WO2018088003A1 - Manufacturing method for semiconductor device, substrate processing device, and program - Google Patents

Manufacturing method for semiconductor device, substrate processing device, and program Download PDF

Info

Publication number
WO2018088003A1
WO2018088003A1 PCT/JP2017/031727 JP2017031727W WO2018088003A1 WO 2018088003 A1 WO2018088003 A1 WO 2018088003A1 JP 2017031727 W JP2017031727 W JP 2017031727W WO 2018088003 A1 WO2018088003 A1 WO 2018088003A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
nozzle
substrate
oxygen
containing gas
Prior art date
Application number
PCT/JP2017/031727
Other languages
French (fr)
Japanese (ja)
Inventor
達也 四谷
昌人 寺崎
尾崎 貴志
尚徳 赤江
昇悟 西尾
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2018550046A priority Critical patent/JP6741780B2/en
Publication of WO2018088003A1 publication Critical patent/WO2018088003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
  • a process of forming an oxide film on the substrate may be performed (see, for example, Patent Document 1).
  • An object of the present invention is to provide a technique capable of improving the smoothness and film thickness uniformity of an oxide film formed on a substrate.
  • the step of supplying the source gas includes a technique including a period in which a second oxygen-containing gas is supplied to the substrate from a third nozzle different from the first nozzle and the second nozzle.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in an embodiment of the present invention, and is a diagram showing a processing furnace part in a cross-sectional view taken along line AA of FIG.
  • the controller of the substrate processing apparatus used suitably by one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram.
  • (A) is a figure which shows the film-forming sequence of one Embodiment of this invention
  • (b) is a figure which shows the modification.
  • (A) is a figure which shows the mode of the wafer surface at the time of raw material gas supply at the time of performing film-forming processing at comparatively low temperature
  • (c) supplies oxygen gas with source gas at the time of source gas supply at the time of performing the film-forming process at comparatively high temperature
  • (A) is a figure which shows the evaluation result regarding the film thickness uniformity in the wafer surface of the SiO film in an Example, and between wafers
  • (b) is the film thickness uniformity in the wafer surface of the SiO film in a comparative example, and between wafers. It is a figure which shows the evaluation result regarding sex.
  • It is a schematic block diagram of the processing furnace of the substrate processing apparatus used suitably by other embodiment of this invention, and is a figure which shows a processing furnace part with a cross-sectional view, and extracts a reaction tube, a nozzle, an exhaust pipe, a wafer, etc.
  • the processing furnace 202 has a heater 207 as a heating mechanism (temperature adjustment unit).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
  • a reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal material such as stainless steel (SUS), for example, and has a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 is installed vertically like the heater 207.
  • the reaction vessel 203 and the manifold 209 mainly constitute a processing vessel (reaction vessel).
  • a processing chamber 201 is formed in the hollow cylindrical portion of the processing container.
  • the processing chamber 201 is configured to accommodate a wafer 200 as a substrate.
  • a nozzle 249a as a first nozzle, a nozzle 249b as a second nozzle, and a nozzle 249c as a third nozzle are provided so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 232a to 232c are connected to the nozzles 249a to 249c, respectively.
  • the gas supply pipes 232a to 232c are provided with mass flow controllers (MFC) 241a to 241c, which are flow rate controllers (flow rate control units), and valves 243a to 243c, which are on-off valves, in order from the upstream side of the gas flow.
  • MFC mass flow controllers
  • Gas supply pipes 232d to 232f are connected to the gas supply pipes 232a to 232c on the downstream side of the valves 243a to 243c, respectively.
  • the gas supply pipes 232d to 232f are respectively provided with MFCs 241d to 241f and valves 243d to 243f in order from the upstream side of the gas flow.
  • the nozzles 249a to 249c are arranged in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper part from the lower part of the inner wall of the reaction tube 203. Each is provided so as to rise upward in the arrangement direction. That is, the nozzles 249a to 249c are provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area where the wafers 200 are arranged. As shown in FIG. 2, the nozzles 249a to 249c are different nozzles.
  • the nozzles 249a and 249b are arranged so as to face (face to) an exhaust port 231a to be described later with the wafer 200 carried into the processing chamber 201 interposed therebetween in a plan view.
  • the nozzle 249b is disposed in the vicinity of the nozzle 249a.
  • the nozzle 249c is disposed at a position farther from the nozzle 249a than the nozzle 249b.
  • the distance B between the nozzle 249a and the nozzle 249c is larger than the distance A between the nozzle 249a and the nozzle 249b (distance B> distance A).
  • the fan-shaped center angle ⁇ 2 formed by the nozzle 249 a, the nozzle 249 c, and the center 200 a of the wafer 200 is larger than the fan-shaped center angle ⁇ 1 formed by the nozzle 249 a, the nozzle 249 b, and the center 200 a of the wafer 200. It is larger (center angle ⁇ 2 > center angle ⁇ 1 ).
  • the above-mentioned distance B is, for example, 30 cm or more and 80 cm or less, and the above-mentioned distance A is, for example, 1 cm or more and 5 cm or less.
  • the above-described central angle ⁇ 2 has a size within a range of, for example, 90 ° to less than 180 °, and the above-described central angle ⁇ 2 has a size within a range of, for example, 3 ° to less than 60 °.
  • Gas supply holes 250a to 250c for supplying gas are provided on the side surfaces of the nozzles 249a to 249c, respectively.
  • the gas supply holes 250 a to 250 c are opened so as to face the central portion of the reaction tube 203, and gas can be supplied toward the central portion of the wafer 200.
  • the gas supply holes 250a and 250b are provided so as to face (face to) the exhaust port 231a with the wafer 200 interposed therebetween in plan view.
  • a plurality of gas supply holes 250 a to 250 c are provided from the lower part to the upper part of the reaction tube 203.
  • the distance A may be considered as a distance between the gas supply hole 250a and the gas supply hole 250b, and the distance B may be considered as a distance between the gas supply hole 250a and the gas supply hole 250c.
  • a raw material for example, a halosilane raw material gas containing silicon (Si) as a predetermined element (main element) and a halogen element is passed through the MFC 241a, the valve 243a, and the nozzle 249a. Supplied into 201.
  • the raw material gas is a gaseous raw material, for example, a gas obtained by vaporizing a raw material that is in a liquid state under normal temperature and normal pressure, or a raw material that is in a gaseous state under normal temperature and normal pressure.
  • the halogen element includes chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • a source gas containing Si and Cl that is, a chlorosilane source gas
  • the chlorosilane source gas acts as a Si source.
  • hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas can be used as the chlorosilane source gas.
  • oxygen (O) -containing gas is supplied into the processing chamber 201 through the MFCs 241b and 241c, valves 243b and 243c, and nozzles 249b and 249c as reactants (reaction gas). Is done.
  • the O-containing gas supplied from the nozzle 249b in Step 2 of the film formation process described later is also referred to as a first O-containing gas, and the O-containing gas supplied from the nozzle 249c in Step 1 of the film formation process.
  • the gas is also referred to as a second O-containing gas.
  • the first O-containing gas acts as an oxidizing source (oxidant, oxidizing gas), that is, an O source.
  • the second O-containing gas acts as a migration suppression gas that suppresses migration of Si adsorbed on the wafer 200.
  • oxygen (O 2 ) gas can be used as the first and second O-containing gases.
  • a hydrogen (H) -containing gas is supplied into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a as a reactant (reaction gas).
  • reaction gas a reactant
  • the H-containing gas alone cannot be oxidized, it reacts with the O-containing gas under specific conditions in the film-forming process described below, thereby oxidizing oxidizing species such as atomic oxygen (O). It acts to improve the efficiency of the oxidation treatment.
  • the H-containing gas for example, hydrogen (H 2 ) gas can be used.
  • N 2 gas acts as a purge gas and a carrier gas.
  • the gas supply pipe 232a, the MFC 241a, and the valve 243a constitute a first supply system that supplies the source gas.
  • the gas supply pipe 232b, the MFC 241b, and the valve 243b mainly constitute a second supply system that supplies the first O-containing gas.
  • the gas supply pipe 232a, the MFC 241a, and the valve 243a may be included in the second supply system.
  • a third supply system that supplies the second O-containing gas is mainly configured by the gas supply pipe 232c, the MFC 241c, and the valve 243c.
  • An inert gas supply system is mainly configured by the gas supply pipes 232d to 232f, the MFCs 241d to 241f, and the valves 243d to 243f.
  • any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243f, MFCs 241a to 241f, and the like are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232f, and supplies various gases into the gas supply pipes 232a to 232f, that is, opens and closes the valves 243a to 243f and MFCs 241a to 241f.
  • the flow rate adjusting operation and the like are configured to be controlled by a controller 121 described later.
  • the integrated supply system 248 is configured as an integrated or divided type integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232f in units of integrated units. Maintenance, replacement, expansion, etc. can be performed in units of integrated units.
  • the reaction tube 203 is provided with an exhaust port 231a for exhausting the atmosphere in the processing chamber 201.
  • An exhaust pipe 231 is connected to the exhaust port 231a.
  • the exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated,
  • the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
  • the seal cap 219 is made of a metal material such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed below the seal cap 219.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as an elevating mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that carries the wafer 200 in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • a shutter 219s is provided below the manifold 209 as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209 with the seal cap 219 lowered and the boat 217 carried out of the processing chamber 201. Yes.
  • the shutter 219s is made of a metal material such as SUS, and is formed in a disk shape.
  • an O-ring 220c as a seal member that comes into contact with the lower end of the manifold 209 is provided.
  • the opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening / closing mechanism 115s.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat resistant material such as quartz or SiC are supported in multiple stages.
  • a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in substrate processing to be described later, and functions as a program.
  • process recipes, control programs, and the like are collectively referred to simply as programs.
  • the process recipe is also simply called a recipe.
  • program When the term “program” is used in this specification, it may include only a recipe, only a control program, or both.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described MFCs 241a to 241f, valves 243a to 243f, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 115s, etc. It is connected to the.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241f, the opening / closing operation of the valves 243a to 243f, the opening / closing operation of the APC valve 244, and the pressure adjustment by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 installs the above-mentioned program stored in an external storage device (for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • FIG. Will be described.
  • the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
  • Step 1 described above includes a period during which O 2 gas is supplied from the nozzle 249 c to the wafer 200. That is, step 1 includes a period during which HCDS gas and O 2 gas are supplied to the wafer 200 simultaneously. Further, step 2 described above includes a period during which O 2 gas and H 2 gas are simultaneously supplied to the wafer 200.
  • the H 2 gas is supplied from the nozzle 249a disposed in the vicinity of the nozzle 249b that supplies the O 2 gas in Step 2.
  • the film forming sequence shown in FIG. 4A may be shown as follows for convenience. The same notation is used in the following description of the modified examples.
  • wafer When the term “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer.
  • the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate.
  • substrate is also synonymous with the term “wafer”.
  • the inside of the processing chamber 201 is evacuated (reduced pressure) by the vacuum pump 246 so that the space in which the wafer 200 exists is at a desired pressure (degree of vacuum).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired film formation temperature.
  • the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • the rotation of the wafer 200 by the rotation mechanism 267 is started.
  • the exhaust in the processing chamber 201 and the heating and rotation of the wafer 200 are all continuously performed at least until the processing on the wafer 200 is completed.
  • Step 1 In this step, HCDS gas and O 2 gas are simultaneously supplied from different nozzles to the wafer 200 in the processing chamber 201.
  • valves 243a and 243c are opened, and HCDS gas and O 2 gas are allowed to flow into the gas supply pipes 232a and 232c, respectively.
  • the flow rates of the HCDS gas and the O 2 gas are adjusted by the MFCs 241a and 241c, respectively, supplied into the processing chamber 201 through the nozzles 249a and 249c, mixed in the processing chamber 201, and exhausted from the exhaust port 231a.
  • HCDS gas and O 2 gas are supplied to the wafer 200 simultaneously (together).
  • the valves 243d and 243f are opened, and N 2 gas flows into the gas supply pipes 232d and 232f, respectively.
  • the flow rate of the N 2 gas is adjusted by the MFCs 241d and 241f, and the N 2 gas is supplied into the processing chamber 201 together with the HCDS gas and the O 2 gas. Further, in order to prevent entry of HCDS gas or the like into the nozzle 249b, the valve 243e is opened, and N 2 gas is caused to flow into the gas supply pipe 232e. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b.
  • the supply flow rate F 1 of the O 2 gas supplied from the nozzle 249c is the same as the supply amount Q 1 of the O 2 gas (second O-containing gas) in step 1 per cycle.
  • 2 gas is set to (first O-containing gas) is smaller than the supply amount Q 2 of (Q 1 ⁇ Q 2) such trace amounts of flow.
  • F 1 is more than the supply flow rate F 2 of O 2 gas supplied from the nozzle 249b in Step 2.
  • F 1 is smaller than F 2 (F 1 ⁇ F 2) of preferably, for example, F 2 1/20 or 1 /
  • the flow rate can be a very small flow rate of 2 or less, preferably 1/10 or more and 1/5 or less.
  • F 2 is a flow rate that can sufficiently oxidize the first layer formed in Step 1 in Step 2.
  • F 1 is less than 1/20 of F 2
  • the effect of suppressing the migration of Si described later with O 2 gas may not be obtained, and the surface roughness of the SiO film formed on the wafer 200 tends to deteriorate.
  • F 1 is 1/20 or more of F 2
  • a migration suppressing effect can be obtained, and the surface roughness of the SiO film can be improved.
  • F 1 is 1/10 or more of F 2
  • a migration suppression effect can be obtained with certainty, and the surface roughness of the SiO film can be reliably improved.
  • surface roughness means a difference in height of the film in the wafer plane and is synonymous with surface roughness.
  • An improvement in surface roughness means that this height difference is reduced and the surface becomes smooth.
  • the deterioration of the surface roughness means that the height difference becomes large and the surface becomes rough.
  • F 1 exceeds 1/2 of F 2 , an excessive gas phase reaction may occur, and the film thickness uniformity of the SiO film formed on the wafer 200 may easily deteriorate.
  • F 1 By setting F 1 to be 1 ⁇ 2 or less of F 2 , an appropriate gas phase reaction can be caused, and the film thickness uniformity of the SiO film can be improved.
  • F 1 By setting F 1 to be 1/5 or less of F 2 , the gas phase reaction can be appropriately suppressed, and the film thickness uniformity of the SiO film can be reliably improved.
  • Deposition pressure pressure in the processing chamber 201: 0.1 to 20 Torr (13.3 to 2666 Pa), preferably 1 to 10 Torr (133 to 1333 Pa)
  • HCDS gas supply flow rate 1 to 2000 sccm, preferably 10 to 1000 sccm O 2 gas supply flow rate
  • F 1 (nozzle 249c) 1 to 1000 sccm, preferably 1 to 500 sccm N 2 gas supply flow rate (each gas supply pipe): 100 to 10000 sccm
  • Deposition temperature temperature of wafer 200: 450 to 1000 ° C., preferably 600 to 1000 ° C., more preferably 700 to 900 ° C.
  • Each gas supply time is 1 to 100 seconds, preferably 1 to 50 seconds.
  • the film forming temperature is lower than 450 ° C., it is difficult to form the SiO film on the wafer 200, and a practical film forming speed may not be obtained. This can be eliminated by setting the film forming temperature to 450 ° C. or higher. By setting the film forming temperature to 600 ° C. or higher, it is possible to improve the etching resistance of the SiO film formed on the wafer 200 with respect to hydrogen fluoride (HF) and the like. By setting the film forming temperature to 700 ° C. or higher, the etching resistance of the SiO film can be further improved.
  • HF hydrogen fluoride
  • the film formation temperature exceeds 1000 ° C.
  • an excessive gas phase reaction may occur, which may deteriorate the film thickness uniformity of the SiO film formed on the wafer 200.
  • a large amount of particles may be generated in the processing chamber 201, which may deteriorate the quality of the film forming process.
  • an appropriate gas phase reaction can be generated, the film thickness uniformity of the SiO film can be improved, and the generation of particles in the processing chamber 201 can be suppressed. It becomes possible.
  • the film forming temperature By setting the film forming temperature to 900 ° C. or lower, the film thickness uniformity of the SiO film can be reliably improved, and the generation of particles in the processing chamber 201 can be reliably suppressed.
  • the above-described temperature zone includes a temperature zone in which HCDS is thermally decomposed (self-decomposed) when HCDS gas is present alone in the processing chamber 201. Further, this temperature zone includes a temperature zone in which migration of Si contained in the HCDS gas occurs remarkably on the surface of the wafer 200 when the HCDS gas is supplied alone to the wafer 200.
  • the first layer (initial layer) on the outermost surface of the wafer 200 is, for example, less than one atomic layer (one molecular layer).
  • a Si-containing layer containing Cl having a thickness of about several atomic layers (several molecular layers) is formed.
  • HCDS is physically adsorbed on the outermost surface of the wafer 200, a substance in which HCDS is partially decomposed (hereinafter, Si x Cl y ) is chemisorbed, or HCDS is thermally decomposed. It is formed by doing.
  • the Si-containing layer containing Cl may be an HCDS or Si x Cl y adsorption layer (physical adsorption layer or chemical adsorption layer), or may be a Si layer containing Cl.
  • the formation of the Si layer containing Cl can increase the thickness of the layer formed per cycle, rather than the formation of the adsorption layer of HCDS or Si x Cl y .
  • a Si-containing layer containing Cl is also simply referred to as a Si-containing layer.
  • the thickness of the first layer exceeds several atomic layers, the modification effect in Step 2 described later does not reach the entire first layer.
  • the minimum thickness of the first layer is less than one atomic layer. Therefore, it is preferable that the thickness of the first layer be less than one atomic layer to several atomic layers.
  • the action of the reforming reaction in Step 2 described later can be relatively enhanced, and the time required for the reforming reaction in Step 2 can be shortened. Can do.
  • the time required for forming the first layer in step 1 can also be shortened. As a result, the processing time per cycle can be shortened, and the total processing time can be shortened. That is, the film forming rate can be increased.
  • the controllability of the film thickness uniformity can be improved by setting the thickness of the first layer to 1 atomic layer or less.
  • the main element adsorbed on the wafer 200 that is, Si contained in the first layer may move (migrate) on the surface of the wafer 200.
  • Si migration becomes more active, and the surface roughness of the SiO film formed on the wafer 200 tends to deteriorate.
  • FIG. 5A is a diagram showing a state of the surface of the wafer 200 when the HCDS gas is supplied when film formation is performed under a relatively low temperature of less than 700 ° C. In such a temperature range, the migration of Si adsorbed on the wafer 200 is relatively gentle and does not significantly affect the surface roughness of the SiO film.
  • 5B is a diagram showing a state of the surface of the wafer 200 when the HCDS gas is supplied when film formation is performed under a relatively high temperature condition of 700 ° C. or higher.
  • a relatively high temperature condition 700 ° C. or higher.
  • the migration of Si adsorbed on the wafer 200 becomes remarkable, and the uneven structure may be formed on the surface of the first layer due to the aggregation of Si or the like.
