WO2018084147A1 - Occupant detection method and occupant detection apparatus - Google Patents

Occupant detection method and occupant detection apparatus Download PDF

Info

Publication number
WO2018084147A1
WO2018084147A1 PCT/JP2017/039346 JP2017039346W WO2018084147A1 WO 2018084147 A1 WO2018084147 A1 WO 2018084147A1 JP 2017039346 W JP2017039346 W JP 2017039346W WO 2018084147 A1 WO2018084147 A1 WO 2018084147A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface pressure
seating
driver
posture
value
Prior art date
Application number
PCT/JP2017/039346
Other languages
French (fr)
Japanese (ja)
Inventor
宏行 藤井
貴裕 伊津野
Original Assignee
アイシン精機 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機 株式会社 filed Critical アイシン精機 株式会社
Publication of WO2018084147A1 publication Critical patent/WO2018084147A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/62Accessories for chairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/90Details or parts not otherwise provided for

Definitions

  • the present invention relates to an occupant detection method and an occupant detection device.
  • Patent Document 1 discloses an occupant detection device that detects an occupant seated on a vehicle seat based on a captured image acquired by a camera provided in a vehicle interior. Further, for example, Patent Document 2 discloses a configuration for detecting a driver's posture collapse based on a captured image acquired by a camera. In these Patent Documents 1 and 2, by using image analysis technology, for example, when the vehicle is in an automatic driving state, whether or not the driver's sitting posture is a posture for monitoring the automatic driving of the vehicle. Can be determined.
  • the driver is obliged to monitor even when the vehicle is in the automatic driving state. That is, in an emergency, it is required to stand by in a state where it can be driven by itself.
  • the sitting posture of the driver is detected. For example, when the detected sitting posture is not a posture for monitoring the automatic driving of the vehicle, high safety can be ensured by executing a warning output to prompt the driver to correct the sitting posture. .
  • a photographed image showing the occupant's upper body is used. That is, more information can be obtained by reflecting the upper body of the passenger.
  • various state detections regarding the occupant of the vehicle such as detection of falling asleep or detection of safety confirmation behavior, can be performed.
  • An object of the present invention is to provide an occupant detection method and an occupant detection device that can detect an occupant's sitting posture that is characteristic of the arrangement of legs.
  • An occupant detection method that solves the above problems is to detect the distribution of surface pressure acting on the seating surface of the driver's seat, to detect that the vehicle has shifted to the automatic driving state, and to act on the seating surface. Preferably detecting a seating posture of the driver sitting in the driver seat in the automatic driving state based on a distribution of surface pressure.
  • An occupant detection method that solves the above problem is to detect the distribution of surface pressure acting on the seating surface of the seat and to determine the seating posture of the occupant seated on the seat based on the distribution of surface pressure acting on the seating surface.
  • Detecting the seating posture includes detecting a first surface pressure concentration portion where the surface pressure is concentrated on the seating surface, and detecting the first surface pressure concentration. If the second surface pressure concentration portion that is independent of the first surface pressure concentration portion is detected at a position where the surface pressure is concentrated on the seating surface in front of the seat, the occupant is seated It is preferable to include determining that the user is in a sitting posture with both feet on the surface.
  • An occupant detection device that solves the above-described problem is a surface pressure distribution detector configured to detect a distribution of surface pressure acting on a seating surface of a driver's seat, and to detect that the vehicle has shifted to an automatic driving state.
  • An automatic driving detector configured to detect the seating posture in the automatic driving state of the driver sitting on the driver seat based on the distribution of the surface pressure acting on the seating surface And an attitude detection unit.
  • Explanatory drawing which shows typically the driving posture of the driver
  • 1 is a schematic configuration diagram of an occupant detection device according to a first embodiment.
  • FIG. 2 is an explanatory diagram schematically showing a driving monitoring posture of a driver sitting on the driver seat of FIG. 1.
  • Explanatory drawing which shows typically the non-driving monitoring attitude
  • Explanatory drawing which shows typically the non-driving monitoring attitude
  • the flowchart which shows the detection procedure of a seat load and a back load ratio, and the process sequence of a reference value setting.
