constituting the longitudinally arranged long fiber nonwoven fabric 18 is 1 to 4 ⁇ m (preferably 2 to 3 ⁇ m).
  • the variation coefficient of the fiber diameter distribution is 0.1 to 0.3.
  • the longitudinally aligned long fiber nonwoven fabric 18 may have some elasticity in the fiber direction, that is, the longitudinal direction that is the axial direction of the long fiber filaments and the stretching direction.
  • the tensile strength in the longitudinal direction of the longitudinally arranged long fiber nonwoven fabric 18 is 20 N / 50 mm or more. The tensile strength is a value measured by JIS L1096 8.14.1 A method.
  • a transversely-aligned long-fiber nonwoven fabric which is another example of the unidirectionally-arranged nonwoven fabric, is a plurality of long-fiber filaments made of thermoplastic resin along the lateral direction, that is, the length direction of each long-fiber filament It is obtained by arranging so that (axial direction) substantially coincides with the transverse direction, and stretching a plurality of arranged long fiber filaments in the transverse direction (axial direction).
  • the constituent molecules of each long fiber filament are oriented in the transverse direction.
  • the draw ratio of the long fiber filament is 3 to 6 times.
  • the mode value of the fiber diameter distribution of the plurality of long fiber filaments constituting the transversely arranged long fiber nonwoven fabric is 1 to 4 ⁇ m, preferably 2 to 3 ⁇ m. Further, the plurality of long fibers constituting the transversely arranged long fiber nonwoven fabric has an average fiber diameter of 1 to 4 ⁇ m, preferably 2 to 3 ⁇ m, and the plurality of long fibers constituting the transversely arranged long fiber nonwoven fabric.
  • the variation coefficient of the fiber diameter distribution of the filament is 0.1 to 0.3, preferably 0.15 to 0.25.
  • the basis weight w of the laterally aligned long-fiber nonwoven fabric is 5 to 60 g / m 2 , preferably 5 to 40 g / m 2 , more preferably 10 to 30 g / m 2
  • the thickness of the laterally-aligned long fiber nonwoven fabric is t is 10 to 110 ⁇ m, preferably 20 to 70 ⁇ m
  • the specific volume t / w (cm 3 / g) which is a value obtained by dividing the thickness t of the transversely aligned long fiber nonwoven fabric by the basis weight w, is 2.0. ⁇ 3.5.
  • the air permeability of the transversely aligned long fiber nonwoven fabric is 5 to 250 cm 3 / cm 2 / s, preferably 10 to 70 cm 3 / cm 2 / s.
  • the method for producing the transversely aligned long-fiber nonwoven fabric includes a step of producing a nonwoven fabric web in which a plurality of long-fiber filaments are arranged along the transverse direction, and a produced nonwoven web (that is, a plurality of filaments arranged along the transverse direction). To obtain a transversely aligned long-fiber nonwoven fabric by uniaxially stretching the long-fiber filaments) in the transverse direction.
  • the step of producing the nonwoven web includes a nozzle group for extruding a plurality (many) of filaments, a conveyor belt for collecting and transporting the filaments extruded from the nozzle groups, and a high-speed air current blown to the filaments.
  • a step of preparing an airflow vibration means for vibrating the nozzle, a step of extruding a plurality (many) of filaments from the nozzle group toward the conveyor belt, and causing each filament extruded from the nozzle group to accompany the high-speed airflow A step of reducing the diameter, and a step of periodically changing the direction of the high-speed air flow in the direction perpendicular to the traveling direction of the conveyor belt (that is, the lateral direction) by the air flow vibration means, A non-woven web arranged in a direction (lateral direction) perpendicular to the traveling direction of the conveyor is produced.
  • the process of obtaining the said laterally arranged long fiber nonwoven fabric carries out the uniaxial stretching of the nonwoven fabric web produced at the process of producing the said nonwoven fabric web to a horizontal direction, and, thereby, obtains the said laterally arranged long fiber nonwoven fabric.
  • the draw ratio is 3 to 6 times.
  • FIG. 4 is a schematic configuration diagram of an example of a production apparatus (hereinafter referred to as “first production apparatus”) of the laterally arranged long fiber nonwoven fabric.
  • the transversely long continuous nonwoven fabric first manufacturing apparatus is configured to manufacture the laterally aligned long fiber nonwoven fabric by a melt blowing method.
  • a melt blow die 101 As shown in FIG. 4, a melt blow die 101, a conveyor belt 107, an air flow vibration, and the like. A mechanism 109 and a drawing device (not shown) are included.
  • the melt blow die 101 is shown in cross section so that the internal structure can be seen.
  • thermoplastic resin here, a thermoplastic resin mainly composed of polyester or polypropylene
  • an extruder not shown
  • melted, extruded and sent to the melt blow die 101.
  • the meltblowing die 101 has a large number of nozzles 103 arranged at the tip (lower end) thereof in a direction perpendicular to the paper surface, that is, along the traveling direction of the conveyor belt 107.
  • a large number of filaments 111 are formed (spun) by the molten resin sent to the meltblowing die 101 being pushed out from each nozzle 103 by a gear pump (not shown) or the like.
  • Air reservoirs 105a and 105b are provided on both sides of each nozzle 103, respectively. The high-pressure heated air heated to the melting point of the thermoplastic resin or higher is fed into the air reservoirs 105a and 105b, and then communicated with the air reservoirs 105a and 105b and opened at the tip of the melt blow die 101.
  • a high-speed air flow substantially parallel to the extrusion direction of the filament 111 from the nozzle 103 is formed below the nozzle 103, and the filament 111 extruded from the nozzle 103 is maintained in a draftable molten state by this high-speed air flow.
  • a draft is given to the filament 111 by the frictional force of the high-speed air flow, and the filament 111 is reduced in diameter.
  • the temperature of the high-speed airflow is set to 20 ° C. or higher, preferably 40 ° C. or higher, higher than the spinning temperature of the filament 111.
  • the temperature of the filament 111 immediately after being extruded from the nozzle 103 can be made sufficiently higher than the melting point of the filament 111, Thereby, the diameter of the filament 111 can be reduced.
  • a conveyor belt 107 is disposed below the meltblowing die 101.
  • the conveyor belt 107 is wound around a conveyor roller and other rollers (both not shown) rotated by a drive source not shown.
  • the filament 111 pushed out from the nozzle 103, more specifically, the nonwoven fabric web 120 in which the filament 111 is accumulated on the conveyor belt 107 is formed on the paper surface in FIG. It is conveyed from the back to the front or from the front to the back.
  • the airflow vibration mechanism 109 has an elliptical column part having an elliptical cross section and support shafts 109a extending from both ends of the elliptical column part, and is arranged in parallel with the conveying direction of the filament 111 (web 120) by the conveyor belt 107.
  • the airflow vibration mechanism 109 is configured such that the elliptical column portion rotates in the direction of arrow A when the support shaft 109a is rotated.
  • the airflow vibration mechanism 109 can change the direction of the high-speed airflow (flow of the filament 111) using the Coanda effect, similarly to the airflow vibration mechanism 9 of FIG. That is, the filament 111 can be periodically vibrated by rotating the airflow vibration mechanism 109. Since the support shaft 109a of the airflow vibration mechanism 109 is arranged in parallel with the conveying direction of the filament 111 (web 120) by the conveyor belt 107, the filament 111 is manufactured in a direction perpendicular to the conveying direction by the conveyor belt 107, that is, manufactured. It vibrates in the width direction of the transversely aligned long fiber nonwoven fabric. Thereby, the nonwoven fabric web 120 of width S in which the filament 111 was arranged along the width direction is produced on the conveyor belt 107.
  • the distance between the airflow axis 100 and the peripheral wall surface 109b when the peripheral wall surface 109b of the airflow vibration mechanism 109 is closest to the airflow axis 100 of the high-speed airflow is L1.
  • the distance between the lower end surface of the meltblowing die 101 that is substantially flush with the tip of the nozzle 103 and the center of the support shaft 109a of the airflow vibration mechanism 109 is L2.
  • the smaller the L1 and L2 the larger the width S of the nonwoven web 120 produced on the conveyor belt 107.
  • L1 is too small, troubles such as winding of the filament 111 around the airflow vibration mechanism 109 may occur, and L2 is naturally limited by the size of the cross section of the airflow vibration mechanism 109 and the like.
  • L1 and L2 are too large, the effect of vibration of the filament 111 by the peripheral wall surface 109b of the airflow vibration mechanism 109 is reduced.
  • L1 is preferably 30 mm or less, more preferably 15 mm or less, and most preferably 10 mm or less.
  • L2 is preferably 80 mm or less, more preferably 55 mm or less, and most preferably 52 mm or less.
  • the airflow vibration mechanism 109 needs to be disposed at a position where it does not collide with the filament 111.
  • the swing width of the filament 111 also depends on the flow velocity of the high-speed air flow and the rotation speed of the air flow vibration mechanism 109.
  • the fluctuation of the distance between the airflow axis 100 and the peripheral wall surface 109b due to the rotation of the airflow vibration mechanism 109 is the vibration of the peripheral wall surface 109b
  • the vibration frequency of the peripheral wall 109b and the inherent frequency of the high-speed air flow are different, so that the swing width of the filament 111 is also reduced.
  • This frequency varies depending on the spinning conditions, but when vibrating the filament 111 spun by a general spinning means, a range of 5 Hz to 30 Hz is preferable, more preferably 10 Hz to 20 Hz, and most preferably 12 Hz. The range is 18 Hz or less.
  • the speed of the high-speed airflow is 10 m / sec or more, preferably 15 m / sec or more. This is because at a speed lower than this, the filament 111 may not be sufficiently shaken.
  • the length of the airflow vibration mechanism 109 is desirably 100 mm or more larger than the width of the filament group spun by the melt blow die 101. If the length of the airflow vibration mechanism 109 is shorter than this, the flow direction of the high-speed airflow cannot be sufficiently changed at both ends of the filament group, and the arrangement along the lateral direction of the filament 111 at both ends of the filament group is not possible. This is because there is a risk of becoming insufficient.
  • the non-woven web 120 on the conveyor belt 107 is conveyed by the conveyor belt 107 toward the front of the paper or toward the back of the paper, and then stretched 3 to 6 times in the lateral direction by a stretching device (not shown).
  • a stretching device include, but are not limited to, a pulley-type stretching device and a tenter stretching device.
  • the nonwoven fabric web 120 may be further subjected to post-treatment such as partial adhesion treatment such as heat treatment or hot embossing as necessary.
  • the 1st manufacturing apparatus (FIG. 4) of a horizontal arrangement long fiber nonwoven fabric sprays mist-like water etc. in order to quench a filament similarly to the manufacturing apparatus (FIG. 3) of a longitudinal arrangement long fiber nonwoven fabric.
  • a spray nozzle or the like may be provided.
  • FIG. 5 is a diagram showing a configuration of a main part of another example (hereinafter referred to as “second manufacturing apparatus”) of the apparatus for manufacturing the transversely long continuous nonwoven fabric.
  • FIG. 5 (A) is a front view of the second apparatus for producing a horizontally arranged long fiber nonwoven fabric
  • FIG. 5 (B) is a side view of the second apparatus for producing a horizontally arranged long fiber nonwoven fabric.
  • the second device for producing a transversely long continuous nonwoven fabric includes a spinning head 210, a conveyor belt 219, a drawing device (not shown), and the like.
  • the spinning head 210 is shown in a sectional view so that the internal structure can be seen.
  • the conveyor belt 219 is arrange
  • FIG. 6 shows the spinning head 210.
  • 6A is a cross-sectional view of the spinning head 210
  • FIG. 6B is a view of the spinning head 210 as viewed from below.
  • the spinning head 210 includes an air ejection part 206 and a cylindrical spinning nozzle part 205 disposed inside the air ejection part 206.
  • a spinning nozzle 201 that extends in the direction of gravity and opens at the lower end surface of the spinning nozzle portion 205 is formed inside the spinning nozzle portion 205.
  • the nozzle hole diameter Nz of the spinning nozzle 201 can be arbitrarily set, and is, for example, 0.1 to 0.7 mm.
  • the spinning head 210 is disposed above the conveyor belt 219 such that the spinning nozzle 201 is located approximately at the center in the width direction of the conveyor belt 219.
  • the spinning nozzle 201 is supplied with molten resin from the upper side thereof by a gear pump (not shown) or the like, and the supplied molten resin is pushed downward from the lower opening end of the spinning nozzle 201 through the spinning nozzle 201.
  • a filament 211 is formed (spun).
  • a concave portion having two inclined surfaces 208a and 208b is formed on the lower surface of the air ejection portion 206.
  • the bottom surface of the recess constitutes a horizontal plane 207 perpendicular to the direction of gravity.
  • One slope 208a is disposed on one end side of the horizontal plane 207 in the running direction of the conveyor belt 219, and the other slope 208b is a conveyor.
  • the belt 219 is disposed on the other side of the horizontal plane 207 in the traveling direction.
  • the two inclined surfaces 208a and 208b are arranged symmetrically with respect to a plane orthogonal to the horizontal plane 207 and passing through the center line of the spinning nozzle 201, and are formed to be inclined so that the distance from each other gradually increases. Has been.
  • the lower end surface of the spinning nozzle unit 205 is disposed so as to protrude from the horizontal surface 207 at the center of the horizontal surface 207 of the air ejection unit 206.
  • the amount of protrusion H from the horizontal surface 207 at the lower end surface of the spinning nozzle portion 205 can be arbitrarily set, and is, for example, 0.01 to 1 mm.
  • an annular primary air slit 202 for ejecting high temperature primary air is formed between the outer peripheral surface of the spinning nozzle portion 205 and the air ejection portion 206.
  • the outer diameter of the spinning nozzle portion 205, that is, the inner diameter d of the primary air slit 202 can be arbitrarily set, and is, for example, 2.5 to 6 mm.
  • the clearance is 0.1 to 0.5 mm inside the spinning head 210.
  • the high temperature primary air is supplied to the primary air slit 202 through the slit-shaped flow path.
  • High temperature primary air is supplied to the primary air slit 202 from above, and the supplied primary air passes through the primary air slit 202 at a high speed downward from the opening end on the horizontal plane 207 side of the primary air slit 202. Erupted.
  • the primary air is ejected from the primary air slit 202 at a high speed, so that a reduced pressure portion is generated below the lower end surface of the spinning nozzle portion 205, and the filament 211 pushed out from the spinning nozzle 201 is vibrated by this reduced pressure.
  • the air ejection part 206 is formed with secondary air ejection ports 204a and 204b for ejecting high temperature secondary air.
  • the secondary air is ejected in order to spread and arrange the filaments 211 that vibrate by the primary air ejected from the primary air slit 202 in one direction.
  • the secondary air outlet 204a is formed in the inclined surface 208a and extends perpendicularly to the inclined surface 208a toward the inside of the air ejection portion 206.
  • the secondary air jet outlet 204b is formed in the slope 208b, and extends perpendicularly to the slope 208b toward the inside of the air ejection portion 206.
  • the secondary air outlets 204 a and 204 b are arranged symmetrically with respect to a plane that is orthogonal to the horizontal plane 207 and that passes through the center line of the spinning nozzle 201.
  • the diameter r of the secondary air outlets 204a and 204b can be arbitrarily set, but is preferably 1.5 to 5 mm.
  • the secondary air outlets 204a and 204b are each formed in two, but the present invention is not limited to this, and the number of secondary air outlets 204a and 204b can be arbitrarily set. .
  • Secondary air is jetted slightly downward from the horizontal direction from each of the secondary air jet outlets 204a and 204b.
  • the secondary air ejected from the secondary air ejection port 204a and the secondary air ejected from the secondary air ejection port 204b collide below the spinning nozzle 201 and spread in the width direction of the conveyor belt 219. . Thereby, the filament 211 falling while vibrating spreads in the width direction of the conveyor belt 219.
  • a plurality of small holes 203 extending in parallel with the spinning nozzle 201 and opening in the horizontal plane 207 are formed on both sides of the spinning nozzle portion 205.
  • the plurality of small holes 203 are arranged in a line on a straight line orthogonal to the center line of the spinning nozzle 201, and the same number (three in this case) is provided on each of the secondary air outlets 204a and 204b side of the spinning nozzle unit 205. ) Is formed.
  • the plurality of small holes 203 are configured to eject high-temperature air downward from the open end of the horizontal plane 207, thereby stabilizing the spinning of the filament 211.
  • the diameter q of the small hole 203 can be arbitrarily set, but is preferably about 1 mm.
  • the high-temperature air ejected from each small hole 203 may be guided from a primary air generation source for ejecting from the primary air slit 202, or may be ejected from the secondary air ejection ports 204a and 204b. It may be derived from a source of secondary air. Alternatively, high-temperature air different from primary air and secondary air may be supplied to each small hole 203.
  • a pair of cooling nozzles 220 is provided between the spinning head 210 and the conveyor belt 219.
  • one cooling nozzle 220 is disposed on the upstream side of the traveling direction of the conveyor belt 219 of the filament 211 spun from the spinning nozzle 201, and the other cooling nozzle 220 is spun from the spinning nozzle 201.
  • the filament 211 is arranged on the downstream side in the traveling direction of the conveyor belt 219.
  • Each cooling nozzle 220 sprays atomized water or the like on the filament 211 before reaching the conveyor belt 219, whereby the filament 211 is cooled and solidified.
  • the number and arrangement of the cooling nozzles 220 can be set arbitrarily.
  • the solidified filaments 211 are arranged in the width direction of the conveyor belt 219 and accumulated on the conveyor bell 219, whereby a nonwoven web 218 in which a plurality of filaments 211 are arranged in the width direction is formed on the conveyor belt 219. Produced.
  • the nonwoven web 218 produced on the conveyor belt 219 is conveyed in the direction of the arrow in FIG. 5A by the conveyor belt 219, and then stretched 3 to 6 times in the lateral direction by the stretching device (not shown). The In this way, the transversely aligned long fiber nonwoven fabric is manufactured.
  • FIG. 7 shows a modification of the spinning head 210.
  • 7A is a cross-sectional view of a spinning head 210 according to a modified example
  • FIG. 7B is a view of the spinning head 210 according to the modified example as viewed from below
  • FIG. FIG. 8 is a cross-sectional view of a spinning head 210 according to a modified example in a direction perpendicular to FIG. 7A.
  • a plurality of small holes 203 are arranged so as to surround the spinning nozzle portion 205 (spinning nozzle 201) in a circle.
  • Each small hole 203 is formed to be slightly inclined with respect to the horizontal plane, and high temperature air is ejected from each small hole 203 in the direction of the arrow in FIG.
  • the spinning of the filament 211 is also stabilized by ejecting high-temperature air from such a plurality of small holes 203.
  • the average fiber diameter of the filaments constituting the manufactured transversely arranged long fiber nonwoven fabric is 1 to 4 ⁇ m (preferably 2 to 3 ⁇ m).
  • the variation coefficient of the fiber diameter distribution is 0.1 to 0.3.
  • the produced transversely arranged long fiber nonwoven fabric may have some elasticity in the fiber direction, that is, the axial direction of the long fiber filaments and the transverse direction which is the stretching direction.
  • the tensile strength in the transverse direction of the produced transversely arranged long fiber nonwoven fabric is 5 N / 50 mm or more, preferably 10 N / 50 mm or more, more preferably 20 N / 50 mm or more.
  • the orthogonally aligned non-woven fabric is basically formed by (1) laminating and fusing the vertically aligned long-fiber non-woven fabric and the transversely-aligned long-fiber non-woven fabric, and (2) One of them is formed by laminating and fusing by 90 °, or (3) One of the two transversely arranged long fiber nonwoven fabrics is laminated by fusing by 90 ° and formed by fusing Is done.
  • the present invention is not limited to these.
  • the longitudinally-aligned long-fiber nonwoven fabric is the same as that of the laterally-aligned long-fiber nonwoven fabric, and the average fiber diameter of the constituent fibers is that of the laterally-aligned long-fiber nonwoven fabric. It may be formed by laminating and fusing a larger laterally aligned long fiber nonwoven fabric. The fusion is not particularly limited, but is generally performed by thermocompression using an embossing roll or the like.
  • the nonwoven fabric laminate is basically composed of a plurality of longitudinally aligned long fiber nonwoven fabrics stacked in the thickness direction, and a plurality of the horizontally aligned long fiber nonwoven fabrics stacked in the thickness direction, or a plurality The orthogonally arranged nonwoven fabrics may be stacked in the thickness direction.
  • the said nonwoven fabric laminated body may be comprised also by arbitrary combinations of the said longitudinally-arranged long-fiber nonwoven fabric, the said horizontal-arranged long-fiber nonwoven fabric, and the said orthogonally-arranged nonwoven fabric.
  • nonwoven fabric sound absorbing material according to the present invention will be described with reference to examples.
  • the present invention is not limited to the following examples.
  • the filament was extruded from the melt blow die at a discharge rate of 40 g / min per nozzle and a die temperature of 295 ° C.
  • the high-speed airflow for reducing the diameter by drafting the filament extruded from the nozzle had a temperature of 400 ° C. and a flow rate of 0.4 m 3 / min.
  • the filament was cooled by spraying mist water from the spray nozzle.
  • the air flow vibration mechanism was arranged so that the distance from the extension line of the nozzle of the melt blow die was a minimum of 20 mm.
  • the airflow vibration mechanism was rotated at 900 rpm (frequency at the peripheral wall of the airflow vibration mechanism was 15.0 Hz), and the filaments were collected on the conveyor belt in a state of being arranged along the vertical direction.
  • the filaments collected on the conveyor belt were heated with a drawing cylinder and drawn 4.5 times in the longitudinal direction to obtain a longitudinally arranged long fiber nonwoven fabric.
  • a longitudinally aligned long fiber nonwoven fabric having a basis weight of 5 to 40 g / m 2 was obtained by appropriately changing the running speed of the conveyor belt.
  • a longitudinally aligned long fiber nonwoven fabric having a basis weight of 5 to 40 g / m 2 was prepared, but a longitudinally aligned long fiber nonwoven fabric having a basis weight of up to 60 g / m 2 was prepared by changing the running speed of the conveyor belt. It has been confirmed that it can be done.
  • the physical properties of the obtained longitudinally aligned long fiber nonwoven fabric are shown in FIG. Moreover, the fiber diameter distribution of the longitudinally-aligned long-fiber nonwoven fabric having a basis weight of 10 g / m 2 and the longitudinally-aligned long-fiber nonwoven fabric having a basis weight of 20 g / m 2 is shown in FIG. As shown in FIG. 9, in any longitudinally aligned long fiber nonwoven fabric, the mode value of the fiber diameter distribution was about 2.5 ⁇ m, and the average fiber diameter was also about 2.5 ⁇ m. Since only the running speed of the conveyor belt at the time of production is different, the mode value and the average fiber diameter of the fiber diameter distribution are almost the same as those in FIG. 9 for the longitudinally aligned long fiber nonwoven fabric having a basis weight of 5 to 60 g / m 2 . It will be the same.
  • Example 1 A nonwoven fabric laminate obtained by stacking 100 vertically aligned long-fiber nonwoven fabrics having a basis weight of 15 g / m 2 was defined as Example 1.
  • Example 1-1 is a nonwoven fabric laminate (non-compressed nonwoven fabric laminate, thickness: about 12 mm) in which only 100 longitudinally aligned long-fiber nonwoven fabrics having a basis weight of 15 g / m 2 are stacked.
  • a laminated body compressed in the thickness direction with respect to Example 1-1 was designated as Example 1-2.
  • Example 2 A nonwoven fabric laminate in which 200 longitudinally aligned long-fiber nonwoven fabrics having a basis weight of 15 g / m 2 were stacked was designated as Example 2.
  • Example 2-1 is a nonwoven fabric laminate (non-compressed nonwoven fabric laminate, thickness: about 22 mm) obtained by simply stacking 200 longitudinally aligned long-fiber nonwoven fabrics having a basis weight of 15 g / m 2.
  • a laminated body compressed in the thickness direction with respect to Example 2-1 (compressed nonwoven fabric laminated body, thickness: about 14 mm) was designated as Example 2-2.
  • Example 3 A nonwoven fabric laminate in which a plurality of longitudinally aligned long fiber nonwoven fabrics having a basis weight of 20 g / m 2 was stacked was designated as Example 3. Specifically, a nonwoven fabric laminate in which 50 vertically aligned long fiber nonwoven fabrics having a basis weight of 20 g / m 2 were stacked was used as Example 3-1, and 100 vertically aligned long fiber nonwoven fabrics having a basis weight of 20 g / m 2 were stacked. A nonwoven fabric laminate was designated as Example 3-2, and a nonwoven fabric laminate comprising 200 longitudinally aligned long fiber nonwoven fabrics having a basis weight of 20 g / m 2 was designated as Example 3-3.
  • FIG. 10 shows the measurement results of the normal incident sound absorption coefficient of Example 1 and the comparative example
  • FIG. 11 shows the measurement results of the normal incident sound absorption coefficient of Example 2 and the comparative example
  • FIG. 12 The measurement result of the normal incidence sound absorption coefficient of a reference example and a comparative example is shown.
  • the measurement results of the comparative example in FIGS. 10 and 11 and the measurement result of the comparative example in FIG. 12 are slightly different, this is due to measurement variations in the system.
  • Example 1 (Examples 1-1 and 1-2) has a higher normal incident sound absorption coefficient than the comparative example in a predetermined frequency band of approximately 4000 Hz or less, and is shown in FIG.
  • Example 2 (Examples 2-1 and 2-2) has a higher normal incident sound absorption coefficient than the comparative example in a predetermined frequency band of approximately 3000 Hz or less.
  • Example 3 (Examples 3-1, 3-2, 3-2) has a higher normal incident sound absorption coefficient than the comparative example in a predetermined frequency band of approximately 2000 Hz or less. It was confirmed.
  • Example 1 has a peak of the normal incident sound absorption coefficient that is 50% or more from 900 to 2000 Hz
  • Example 2 has a normal incident sound absorption coefficient of 50% from 400 to 1000 Hz. It was confirmed that the peak of the normal incident sound absorption coefficient was as described above, and Example 3 had a peak of the normal incident sound absorption coefficient at a normal incident sound absorption coefficient of 50% or more at 300 to 2000 Hz.
  • the peak of the normal incident sound absorption coefficient shifts to the low frequency side, and It was confirmed that a higher normal incidence sound absorption coefficient can be obtained in a narrower frequency range. Therefore, for example, by measuring the frequency of the sound to be absorbed in advance and adjusting the number of longitudinally aligned long-fiber nonwoven fabrics constituting the nonwoven fabric laminate according to the measured frequency, the optimum sound absorbing material is individually formed. It is also possible to do.
  • the sound absorbing material including the nonwoven fabric for sound absorbing material according to the present invention can be used in various places.
  • the sound absorbing material including the nonwoven fabric for sound absorbing material according to the present invention is used as a sound absorbing material for automobile engine rooms and a sound absorbing material for interiors, as a sound absorbing protective material for automobiles, home appliances, various motors, etc.
  • a sound absorbing material installed on the ceiling, etc. as a sound absorbing material for interiors of machine rooms, etc., as a sound absorbing material for various soundproof walls, and / or as a sound absorbing material for office automation equipment such as copying machines and multifunction devices.

