WO2018090742A1 - 一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法 - Google Patents

一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法 Download PDF

Info

Publication number
WO2018090742A1
WO2018090742A1 PCT/CN2017/104413 CN2017104413W WO2018090742A1 WO 2018090742 A1 WO2018090742 A1 WO 2018090742A1 CN 2017104413 W CN2017104413 W CN 2017104413W WO 2018090742 A1 WO2018090742 A1 WO 2018090742A1
Authority
WO
WIPO (PCT)
Prior art keywords
containing composite
composite reagent
iron
water
selenate
Prior art date
Application number
PCT/CN2017/104413
Other languages
English (en)
French (fr)
Inventor
潘丙才
单超
杨喆
贾会超
陈佳佳
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2018090742A1 publication Critical patent/WO2018090742A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/106Selenium compounds

Definitions

  • the invention belongs to the technical field of water treatment, and more particularly to a suspended liquid iron-containing composite reagent, a preparation method thereof and a method for efficiently removing selenate in water.
  • Selenium is an essential trace element in the human body and participates in various life activities of the human body. On the other hand, excessive intake of selenium by the human body can lead to acute or chronic poisoning. Since the safety range between the physiologically required dose of selenium and the toxic dose is too narrow, the human body is easily ingested with excessive selenium and is poisoned. Water is an important source of selenium in humans, animals and plants. The first, second and third levels of selenium in China's current comprehensive wastewater discharge standards are 0.1, 0.2, 0.5 mg/L, drinking water, I-III. The selenium limit of surface water and groundwater I-III is 10 ⁇ g/L.
  • the content of selenium in the wastewater of ore mining wastewater, smelting wastewater, and toner cartridges can be as high as several hundred mg/L, and contains a variety of high-concentration coexisting ions, which must be deeply treated before discharge to meet strict standard limits. High difficulty.
  • Selenite tetravalent selenium
  • hexavalent selenium selenium
  • Selenite can be fixed with a stable inner layer ligand formed by an adsorbent such as iron oxide, and selenate usually forms an outer coordination complex on the surface of the adsorbent by electrostatic adsorption, which is not Stable, in the presence of a large number of high concentrations of other ions, selenate is easily desorbed and re-enters into the water. Therefore, selenate is more difficult to remove from water than selenite.
  • One of the objects of the present invention is to provide a suspended liquid state in view of the problems of the conventional selenate removal method in water, such as cumbersome operation, low netting efficiency, low efficiency under high salt conditions, especially high concentration of sulfate coexisting.
  • Iron-containing composite reagent prepared by using hydrogen peroxide solution and zero-valent iron powder, including solid phase, liquid phase and colloidal phase, containing various reducing active components, such as new ecological ferrous materials, structural ferrous substances And triiron tetroxide, etc., can effectively improve the electron transfer efficiency, promote the removal of selenate through the reduction route, and synergistically play the role of adsorption, reduction, flocculation, coprecipitation, nano-effects, etc. to quickly and efficiently remove selenate from water. .
  • the present invention provides a preparation method which is prepared by adjusting the pH of the hydrogen peroxide solution, the dosage of the zero-valent iron powder, and controlling the reaction conditions.
  • Another object of the present invention is to provide a method for removing selenate in water which is efficient, low-cost, simple and environmentally friendly, and a suspended liquid iron-containing composite reagent prepared by a specific method and water.
  • the selenate action has high removal efficiency, simple solid-liquid separation in the later stage, no secondary pollution, and effluent can be directly discharged. It is especially suitable for various selenium-containing high-salt wastewaters such as smelting.
  • the wastewater conductivity is more than 5000 ⁇ S/cm. Remove selenate.
  • the present invention provides a preparation method of a suspended liquid iron-containing composite reagent, the steps of which are as follows:
  • step 2) the pH of the hydrogen peroxide solution is adjusted to 0.7 to 3.2.
  • the mass percentage of the zero-valent iron powder and the solution added in the step 3) is 1% to 5%.
  • the particle size of the zero-valent iron powder in the step 3) is between 15 and 300 mesh.
  • reaction temperature in the step 3 is 4 to 50 ° C, and the reaction time is between 10 min and 6 h.