  • the flowchart which shows the driver
  • Explanatory drawing which shows the relationship between transition of a seat load, and a driver
  • the flowchart which shows the process sequence of driving
  • Explanatory drawing which shows the surface pressure distribution of the seating surface which the passenger
  • Explanatory drawing which shows the surface pressure distribution of the seating surface which the passenger
  • Explanatory drawing which shows the surface pressure distribution of the seating surface which the passenger
  • the graph which shows the relationship between the 3rd maximum surface pressure value for every position in the front-back direction in a seating surface, and a passenger
  • 10 is a flowchart showing processing procedures for determining a threshold value used for first to third maximum surface pressure value detection and seating posture detection based on the surface pressure distribution of the seating surface.
  • the vehicle seat 1 includes a seat cushion 2 and a seat back 3 provided so as to be tiltable with respect to the rear end portion of the seat cushion 2.
  • a headrest 4 is provided at the upper end of the seat back 3.
  • the vehicle floor 5 is provided with a pair of left and right lower rails 6 extending in the vehicle longitudinal direction. Further, each lower rail 6 is provided with an upper rail 7 that can be relatively moved on the lower rail 6 along its extending direction.
  • the seat 1 is supported on a seat slide device 8 formed by the lower rail 6 and the upper rail 7.
  • a plurality of load sensors 10 are provided on the lower side of the seat 1. These load sensors 10 (10a to 10d) are interposed between the upper rail 7 as a support member and the seat 1 supported on the upper rail 7, more specifically, between the upper rail 7 and the side frame of the seat cushion 2. Has been. For example, a known strain sensor is used for each load sensor 10. These load sensors 10 are arranged at positions corresponding to the four corners of the substantially rectangular seating surface 1s formed by the seat cushion 2, respectively.
  • the output signal of each load sensor 10 is input to an ECU (electronic control unit) 11 as an occupant detection device.
  • the ECU 11 Based on the output signals of the load sensors 10a to 10d, the ECU 11 divides the four areas where the load sensors 10a to 10d are provided, that is, the areas A1 to A4 obtained by dividing the seating surface 1s of the seat 1 into the front, rear, left and right. Every time, a seat load (load detection values Wa to Wd) which is a load acting on the seating surface 1s is detected.
  • the load detection value Wa of the first load sensor 10a indicates the seat load outside the front portion (region A1 in FIG. 2) of the seat 1, and the load detection value Wb of the second load sensor 10b is the front load of the seat 1.
  • the seat load on the inner side is shown.
  • the load detection value Wc of the third load sensor 10c indicates the seat load on the rear outer side (region A3 in FIG. 2) in the seat 1, and the load detection value Wd of the fourth load sensor 10d is on the seat 1.
  • the seat load on the rear inner side (region A4 in FIG. 2) is shown.
  • the ECU11 may be comprised by the microcomputer etc., and may be provided with the hardware for exclusive use (Application Specific Integrated Circuit: ASIC) which performs at least one part process among various processes. That is, the ECU 11 is a circuit including 1) one or more processors that operate according to a computer program (software), 2) one or more dedicated hardware circuits such as ASIC, or 3) a combination thereof. Can be configured.
  • the processor includes a CPU and a memory such as a RAM and a ROM, and the memory stores program codes or instructions configured to cause the CPU to execute processing.
  • Memory or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the ECU 11 receives an automatic driving transition signal Sad indicating that the vehicle has shifted to the automatic driving state. Then, the ECU 11 detects that the vehicle has shifted to the automatic driving state based on the automatic driving shift signal Sad.
  • the automatic driving level is classified as “semi-automated driving system (level 2 or level 3)”.
  • the ECU 11 of the present embodiment detects the seating posture of the occupant 20 seated in the driver's seat 21, that is, the driver DR, based on the transition of the seat load W before and after the vehicle shifts to the automatic driving state. (See FIG. 1).
  • an occupant is provided via an alarm device 22 such as a warning lamp or a speaker. 20 is configured to execute a warning output that prompts the user to correct the sitting posture.
  • the driver DR when the driver DR is in a driving posture of driving the vehicle while holding the steering wheel 23, the driver DR usually has one foot 24a on the foot pedal 25 of the vehicle. (Accelerator pedal 25a or brake pedal 25b) is operated. At this time, the other foot 24b is in a state of being placed on the floor 5 of the vehicle (except during clutch operation in a so-called manual vehicle).