Abstract

This sound absorbing material comprising non-woven fabric includes a non-woven fabric laminate obtained by stacking a plurality of layers of long-fiber non-woven fabric which have a plurality of stretched long-fiber filaments aligned along one direction. The most common value among the distribution of the fiber diameters of the plurality of long-fiber filaments is 1-4 μm. This sound absorbing material comprising non-woven fabric can improve sound absorbing performance at relatively lower frequency bands compared to the prior art.

Description

不織布製吸音材Non-woven sound absorbing material
 本発明は、不織布製吸音材に関し、特に、比較的低い周波数帯域において吸音性能を発揮し得る不織布製吸音材に関する。 The present invention relates to a non-woven sound absorbing material, and more particularly to a non-woven sound absorbing material that can exhibit sound absorbing performance in a relatively low frequency band.
 従来の不織布製吸音材の一例として、特許文献1には、相対的に繊度の太い長繊維と相対的に繊度の細い長繊維とで構成され、前記太い繊維の繊度分布中心が前記細い繊維の繊度分布中心の2倍以上である不織布製吸音材が記載されている。 As an example of a conventional nonwoven fabric sound-absorbing material, Patent Document 1 includes a relatively thick fine fiber and a relatively thin fine fiber, and the fine fiber distribution center of the thick fiber is the thin fiber. A non-woven sound-absorbing material that is twice or more the fineness distribution center is described.
特開2015-28230号公報Japanese Patent Laying-Open No. 2015-28230
 特許文献1に記載の不織布製吸音材は、高い周波数帯域において吸音性能を発揮するものであり、例えば4000Hz以下の比較的低い周波数帯域における吸音のニーズに応えることができない。 The nonwoven fabric sound absorbing material described in Patent Document 1 exhibits sound absorbing performance in a high frequency band, and cannot meet the needs for sound absorption in a relatively low frequency band of, for example, 4000 Hz or less.
 そこで、本発明は、従来に比べて、比較的低い周波数帯域における吸音性能を向上し得る不織布製吸音材を提供することを目的とする。 Therefore, an object of the present invention is to provide a non-woven fabric sound-absorbing material that can improve sound-absorbing performance in a relatively low frequency band as compared with the prior art.
 本発明者は、特定の条件を満たす長繊維不織布を複数積み重ねることによって、4000Hz以下の所定の低周波数帯域において吸音性能を発揮し得ることを見出した。本発明は、かかる知見に基づいてなされたものである。 The present inventor has found that sound absorption performance can be exhibited in a predetermined low frequency band of 4000 Hz or less by stacking a plurality of long fiber nonwoven fabrics satisfying specific conditions. The present invention has been made based on such knowledge.
 すなわち、本発明による不織布製吸音材は、延伸され且つ一方向に沿って配列された複数の長繊維フィラメントを有した長繊維不織布が複数積み重ねられた不織布積層体を含み、前記長繊維フィラメントの繊維径分布の最頻値が1~4μmにある。 That is, the sound absorbing material made of nonwoven fabric according to the present invention includes a nonwoven fabric laminate in which a plurality of long fiber nonwoven fabrics having a plurality of long fiber filaments stretched and arranged along one direction are stacked, and the fibers of the long fiber filaments The mode of the diameter distribution is 1 to 4 μm.
 本発明によれば、4000Hz以下の所定の低周波数帯域において高い吸音性能を発揮し得る不織布製吸音材を提供することができる。 According to the present invention, it is possible to provide a nonwoven fabric sound absorbing material that can exhibit high sound absorbing performance in a predetermined low frequency band of 4000 Hz or less.
本発明による不織布製吸音材を構成する長繊維不織布の一例である一方向配列不織布の走査型電子顕微鏡による拡大写真(倍率:1000倍)である。It is an enlarged photograph (magnification: 1000 times) by the scanning electron microscope of the unidirectional array nonwoven fabric which is an example of the long-fiber nonwoven fabric which comprises the nonwoven fabric sound-absorbing material by this invention. (A)は、本発明による不織布製吸音材の第1実施形態を示す概略断面図であり、(B)は、本発明による不織布製吸音材の第2実施形態を示す概略断面図である。(A) is a schematic sectional drawing which shows 1st Embodiment of the nonwoven fabric sound-absorbing material by this invention, (B) is schematic sectional drawing which shows 2nd Embodiment of the nonwoven fabric sound-absorbing material by this invention. 前記吸音材用不織布の第1実施形態である縦配列長繊維不織布の製造装置の一例の概略構成を示す図(一部断面図)である。It is a figure (partial cross section figure) which shows schematic structure of an example of the manufacturing apparatus of the longitudinally-arranged long-fiber nonwoven fabric which is 1st Embodiment of the said nonwoven fabric for sound-absorbing materials. 前記吸音材用不織布の第2実施形態である横配列長繊維不織布の第1製造装置の概略構成を示す図(一部断面図)である。It is a figure (partial cross section figure) which shows schematic structure of the 1st manufacturing apparatus of the transverse arrangement long fiber nonwoven fabric which is 2nd Embodiment of the said nonwoven fabric for sound-absorbing materials. 前記横配列長繊維不織布の製造装置の第2製造装置の要部構成を示す図であり、(A)は、前記横配列長繊維不織布の第2製造装置の正面図(一部断面図)、(B)は、前記横配列長繊維不織布の第2製造装置の側面図(一部断面図)である。It is a figure which shows the principal part structure of the 2nd manufacturing apparatus of the manufacturing apparatus of the said horizontal array long fiber nonwoven fabric, (A) is a front view (partial sectional drawing) of the 2nd manufacturing apparatus of the said horizontal array long fiber nonwoven fabric, (B) is a side view (partial cross-sectional view) of a second production apparatus for the transversely aligned long-fiber nonwoven fabric. 図5に示された前記横配列長繊維不織布の第2製造装置で使用される紡糸ヘッドを示す図であり、(A)は、紡糸ヘッドの断面図、(B)は、紡糸ヘッドを下側から見た図である。It is a figure which shows the spinning head used with the 2nd manufacturing apparatus of the said transversely-arranged long-fiber nonwoven fabric shown by FIG. 5, (A) is sectional drawing of a spinning head, (B) is a spinning head lower side. It is the figure seen from. 前記紡糸ヘッドの変形例を示す図であり、(A)は、変形例に係る紡糸ヘッドの断面図、(B)は、変形例に係る紡糸ヘッドを下側から見た図、(C)は、変形例に係る紡糸ヘッドの(A)に対して垂直な方向の断面図である。It is a figure which shows the modification of the said spinning head, (A) is sectional drawing of the spinning head which concerns on a modification, (B) is the figure which looked at the spinning head which concerns on a modification from the lower side, (C) is FIG. 5 is a cross-sectional view in a direction perpendicular to (A) of a spinning head according to a modification. 前記縦配列長繊維不織布の物性を示す表である。It is a table | surface which shows the physical property of the said longitudinally-aligned long fiber nonwoven fabric. 前記縦配列長繊維不織布の繊維径分布を示す図である。It is a figure which shows the fiber diameter distribution of the said longitudinally-arranged continuous fiber nonwoven fabric. 実施例1(実施例1-1、1-2)と比較例の垂直入射吸音率の測定結果を示すグラフである。It is a graph which shows the measurement result of the normal incidence sound absorption coefficient of Example 1 (Examples 1-1 and 1-2) and a comparative example. 実施例2(実施例2-1、2-2)と比較例の垂直入射吸音率の測定結果を示すグラフである。It is a graph which shows the measurement result of normal incidence sound absorption coefficient of Example 2 (Examples 2-1 and 2-2) and a comparative example. 実施例3(実施例3-1、3-2、3-3)、参考例及び比較例の垂直入射吸音率の測定結果を示すグラフである。It is a graph which shows the measurement result of the normal incidence sound absorption coefficient of Example 3 (Examples 3-1, 3-2, 3-3), a reference example, and a comparative example.
 本発明は、不織布製吸音材を提供する。本発明による不織布製吸音材は、延伸され且つ一方向に沿って配列された複数の長繊維フィラメントを有した長繊維不織布が複数積み重ねられた不織布積層体を含み、前記長繊維フィラメントの繊維径分布の最頻値が1~4μmにある。本発明による不織布製吸音材は、後述するように、4000Hz以下の所定の低周波数帯域において従来に比べて高い吸音性能を発揮し得る。 The present invention provides a sound absorbing material made of nonwoven fabric. A nonwoven fabric sound absorbing material according to the present invention includes a nonwoven fabric laminate in which a plurality of long fiber nonwoven fabrics having a plurality of long fiber filaments stretched and arranged in one direction are stacked, and the fiber diameter distribution of the long fiber filaments Is the mode value of 1 to 4 μm. The nonwoven fabric sound-absorbing material according to the present invention, as will be described later, can exhibit higher sound-absorbing performance than the conventional one in a predetermined low frequency band of 4000 Hz or less.
 本発明による不織布製吸音材において、前記不織布積層体を構成する長繊維不織布、すなわち、延伸され且つ一方向に沿って配列された複数の長繊維フィラメントを有した長繊維不織布は、例えば、延伸された複数の長繊維フィラメントが一方向に沿って配列された構成の「一方向配列不織布」であり得る。前記一方向は、厳密に一方向である必要はなく、概ね一方向であればよい。このような一方向配列不織布は、例えば複数の長繊維フィラメントを一方向に沿って配列すること、及び、配列された複数の長繊維フィラメントを前記一方向に延伸することを含む作製工程を経て作製され得る。 In the nonwoven fabric sound-absorbing material according to the present invention, the long-fiber non-woven fabric constituting the non-woven fabric laminate, that is, the long-fiber non-woven fabric having a plurality of long-fiber filaments stretched and arranged along one direction is stretched, for example. Moreover, it may be a “unidirectionally arranged non-woven fabric” in which a plurality of long fiber filaments are arranged along one direction. The one direction does not have to be strictly one direction, and may be generally one direction. Such a unidirectionally arranged nonwoven fabric is produced through a production process including, for example, arranging a plurality of long fiber filaments along one direction and stretching the arranged plurality of long fiber filaments in the one direction. Can be done.
 ここで、「複数の長繊維フィラメントを一方向に沿って配列する」とは、複数の長繊維フィラメントをそれぞれの長さ方向(軸方向)が一方向となるように配列すること、すなわち、配列された複数の長繊維フィラメントのそれぞれが概ね一方向に延びていることをいう。例えば、前記一方向配列不織布が長尺シートとして製造される場合には、前記一方向は、前記長尺シートの長手方向(縦方向ともいう)、前記長尺シートの長手方向から傾斜した方向、前記長尺シートの幅方向(横方向ともいう)又は前記長尺シートの横方向から傾斜した方向であり得る。また、「配列された複数の長繊維フィラメントを前記一方向に延伸する」とは、配列された複数の長繊維フィラメントのそれぞれを概ねその軸方向に延伸することをいう。なお、一方向に沿って配列された複数の長繊維フィラメントを一方向に延伸することにより、各長繊維フィラメントの構成分子は、延伸方向である一方向、すなわち、各長繊維フィラメントの軸方向に配列されることになる。 Here, “arranging a plurality of long fiber filaments along one direction” means arranging a plurality of long fiber filaments so that each length direction (axial direction) is one direction, that is, arrangement That is, each of the plurality of long fiber filaments extended substantially in one direction. For example, when the unidirectionally arranged nonwoven fabric is produced as a long sheet, the one direction is a longitudinal direction of the long sheet (also referred to as a vertical direction), a direction inclined from the longitudinal direction of the long sheet, It may be a direction inclined from a width direction (also referred to as a horizontal direction) of the long sheet or a horizontal direction of the long sheet. Further, “stretching a plurality of arranged long fiber filaments in the one direction” means stretching each of the arranged long fiber filaments generally in the axial direction thereof. In addition, by stretching a plurality of long fiber filaments arranged along one direction in one direction, the constituent molecules of each long fiber filament are stretched in one direction, that is, the axial direction of each long fiber filament. Will be arranged.
 図1は、前記一方向配列不織布の一例の走査型電子顕微鏡による拡大写真(倍率:1000倍)である。図1に示される一方向配列不織布では、複数の長繊維フィラメントのそれぞれが概ね上下方向に沿って配列されている。 FIG. 1 is an enlarged photograph (magnification: 1000 times) of an example of the unidirectionally arranged nonwoven fabric by a scanning electron microscope. In the unidirectionally arranged nonwoven fabric shown in FIG. 1, each of the plurality of long fiber filaments is generally arranged along the vertical direction.
 また、本発明による不織布製吸音材に用いられる長繊維不織布は、延伸され且つ一方向に沿って配列された前記複数の長繊維フィラメント(第1の長繊維フィラメント)に加えて、延伸され且つ前記一方向に直交する方向に沿って配列された複数の第2の長繊維フィラメントをさらに有してもよい。すなわち、本発明による不織布製吸音材に用いられる長繊維不織布は、延伸された複数の長繊維フィラメントのそれぞれが直交する二方向のいずれかに沿って配列された構成の「直交配列不織布」であり得る。前記直交する二方向は、厳密に直交している必要はなく、概ね直交していればよい。このような直交配列不織布は、例えば、二つの前記一方向配列不織布を互いの長繊維フィラメントが直交するように積層し且つ融着することによって作製され得る。ここで、前記直交配列不織布においては、前記一方向に沿って配列された前記複数の第1の長繊維フィラメントの繊維径分布の最頻値が1~4μmにあればよく、前記一方向に直交する方向に配列された前記複数の第2長繊維フィラメントの繊維径分布の最頻値は、必ずしも1~4μmにある必要はない。例えば、前記直交配列不織布においては、前記一方向に沿って配列された前記複数の第1の長繊維フィラメントの繊維径分布の最頻値が1~4μmにある一方、前記一方向に直交する方向に沿って配列された前記複数の第2の長繊維フィラメントの繊維径分布の最頻値が4~11μmにあってもよい。 Moreover, the long fiber nonwoven fabric used for the sound absorbing material made of nonwoven fabric according to the present invention is stretched and stretched in addition to the plurality of long fiber filaments (first long fiber filaments) arranged along one direction, and the You may further have a some 2nd long fiber filament arranged along the direction orthogonal to one direction. That is, the long-fiber non-woven fabric used in the non-woven fabric sound-absorbing material according to the present invention is an “orthogonal array non-woven fabric” having a configuration in which each of a plurality of stretched long-fiber filaments is aligned along one of two orthogonal directions. obtain. The two orthogonal directions do not need to be strictly orthogonal, but may be approximately orthogonal. Such an orthogonally arranged nonwoven fabric can be produced, for example, by laminating and fusing two unidirectionally arranged nonwoven fabrics so that their long fiber filaments are orthogonal to each other. Here, in the orthogonal array nonwoven fabric, the mode value of the fiber diameter distribution of the plurality of first long fiber filaments arranged along the one direction may be 1 to 4 μm, and orthogonal to the one direction. The mode value of the fiber diameter distribution of the plurality of second long filaments arranged in the direction to be not necessarily required to be 1 to 4 μm. For example, in the orthogonal array nonwoven fabric, the mode value of the fiber diameter distribution of the plurality of first long fiber filaments arranged along the one direction is 1 to 4 μm, while the direction orthogonal to the one direction The mode value of the fiber diameter distribution of the plurality of second long fiber filaments arranged along the line may be 4 to 11 μm.
 本発明による不織布製吸音材は、上述のように、前記長繊維不織布が複数積み重ねられた不織布積層体を含む。前記不織布積層体は、例えば50枚以上、好ましくは100枚以上の前記長繊維不織布が積み重ねられて構成される。なお、前記不織布積層体において、積み重ねられた各不織布の長繊維フィラメントの軸方向は、同じであってもよいし、ランダムであってもよい。 The non-woven fabric sound-absorbing material according to the present invention includes a non-woven fabric laminate in which a plurality of the long-fiber non-woven fabrics are stacked as described above. The nonwoven fabric laminate is formed by stacking, for example, 50 or more, preferably 100 or more, long fiber nonwoven fabrics. In addition, in the said nonwoven fabric laminated body, the axial direction of the long fiber filament of each laminated nonwoven fabric may be the same, and may be random.
 前記不織布積層体は、複数の前記長繊維不織布が厚さ方向に積み重ねられて構成されていればよく、複数の前記長繊維不織布が単に積み重ねられた状態(非圧縮状態)のものであってもよいし、複数の前記長繊維不織布が積み重ねられ、かつ、圧縮された状態(圧縮状態)のものであってもよい。また、前記不織布積層体において、複数の前記長繊維不織布は、互いに分離可能な状態であってもよいし、例えば互いの縁部同士が固定(融着や接着などを含む)されることによってその一部又は全部が一体化されていてもよい。したがって、前記不織布積層体は、例えば同一の設置空間(高さ寸法)等に対し、異なる枚数の前記長繊維不織布によって構成され得る。換言すれば、本発明による不織布製吸音材は、所定の設置空間等に設置される際に、前記積層体を構成する前記長繊維不織布の枚数を調整等することが可能である。また、前記直交配列不織布は、前記不織布積層体を構成する前記長繊維不織布とも言えるし、上述のように二つの前記一方向配列不織布を互いの長繊維フィラメントが直交するように積層し且つ融着することによって作製された場合には、前記不織布積層体とも言えるものである。 The non-woven fabric laminate only needs to be formed by stacking a plurality of the long-fiber non-woven fabrics in the thickness direction, and may be a state in which the plurality of long-fiber non-woven fabrics are simply stacked (non-compressed state). Alternatively, a plurality of the long fiber nonwoven fabrics may be stacked and compressed (compressed state). Further, in the nonwoven fabric laminate, the plurality of long fiber nonwoven fabrics may be in a state of being separable from each other, for example, by fixing the edges of each other (including fusion or adhesion). Part or all may be integrated. Therefore, the said nonwoven fabric laminated body can be comprised by the number of said long-fiber nonwoven fabrics from which it differs with respect to the same installation space (height dimension) etc., for example. In other words, the nonwoven fabric sound-absorbing material according to the present invention can adjust the number of the long-fiber nonwoven fabrics constituting the laminate when installed in a predetermined installation space or the like. Further, the orthogonally arranged nonwoven fabric can be said to be the long fiber nonwoven fabric constituting the nonwoven fabric laminate, and the two unidirectionally arranged nonwoven fabrics are laminated so that the long fiber filaments are orthogonal to each other and fused as described above. It can be said that it is the said nonwoven fabric laminated body when produced by doing.