  • the interface roughness between the base and the SiO film or the surface roughness of the SiO film may be deteriorated.
  • HCDS gas and O 2 gas are simultaneously supplied to the wafer 200 in step 1.
  • O 2 gas By supplying the O 2 gas together with the HCDS gas, at least a part of the Si is oxidized and converted into an oxide (SiO x ) simultaneously with or before the adsorption of the Si onto the wafer 200. It becomes possible. Si adsorbed on the wafer 200 becomes difficult to migrate due to oxidation. That is, migration of Si atoms adsorbed on the wafer 200 is hindered by O atoms bonded to Si atoms.
  • FIG. 5C is a diagram showing a state in which Si migration is suppressed by supplying O 2 gas together with HCDS gas.
  • FIG. 5C shows, on an atomic level, a state in which migration of Si atoms is blocked by O atoms adjacent to Si atoms adsorbed on wafer 200 and aggregation of Si is prevented.
  • O 2 gas supplied together with the HCDS gas can also be referred to as a migration suppressing gas because of its action.
  • the inventors have supplied the HCDS gas and the O 2 gas simultaneously to the wafer 200 in step 1 even when the temperature of the wafer 200 is set to a temperature within the range of 700 to 1000 ° C., for example. It has been confirmed that deterioration of the surface roughness of the SiO film can be avoided.
  • the first layer formed on the wafer 200 is a Si-containing layer that further includes O as well as Cl.
  • the Si-containing layer containing Cl and O is also referred to as a Si-containing layer containing Cl or simply as a Si-containing layer for convenience.
  • the film thickness uniformity of the SiO film formed on the wafer 200 may be reduced.
  • the inventors have made it clear through intensive studies. For example, when the O 2 gas is supplied from the nozzle 249b disposed in the vicinity of the nozzle 249a used for supplying the HCDS gas in Step 1, the in-wafer surface thickness distribution (hereinafter referred to as the SiO film) of the SiO film formed on the wafer 200 is determined.
  • the film thickness uniformity in the wafer 200 plane is the thinnest distribution at the center of the wafer 200 and gradually increases toward the peripheral edge (central concave distribution). WiW) may decrease. Further, if O 2 gas is supplied from the nozzle 249b in Step 1, the film thickness uniformity (WtW) of the SiO film between the wafers 200 may be lowered.
  • the O 2 gas is supplied from a nozzle 249c different from the nozzles 249a and 249b.
  • the O 2 gas is supplied from the nozzle 249b in step 1, it is possible to improve the WiW and WtW of the SiO film formed on the wafer 200, respectively.
  • the distance A between the nozzles 249a and 249b and the distance B between the nozzles 249a and 249c have different sizes, and specifically, the distance B> the distance A.
  • the supply amount of the HCDS gas to the wafer 200 can be made more uniform between the peripheral portion and the center portion of the wafer 200.
  • the above-described formation reaction of the first layer can be performed at a uniform rate over the entire region from the peripheral part to the central part of the wafer 200 and over the entire region of the wafer arrangement region.
  • the WiW and WtW of the SiO film formed on the wafer 200 can be improved.
  • step 1 when the O 2 gas is supplied from the nozzle 249c, the effect of improving the surface roughness of the above-described SiO film is improved over the surface of the wafer 200 as compared with the case where the O 2 gas is supplied from the nozzle 249b. In addition, the wafers 200 can be obtained more evenly. This is because, in Step 1, the O 2 gas supplied from the nozzle 249c is supplied to the wafer 200 after being more diffused than the O 2 gas supplied from the nozzle 249b. Conceivable.
  • step 1 towards the O 2 gas supplied from the nozzle 249c it is easy to become a state of being diffused compared to O 2 gas supplied from the nozzle 249b, as described above, the direction of the nozzle 249c, nozzle 249b This is considered to be because the probability that the diffusion of O 2 gas is hindered due to collision with HCDS gas, mixing, and the like is reduced.
  • the valves 243a and 243c are closed, and the supply of HCDS gas and O 2 gas into the processing chamber 201 is stopped. Then, the inside of the processing chamber 201 is evacuated, and the gas remaining in the processing chamber 201 is removed from the processing chamber 201. At this time, the valves 243d to 243f are kept open and the supply of N 2 gas into the processing chamber 201 is maintained. N 2 gas acts as a purge gas.
  • chlorosilane source gas such as monochlorosilane (SiH 3 Cl) gas, dichlorosilane (SiH 2 Cl 2 ) gas, trichlorosilane (SiHCl 3 ) gas, tetrachlorosilane (SiCl 4 ) gas, etc.
  • chlorosilane source gas such as monochlorosilane (SiH 3 Cl) gas, dichlorosilane (SiH 2 Cl 2 ) gas, trichlorosilane (SiHCl 3 ) gas, tetrachlorosilane (SiCl 4 ) gas, etc.
  • tetrafluorosilane (SiF 4 ) gas, tetrabromosilane (SiBr 4 ) gas, tetraiodosilane (SiI 4 ) gas, or the like can be used.
  • halosilane source gas such as chlorosilane source gas (chlorosilane compound), fluorosilane source gas (fluorosilane compound), bromosilane source gas (bromosilane compound), iodosilane source gas (iodosilane compound), etc.
  • halosilane compound such as chlorosilane source gas (chlorosilane compound), fluorosilane source gas (fluorosilane compound), bromosilane source gas (bromosilane compound), iodosilane source gas (iodosilane compound), etc.
  • An aminosilane source gas (aminosilane compound) such as (SiH 3 N [CH (CH 3 ) 2 ] 2 , abbreviation: DIPAS) gas can also be used.
  • the aminosilane source gas acts not only as an Si source but also as an N source and a C source.
  • a silicon hydride gas such as a monosilane (SiH 4 ) gas, a disilane (Si 2 H 6 ) gas, or a trisilane (Si 3 H 8 ) gas can be used.
  • hexamethyldisiloxane ([(CH 3 ) 3 Si] 2 O) gas, tetramethyldisiloxane ([H (CH 3 ) 2 Si] 2 O) gas, hexachlorodisiloxane ((Cl A siloxane source gas (siloxane compound) such as 3 Si) 2 O) gas or tetrachlorodisiloxane ((HCl 2 Si) 2 O) gas can be used as source gases.
  • siloxane compound such as 3 Si) 2 O
  • tetrachlorodisiloxane ((HCl 2 Si) 2 O) gas can be used as hexachlorodisiloxane ((Cl A siloxane source gas (siloxane compound) such as 3 Si) 2 O) gas or tetrachlorodisiloxane ((HCl 2 Si) 2 O) gas
  • a siloxane compound is a compound having a skeleton of Si
  • the source gas examples include hexamethyldisilazane ([(CH 3 ) 3 Si] 2 NH) gas, tetramethyldisilazane ([H (CH 3 ) 2 Si] 2 NH) gas, hexachlorodisilazane (A silazane raw material gas (silazane compound) such as (Cl 3 Si) 2 NH) gas or tetrachlorodisilazane ((HCl 2 Si) 2 NH) gas can be used.
  • the silazane compound is a compound having Si and N as a skeleton, and is a general term for a compound having a silazane bond such as a Si—N—Si bond or a Si—N bond.
  • the silazane source gas acts not only as an Si source but also as an N source, or an N source and a C source.
  • the source gas at least one selected from the group consisting of a silane compound (halosilane compound, aminosilane compound, silicon hydride compound), siloxane compound, and silazane compound can be used.
  • silane compound halosilane compound, aminosilane compound, silicon hydride compound
  • siloxane compound silazane compound
  • silazane compounds tend to have higher thermal decomposition temperatures (difficult to self-decompose) than silane compounds.
  • the film forming temperature is set to the high temperature side, by using a siloxane compound or a silazane compound as a raw material gas, excessive thermal decomposition can be suppressed and the controllability of the film forming process can be improved.
  • nitrous oxide (N 2 O) gas nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, or the like is used. be able to.
  • inert gas various rare gases such as Ar gas, He gas, Ne gas, and Xe gas can be used in addition to N 2 gas. This also applies to step 2 described later.
  • Step 2 After step 1 is completed, O 2 gas and H 2 gas are simultaneously supplied from different nozzles to the wafer 200 in the processing chamber 201.
  • the opening / closing control of the valves 243b, 243a, 243d to 243f is performed in the same procedure as the opening / closing control of the valves 243c, 243a, 243d to 243f in Step 1.
  • the flow rates of the O 2 gas and H 2 gas flowing through the gas supply pipes 232b and 232a are adjusted by the MFCs 241b and 241a, respectively, and are supplied into the processing chamber 201 through the nozzles 249b and 249a.
  • the O 2 gas and the H 2 gas are mixed and reacted in the processing chamber 201 and then exhausted from the exhaust port 231a. At this time, O 2 gas and H 2 gas are simultaneously supplied to the wafer 200.
  • the supply flow rate of the O 2 gas supplied from the nozzle 249b is larger than the supply flow rate of the O 2 gas supplied in step 1, and the first layer formed in step 1 can be sufficiently oxidized.
  • the flow rate is larger than the supply flow rate of the O 2 gas supplied in step 1, and the first layer formed in step 1 can be sufficiently oxidized.
  • Deposition pressure pressure in the processing chamber 201: 0.1 to 10 Torr (13.3 to 1333 Pa), preferably 0.1 to 3 Torr (13.3 to 399 Pa)
  • Each gas supply time is 1 to 100 seconds, preferably 1 to 50 seconds.
  • Other processing conditions are the same as the processing conditions in step 1.
  • the oxidizing power can be greatly improved as compared with the case of supplying O 2 gas alone or the case of supplying water vapor (H 2 O gas). That is, by adding H 2 gas to O 2 gas in a reduced-pressure atmosphere, a significant effect of improving oxidizing power can be obtained compared to the case of supplying O 2 gas alone or supplying H 2 O gas. .
  • valves 243b and 243a are closed, and the supply of O 2 gas and H 2 gas into the processing chamber 201 is stopped. Then, the gas and the like remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure and processing conditions as in step 1.
  • the first O-containing gas examples include O 2 gas, N 2 O gas, NO gas, NO 2 gas, O 3 gas, atomic oxygen (O), oxygen radical (O * ), and hydroxyl radical (OH * ) . ) Etc.
  • the first O-containing gas and the second O-containing gas may be gases having the same molecular structure (chemical structure) or gases having different molecular structures.
  • the structure of the gas supply system can be simplified, and the manufacturing cost and maintenance cost of the substrate processing apparatus can be reduced. It is preferable at the point which can be made to do.
  • the first O-containing gas and the second O-containing gas are gases having different molecular structures, for example, a substance having a lower oxidizing power than the first O-containing gas is used as the second O-containing gas.
  • the excessive gas phase reaction in Step 1 can be surely suppressed and the controllability of the film thickness uniformity can be improved.
  • O 3 gas or O 2 gas is used as the first O-containing gas
  • N 2 O gas, NO gas, NO 2 gas, or the like may be used as the second O-containing gas.
  • deuterium (D 2 ) gas or the like can be used in addition to H 2 gas.
  • an aminosilane source gas or the like is used as the source gas
  • O 3 gas is used as the first O-containing gas
  • the film forming process can be performed at a sufficient (similar) film forming rate without using the H-containing gas.
  • An SiO film having a predetermined thickness is formed on the wafer 200 by performing a predetermined number of cycles (n times (n is an integer of 1 or more)) in which steps 1 and 2 are performed non-simultaneously, that is, alternately without being synchronized. can do.
  • the above cycle is preferably repeated multiple times. That is, until the thickness of the second layer formed per cycle is smaller than the desired thickness and the thickness of the SiO layer formed by laminating the second layer becomes the desired thickness, The above cycle is preferably repeated a plurality of times.
  • N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 232d to 232f and exhausted from the exhaust port 231a.
  • N 2 gas acts as a purge gas.
  • the inside of the processing chamber 201 is purged, and the gas, reaction by-products and the like remaining in the processing chamber 201 are removed from the processing chamber 201 (after purge).
  • the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115, the lower end of the manifold 209 is opened, and the processed wafer 200 is carried out from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217 ( Boat unloaded). After the boat unloading, the shutter 219s is moved, and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is taken out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
  • step 1 by simultaneously supplying HCDS gas and O 2 gas to the wafer 200, migration of Si contained in the first layer is suppressed, and the surface of the SiO film formed on the wafer 200 It becomes possible to improve roughness and the like.
  • the effect of improving the surface roughness and the like is not limited to the case where the film forming temperature is set to a temperature in the range of 450 to 1000 ° C., but to a lower temperature (for example, a temperature in the range of 250 to 400 ° C.). Is obtained in the same way.
  • Si migration tends to become more active as the deposition temperature increases.
  • the technical significance of supplying the HCDS gas and the O 2 gas at the same time in Step 1 is that the migration of Si contained in the HCDS gas occurs remarkably when the film forming temperature is supplied to the wafer 200 alone.
  • the temperature becomes particularly large when the temperature is set in a range of 700 to 1000 ° C., for example.
  • step 1 O 2 gas is supplied from a nozzle 249c different from the nozzles 249a and 249b, that is, O 2 gas is supplied from a nozzle 249c disposed at a position farther from the nozzle 249a than the nozzle 249b.
  • the WiW and WtW of the SiO film formed on the wafer 200 can be improved.
  • the above-described effect of improving the surface roughness of the SiO film can be obtained more uniformly over the wafer 200 surface and between the wafers 200.
  • Step 2 the supply of O 2 gas in, can be performed with the nozzle 249b disposed in the vicinity of the nozzles 249a used for the supply of H 2 gas, oxidation by reaction with O 2 gas and H 2 gas It is possible to stably generate seeds. This makes it possible to improve the uniformity of the oxidation process performed in step 2 within the wafer 200 and between the wafers 200. Note that when the O 2 gas is supplied from the nozzle 249 c away from the nozzle 249 a in step 2, the amount of oxidized species generated becomes unstable, and the oxidation process performed in step 2 is performed within the wafer 200 and between the wafers 200. The inventors have confirmed that the uniformity in the case may decrease.
  • the temperature of the wafer 200 is set to the above-described temperature range, so that a SiO film having high quality film characteristics can be formed.
  • the film formation temperature is lower than the temperature of 450 ° C., for example, the temperature within the range of 250 to 400 ° C. It is also possible to improve etching resistance and insulation performance, extend the service life, and reduce the interface electron trap density that affects the response speed of the transistor.
  • the supply of O 2 gas from the nozzle 249c may be performed not only during the HCDS gas supply period in step 1 but also during other periods.
  • the supply of O 2 gas from the nozzle 249c is interrupted only during the HCDS gas supply period in Step 1, that is, not intermittently, but throughout the cycle. Alternatively, it may be performed continuously. Also in this modification, the same effect as the film forming sequence shown in FIG.
  • the supply flow rate of O 2 gas from the nozzle 249c can be the same as the supply flow rate of O 2 gas in Step 1 described above.
  • an SiO film may be formed under an intermediate temperature condition using an aminosilane source gas and O 3 gas.
  • the SiO film may be formed under low temperature conditions using an aminosilane source gas and plasma-excited O 2 gas (hereinafter also referred to as O 2 * ).
  • O 2 * plasma-excited O 2 gas
  • the above-described silicon hydride gas may be used instead of the aminosilane source gas.
  • N and C containing gases such as N-containing gas such as ammonia (NH 3 ) gas and triethylamine ((C 2 H 5 ) 3 N, abbreviated as TEA) are used as the reaction gas.
  • a C-containing gas such as propylene (C 3 H 6 ) gas or a B-containing gas such as trichloroborane (BCl 3 ) gas is used to form a silicon oxynitride film (SiON film), silicon oxycarbide on the wafer 200.
  • a film (SiOC film), silicon oxycarbonitride film (SiOCN film), silicon borate carbonitride film (SiBOCN film), silicon borate nitride film (SiBON film), or the like may be formed.
  • the present invention relates to titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), molybdenum (Mo), tungsten (W), yttrium (Y), strontium (Sr), lanthanum
  • Ti titanium
  • Zr zirconium
  • Hafnium hafnium
  • Ta tantalum
  • Nb niobium
  • Mo molybdenum
  • W tungsten
  • Y yttrium
  • strontium Sr
  • lanthanum titanium
  • the present invention is also applicable to the case where an oxide film (metal oxide film) containing a metal element such as (La), ruthenium (Ru), or aluminum (Al) as a main element is formed.
  • titanium tetrachloride (TiCl 4 ) gas, hafnium tetrachloride (HfCl 4 ) gas, tantalum pentachloride (TaCl 5 ) gas, trimethylaluminum (Al (CH 3 ) 3 , abbreviation: TMA) gas or the like is used as a raw material.
  • H 2 O gas is used as the first O-containing gas
  • O 2 gas is used as the second O-containing gas
  • a TiO film, an HfO film, a TaO film The present invention can be suitably applied also when forming a metal oxide film such as an AlO film.
  • the processing procedure and processing conditions of the film forming process at this time can be the same as the processing procedures and processing conditions of the above-described embodiments and modifications. In these cases, the same effects as those of the above-described embodiments and modifications can be obtained. That is, the present invention is suitably applied when forming a metalloid oxide film containing a metalloid element such as Si as a main element or when forming a metal oxide film containing the various metal elements described above as a main element. be able to.
  • the recipe used for the substrate processing is preferably prepared individually according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. And when starting a process, it is preferable that CPU121a selects a suitable recipe suitably from the some recipe stored in the memory
  • the above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • the reaction tube may be constituted by a double tube including an inner tube and an outer tube.
  • two buffer chambers and an exhaust port are provided on the side wall of the inner tube, and a first buffer chamber located far from the exhaust port (a buffer chamber at a position facing the exhaust port and the center of the wafer).
  • the first and second nozzles are provided in the same arrangement as in the above-described embodiment, and the third nozzle is provided in the second buffer chamber on the side closer to the exhaust port in the same arrangement as in the above-described embodiment. . Then, by exhausting the annular space between the inner tube and the outer tube from the exhaust pipe connected to the outer tube, the processing chamber formed inside the inner tube is exhausted.
  • the configuration other than the reaction tube described here is the same as the configuration of each part of the processing furnace shown in FIG. Even when the processing furnace configured as described above is used, the same effects as those of the above-described embodiment can be obtained.
  • a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at one time.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using, for example, a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
  • a film is formed using a substrate processing apparatus having a hot wall type processing furnace.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
  • processing procedure and processing conditions at this time can be the same as the processing procedure and processing conditions of the above-described embodiment, for example.
  • a substrate processing apparatus provided with a vertical processing furnace shown in FIG. 7 was used, and a SiO film was formed on the wafer by the film forming sequence shown in FIG.
  • Step 1 HCDS gas was supplied from the first nozzle, and O 2 gas (migration suppression gas) was supplied from the third nozzle.
  • Step 2 O 2 gas (oxidant) was supplied from the second nozzle, and H 2 gas was supplied from the first nozzle.
  • the processing conditions in each step are the conditions within the processing condition range described in the above embodiment.
  • an SiO film was formed on a wafer by a film forming sequence shown in FIG. 4A using a substrate processing apparatus equipped with a vertical processing furnace shown in FIG.
  • O 2 gas migration suppression gas
  • the nozzles for supplying other gases, processing procedures, and processing conditions were the same as those in the examples.
  • FIG. 6A shows the evaluation result of the example
  • FIG. 6B shows the evaluation result of the comparative example.
  • TOP, CEN, and BTM indicate the position of the wafer in the wafer arrangement area, that is, the position of the wafer is the upper part, the center part, and the lower part in the wafer arrangement area, respectively.
  • WiW indicates the degree of variation in the film thickness distribution in the wafer surface, and the smaller the value, the better the film thickness uniformity in the wafer surface.
  • WtW indicates the degree of variation in film thickness distribution between wafers, and the smaller the value, the better the film thickness uniformity between wafers.
  • the SiO film in the example greatly improved the WiW at any position of TOP, CEN, and BTM, as compared with the SiO film in the comparative example, and further improved WtW.
  • the HCDS gas is supplied from the first nozzle
  • the O 2 gas which is a migration suppression gas, is supplied from the third nozzle located at a position away from the first nozzle, thereby forming SiO formed on the wafer. It can be seen that the WiW and WtW of the film can be greatly improved.