  • the driver DR when the driver DR is in a driving posture of driving the vehicle while holding the steering wheel 23, the driver DR usually has one foot 24a on the foot pedal 25 of the vehicle. (Accelerator pedal 25a or brake pedal 25b) is operated. At this time, the other foot 24b is in a state of being placed on the floor 5 of the vehicle (except during clutch operation in a so-called manual vehicle).
  • the driver DR causes the legs 24 a and 24 b to move to the seating surface 1 s of the seat 1 due to slackness of tension. May take the posture. That is, the sitting posture shown in FIG. 4 is a so-called “foot holding posture” in which the driver DR holds the both feet 24a and 24b with the hand 26, and FIG. 5 shows the sitting posture in a state where the feet 24a and 24b are crossed. This is a so-called “cross-legged posture” placed on the surface 1s.
  • These seating postures are considered to be “non-driving monitoring postures” in which driving of the vehicle cannot be started immediately in an emergency.
  • the ECU 11 of the present embodiment detects the non-driving monitoring posture of the driver DR, which is characterized by the arrangement of the legs L (foot 24a, 24b), based on the transition of the seat load W. And it is the structure which prompts the correction by performing warning output as mentioned above.
  • the ECU 11 holds these reference values W0 and ⁇ 0 in its own storage area 11a (see FIG. 2).
  • the ECU 11 monitors the transition of the seat load W and the rear load ratio ⁇ by comparing the reference values W0, ⁇ 0 with the newly detected seat load W and the rear load ratio ⁇ .
  • the driver DR often leans against the seat back 3.
  • the post-load ratio ⁇ of the seat load W increases.
  • the fluctuation value ⁇ of the afterload ratio ⁇ after the shift to the automatic operation state takes a positive value ( ⁇ > 0).
  • the ECU 11 of the present embodiment determines the variation value ⁇ W of the seat load W calculated in step 202 and the post-load ratio ⁇ calculated in step 203 in the sitting posture detection determination shown in step 204 in FIG.
  • the fluctuation value ⁇ is compared with threshold values W1, W2, ⁇ 1, and ⁇ 2, respectively.
  • the driving monitoring posture and non-control of the driver DR when the vehicle is in the automatic driving state are detected. It is configured to detect the driving monitoring posture.
  • the ECU 11 first determines that the variation value ⁇ W of the seat load W after the shift to the automatic driving state is the first threshold value. It is determined whether or not the negative value is less than W1 ( ⁇ W ⁇ 0) (step 301).
  • the first threshold value W1 corresponds to a case where the seat load W after the shift to the automatic operation state is decreased by, for example, about 5% to 25% from the value before the shift to the automatic operation state, that is, the reference value W0. Negative value (W1 ⁇ 0).
  • step 301 the ECU 11 determines that the fluctuation value ⁇ W of the seat load W after the shift to the automatic driving state is a negative value equal to or less than the first threshold value W1 ( ⁇ W ⁇ W1), that is, the seat before the shift to the automatic driving state.
  • the load W has decreased (step 301: YES)
  • the ECU 11 determines in step 302 that the state in which the seat load W has decreased from before the shift to the automatic driving state continues for a predetermined time or longer step 302: YES
  • the driving of the driver DR is performed. It is determined that the first monitoring posture detection condition capable of detecting the monitoring posture is satisfied (step 303).
  • step 301 the ECU 11 does not recognize that the seat load W has decreased when the variation value ⁇ W of the seat load W is larger than the first threshold value W1 ( ⁇ W> W1), that is, before the shift to the automatic operation state.
  • step 301: NO the processing of step 303 is not executed. If it is determined in step 302 that the state in which the seat load W has decreased does not continue for a predetermined time or longer (step 302: NO), the processing in step 303 is not executed.
  • the ECU 11 determines whether or not the variation value ⁇ of the seat load W after the shift to the automatic driving state is a positive value ( ⁇ > 0) that is equal to or greater than the first threshold value ⁇ 1 ( ⁇ > 0).
  • the first threshold value ⁇ 1 is set when the post-load ratio ⁇ after the shift to the automatic operation state is increased by, for example, about 5% to 30% from the value before the shift to the automatic operation state, that is, the reference value ⁇ 0.
  • the corresponding positive value is set ( ⁇ 1> 0).
  • step 304 the ECU 11 determines that the fluctuation value ⁇ of the post-load ratio ⁇ after the transition to the automatic driving state is a positive value that is equal to or greater than the first threshold value ⁇ 1 ( ⁇ ⁇ ⁇ 1).