 本発明による不織布製吸音材は、前記不織布積層体のみで形成され得る。但し、これに限られるものではなく、例えば、前記不織布積層体とこれを収容又は保持する部材とで形成され得る。前記不織布積層体を収容又は保持する前記部材としては、例えば前記不織布積層体を包装する包装体が該当する。前記包装体は、前記不織布積層体の吸音性能を損なわない材質で形成されていればよく、例えば前記不織布積層体を構成する前記長繊維不織布又はそれよりも通気度や空隙率の高い不織布など形成され得る。また、本発明による不織布製吸音材は、多孔質型吸音材などの他の吸音材と組み合わせて使用され得るものである。例えば、本発明による不織布製吸音材は、他の吸音材に重ねられたり(前記他の吸音材の表面に配置されたり)、二つの他の吸音材の間に配置されたりし得る。 The sound absorbing material made of nonwoven fabric according to the present invention can be formed only of the nonwoven fabric laminate. However, it is not restricted to this, For example, it can be formed with the said nonwoven fabric laminated body and the member which accommodates or hold | maintains this. As said member which accommodates or hold | maintains the said nonwoven fabric laminated body, the package which packages the said nonwoven fabric laminated body corresponds, for example. The packaging body only needs to be formed of a material that does not impair the sound absorption performance of the nonwoven fabric laminate, for example, the long-fiber nonwoven fabric constituting the nonwoven fabric laminate or a nonwoven fabric with higher air permeability or porosity than that. Can be done. Moreover, the nonwoven fabric sound absorbing material according to the present invention can be used in combination with other sound absorbing materials such as a porous sound absorbing material. For example, the nonwoven fabric sound absorbing material according to the present invention can be stacked on another sound absorbing material (arranged on the surface of the other sound absorbing material) or be disposed between two other sound absorbing materials.
 図2(A)は、本発明による不織布製吸音材の第1実施形態を示す概略断面図であり、図2(B)は、本発明による不織布製吸音材の第2実施形態を示す概略断面図である。図2(A)に示されるように、第1実施形態に係る不織布製吸音材は、延伸された複数の長繊維フィラメントが一方向に沿って配列された構成の長繊維不織布51が複数積み重ねられた不織布積層体52からなる。第1実施形態に係る不織布製吸音材は、例えば所定の設置空間に非圧縮状態又は圧縮状態で設置され得る。また、図2(B)に示されるように、第2実施形態に係る不織布製吸音材は、延伸された複数の長繊維フィラメントが一方向に沿って配列された構成の長繊維不織布51が複数積み重ねられた不織布積層体52と、不織布積層体52を包装する包装体53とを含む。第2実施形態に係る不織布製吸音材は、例えば所定の設置空間に非圧縮状態又は圧縮状態で並べて設置されたり、重ねて設置されたりし得る。 FIG. 2 (A) is a schematic cross-sectional view showing a first embodiment of a nonwoven fabric sound absorbing material according to the present invention, and FIG. 2 (B) is a schematic cross section showing a second embodiment of the nonwoven sound absorbing material according to the present invention. FIG. As shown in FIG. 2A, the nonwoven fabric sound absorbing material according to the first embodiment is formed by stacking a plurality of long fiber nonwoven fabrics 51 having a configuration in which a plurality of stretched long fiber filaments are arranged along one direction. It consists of the non-woven fabric laminate 52. The nonwoven fabric sound-absorbing material according to the first embodiment can be installed, for example, in a predetermined installation space in an uncompressed state or a compressed state. Moreover, as shown in FIG. 2B, the nonwoven fabric sound absorbing material according to the second embodiment includes a plurality of long fiber nonwoven fabrics 51 having a configuration in which a plurality of stretched long fiber filaments are arranged along one direction. The laminated nonwoven fabric 52 and the package 53 which packages the nonwoven fabric laminated body 52 are included. The nonwoven fabric sound-absorbing material according to the second embodiment may be installed side by side in a non-compressed state or a compressed state in a predetermined installation space, or may be installed in an overlapping manner.
 次に、前記不織布積層体を構成する前記長繊維不織布について具体的に説明する。上述のように、前記不織布積層体を構成する前記長繊維不織布は、前記一方向配列不織布又は前記直交配列不織布であり得る。なお、以下の説明において、「縦方向」とは、前記長繊維不織布を作製する際の機械方向(MD方向)、すなわち、送り方向(前記長繊維不織布の長さ方向に相当する)をいい、「横方向」とは、前記縦方向に垂直な方向(TD方向)、すなわち、前記送り方向に直交する方向(前記長繊維不織布の幅方向に相当する)をいう。また、以下では、長繊維フィラメントを単にフィラメントという場合がある。 Next, the long-fiber nonwoven fabric constituting the nonwoven fabric laminate will be specifically described. As described above, the long fiber nonwoven fabric constituting the nonwoven fabric laminate may be the unidirectionally aligned nonwoven fabric or the orthogonally aligned nonwoven fabric. In the following description, “longitudinal direction” refers to the machine direction (MD direction) when producing the long fiber nonwoven fabric, that is, the feeding direction (corresponding to the length direction of the long fiber nonwoven fabric), The “lateral direction” refers to a direction perpendicular to the longitudinal direction (TD direction), that is, a direction orthogonal to the feeding direction (corresponding to the width direction of the long fiber nonwoven fabric). In the following description, the long fiber filament may be simply referred to as a filament.
[一方向配列不織布]
1.縦配列長繊維不織布
 前記一方向配列不織布の一例である縦配列長繊維不織布は、熱可塑性樹脂からなる複数の長繊維フィラメントを縦方向に沿って配列し、すなわち、各長繊維フィラメントの長さ方向(軸方向)が縦方向に概ね一致するように配列し、配列された複数の長繊維フィラメントを縦方向(軸方向)に延伸することによって得られる。このような縦配列長繊維不織布においては、各長繊維フィラメントの構成分子が前記縦方向に配向されている。ここで、前記複数の長繊維フィラメントの前記縦方向への延伸の倍率は3~6倍である。また、前記縦配列長繊維不織布を構成する前記複数の長繊維フィラメント(すなわち、延伸された複数の長繊維フィラメント)の繊維径分布の最頻値は1~4μmにあり、好ましくは2~3μmにある。さらに言えば、前記縦配列長繊維不織布を構成する前記複数の長繊維フィラメントの平均繊維径は1~4μm、好ましくは2~3μmであり、前記縦配列長繊維不織布を構成する前記複数の長繊維フィラメントの繊維径分布の変動係数は0.1~0.3、好ましくは0.15~0.25である。なお、前記変動係数は、前記縦配列長繊維不織布を構成する前記複数の長繊維フィラメントの繊維径の標準偏差を平均(平均繊維径)で除算した値である。
[Unidirectional non-woven fabric]
1. Longitudinal long fiber nonwoven fabric A longitudinal long fiber nonwoven fabric, which is an example of the unidirectionally aligned nonwoven fabric, has a plurality of long fiber filaments made of thermoplastic resin arranged along the vertical direction, that is, the length direction of each long fiber filament. It is obtained by arranging so that (axial direction) substantially coincides with the longitudinal direction, and stretching a plurality of arranged long fiber filaments in the longitudinal direction (axial direction). In such a longitudinally aligned long fiber nonwoven fabric, the constituent molecules of each long fiber filament are oriented in the longitudinal direction. Here, the stretching ratio of the plurality of long fiber filaments in the longitudinal direction is 3 to 6 times. Further, the mode value of the fiber diameter distribution of the plurality of long fiber filaments (that is, a plurality of drawn long fiber filaments) constituting the longitudinally aligned long fiber nonwoven fabric is 1 to 4 μm, preferably 2 to 3 μm. is there. Further, the plurality of long fiber filaments constituting the longitudinally arranged long fiber nonwoven fabric have an average fiber diameter of 1 to 4 μm, preferably 2 to 3 μm, and the plurality of long fibers constituting the longitudinally arranged long fiber nonwoven fabric. The variation coefficient of the fiber diameter distribution of the filament is 0.1 to 0.3, preferably 0.15 to 0.25. The coefficient of variation is a value obtained by dividing the standard deviation of the fiber diameters of the plurality of long fiber filaments constituting the longitudinally aligned long fiber nonwoven fabric by the average (average fiber diameter).
 前記長繊維フィラメントは実質的に長繊維であればよく、特に制限されるものではないが、例えば平均長が100mmを超える繊維(フィラメント)であり得る。また、前記長繊維フィラメントの平均繊維径が1~4μmの範囲内にあればよく、前記縦配列長繊維不織布は、繊維径が1μm未満の長繊維フィラメントや繊維径が4μmを超える長繊維フィラメントを含み得る。なお、長繊維フィラメントの長さ及び繊維径は、例えば、走査型電子顕微鏡よって撮影された前記縦配列長繊維不織布の拡大写真から測定することができ、N個(例えば50個)の測定値から平均繊維径及び標準偏差を求め、前記標準偏差を前記平均繊維径で除算して繊維径分布の変動係数を求めることができる。 The long fiber filament is not particularly limited as long as it is substantially a long fiber, but may be a fiber (filament) having an average length exceeding 100 mm, for example. The long fiber filaments may have an average fiber diameter in the range of 1 to 4 μm. The longitudinally aligned long fiber nonwoven fabric may be a long fiber filament having a fiber diameter of less than 1 μm or a long fiber filament having a fiber diameter of more than 4 μm. May be included. In addition, the length and the fiber diameter of the long fiber filament can be measured from, for example, an enlarged photograph of the longitudinally aligned long fiber nonwoven fabric photographed by a scanning electron microscope, and from N (for example, 50) measured values. An average fiber diameter and a standard deviation can be obtained, and a coefficient of variation in fiber diameter distribution can be obtained by dividing the standard deviation by the average fiber diameter.
 前記縦配列長繊維不織布の重量目付(以下「目付」という)wは、5~60g/m、好ましくは5~40g/m、さらに好ましくは10~30g/mである。目付は、例えば、300mm×300mmに切り出された不織布シートを複数枚用意し、それぞれの重量を測定してその平均値から算出される。また、前記縦配列長繊維不織布の厚さtは、10~110μm、好ましくは25~60μmであり、前記縦配列長繊維不織布の厚さtを目付wで除算した値である比容積t/w(cm/g)は、2.0~3.5である。前記比容積t/wが2.0~3.5の範囲であることは、前記縦配列長繊維不織布の厚さが目付に対して薄いことを意味する。さらに、前記縦配列長繊維不織布の通気度は、5~250cm/cm/s、好ましくは10~70cm/cm/sである。 The weight basis weight (hereinafter referred to as “weight basis”) w of the longitudinally aligned long-fiber nonwoven fabric is 5 to 60 g / m 2 , preferably 5 to 40 g / m 2 , more preferably 10 to 30 g / m 2 . The basis weight is calculated from an average value of, for example, preparing a plurality of non-woven sheets cut out to 300 mm × 300 mm, measuring the respective weights. Moreover, the thickness t of the longitudinally aligned long fiber nonwoven fabric is 10 to 110 μm, preferably 25 to 60 μm, and the specific volume t / w, which is a value obtained by dividing the thickness t of the longitudinally aligned long fiber nonwoven fabric by the basis weight w. (Cm 3 / g) is 2.0 to 3.5. When the specific volume t / w is in the range of 2.0 to 3.5, it means that the length of the longitudinally aligned long fiber nonwoven fabric is thinner than the basis weight. Further, the air permeability of the longitudinally aligned long fiber nonwoven fabric is 5 to 250 cm 3 / cm 2 / s, preferably 10 to 70 cm 3 / cm 2 / s.
 また、前記縦配列長繊維不織布を作製する際のフィラメントの折り畳み幅は、300mm以上であることが好ましい。フィラメントが長繊維として機能するには、折り畳み幅もある程度大きい必要があるからである。なお、フィラメントの折り畳み幅とは、後述するように、紡糸されたフィラメントが縦方向に振動されてコンベア上で折り返して配置される場合における折り返し点間の略直線の部分の平均長さであり、延伸されて前記縦配列長繊維不織布となった状態において目視で観察され得る長さをいうものとする。このような折り畳み幅は、後述の製造方法(製造装置)において、例えば、高速気流の流速及び/又は気流振動機構の回転速度に依存して変化させることができる。 Moreover, the folding width of the filament when producing the longitudinally aligned long fiber nonwoven fabric is preferably 300 mm or more. This is because the folding width needs to be large to some extent in order for the filament to function as a long fiber. In addition, the folding width of the filament is an average length of a substantially straight line portion between the turning points when the spun filament is vibrated in the vertical direction and placed on the conveyor as described later, It shall be the length that can be visually observed in the state of being drawn into the longitudinally aligned long-fiber nonwoven fabric. Such a folding width can be changed in the manufacturing method (manufacturing apparatus) described later depending on, for example, the flow velocity of the high-speed airflow and / or the rotational speed of the airflow vibration mechanism.
 前記長繊維フィラメントは、熱可塑性樹脂を溶融紡糸して得られる。前記熱可塑性樹脂は、溶融紡糸可能な樹脂であればよく、特に制限されるものではないが、主にポリエステル、特に固有粘度IVが0.43~0.63、好ましくは0.48~0.58であるポリエチレンテレフタレートが用いられる。あるいは、前記熱可塑性樹脂としてポリプロピレンが用いられてもよい。これらはメルトブロー法などでの紡糸性が良好なためである。なお、前記熱可塑性樹脂は、酸化防止剤、耐候剤、着色剤などの添加剤を0.01~2重量%程度含んでもよい。また、前記熱可塑性樹脂として、難燃性樹脂、例えばリン系の難燃成分を共重合させることによって難燃化した難燃性ポリエステルが用いられてもよい。 The long fiber filament is obtained by melt spinning a thermoplastic resin. The thermoplastic resin is not particularly limited as long as it is a resin that can be melt-spun, but is mainly polyester, and particularly has an intrinsic viscosity IV of 0.43 to 0.63, preferably 0.48 to 0.00. Polyethylene terephthalate which is 58 is used. Alternatively, polypropylene may be used as the thermoplastic resin. This is because the spinnability in the melt blow method is good. The thermoplastic resin may contain about 0.01 to 2% by weight of additives such as antioxidants, weathering agents and colorants. In addition, as the thermoplastic resin, a flame retardant resin, for example, a flame retardant polyester made flame retardant by copolymerizing a phosphorus-based flame retardant component may be used.
 次に、前記縦配列長繊維不織布の製造方法の一例を説明する。前記縦配列長繊維不織布の製造方法は、複数の長繊維フィラメントが縦方向に沿って配列された構成の不織布ウェブを作製する工程と、作製された不織布ウェブ(すなわち、縦方向に沿って配列された複数の長繊維フィラメント)を縦方向に一軸延伸することによって縦配列長繊維不織布を得る工程とを含む。 Next, an example of a method for producing the longitudinally aligned long fiber nonwoven fabric will be described. The method for producing the longitudinally aligned long fiber nonwoven fabric includes a step of producing a nonwoven fabric web having a configuration in which a plurality of long fiber filaments are arranged along the longitudinal direction, and the produced nonwoven fabric web (that is, aligned along the longitudinal direction). A plurality of long fiber filaments) are uniaxially stretched in the machine direction to obtain a longitudinally arranged long fiber nonwoven fabric.
 詳細には、前記不織布ウェブを作製する工程は、複数(多数)本のフィラメントを押し出すノズル群、前記ノズル群から押し出されたフィラメントを捕集して搬送するコンベアベルト及び前記フィラメントに吹き付けられる高速気流を振動させる気流振動手段を準備する工程と、前記ノズル群から複数(多数)のフィラメントを前記コンベアベルトに向けて押し出す工程と、前記ノズル群から押し出された各フィラメントを高速気流に随伴させて細径化する工程と、前記気流振動手段によって前記高速気流の向きを前記コンベアベルトの走行方向(すなわち、縦方向)に周期的に変動させる工程と、を含み、複数のフィラメントが前記コンベアベルトの走行方向(縦方向)に沿って配列された不織布ウェブを作製する。また、前記縦配列長繊維不織布を得る工程は、前記不織布ウェブを作製する工程で作製された不織布ウェブを縦方向に一軸延伸し、これによって、前記縦配列長繊維不織布を得る。なお、前記延伸の倍率は、3~6倍である。 Specifically, the step of producing the nonwoven web includes a nozzle group for extruding a plurality (many) of filaments, a conveyor belt for collecting and transporting the filaments extruded from the nozzle groups, and a high-speed air current blown to the filaments. A step of preparing an airflow vibration means for vibrating the nozzles, a step of pushing a plurality (a large number) of filaments from the nozzle group toward the conveyor belt, and a step of causing each filament pushed from the nozzle group to accompany the high-speed airflow. And a step of periodically changing the direction of the high-speed airflow in the running direction (that is, the longitudinal direction) of the conveyor belt by the airflow vibrating means, and a plurality of filaments run on the conveyor belt. A nonwoven web arranged along the direction (longitudinal direction) is produced. Moreover, the process of obtaining the said longitudinally-arranged long fiber nonwoven fabric uniaxially stretches the nonwoven fabric web produced at the process of producing the said nonwoven fabric web to the vertical direction, and thereby obtains the said longitudinally-arranged long fiber nonwoven fabric. The draw ratio is 3 to 6 times.