  • the suspension liquid iron-containing composite reagent prepared by the above method comprises a solid phase, a liquid phase and a colloidal phase; wherein, the mass ratio of Fe 0 in the solid phase component is 20% to 80%, and the pH of the liquid phase is 4.0. Between -6.5, the colloidal particle size in the colloidal phase ranges from 5 to 100 nm.
  • the residual hydrogen peroxide concentration in the suspended liquid iron-containing composite reagent is less than 2 mg/L, and the Fe 2+ concentration is in the range of 200 to 4000 mg/L.
  • step 2) the suspended liquid iron-containing composite reagent is mixed with the water to be treated by stirring or shaking.
  • step 3 solid-liquid separation is carried out by means of external magnetic field separation or sand filtration or membrane filtration.
  • the suspended liquid iron-containing composite reagent prepared by the technical scheme can efficiently remove the selenate which is difficult to be efficiently removed by the conventional adsorbent and the water treatment material, especially under the high salt condition, and the zero-valent iron used in the invention is other than the reduced iron powder reagent.
  • Ordinary industrial iron powder, iron sand or iron filings can also be used.
  • the hydrogen peroxide used can be industrially pure and inexpensive, and the composite reagent can be prepared at room temperature. The time is short, the pH of the treated water has a wide adaptation range, no complicated facilities are required, and only low-intensity stirring is required.
  • the actual industrial wastewater containing selenate is treated by the prepared iron-containing composite reagent, which is not only high in hexavalent selenium (187 mg/L), but also has a large amount of high concentration of anions (such as SO 4 2 ).
  • anions such as SO 4 2 .
  • the iron-containing composite reagent prepared by using this technical scheme can still reduce the concentration of selenium in water to below 0.5mg / L, reaching the industrial discharge standard, which is a strong proof.
  • the efficiency of the method is novel, high-efficiency, low in cost, simple in operation, wide in sewage range, environmentally friendly, and has good application prospects.
  • the invention prepares a suspended liquid iron-containing composite reagent by using zero-valent iron powder, water, hydrogen peroxide and hydrochloric acid as raw materials, and can be synergistically exerted adsorption, reduction, flocculation and coprecipitation in the water containing selenate.
  • the nano-effects can quickly and efficiently remove selenate from water.
  • the reagents added in this method are clean, simple and rapid to prepare, and have high netting efficiency. They can work effectively even when other ions such as sulfate coexist in high concentration. Have a good prospect of practical application;
  • the suspended liquid iron-containing composite reagent provided by the invention has the advantages of simple preparation method and low raw material cost, and the composite reagent contains a plurality of reducing active components, such as a new ecological ferrous substance, a structural ferrous substance, Ferric oxide, etc., can effectively improve the efficiency of electron transfer and promote the removal of selenic acid through the reduction route;
  • the iron-containing composite reagent of the invention has a rich colloidal phase, and the particles distributed in the range of 5 to 100 nm have a nano-effect, and have high mass transfer efficiency with the solution, and have certain adsorption and flocculation effects;
  • the present invention provides an efficient, low-cost, simple and environmentally friendly method for removing selenate from water, especially for high-salt wastewater (electrical conductivity greater than 5000 ⁇ S/cm), especially suitable for various types of smelting.
  • the selenium-containing high-salt wastewater can work effectively even when a high concentration of sulfate and other anions coexist, and can be applied to selenium-containing industrial wastewater with complex water quality components, and the existing selenium removal technology is often inefficient for high-salt wastewater;
  • the method for removing selenate in water provided by the invention has the advantages of simple operation, simple solid-liquid separation in the later stage and low cost;
  • the preparation process of the iron-containing composite reagent in the invention is flexible, and each parameter can be adjusted and optimized according to the situation of the selenium-containing wastewater; the iron-containing composite reagent is harmless to the environment, environmentally friendly, no secondary pollution, and the effluent can be directly discharged.
  • the iron-containing composite reagent can be reused after separation and recovery.