  • step 304: YES it is determined whether or not this state continues for a predetermined time or more.
  • step 305: YES it is determined that the ECU 11 determines in step 305 that the state in which the rear load ratio ⁇ of the seat load W has increased more than a predetermined time than before the transition to the automatic operation state (step 305: YES)
  • the second monitoring posture detection condition that can detect the driving monitoring posture of the driver DR is satisfied (step 306).
  • step 304 the ECU 11 recognizes that the seat load W has increased when the variation value ⁇ of the rear load ratio ⁇ is smaller than the first threshold value ⁇ 1 ( ⁇ ⁇ 1), that is, before the shift to the automatic operation state. If not (step 304: NO), the process of step 306 is not executed. Even when it is determined in step 305 that the post load ratio ⁇ of the seat load W has not increased for a predetermined time or longer (step 305: NO), the processing in step 306 is not executed.
  • the ECU 11 determines whether or not both of the first and second monitoring posture detection conditions are satisfied (step 307). Then, when the first and second monitoring posture detection conditions are both satisfied (step 307: YES), it is detected that the driver DR is in the driving monitoring posture (step 308).
  • the ECU 11 also first detects the fluctuation value ⁇ W of the seat load W after the shift to the automatic driving state in the same manner for the detection determination of the non-driving monitoring posture (non-driving monitoring posture determination). It is determined whether or not a positive value ( ⁇ W> 0) equal to or greater than a threshold value W2 of 2 (step 401).
  • the second threshold value W2 corresponds to a case where the seat load W after the shift to the automatic operation state is increased by, for example, about 5% to 25% from the value before the shift to the automatic operation state, that is, the reference value W0. Is set to a positive value (W2> 0).
  • step 401 the ECU 11 determines that the variation value ⁇ W of the seat load W after the shift to the automatic driving state is a positive value greater than or equal to the second threshold value W2 ( ⁇ W ⁇ W2).
  • step 401: YES it is determined whether or not this state continues for a predetermined time or more (step 402). If the ECU 11 determines in step 402 that the state in which the seat load W has increased from before the shift to the automatic driving state continues for a predetermined time or longer (step 402: YES), the ECU 11 It is determined that the first non-monitoring posture detection condition capable of detecting the driving monitoring posture is satisfied (step 403).
  • step 401 the ECU 11 does not recognize that the seat load W has increased compared to the case where the variation value ⁇ W of the seat load W is smaller than the second threshold value W2 ( ⁇ W ⁇ W2). In the case (step 401: NO), the processing of step 403 is not executed. If it is determined in step 402 that the state in which the seat load W has increased does not continue for a predetermined time or longer (step 402: NO), the processing in step 403 is not executed.
  • the ECU 11 determines whether or not the variation value ⁇ of the rear load ratio ⁇ of the seat load W after the shift to the automatic driving state is a negative value ( ⁇ ⁇ 0) equal to or less than the second threshold value ⁇ 2 ( Step 404).
  • the second threshold value ⁇ 2 is set when the post-load ratio ⁇ after the shift to the automatic operation state is reduced by, for example, about 5% to 30% from the value before the shift to the automatic operation state, that is, the reference value ⁇ 0.
  • the corresponding negative value ( ⁇ 2 ⁇ 0) is set.
  • step 404 the ECU 11 determines that the fluctuation value ⁇ of the afterload ratio ⁇ after the shift to the automatic driving state is equal to or less than the second threshold value ⁇ 2 ( ⁇ ⁇ ⁇ 2), that is, after the seat load W than before the shift to the automatic driving state.
  • the load ratio ⁇ has decreased (step 404: YES)
  • step 405 determines in this step 405 that the state in which the rear load ratio ⁇ of the seat load W is reduced than before the shift to the automatic operation state continues for a predetermined time or longer (step 405: YES). It is determined that the second non-monitoring posture detection condition capable of detecting the non-driving monitoring posture of the driver DR is satisfied (step 406).
  • step 404 the ECU 11 recognizes that the seat load W has decreased when the variation value ⁇ of the rear load ratio ⁇ is larger than the second threshold value ⁇ 2 ( ⁇ > ⁇ 2), that is, before the shift to the automatic operation state. If not (step 404: NO), the processing of step 406 is not executed. If it is determined in step 405 that the state in which the rear load ratio ⁇ of the seat load W is reduced does not continue for a predetermined time or longer (step 405: NO), the processing in step 406 is not executed.