 ここで、前記ノズル群に関し、ノズル数、ノズル孔数、ノズル孔間ピッチP、ノズル孔直径D及びノズル孔長さLは、任意に設定され得るが、ノズル孔直径Dが0.1~0.2mm、L/Dが10~40であるのが好ましい。 Here, regarding the nozzle group, the number of nozzles, the number of nozzle holes, the pitch P between nozzle holes, the nozzle hole diameter D, and the nozzle hole length L can be arbitrarily set, but the nozzle hole diameter D is 0.1 to 0. .2 mm and L / D are preferably 10 to 40.
 図3は、前記縦配列長繊維不織布の製造装置の一例の概略構成図である。図3に示される製造装置は、メルトブロー法によって前記縦配列長繊維不織布を製造するように構成されており、メルトブローダイス1、コンベアベルト7、気流振動機構9、延伸シリンダ12a、12b及び引取ニップローラ16a、16bなどを含む。 FIG. 3 is a schematic configuration diagram of an example of an apparatus for producing the longitudinally aligned long fiber nonwoven fabric. The production apparatus shown in FIG. 3 is configured to produce the longitudinally aligned long-fiber nonwoven fabric by the melt blow method, and includes a melt blow die 1, a conveyor belt 7, an air flow vibration mechanism 9, stretching cylinders 12a and 12b, and a take-off nip roller 16a. 16b and the like.
 まず、装置の前段において、熱可塑性樹脂(ここでは、ポリエステル又はポリプロピレン)を主成分とする熱可塑性樹脂)が押出機(図示省略)に投入され、溶融され、押し出されてメルトブローダイス1に送られる。 First, in the front stage of the apparatus, a thermoplastic resin (here, a thermoplastic resin mainly composed of polyester or polypropylene) is put into an extruder (not shown), melted, extruded, and sent to the melt blow die 1. .
 メルトブローダイス1は、その先端(下端)に、紙面に対して垂直な方向、すなわち、コンベアベルト7の走行方向に垂直に並べられた多数のノズル3を有する。ギアポンプ(図示省略)などによってメルトブローダイス1に送られた溶融樹脂2が各ノズル3から押し出されることで、多数のフィラメント11が形成(紡糸)される。なお、図3においては、メルトブローダイス1は断面図で示されているため、ノズル3は一つしか示されていない。また、メルトブローダイス1において、各ノズル3の両側にはそれぞれエアー溜め5a,5bが設けられている。前記熱可塑性樹脂の融点以上に加熱された高圧加熱エアーは、これらエアー溜め5a,5bに送入され、その後、エアー溜め5a,5bに連通すると共にメルトブローダイス1の先端に開口するスリット6a,6bから噴出される。これにより、ノズル3の下方には、ノズル3からのフィラメント11の押し出し方向とほぼ平行な高速気流が形成される。この高速気流によって、ノズル3から押し出されたフィラメント11がドラフト可能な溶融状態に維持されると共に、高速気流の摩擦力によりフィラメント11にドラフトが与えられて(すなわち、フィラメント11が引っ張られて)フィラメント11が細径化される。なお、紡糸直後のフィラメント11の直径は、好ましくは10μm以下である。また、ノズル3の下方に形成される高速気流の温度は、フィラメント11の紡糸温度よりも20℃以上、望ましくは40℃以上高く設定される。 The melt blow die 1 has a large number of nozzles 3 arranged at the front end (lower end) thereof in a direction perpendicular to the paper surface, that is, perpendicular to the running direction of the conveyor belt 7. A large number of filaments 11 are formed (spun) by the molten resin 2 sent to the meltblowing die 1 being pushed out from each nozzle 3 by a gear pump (not shown) or the like. In FIG. 3, the melt blow die 1 is shown in a sectional view, so that only one nozzle 3 is shown. In the melt blow die 1, air reservoirs 5a and 5b are provided on both sides of each nozzle 3, respectively. The high-pressure heated air heated to the melting point of the thermoplastic resin or higher is fed into the air reservoirs 5a and 5b, and then communicated with the air reservoirs 5a and 5b and opened at the tip of the melt blow die 1 with slits 6a and 6b. Erupted from. As a result, a high-speed air flow that is substantially parallel to the extrusion direction of the filament 11 from the nozzle 3 is formed below the nozzle 3. The filament 11 extruded from the nozzle 3 is maintained in a draftable molten state by the high-speed airflow, and the filament 11 is drafted (ie, the filament 11 is pulled) by the frictional force of the high-speed airflow. 11 is reduced in diameter. The diameter of the filament 11 immediately after spinning is preferably 10 μm or less. The temperature of the high-speed airflow formed below the nozzle 3 is set to be 20 ° C. or higher, preferably 40 ° C. or higher, higher than the spinning temperature of the filament 11.
 メルトブローダイス1を用いてフィラメント11を形成する方法では、前記高速気流の温度を高くすることにより、ノズル3から押し出された直後のフィラメント11の温度をフィラメント11の融点よりも十分に高くすることができ、これによって、フィラメント11の細径化が可能である。 In the method of forming the filament 11 using the melt blow die 1, the temperature of the filament 11 immediately after being extruded from the nozzle 3 can be made sufficiently higher than the melting point of the filament 11 by increasing the temperature of the high-speed airflow. This makes it possible to reduce the diameter of the filament 11.
 メルトブローダイス1の下方にはコンベアベルト7が配置されている。コンベアベルト7は、図示省略の駆動源により回転されるコンベアローラ13やその他のローラに掛け回されている。コンベアローラ13の回転によってコンベアベルト7を駆動することで、ノズル3から押出されてコンベアベルト7上に捕集されたフィラメント11が図3における矢印方向(右方向)へ搬送される。 A conveyor belt 7 is disposed below the meltblowing die 1. The conveyor belt 7 is wound around a conveyor roller 13 and other rollers that are rotated by a drive source (not shown). By driving the conveyor belt 7 by the rotation of the conveyor roller 13, the filament 11 extruded from the nozzle 3 and collected on the conveyor belt 7 is conveyed in the arrow direction (right direction) in FIG. 3.
 メルトブローダイス1とコンベアベルト7との間の所定位置、具体的には、ノズル3の両側のスリット6a,6bから噴出された高圧加熱エアーが合流して形成される高速気流の流域の近傍には、気流振動機構9が設けられている。気流振動機構9は、断面が楕円形の楕円柱部と、楕円柱部の両端のそれぞれから延びる支持軸9aとを有し、コンベアベルト7によるフィラメント11の搬送方向(コンベアベルト7の走行方向)にほぼ直交する方向、すなわち、製造すべき縦配列長繊維不織布の幅方向とほぼ平行に配置されている。そして、気流振動機構9は、支持軸9aが回転されることで前記楕円柱部が矢印A方向に回転するように構成されている。このように前記高速気流の近傍に楕円柱状の気流振動機構9を配置し、これを回転させることによって、後述するようにコアンダ効果を利用して前記高速気流の向きを変えることができる。なお、気流振動機構9の数は一つに限られるものではなく、必要に応じて複数個設けて、フィラメント11の振れ幅をより大きくしてもよい。 In a predetermined position between the melt blow die 1 and the conveyor belt 7, specifically, in the vicinity of the flow area of the high-speed airflow formed by the high-pressure heated air ejected from the slits 6 a and 6 b on both sides of the nozzle 3. An airflow vibration mechanism 9 is provided. The airflow vibration mechanism 9 has an elliptical column part having an elliptical section and a support shaft 9a extending from each of both ends of the elliptical column part, and the conveying direction of the filament 11 by the conveyor belt 7 (the traveling direction of the conveyor belt 7). Is arranged substantially parallel to the width direction of the longitudinally aligned long-fiber nonwoven fabric to be manufactured. The airflow vibration mechanism 9 is configured such that the elliptical column portion rotates in the direction of arrow A when the support shaft 9a is rotated. Thus, by arranging the elliptical columnar airflow vibration mechanism 9 in the vicinity of the high-speed airflow and rotating it, the direction of the high-speed airflow can be changed using the Coanda effect as will be described later. Note that the number of airflow vibration mechanisms 9 is not limited to one, and a plurality of airflow vibration mechanisms 9 may be provided as necessary to increase the swing width of the filament 11.
 フィラメント11は、前記高速気流に沿って流れる。前記高速気流は、スリット6a,6bから噴出された高圧加熱エアーが合流して形成され、コンベアベルト7の搬送面とほぼ垂直な方向に流れる。ところで、気体や液体の高速噴流近傍に壁が存在しているとき、噴流が壁面の近くを流れる傾向があることは一般に知られている。これをコアンダ効果という。気流振動機構9は、このコアンダ効果を利用して前記高速気流、すなわち、フィラメント11の流れの向きを変える。 The filament 11 flows along the high-speed airflow. The high-speed airflow is formed by the combination of high-pressure heated air ejected from the slits 6 a and 6 b and flows in a direction substantially perpendicular to the conveying surface of the conveyor belt 7. By the way, it is generally known that when a wall exists near a high-speed jet of gas or liquid, the jet tends to flow near the wall. This is called the Coanda effect. The airflow vibration mechanism 9 uses the Coanda effect to change the direction of the high-speed airflow, that is, the flow of the filament 11.
 気流振動機構9(前記楕円柱部)の幅、すなわち、支持軸9aと平行な方向における気流振動機構9の長さは、メルトブローダイス1によって紡糸されるフィラメント群の幅よりも100mm以上大きいことが望ましい。これよりも気流振動機構9の幅が小さいと、フィラメント群の両端部で前記高速気流の流れ方向を十分に変えられず、フィラメント群の両端部でのフィラメント11の縦方向に沿った配列が不十分になるおそれがあるからである。また、気流振動機構9(前記楕円柱部)の周壁面9bと前記高速気流の気流軸100との距離は、最も小さいときで25mm以下、望ましくは15mm以下である。気流振動機構9と気流軸100との距離がこれ以上大きくなると、前記高速気流が気流振動機構9に引き寄せられる効果が小さくなって、フィラメント11を十分に振らせることができなくなるおそれがあるからである。 The width of the airflow vibration mechanism 9 (the elliptical column part), that is, the length of the airflow vibration mechanism 9 in the direction parallel to the support shaft 9a is 100 mm or more larger than the width of the filament group spun by the melt blow die 1. desirable. If the width of the airflow vibration mechanism 9 is smaller than this, the flow direction of the high-speed airflow cannot be sufficiently changed at both ends of the filament group, and the arrangement along the longitudinal direction of the filament 11 at both ends of the filament group is not good. This is because there is a risk of becoming sufficient. Further, the distance between the peripheral wall surface 9b of the airflow vibration mechanism 9 (the elliptical column portion) and the airflow axis 100 of the high-speed airflow is 25 mm or less, preferably 15 mm or less at the minimum. If the distance between the airflow vibration mechanism 9 and the airflow shaft 100 is longer than this, the effect that the high-speed airflow is attracted to the airflow vibration mechanism 9 is reduced, and the filament 11 may not be sufficiently shaken. is there.
 ここで、フィラメント11の振れ幅は、前記高速気流の流速と気流振動機構9の回転速度に依存する。したがって、高速気流の速度は10m/sec以上、好ましくは15m/sec以上となるように設定される。これ以下の速度では、前記高速気流が気流振動機構9の周壁面9bに十分に引き寄せられず、結果的にフィラメント11を十分に振らせることができなくなるおそれがあるである。気流振動機構9の回転速度は、周壁面9bにおける振動数を、フィラメント11の振れ幅を最大とする振動数とすればよい。このような振動数は、紡糸条件によっても異なるため、前記紡糸条件に応じて適宜決定される。 Here, the swing width of the filament 11 depends on the flow velocity of the high-speed airflow and the rotational speed of the airflow vibration mechanism 9. Therefore, the speed of the high-speed air flow is set to be 10 m / sec or more, preferably 15 m / sec or more. If the speed is less than this, the high-speed air current is not sufficiently attracted to the peripheral wall surface 9b of the air-flow vibration mechanism 9, and as a result, the filament 11 may not be sufficiently shaken. The rotational speed of the airflow vibration mechanism 9 may be set such that the frequency of the peripheral wall surface 9b is the frequency that maximizes the swing width of the filament 11. Such a frequency varies depending on the spinning conditions, and therefore is appropriately determined according to the spinning conditions.
 また、図3に示された製造装置においては、メルトブローダイス1とコンベアベルト7との間に、スプレーノズル8が設けられている。スプレーノズル8は、前記高速気流中に霧状の水等を噴霧するものであり、スプレーノズル8による水等の噴霧によってフィラメント11が冷却されて、急速に凝固する。なお、スプレーノズル8は実際には複数個設置されるが、煩雑さを避けるため、図3では1個のスプレーノズル8のみが示されている。 In the manufacturing apparatus shown in FIG. 3, a spray nozzle 8 is provided between the melt blow die 1 and the conveyor belt 7. The spray nozzle 8 sprays mist-like water or the like in the high-speed air stream, and the filament 11 is cooled by the spray of water or the like by the spray nozzle 8 and rapidly solidifies. Although a plurality of spray nozzles 8 are actually installed, only one spray nozzle 8 is shown in FIG. 3 in order to avoid complexity.
 凝固したフィラメント11は、縦方向に振られながらコンベアベルト7上に集積され、縦方向に部分的に折り畳まれて連続的に捕集される。コンベアベルト7上のフィラメント11は、コンベアベルト7によって図3における矢印方向(右方向)に搬送され、延伸温度に加熱された延伸シリンダ12aと押さえローラ14とにニップされて、延伸シリンダ12aに移される。その後、フィラメント11は、延伸シリンダ12bと押えゴムローラ15とにニップされて延伸シリンダ12bに移され、2つの延伸シリンダ12a,12bに密着される。このように、フィラメント11が延伸シリンダ12a,12bに密着しながら送られることによって、フィラメント11は、縦方向に部分的に折り畳まれた状態のまま、隣接するフィラメント同士が融着した不織布ウェブとなる。 The solidified filaments 11 are accumulated on the conveyor belt 7 while being shaken in the vertical direction, and are partially folded in the vertical direction and continuously collected. The filament 11 on the conveyor belt 7 is conveyed by the conveyor belt 7 in the arrow direction (right direction) in FIG. 3, and is nipped between the stretching cylinder 12a and the pressing roller 14 heated to the stretching temperature, and transferred to the stretching cylinder 12a. It is. Thereafter, the filament 11 is nipped between the stretching cylinder 12b and the pressing rubber roller 15 and transferred to the stretching cylinder 12b, and is in close contact with the two stretching cylinders 12a and 12b. In this way, the filament 11 is sent while being in close contact with the drawing cylinders 12a and 12b, so that the filament 11 becomes a nonwoven fabric web in which adjacent filaments are fused while being partially folded in the vertical direction. .
 前記不織布ウェブは、その後に、引取ニップローラ16a,16b(後段の引取ニップローラ16bはゴム製)で引き取られる。引取ニップローラ16a,16bの周速は、延伸シリンダ12a,12bの周速よりも大きく設定されており、これにより、前記不織布ウェブが縦方向に3~6倍に延伸される。このようにして、縦配列長繊維不織布18が製造される。なお、前記不織布ウェブは、必要に応じて、熱処理や熱エンボス等の部分接着処理などの後処理がさらに行われてもよい。また、延伸倍率は、例えば、延伸前の不織布ウェブに一定の間隔で入れたマークによって次式で定義され得る。
 延伸倍率=「延伸後のマーク間の長さ」/「延伸前のマーク間の長さ」
The non-woven web is then taken up by take-up nip rollers 16a and 16b (the take-up nip roller 16b in the subsequent stage is made of rubber). The peripheral speed of the take-up nip rollers 16a and 16b is set to be larger than the peripheral speed of the stretching cylinders 12a and 12b, and the nonwoven web is stretched 3 to 6 times in the longitudinal direction. In this way, the longitudinally aligned long fiber nonwoven fabric 18 is manufactured. The nonwoven web may be further subjected to post-treatment such as partial adhesion treatment such as heat treatment or hot embossing as necessary. Moreover, a draw ratio can be defined by the following formula with the mark put into the nonwoven fabric web before extending | stretching at a fixed space | interval, for example.
Stretch ratio = “Length between marks after stretching” / “Length between marks before stretching”
 上述のように、製造された縦配列長繊維不織布18を構成するフィラメントの平均繊維径は1~4μm(好ましくは2~3μm)であり、製造された縦配列長繊維不織布18を構成するフィラメントの繊維径分布の変動係数は0.1~0.3である。また、縦配列長繊維不織布18は、繊維の方向、すなわち、長繊維フィラメントの軸方向であり且つ延伸方向である縦方向に若干の伸縮性を有するものであり得る。さらに、縦配列長繊維不織布18の縦方向の引張強度は、20N/50mm以上である。前記引張強度は、JIS L1096 8.14.1 A法により測定した値である。 As described above, the average fiber diameter of the filaments constituting the longitudinally arranged long fiber nonwoven fabric 18 is 1 to 4 μm (preferably 2 to 3 μm). The variation coefficient of the fiber diameter distribution is 0.1 to 0.3. In addition, the longitudinally aligned long fiber nonwoven fabric 18 may have some elasticity in the fiber direction, that is, the longitudinal direction that is the axial direction of the long fiber filaments and the stretching direction. Furthermore, the tensile strength in the longitudinal direction of the longitudinally arranged long fiber nonwoven fabric 18 is 20 N / 50 mm or more. The tensile strength is a value measured by JIS L1096 8.14.1 A method.
2.横配列長繊維不織布
 前記一方向配列不織布の他の例である横配列長繊維不織布は、熱可塑性樹脂からなる複数の長繊維フィラメントを横方向に沿って、すなわち、各長繊維フィラメントの長さ方向(軸方向)が概ね前記横方向に一致するように配列し、配列された複数の長繊維フィラメントを横方向(軸方向)に延伸することによって得られる。このような横配列長繊維不織布においては、各長繊維フィラメントの構成分子が前記横方向に配向されている。ここで、前記縦配列長繊維不織布の場合と同様に、前記長繊維フィラメントの延伸倍率は3~6倍である。また、前記横配列長繊維不織布を構成する前記複数の長繊維フィラメントの繊維径分布の最頻値は1~4μmにあり、好ましくは2~3μmにある。さらに言えば、前記横配列長繊維不織布を構成する前記複数の長繊維フィラメントの平均繊維径は1~4μm、好ましくは2~3μmであり、前記横配列長繊維不織布を構成する前記複数の長繊維フィラメントの繊維径分布の変動係数は0.1~0.3、好ましくは0.15~0.25である。