Abstract

The present invention includes a step for forming an oxide film on a substrate by executing, a prescribed number of times, a cycle in which a step for suppling raw material gas to the substrate via a first nozzle and a step for supplying a first oxygen-containing gas to the substrate via a second nozzle differing from the first nozzle are carried out non-simultaneously. The step for supplying raw material gas includes a period during which a second oxygen-containing gas is supplied to the substrate via a third nozzle differing from the first nozzle and the second nozzle.

Description

半導体装置の製造方法、基板処理装置およびプログラムSemiconductor device manufacturing method, substrate processing apparatus, and program
 本発明は、半導体装置の製造方法、基板処理装置およびプログラムに関する。 The present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
 半導体装置(デバイス)の製造工程の一工程として、基板に対して原料ガスを供給する工程と、基板に対して酸素含有ガスを供給する工程と、を非同時に行うサイクルを所定回数行うことで、基板上に、酸化膜を形成する処理が行われることがある(例えば特許文献1参照)。 As a process of manufacturing a semiconductor device (device), by performing a predetermined number of cycles in which a process of supplying a source gas to a substrate and a process of supplying an oxygen-containing gas to a substrate are performed simultaneously, A process of forming an oxide film on the substrate may be performed (see, for example, Patent Document 1).
特開2010-153776号公報JP 2010-153776 A
 本発明は、基板上に形成される酸化膜の平滑性および膜厚均一性を向上させることが可能な技術を提供することを目的とする。 An object of the present invention is to provide a technique capable of improving the smoothness and film thickness uniformity of an oxide film formed on a substrate.
 本発明の一態様によれば、
 基板に対して第1ノズルより原料ガスを供給する工程と、
 前記基板に対して前記第1ノズルとは異なる第2ノズルより第1の酸素含有ガスを供給する工程と、
 を非同時に行うサイクルを所定回数行うことで前記基板上に酸化膜を形成する工程を有し、
 前記原料ガスを供給する工程は、前記基板に対して、前記第1ノズルおよび前記第2ノズルとはそれぞれ異なる第3ノズルより第2の酸素含有ガスを供給する期間を含む技術が提供される。
According to one aspect of the invention,
Supplying a source gas from the first nozzle to the substrate;
Supplying a first oxygen-containing gas from a second nozzle different from the first nozzle to the substrate;
Having a process of forming an oxide film on the substrate by performing a non-simultaneous cycle a predetermined number of times,
The step of supplying the source gas includes a technique including a period in which a second oxygen-containing gas is supplied to the substrate from a third nozzle different from the first nozzle and the second nozzle.
 本発明によれば、基板上に形成される酸化膜の平滑性および膜厚均一性を向上させることが可能となる。 According to the present invention, it is possible to improve the smoothness and film thickness uniformity of an oxide film formed on a substrate.
本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus used suitably by one Embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view. 本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in an embodiment of the present invention, and is a diagram showing a processing furnace part in a cross-sectional view taken along line AA of FIG. 本発明の一実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of the substrate processing apparatus used suitably by one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. (a)は本発明の一実施形態の成膜シーケンスを示す図であり、(b)はその変形例を示す図である。(A) is a figure which shows the film-forming sequence of one Embodiment of this invention, (b) is a figure which shows the modification. (a)は比較的低温で成膜処理を行う際における原料ガス供給時のウエハ表面の様子を示す図であり、(b)は比較的高温で成膜処理を行う際の原料ガス供給時に、ウエハ表面に吸着したSiが移動(マイグレーション)する様子を示す図であり、(c)は比較的高温で成膜処理を行う際の原料ガス供給時に、原料ガスと一緒に酸素ガスを供給することでウエハ表面に吸着したSiのマイグレーションが抑制される様子を示す図である。(A) is a figure which shows the mode of the wafer surface at the time of raw material gas supply at the time of performing film-forming processing at comparatively low temperature, (b) at the time of raw material gas supply at the time of performing film-forming processing at comparatively high temperature, It is a figure which shows a mode that Si adsorb | sucked to the wafer surface moves (migration), (c) supplies oxygen gas with source gas at the time of source gas supply at the time of performing the film-forming process at comparatively high temperature It is a figure which shows a mode that the migration of Si adsorbed on the wafer surface is suppressed. (a)は実施例におけるSiO膜のウエハ面内およびウエハ間の膜厚均一性に関する評価結果を示す図であり、(b)は比較例におけるSiO膜のウエハ面内およびウエハ間の膜厚均一性に関する評価結果を示す図である。(A) is a figure which shows the evaluation result regarding the film thickness uniformity in the wafer surface of the SiO film in an Example, and between wafers, (b) is the film thickness uniformity in the wafer surface of the SiO film in a comparative example, and between wafers. It is a figure which shows the evaluation result regarding sex. 本発明の他の実施形態で好適に用いられる基板処理装置の処理炉の概略構成図であり、処理炉部分を横断面図で示す図であり、反応管、ノズル、排気管、ウエハ等を抜き出して示す図である。It is a schematic block diagram of the processing furnace of the substrate processing apparatus used suitably by other embodiment of this invention, and is a figure which shows a processing furnace part with a cross-sectional view, and extracts a reaction tube, a nozzle, an exhaust pipe, a wafer, etc. FIG.
<本発明の一実施形態>
 以下、本発明の一実施形態について、図1~図5を用いて説明する。
<One Embodiment of the Present Invention>
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
(1)基板処理装置の構成
 図1に示すように、処理炉202は加熱機構(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(1) Configuration of Substrate Processing Apparatus As shown in FIG. 1, the processing furnace 202 has a heater 207 as a heating mechanism (temperature adjustment unit). The heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate. The heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属材料により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。 A reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened. A manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203. The manifold 209 is made of a metal material such as stainless steel (SUS), for example, and has a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203. An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203. The reaction tube 203 is installed vertically like the heater 207. The reaction vessel 203 and the manifold 209 mainly constitute a processing vessel (reaction vessel). A processing chamber 201 is formed in the hollow cylindrical portion of the processing container. The processing chamber 201 is configured to accommodate a wafer 200 as a substrate.
 処理室201内には、第1ノズルとしてのノズル249a、第2ノズルとしてのノズル249b、および、第3ノズルとしてのノズル249cが、マニホールド209の側壁を貫通するように設けられている。ノズル249a~249cには、ガス供給管232a~232cが、それぞれ接続されている。 In the processing chamber 201, a nozzle 249a as a first nozzle, a nozzle 249b as a second nozzle, and a nozzle 249c as a third nozzle are provided so as to penetrate the side wall of the manifold 209. Gas supply pipes 232a to 232c are connected to the nozzles 249a to 249c, respectively.
 ガス供給管232a~232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a~241cおよび開閉弁であるバルブ243a~243cがそれぞれ設けられている。ガス供給管232a~232cのバルブ243a~243cよりも下流側には、ガス供給管232d~232fがそれぞれ接続されている。ガス供給管232d~232fには、ガス流の上流側から順に、MFC241d~241fおよびバルブ243d~243fがそれぞれ設けられている。 The gas supply pipes 232a to 232c are provided with mass flow controllers (MFC) 241a to 241c, which are flow rate controllers (flow rate control units), and valves 243a to 243c, which are on-off valves, in order from the upstream side of the gas flow. . Gas supply pipes 232d to 232f are connected to the gas supply pipes 232a to 232c on the downstream side of the valves 243a to 243c, respectively. The gas supply pipes 232d to 232f are respectively provided with MFCs 241d to 241f and valves 243d to 243f in order from the upstream side of the gas flow.
 ノズル249a~249cは、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a~249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。なお、図2に示すように、ノズル249a~249cはそれぞれ異なるノズルである。 As shown in FIG. 2, the nozzles 249a to 249c are arranged in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper part from the lower part of the inner wall of the reaction tube 203. Each is provided so as to rise upward in the arrangement direction. That is, the nozzles 249a to 249c are provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area where the wafers 200 are arranged. As shown in FIG. 2, the nozzles 249a to 249c are different nozzles.
 ノズル249a,249bは、図2に示すように平面視において、処理室201内に搬入されるウエハ200を挟んで、後述する排気口231aと対向(対面)するように配置されている。ノズル249bは、ノズル249aの近傍に配置されている。ノズル249cは、ノズル249bよりもノズル249aから離れた位置に配置されている。ノズル249a~249cがそれぞれこのように配置されることで、ノズル249aとノズル249bとの間の距離Aと、ノズル249aとノズル249cとの間の距離Bとは、異なる大きさとなっている(距離A≠距離B)。具体的には、ノズル249aとノズル249cとの間の距離Bは、ノズル249aとノズル249bとの間の距離Aよりも大きくなっている(距離B>距離A)。また、ノズル249a、ノズル249c、およびウエハ200の中心200aで形成される扇形の中心角θは、ノズル249a、ノズル249b、およびウエハ200の中心200aで形成される扇形の中心角θよりも大きくなっている(中心角θ>中心角θ)。 As shown in FIG. 2, the nozzles 249a and 249b are arranged so as to face (face to) an exhaust port 231a to be described later with the wafer 200 carried into the processing chamber 201 interposed therebetween in a plan view. The nozzle 249b is disposed in the vicinity of the nozzle 249a. The nozzle 249c is disposed at a position farther from the nozzle 249a than the nozzle 249b. By arranging the nozzles 249a to 249c in this way, the distance A between the nozzles 249a and 249b and the distance B between the nozzles 249a and 249c have different sizes (distances). A ≠ distance B). Specifically, the distance B between the nozzle 249a and the nozzle 249c is larger than the distance A between the nozzle 249a and the nozzle 249b (distance B> distance A). Further, the fan-shaped center angle θ 2 formed by the nozzle 249 a, the nozzle 249 c, and the center 200 a of the wafer 200 is larger than the fan-shaped center angle θ 1 formed by the nozzle 249 a, the nozzle 249 b, and the center 200 a of the wafer 200. It is larger (center angle θ 2 > center angle θ 1 ).
 上述の距離Bは例えば30cm以上80cm以下の大きさとなっており、上述の距離Aは例えば1cm以上5cm以下の大きさとなっている。また、上述の中心角θは例えば90°以上180°未満の範囲内の大きさとなっており、上述の中心角θは例えば3°以上60°未満の範囲内の大きさとなっている。 The above-mentioned distance B is, for example, 30 cm or more and 80 cm or less, and the above-mentioned distance A is, for example, 1 cm or more and 5 cm or less. Further, the above-described central angle θ 2 has a size within a range of, for example, 90 ° to less than 180 °, and the above-described central angle θ 2 has a size within a range of, for example, 3 ° to less than 60 °.
 ノズル249a~249cの側面には、ガスを供給するガス供給孔250a~250cがそれぞれ設けられている。ガス供給孔250a~250cは、反応管203の中央部を向くようにそれぞれ開口しており、ウエハ200の中央部に向けてガスを供給することが可能となっている。なお、ガス供給孔250a,250bは、図2に示すように、平面視において、ウエハ200を挟んで排気口231aと対向(対面)するように設けられている。ガス供給孔250a~250cは、反応管203の下部から上部にわたって複数設けられている。なお、距離Aは、ガス供給孔250aとガス供給孔250bとの間の距離と考えてもよいし、距離Bはガス供給孔250aとガス供給孔250cとの間の距離と考えてもよい。 Gas supply holes 250a to 250c for supplying gas are provided on the side surfaces of the nozzles 249a to 249c, respectively. The gas supply holes 250 a to 250 c are opened so as to face the central portion of the reaction tube 203, and gas can be supplied toward the central portion of the wafer 200. As shown in FIG. 2, the gas supply holes 250a and 250b are provided so as to face (face to) the exhaust port 231a with the wafer 200 interposed therebetween in plan view. A plurality of gas supply holes 250 a to 250 c are provided from the lower part to the upper part of the reaction tube 203. The distance A may be considered as a distance between the gas supply hole 250a and the gas supply hole 250b, and the distance B may be considered as a distance between the gas supply hole 250a and the gas supply hole 250c.
 ガス供給管232aからは、原料(原料ガス)として、例えば、所定元素(主元素)としてのシリコン(Si)およびハロゲン元素を含むハロシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。ハロゲン元素には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等が含まれる。ハロシラン原料ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン原料ガスを用いることができる。クロロシラン原料ガスは、Siソースとして作用する。クロロシラン原料ガスとしては、例えば、ヘキサクロロジシラン(SiCl、略称:HCDS)ガスを用いることができる。 From the gas supply pipe 232a, as a raw material (raw material gas), for example, a halosilane raw material gas containing silicon (Si) as a predetermined element (main element) and a halogen element is passed through the MFC 241a, the valve 243a, and the nozzle 249a. Supplied into 201. The raw material gas is a gaseous raw material, for example, a gas obtained by vaporizing a raw material that is in a liquid state under normal temperature and normal pressure, or a raw material that is in a gaseous state under normal temperature and normal pressure. The halogen element includes chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like. As the halosilane source gas, for example, a source gas containing Si and Cl, that is, a chlorosilane source gas can be used. The chlorosilane source gas acts as a Si source. As the chlorosilane source gas, for example, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas can be used.
 ガス供給管232b,232cからは、反応体(反応ガス)として、例えば、酸素(O)含有ガスが、MFC241b,241c、バルブ243b,243c、ノズル249b,249cを介して処理室201内へそれぞれ供給される。本明細書では、後述する成膜処理のステップ2において、ノズル249bより供給するO含有ガスを第1のO含有ガスとも称し、また、成膜処理のステップ1において、ノズル249cより供給するO含有ガスを第2のO含有ガスとも称する。第1のO含有ガスは、酸化源(酸化剤、酸化ガス)、すなわち、Oソースとして作用する。第2のO含有ガスは、ウエハ200上に吸着したSiのマイグレーションを抑制するマイグレーション抑制ガスとして作用する。第1、第2のO含有ガスとしては、例えば、酸素(O)ガスを用いることができる。 From the gas supply pipes 232b and 232c, for example, oxygen (O) -containing gas is supplied into the processing chamber 201 through the MFCs 241b and 241c, valves 243b and 243c, and nozzles 249b and 249c as reactants (reaction gas). Is done. In the present specification, the O-containing gas supplied from the nozzle 249b in Step 2 of the film formation process described later is also referred to as a first O-containing gas, and the O-containing gas supplied from the nozzle 249c in Step 1 of the film formation process. The gas is also referred to as a second O-containing gas. The first O-containing gas acts as an oxidizing source (oxidant, oxidizing gas), that is, an O source. The second O-containing gas acts as a migration suppression gas that suppresses migration of Si adsorbed on the wafer 200. For example, oxygen (O 2 ) gas can be used as the first and second O-containing gases.
 ガス供給管232aからは、反応体(反応ガス)として、例えば、水素(H)含有ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。H含有ガスは、それ単体では酸化作用は得られないが、後述する成膜処理において、特定の条件下でO含有ガスと反応することで原子状酸素(atomic oxygen、O)等の酸化種を生成し、酸化処理の効率を向上させるように作用する。H含有ガスとしては、例えば、水素(H)ガスを用いることができる。 From the gas supply pipe 232a, for example, a hydrogen (H) -containing gas is supplied into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a as a reactant (reaction gas). Although the H-containing gas alone cannot be oxidized, it reacts with the O-containing gas under specific conditions in the film-forming process described below, thereby oxidizing oxidizing species such as atomic oxygen (O). It acts to improve the efficiency of the oxidation treatment. As the H-containing gas, for example, hydrogen (H 2 ) gas can be used.
 ガス供給管232d~232fからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241d~241f、バルブ243d~243f、ガス供給管232a~232c、ノズル249a~249cを介して処理室201内へ供給される。Nガスは、パージガス、キャリアガスとして作用する。 From the gas supply pipes 232d to 232f, for example, nitrogen (N 2 ) gas as an inert gas passes through the MFCs 241d to 241f, valves 243d to 243f, gas supply pipes 232a to 232c, and nozzles 249a to 249c, respectively. Supplied into 201. N 2 gas acts as a purge gas and a carrier gas.
 主に、ガス供給管232a、MFC241a、バルブ243aにより、原料ガスを供給する第1供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、第1のO含有ガスを供給する第2供給系が構成される。第2供給系からのO含有ガスの供給と同時にガス供給管232aからH含有ガスを供給する場合、ガス供給管232a、MFC241a、バルブ243aを第2供給系に含めて考えてもよい。主に、ガス供給管232c、MFC241c、バルブ243cにより、第2のO含有ガスを供給する第3供給系が構成される。主に、ガス供給管232d~232f、MFC241d~241f、バルブ243d~243fにより、不活性ガス供給系が構成される。 Mainly, the gas supply pipe 232a, the MFC 241a, and the valve 243a constitute a first supply system that supplies the source gas. The gas supply pipe 232b, the MFC 241b, and the valve 243b mainly constitute a second supply system that supplies the first O-containing gas. When the H-containing gas is supplied from the gas supply pipe 232a simultaneously with the supply of the O-containing gas from the second supply system, the gas supply pipe 232a, the MFC 241a, and the valve 243a may be included in the second supply system. A third supply system that supplies the second O-containing gas is mainly configured by the gas supply pipe 232c, the MFC 241c, and the valve 243c. An inert gas supply system is mainly configured by the gas supply pipes 232d to 232f, the MFCs 241d to 241f, and the valves 243d to 243f.
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243fやMFC241a~241f等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232fのそれぞれに対して接続され、ガス供給管232a~232f内への各種ガスの供給動作、すなわち、バルブ243a~243fの開閉動作やMFC241a~241fによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232f等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。 Any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243f, MFCs 241a to 241f, and the like are integrated. The integrated supply system 248 is connected to each of the gas supply pipes 232a to 232f, and supplies various gases into the gas supply pipes 232a to 232f, that is, opens and closes the valves 243a to 243f and MFCs 241a to 241f. The flow rate adjusting operation and the like are configured to be controlled by a controller 121 described later. The integrated supply system 248 is configured as an integrated or divided type integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232f in units of integrated units. Maintenance, replacement, expansion, etc. can be performed in units of integrated units.
 反応管203には、処理室201内の雰囲気を排気する排気口231aが設けられている。排気口231aには排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。 The reaction tube 203 is provided with an exhaust port 231a for exhausting the atmosphere in the processing chamber 201. An exhaust pipe 231 is connected to the exhaust port 231a. The exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 as a vacuum exhaust device is connected. The APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated, The pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245. An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system.
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。 Below the manifold 209, a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209. The seal cap 219 is made of a metal material such as SUS and is formed in a disk shape. On the upper surface of the seal cap 219, an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209. Below the seal cap 219, a rotation mechanism 267 for rotating a boat 217 described later is installed. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as an elevating mechanism installed outside the reaction tube 203. The boat elevator 115 is configured as a transfer device (transfer mechanism) that carries the wafer 200 in and out of the processing chamber 201 by moving the seal cap 219 up and down. Below the manifold 209, a shutter 219s is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209 with the seal cap 219 lowered and the boat 217 carried out of the processing chamber 201. Yes. The shutter 219s is made of a metal material such as SUS, and is formed in a disk shape. On the upper surface of the shutter 219s, an O-ring 220c as a seal member that comes into contact with the lower end of the manifold 209 is provided. The opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening / closing mechanism 115s.
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。 The boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals. The boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat resistant material such as quartz or SiC are supported in multiple stages.
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。 In the reaction tube 203, a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution. The temperature sensor 263 is provided along the inner wall of the reaction tube 203.
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 3, the controller 121, which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner. The process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in substrate processing to be described later, and functions as a program. Hereinafter, process recipes, control programs, and the like are collectively referred to simply as programs. The process recipe is also simply called a recipe. When the term “program” is used in this specification, it may include only a recipe, only a control program, or both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