  • the ECU 11 determines whether or not both the first and second non-monitoring posture detection conditions are satisfied (step 407).
  • both the first and second non-monitoring posture detection conditions are satisfied (step 407: YES)
  • the ECU 11 performs the driving monitoring posture determination (see FIG. 9) and the non-driving monitoring posture determination (see FIG. 10) as described above in the sitting posture detection determination in step 204. Then, when it is detected that the sitting posture of the driver DR is in the non-driving monitoring posture (step 205: YES), warning output via the alarm device 22 is executed (step 206).
  • the ECU 11 functioning as the seat load detection unit 30a detects the seat load W (and the rear load ratio ⁇ ) acting on the driver's seat 21. Further, the ECU 11 functioning as the automatic driving detection unit 30b detects that the vehicle has shifted to the automatic driving state.
  • the ECU 11 functioning as the seating posture detection unit 30c detects the seating posture in the automatic driving state of the driver DR seated on the driver seat 21 based on the transition of the seat load W (and the rear load ratio ⁇ ).
  • the seat load W of the driver's seat 21 changes as the driver DR changes the sitting posture.
  • Such a change in the seat load W becomes more prominent when the arrangement state of the legs L (foot 24a, 24b) supporting the weight of the driver DR is changed. Therefore, by monitoring the transition of the seat load W before and after the vehicle shifts to the automatic driving state, the arrangement of the legs L is characteristic when the vehicle is in the automatic driving state with high accuracy and with a simple configuration.
  • the seating posture of the driver DR can be detected. For example, when the seating posture is not a posture for monitoring the automatic driving of the vehicle, high safety can be ensured by executing a warning output to prompt the driver DR to correct the posture.
  • the driver DR of the vehicle operates the foot pedal 25 (accelerator pedal 25a or brake pedal 25b) with one foot 24a.
  • the other leg 24b is placed on the floor 5 of the vehicle. That is, when the driver DR is in the driving posture, the weight of the driver DR is also distributed to the other leg 24b placed on the floor 5 of the vehicle.
  • the driver DR takes a non-driving monitoring posture such as placing the both feet 24a and 24b on the seating surface 1s of the seat 1 such as a so-called “foot holding posture” or “cross-legged posture”
  • the driver DR Will be added to the seat 1.
  • the driver DR Will be added to the seat 1.
  • the driver DR puts both feet 24a and 24b on the floor 5 of the vehicle, so that the driver DR The weight is distributed to both feet 24a and 24b placed on the floor 5. Then, by detecting the decrease in the seat load W caused by this, it is possible to accurately detect the driving monitoring posture of the driver DR in the automatic driving state.
  • the driver DR when the driver DR takes a driving monitoring posture in which both feet 24 a and 24 b are placed on the floor 5 of the vehicle, the driver DR often leans against the seat back 3. As a result, the post-load ratio ⁇ of the seat load W increases. Therefore, according to the above configuration, the driving monitoring posture of the driver DR in the automatic driving state can be detected with high accuracy.
  • the seat 1 ⁇ / b> B which is the driver's seat 21 has a surface pressure sensor 40 inside the seat cushion 2.
  • the ECU 11B detects the surface pressure P acting on the seating surface 1s of the seat 1B based on the output signal of the surface pressure sensor 40.
  • the surface pressure sensor 40 is below the seating surface 1s in the width direction of the seat 1B (vertical direction in FIG. 11) and the front-rear direction of the seat 1B, that is, the length direction (left-right direction in FIG. 11).
  • a plurality of pressure detection cells (not shown) (for example, electrostatic capacitance type) arranged in alignment are provided.
  • the ECU 11B detects the surface pressure P of the seating surface 1s for each of a plurality of detection regions (not shown) formed on the seating surface 1s based on the detection results of these pressure detection cells.
  • the position of each detection region formed on the seating surface 1s by the surface pressure sensor 40 can be expressed as coordinates (X, Y) determined by the position X in the width direction and the position Y in the front-rear direction.
  • the ECU 11B detects the seating posture of the driver DR when the vehicle is in the automatic driving state based on the distribution of the surface pressure P in the plurality of detection regions, that is, the surface pressure distribution ⁇ of the seating surface 1s.