2. Horizontally-aligned long-fiber nonwoven fabric A transversely-aligned long-fiber nonwoven fabric, which is another example of the unidirectionally-arranged nonwoven fabric, is a plurality of long-fiber filaments made of thermoplastic resin along the lateral direction, that is, the length direction of each long-fiber filament It is obtained by arranging so that (axial direction) substantially coincides with the transverse direction, and stretching a plurality of arranged long fiber filaments in the transverse direction (axial direction). In such a transversely arranged long fiber nonwoven fabric, the constituent molecules of each long fiber filament are oriented in the transverse direction. Here, as in the case of the longitudinally aligned long fiber nonwoven fabric, the draw ratio of the long fiber filament is 3 to 6 times. The mode value of the fiber diameter distribution of the plurality of long fiber filaments constituting the transversely arranged long fiber nonwoven fabric is 1 to 4 μm, preferably 2 to 3 μm. Further, the plurality of long fibers constituting the transversely arranged long fiber nonwoven fabric has an average fiber diameter of 1 to 4 μm, preferably 2 to 3 μm, and the plurality of long fibers constituting the transversely arranged long fiber nonwoven fabric. The variation coefficient of the fiber diameter distribution of the filament is 0.1 to 0.3, preferably 0.15 to 0.25.
 また、前記横配列長繊維不織布の目付wは、5~60g/m、好ましくは5~40g/m、さらに好ましくは10~30g/mであり、前記横配列長繊維不織布の厚さtは、10~110μm、好ましくは20~70μmであり、前記横配列長繊維不織布の厚さtを目付wで除算した値である比容積t/w(cm/g)は、2.0~3.5である。さらに、前記横配列長繊維不織布の通気度は、5~250cm/cm/sであり、好ましくは10~70cm/cm/sである。 Further, the basis weight w of the laterally aligned long-fiber nonwoven fabric is 5 to 60 g / m 2 , preferably 5 to 40 g / m 2 , more preferably 10 to 30 g / m 2 , and the thickness of the laterally-aligned long fiber nonwoven fabric is t is 10 to 110 μm, preferably 20 to 70 μm, and the specific volume t / w (cm 3 / g), which is a value obtained by dividing the thickness t of the transversely aligned long fiber nonwoven fabric by the basis weight w, is 2.0. ~ 3.5. Further, the air permeability of the transversely aligned long fiber nonwoven fabric is 5 to 250 cm 3 / cm 2 / s, preferably 10 to 70 cm 3 / cm 2 / s.
 なお、以下では、前記縦配列長繊維不織布の場合と同様でよいものについての説明は適宜省略する。 In addition, below, description about what may be the same as that of the case of the longitudinally aligned long fiber nonwoven fabric will be omitted as appropriate.
 次に、前記横配列長繊維不織布の製造方法の一例を説明する。前記横配列長繊維不織布の製造方法は、複数の長繊維フィラメントが横方向に沿って配列された不織布ウェブを作製する工程と、作製された不織布ウェブ(すなわち、横方向に沿って配列されや複数の長繊維フィラメント)を横方向に一軸延伸することによって横配列長繊維不織布を得る工程とを含む。 Next, an example of a method for producing the transversely aligned long fiber nonwoven fabric will be described. The method for producing the transversely aligned long-fiber nonwoven fabric includes a step of producing a nonwoven fabric web in which a plurality of long-fiber filaments are arranged along the transverse direction, and a produced nonwoven web (that is, a plurality of filaments arranged along the transverse direction). To obtain a transversely aligned long-fiber nonwoven fabric by uniaxially stretching the long-fiber filaments) in the transverse direction.
 詳細には、前記不織布ウェブを作製する工程は、複数(多数)本のフィラメントを押し出すノズル群、前記ノズル群から押し出されたフィラメントを捕集して搬送するコンベアベルト及び前記フィラメントに吹き付けられる高速気流を振動させる気流振動手段を準備する工程と、前記ノズル群から複数(多数)本のフィラメントを前記コンベアベルトに向けて押し出す工程と、前記ノズル群から押し出された各フィラメントを高速気流に随伴させて細径化する工程と、前記気流振動手段によって前記高速気流の向きを前記コンベアベルトの走行方向に垂直な方向(すなわち、横方向)に周期的に変動させる工程と、を含み、複数のフィラメントが前記コンベアの進行方向に垂直な方向(横方向)に配列された不織布ウェブを作製する。また、前記横配列長繊維不織布を得る工程は、前記不織布ウェブを作製する工程で作成された不織布ウェブを横方向に一軸延伸し、これによって、前記横配列長繊維不織布を得る。なお、前記延伸の倍率は、3~6倍である。 Specifically, the step of producing the nonwoven web includes a nozzle group for extruding a plurality (many) of filaments, a conveyor belt for collecting and transporting the filaments extruded from the nozzle groups, and a high-speed air current blown to the filaments. A step of preparing an airflow vibration means for vibrating the nozzle, a step of extruding a plurality (many) of filaments from the nozzle group toward the conveyor belt, and causing each filament extruded from the nozzle group to accompany the high-speed airflow A step of reducing the diameter, and a step of periodically changing the direction of the high-speed air flow in the direction perpendicular to the traveling direction of the conveyor belt (that is, the lateral direction) by the air flow vibration means, A non-woven web arranged in a direction (lateral direction) perpendicular to the traveling direction of the conveyor is produced. Moreover, the process of obtaining the said laterally arranged long fiber nonwoven fabric carries out the uniaxial stretching of the nonwoven fabric web produced at the process of producing the said nonwoven fabric web to a horizontal direction, and, thereby, obtains the said laterally arranged long fiber nonwoven fabric. The draw ratio is 3 to 6 times.
 図4は、前記横配列長繊維不織布の製造装置の一例(以下「第1製造装置」という)の概略構成図である。前記横配列長繊維不織布の第1製造装置は、メルトブロー法によって前記横配列長繊維不織布を製造するように構成されており、図4に示されるように、メルトブローダイス101、コンベアベルト107、気流振動機構109及び図示省略の延伸装置などを含む。なお、図4において、メルトブローダイス101は内部構造が分かるように断面で示されている。 FIG. 4 is a schematic configuration diagram of an example of a production apparatus (hereinafter referred to as “first production apparatus”) of the laterally arranged long fiber nonwoven fabric. The transversely long continuous nonwoven fabric first manufacturing apparatus is configured to manufacture the laterally aligned long fiber nonwoven fabric by a melt blowing method. As shown in FIG. 4, a melt blow die 101, a conveyor belt 107, an air flow vibration, and the like. A mechanism 109 and a drawing device (not shown) are included. In FIG. 4, the melt blow die 101 is shown in cross section so that the internal structure can be seen.
 まず、装置の前段において、熱可塑性樹脂(ここでは、ポリエステル又はポリプロピレン)を主成分とする熱可塑性樹脂)が押出機(図示省略)に投入され、溶融され、押し出されてメルトブローダイス101に送られる。 First, in the front stage of the apparatus, a thermoplastic resin (here, a thermoplastic resin mainly composed of polyester or polypropylene) is put into an extruder (not shown), melted, extruded, and sent to the melt blow die 101. .
 メルトブローダイス101は、その先端(下端)に、紙面に対して垂直な方向に、すなわち、コンベアベルト107の進行方向に沿って並べられた多数のノズル103を有する。ギアポンプ(図示省略)などによってメルトブローダイス101に送られた溶融樹脂が各ノズル103から押し出されることで、多数のフィラメント111が形成(紡糸)される。また、各ノズル103の両側にはそれぞれエアー溜め105a,105bが設けられている。前記熱可塑性樹脂の融点以上に加熱された高圧加熱エアーは、これらエアー溜め105a,105bに送入され、その後、エアー溜め105a,105bに連通すると共にメルトブローダイス101の先端に開口するスリット106a,106bから噴出される。これにより、ノズル103からのフィラメント111の押し出し方向とほぼ平行な高速気流がノズル103の下方に形成され、この高速気流によって、ノズル103から押し出されたフィラメント111がドラフト可能な溶融状態に維持されると共に、前記高速気流の摩擦力によりフィラメント111にドラフトが与えられてフィラメント111が細径化される。前記高速気流の温度は、フィラメント111の紡糸温度よりも20℃以上、望ましくは40℃以上高く設定される。 The meltblowing die 101 has a large number of nozzles 103 arranged at the tip (lower end) thereof in a direction perpendicular to the paper surface, that is, along the traveling direction of the conveyor belt 107. A large number of filaments 111 are formed (spun) by the molten resin sent to the meltblowing die 101 being pushed out from each nozzle 103 by a gear pump (not shown) or the like. Air reservoirs 105a and 105b are provided on both sides of each nozzle 103, respectively. The high-pressure heated air heated to the melting point of the thermoplastic resin or higher is fed into the air reservoirs 105a and 105b, and then communicated with the air reservoirs 105a and 105b and opened at the tip of the melt blow die 101. Erupted from. As a result, a high-speed air flow substantially parallel to the extrusion direction of the filament 111 from the nozzle 103 is formed below the nozzle 103, and the filament 111 extruded from the nozzle 103 is maintained in a draftable molten state by this high-speed air flow. At the same time, a draft is given to the filament 111 by the frictional force of the high-speed air flow, and the filament 111 is reduced in diameter. The temperature of the high-speed airflow is set to 20 ° C. or higher, preferably 40 ° C. or higher, higher than the spinning temperature of the filament 111.
 前記縦配列長繊維不織布の場合と同様に、前記高速気流の温度を高くすることにより、ノズル103から押し出された直後のフィラメント111の温度をフィラメント111の融点よりも十分に高くすることができ、これによって、フィラメント111の細径化が可能である。 As in the case of the longitudinally aligned long-fiber nonwoven fabric, by increasing the temperature of the high-speed airflow, the temperature of the filament 111 immediately after being extruded from the nozzle 103 can be made sufficiently higher than the melting point of the filament 111, Thereby, the diameter of the filament 111 can be reduced.
 メルトブローダイス101の下方にはコンベアベルト107が配置されている。コンベアベルト107は、図示省略の駆動源により回転されるコンベアローラやその他のローラ(いずれも図示省略)に掛け回されている。前記コンベアローラの回転によってコンベアベルト107を駆動することで、ノズル103から押し出されたフィラメント111、さらに言えば、フィラメント111がコンベアベルト107上に集積してなる不織布ウェブ120が、図4における紙面の奥から手前に向かって又は手前から奥へ向かって搬送される。 A conveyor belt 107 is disposed below the meltblowing die 101. The conveyor belt 107 is wound around a conveyor roller and other rollers (both not shown) rotated by a drive source not shown. By driving the conveyor belt 107 by the rotation of the conveyor roller, the filament 111 pushed out from the nozzle 103, more specifically, the nonwoven fabric web 120 in which the filament 111 is accumulated on the conveyor belt 107 is formed on the paper surface in FIG. It is conveyed from the back to the front or from the front to the back.
 メルトブローダイス101とコンベアベルト107との間の所定位置、具体的には、スリット106a,106bから噴出された高圧加熱エアーが合流して形成される高速気流の流域(近傍)には、楕円柱状の気流振動機構109が設けられている。気流振動機構109は、断面が楕円形の楕円柱部と、楕円柱部の両端のそれぞれから延びる支持軸109aとを有し、コンベアベルト107によるフィラメント111(ウェブ120)の搬送方向と平行に配置されている。そして、気流振動機構109は、支持軸109aが回転されることで前記楕円柱部が矢印A方向に回転するように構成されている。 In a predetermined position between the meltblowing die 101 and the conveyor belt 107, specifically, in a high-speed airflow basin formed in the vicinity of the high-pressure heated air ejected from the slits 106a and 106b (in the vicinity) An airflow vibration mechanism 109 is provided. The airflow vibration mechanism 109 has an elliptical column part having an elliptical cross section and support shafts 109a extending from both ends of the elliptical column part, and is arranged in parallel with the conveying direction of the filament 111 (web 120) by the conveyor belt 107. Has been. The airflow vibration mechanism 109 is configured such that the elliptical column portion rotates in the direction of arrow A when the support shaft 109a is rotated.
 気流振動機構109は、図3の気流振動機構9と同様、コアンダ効果を利用して前記高速気流(フィラメント111の流れ)の向きを変えることができる。すなわち、気流振動機構109を回転させることにより、フィラメント111を周期的に振動させることができる。気流振動機構109の支持軸109aはコンベアベルト107によるフィラメント111(ウェブ120)の搬送方向と平行に配置されているので、フィラメント111は、コンベアベルト107による搬送方向に垂直な方向、すなわち、製造すべき横配列長繊維不織布の幅方向に振動する。これにより、フィラメント111が幅方向に沿って配列された幅Sの不織布ウェブ120がコンベアベルト107上に作製される。 The airflow vibration mechanism 109 can change the direction of the high-speed airflow (flow of the filament 111) using the Coanda effect, similarly to the airflow vibration mechanism 9 of FIG. That is, the filament 111 can be periodically vibrated by rotating the airflow vibration mechanism 109. Since the support shaft 109a of the airflow vibration mechanism 109 is arranged in parallel with the conveying direction of the filament 111 (web 120) by the conveyor belt 107, the filament 111 is manufactured in a direction perpendicular to the conveying direction by the conveyor belt 107, that is, manufactured. It vibrates in the width direction of the transversely aligned long fiber nonwoven fabric. Thereby, the nonwoven fabric web 120 of width S in which the filament 111 was arranged along the width direction is produced on the conveyor belt 107.
 気流振動機構109の周壁面109bが前記高速気流の気流軸100に最も近づいた状態での気流軸100と周壁面109bとの距離をL1とする。また、ノズル103先端と略同一平面を構成するメルトブローダイス101の下端面と、気流振動機構109の支持軸109a中心との距離をL2とする。基本的には、これらL1及びL2が小さいほど、コンベアベルト107上に作製される不織布ウェブ120の幅Sは大きくなる。しかし、L1が小さすぎると、フィラメント111が気流振動機構109に巻き付く等のトラブルが発生するおそれがあり、また、L2についても、気流振動機構109の断面の大きさ等により自ずと制限される。一方、L1及びL2が大きすぎると、気流振動機構109の周壁面109bによるフィラメント111の振動の効果が小さくなる。以上のことを考慮して、L1は、30mm以下であることが好ましく、さらに好ましくは15mm以下であり、最も好ましいのは10mm以下である。また、L2は、80mm以下であることが好ましく、さらに好ましくは55mm以下であり、最も好ましいのは52mm以下である。ただし、気流振動機構109は、フィラメント111に衝突しない位置に配置する必要がある。 The distance between the airflow axis 100 and the peripheral wall surface 109b when the peripheral wall surface 109b of the airflow vibration mechanism 109 is closest to the airflow axis 100 of the high-speed airflow is L1. Further, the distance between the lower end surface of the meltblowing die 101 that is substantially flush with the tip of the nozzle 103 and the center of the support shaft 109a of the airflow vibration mechanism 109 is L2. Basically, the smaller the L1 and L2, the larger the width S of the nonwoven web 120 produced on the conveyor belt 107. However, if L1 is too small, troubles such as winding of the filament 111 around the airflow vibration mechanism 109 may occur, and L2 is naturally limited by the size of the cross section of the airflow vibration mechanism 109 and the like. On the other hand, if L1 and L2 are too large, the effect of vibration of the filament 111 by the peripheral wall surface 109b of the airflow vibration mechanism 109 is reduced. Considering the above, L1 is preferably 30 mm or less, more preferably 15 mm or less, and most preferably 10 mm or less. L2 is preferably 80 mm or less, more preferably 55 mm or less, and most preferably 52 mm or less. However, the airflow vibration mechanism 109 needs to be disposed at a position where it does not collide with the filament 111.
 また、フィラメント111の振れ幅(不織布ウェブ120の幅S)は、前記高速気流の流速及び気流振動機構109の回転速度にも依存する。気流振動機構109の回転による気流軸100と周壁面109bとの距離の変動を周壁面109bの振動とすると、フィラメント111の振れ幅を最大とするような、周壁面109bの振動数が存在する。この振動数以外では、周壁面109bの振動数と前記高速気流の持つ固有の振動数とが異なるため、フィラメント111の振れ幅も小さくなる。この振動数は、紡糸条件によって異なるが、一般的な紡糸手段により紡糸されたフィラメント111を振動させる場合には、5Hz以上30Hz以下の範囲が好ましく、より好ましくは10Hz以上20Hz以下、最も好ましくは12Hz以上18Hz以下の範囲である。また、前記高速気流の速度は、10m/sec以上、好ましくは15m/sec以上である。これ以下の速度では、フィラメント111を十分に振らせることができなくなるおそれがあるからである。 Further, the swing width of the filament 111 (width S of the nonwoven fabric web 120) also depends on the flow velocity of the high-speed air flow and the rotation speed of the air flow vibration mechanism 109. When the fluctuation of the distance between the airflow axis 100 and the peripheral wall surface 109b due to the rotation of the airflow vibration mechanism 109 is the vibration of the peripheral wall surface 109b, there is a frequency of the peripheral wall surface 109b that maximizes the swing width of the filament 111. Other than this frequency, the vibration frequency of the peripheral wall 109b and the inherent frequency of the high-speed air flow are different, so that the swing width of the filament 111 is also reduced. This frequency varies depending on the spinning conditions, but when vibrating the filament 111 spun by a general spinning means, a range of 5 Hz to 30 Hz is preferable, more preferably 10 Hz to 20 Hz, and most preferably 12 Hz. The range is 18 Hz or less. The speed of the high-speed airflow is 10 m / sec or more, preferably 15 m / sec or more. This is because at a speed lower than this, the filament 111 may not be sufficiently shaken.
 なお、気流振動機構109の長さは、メルトブローダイス101によって紡糸されるフィラメント群の幅よりも100mm以上大きいことが望ましい。これよりも気流振動機構109の長さが短いと、フィラメント群の両端部で前記高速気流の流れ方向を十分に変えられず、フィラメント群の両端部でのフィラメント111の横方向に沿った配列が不十分になるおそれがあるからである。 The length of the airflow vibration mechanism 109 is desirably 100 mm or more larger than the width of the filament group spun by the melt blow die 101. If the length of the airflow vibration mechanism 109 is shorter than this, the flow direction of the high-speed airflow cannot be sufficiently changed at both ends of the filament group, and the arrangement along the lateral direction of the filament 111 at both ends of the filament group is not possible. This is because there is a risk of becoming insufficient.