 I/Oポート121dは、上述のMFC241a~241f、バルブ243a~243f、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。 The I / O port 121d includes the above-described MFCs 241a to 241f, valves 243a to 243f, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 115s, etc. It is connected to the.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241fによる各種ガスの流量調整動作、バルブ243a~243fの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御するように構成されている。 The CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. The CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241f, the opening / closing operation of the valves 243a to 243f, the opening / closing operation of the APC valve 244, and the pressure adjustment by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe. Operation, start and stop of the vacuum pump 246, temperature adjustment operation of the heater 207 based on the temperature sensor 263, rotation and rotation speed adjustment operation of the boat 217 by the rotation mechanism 267, raising / lowering operation of the boat 217 by the boat elevator 115, shutter opening / closing mechanism 115s Is configured to control the opening / closing operation and the like of the shutter 219s.
 コントローラ121は、外部記憶装置(例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 installs the above-mentioned program stored in an external storage device (for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer. Can be configured. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them. The program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)成膜処理
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上にシリコン酸化膜(SiO膜)を形成するシーケンス例について、図4(a)を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
(2) Film Forming Process Regarding a sequence example in which a silicon oxide film (SiO film) is formed on a wafer 200 as a substrate as one step of a semiconductor device manufacturing process using the substrate processing apparatus described above, FIG. Will be described. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
 図4(a)に示す成膜シーケンスでは、
 ウエハ200に対してノズル249aよりHCDSガスを供給するステップ1と、
 ウエハ200に対してノズル249bよりOガスを供給するステップ2と、
 を非同時に行うサイクルを所定回数(1回以上)行うことで、ウエハ200上に、SiおよびOを含む膜としてSiO膜を形成する。
In the film forming sequence shown in FIG.
Supplying HCDS gas from the nozzle 249a to the wafer 200;
Step 2 of supplying O 2 gas from the nozzle 249b to the wafer 200;
By performing a non-simultaneous cycle a predetermined number of times (one or more times), an SiO film is formed on the wafer 200 as a film containing Si and O.
 上述のステップ1は、ウエハ200に対して、ノズル249cよりOガスを供給する期間を含んでいる。すなわち、ステップ1は、ウエハ200に対して、HCDSガスとOガスとを同時に供給する期間を含んでいる。また、上述のステップ2は、ウエハ200に対して、OガスとHガスとを同時に供給する期間を含んでいる。Hガスの供給は、ステップ2においてOガスの供給を行うノズル249bの近傍に配置されたノズル249aより行う。 Step 1 described above includes a period during which O 2 gas is supplied from the nozzle 249 c to the wafer 200. That is, step 1 includes a period during which HCDS gas and O 2 gas are supplied to the wafer 200 simultaneously. Further, step 2 described above includes a period during which O 2 gas and H 2 gas are simultaneously supplied to the wafer 200. The H 2 gas is supplied from the nozzle 249a disposed in the vicinity of the nozzle 249b that supplies the O 2 gas in Step 2.
 本明細書では、図4(a)に示す成膜シーケンスを、便宜上、以下のように示すこともある。以下の変形例等の説明においても、同様の表記を用いることとする。 In this specification, the film forming sequence shown in FIG. 4A may be shown as follows for convenience. The same notation is used in the following description of the modified examples.
 (HCDS+O→O+H)×n ⇒ SiO (HCDS + O 2 → O 2 + H 2 ) × n ⇒ SiO
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 When the term “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof. When the term “wafer surface” is used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer. In this specification, the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate. In this specification, the term “substrate” is also synonymous with the term “wafer”.
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(Wafer charge and boat load)
When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the shutter 219s is moved by the shutter opening / closing mechanism 115s, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって処理室201内が真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の成膜温度となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(Pressure adjustment and temperature adjustment)
The inside of the processing chamber 201 is evacuated (reduced pressure) by the vacuum pump 246 so that the space in which the wafer 200 exists is at a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired film formation temperature. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Further, the rotation of the wafer 200 by the rotation mechanism 267 is started. The exhaust in the processing chamber 201 and the heating and rotation of the wafer 200 are all continuously performed at least until the processing on the wafer 200 is completed.
(成膜ステップ)
 その後、以下のステップ1,2を順次実行する。
(Deposition step)
Thereafter, the following steps 1 and 2 are sequentially executed.
 [ステップ1]
 このステップでは、処理室201内のウエハ200に対してHCDSガスとOガスとを異なるノズルより同時に供給する。
[Step 1]
In this step, HCDS gas and O 2 gas are simultaneously supplied from different nozzles to the wafer 200 in the processing chamber 201.
 具体的には、バルブ243a,243cを開き、ガス供給管232a,232c内へHCDSガス、Oガスをそれぞれ流す。HCDSガス、Oガスは、それぞれ、MFC241a,241cにより流量調整され、ノズル249a,249cを介して処理室201内へ供給されて、処理室201内で混合され、排気口231aより排気される。このとき、ウエハ200に対してHCDSガスとOガスとが同時(一緒)に供給される。このとき同時にバルブ243d,243fを開き、ガス供給管232d,232f内へNガスをそれぞれ流す。Nガスは、MFC241d,241fにより流量調整され、HCDSガス、Oガスと一緒に処理室201内へ供給される。また、ノズル249b内へのHCDSガス等の侵入を防止するため、バルブ243eを開き、ガス供給管232e内へNガスを流す。Nガスは、ガス供給管232b、ノズル249bを介して処理室201内へ供給される。 Specifically, the valves 243a and 243c are opened, and HCDS gas and O 2 gas are allowed to flow into the gas supply pipes 232a and 232c, respectively. The flow rates of the HCDS gas and the O 2 gas are adjusted by the MFCs 241a and 241c, respectively, supplied into the processing chamber 201 through the nozzles 249a and 249c, mixed in the processing chamber 201, and exhausted from the exhaust port 231a. At this time, HCDS gas and O 2 gas are supplied to the wafer 200 simultaneously (together). At the same time, the valves 243d and 243f are opened, and N 2 gas flows into the gas supply pipes 232d and 232f, respectively. The flow rate of the N 2 gas is adjusted by the MFCs 241d and 241f, and the N 2 gas is supplied into the processing chamber 201 together with the HCDS gas and the O 2 gas. Further, in order to prevent entry of HCDS gas or the like into the nozzle 249b, the valve 243e is opened, and N 2 gas is caused to flow into the gas supply pipe 232e. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b.
 ノズル249cより供給するOガスの供給流量Fは、1サイクルあたりのステップ1におけるOガス(第2のO含有ガス)の供給量Qが、1サイクルあたりの後述するステップ2におけるOガス(第1のO含有ガス)の供給量Qよりも小さくなる(Q<Q)ような微量な流量に設定する。ステップ1におけるOガスの供給時間と、ステップ2におけるOガスの供給時間と、を同じとする場合、Fを、ステップ2においてノズル249bより供給するOガスの供給流量Fよりも小さくすることで、Q<Qとすることが可能となる。ウエハ200上に形成されるSiO膜の膜厚均一性等の点から、Fは、Fよりも小さくする(F<F)のが好ましく、例えばFの1/20以上1/2以下、好ましくは1/10以上1/5以下の範囲内の微量な流量とすることができる。なお、Fは、ステップ2において、ステップ1で形成された第1層を充分に酸化させることが可能な流量である。 The supply flow rate F 1 of the O 2 gas supplied from the nozzle 249c is the same as the supply amount Q 1 of the O 2 gas (second O-containing gas) in step 1 per cycle. 2 gas is set to (first O-containing gas) is smaller than the supply amount Q 2 of (Q 1 <Q 2) such trace amounts of flow. When the supply time of O 2 gas in Step 1 is the same as the supply time of O 2 gas in Step 2, F 1 is more than the supply flow rate F 2 of O 2 gas supplied from the nozzle 249b in Step 2. By making it smaller, it is possible to satisfy Q 1 <Q 2 . In view of thickness uniformity and the like of the SiO film formed on the wafer 200, F 1 is smaller than F 2 (F 1 <F 2) of preferably, for example, F 2 1/20 or 1 / The flow rate can be a very small flow rate of 2 or less, preferably 1/10 or more and 1/5 or less. Note that F 2 is a flow rate that can sufficiently oxidize the first layer formed in Step 1 in Step 2.
 FがFの1/20未満となると、Oガスによる後述するSiのマイグレーション抑制効果が得られなくなる場合があり、ウエハ200上に形成されるSiO膜の表面ラフネスが悪化しやすくなる。FをFの1/20以上とすることで、マイグレーション抑制効果が得られるようになり、SiO膜の表面ラフネスを向上させることが可能となる。FをFの1/10以上とすることで、マイグレーション抑制効果が確実に得られるようになり、SiO膜の表面ラフネスを確実に向上させることが可能となる。ここで「表面ラフネス」とは、ウエハ面内における膜の高低差を意味しており、表面粗さと同義である。表面ラフネスが向上するとは、この高低差が小さくなり、表面が平滑になることを意味している。表面ラフネスが悪化するとは、この高低差が大きくなり、表面が粗くなることを意味している。 If F 1 is less than 1/20 of F 2, the effect of suppressing the migration of Si described later with O 2 gas may not be obtained, and the surface roughness of the SiO film formed on the wafer 200 tends to deteriorate. By setting F 1 to be 1/20 or more of F 2 , a migration suppressing effect can be obtained, and the surface roughness of the SiO film can be improved. By setting F 1 to be 1/10 or more of F 2 , a migration suppression effect can be obtained with certainty, and the surface roughness of the SiO film can be reliably improved. Here, “surface roughness” means a difference in height of the film in the wafer plane and is synonymous with surface roughness. An improvement in surface roughness means that this height difference is reduced and the surface becomes smooth. The deterioration of the surface roughness means that the height difference becomes large and the surface becomes rough.
 FがFの1/2を超えると、過剰な気相反応が生じることで、ウエハ200上に形成されるSiO膜の膜厚均一性が悪化しやすくなる場合がある。FをFの1/2以下とすることで、適正な気相反応を生じさせることができ、SiO膜の膜厚均一性を向上させることが可能となる。FをFの1/5以下とすることで、気相反応を適正に抑制することができ、SiO膜の膜厚均一性を確実に向上させることが可能となる。 If F 1 exceeds 1/2 of F 2 , an excessive gas phase reaction may occur, and the film thickness uniformity of the SiO film formed on the wafer 200 may easily deteriorate. By setting F 1 to be ½ or less of F 2 , an appropriate gas phase reaction can be caused, and the film thickness uniformity of the SiO film can be improved. By setting F 1 to be 1/5 or less of F 2 , the gas phase reaction can be appropriately suppressed, and the film thickness uniformity of the SiO film can be reliably improved.
 本ステップにおける処理条件としては、
 成膜圧力(処理室201内の圧力):0.1~20Torr(13.3~2666Pa)、好ましくは、1~10Torr(133~1333Pa)
 HCDSガス供給流量:1~2000sccm、好ましくは、10~1000sccm
 Oガス供給流量F(ノズル249c):1~1000sccm、好ましくは、1~500sccm
 Nガス供給流量(各ガス供給管):100~10000sccm
 成膜温度(ウエハ200の温度):450~1000℃、好ましくは、600~1000℃、より好ましくは700~900℃
 各ガス供給時間:1~100秒、好ましくは1~50秒
 が例示される。
As processing conditions in this step,
Deposition pressure (pressure in the processing chamber 201): 0.1 to 20 Torr (13.3 to 2666 Pa), preferably 1 to 10 Torr (133 to 1333 Pa)
HCDS gas supply flow rate: 1 to 2000 sccm, preferably 10 to 1000 sccm
O 2 gas supply flow rate F 1 (nozzle 249c): 1 to 1000 sccm, preferably 1 to 500 sccm
N 2 gas supply flow rate (each gas supply pipe): 100 to 10000 sccm
Deposition temperature (temperature of wafer 200): 450 to 1000 ° C., preferably 600 to 1000 ° C., more preferably 700 to 900 ° C.
Each gas supply time is 1 to 100 seconds, preferably 1 to 50 seconds.
 成膜温度が450℃未満となると、ウエハ200上にSiO膜が形成されにくくなり、実用的な成膜速度が得られなくなることがある。成膜温度を450℃以上の温度とすることで、これを解消することが可能となる。成膜温度を600℃以上の温度とすることで、ウエハ200上に形成されるSiO膜のフッ化水素(HF)等に対するエッチング耐性等を向上させることが可能となる。成膜温度を700℃以上の温度とすることで、SiO膜のエッチング耐性等をより向上させることが可能となる。 When the film forming temperature is lower than 450 ° C., it is difficult to form the SiO film on the wafer 200, and a practical film forming speed may not be obtained. This can be eliminated by setting the film forming temperature to 450 ° C. or higher. By setting the film forming temperature to 600 ° C. or higher, it is possible to improve the etching resistance of the SiO film formed on the wafer 200 with respect to hydrogen fluoride (HF) and the like. By setting the film forming temperature to 700 ° C. or higher, the etching resistance of the SiO film can be further improved.
 成膜温度が1000℃を超えると、過剰な気相反応が生じることで、ウエハ200上に形成されるSiO膜の膜厚均一性が悪化する場合がある。また、処理室201内にパーティクルが大量に発生し、成膜処理の品質を低下させる場合がある。成膜温度を1000℃以下の温度とすることで、適正な気相反応を生じさせることができ、SiO膜の膜厚均一性を向上させ、また、処理室201内におけるパーティクルの発生を抑制することが可能となる。成膜温度を900℃以下の温度とすることで、SiO膜の膜厚均一性を確実に向上させ、また、処理室201内におけるパーティクルの発生を確実に抑制することが可能となる。 When the film formation temperature exceeds 1000 ° C., an excessive gas phase reaction may occur, which may deteriorate the film thickness uniformity of the SiO film formed on the wafer 200. In addition, a large amount of particles may be generated in the processing chamber 201, which may deteriorate the quality of the film forming process. By setting the film forming temperature to a temperature of 1000 ° C. or lower, an appropriate gas phase reaction can be generated, the film thickness uniformity of the SiO film can be improved, and the generation of particles in the processing chamber 201 can be suppressed. It becomes possible. By setting the film forming temperature to 900 ° C. or lower, the film thickness uniformity of the SiO film can be reliably improved, and the generation of particles in the processing chamber 201 can be reliably suppressed.
 上述の温度帯は、処理室201内にHCDSガスが単独で存在した場合に、HCDSが熱分解(自己分解)する温度帯を含んでいる。また、この温度帯は、ウエハ200に対してHCDSガスを単独で供給した場合に、HCDSガスに含まれるSiのマイグレーションがウエハ200の表面上で顕著に生じる温度帯を含んでいる。 The above-described temperature zone includes a temperature zone in which HCDS is thermally decomposed (self-decomposed) when HCDS gas is present alone in the processing chamber 201. Further, this temperature zone includes a temperature zone in which migration of Si contained in the HCDS gas occurs remarkably on the surface of the wafer 200 when the HCDS gas is supplied alone to the wafer 200.
 上述の条件下でウエハ200に対してHCDSガスおよびOガスを同時に供給することにより、ウエハ200の最表面上に、第1層(初期層)として、例えば1原子層(1分子層)未満から数原子層(数分子層)程度の厚さのClを含むSi含有層が形成される。Clを含むSi含有層は、ウエハ200の最表面に、HCDSが物理吸着したり、HCDSの一部が分解した物質(以下、SiCl)が化学吸着したり、HCDSが熱分解したりすること等により形成される。Clを含むSi含有層は、HCDSやSiClの吸着層(物理吸着層や化学吸着層)であってもよく、Clを含むSi層であってもよい。HCDSやSiClの吸着層を形成するよりも、Clを含むSi層を形成する方が、1サイクルあたりに形成される層の厚さを厚くすることができる。なお、本明細書では、Clを含むSi含有層を、単に、Si含有層とも称する。 By simultaneously supplying HCDS gas and O 2 gas to the wafer 200 under the above-described conditions, the first layer (initial layer) on the outermost surface of the wafer 200 is, for example, less than one atomic layer (one molecular layer). Thus, a Si-containing layer containing Cl having a thickness of about several atomic layers (several molecular layers) is formed. In the Si-containing layer containing Cl, HCDS is physically adsorbed on the outermost surface of the wafer 200, a substance in which HCDS is partially decomposed (hereinafter, Si x Cl y ) is chemisorbed, or HCDS is thermally decomposed. It is formed by doing. The Si-containing layer containing Cl may be an HCDS or Si x Cl y adsorption layer (physical adsorption layer or chemical adsorption layer), or may be a Si layer containing Cl. The formation of the Si layer containing Cl can increase the thickness of the layer formed per cycle, rather than the formation of the adsorption layer of HCDS or Si x Cl y . In this specification, a Si-containing layer containing Cl is also simply referred to as a Si-containing layer.
 第1層の厚さが数原子層を超えると、後述するステップ2での改質の作用が第1層の全体に届かなくなる。また、第1層の厚さの最小値は1原子層未満である。よって、第1層の厚さは1原子層未満から数原子層程度とするのが好ましい。第1層の厚さを1原子層以下とすることで、後述するステップ2での改質反応の作用を相対的に高めることができ、ステップ2での改質反応に要する時間を短縮することができる。ステップ1での第1層の形成に要する時間を短縮することもできる。結果として、1サイクルあたりの処理時間を短縮することができ、トータルでの処理時間を短縮することも可能となる。すなわち、成膜レートを高くすることも可能となる。また、第1層の厚さを1原子層以下とすることで、膜厚均一性の制御性を高めることも可能となる。 When the thickness of the first layer exceeds several atomic layers, the modification effect in Step 2 described later does not reach the entire first layer. The minimum thickness of the first layer is less than one atomic layer. Therefore, it is preferable that the thickness of the first layer be less than one atomic layer to several atomic layers. By setting the thickness of the first layer to 1 atomic layer or less, the action of the reforming reaction in Step 2 described later can be relatively enhanced, and the time required for the reforming reaction in Step 2 can be shortened. Can do. The time required for forming the first layer in step 1 can also be shortened. As a result, the processing time per cycle can be shortened, and the total processing time can be shortened. That is, the film forming rate can be increased. Moreover, the controllability of the film thickness uniformity can be improved by setting the thickness of the first layer to 1 atomic layer or less.
 なお、第1層を形成する過程において、ウエハ200上に吸着した主元素、すなわち、第1層に含まれるSiがウエハ200の表面上で移動(マイグレーション)する場合がある。特に、成膜温度を高く設定するほど、Siのマイグレーションは活発になり、ウエハ200上に形成されるSiO膜の表面ラフネスは悪化しやすくなる。図5(a)は、700℃未満の比較的低温の条件下で成膜処理を行った際におけるHCDSガス供給時のウエハ200表面の様子を示す図である。このような温度帯では、ウエハ200上に吸着したSiのマイグレーションは比較的穏やかであり、SiO膜の表面ラフネス等に大きな影響を与えることはない。図5(b)は、700℃以上の比較的高温の条件下で成膜処理を行った際におけるHCDSガス供給時のウエハ200表面の様子を示す図である。このような温度帯では、ウエハ200上に吸着したSiのマイグレーションが顕著となり、Siが凝集すること等によって、第1層の表面に凹凸構造が形成されてしまう場合がある。結果として、下地とSiO膜との間の界面ラフネスやSiO膜の表面ラフネスを悪化させてしまう場合がある。 In the process of forming the first layer, the main element adsorbed on the wafer 200, that is, Si contained in the first layer may move (migrate) on the surface of the wafer 200. In particular, as the deposition temperature is set higher, Si migration becomes more active, and the surface roughness of the SiO film formed on the wafer 200 tends to deteriorate. FIG. 5A is a diagram showing a state of the surface of the wafer 200 when the HCDS gas is supplied when film formation is performed under a relatively low temperature of less than 700 ° C. In such a temperature range, the migration of Si adsorbed on the wafer 200 is relatively gentle and does not significantly affect the surface roughness of the SiO film. FIG. 5B is a diagram showing a state of the surface of the wafer 200 when the HCDS gas is supplied when film formation is performed under a relatively high temperature condition of 700 ° C. or higher. In such a temperature range, the migration of Si adsorbed on the wafer 200 becomes remarkable, and the uneven structure may be formed on the surface of the first layer due to the aggregation of Si or the like. As a result, the interface roughness between the base and the SiO film or the surface roughness of the SiO film may be deteriorated.
 この課題を解決するため、本実施形態では、ステップ1においてウエハ200に対してHCDSガスとOガスとを同時に供給するようにしている。HCDSガスと一緒にOガスを供給することで、ウエハ200上へのSiの吸着と同時或いはその前後に、このSiの少なくとも一部を酸化させて酸化物(SiO)に変化させることが可能となる。ウエハ200上に吸着したSiは、酸化されることによりマイグレーションしにくくなる。すなわち、ウエハ200上に吸着したSi原子は、Si原子と結合したO原子によりマイグレーションが妨げられる。これにより、ウエハ200の温度を上述の温度帯とした場合であっても、下地とSiO膜との間の界面ラフネスやSiO膜の表面ラフネスの悪化を回避することが可能となる。図5(c)は、HCDSガスと一緒にOガスを供給することにより、Siのマイグレーションが抑制される様子を示す図である。図5(c)は、ウエハ200上に吸着したSi原子に隣接するO原子によりSi原子のマイグレーションがブロックされ、Siの凝集が妨げられる様子を、原子レベルで示している。HCDSガスと一緒に供給するOガスを、その作用からマイグレーション抑制ガスと称することもできる。発明者等は、ウエハ200の温度を例えば700~1000℃の範囲内の温度とした場合であっても、ステップ1においてウエハ200に対してHCDSガスとOガスとを同時に供給することで、SiO膜の表面ラフネス等の悪化を回避できることを確認している。なお、ウエハ200上に形成される第1層は、Clだけでなく、Oをさらに含むSi含有層となる。但し、本明細書では、このClおよびOを含むSi含有層を、便宜上、Clを含むSi含有層、もしくは、単に、Si含有層とも称する。 In order to solve this problem, in this embodiment, HCDS gas and O 2 gas are simultaneously supplied to the wafer 200 in step 1. By supplying the O 2 gas together with the HCDS gas, at least a part of the Si is oxidized and converted into an oxide (SiO x ) simultaneously with or before the adsorption of the Si onto the wafer 200. It becomes possible. Si adsorbed on the wafer 200 becomes difficult to migrate due to oxidation. That is, migration of Si atoms adsorbed on the wafer 200 is hindered by O atoms bonded to Si atoms. As a result, even when the temperature of the wafer 200 is set to the above-described temperature range, it is possible to avoid deterioration of the interface roughness between the base and the SiO film and the surface roughness of the SiO film. FIG. 5C is a diagram showing a state in which Si migration is suppressed by supplying O 2 gas together with HCDS gas. FIG. 5C shows, on an atomic level, a state in which migration of Si atoms is blocked by O atoms adjacent to Si atoms adsorbed on wafer 200 and aggregation of Si is prevented. O 2 gas supplied together with the HCDS gas can also be referred to as a migration suppressing gas because of its action. The inventors have supplied the HCDS gas and the O 2 gas simultaneously to the wafer 200 in step 1 even when the temperature of the wafer 200 is set to a temperature within the range of 700 to 1000 ° C., for example. It has been confirmed that deterioration of the surface roughness of the SiO film can be avoided. Note that the first layer formed on the wafer 200 is a Si-containing layer that further includes O as well as Cl. However, in this specification, the Si-containing layer containing Cl and O is also referred to as a Si-containing layer containing Cl or simply as a Si-containing layer for convenience.