  • the position where the butt La of the occupant 20 abuts on the seating surface 1s of the seat 1B, that is, the hip point HP is generally larger than the center position in the front-rear direction of the seating surface 1s. It exists on the rear side (lower side in FIGS. 12 to 14). That is, in the surface pressure distribution ⁇ of the seating surface 1s, the surface pressure P of the portion where the leg L of the occupant 20 (see FIG. 1, buttocks La, thigh Lb, and knee sole Lc located on the seating surface 1s) abuts increases. .
  • FIGS. 1 and 12 are exaggerated views of the state in which the leg L on the side where the foot 24b is placed on the floor 5 of the vehicle is floating from the seating surface 1s.
  • the surface pressure P of the portion with which the leg L abuts faces the position where the hip point HP is formed.
  • the pressure concentration portion ⁇ that is, the position where the surface pressure P is concentrated, gradually decreases from the rear side to the front side of the seating surface 1s so as to follow the leg L of the driver DR that extends toward the front of the seat 1B. Yes.
  • the first surface pressure concentration portion ⁇ 1 corresponding to the hip point HP of the occupant 20 is independent of the first surface pressure concentration portion ⁇ 1 in front of the first surface pressure concentration portion ⁇ 1.
  • a second surface pressure concentration portion ⁇ 2 appears. That is, when the occupant 20 places both feet 24a and 24b on the seating surface 1s of the driver's seat 21, the portions of the leg L of the occupant 20 corresponding to the thigh Lb and the knee sole Lc are separated from the seating surface 1s. Thereby, both feet 24a and 24b placed on the seating surface 1s form a second surface pressure concentration portion ⁇ 2 independent of the first surface pressure concentration portion ⁇ 1 formed by the butt La of the occupant 20 as described above. .
  • the ECU 11B of the present embodiment determines that the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 are the surface pressure distribution of the seating surface 1s in the sitting posture detection determination of the occupant 20 seated on the seat 1B. It is determined whether or not it appears in ⁇ .
  • the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 are detected when the vehicle is in an automatic driving state, the occupant 20 of the driver seat 21, that is, the driver DR of the vehicle, It is determined that the vehicle is in a non-driving monitoring posture.
  • the ECU 11B determines the maximum value (third maximum) of the surface pressure P for each position Y in the front-rear direction of the seating surface 1s (each position in the left-right direction in FIG. 11).
  • (Surface pressure value) Py is detected.
  • the “third maximum surface pressure value Py for each position Y in the front-rear direction” refers to the case where the surface pressure P is detected along the width direction of the seating surface 1s at each position in the front-rear direction (length direction) of the seating surface 1s.
  • the maximum value of the surface pressure P obtained along the width direction at the same position in the front-rear direction.
  • the ECU 11B sets the seating surface 1s as the rear region Ar of the seating surface 1s at the position where the hip point HP of the occupant 20 seated on the seat 1B is formed, that is, the rear side of the seating surface 1s in the longitudinal direction. Is divided into three in the front-rear direction. That is, on the seating surface 1s of the seat 1B, in addition to the rear region Ar, there are a front region Af located on the front side of the seating surface 1s, and an intermediate region Am located between the front region Af and the rear region. Is set.
  • the ECU 11B detects the maximum value Pr of the surface pressure P in the rear region Ar and the maximum value Pf of the surface pressure P in the front region Af among these three divided regions of the seating surface 1s.
  • the maximum value Pr of the surface pressure P in the rear region Ar is referred to as a first maximum surface pressure value Pr
  • the maximum value Pf of the surface pressure P in the front region Af is referred to as a second maximum surface pressure value Pf.
  • the ECU 11B determines that the first maximum surface pressure value Pr in the rear region Ar and the second maximum surface pressure value Pf in the front region Af are larger than the corresponding first and second threshold values THr and THf, respectively. It is determined whether or not. Further, the ECU 11B determines whether or not the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am. When all these determination conditions are satisfied, it is determined that the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 are detected on the seating surface 1s.
  • the first surface pressure concentration portion ⁇ ⁇ b> 1 normally formed by the butt La of the occupant 20 appears in the rear region Ar of the seating surface 1 s, and the seating surface 1 s
  • the second surface pressure concentration portion ⁇ 2 formed by both feet 24a, 24b placed on the front surface appears in the front region Af.
  • the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 can be considered as the portions having the highest surface pressure P in the rear region Ar and the front region Af, respectively.