  • Preparation of suspended liquid iron-containing composite reagent Add 50 mL of ultrapure water, 1.00 mL of hydrogen peroxide solution (H 2 O 2 mass fraction 30%) in a 100 mL Erlenmeyer flask, adjust the pH to 1.0 with hydrochloric acid, and add 1.00 g to reduce Iron powder, the Erlenmeyer flask was placed in a shaker and shaken at 25 ° C for 30 minutes at 250 rpm.
  • the iron-containing composite reagent prepared in this embodiment exists in a suspended liquid form, including a solid phase, a liquid phase and a colloid phase, wherein the components are very complicated, including but not limited to triiron tetroxide, fibrite, ferrihydrite, Hematite, goethite, iron hydroxide, ferrous hydroxide, ferrous oxide, etc., may also have a fine structure; among them, Fe 0 in the solid phase component accounts for 58% by mass, and the liquid phase pH is 5.6.
  • the colloidal particle size ranged from 5 to 100 nm in the colloidal phase; residual hydrogen peroxide (less than 0.02 mg/L) was not detected in the suspended liquid iron-containing composite reagent, and the Fe 2+ concentration was 2172 mg/L.
  • Suspended liquid iron-containing composite reagent removes selenate from water in the presence of high concentration of sulfate
  • the prepared suspended liquid iron-containing composite reagent comprises a solid phase, a liquid phase and a colloidal phase; wherein, the solid phase component has a mass ratio of Fe 0 of 76%, a liquid phase pH of 4.6, and a colloidal particle size range in the colloidal phase. It is 5 to 100 nm; the residual hydrogen peroxide concentration in the suspended liquid iron-containing composite reagent is 0.4 mg/L, and the Fe 2+ concentration is 2390 mg/L.
  • the Se concentration was lowered to 0.5 mg/L or less at 8 hours, and the above results showed the high-efficiency removal ability of the present invention for the selenium salt in water in the presence of a high concentration of sulfate.
  • Suspended liquid iron-containing composite reagent removes selenate from water in the presence of high concentration of nitrate
  • the prepared suspended liquid iron-containing composite reagent comprises a solid phase, a liquid phase and a colloidal phase; wherein, the solid phase component has a mass ratio of Fe 0 of 76%, a liquid phase pH of 4.6, and a colloidal particle size range in the colloidal phase. It is 5 to 100 nm; the residual hydrogen peroxide concentration in the suspended liquid iron-containing composite reagent is 0.4 mg/L, and the Fe 2+ concentration is 2390 mg/L.
  • the Se concentration was lowered to 0.5 mg/L or less at 1 h, and the above results showed the high-efficiency removal ability of the present invention for the selenium salt in water in the presence of a high concentration of nitrate.
  • Suspended liquid iron-containing composite reagent removes selenate from water in the presence of high concentration of chloride ions
  • the prepared suspended liquid iron-containing composite reagent comprises a solid phase, a liquid phase and a colloidal phase; wherein, the solid phase component has a mass ratio of Fe 0 of 76%, a liquid phase pH of 4.6, and a colloidal particle size range in the colloidal phase. It is 5 to 100 nm; the residual hydrogen peroxide concentration in the suspended liquid iron-containing composite reagent is 0.4 mg/L, and the Fe 2+ concentration is 2390 mg/L.
  • the Se concentration was lowered to 0.5 mg/L or less at 2 hours, and the above results showed the high-efficiency removal ability of the present invention for the selenium salt in water in the presence of high concentration of chloride ions.
  • the wastewater to be treated comes from a smelting enterprise, and its Se(VI) concentration is as high as 187 mg/L, and the coexisting anion concentration is also extremely high.
  • the concentration of SO 4 2- is 11.0 g/L, and the concentration of Cl - is 6.2 g/L, so it is impossible to use conventional It is removed by ion exchange or adsorption, but a good removal effect is obtained by the treatment method of the present invention.
  • the prepared suspended liquid iron-containing composite reagent comprises a solid phase, a liquid phase and a colloidal phase; wherein the solid phase component has a mass ratio of Fe 0 of 52%, a liquid phase pH of 5.0, and a colloidal particle size range in the colloidal phase. It is 5 to 100 nm; no residual hydrogen peroxide (less than 0.02 mg/L) is detected in the suspended liquid iron-containing composite reagent, and the Fe 2+ concentration is 360 mg/L.
  • the Se concentration was reduced to less than 10 mg/L in 5 hours, and the water ef was not detected in 7 hours, and it was found that although the Se(VI) in the industrial wastewater was as high as 187 mg/L, there were other highs.
  • the concentration of anions coexists, but the present invention exhibits an efficient removal of Se(VI) and good applicability to high salt actual wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种悬浊液态含铁复合试剂的制备方法,其步骤为:(1)稀释过氧化氢溶液;(2)用盐酸调节稀释后的过氧化氢溶液的pH值;(3)加入零价铁粉反应,得到悬浊液态含铁复合试剂,其中过氧化氢与零价铁的摩尔比在0.2~0.8之间。还公开了一种悬浊液态含铁复合试剂及一种去除水中硒酸盐的方法。