 コンベアベルト107上の不織布ウェブ120は、コンベアベルト107により紙面手前又は紙面奥に向かって搬送され、その後、図示省略の延伸装置によって横方向に3~6倍に延伸される。このようにして、横配列長繊維不織布が製造される。前記延伸装置としては、プーリ式延伸装置やテンター延伸装置などが挙げられるが、これらには限定されない。なお、不織布ウェブ120は、必要に応じて、熱処理や熱エンボス等の部分接着処理等の後処理がさらに行われてもよい。なお、縦配列長繊維不織布の製造装置(図3)と同様に、横配列長繊維不織布の第1製造装置(図4)が、フィラメントを急冷するために霧状の水等を噴霧するためのスプレーノズル等を備えてもよい。 The non-woven web 120 on the conveyor belt 107 is conveyed by the conveyor belt 107 toward the front of the paper or toward the back of the paper, and then stretched 3 to 6 times in the lateral direction by a stretching device (not shown). In this way, a transversely aligned long fiber nonwoven fabric is produced. Examples of the stretching device include, but are not limited to, a pulley-type stretching device and a tenter stretching device. Note that the nonwoven fabric web 120 may be further subjected to post-treatment such as partial adhesion treatment such as heat treatment or hot embossing as necessary. In addition, the 1st manufacturing apparatus (FIG. 4) of a horizontal arrangement long fiber nonwoven fabric sprays mist-like water etc. in order to quench a filament similarly to the manufacturing apparatus (FIG. 3) of a longitudinal arrangement long fiber nonwoven fabric. A spray nozzle or the like may be provided.
 図5は、前記横配列長繊維不織布の製造装置の他の例(以下「第2製造装置」という)の要部構成を示す図である。図5(A)は、前記横配列長繊維不織布の第2製造装置の正面図であり、図5(B)は、前記横配列長繊維不織布の第2製造装置の側面図である。図5(A)、(B)に示されるように、前記横配列長繊維不織布の第2製造装置は、紡糸ヘッド210、コンベアベルト219及び図示省略の延伸装置などを含む。なお、図5(A)、(B)において、紡糸ヘッド210は、内部構造が分かるように断面図で示されている。また、本製造装置において、コンベアベルト219は、紡糸ヘッド210に下方に配置され、図5(A)における矢印方向(左方向)に走行するように構成されている。 FIG. 5 is a diagram showing a configuration of a main part of another example (hereinafter referred to as “second manufacturing apparatus”) of the apparatus for manufacturing the transversely long continuous nonwoven fabric. FIG. 5 (A) is a front view of the second apparatus for producing a horizontally arranged long fiber nonwoven fabric, and FIG. 5 (B) is a side view of the second apparatus for producing a horizontally arranged long fiber nonwoven fabric. As shown in FIGS. 5 (A) and 5 (B), the second device for producing a transversely long continuous nonwoven fabric includes a spinning head 210, a conveyor belt 219, a drawing device (not shown), and the like. 5A and 5B, the spinning head 210 is shown in a sectional view so that the internal structure can be seen. Moreover, in this manufacturing apparatus, the conveyor belt 219 is arrange | positioned below the spinning head 210, and is comprised so that it may drive | work in the arrow direction (left direction) in FIG. 5 (A).
 図6は、紡糸ヘッド210を示している。図6(A)は、紡糸ヘッド210の断面図であり、図6(B)は、紡糸ヘッド210を下側から見た図である。 FIG. 6 shows the spinning head 210. 6A is a cross-sectional view of the spinning head 210, and FIG. 6B is a view of the spinning head 210 as viewed from below.
 紡糸ヘッド210は、エアー噴出部206と、エアー噴出部206の内部に配置された円筒状の紡糸ノズル部205とを含む。紡糸ノズル部205の内部には、重力方向に延びると共に紡糸ノズル部205の下端面に開口する紡糸ノズル201が形成されている。紡糸ノズル201のノズル孔径Nzは、任意に設定され得るが、例えば0.1~0.7mmである。紡糸ヘッド210は、紡糸ノズル201がコンベアベルト219の幅方向のほぼ中央に位置するように、コンベアベルト219に上方に配置される。紡糸ノズル201には、ギアポンプ(図示省略)などによってその上側から溶融樹脂が供給され、供給された溶融樹脂が紡糸ノズル201を通って紡糸ノズル201の下側の開口端から下方へ押し出されることによってフィラメント211が形成(紡糸)される。 The spinning head 210 includes an air ejection part 206 and a cylindrical spinning nozzle part 205 disposed inside the air ejection part 206. A spinning nozzle 201 that extends in the direction of gravity and opens at the lower end surface of the spinning nozzle portion 205 is formed inside the spinning nozzle portion 205. The nozzle hole diameter Nz of the spinning nozzle 201 can be arbitrarily set, and is, for example, 0.1 to 0.7 mm. The spinning head 210 is disposed above the conveyor belt 219 such that the spinning nozzle 201 is located approximately at the center in the width direction of the conveyor belt 219. The spinning nozzle 201 is supplied with molten resin from the upper side thereof by a gear pump (not shown) or the like, and the supplied molten resin is pushed downward from the lower opening end of the spinning nozzle 201 through the spinning nozzle 201. A filament 211 is formed (spun).
 エアー噴出部206の下面には、二つの斜面208a,208bを有する凹部が形成されている。前記凹部の底面は、重力方向に対して垂直な水平面207を構成しており、一方の斜面208aは、コンベアベルト219の走行方向における水平面207の一端側に配置され、他方の斜面208bは、コンベアベルト219の走行方向における水平面207の他側に配置されている。2つの斜面208a,208bは、水平面207に直交すると共に紡糸ノズル201の中心線を通る平面に関して対称に配置されており、下方に向かって互いの距離が徐々に大きくなるようにそれぞれ傾斜して形成されている。 A concave portion having two inclined surfaces 208a and 208b is formed on the lower surface of the air ejection portion 206. The bottom surface of the recess constitutes a horizontal plane 207 perpendicular to the direction of gravity. One slope 208a is disposed on one end side of the horizontal plane 207 in the running direction of the conveyor belt 219, and the other slope 208b is a conveyor. The belt 219 is disposed on the other side of the horizontal plane 207 in the traveling direction. The two inclined surfaces 208a and 208b are arranged symmetrically with respect to a plane orthogonal to the horizontal plane 207 and passing through the center line of the spinning nozzle 201, and are formed to be inclined so that the distance from each other gradually increases. Has been.
 紡糸ノズル部205の下端面は、エアー噴出部206の水平面207の中央部において水平面207から突出するように配設されている。紡糸ノズル部205の下端面の水平面207から突出量Hは、任意に設定され得るが、例えば0.01~1mmである。また、紡糸ノズル部205の外周面とエアー噴出部206との間には、高温の一次エアーを噴出する円環状の一次エアースリット202が形成されている。なお、紡糸ノズル部205の外径、すなわち、一次エアースリット202の内径dは、任意に設定され得るが、例えば2.5~6mmである。なお、図示は省略するが、主に一次エアースリット202から噴出させる一次エアーの速度及び温度を均一化するため、紡糸ヘッド210の内部には、少なくとも一部の隙間が0.1~0.5mmであるスリット状流路が形成されており、このスリット状流路を介して高温の一次エアーが一次エアースリット202に供給される。 The lower end surface of the spinning nozzle unit 205 is disposed so as to protrude from the horizontal surface 207 at the center of the horizontal surface 207 of the air ejection unit 206. The amount of protrusion H from the horizontal surface 207 at the lower end surface of the spinning nozzle portion 205 can be arbitrarily set, and is, for example, 0.01 to 1 mm. Further, an annular primary air slit 202 for ejecting high temperature primary air is formed between the outer peripheral surface of the spinning nozzle portion 205 and the air ejection portion 206. The outer diameter of the spinning nozzle portion 205, that is, the inner diameter d of the primary air slit 202 can be arbitrarily set, and is, for example, 2.5 to 6 mm. Although not shown in the drawing, in order to make the speed and temperature of the primary air ejected mainly from the primary air slit 202 uniform, at least a part of the clearance is 0.1 to 0.5 mm inside the spinning head 210. The high temperature primary air is supplied to the primary air slit 202 through the slit-shaped flow path.
 一次エアースリット202には、その上部から高温の一次エアーが供給され、供給された一次エアーが一次エアースリット202内を通って一次エアースリット202の水平面207側の開口端から下方に向かって高速で噴出される。このように一次エアースリット202から一次エアーが高速で噴出されることで、紡糸ノズル部205の下端面の下方で減圧部分が生じ、この減圧によって紡糸ノズル201から押し出されたフィラメント211が振動する。 High temperature primary air is supplied to the primary air slit 202 from above, and the supplied primary air passes through the primary air slit 202 at a high speed downward from the opening end on the horizontal plane 207 side of the primary air slit 202. Erupted. Thus, the primary air is ejected from the primary air slit 202 at a high speed, so that a reduced pressure portion is generated below the lower end surface of the spinning nozzle portion 205, and the filament 211 pushed out from the spinning nozzle 201 is vibrated by this reduced pressure.
 さらに、エアー噴出部206には、高温の二次エアーを噴出する二次エアー噴出口204a,204bが形成されている。二次エアーは、一次エアースリット202から噴出された一次エアーによって振動するフィラメント211を広げて一方向に配列させるために噴出される。二次エアー噴出口204aは、斜面208aに開口形成されており、エアー噴出部206の内部に向かって斜面208aに対して垂直に延びている。同様に、二次エアー噴出口204bは、斜面208bに開口形成されており、エアー噴出部206の内部に向かって斜面208bに対して垂直に延びている。二次エアー噴出口204a,204bは、水平面207に直交すると共に紡糸ノズル201の中心線を通る平面に関して対称に配置されている。なお、二次エアー噴出口204a,204bの直径rは、任意に設定され得るが、1.5~5mmであるのが好ましい。また、本実施形態では、二次エアー噴出口204a,204bがそれぞれ二つずつ形成されているが、これに限られるものではなく、二次エアー噴出口204a,204bの数は任意に設定され得る。 Furthermore, the air ejection part 206 is formed with secondary air ejection ports 204a and 204b for ejecting high temperature secondary air. The secondary air is ejected in order to spread and arrange the filaments 211 that vibrate by the primary air ejected from the primary air slit 202 in one direction. The secondary air outlet 204a is formed in the inclined surface 208a and extends perpendicularly to the inclined surface 208a toward the inside of the air ejection portion 206. Similarly, the secondary air jet outlet 204b is formed in the slope 208b, and extends perpendicularly to the slope 208b toward the inside of the air ejection portion 206. The secondary air outlets 204 a and 204 b are arranged symmetrically with respect to a plane that is orthogonal to the horizontal plane 207 and that passes through the center line of the spinning nozzle 201. The diameter r of the secondary air outlets 204a and 204b can be arbitrarily set, but is preferably 1.5 to 5 mm. In the present embodiment, the secondary air outlets 204a and 204b are each formed in two, but the present invention is not limited to this, and the number of secondary air outlets 204a and 204b can be arbitrarily set. .
 二次エアー噴出口204a,204bのそれぞれからは、水平な方向よりも僅かに下向きに二次エアーが噴出される。そして、二次エアー噴出口204aから噴出された二次エアーと、二次エアー噴出口204bから噴出された二次エアーとは、紡糸ノズル201の下方で衝突してコンベアベルト219の幅方向に広がる。これにより、振動しながら落下するフィラメント211がコンベアベルト219の幅方向に広がる。 Secondary air is jetted slightly downward from the horizontal direction from each of the secondary air jet outlets 204a and 204b. The secondary air ejected from the secondary air ejection port 204a and the secondary air ejected from the secondary air ejection port 204b collide below the spinning nozzle 201 and spread in the width direction of the conveyor belt 219. . Thereby, the filament 211 falling while vibrating spreads in the width direction of the conveyor belt 219.
 また、紡糸ノズル部205を挟んでその両側には、紡糸ノズル201と平行に延びると共に水平面207に開口する複数の小孔203が形成されている。複数の小孔203は、紡糸ノズル201の中心線と直交する一直線上に一列に並んでおり、紡糸ノズル部205の二次エアー噴出口204a側と204b側とのそれぞれに同数(ここでは3つ)形成されている。複数の小孔203は、水平面207の開口端から高温のエアーを下方に向けて噴出するように構成されており、これにより、フィラメント211の紡糸が安定する。なお、小孔203の径qは、任意に設定され得るが、概ね1mm程度であるのが好ましい。また、各小孔203から噴出させる高温のエアーは、一次エアースリット202から噴出させるための一次エアーの発生源から導かれてもよいし、二次エアー噴出口204a,204bから噴出させるための二次エアーの発生源から導かれてもよい。あるいは、一次エアー及び二次エアーとは別の高温のエアーが各小孔203に供給されてもよい。 Also, a plurality of small holes 203 extending in parallel with the spinning nozzle 201 and opening in the horizontal plane 207 are formed on both sides of the spinning nozzle portion 205. The plurality of small holes 203 are arranged in a line on a straight line orthogonal to the center line of the spinning nozzle 201, and the same number (three in this case) is provided on each of the secondary air outlets 204a and 204b side of the spinning nozzle unit 205. ) Is formed. The plurality of small holes 203 are configured to eject high-temperature air downward from the open end of the horizontal plane 207, thereby stabilizing the spinning of the filament 211. The diameter q of the small hole 203 can be arbitrarily set, but is preferably about 1 mm. The high-temperature air ejected from each small hole 203 may be guided from a primary air generation source for ejecting from the primary air slit 202, or may be ejected from the secondary air ejection ports 204a and 204b. It may be derived from a source of secondary air. Alternatively, high-temperature air different from primary air and secondary air may be supplied to each small hole 203.
 さらに、紡糸ヘッド210とコンベアベルト219との間には、一対の冷却ノズル220が設けられている。本実施形態において、一方の冷却ノズル220は、紡糸ノズル201から紡出されたフィラメント211のコンベアベルト219の走行方向の上流側に配置され、他方の冷却ノズル220は、紡糸ノズル201から紡出されたフィラメント211のコンベアベルト219の走行方向の下流側の配置されている。各冷却ノズル220は、コンベアベルト219に到達する前のフィラメント211に霧状の水等を噴霧し、これにより、フィラメント211が冷却されて凝固する。なお、冷却ノズル220の数や配置は任意に設定され得る。 Furthermore, a pair of cooling nozzles 220 is provided between the spinning head 210 and the conveyor belt 219. In the present embodiment, one cooling nozzle 220 is disposed on the upstream side of the traveling direction of the conveyor belt 219 of the filament 211 spun from the spinning nozzle 201, and the other cooling nozzle 220 is spun from the spinning nozzle 201. The filament 211 is arranged on the downstream side in the traveling direction of the conveyor belt 219. Each cooling nozzle 220 sprays atomized water or the like on the filament 211 before reaching the conveyor belt 219, whereby the filament 211 is cooled and solidified. The number and arrangement of the cooling nozzles 220 can be set arbitrarily.
 凝固したフィラメント211は、コンベアベルト219の幅方向に配列されてコンベアベルと219上に集積され、これにより、複数のフィラメント211が幅方向に沿って配列された不織布ウェブ218がコンベアベルト219上に作製される。 The solidified filaments 211 are arranged in the width direction of the conveyor belt 219 and accumulated on the conveyor bell 219, whereby a nonwoven web 218 in which a plurality of filaments 211 are arranged in the width direction is formed on the conveyor belt 219. Produced.
 そして、コンベアベルト219上に作製された不織布ウェブ218は、コンベアベルト219によって図5(A)における矢印方向に搬送され、その後、図示省略の前記延伸装置によって横方向に3~6倍に延伸される。このようにして、前記横配列長繊維不織布が製造される。 The nonwoven web 218 produced on the conveyor belt 219 is conveyed in the direction of the arrow in FIG. 5A by the conveyor belt 219, and then stretched 3 to 6 times in the lateral direction by the stretching device (not shown). The In this way, the transversely aligned long fiber nonwoven fabric is manufactured.
 図7は、紡糸ヘッド210の変形例を示している。図7(A)は、変形例に係る紡糸ヘッド210の断面図であり、図7(B)は、変形例に係る紡糸ヘッド210を下側から見た図であり、図7(C)は、変形例に係る紡糸ヘッド210の図7(A)に対して垂直な方向の断面図である。 FIG. 7 shows a modification of the spinning head 210. 7A is a cross-sectional view of a spinning head 210 according to a modified example, FIG. 7B is a view of the spinning head 210 according to the modified example as viewed from below, and FIG. FIG. 8 is a cross-sectional view of a spinning head 210 according to a modified example in a direction perpendicular to FIG. 7A.
 図7(A)~(C)に示されるように、変形例に係る紡糸ヘッド210においては、複数の小孔203が紡糸ノズル部205(紡糸ノズル201)を円形に囲むように配置されている。各小孔203は、水平面に対して僅かに傾斜して形成されており、各小孔203からは、図7(B)における矢印方向に高温のエアーが噴出される。このような複数の小孔203から高温のエアーを噴出させることによってもフィラメント211の紡糸が安定する。 As shown in FIGS. 7A to 7C, in the spinning head 210 according to the modification, a plurality of small holes 203 are arranged so as to surround the spinning nozzle portion 205 (spinning nozzle 201) in a circle. . Each small hole 203 is formed to be slightly inclined with respect to the horizontal plane, and high temperature air is ejected from each small hole 203 in the direction of the arrow in FIG. The spinning of the filament 211 is also stabilized by ejecting high-temperature air from such a plurality of small holes 203.
 上述のように、製造された横配列長繊維不織布を構成するフィラメントの平均繊維径は1~4μm(好ましくは、2~3μm)であり、製造された縦配列長繊維不織布18を構成するフィラメントの繊維径分布の変動係数は0.1~0.3である。また、製造された横配列長繊維不織布は、繊維の方向、すなわち、長繊維フィラメントの軸方向であり且つ延伸方向である横方向に若干の伸縮性を有するものであり得る。また、製造された横配列長繊維不織布の横方向への引張強度は、5N/50mm以上、好ましくは10N/50mm以上、さらに好ましくは20N/50mm以上である。 As described above, the average fiber diameter of the filaments constituting the manufactured transversely arranged long fiber nonwoven fabric is 1 to 4 μm (preferably 2 to 3 μm). The variation coefficient of the fiber diameter distribution is 0.1 to 0.3. Moreover, the produced transversely arranged long fiber nonwoven fabric may have some elasticity in the fiber direction, that is, the axial direction of the long fiber filaments and the transverse direction which is the stretching direction. Moreover, the tensile strength in the transverse direction of the produced transversely arranged long fiber nonwoven fabric is 5 N / 50 mm or more, preferably 10 N / 50 mm or more, more preferably 20 N / 50 mm or more.