 但し、HCDSガスと一緒にOガスを供給する際、Oガスの供給に用いるノズルの配置によっては、ウエハ200上に形成されるSiO膜の膜厚均一性が低下する場合があることを、発明者等は鋭意研究により明らかとした。例えば、ステップ1において、Oガスを、HCDSガスの供給に用いるノズル249aの近傍に配置されたノズル249bより供給すると、ウエハ200上に形成されるSiO膜のウエハ面内膜厚分布(以下、単に面内膜厚分布ともいう)が、ウエハ200の中央部で最も薄く、周縁部に近づくにつれて徐々に厚くなる分布(中央凹分布)となる等し、ウエハ200面内における膜厚均一性(WiW)が低下する場合がある。また、ステップ1において、Oガスを、ノズル249bより供給すると、ウエハ200間におけるSiO膜の膜厚均一性(WtW)が低下する場合もある。 However, when supplying the O 2 gas together with the HCDS gas, depending on the arrangement of the nozzles used to supply the O 2 gas, the film thickness uniformity of the SiO film formed on the wafer 200 may be reduced. The inventors have made it clear through intensive studies. For example, when the O 2 gas is supplied from the nozzle 249b disposed in the vicinity of the nozzle 249a used for supplying the HCDS gas in Step 1, the in-wafer surface thickness distribution (hereinafter referred to as the SiO film) of the SiO film formed on the wafer 200 is determined. The film thickness uniformity in the wafer 200 plane (simply referred to as in-plane film thickness distribution) is the thinnest distribution at the center of the wafer 200 and gradually increases toward the peripheral edge (central concave distribution). WiW) may decrease. Further, if O 2 gas is supplied from the nozzle 249b in Step 1, the film thickness uniformity (WtW) of the SiO film between the wafers 200 may be lowered.
 これらの課題を解決するため、本実施形態では、HCDSガスとOガスとを同時に供給する際、Oガスを、ノズル249a,249bとは異なるノズル249cより供給するようにしている。これにより、HCDSガスと同時に供給するOガスの供給ポイントを、ノズル249a,249b以外のポイントとするよう調整することが可能となる。すなわち、微量Oガスの供給ポイントを、自在に調整することが可能となる。これにより、ステップ1において、Oガスをノズル249bより供給する場合に比べ、ウエハ200上に形成されるSiO膜のWiWやWtWをそれぞれ向上させることが可能となる。 In order to solve these problems, in the present embodiment, when the HCDS gas and the O 2 gas are supplied simultaneously, the O 2 gas is supplied from a nozzle 249c different from the nozzles 249a and 249b. This makes it possible to adjust the supply point of the O 2 gas supplied simultaneously with the HCDS gas to be a point other than the nozzles 249a and 249b. That is, it is possible to freely adjust the supply point of the trace O 2 gas. As a result, compared to the case where the O 2 gas is supplied from the nozzle 249b in step 1, it is possible to improve the WiW and WtW of the SiO film formed on the wafer 200, respectively.
 これは、ノズル249a,249b間の距離Aと、ノズル249a,249c間の距離Bと、を異なる大きさとしているため、具体的には、距離B>距離Aとしているためである。というもの、ステップ1においてOガスをノズル249cより供給する場合、Oガスをノズル249aの近傍に配置されたノズル249bより供給する場合に比べ、ノズル249aの近傍、すなわち、ウエハ200の周縁部近傍におけるHCDSガスとOガスとの混合(反応)を、適正に抑制することが可能となる。これにより、ノズル249aより供給されたHCDSガスがウエハ200の中心部に到達する前に消費されてしまうことを、適正に抑制することが可能となる。そして、ウエハ200に対するHCDSガスの供給量を、ウエハ200の周縁部と中心部とでより均一化させることが可能となる。結果として、上述した第1層の形成反応を、ウエハ200の周縁部~中心部の全域にわたって、また、ウエハ配列領域の全域にわたって、均等なレートで進行させることが可能となる。これにより、ウエハ200上に形成されるSiO膜のWiWやWtWをそれぞれ向上させることが可能となる。 This is because the distance A between the nozzles 249a and 249b and the distance B between the nozzles 249a and 249c have different sizes, and specifically, the distance B> the distance A. Those that, when the O 2 gas is supplied from the nozzle 249c at step 1, as compared with the case where O 2 gas supplied from the nozzle 249b disposed in the vicinity of the nozzles 249a, near the nozzle 249a, i.e., the peripheral portion of the wafer 200 Mixing (reaction) of HCDS gas and O 2 gas in the vicinity can be appropriately suppressed. Thereby, it is possible to appropriately suppress the consumption of the HCDS gas supplied from the nozzle 249a before reaching the center of the wafer 200. Then, the supply amount of the HCDS gas to the wafer 200 can be made more uniform between the peripheral portion and the center portion of the wafer 200. As a result, the above-described formation reaction of the first layer can be performed at a uniform rate over the entire region from the peripheral part to the central part of the wafer 200 and over the entire region of the wafer arrangement region. As a result, the WiW and WtW of the SiO film formed on the wafer 200 can be improved.
 なお、ステップ1において、Oガスをノズル249cより供給する場合、Oガスをノズル249bより供給する場合に比べ、上述したSiO膜の表面ラフネス等の向上効果を、ウエハ200面内にわたり、また、ウエハ200間にわたり、より均等に得られるようにもなる。これは、ステップ1では、ノズル249cより供給されるOガスの方が、ノズル249bより供給されるOガスに比べ、より拡散した状態となってからウエハ200に対して供給されるためと考えられる。ステップ1では、ノズル249cより供給されるOガスの方が、ノズル249bより供給されるOガスに比べて拡散した状態となりやすいのは、上述したように、ノズル249cの方が、ノズル249bよりもノズル249aから離れた位置に配置されており、これにより、HCDSガスとの衝突、混合等によってOガスの拡散が阻害される確率が小さくなっているためと考えられる。 In step 1, when the O 2 gas is supplied from the nozzle 249c, the effect of improving the surface roughness of the above-described SiO film is improved over the surface of the wafer 200 as compared with the case where the O 2 gas is supplied from the nozzle 249b. In addition, the wafers 200 can be obtained more evenly. This is because, in Step 1, the O 2 gas supplied from the nozzle 249c is supplied to the wafer 200 after being more diffused than the O 2 gas supplied from the nozzle 249b. Conceivable. In step 1, towards the O 2 gas supplied from the nozzle 249c it is easy to become a state of being diffused compared to O 2 gas supplied from the nozzle 249b, as described above, the direction of the nozzle 249c, nozzle 249b This is considered to be because the probability that the diffusion of O 2 gas is hindered due to collision with HCDS gas, mixing, and the like is reduced.
 第1層を形成した後、バルブ243a,243cを閉じ、処理室201内へのHCDSガス、Oガスの供給をそれぞれ停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する。このとき、バルブ243d~243fは開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用する。 After forming the first layer, the valves 243a and 243c are closed, and the supply of HCDS gas and O 2 gas into the processing chamber 201 is stopped. Then, the inside of the processing chamber 201 is evacuated, and the gas remaining in the processing chamber 201 is removed from the processing chamber 201. At this time, the valves 243d to 243f are kept open and the supply of N 2 gas into the processing chamber 201 is maintained. N 2 gas acts as a purge gas.
 原料ガスとしては、HCDSガスの他、モノクロロシラン(SiHCl)ガス、ジクロロシラン(SiHCl)ガス、トリクロロシラン(SiHCl)ガス、テトラクロロシラン(SiCl)ガス等のクロロシラン原料ガスを用いることができる。また、原料ガスとしては、テトラフルオロシラン(SiF)ガス、テトラブロモシラン(SiBr)ガス、テトラヨードシラン(SiI)ガス等を用いることができる。すなわち、原料ガスとしては、クロロシラン原料ガス(クロロシラン化合物)、フルオロシラン原料ガス(フルオロシラン化合物)、ブロモシラン原料ガス(ブロモシラン化合物)、ヨードシラン原料ガス(ヨードシラン化合物)等のハロシラン原料ガス(ハロシラン化合物)を用いることができる。 As source gas, in addition to HCDS gas, chlorosilane source gas such as monochlorosilane (SiH 3 Cl) gas, dichlorosilane (SiH 2 Cl 2 ) gas, trichlorosilane (SiHCl 3 ) gas, tetrachlorosilane (SiCl 4 ) gas, etc. Can be used. Further, as the source gas, tetrafluorosilane (SiF 4 ) gas, tetrabromosilane (SiBr 4 ) gas, tetraiodosilane (SiI 4 ) gas, or the like can be used. That is, as source gas, halosilane source gas (halosilane compound) such as chlorosilane source gas (chlorosilane compound), fluorosilane source gas (fluorosilane compound), bromosilane source gas (bromosilane compound), iodosilane source gas (iodosilane compound), etc. Can be used.
 また、原料ガスとしては、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称BDEAS)ガス、ビスターシャリブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス、ジイソプロピルアミノシラン(SiHN[CH(CH、略称:DIPAS)ガス等のアミノシラン原料ガス(アミノシラン化合物)を用いることもできる。アミノシラン原料ガスは、Siソースとしてだけでなく、NソースおよびCソースとしても作用する。 As source gases, tetrakisdimethylaminosilane (Si [N (CH 3 ) 2 ] 4 , abbreviation: 4DMAS) gas, trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, abbreviation: 3DMAS) gas, Bisdiethylaminosilane (Si [N (C 2 H 5 ) 2 ] 2 H 2 , abbreviation BDEAS) gas, Bisteria butylaminosilane (SiH 2 [NH (C 4 H 9 )] 2 , abbreviation: BTBAS) gas, diisopropylaminosilane An aminosilane source gas (aminosilane compound) such as (SiH 3 N [CH (CH 3 ) 2 ] 2 , abbreviation: DIPAS) gas can also be used. The aminosilane source gas acts not only as an Si source but also as an N source and a C source.
 また、原料ガスとしては、モノシラン(SiH)ガス、ジシラン(Si)ガス、トリシラン(Si)ガス等の水素化ケイ素ガス(水素化ケイ素化合物)を用いることもできる。 Further, as a source gas, a silicon hydride gas (silicon hydride compound) such as a monosilane (SiH 4 ) gas, a disilane (Si 2 H 6 ) gas, or a trisilane (Si 3 H 8 ) gas can be used.
 また、原料ガスとしては、ヘキサメチルジシロキサン([(CHSi]O)ガス、テトラメチルジシロキサン([H(CHSi]O)ガス、ヘキサクロロジシロキサン((ClSi)O)ガス、テトラクロロジシロキサン((HClSi)O)ガス等のシロキサン原料ガス(シロキサン化合物)を用いることができる。シロキサン化合物とは、SiとOとを骨格とする化合物であり、Si-O-Si結合(シロキサン結合)を持つものの総称である。シロキサン原料ガスは、Siソースとしてだけでなく、Oソース、或いは、OソースおよびCソースとしても作用する。 Further, as source gases, hexamethyldisiloxane ([(CH 3 ) 3 Si] 2 O) gas, tetramethyldisiloxane ([H (CH 3 ) 2 Si] 2 O) gas, hexachlorodisiloxane ((Cl A siloxane source gas (siloxane compound) such as 3 Si) 2 O) gas or tetrachlorodisiloxane ((HCl 2 Si) 2 O) gas can be used. A siloxane compound is a compound having a skeleton of Si and O, and is a general term for those having a Si—O—Si bond (siloxane bond). The siloxane source gas acts not only as a Si source but also as an O source, or an O source and a C source.
 また、原料ガスとしては、例えば、ヘキサメチルジシラザン([(CHSi]NH)ガス、テトラメチルジシラザン([H(CHSi]NH)ガス、ヘキサクロロジシラザン((ClSi)NH)ガス、テトラクロロジシラザン((HClSi)NH)ガス等のシラザン原料ガス(シラザン化合物)を用いることができる。シラザン化合物とは、SiとNとを骨格とする化合物であり、Si-N-Si結合やSi-N結合等のシラザン結合を持つものの総称である。シラザン原料ガスは、Siソースとしてだけでなく、Nソース、或いは、NソースおよびCソースとしても作用する。 Examples of the source gas include hexamethyldisilazane ([(CH 3 ) 3 Si] 2 NH) gas, tetramethyldisilazane ([H (CH 3 ) 2 Si] 2 NH) gas, hexachlorodisilazane ( A silazane raw material gas (silazane compound) such as (Cl 3 Si) 2 NH) gas or tetrachlorodisilazane ((HCl 2 Si) 2 NH) gas can be used. The silazane compound is a compound having Si and N as a skeleton, and is a general term for a compound having a silazane bond such as a Si—N—Si bond or a Si—N bond. The silazane source gas acts not only as an Si source but also as an N source, or an N source and a C source.
 このように、原料ガスとしては、シラン化合物(ハロシラン化合物、アミノシラン化合物、水素化ケイ素化合物)、シロキサン化合物、およびシラザン化合物からなる群より選択される少なくとも1つを用いることができる。なお、シロキサン化合物やシラザン化合物は、シラン化合物に比べて熱分解温度が高い(自己分解しにくい)傾向がある。成膜温度を高温側とする場合には、原料ガスとしてシロキサン化合物やシラザン化合物を用いることで、過剰な熱分解を抑制し、成膜処理の制御性を高めることが可能となる。 Thus, as the source gas, at least one selected from the group consisting of a silane compound (halosilane compound, aminosilane compound, silicon hydride compound), siloxane compound, and silazane compound can be used. Note that siloxane compounds and silazane compounds tend to have higher thermal decomposition temperatures (difficult to self-decompose) than silane compounds. When the film forming temperature is set to the high temperature side, by using a siloxane compound or a silazane compound as a raw material gas, excessive thermal decomposition can be suppressed and the controllability of the film forming process can be improved.
 第2のO含有ガスとしては、Oガスの他、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス等を用いることができる。 As the second O-containing gas, in addition to O 2 gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, or the like is used. be able to.
 不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の各種希ガスを用いることができる。この点は、後述するステップ2においても同様である。 As the inert gas, various rare gases such as Ar gas, He gas, Ne gas, and Xe gas can be used in addition to N 2 gas. This also applies to step 2 described later.
 [ステップ2]
 ステップ1が終了した後、処理室201内のウエハ200に対してOガスとHガスとを異なるノズルより同時に供給する。
[Step 2]
After step 1 is completed, O 2 gas and H 2 gas are simultaneously supplied from different nozzles to the wafer 200 in the processing chamber 201.
 具体的には、バルブ243b,243a,243d~243fの開閉制御を、ステップ1におけるバルブ243c,243a,243d~243fの開閉制御と同様の手順で行う。ガス供給管232b,232a内を流れたOガス、Hガスは、それぞれ、MFC241b,241aにより流量調整され、ノズル249b,249aを介して処理室201内へ供給される。OガスとHガスとは、処理室201内で混合して反応し、その後、排気口231aより排気される。このとき、ウエハ200に対してOガスとHガスとが同時に供給される。 Specifically, the opening / closing control of the valves 243b, 243a, 243d to 243f is performed in the same procedure as the opening / closing control of the valves 243c, 243a, 243d to 243f in Step 1. The flow rates of the O 2 gas and H 2 gas flowing through the gas supply pipes 232b and 232a are adjusted by the MFCs 241b and 241a, respectively, and are supplied into the processing chamber 201 through the nozzles 249b and 249a. The O 2 gas and the H 2 gas are mixed and reacted in the processing chamber 201 and then exhausted from the exhaust port 231a. At this time, O 2 gas and H 2 gas are simultaneously supplied to the wafer 200.
 ノズル249bより供給するOガスの供給流量は、ステップ1で供給するOガスの供給流量よりも大きな流量であって、ステップ1で形成された第1層を充分に酸化させることが可能な流量とする。 The supply flow rate of the O 2 gas supplied from the nozzle 249b is larger than the supply flow rate of the O 2 gas supplied in step 1, and the first layer formed in step 1 can be sufficiently oxidized. The flow rate.
 本ステップにおける処理条件としては、
 成膜圧力(処理室201内の圧力):0.1~10Torr(13.3~1333Pa)、好ましくは、0.1~3Torr(13.3~399Pa)
 Oガス供給流量F(ノズル249b):2000~10000sccm
 Hガス供給流量(ノズル249a):2000~10000sccm
 各ガス供給時間:1~100秒、好ましくは、1~50秒
 が例示される。他の処理条件は、ステップ1における処理条件と同様とする。
As processing conditions in this step,
Deposition pressure (pressure in the processing chamber 201): 0.1 to 10 Torr (13.3 to 1333 Pa), preferably 0.1 to 3 Torr (13.3 to 399 Pa)
O 2 gas supply flow rate F 2 (nozzle 249b): 2000 to 10000 sccm
H 2 gas supply flow rate (nozzle 249a): 2000 to 10000 sccm
Each gas supply time is 1 to 100 seconds, preferably 1 to 50 seconds. Other processing conditions are the same as the processing conditions in step 1.
 上述の条件下でOガスおよびHガスを処理室201内へ同時に供給することで、これらのガスは、加熱された減圧雰囲気下においてノンプラズマで熱的に活性化(励起)されて反応し、それにより、原子状酸素(O)等の酸素を含む水分(HO)非含有の酸化種が生成される。そして、主にこの酸化種により、ステップ1でウエハ200上に形成された第1層に対して酸化処理が行われる。この酸化種の持つエネルギーは、Si含有層中に含まれるSi-Cl結合等の結合エネルギーよりも高いため、この酸化種のエネルギーを第1層に与えることで、第1層中に含まれるSi-Cl結合等は切り離される。Siとの結合が切り離されたCl等は層中から除去され、Cl、HCl等のClを含むガス状物質となって処理室201内から排出される。また、Cl等との結合が切られることで余ったSiの結合手は、酸化種に含まれるOと結びつき、Si-O結合が形成される。このようにして、第1層は、第2層、すなわち、Cl等の不純物の含有量が少ないSiO層へと変化させられる(改質される)。この酸化処理によれば、Oガスを単独で供給する場合や水蒸気(HOガス)を供給する場合に比べ、酸化力を大幅に向上させることができる。すなわち、減圧雰囲気下においてOガスにHガスを添加することで、Oガス単独供給の場合やHOガスを供給する場合に比べ、大幅な酸化力向上効果が得られるようになる。 By simultaneously supplying O 2 gas and H 2 gas into the processing chamber 201 under the above-described conditions, these gases are thermally activated (excited) by non-plasma in a heated reduced pressure atmosphere and reacted. and, thereby, water (H 2 O) free of oxidizing species containing oxygen, such as atomic oxygen (O) is generated. Then, an oxidation treatment is performed on the first layer formed on the wafer 200 in Step 1 mainly by this oxidation species. Since the energy of this oxidized species is higher than the bond energy such as Si—Cl bond contained in the Si-containing layer, the energy of this oxidized species is given to the first layer, so that the Si contained in the first layer is given. The —Cl bond and the like are cut off. Cl or the like from which the bond with Si is cut is removed from the layer, and is discharged from the processing chamber 201 as a gaseous substance containing Cl such as Cl 2 or HCl. Further, the remaining Si bonds due to the disconnection with Cl or the like are combined with O contained in the oxidized species to form Si—O bonds. In this way, the first layer is changed (modified) into the second layer, that is, the SiO layer having a low content of impurities such as Cl. According to this oxidation treatment, the oxidizing power can be greatly improved as compared with the case of supplying O 2 gas alone or the case of supplying water vapor (H 2 O gas). That is, by adding H 2 gas to O 2 gas in a reduced-pressure atmosphere, a significant effect of improving oxidizing power can be obtained compared to the case of supplying O 2 gas alone or supplying H 2 O gas. .
 第1層を第2層へと変化させた後、バルブ243b,243aを閉じ、処理室201内へのOガスおよびHガスの供給をそれぞれ停止する。そして、ステップ1と同様の処理手順、処理条件により、処理室201内に残留するガス等を処理室201内から排除する。 After changing the first layer to the second layer, the valves 243b and 243a are closed, and the supply of O 2 gas and H 2 gas into the processing chamber 201 is stopped. Then, the gas and the like remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure and processing conditions as in step 1.
 第1のO含有ガスとしては、Oガスの他、NOガス、NOガス、NOガス、Oガス、原子状酸素(O)、酸素ラジカル(O)、水酸基ラジカル(OH)等を用いることができる。すなわち、第1のO含有ガスと第2のO含有ガスとは、同一の分子構造(化学構造)を有するガスであってもよく、異なる分子構造を有するガスであってもよい。第1のO含有ガスと第2のO含有ガスとを同一の分子構造を有するガスとする場合、ガス供給系の構造を簡素化させることができ、基板処理装置の製造コストやメンテナンスコストを低減させることが可能となる点で、好ましい。第1のO含有ガスと第2のO含有ガスとを異なる分子構造を有するガスとする場合、例えば、第2のO含有ガスとして第1のO含有ガスよりも酸化力が弱い物質を用いることにより、ステップ1における過剰な気相反応を確実に抑制することができ、膜厚均一性の制御性を高めることが可能となる点で、好ましい。例えば、第1のO含有ガスとしてOガスやOガスを用いた場合、第2のO含有ガスとしてNOガスやNOガスやNOガス等を用いるのがよい。 Examples of the first O-containing gas include O 2 gas, N 2 O gas, NO gas, NO 2 gas, O 3 gas, atomic oxygen (O), oxygen radical (O * ), and hydroxyl radical (OH * ) . ) Etc. can be used. That is, the first O-containing gas and the second O-containing gas may be gases having the same molecular structure (chemical structure) or gases having different molecular structures. When the first O-containing gas and the second O-containing gas are gas having the same molecular structure, the structure of the gas supply system can be simplified, and the manufacturing cost and maintenance cost of the substrate processing apparatus can be reduced. It is preferable at the point which can be made to do. When the first O-containing gas and the second O-containing gas are gases having different molecular structures, for example, a substance having a lower oxidizing power than the first O-containing gas is used as the second O-containing gas. Thus, it is preferable in that the excessive gas phase reaction in Step 1 can be surely suppressed and the controllability of the film thickness uniformity can be improved. For example, when O 3 gas or O 2 gas is used as the first O-containing gas, N 2 O gas, NO gas, NO 2 gas, or the like may be used as the second O-containing gas.
 H含有ガスとしては、Hガスの他、重水素(D)ガス等を用いることができる。原料ガスとしてアミノシラン原料ガス等を用いる場合、第1のO含有ガスとしてOガスを用いるようにすれば、H含有ガスを用いることなく、充分な(同様な)成膜レートで成膜処理を進行させることができる。すなわち、H含有ガスを不使用とすることもできる。 As the H-containing gas, deuterium (D 2 ) gas or the like can be used in addition to H 2 gas. When an aminosilane source gas or the like is used as the source gas, if O 3 gas is used as the first O-containing gas, the film forming process can be performed at a sufficient (similar) film forming rate without using the H-containing gas. Can be advanced. That is, the H-containing gas can be not used.
 [所定回数実施]
 ステップ1,2を非同時に、すなわち、同期させることなく交互に行うサイクルを所定回数(n回(nは1以上の整数))行うことにより、ウエハ200上に、所定膜厚のSiO膜を形成することができる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成される第2層の厚さを所望の膜厚よりも小さくし、第2層を積層することで形成されるSiO膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
[Perform a specified number of times]
An SiO film having a predetermined thickness is formed on the wafer 200 by performing a predetermined number of cycles (n times (n is an integer of 1 or more)) in which steps 1 and 2 are performed non-simultaneously, that is, alternately without being synchronized. can do. The above cycle is preferably repeated multiple times. That is, until the thickness of the second layer formed per cycle is smaller than the desired thickness and the thickness of the SiO layer formed by laminating the second layer becomes the desired thickness, The above cycle is preferably repeated a plurality of times.
(パージおよび大気圧復帰)
 SiO膜の形成が終了した後、ガス供給管232d~232fのそれぞれからNガスを処理室201内へ供給し、排気口231aより排気する。Nガスはパージガスとして作用する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物等が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(Purge and return to atmospheric pressure)
After the formation of the SiO film, N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 232d to 232f and exhausted from the exhaust port 231a. N 2 gas acts as a purge gas. As a result, the inside of the processing chamber 201 is purged, and the gas, reaction by-products and the like remaining in the processing chamber 201 are removed from the processing chamber 201 (after purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
(ボートアンロードおよびウエハディスチャージ)
 ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態で、マニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取出される(ウエハディスチャージ)。
(Boat unload and wafer discharge)
The seal cap 219 is lowered by the boat elevator 115, the lower end of the manifold 209 is opened, and the processed wafer 200 is carried out from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217 ( Boat unloaded). After the boat unloading, the shutter 219s is moved, and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is taken out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
(3)本実施形態による効果
 本実施形態によれば、以下に示す一つ又は複数の効果が得られる。
(3) Effects according to this embodiment According to this embodiment, one or a plurality of effects described below can be obtained.