Description

一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法 技术领域
本发明属于水处理技术领域,更具体地说,涉及一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法。
背景技术
硒是人体必需的微量元素,参与到人体的各项生命活动过程中,但另一方面,人体摄入过量的硒则会导致急性或慢性中毒。由于硒的生理所需摄入剂量与中毒剂量之间的安全范围太过狭窄,使得人体很容易摄入过量的硒而中毒。水是人类和动植物摄入硒的重要来源,我国现行的污水综合排放标准中硒的一、二、三级排放标准分别为0.1、0.2、0.5mg/L,生活饮用水、I~III类地表水和I~III类地下水中硒限值均为10μg/L。矿石采选废水、冶炼废水、硒鼓感光元件车间废水中硒含量可高达数百mg/L,同时含有多种高浓度的共存离子,在排放前需经过深度处理以达到严格的标准限值,处理难度大。
水中可溶态硒的主要形态为四价硒(亚硒酸盐)与六价硒(硒酸盐)。亚硒酸盐可以与铁氧化物等吸附剂形成稳定的内层配位体被固定,而硒酸盐通常以静电吸附作用在吸附剂表面形成外层配位络合物,这种作用并不稳定,在大量高浓度其他离子共存条件下,硒酸盐极易脱附下来再次进入水中。因此,硒酸盐相比于亚硒酸盐更加难以从水中去除。
当前去除水中的硒酸盐的方法主要包括离子交换法、吸附法、反渗透法和化学还原法等。离子交换和吸附法对硒酸盐选择性差,当水中含有多种共存离子尤其是高浓度硫酸根时会严重干扰硒的离子交换或吸附,去除率很低,难 以满足严格的水质标准。反渗透法具有效率高、占地小的优点,适合处理小体积的特种含硒废水,反渗透法存在高能耗、高成本的缺点使其难以用于大规模去除含硒工业废水,同时,反渗透过程中产生的高浓度硒废液仍然需要进一步处理。化学还原法处理硒酸盐较为有效,但需慎重选择环境友好的还原剂避免二次污染。零价铁作为一种廉价、具有高还原活性且环境友好的材料,已被广泛用于去除硒酸盐等各类水体污染物。但是,单纯的零价铁投入水中后表面会产生一层致密的钝化层,阻碍了零价铁与污染物的接触,钝化现象的存在限制了零价铁在环境修复中的应用。因此,虽然国内外有大量利用零价铁去除水中硒酸盐的相关报道,但是都存在着去除率低、零价铁的投量大、反应时间长的问题,去除硒酸盐效率低。
发明内容
针对现有的水中硒酸盐去除方法存在操作繁琐、净污效率低、在高盐条件下特别是高浓度硫酸根共存时效率低下等问题,本发明的目的之一是提供一种悬浊液态含铁复合试剂,采用过氧化氢溶液和零价铁粉制备得到,包括固相、液相和胶体相,含有多种还原活性组分,如新生态亚铁类物质、结构态亚铁类物质、四氧化三铁等,可有效提高电子传递效率,促进硒酸盐通过还原途径的去除,并可协同发挥吸附、还原、絮凝、共沉淀、纳米效应等作用快速高效去除水体中的硒酸盐。
针对上述的悬浊液态含铁复合试剂,本发明提供了一种制备方法,通过调节过氧化氢溶液的pH值、零价铁粉的投加量和控制反应条件制备得到。
本发明的另一目的是提供一种高效、低成本、简单易行且环境友好的去除水中硒酸盐的方法,采用特定方法制备得到的悬浊液态含铁复合试剂与水中 的硒酸盐作用,去除效率高,后期固液分离简单,无二次污染,出水可直接排放,特别适用于冶炼等各类含硒高盐废水,废水电导率大于5000μS/cm时仍可有效去除硒酸盐。
为了解决上述问题,本发明提供一种悬浊液态含铁复合试剂的制备方法,其步骤为:
1)稀释过氧化氢溶液;
2)用盐酸调节稀释后的过氧化氢溶液的pH值;
3)加入零价铁粉反应,得到所述的悬浊液态含铁复合试剂,其中过氧化氢与零价铁的摩尔比在0.2~0.8之间。
更进一步地,步骤2)中调节过氧化氢溶液的pH值至0.7~3.2。
更进一步地,步骤3)中投加的零价铁粉与溶液的质量百分比为1%~5%。
更进一步地,步骤3)中零价铁粉的粒度在15~300目之间。
更进一步地,步骤3)中反应温度为4~50℃,反应时间在10min~6h之间。
一种上述的方法制备得到的悬浊液态含铁复合试剂,包括固相、液相和胶体相;其中,固相成分中Fe0所占质量比为20%~80%,液相pH在4.0~6.5之间,胶体相中胶体颗粒粒径范围为5~100nm。
更进一步地,悬浊液态含铁复合试剂中残余过氧化氢浓度低于2mg/L,Fe2+浓度范围在200~4000mg/L。
一种高效去除水中硒酸盐的方法,采用上述的悬浊液态含铁复合试剂,其步骤为:
1)制备悬浊液态含铁复合试剂:按照上述的方法进行制备;
2)利用悬浊液态含铁复合试剂去除硒酸盐:将制备的悬浊液态含铁复合 试剂整体投加到待处理的含硒酸盐的水中,进行混合反应,直至水中硒酸盐浓度达到预期的浓度标准以下;
3)固液分离:将反应液进行固液分离,完成水中硒酸盐的去除。