[直交配列不織布]
 直交配列不織布は、基本的には、(1)前記縦配列長繊維不織布と前記横配列長繊維不織布とを積層し且つ融着して形成され、(2)二つの前記縦配列長繊維不織布のうちの一方を90°回転させて積層し且つ融着して形成され、又は、(3)二つの前記横配列長繊維不織布のうちの一方を90°回転させて積層し且つ融着して形成される。但し、これらに限られるものではなく、例えば、(4)前記縦配列長繊維不織布と、目付が前記横配列長繊維不織布と同等で且つ構成繊維の平均繊維径が前記横配列長繊維不織布のそれよりも大きい横配列長繊維不織布とを積層し且つ融着して形成されてもよい。なお、融着は、特に制限されるものではないが、一般的にはエンボスロール等を使用した熱圧着によって行われる。
[Orthogonal array nonwoven fabric]
The orthogonally aligned non-woven fabric is basically formed by (1) laminating and fusing the vertically aligned long-fiber non-woven fabric and the transversely-aligned long-fiber non-woven fabric, and (2) One of them is formed by laminating and fusing by 90 °, or (3) One of the two transversely arranged long fiber nonwoven fabrics is laminated by fusing by 90 ° and formed by fusing Is done. However, the present invention is not limited to these. For example, (4) the longitudinally-aligned long-fiber nonwoven fabric, the basis weight is the same as that of the laterally-aligned long-fiber nonwoven fabric, and the average fiber diameter of the constituent fibers is that of the laterally-aligned long-fiber nonwoven fabric. It may be formed by laminating and fusing a larger laterally aligned long fiber nonwoven fabric. The fusion is not particularly limited, but is generally performed by thermocompression using an embossing roll or the like.
[不織布積層体]
 前記不織布積層体は、基本的には、複数の前記縦配列長繊維不織布が厚さ方向に積み重ねられて構成され、複数の前記横配列長繊維不織布が厚さ方向に積み重ねられて構成され又は複数の前記直交配列不織布が厚さ方向に積み重ねられて構成され得る。但し、これらに限られるものではなく、前記不織布積層体は、前記縦配列長繊維不織布と前記横配列長繊維不織布と前記直交配列不織布との任意の組み合わせによっても構成され得る。
[Nonwoven fabric laminate]
The nonwoven fabric laminate is basically composed of a plurality of longitudinally aligned long fiber nonwoven fabrics stacked in the thickness direction, and a plurality of the horizontally aligned long fiber nonwoven fabrics stacked in the thickness direction, or a plurality The orthogonally arranged nonwoven fabrics may be stacked in the thickness direction. However, it is not restricted to these, The said nonwoven fabric laminated body may be comprised also by arbitrary combinations of the said longitudinally-arranged long-fiber nonwoven fabric, the said horizontal-arranged long-fiber nonwoven fabric, and the said orthogonally-arranged nonwoven fabric.
 以下、本発明による不織布製吸音材を実施例により説明する。但し、本発明は、以下の実施例によって限定されるものではない。 Hereinafter, the nonwoven fabric sound absorbing material according to the present invention will be described with reference to examples. However, the present invention is not limited to the following examples.
[長繊維不織布]
 図3に示された製造装置を用いて縦配列長繊維不織布を作製した。メルトブローダイスとしては、ノズル径が0.15mm、ノズルピッチが0.5mm、L/D(ノズル孔長/ノズル孔直径)=20、紡糸幅が500mmの紡糸ノズルを有するものを用い、これをコンベアベルトの走行方向と垂直に配置した。フィラメントの原料(熱可塑性樹脂)としては、固有粘度IVが0.53、融点が260℃のポリエチレンテレフタレート(CHUNG SHING TEXTILE CO.,LTD.)を用いた。1ノズル当たりの吐出量を40g/min、ダイスの温度を295℃として前記メルトブローダイスからフィラメントを押し出した。ノズルから押し出されたフィラメントにドラフトをかけて細径化するための高速気流は、温度を400℃、流量を0.4m/minとした。また、スプレーノズルからは霧状の水を噴霧してフィラメントを冷却した。気流振動機構は、メルトブローダイスのノズルの延長線との距離が最小で20mmとなるように配置した。気流振動機構を900rpm(気流振動機構の周壁面での振動数が15.0Hz)で回転させ、フィラメントを縦方向に沿って配列させた状態でコンベアベルト上に捕集した。コンベアベルト上に捕集されたフィラメントを延伸シリンダで加熱し、縦方向に4.5倍に延伸して縦配列長繊維不織布とした。そして、コンベアベルトの走行速度を適宜変化させることによって、目付が5~40g/mの縦配列長繊維不織布を得た。なお、ここでは、目付が5~40g/mの縦配列長繊維不織布を作製したが、コンベアベルトの走行速度を変化させることによって、目付が60g/mまでの縦配列長繊維不織布を作製できることが確認されている。
[Long fiber nonwoven fabric]
A longitudinally aligned long-fiber non-woven fabric was produced using the production apparatus shown in FIG. As the melt blow die, a nozzle having a nozzle diameter of 0.15 mm, a nozzle pitch of 0.5 mm, L / D (nozzle hole length / nozzle hole diameter) = 20, and a spinning width of 500 mm is used as a conveyor. It was arranged perpendicular to the belt running direction. Polyethylene terephthalate (CHUNG SHING TEXTILE CO., LTD.) Having an intrinsic viscosity IV of 0.53 and a melting point of 260 ° C. was used as the filament raw material (thermoplastic resin). The filament was extruded from the melt blow die at a discharge rate of 40 g / min per nozzle and a die temperature of 295 ° C. The high-speed airflow for reducing the diameter by drafting the filament extruded from the nozzle had a temperature of 400 ° C. and a flow rate of 0.4 m 3 / min. Further, the filament was cooled by spraying mist water from the spray nozzle. The air flow vibration mechanism was arranged so that the distance from the extension line of the nozzle of the melt blow die was a minimum of 20 mm. The airflow vibration mechanism was rotated at 900 rpm (frequency at the peripheral wall of the airflow vibration mechanism was 15.0 Hz), and the filaments were collected on the conveyor belt in a state of being arranged along the vertical direction. The filaments collected on the conveyor belt were heated with a drawing cylinder and drawn 4.5 times in the longitudinal direction to obtain a longitudinally arranged long fiber nonwoven fabric. Then, a longitudinally aligned long fiber nonwoven fabric having a basis weight of 5 to 40 g / m 2 was obtained by appropriately changing the running speed of the conveyor belt. Here, a longitudinally aligned long fiber nonwoven fabric having a basis weight of 5 to 40 g / m 2 was prepared, but a longitudinally aligned long fiber nonwoven fabric having a basis weight of up to 60 g / m 2 was prepared by changing the running speed of the conveyor belt. It has been confirmed that it can be done.
 得られた縦配列長繊維不織布の物性を図8に示す。また、目付が10g/mの縦配列長繊維不織布と目付が20g/mの縦配列長繊維不織布の繊維径分布を図9に示す。図9に示されるように、いずれの縦配列長繊維不織布においても、その繊維径分布の最頻値は約2.5μmであり、平均繊維径も約2.5μmであった。なお、作製時におけるコンベアベルトの走行速度が異なるだけであるので、繊維径分布の最頻値及び平均繊維径は、目付が5~60g/mの縦配列長繊維不織布についても図9とほぼ同じになると考えられる。 The physical properties of the obtained longitudinally aligned long fiber nonwoven fabric are shown in FIG. Moreover, the fiber diameter distribution of the longitudinally-aligned long-fiber nonwoven fabric having a basis weight of 10 g / m 2 and the longitudinally-aligned long-fiber nonwoven fabric having a basis weight of 20 g / m 2 is shown in FIG. As shown in FIG. 9, in any longitudinally aligned long fiber nonwoven fabric, the mode value of the fiber diameter distribution was about 2.5 μm, and the average fiber diameter was also about 2.5 μm. Since only the running speed of the conveyor belt at the time of production is different, the mode value and the average fiber diameter of the fiber diameter distribution are almost the same as those in FIG. 9 for the longitudinally aligned long fiber nonwoven fabric having a basis weight of 5 to 60 g / m 2 . It will be the same.
(実施例1)
 目付が15g/mの縦配列長繊維不織布を100枚積み重ねた不織布積層体を実施例1とした。具体的には、目付が15g/mの縦配列長繊維不織布を単に100枚積み重ねただけの不織布積層体(非圧縮状態の不織布積層体、厚さ:約12mm)を実施例1-1とし、実施例1-1に対して厚さ方向に圧縮した状態の積層体(圧縮状態の不織布積層体、厚さ:約8mm)を実施例1-2とした。
Example 1
A nonwoven fabric laminate obtained by stacking 100 vertically aligned long-fiber nonwoven fabrics having a basis weight of 15 g / m 2 was defined as Example 1. Specifically, Example 1-1 is a nonwoven fabric laminate (non-compressed nonwoven fabric laminate, thickness: about 12 mm) in which only 100 longitudinally aligned long-fiber nonwoven fabrics having a basis weight of 15 g / m 2 are stacked. A laminated body compressed in the thickness direction with respect to Example 1-1 (compressed nonwoven fabric laminated body, thickness: about 8 mm) was designated as Example 1-2.
(実施例2)
 目付が15g/mの縦配列長繊維不織布を200枚積み重ねた不織布積層体を実施例2とした。具体的には、目付が15g/mの縦配列長繊維不織布を単に200枚積み重ねただけの不織布積層体(非圧縮状態の不織布積層体、厚さ:約22mm)を実施例2-1とし、実施例2-1に対して厚さ方向に圧縮した状態の積層体(圧縮状態の不織布積層体、厚さ:約14mm)を実施例2-2とした。
(Example 2)
A nonwoven fabric laminate in which 200 longitudinally aligned long-fiber nonwoven fabrics having a basis weight of 15 g / m 2 were stacked was designated as Example 2. Specifically, Example 2-1 is a nonwoven fabric laminate (non-compressed nonwoven fabric laminate, thickness: about 22 mm) obtained by simply stacking 200 longitudinally aligned long-fiber nonwoven fabrics having a basis weight of 15 g / m 2. A laminated body compressed in the thickness direction with respect to Example 2-1 (compressed nonwoven fabric laminated body, thickness: about 14 mm) was designated as Example 2-2.
(実施例3)
 目付が20g/mの縦配列長繊維不織布を複数枚積み重ねた不織布積層体を実施例3とした。具体的には、目付が20g/mの縦配列長繊維不織布を50枚積み重ねた不織布積層体を実施例3-1とし、目付が20g/mの縦配列長繊維不織布を100枚積み重ねた不織布積層体を実施例3-2とし、目付が20g/mの縦配列長繊維不織布を200枚積み重ねた不織布積層体を実施例3-3とした。
(Example 3)
A nonwoven fabric laminate in which a plurality of longitudinally aligned long fiber nonwoven fabrics having a basis weight of 20 g / m 2 was stacked was designated as Example 3. Specifically, a nonwoven fabric laminate in which 50 vertically aligned long fiber nonwoven fabrics having a basis weight of 20 g / m 2 were stacked was used as Example 3-1, and 100 vertically aligned long fiber nonwoven fabrics having a basis weight of 20 g / m 2 were stacked. A nonwoven fabric laminate was designated as Example 3-2, and a nonwoven fabric laminate comprising 200 longitudinally aligned long fiber nonwoven fabrics having a basis weight of 20 g / m 2 was designated as Example 3-3.
(比較例、参考例)
 市販の不織布製吸音材(3M社製、商品名「シンサレート」,TAI-2047,目付:200g/m,厚さ:10mm)を比較例とした。また、目付が20g/mの縦配列長繊維不織布を20枚積み重ねた不織布積層体を参考例とした。
(Comparative example, reference example)
A commercially available non-woven acoustic material (manufactured by 3M, trade name “Synsalate”, TAI-2047, basis weight: 200 g / m 2 , thickness: 10 mm) was used as a comparative example. Moreover, the nonwoven fabric laminated body which laminated | stacked 20 longitudinally-aligned long fiber nonwoven fabrics with a fabric weight of 20 g / m < 2 > was made into the reference example.
[吸音試験]
 日本音響エンジニアリング社製の垂直入射吸音率測定システムWinZacMTXを用いて、実施例1、実施例2、実施例3、参考例及び比較例のそれぞれについてJIS A1405-2に規定されている垂直入射吸音率を測定した。図10は、実施例1と比較例の垂直入射吸音率の測定結果を示し、図11は、実施例2と比較例の垂直入射吸音率の測定結果を示し、図12は、実施例3、参考例及び比較例の垂直入射吸音率の測定結果を示す。なお、図10及び図11における比較例の測定結果と図12における比較例の測定結果とがわずかに異なっているが、これはシステムの測定ばらつきによるものである。
[Sound absorption test]
Using a normal incident sound absorption coefficient measurement system WinZacMTX manufactured by Nippon Acoustic Engineering Co., Ltd., normal incident sound absorption coefficient defined in JIS A1405-2 for each of Example 1, Example 2, Example 3, Reference Example and Comparative Example Was measured. FIG. 10 shows the measurement results of the normal incident sound absorption coefficient of Example 1 and the comparative example, FIG. 11 shows the measurement results of the normal incident sound absorption coefficient of Example 2 and the comparative example, and FIG. The measurement result of the normal incidence sound absorption coefficient of a reference example and a comparative example is shown. Although the measurement results of the comparative example in FIGS. 10 and 11 and the measurement result of the comparative example in FIG. 12 are slightly different, this is due to measurement variations in the system.
 図10に示されるように、実施例1(実施例1-1、1-2)は、概ね4000Hz以下の所定の周波数帯域において比較例に比べて垂直入射吸音率が高く、図11に示されるように、実施例2(実施例2-1、2-2)は、概ね3000Hz以下の所定の周波数帯域において比較例に比べて垂直入射吸音率が高い。また、図12に示されるように、実施例3(実施例3-1、3-2、3-2)は、概ね2000Hz以下の所定の周波数帯域において比較例に比べて垂直入射吸音率が高いことが確認された。 As shown in FIG. 10, Example 1 (Examples 1-1 and 1-2) has a higher normal incident sound absorption coefficient than the comparative example in a predetermined frequency band of approximately 4000 Hz or less, and is shown in FIG. Thus, Example 2 (Examples 2-1 and 2-2) has a higher normal incident sound absorption coefficient than the comparative example in a predetermined frequency band of approximately 3000 Hz or less. Also, as shown in FIG. 12, Example 3 (Examples 3-1, 3-2, 3-2) has a higher normal incident sound absorption coefficient than the comparative example in a predetermined frequency band of approximately 2000 Hz or less. It was confirmed.
 また、図10~図12に示されるように、実施例1~3は、いずれも2000Hz以下の周波数において垂直入射吸音率が50%以上である垂直入射吸音率のピークを有することが確認された。具体的には、実施例1は、900~2000Hzに垂直入射吸音率が50%以上である垂直入射吸音率のピークを有し、実施例2は、400~1000Hzに垂直入射吸音率が50%以上である垂直入射吸音率のピークを有し、実施例3は、300~2000Hzに垂直入射吸音率が50%以上である垂直入射吸音率のピークを有することが確認された。 Further, as shown in FIGS. 10 to 12, it was confirmed that all of Examples 1 to 3 had a peak of normal incident sound absorption coefficient with a normal incident sound absorption coefficient of 50% or more at a frequency of 2000 Hz or less. . Specifically, Example 1 has a peak of the normal incident sound absorption coefficient that is 50% or more from 900 to 2000 Hz, and Example 2 has a normal incident sound absorption coefficient of 50% from 400 to 1000 Hz. It was confirmed that the peak of the normal incident sound absorption coefficient was as described above, and Example 3 had a peak of the normal incident sound absorption coefficient at a normal incident sound absorption coefficient of 50% or more at 300 to 2000 Hz.
 さらに、図12に示されるように、前記不織布積層体を構成する前記縦配列長繊維不織布の枚数(積層枚数)が多いほど、垂直入射吸音率のピークが低周波数側にシフトすること、及び、より狭い周波数範囲においてより高い垂直入射吸音率が得られることが確認された。したがって、例えば、吸音すべき音の周波数をあらかじめ測定し、測定された周波数に応じて不織布積層体を構成する縦配列長繊維不織布の枚数などを調整することによって、個別に最適な吸音材を形成することも可能である。 Furthermore, as shown in FIG. 12, as the number of the longitudinally aligned long fiber nonwoven fabrics constituting the nonwoven fabric laminate (the number of laminated layers) increases, the peak of the normal incident sound absorption coefficient shifts to the low frequency side, and It was confirmed that a higher normal incidence sound absorption coefficient can be obtained in a narrower frequency range. Therefore, for example, by measuring the frequency of the sound to be absorbed in advance and adjusting the number of longitudinally aligned long-fiber nonwoven fabrics constituting the nonwoven fabric laminate according to the measured frequency, the optimum sound absorbing material is individually formed. It is also possible to do.
 本発明による吸音材用不織布を含む吸音材は、様々な場所において使用され得る。例えば、本発明による吸音材用不織布を含む吸音材は、自動車のエンジンルーム用吸音材や内装用吸音材として、自動車や家電製品や各種モータなどの吸音保護材として、各種建築物の壁、床又は天井などに設置される吸音材として、機械室などの内装用吸音材として、各種防音壁の吸音材として、及び/又は、コピー機や複合機などのOA機器用の吸音材として、使用され得る。 The sound absorbing material including the nonwoven fabric for sound absorbing material according to the present invention can be used in various places. For example, the sound absorbing material including the nonwoven fabric for sound absorbing material according to the present invention is used as a sound absorbing material for automobile engine rooms and a sound absorbing material for interiors, as a sound absorbing protective material for automobiles, home appliances, various motors, etc. Or as a sound absorbing material installed on the ceiling, etc., as a sound absorbing material for interiors of machine rooms, etc., as a sound absorbing material for various soundproof walls, and / or as a sound absorbing material for office automation equipment such as copying machines and multifunction devices. obtain.
 51              長繊維不織布
 52              不織布積層体
 53              包装体
 