(a)ステップ1において、ウエハ200に対してHCDSガスとOガスとを同時に供給することで、第1層に含まれるSiのマイグレーションを抑制し、ウエハ200上に形成されるSiO膜の表面ラフネス等を向上させることが可能となる。表面ラフネス等の向上効果は、成膜温度を450~1000℃の範囲内の温度とする場合に限らず、より低温の温度(例えば250~400℃の範囲内の温度)とする場合であっても同様に得られる。但し、Siのマイグレーションは、成膜温度が高くなるほど活発になる傾向がある。ステップ1においてHCDSガスとOガスとを同時に供給する技術的意義は、成膜温度を、ウエハ200に対してHCDSガスを単独で供給した場合にHCDSガスに含まれるSiのマイグレーションが顕著に生じる温度、例えば、700~1000℃の範囲内の温度とする場合に、特に大きくなる。 (A) In step 1, by simultaneously supplying HCDS gas and O 2 gas to the wafer 200, migration of Si contained in the first layer is suppressed, and the surface of the SiO film formed on the wafer 200 It becomes possible to improve roughness and the like. The effect of improving the surface roughness and the like is not limited to the case where the film forming temperature is set to a temperature in the range of 450 to 1000 ° C., but to a lower temperature (for example, a temperature in the range of 250 to 400 ° C.). Is obtained in the same way. However, Si migration tends to become more active as the deposition temperature increases. The technical significance of supplying the HCDS gas and the O 2 gas at the same time in Step 1 is that the migration of Si contained in the HCDS gas occurs remarkably when the film forming temperature is supplied to the wafer 200 alone. The temperature becomes particularly large when the temperature is set in a range of 700 to 1000 ° C., for example.
(b)ステップ1において、Oガスを、ノズル249a,249bとは異なるノズル249cより供給することで、すなわち、Oガスをノズル249bよりもノズル249aから離れた位置に配置されたノズル249cより供給することで、ウエハ200上に形成されるSiO膜のWiWやWtWをそれぞれ向上させることが可能となる。また、上述したSiO膜の表面ラフネス等の向上効果を、ウエハ200面内にわたり、また、ウエハ200間にわたり、より均一に得ることが可能となる。 (B) In step 1, O 2 gas is supplied from a nozzle 249c different from the nozzles 249a and 249b, that is, O 2 gas is supplied from a nozzle 249c disposed at a position farther from the nozzle 249a than the nozzle 249b. By supplying, the WiW and WtW of the SiO film formed on the wafer 200 can be improved. In addition, the above-described effect of improving the surface roughness of the SiO film can be obtained more uniformly over the wafer 200 surface and between the wafers 200.
(c)ステップ2におけるOガスの供給を、Hガスの供給に用いられるノズル249aの近傍に配置されたノズル249bを用いて行うことで、OガスとHガスとの反応による酸化種の生成を、安定して行うことが可能となる。これにより、ステップ2で行う酸化処理の、ウエハ200面内およびウエハ200間における均一性を高めることが可能となる。なお、ステップ2におけるOガスの供給をノズル249aから離れたノズル249cより行う場合、酸化種の生成量が不安定となってしまい、ステップ2で行う酸化処理のウエハ200面内およびウエハ200間における均一性が低下する場合があることを、発明者等は確認済みである。 (C) Step 2 the supply of O 2 gas in, can be performed with the nozzle 249b disposed in the vicinity of the nozzles 249a used for the supply of H 2 gas, oxidation by reaction with O 2 gas and H 2 gas It is possible to stably generate seeds. This makes it possible to improve the uniformity of the oxidation process performed in step 2 within the wafer 200 and between the wafers 200. Note that when the O 2 gas is supplied from the nozzle 249 c away from the nozzle 249 a in step 2, the amount of oxidized species generated becomes unstable, and the oxidation process performed in step 2 is performed within the wafer 200 and between the wafers 200. The inventors have confirmed that the uniformity in the case may decrease.
(d)ウエハ200の表面を酸化させるのではなく、ウエハ200上にSiO膜を形成する(堆積させる)ことで、成膜処理の下地へのOの拡散を抑制することが可能となる。これにより、半導体デバイスを作製する際の要求仕様を満足させつつ、所望の絶縁特性を有するSiO膜を形成することが可能となる。例えば、3D構造のメモリデバイスを作製する際、下地へのOの拡散深さを許容範囲内に収めつつ、所望の絶縁性能を有するSiO膜を形成することが必要となる。これに対し、ウエハ200の表面を酸化させる手法(熱酸化法)では、これらの要求を両立させることは困難となる場合がある。 (D) By forming (depositing) the SiO film on the wafer 200 instead of oxidizing the surface of the wafer 200, it is possible to suppress the diffusion of O to the base of the film forming process. As a result, it is possible to form a SiO film having desired insulation characteristics while satisfying the required specifications for manufacturing a semiconductor device. For example, when manufacturing a memory device having a 3D structure, it is necessary to form a SiO film having a desired insulation performance while keeping the diffusion depth of O into the base within an allowable range. On the other hand, in the method (thermal oxidation method) of oxidizing the surface of the wafer 200, it may be difficult to satisfy both of these requirements.
(e)ステップ1,2を非同時に行う交互供給法によりSiO膜を形成することで、ステップ1,2を同時に行う同時供給法によりSiO膜を形成する場合に比べ、SiO膜の段差被覆性、膜厚制御性、面内膜厚均一性等を向上させることが可能となる。このような成膜手法は、成膜処理の下地面が、ラインアンドスペース形状、ホール形状、フィン形状等の3D構造を有する場合に特に有効である。 (E) By forming the SiO film by the alternating supply method in which steps 1 and 2 are performed non-simultaneously, compared to the case of forming the SiO film by the simultaneous supply method in which steps 1 and 2 are performed simultaneously, It becomes possible to improve film thickness controllability, in-plane film thickness uniformity, and the like. Such a film forming method is particularly effective when the ground of the film forming process has a 3D structure such as a line and space shape, a hole shape, a fin shape, or the like.
(f)成膜処理を行う際、ウエハ200の温度を上述の温度帯に設定することで、高品質な膜特性を有するSiO膜を形成することが可能となる。例えば、成膜温度を450~1000℃の範囲内の温度とすることで、成膜温度を450℃未満の温度、例えば、250~400℃の範囲内の温度とする場合よりも、SiO膜のエッチング耐性や絶縁性能を向上させたり、耐用年数を伸ばしたり、トランジスタの応答速度に影響を及ぼす界面電子トラップ密度を低減させることも可能となる。 (F) When the film forming process is performed, the temperature of the wafer 200 is set to the above-described temperature range, so that a SiO film having high quality film characteristics can be formed. For example, by setting the film formation temperature to a temperature within the range of 450 to 1000 ° C., the film formation temperature is lower than the temperature of 450 ° C., for example, the temperature within the range of 250 to 400 ° C. It is also possible to improve etching resistance and insulation performance, extend the service life, and reduce the interface electron trap density that affects the response speed of the transistor.
(g)上述の効果は、HCDSガス以外の原料ガスを用いる場合や、Oガス以外の第1のO含有ガスを用いる場合や、Hガス以外のH含有ガスを用いる場合や、Oガス以外の第2のO含有ガスを用いる場合にも、同様に得ることができる。 (G) The above-described effects are obtained when a source gas other than HCDS gas is used, when a first O-containing gas other than O 2 gas is used, when a H-containing gas other than H 2 gas is used, or O 2 The same can be obtained when the second O-containing gas other than the gas is used.
(4)変形例
 本実施形態における成膜シーケンスは、以下に示す変形例のように変更することができる。
(4) Modified Example The film forming sequence in the present embodiment can be changed as in the following modified example.
(変形例1)
 ノズル249cからのOガスの供給は、ステップ1におけるHCDSガスの供給期間中だけでなく、他の期間中においても行うようにしてもよい。例えば、図4(b)に示すように、ノズル249cからのOガスの供給を、ステップ1におけるHCDSガスの供給期間中にのみ、すなわち、間欠的に行うのではなく、サイクル全体にわたり途切れることなく連続的に行うようにしてもよい。本変形例においても、図4(a)に示す成膜シーケンスと同様の効果が得られる。また、本変形例のように処理室201内へ微量のOガスを常時供給することにより、処理室201の内壁等に付着した未反応のHCDS(残留HCDS)の失活を促し、残留HCDSによる成膜処理への悪影響を防止することが可能となる。なお、ノズル249cからのOガスの供給流量は、上述のステップ1におけるOガスの供給流量と同様とすることができる。
(Modification 1)
The supply of O 2 gas from the nozzle 249c may be performed not only during the HCDS gas supply period in step 1 but also during other periods. For example, as shown in FIG. 4B, the supply of O 2 gas from the nozzle 249c is interrupted only during the HCDS gas supply period in Step 1, that is, not intermittently, but throughout the cycle. Alternatively, it may be performed continuously. Also in this modification, the same effect as the film forming sequence shown in FIG. Further, by constantly supplying a small amount of O 2 gas into the processing chamber 201 as in this modified example, deactivation of unreacted HCDS (residual HCDS) adhering to the inner wall or the like of the processing chamber 201 is promoted, and the residual HCDS It is possible to prevent adverse effects on the film forming process due to the above. The supply flow rate of O 2 gas from the nozzle 249c can be the same as the supply flow rate of O 2 gas in Step 1 described above.
(変形例2)
 以下に示す成膜シーケンスのように、アミノシラン原料ガスとOガスとを用い、中温条件下でSiO膜を形成するようにしてもよい。また、アミノシラン原料ガスとプラズマ励起させたOガス(以下、O とも称する)と、を用い、低温条件下でSiO膜を形成するようにしてもよい。また、アミノシラン原料ガスの代わりに上述の水素化ケイ素ガスを用いてもよい。
(Modification 2)
As in the film forming sequence shown below, an SiO film may be formed under an intermediate temperature condition using an aminosilane source gas and O 3 gas. Alternatively, the SiO film may be formed under low temperature conditions using an aminosilane source gas and plasma-excited O 2 gas (hereinafter also referred to as O 2 * ). Further, the above-described silicon hydride gas may be used instead of the aminosilane source gas.
 (BDEAS+O→O)×n ⇒ SiO
 (BDEAS+O→O )×n ⇒ SiO
 (3DMAS+O→O)×n ⇒ SiO
 (BTBAS+O→O )×n ⇒ SiO
 (SiH+O→O)×n ⇒ SiO
 (Si+O→O )×n ⇒ SiO
(BDEAS + O 2 → O 3 ) × n ⇒ SiO
(BDEAS + O 2 → O 2 * ) × n ⇒ SiO
(3DMAS + O 2 → O 3 ) × n ⇒ SiO
(BTBAS + O 2 → O 2 * ) × n ⇒ SiO
(SiH 4 + O 2 → O 3 ) × n ⇒ SiO
(Si 2 H 6 + O 2 → O 2 * ) × n ⇒ SiO
(変形例3)
 以下に示す成膜シーケンスのように、反応ガスとして、アンモニア(NH)ガス等のN含有ガスや、トリエチルアミン((CN、略称:TEA)ガス等のNおよびC含有ガスや、プロピレン(C)ガス等のC含有ガスや、トリクロロボラン(BCl)ガス等のB含有ガスをさらに用い、ウエハ200上に、シリコン酸窒化膜(SiON膜)、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン硼酸炭窒化膜(SiBOCN膜)、シリコン硼酸窒化膜(SiBON膜)等を形成するようにしてもよい。
(Modification 3)
As shown in the film forming sequence shown below, N and C containing gases such as N-containing gas such as ammonia (NH 3 ) gas and triethylamine ((C 2 H 5 ) 3 N, abbreviated as TEA) are used as the reaction gas. Further, a C-containing gas such as propylene (C 3 H 6 ) gas or a B-containing gas such as trichloroborane (BCl 3 ) gas is used to form a silicon oxynitride film (SiON film), silicon oxycarbide on the wafer 200. A film (SiOC film), silicon oxycarbonitride film (SiOCN film), silicon borate carbonitride film (SiBOCN film), silicon borate nitride film (SiBON film), or the like may be formed.
 (HCDS+O→NH→O)×n ⇒ SiON
 (HCDS+O→TEA→O)×n ⇒ SiOC
 (HCDS+O→C→NH)×n ⇒ SiOCN
 (HCDS+O→C→NH→O)×n ⇒ SiOCN
 (HCDS+O→BCl→C→NH)×n ⇒ SiBOCN
 (HCDS+O→BCl→NH)×n ⇒ SiBON
(HCDS + O 2 → NH 3 → O 2 ) × n ⇒ SiON
(HCDS + O 2 → TEA → O 2 ) × n ⇒ SiOC
(HCDS + O 2 → C 3 H 6 → NH 3 ) × n ⇒ SiOCN
(HCDS + O 2 → C 3 H 6 → NH 3 → O 2 ) × n ⇒ SiOCN
(HCDS + O 2 → BCl 3 → C 3 H 6 → NH 3 ) × n ⇒ SiBOCN
(HCDS + O 2 → BCl 3 → NH 3 ) × n ⇒ SiBON
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
 本発明は、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)、イットリウム(Y)、ストロンチウム(Sr)、ランタン(La)、ルテニウム(Ru)、アルミニウム(Al)等の金属元素を主元素として含む酸化膜(金属酸化膜)を形成する場合においても、好適に適用可能である。 The present invention relates to titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), molybdenum (Mo), tungsten (W), yttrium (Y), strontium (Sr), lanthanum The present invention is also applicable to the case where an oxide film (metal oxide film) containing a metal element such as (La), ruthenium (Ru), or aluminum (Al) as a main element is formed.
 例えば、原料として、チタニウムテトラクロライド(TiCl)ガス、ハフニウムテトラクロライド(HfCl)ガス、タンタルペンタクロライド(TaCl)ガス、トリメチルアルミニウム(Al(CH、略称:TMA)ガス等を用い、第1のO含有ガスとしてHOガスを用い、第2のO含有ガスとしてOガスを用い、以下に示す成膜シーケンスにより、ウエハ200上に、TiO膜、HfO膜、TaO膜、AlO膜等の金属酸化膜を形成する場合においても、本発明は好適に適用可能である。 For example, titanium tetrachloride (TiCl 4 ) gas, hafnium tetrachloride (HfCl 4 ) gas, tantalum pentachloride (TaCl 5 ) gas, trimethylaluminum (Al (CH 3 ) 3 , abbreviation: TMA) gas or the like is used as a raw material. , H 2 O gas is used as the first O-containing gas, O 2 gas is used as the second O-containing gas, and a TiO film, an HfO film, a TaO film, The present invention can be suitably applied also when forming a metal oxide film such as an AlO film.
 (TiCl+O→HO)×n ⇒ TiO
 (HfCl+O→HO)×n ⇒ HfO
 (TaCl+O→HO)×n ⇒ TaO
 (TMA+O→HO)×n ⇒ AlO
(TiCl 4 + O 2 → H 2 O) × n ⇒ TiO
(HfCl 4 + O 2 → H 2 O) × n => HfO
(TaCl 5 + O 2 → H 2 O) × n ⇒ TaO
(TMA + O 2 → H 2 O) × n ⇒ AlO
 このときの成膜処理の処理手順、処理条件は、上述の実施形態や変形例の処理手順、処理条件と同様とすることができる。これらの場合においても、上述の実施形態や変形例と同様の効果が得られる。すなわち、本発明は、Si等の半金属元素を主元素として含む半金属酸化膜を形成する場合や、上述の各種金属元素を主元素として含む金属酸化膜を形成する場合に、好適に適用することができる。 The processing procedure and processing conditions of the film forming process at this time can be the same as the processing procedures and processing conditions of the above-described embodiments and modifications. In these cases, the same effects as those of the above-described embodiments and modifications can be obtained. That is, the present invention is suitably applied when forming a metalloid oxide film containing a metalloid element such as Si as a main element or when forming a metal oxide film containing the various metal elements described above as a main element. be able to.
 基板処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、基板処理の内容に応じて、適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、処理を迅速に開始できるようになる。 The recipe used for the substrate processing is preferably prepared individually according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. And when starting a process, it is preferable that CPU121a selects a suitable recipe suitably from the some recipe stored in the memory | storage device 121c according to the content of the board | substrate process. Accordingly, it is possible to form films having various film types, composition ratios, film qualities, and film thicknesses with a single substrate processing apparatus with good reproducibility. Further, the burden on the operator can be reduced, and the processing can be started quickly while avoiding an operation error.
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。 The above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example. When changing the recipe, the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded. Further, an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
 上述の実施形態では、一重管として構成された反応管を用いる例について説明した。しかしながら、本発明は上述の実施形態に限定されない。例えば、図7に縦型処理炉の断面図を示すように、反応管を、インナチューブとアウタチューブとを備える二重管により構成してもよい。図7に示す処理炉では、インナチューブの側壁に2つのバッファ室と排気口とを設け、排気口から遠い側の第1バッファ室(排気口とウエハ中心を挟んで対向する位置にあるバッファ室)内に上述の実施形態と同様の配置で第1、第2ノズルを設け、排気口から近い側の第2バッファ室内に上述の実施形態と同様の配置で第3ノズルを設けるようにしている。そして、アウタチューブに接続された排気管より、インナチューブとアウタチューブとの間の円環状の空間を排気することで、インナチューブの内部に形成された処理室内を排気するようにしている。ここで説明した反応管以外の構成は、図1に示す処理炉の各部の構成と同様である。このように構成された処理炉を用いた場合であっても、上述の実施形態と同様の効果が得られる。 In the above-described embodiment, an example using a reaction tube configured as a single tube has been described. However, the present invention is not limited to the above-described embodiment. For example, as shown in a sectional view of the vertical processing furnace in FIG. 7, the reaction tube may be constituted by a double tube including an inner tube and an outer tube. In the processing furnace shown in FIG. 7, two buffer chambers and an exhaust port are provided on the side wall of the inner tube, and a first buffer chamber located far from the exhaust port (a buffer chamber at a position facing the exhaust port and the center of the wafer). ) In which the first and second nozzles are provided in the same arrangement as in the above-described embodiment, and the third nozzle is provided in the second buffer chamber on the side closer to the exhaust port in the same arrangement as in the above-described embodiment. . Then, by exhausting the annular space between the inner tube and the outer tube from the exhaust pipe connected to the outer tube, the processing chamber formed inside the inner tube is exhausted. The configuration other than the reaction tube described here is the same as the configuration of each part of the processing furnace shown in FIG. Even when the processing furnace configured as described above is used, the same effects as those of the above-described embodiment can be obtained.
 上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。 In the above-described embodiment, an example in which a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at one time has been described. The present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using, for example, a single-wafer type substrate processing apparatus that processes one or several substrates at a time. In the above-described embodiment, an example in which a film is formed using a substrate processing apparatus having a hot wall type processing furnace has been described. The present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
 これらの基板処理装置を用いる場合においても、上述の実施形態や変形例と同様なシーケンス、処理条件にて成膜を行うことができ、これらと同様の効果が得られる。 Even when these substrate processing apparatuses are used, film formation can be performed with the same sequence and processing conditions as those of the above-described embodiments and modifications, and the same effects as these can be obtained.
 また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の実施形態の処理手順、処理条件と同様とすることができる。 Also, the above-described embodiments and modifications can be used in appropriate combination. The processing procedure and processing conditions at this time can be the same as the processing procedure and processing conditions of the above-described embodiment, for example.
 以下、上述の実施形態や変形例で得られる効果を裏付ける実験結果について説明する。 Hereinafter, experimental results that support the effects obtained in the above-described embodiments and modifications will be described.
 実施例として、図7に示す縦型処理炉を備えた基板処理装置を用い、図4(a)に示す成膜シーケンスにより、ウエハ上にSiO膜を形成した。ステップ1では、HCDSガスを第1ノズルより供給し、Oガス(マイグレーション抑制ガス)を第3ノズルより供給した。ステップ2では、Oガス(酸化剤)を第2ノズルより供給し、Hガスを第1ノズルより供給した。各ステップにおける処理条件は、上述の実施形態に記載の処理条件範囲内の条件とした。 As an example, a substrate processing apparatus provided with a vertical processing furnace shown in FIG. 7 was used, and a SiO film was formed on the wafer by the film forming sequence shown in FIG. In Step 1, HCDS gas was supplied from the first nozzle, and O 2 gas (migration suppression gas) was supplied from the third nozzle. In Step 2, O 2 gas (oxidant) was supplied from the second nozzle, and H 2 gas was supplied from the first nozzle. The processing conditions in each step are the conditions within the processing condition range described in the above embodiment.
 比較例として、図7に示す縦型処理炉を備えた基板処理装置を用い、図4(a)に示す成膜シーケンスにより、ウエハ上にSiO膜を形成した。ステップ1では、Oガス(マイグレーション抑制ガス)を第2ノズルより供給した。他のガスを供給するノズル、処理手順、処理条件は、実施例におけるそれらと同様とした。 As a comparative example, an SiO film was formed on a wafer by a film forming sequence shown in FIG. 4A using a substrate processing apparatus equipped with a vertical processing furnace shown in FIG. In Step 1, O 2 gas (migration suppression gas) was supplied from the second nozzle. The nozzles for supplying other gases, processing procedures, and processing conditions were the same as those in the examples.
 そして、実施例および比較例におけるSiO膜のウエハ面内膜厚均一性[WiW](±%)、ウエハ間膜厚均一性[WtW](±%)をそれぞれ測定した。図6(a)は実施例の評価結果を、図6(b)は比較例の評価結果をそれぞれ示している。これらの各図において、TOP、CEN、BTMは、ウエハ配列領域内におけるウエハの位置を、すなわち、ウエハの位置がウエハ配列領域内の上部、中央部、下部であることをそれぞれ示している。なお、WiWは、ウエハ面内における膜厚分布のばらつきの度合を示しており、その値が小さいほどウエハ面内における膜厚均一性が良好なことを示している。また、WtWは、ウエハ間における膜厚分布のばらつきの度合を示しており、その値が小さいほどウエハ間における膜厚均一性が良好なことを示している。 Then, in-wafer surface thickness uniformity [WiW] (±%) and inter-wafer thickness uniformity [WtW] (±%) of the SiO films in Examples and Comparative Examples were measured. FIG. 6A shows the evaluation result of the example, and FIG. 6B shows the evaluation result of the comparative example. In each of these drawings, TOP, CEN, and BTM indicate the position of the wafer in the wafer arrangement area, that is, the position of the wafer is the upper part, the center part, and the lower part in the wafer arrangement area, respectively. WiW indicates the degree of variation in the film thickness distribution in the wafer surface, and the smaller the value, the better the film thickness uniformity in the wafer surface. WtW indicates the degree of variation in film thickness distribution between wafers, and the smaller the value, the better the film thickness uniformity between wafers.
 これらの図によれば、実施例におけるSiO膜は、比較例におけるSiO膜に比べて、TOP、CEN、BTMのいずれの位置においてもWiWが大幅に改善されており、さらに、WtWも大幅に改善されていることが分かる。すなわち、ステップ1において、HCDSガスを第1ノズルより供給し、マイグレーション抑制ガスであるOガスを第1ノズルから離れた位置にある第3ノズルより供給することで、ウエハ上に形成されるSiO膜のWiW,WtWを大幅に改善可能であることが分かる。 According to these figures, the SiO film in the example greatly improved the WiW at any position of TOP, CEN, and BTM, as compared with the SiO film in the comparative example, and further improved WtW. You can see that. That is, in step 1, the HCDS gas is supplied from the first nozzle, and the O 2 gas, which is a migration suppression gas, is supplied from the third nozzle located at a position away from the first nozzle, thereby forming SiO formed on the wafer. It can be seen that the WiW and WtW of the film can be greatly improved.
 200   ウエハ(基板)
 249a  ノズル(第1ノズル)
 249b  ノズル(第2ノズル)
 249c  ノズル(第3ノズル)
200 wafer (substrate)
249a Nozzle (first nozzle)
249b Nozzle (second nozzle)
249c Nozzle (third nozzle)