更进一步地,步骤2)中通过搅拌或振摇的方式将悬浊液态含铁复合试剂与待处理水混合。
更进一步地,步骤3)中采用外加磁场分离或砂滤或膜滤的方式进行固液分离。
通过本技术方案制备的悬浊液态含铁复合试剂能够高效去除常规吸附剂、水处理材料尤其是高盐条件下难以高效去除的硒酸盐,发明中所用的零价铁除还原铁粉试剂外还可使用普通工业铁粉、铁砂或铁屑,对所含成分、纯度和粒度没有严格的要求,所采用的过氧化氢可用工业纯度,价格低廉,复合试剂制备在可在常温下进行,制备时间短,对待处理水的pH有较宽的适应范围,不需要复杂的设施,仅需低强度搅拌即可。在具体的实例中,利用制备的含铁复合试剂处理含硒酸盐的实际工业废水,该废水不仅六价硒的含量高(187mg/L),而且存在大量高浓度的阴离子(如SO4 2-浓度11.0g/L,Cl-浓度6.2g/L),但是使用本技术方案制备的含铁复合试剂仍可将水中硒的浓度降至0.5mg/L以下,达到工业排放标准,有力证明了该方法的高效性。该方法新颖、高效、成本低廉、操作简单、适应污水范围广、环境友好,具有良好应用前景。
相比于现有技术,本发明的有益效果为:
1)本发明以零价铁粉、水、过氧化氢、盐酸为原料,制备悬浊液态含铁复合试剂,投加于含硒酸盐的水中可协同发挥吸附、还原、絮凝、共沉淀、纳米效应等作用快速高效去除水体中的硒酸盐,本方法投加的试剂清洁,制备简便、快速,净污效率高,在高浓度其他离子如硫酸根共存时仍可有效工作,具 有良好的实际应用的前景;
2)本发明提供的悬浊液态含铁复合试剂具有制备方法简单,原料成本低廉的优点,复合试剂中含有多种还原活性组分,如新生态亚铁类物质、结构态亚铁类物质、四氧化三铁等,可有效提高电子传递效率,促进硒酸通过还原途径的去除;
3)本发明的含铁复合试剂具有丰富的胶体相,分布于5~100nm的粒子具有纳米效应,与溶液传质效率高,同时具有一定的吸附和絮凝作用;
4)本发明提供了一种高效、低成本、简单易行且环境友好的去除水中硒酸盐的方法,尤其适用于高盐废水(电导率大于5000μS/cm),特别适用于冶炼等各类含硒高盐废水,在高浓度硫酸根等阴离子共存时仍可有效工作,可适用于水质成分复杂的含硒工业废水,而现有除硒酸盐技术对于高盐废水往往效率很低;
5)本发明提供的去除水中硒酸盐的方法具有操作简便,后期固液分离简单、成本低廉的优点;
6)本发明中的含铁复合试剂的制备工艺灵活,各参数可根据含硒废水情况调整和优化;含铁复合试剂对环境无害,具有环境友好性,无二次污染,出水可直接排放;含铁复合试剂分离回收后可重复利用。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例1
悬浊液态含铁复合试剂去除水中硒酸盐
悬浊液态含铁复合试剂的制备:在100mL锥形瓶中加入50mL超纯水,1.00mL过氧化氢溶液(H2O2质量分数30%),用盐酸调节pH至1.0,加入1.00g还原铁粉,将锥形瓶放入摇床中以250rpm转速在25℃下振荡30分钟。
本实施例制备得到的含铁复合试剂以悬浊液态形式存在,包括固相、液相和胶体相,其中组分非常复杂,包括但不限于四氧化三铁、纤铁矿、水铁矿、赤铁矿、针铁矿、氢氧化铁、氢氧化亚铁、氧化亚铁等,还可能有精细的结构;其中,固相成分中Fe0所占质量比为58%,液相pH为5.6,胶体相中胶体颗粒粒径范围为5~100nm;悬浊液态含铁复合试剂中未检出残余过氧化氢(低于0.02mg/L),Fe2+浓度为2172mg/L。
去除水中的硒酸盐:500mL含硒酸盐的水(20mg Se(VI)/L)置于1000mL三口烧瓶中,将上述制备的悬浊液态含铁复合试剂的制备完全转移到三口烧瓶中,电动机械搅拌在室温下反应2小时,搅拌桨转速120rpm,每隔一定时间取少量反应液过滤后测定Se浓度并计算去除率;
反应结束后过滤分离,完成水中硒酸盐的去除。
根据我国《污水综合排放标准(GB/8978-1996)》对排放废水中总硒含量的要求,分别为一级标准:0.1mg/L、二级标准:0.2mg/L、三级标准:0.5mg/L。采用本实施例的方法,经过测定,在30分钟内就去除掉废水中90%以上的硒,在60分钟时Se浓度就已经达到二级标准,并在90分钟内达到了一级标准,在120分钟时出水中的Se未检出,且出水pH稳定在7.0~8.0范围内,以上结果显示出本发明对水中硒酸盐的高效去除能力。
实施例2
悬浊液态含铁复合试剂在高浓度硫酸盐共存下去除水中硒酸盐
悬浊液态含铁复合试剂的制备:在50mL塑料离心管中加入20mL超纯水,1.07mL过氧化氢溶液(H2O2质量分数30%),用盐酸调节pH至1.0,加入1.20g还原铁粉,将离心管置于翻转混匀仪上以60rpm转速在室温下混匀15分钟;