51 Long-fiber nonwoven fabric 52 Non-woven fabric laminate 53 Packaging

Claims (11)

  1.  延伸され且つ一方向に沿って配列された複数の長繊維フィラメントを有した長繊維不織布が複数積み重ねられた不織布積層体を含み、前記複数の長繊維フィラメントの繊維径分布の最頻値が1~4μmにある、不織布製吸音材。 A non-woven fabric laminate in which a plurality of long-fiber non-woven fabrics having a plurality of long-fiber filaments stretched and arranged along one direction are stacked, and the mode of fiber diameter distribution of the plurality of long-fiber filaments is 1 to Non-woven sound absorbing material at 4 μm.
  2.  前記複数の長繊維フィラメントの延伸倍率が3~6倍であり、前記複数の長繊維フィラメントの平均繊維径が1~4μmであり、前記複数の長繊維フィラメントの繊維径分布の変動係数が0.1~0.3である、請求項1に記載の不織布製吸音材。 The draw ratio of the plurality of long fiber filaments is 3 to 6 times, the average fiber diameter of the plurality of long fiber filaments is 1 to 4 μm, and the variation coefficient of the fiber diameter distribution of the plurality of long fiber filaments is 0. The sound absorbing material made of nonwoven fabric according to claim 1, wherein the sound absorbing material is 1 to 0.3.
  3.  前記長繊維不織布の目付が5~60g/mである、請求項1に記載の不織布製吸音材。 The nonwoven fabric sound-absorbing material according to claim 1, wherein the basis weight of the long-fiber nonwoven fabric is 5 to 60 g / m 2 .
  4.  前記長繊維不織布の厚さを前記長繊維不織布の目付で除算した値である前記長繊維不織布の比容積が2.0~3.5(cm/g)である、請求項3に記載の不織布製吸音材。 The specific volume of the long-fiber nonwoven fabric, which is a value obtained by dividing the thickness of the long-fiber nonwoven fabric by the basis weight of the long-fiber nonwoven fabric, is 2.0 to 3.5 (cm 3 / g). Non-woven sound absorbing material.
  5.  前記複数の長繊維フィラメントの延伸方向における前記長繊維不織布の引張強度が20N/mm以上である、請求項1に記載の不織布製吸音材。 The nonwoven fabric sound-absorbing material according to claim 1, wherein a tensile strength of the long-fiber nonwoven fabric in the stretching direction of the plurality of long-fiber filaments is 20 N / mm or more.
  6.  前記長繊維不織布の通気度が5~250cm/cm/sである、請求項1に記載の不織布製吸音材。 The nonwoven fabric sound-absorbing material according to claim 1, wherein the long-fiber nonwoven fabric has an air permeability of 5 to 250 cm 3 / cm 2 / s.
  7.  前記不織布積層体は、50~200枚の前記長繊維不織布が積み重ねられて構成されている、請求項1に記載の不織布製吸音材。 The nonwoven fabric sound-absorbing material according to claim 1, wherein the nonwoven fabric laminate is formed by stacking 50 to 200 pieces of the long-fiber nonwoven fabric.
  8.  2000Hz以下の周波数に垂直入射吸音率のピークがあり、当該ピークにおける垂直入射吸音率が50%以上である、請求項1に記載の不織布製吸音材。 The nonwoven fabric sound-absorbing material according to claim 1, wherein there is a peak of the normal incident sound absorption coefficient at a frequency of 2000 Hz or less, and the normal incident sound absorption coefficient at the peak is 50% or more.
  9.  前記複数の長繊維フィラメントのそれぞれは、ポリエステル又はポリプロピレンを主成分とする長繊維フィラメントである、請求項1に記載の不織布製吸音材。 The nonwoven fabric sound-absorbing material according to claim 1, wherein each of the plurality of long fiber filaments is a long fiber filament mainly composed of polyester or polypropylene.
  10.  前記ポリエステルは、固有粘土IVが0.43~0.63のポリエチレンテレフタレートである、請求項9に記載の不織布製吸音材。 The nonwoven fabric sound absorbing material according to claim 9, wherein the polyester is polyethylene terephthalate having an intrinsic clay IV of 0.43 to 0.63.
  11.  前記長繊維不織布は、延伸され且つ前記一方向に直交する方向に沿って配列された複数の第2の長繊維フィラメントをさらに有する、請求項1に記載の不織布製吸音材。 The nonwoven fabric sound-absorbing material according to claim 1, wherein the long-fiber nonwoven fabric further includes a plurality of second long-fiber filaments that are stretched and arranged along a direction orthogonal to the one direction.
PCT/JP2017/042684 2016-11-28 2017-11-28 Sound absorbing material comprising non-woven fabric WO2018097327A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/462,761 US20200058282A1 (en) 2016-11-28 2017-11-28 Nonwoven Sound Absorbing Material
CN201780073216.2A CN109997184A (en) 2016-11-28 2017-11-28 The fabric sound-absorbing material of nonwoven
EP17873487.7A EP3547306B1 (en) 2016-11-28 2017-11-28 Sound absorbing material comprising non-woven fabric

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-230411 2016-11-28
JP2016230411 2016-11-28
JP2017154344A JP6968614B2 (en) 2016-11-28 2017-08-09 Non-woven sound absorbing material
JP2017-154344 2017-08-09

Publications (1)

Publication Number Publication Date
WO2018097327A1 true WO2018097327A1 (en) 2018-05-31

Family

ID=62196064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042684 WO2018097327A1 (en) 2016-11-28 2017-11-28 Sound absorbing material comprising non-woven fabric

Country Status (1)

Country Link
WO (1) WO2018097327A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334867A (en) * 1999-05-31 2000-12-05 Nippon Petrochem Co Ltd Laminate, structure having the same, production of the laminate, and production of the structure
JP2004076237A (en) * 2002-08-22 2004-03-11 Nippon Petrochemicals Co Ltd Reinforced drawn nonwoven fabric
JP2008036880A (en) * 2006-08-02 2008-02-21 Daiwabo Co Ltd Laminated nonwoven fabric, gelled sheet and filler fixed sheet
JP2009275801A (en) * 2008-05-14 2009-11-26 Nippon Oil Corp Vacuum insulation material and its manufacturing method
JP2011246839A (en) * 2010-05-26 2011-12-08 Jx Nippon Anci Corp Unidirectionally stretchable substrate and composite stretchable sheet, and method for producing them
JP2015028230A (en) 2013-06-27 2015-02-12 アンビック株式会社 Sound absorber made of nonwoven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334867A (en) * 1999-05-31 2000-12-05 Nippon Petrochem Co Ltd Laminate, structure having the same, production of the laminate, and production of the structure
JP2004076237A (en) * 2002-08-22 2004-03-11 Nippon Petrochemicals Co Ltd Reinforced drawn nonwoven fabric
JP2008036880A (en) * 2006-08-02 2008-02-21 Daiwabo Co Ltd Laminated nonwoven fabric, gelled sheet and filler fixed sheet
JP2009275801A (en) * 2008-05-14 2009-11-26 Nippon Oil Corp Vacuum insulation material and its manufacturing method
JP2011246839A (en) * 2010-05-26 2011-12-08 Jx Nippon Anci Corp Unidirectionally stretchable substrate and composite stretchable sheet, and method for producing them
JP2015028230A (en) 2013-06-27 2015-02-12 アンビック株式会社 Sound absorber made of nonwoven fabric

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3547306A4 *

Similar Documents

Publication Publication Date Title
US6524521B1 (en) Method of and apparatus for manufacturing longitudinally aligned nonwoven fabric
JP4233181B2 (en) Method and apparatus for producing a horizontally arranged web
JP5894598B2 (en) Method and apparatus for producing fibers, in particular for producing fiber-containing nonwovens
JP6968614B2 (en) Non-woven sound absorbing material
CN110753613B (en) Sound-absorbing material
WO2018097326A1 (en) Nonwoven fabric for sound-absorbing material and sound-absorbing material using same
JP4495871B2 (en) Method and apparatus for producing a laterally aligned web
JP2018092131A (en) Sound absorbing nonwoven fabric and sound absorbing material including the same
JP6694241B2 (en) Stretchable long-fiber non-woven fabric
WO2018097327A1 (en) Sound absorbing material comprising non-woven fabric
JP6716380B2 (en) Long fiber non-woven fabric
JP4334342B2 (en) Filament drawing jet apparatus and method
JP2002110132A (en) Nonwoven fabric for battery separator
JP2006296463A (en) Ground fabric for curtain, and curtain
JP7333189B2 (en) sound absorbing material
JP7427435B2 (en) Long fiber nonwoven fabric
WO2017068811A1 (en) Nanofiber nonwoven cloth and sound-absorbing member using same
JP7419637B2 (en) Melt-blown nonwoven fabric and its manufacturing method
JP2019001005A (en) Composite unwoven fabric
JP2010222756A (en) Twisted yarn and yarn and manufacturing method of the same
JP2020121289A (en) Network structure for dust collection
JP2003278070A (en) Method and machine for producing web with unidirectionally arranged filaments
JP2003286653A (en) Method and machine for producing web with unidirectionally arranged filaments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017873487

Country of ref document: EP

Effective date: 20190628