Claims (16)

  1.  基板に対して第1ノズルより原料ガスを供給する工程と、
     前記基板に対して前記第1ノズルとは異なる第2ノズルより第1の酸素含有ガスを供給する工程と、
     を非同時に行うサイクルを所定回数行うことで前記基板上に酸化膜を形成する工程を有し、
     前記原料ガスを供給する工程は、前記基板に対して、前記第1ノズルおよび前記第2ノズルとはそれぞれ異なる第3ノズルより第2の酸素含有ガスを供給する期間を含む半導体装置の製造方法。
    Supplying a source gas from the first nozzle to the substrate;
    Supplying a first oxygen-containing gas from a second nozzle different from the first nozzle to the substrate;
    Having a process of forming an oxide film on the substrate by performing a non-simultaneous cycle a predetermined number of times,
    The step of supplying the source gas includes a method of supplying a second oxygen-containing gas to the substrate from a third nozzle different from the first nozzle and the second nozzle.
  2.  前記第1ノズルと前記第3ノズルとの距離Bを、前記第1ノズルと前記第2ノズルとの距離Aよりも大きくする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein a distance B between the first nozzle and the third nozzle is made larger than a distance A between the first nozzle and the second nozzle.
  3.  前記第3ノズルを、前記第2ノズルよりも前記第1ノズルから離れた位置に配置する請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the third nozzle is disposed at a position farther from the first nozzle than the second nozzle.
  4.  前記第1ノズル、前記第3ノズル、および前記基板の中心で形成される扇形の中心角θを、前記第1ノズル、前記第2ノズル、および前記基板の中心で形成される扇形の中心角θよりも大きくする請求項1に記載の半導体装置の製造方法。 A sector-shaped central angle θ 2 formed at the center of the first nozzle, the third nozzle, and the substrate is defined as a sector-shaped central angle formed at the center of the first nozzle, the second nozzle, and the substrate. The method for manufacturing a semiconductor device according to claim 1, wherein the manufacturing method is larger than θ 1 .
  5.  1サイクルあたりの前記第2の酸素含有ガスの供給量を、1サイクルあたりの前記第1の酸素含有ガスの供給量よりも小さくする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein a supply amount of the second oxygen-containing gas per cycle is made smaller than a supply amount of the first oxygen-containing gas per cycle.
  6.  1サイクルあたりの前記第2の酸素含有ガスの供給流量を、1サイクルあたりの前記第1の酸素含有ガスの供給流量よりも小さくする請求項5に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 5, wherein a supply flow rate of the second oxygen-containing gas per cycle is made smaller than a supply flow rate of the first oxygen-containing gas per cycle.
  7.  1サイクルあたりの前記第2の酸素含有ガスの供給流量を、1サイクルあたりの前記第1の酸素含有ガスの供給流量の1/20以上1/2以下の大きさとする請求項5に記載の半導体装置の製造方法。 6. The semiconductor according to claim 5, wherein a supply flow rate of the second oxygen-containing gas per cycle is 1/20 or more and 1/2 or less of a supply flow rate of the first oxygen-containing gas per cycle. Device manufacturing method.
  8.  前記基板上に前記酸化膜を形成する工程では、前記第3ノズルからの前記第2の酸素含有ガスの供給を連続的に行う請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein in the step of forming the oxide film on the substrate, the second oxygen-containing gas is continuously supplied from the third nozzle.
  9.  1サイクルあたりの前記第2の酸素含有ガスの供給時間を、1サイクルあたりの前記第1の酸素含有ガスの供給時間よりも短くする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein a supply time of the second oxygen-containing gas per cycle is shorter than a supply time of the first oxygen-containing gas per cycle.
  10.  前記第1の酸素含有ガスを供給する工程は、前記基板に対して、前記第1の酸素含有ガスと水素含有ガスとを同時に供給する期間を含む請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the step of supplying the first oxygen-containing gas includes a period in which the first oxygen-containing gas and the hydrogen-containing gas are simultaneously supplied to the substrate.
  11.  前記基板上に前記酸化膜を形成する工程では、前記基板の温度を前記原料ガスが熱分解する温度に設定する請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein in the step of forming the oxide film on the substrate, the temperature of the substrate is set to a temperature at which the source gas is thermally decomposed.
  12.  前記原料ガスは、シラン化合物、シロキサン化合物、およびシラザン化合物からなる群より選択される少なくとも1つを含む請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the source gas includes at least one selected from the group consisting of a silane compound, a siloxane compound, and a silazane compound.
  13.  前記第1の酸素含有ガスは、酸素ガス、亜酸化窒素ガス、一酸化窒素ガス、二酸化窒素ガス、オゾンガス、原子状酸素、酸素ラジカル、および水酸基ラジカルからなる群より選択される少なくとも1つを含み、
     前記第2の酸素含有ガスは、酸素ガス、亜酸化窒素ガス、一酸化窒素ガス、二酸化窒素ガス、およびオゾンガスからなる群より選択される少なくとも1つを含む請求項1に記載の半導体装置の製造方法。
    The first oxygen-containing gas includes at least one selected from the group consisting of oxygen gas, nitrous oxide gas, nitric oxide gas, nitrogen dioxide gas, ozone gas, atomic oxygen, oxygen radicals, and hydroxyl radicals. ,
    2. The semiconductor device manufacture according to claim 1, wherein the second oxygen-containing gas includes at least one selected from the group consisting of oxygen gas, nitrous oxide gas, nitrogen monoxide gas, nitrogen dioxide gas, and ozone gas. Method.
  14.  前記原料ガスに含まれる主元素は半金属元素または金属元素を含み、前記酸化膜は前記主元素を含む酸化膜である請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the main element contained in the source gas contains a metalloid element or a metal element, and the oxide film is an oxide film containing the main element.
  15.  基板を収容する処理室と、
     前記処理室内の基板に対して第1ノズルより原料ガスを供給する第1供給系と、
     前記処理室内の基板に対して前記第1ノズルとは異なる第2ノズルより第1の酸素含有ガスを供給する第2供給系と、
     前記処理室内の基板に対して前記第1ノズルおよび前記第2ノズルとはそれぞれ異なる第3ノズルより第2の酸素含有ガスを供給する第3供給系と、
     前記処理室内において、基板に対して前記第1ノズルより前記原料ガスを供給する処理と、前記基板に対して前記第2ノズルより前記第1の酸素含有ガスを供給する処理と、を非同時に行うサイクルを所定回数行うことで前記基板上に酸化膜を形成する処理を行わせ、前記原料ガスを供給する処理が、前記基板に対して前記第3ノズルより前記第2の酸素含有ガスを供給する期間を含むように、前記第1供給系、前記第2供給系および前記第3供給系を制御するよう構成される制御部と、
     を有する基板処理装置。
    A processing chamber for accommodating the substrate;
    A first supply system for supplying a source gas from a first nozzle to a substrate in the processing chamber;
    A second supply system for supplying a first oxygen-containing gas to a substrate in the processing chamber from a second nozzle different from the first nozzle;
    A third supply system that supplies a second oxygen-containing gas from a third nozzle different from the first nozzle and the second nozzle to the substrate in the processing chamber;
    In the process chamber, the process of supplying the source gas from the first nozzle to the substrate and the process of supplying the first oxygen-containing gas from the second nozzle to the substrate are performed simultaneously. The process of forming an oxide film on the substrate by performing a predetermined number of cycles and supplying the source gas supplies the second oxygen-containing gas from the third nozzle to the substrate. A controller configured to control the first supply system, the second supply system, and the third supply system so as to include a period;
    A substrate processing apparatus.
  16.  基板処理装置の処理室内の基板に対して第1ノズルより原料ガスを供給する手順と、
     前記処理室内の前記基板に対して前記第1ノズルとは異なる第2ノズルより第1の酸素
    含有ガスを供給する手順と、
     を非同時に行うサイクルを所定回数行うことで前記基板上に酸化膜を形成する手順と、
     前記原料ガスを供給する手順が、前記処理室内の前記基板に対して、前記第1ノズルおよび前記第2ノズルとはそれぞれ異なる第3ノズルより第2の酸素含有ガスを供給する期間を含むようにする手順と、
     をコンピュータによって前記基板処理装置に実行させるプログラム。
    A procedure for supplying a source gas from a first nozzle to a substrate in a processing chamber of the substrate processing apparatus;
    A procedure of supplying a first oxygen-containing gas from a second nozzle different from the first nozzle to the substrate in the processing chamber;
    A procedure for forming an oxide film on the substrate by performing a non-simultaneous cycle a predetermined number of times,
    The procedure of supplying the source gas includes a period of supplying a second oxygen-containing gas from a third nozzle different from the first nozzle and the second nozzle to the substrate in the processing chamber. And the steps to
    For causing the substrate processing apparatus to execute the program.
PCT/JP2017/031727 2016-11-11 2017-09-04 Manufacturing method for semiconductor device, substrate processing device, and program WO2018088003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018550046A JP6741780B2 (en) 2016-11-11 2017-09-04 Semiconductor device manufacturing method, substrate processing apparatus, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-220109 2016-11-11
JP2016220109 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018088003A1 true WO2018088003A1 (en) 2018-05-17