制备得到的悬浊液态含铁复合试剂包括固相、液相和胶体相;其中,固相成分中Fe0所占质量比为76%,液相pH为4.6,胶体相中胶体颗粒粒径范围为5~100nm;悬浊液态含铁复合试剂中残余过氧化氢浓度为0.4mg/L,Fe2+浓度为2390mg/L。
去除水中的硒酸盐:300mL含硒酸盐的水(20mg Se(VI)/L,同时含有1000mg/L SO4 2-)置于500mL三口烧瓶中,将上述制备的悬浊液态含铁复合试剂的制备完全转移到三口烧瓶中,电动机械搅拌在室温下反应10小时,搅拌桨转速120rpm,每隔一定时间取少量反应液过滤后测定Se浓度并计算去除率;
反应结束后过滤分离,完成水中硒酸盐的去除。
采用本实施例的方法,经过测定,在8h时Se浓度降低到0.5mg/L以下,以上结果显示出本发明对水中硒酸盐在高浓度硫酸根共存下的高效去除能力。
实施例3
悬浊液态含铁复合试剂在高浓度硝酸盐共存下去除水中硒酸盐
悬浊液态含铁复合试剂的制备:在50mL塑料离心管中加入20mL超纯水,1.07mL过氧化氢溶液(H2O2质量分数30%),用盐酸调节pH至1.0,加入1.20g还原铁粉,将离心管置于翻转混匀仪上以60rpm转速在室温下混匀15分钟;
制备得到的悬浊液态含铁复合试剂包括固相、液相和胶体相;其中,固相成分中Fe0所占质量比为76%,液相pH为4.6,胶体相中胶体颗粒粒径范围为5~100nm;悬浊液态含铁复合试剂中残余过氧化氢浓度为0.4mg/L,Fe2+浓度为2390mg/L。
去除水中的硒酸盐:300mL含硒酸盐的水(20mg Se(VI)/L,同时含有6.2g/L NO3 -)置于500mL三口烧瓶中,将上述制备的悬浊液态含铁复合试剂的制备完全转移到三口烧瓶中,电动机械搅拌在室温下反应4小时,搅拌桨转速120rpm,每隔一定时间取少量反应液过滤后测定Se浓度并计算去除率;
反应结束后过滤分离,完成水中硒酸盐的去除。
采用本实施例的方法,经过测定,在1h时Se浓度降低到0.5mg/L以下,以上结果显示出本发明对水中硒酸盐在高浓度硝酸根共存下的高效去除能力。
实施例4
悬浊液态含铁复合试剂在高浓度氯离子共存下去除水中硒酸盐
悬浊液态含铁复合试剂的制备:在50mL塑料离心管中加入20mL超纯水,1.07mL过氧化氢溶液(H2O2质量分数30%),用盐酸调节pH至1.0,加入1.20g还原铁粉,将离心管置于翻转混匀仪上以60rpm转速在室温下混匀15分钟。
制备得到的悬浊液态含铁复合试剂包括固相、液相和胶体相;其中,固相成分中Fe0所占质量比为76%,液相pH为4.6,胶体相中胶体颗粒粒径范围为5~100nm;悬浊液态含铁复合试剂中残余过氧化氢浓度为0.4mg/L,Fe2+浓度为2390mg/L。
去除水中的硒酸盐:300mL含硒酸盐的水(20mg Se(VI)/L,同时含有3.5g/L Cl-)置于500mL三口烧瓶中,将上述制备的悬浊液态含铁复合试剂的制备完全转移到三口烧瓶中,电动机械搅拌在室温下反应4小时,搅拌桨转速120rpm,每隔一定时间取少量反应液过滤后测定Se浓度并计算去除率;
反应结束后过滤分离,完成水中硒酸盐的去除。
采用本实施例的方法,经过测定,在2h时Se浓度降低到0.5mg/L以下,以上结果显示出本发明对水中硒酸盐在高浓度氯离子共存下的高效去除能力。
实施例5
悬浊液态含铁复合试剂去除实际高盐工业废水中高浓度硒酸盐
待处理废水来自某冶炼企业,其Se(VI)浓度高达187mg/L,共存阴离子浓度也极高,SO4 2-浓度为11.0g/L,Cl-浓度6.2g/L,故无法用常规的离子交换或吸附法去除,但用本发明的处理方法取得了良好的去除效果。
悬浊液态含铁复合试剂的制备:在100mL锥形瓶中加入30mL超纯水,0.40mL过氧化氢溶液(H2O2质量分数30%),用盐酸调节pH至1.5,加入0.60g还原铁粉,将锥形瓶放入摇床中以250rpm转速在25℃振荡2小时;
制备得到的悬浊液态含铁复合试剂包括固相、液相和胶体相;其中,固相成分中Fe0所占质量比为52%,液相pH为5.0,胶体相中胶体颗粒粒径范围为5~100nm;悬浊液态含铁复合试剂中未检出残余过氧化氢(低于0.02mg/L),Fe2+浓度为360mg/L。
去除实际高盐工业废水中高浓度的硒酸盐:30mL上述含硒废水置于另一100mL锥形瓶中,将上述制备的悬浊液态含铁复合试剂的制备完全转移到三口 烧瓶中,在摇床中以120rpm转速在25℃振荡8h,每隔一定时间取少量反应液过滤后测定Se浓度并计算去除率;
反应结束后过滤分离,完成水中硒酸盐的去除。
采用本实施例的方法,经过测定,在5h内Se浓度降低到10mg/L以下,7h出水Se未检出,可见,尽管该工业废水中Se(VI)高达187mg/L,同时还有其它高浓度的阴离子共存,但本发明表现出了对Se(VI)的高效去除能力和针对高盐实际废水的良好适用性。