  • operator DR for example, the acceleration state (surface pressure distribution (beta) 1 in FIG. 15) which depresses accelerator pedal 25a, or brake pedal 25b Even in a decelerating state (surface pressure distribution ⁇ 2 in FIG. 15), the surface pressure distribution ⁇ of the seating surface 1s does not appear.
  • the ECU 11B of the present embodiment has the first and second maximum surface pressure values Pr and Pf corresponding to the first and second maximum surface pressure values Pr and Pf in the rear region Ar and the front region Af of the seating surface 1s, respectively.
  • the threshold values THr and THf are exceeded, it is determined that the surface pressure concentration portion ⁇ appears in the rear region Ar and the front region Af (see the surface pressure distributions ⁇ 3 and ⁇ 4 in FIG. 15).
  • the ECU 11B detects the rear region Ar and the front region when the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am of the seating surface 1s.
  • the ECU 11B includes a first surface pressure concentration portion ⁇ 1 formed by the bottom La of the driver DR and an independent second surface pressure concentration portion ⁇ 2 positioned in front of the first surface pressure concentration portion ⁇ 1.
  • the ECU 11B first detects the third maximum surface pressure value Py for each longitudinal position Y of the seating surface 1s based on the output signal of the surface pressure sensor 40. (Step 501). Further, the ECU 11B detects the first maximum surface pressure value Pr in the rear region Ar set on the seating surface 1s and the second maximum surface pressure value Pf in the front region Af (step 502). Further, the ECU 11B determines whether or not the driver DR is in a state of driving the vehicle (step 503) and determines whether or not the surface pressure distribution ⁇ of the seating surface 1s is in a stable state (step 503). Step 504).
  • step 503 When the vehicle is in an occupant driving state (step 503: YES) and the surface pressure distribution ⁇ of the seating surface 1s is stable (step 504: YES), the first maximum surface pressure value in the rear region Ar. Based on Pr, the first to third thresholds THr, THf, THm used for the determination of the sitting posture of the driver DR are determined (step 505).
  • the ECU 11B sets a value lower than the first maximum surface pressure value Pr in the rear region Ar detected in step 502 as the first threshold value THr (see FIG. 15).
  • the second threshold value THf is set to a value lower than the first threshold value THr.
  • the third threshold value THm is set to a value lower than the second threshold value THf, specifically, a value close to “0”.
  • the ECU 11B determines whether or not the vehicle is in an automatic driving state (step 601). If it is determined that the vehicle is in the automatic driving state (step 602: YES), the seating posture detection determination is executed for the driver DR seated on the driver seat 21 (step 602). Then, when it is detected that the sitting posture of the driver DR is in the non-driving monitoring posture (step 603: YES), the ECU 11B executes a warning output via the alarm device 22 (step 604).
  • the ECU 11B first determines whether or not the first maximum surface pressure value Pr in the rear region Ar of the seating surface 1s exceeds the first threshold value THr (step 701). If the ECU 11B determines in step 701 that the first maximum surface pressure value Pr exceeds the first threshold value THr (Pr> THr, step 701: YES), then the front area of the seating surface 1s It is determined whether or not the second maximum surface pressure value Pf at Af exceeds the second threshold value THf (step 702).
  • the third maximum surface pressure value Py is the third threshold value THm. It is determined whether or not a position Ym in the front-rear direction that is smaller than that is detected in the intermediate area Am of the seating surface 1s (step 703). Then, when the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am (step 703: YES), the first and second surface pressure concentrations. It is determined that the parts ⁇ 1 and ⁇ 2 have been detected (step 704), and it is detected that the driver DR is in the non-driving monitoring posture (step 705).
  • step 702 the ECU 11B determines that the third maximum surface when the second maximum surface pressure value Pf in the front region Af is equal to or less than the second threshold value THf (Pf ⁇ THf, step 702: NO). It is confirmed that the front-rear direction position Ym in which the pressure value Py is smaller than the third threshold value THm has not been detected in the intermediate area Am (step 706).
  • Step 706 when it is determined (confirmed) that the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is not detected in the intermediate area Am (Step 706: NO), it is detected that the driver DR is in the sitting posture (normal sitting posture) with the legs L extended toward the front of the driver's seat 21 (step 707). That is, it is detected that the sitting posture of the driver DR is a normal sitting posture corresponding to the driving posture (see FIG. 1) or the driving monitoring posture (see FIG. 3).