Family

ID=62110386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031727 WO2018088003A1 (en) 2016-11-11 2017-09-04 Manufacturing method for semiconductor device, substrate processing device, and program

Country Status (2)

Country Link
JP (1) JP6741780B2 (en)
WO (1) WO2018088003A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896023A (en) * 2018-09-13 2020-03-20 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN112447499A (en) * 2019-08-30 2021-03-05 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN112735939A (en) * 2019-10-28 2021-04-30 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN113316836A (en) * 2019-03-20 2021-08-27 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and program
JP2021158165A (en) * 2020-03-25 2021-10-07 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing device, and program
US11848203B2 (en) 2019-12-27 2023-12-19 Kokusai Electric Corporation Methods of processing substrate and manufacturing semiconductor device by forming film, substrate processing apparatus, and recording medium
CN113316836B (en) * 2019-03-20 2024-04-09 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039821A (en) * 2002-07-02 2004-02-05 Elpida Memory Inc Method of manufacturing semiconductor device
US20090104777A1 (en) * 2007-10-17 2009-04-23 Asm Genitech Korea Ltd. Methods of depositing a ruthenium film
JP2011061007A (en) * 2009-09-10 2011-03-24 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate-processing apparatus
JP2012028741A (en) * 2010-06-22 2012-02-09 Tokyo Electron Ltd Film forming method and film forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039821A (en) * 2002-07-02 2004-02-05 Elpida Memory Inc Method of manufacturing semiconductor device
US20090104777A1 (en) * 2007-10-17 2009-04-23 Asm Genitech Korea Ltd. Methods of depositing a ruthenium film
JP2011061007A (en) * 2009-09-10 2011-03-24 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate-processing apparatus
JP2012028741A (en) * 2010-06-22 2012-02-09 Tokyo Electron Ltd Film forming method and film forming device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896023A (en) * 2018-09-13 2020-03-20 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN113316836A (en) * 2019-03-20 2021-08-27 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and program
CN113316836B (en) * 2019-03-20 2024-04-09 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
CN112447499A (en) * 2019-08-30 2021-03-05 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN112735939A (en) * 2019-10-28 2021-04-30 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11848203B2 (en) 2019-12-27 2023-12-19 Kokusai Electric Corporation Methods of processing substrate and manufacturing semiconductor device by forming film, substrate processing apparatus, and recording medium
JP2021158165A (en) * 2020-03-25 2021-10-07 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing device, and program
JP7254044B2 (en) 2020-03-25 2023-04-07 株式会社Kokusai Electric Substrate processing method, semiconductor device manufacturing method, substrate processing apparatus, and program

Also Published As

Publication number Publication date
JPWO2018088003A1 (en) 2019-08-08
JP6741780B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
US10081868B2 (en) Gas supply nozzle, substrate processing apparatus, and non-transitory computer-readable recording medium
US10607833B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6568508B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6230809B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
US10388512B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US9741555B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6741780B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2018154823A1 (en) Substrate processing device, method of manufacturing semiconductor device, and program
US10907253B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and recording medium
JP6470468B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2018101687A (en) Semiconductor device manufacturing method, substrate processing apparatus and program
WO2018193538A1 (en) Semiconductor device production method, substrate processing device and recording medium
JP2018163931A (en) Substrate processing device, method of manufacturing semiconductor device, and program
US11923188B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2018121006A (en) Method of manufacturing semiconductor device, substrate processing device, and program
WO2019180805A1 (en) Method for manufacturing semiconductor device, substrate-processing device, and program
JP7464638B2 (en) Substrate processing apparatus, plasma generating apparatus, reaction tube, plasma generating method, substrate processing method, semiconductor device manufacturing method and program
JP6731527B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2020077890A (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2020080422A (en) Method for manufacturing semiconductor device, substrate processing device, and program
KR20230044316A (en) Substrate processing method, semiconductor device manufacturing method, substrate processing device and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868928

Country of ref document: EP

Kind code of ref document: A1