Claims (13)

  1. 一种悬浊液态含铁复合试剂的制备方法,其步骤为:
    (1)稀释过氧化氢溶液;
    (2)用盐酸调节稀释后的过氧化氢溶液的pH值;
    (3)加入零价铁粉,得到所述的悬浊液态含铁复合试剂,其中过氧化氢与零价铁的摩尔比在0.2~0.8之间。
  2. 根据权利要求1所述的一种悬浊液态含铁复合试剂的制备方法,其特征在于:步骤(2)中调节过氧化氢溶液的pH值至0.7~3.2。
  3. 根据权利要求1所述的一种悬浊液态含铁复合试剂的制备方法,其特征在于:步骤(3)中投加的零价铁粉与溶液的质量百分比为1%~5%。
  4. 根据权利要求2所述的一种悬浊液态含铁复合试剂的制备方法,其特征在于:步骤(3)中投加的零价铁粉与溶液的质量百分比为1%~5%。
  5. 根据权利要求1所述的一种悬浊液态含铁复合试剂的制备方法,其特征在于:步骤(3)中零价铁粉的粒度在15~300目之间。
  6. 根据权利要求1中所述的一种悬浊液态含铁复合试剂的制备方法,其特征在于:步骤(3)中反应温度为4~50℃,反应时间在10min~6h之间。
  7. 根据权利要求5中所述的一种悬浊液态含铁复合试剂的制备方法,其特征在于:步骤(3)中反应温度为4~50℃,反应时间在10min~6h之间。
  8. 一种权利要求1中所述的方法制备得到的悬浊液态含铁复合试剂,其特征在于:所述的悬浊液态含铁复合试剂包括固相、液相和胶体相;其中,固相成分中Fe0所占质量比为20%~80%,液相pH在4.0~6.5之间,胶体相中胶体颗粒粒径范围为5~100nm。
  9. 根据权利要求8所述的一种悬浊液态含铁复合试剂,其特征在于:悬浊液态含铁复合试剂中残余过氧化氢浓度低于2mg/L,Fe2+浓度范围在200~4000mg/L。
  10. 一种高效去除水中硒酸盐的方法,其特征在于:采用权利要求8中所述的悬浊液态含铁复合试剂,其步骤为:
    (1)按照权利要求1中所述的方法进行制备悬浊液态含铁复合试剂;
    (2)将制备的悬浊液态含铁复合试剂整体投加到待处理的含硒酸盐的水中,进行混合反应,直至水中硒酸盐浓度达到预期的浓度标准以下;
    (3)将反应液进行固液分离,完成水中硒酸盐的去除。
  11. 根据权利要求10所述的一种高效去除水中硒酸盐的方法,其特征在于:步骤(2)中通过搅拌或振摇的方式将悬浊液态含铁复合试剂与待处理水混合。
  12. 根据权利要求10中所述的一种高效去除水中硒酸盐的方法,其特征在于:步骤(3)中采用外加磁场分离或砂滤或膜滤的方式进行固液分离。
  13. 根据权利要求11中所述的一种高效去除水中硒酸盐的方法,其特征在于:步骤(3)中采用外加磁场分离或砂滤或膜滤的方式进行固液分离。
PCT/CN2017/104413 2016-11-21 2017-09-29 一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法 WO2018090742A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611044054.3A CN106365244B (zh) 2016-11-21 2016-11-21 一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法
CN201611044054.3 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018090742A1 true WO2018090742A1 (zh) 2018-05-24

Family

ID=57891286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104413 WO2018090742A1 (zh) 2016-11-21 2017-09-29 一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法

Country Status (2)

Country Link
CN (1) CN106365244B (zh)
WO (1) WO2018090742A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106365244B (zh) * 2016-11-21 2019-07-19 南京大学 一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法
CN110153157B (zh) * 2019-04-23 2020-09-11 中南大学 一种多孔铁基吸附材料及其制备方法和在重金属污染土壤修复中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128475A (ja) * 1997-07-09 1999-02-02 Kurita Water Ind Ltd セレン含有水の処理方法
CN102791638A (zh) * 2010-03-10 2012-11-21 纳尔科公司 从炼油废水中除去硒
CN102884010A (zh) * 2009-09-18 2013-01-16 得克萨斯州A&M大学系统 用于处理被污染流体的零价铁/氧化铁矿物/亚铁复合物
JP2014188443A (ja) * 2013-03-27 2014-10-06 Chiyoda Corp セレン含有排水の処理方法
CN106365244A (zh) * 2016-11-21 2017-02-01 南京大学 一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904217B2 (ja) * 1989-06-27 1999-06-14 新日本製鐵株式会社 水処理フィルターの製造方法
CN104511476B (zh) * 2013-10-08 2019-05-31 江苏迈克环境工程有限公司 一种加速土壤中有机污染物氧化降解的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128475A (ja) * 1997-07-09 1999-02-02 Kurita Water Ind Ltd セレン含有水の処理方法
CN102884010A (zh) * 2009-09-18 2013-01-16 得克萨斯州A&M大学系统 用于处理被污染流体的零价铁/氧化铁矿物/亚铁复合物
CN102791638A (zh) * 2010-03-10 2012-11-21 纳尔科公司 从炼油废水中除去硒
JP2014188443A (ja) * 2013-03-27 2014-10-06 Chiyoda Corp セレン含有排水の処理方法
CN106365244A (zh) * 2016-11-21 2017-02-01 南京大学 一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法

Also Published As

Publication number Publication date
CN106365244B (zh) 2019-07-19
CN106365244A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
US11135562B2 (en) Magnetic adsorbent for removing arsenic and antimony by means of adsorption-superconducting magnetic separation and preparation method therefor
CN103191699B (zh) 一种铁氧体/石墨烯复合吸附剂及其制备、使用方法
CN102583847B (zh) 一种深度处理焦化废水生化尾水的方法
CN108311117B (zh) 一种用于重金属废水处理的磁性生物炭材料及其制备方法
CN102001734A (zh) 处理含汞废水的重金属沉降剂
Zhang et al. Efficient As (III) removal directly as basic iron arsenite by in-situ generated Fe (III) hydroxide from ferrous sulfate on the surface of CaCO3
CN106076261A (zh) 一种重金属离子吸附剂及制备方法和应用
Li et al. FeOOH and nZVI combined with superconducting high gradient magnetic separation for the remediation of high-arsenic metallurgical wastewater
WO2016192311A1 (zh) 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用
CN103506065A (zh) 一种壳-核结构磁性重金属吸附剂及其制备方法
Wang et al. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles
CN101337732B (zh) 一种减少有害重金属组分溶出的方法
Liu et al. Highly efficient removal of As (III) by Fe-Mn-Ca composites with the synergistic effect of oxidation and adsorption
CN106975437A (zh) 一种过硫酸根插层层状复合金属氢氧化物的制备与应用
CN114425305B (zh) 一种汞吸附材料及其制备方法和在烟气或溶液脱汞方面的应用
Babaeivelni et al. Removal of arsenic from water using manganese (III) oxide: adsorption of As (III) and As (V)
Guo et al. Chemical Reduction of Nitrate Using Nanoscale Bimetallic Iron/Copper Particles.
WO2018090742A1 (zh) 一种悬浊液态含铁复合试剂及其制备方法和高效去除水中硒酸盐的方法
Yuan et al. Microscopic investigation into remediation of cadmium and arsenite Co-contamination in aqueous solution by Fe-Mn-incorporated titanosilicate
CN104353407B (zh) 一种Fe-Mn体系吸附剂及其制备和应用方法
Nidheesh et al. Oxidative sorption of arsenite from water by iron: a mechanistic perspective
Zhang et al. The synergistic trigger of the reductive dissolution of Schwertmannite-As (III) and the release of arsenic from citric acid and UV irradiation
Deng et al. Remediation of arsenic (III) from aqueous solutions using zero-valent iron (ZVI) combined with potassium permanganate and ferrous ions
CN109317089B (zh) 一种磁性吸附材料及其制备和用于处理含铊废水的方法
CN116161834A (zh) 一种基于零价铁填充床系统的重金属废水处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871652

Country of ref document: EP

Kind code of ref document: A1