  • the ECU 11B that functions as the surface pressure distribution detection unit 50a detects the surface pressure distribution ⁇ that acts on the seating surface 1s of the seat 1B that is the driver's seat 21 of the vehicle. Moreover, ECU11B which functions as the automatic driving
  • the surface pressure distribution ⁇ of the seating surface 1s varies depending on the seating posture of the occupant 20 seated on the seat 1B, in particular, the arrangement state of the legs L thereof. Therefore, according to the above configuration, when the vehicle is in an automatic driving state with a simple configuration, it is possible to detect the sitting posture of the driver DR characteristic of the arrangement of the legs L. For example, when the seating posture is not a posture for monitoring the automatic driving of the vehicle, high safety can be ensured by executing a warning output to prompt the driver DR to correct the posture.
  • the ECU 11B functioning as the seating posture detection unit 50c detects the first surface pressure concentration unit ⁇ 1 on the seating surface 1s, and the first surface pressure concentration unit ⁇ 1 on the front side of the first surface pressure concentration unit ⁇ 1.
  • the second surface pressure concentration portion ⁇ 2 independent of the surface pressure concentration portion ⁇ 1 is detected, it is determined that the driver DR is in the non-driving monitoring posture with both feet 24a and 24b placed on the seating surface 1s.
  • the surface pressure concentration portion ⁇ ( ⁇ 1) appears on the seating surface 1s of the seat 1B at the position where the hip point HP of the occupant 20 is formed. Further, when the occupant 20 places both feet 24a, 24b on the seating surface 1s, the surface pressure concentration portion ⁇ ( ⁇ 2) also appears at the position where the feet 24a, 24b are placed. At this time, the leg L of the occupant 20 is in a state in which portions corresponding to the thigh Lb and the knee sole Lc are separated from the seating surface 1s.
  • the seating surface 1s (surface pressure distribution ⁇ ) has a hip point of the driver DR.
  • a second surface pressure concentration portion ⁇ 2 independent of the first surface pressure concentration portion ⁇ 1 appears in front of the first surface pressure concentration portion ⁇ 1 corresponding to HP. Therefore, according to the above configuration, when the vehicle is in an automatic driving state, it is possible to accurately detect the non-driving monitoring posture of the driver DR that is characterized by the arrangement of the legs L.
  • the ECU 11B functioning as the surface pressure concentration detection unit 50d divides the seating surface 1s in the front-rear direction by using the position where the hip point HP of the occupant 20 seated on the seat 1B is formed as the rear region Ar of the seating surface 1s. To do. That is, on the seating surface 1s of the seat 1B, in addition to the rear region Ar, there are a front region Af located on the front side of the seating surface 1s, and an intermediate region Am located between the front region Af and the rear region. Is set. In addition, the ECU 11B determines whether or not the first maximum surface pressure value Pr in the rear region Ar exceeds the first threshold value THr.
  • the ECU 11B determines whether or not the second maximum surface pressure value Pf in the front region Af exceeds the second threshold value THf. Then, the ECU 11B is on the condition that the first maximum surface pressure value Pr exceeds the first threshold value THr and the second maximum surface pressure value Pf exceeds the second threshold value THf. It is determined that the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 have been detected.
  • the surface pressure P of the portion where the leg L abuts on the seating surface 1s is The height gradually decreases from the rear side to the front side of the seating surface 1s on which the hip point HP is formed, along the leg L of the occupant 20 extending forward. Therefore, according to the above configuration, the second surface pressure concentration portion ⁇ 2 formed by the both feet 24a and 24b placed on the seating surface 1s is accurately formed together with the first surface pressure concentration portion ⁇ 1 corresponding to the hip point HP. It can be detected that it has appeared. Thereby, when the vehicle is in an automatic driving state, it is possible to accurately detect that the driver DR is in the non-driving monitoring posture with both feet 24a and 24b placed on the seating surface 1s.
  • the ECU 11B functioning as the maximum surface pressure detection unit 50e detects the third maximum surface pressure value Py for each position Y in the front-rear direction of the seating surface 1s. Then, the ECU 11B functioning as the independent condition determination unit 50f has a condition that the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am of the seating surface 1s. In addition, it is determined that the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 have been detected.
  • the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 appearing in the surface pressure distribution ⁇ of the seating surface 1s can be detected with high accuracy.
  • the ECU 11B functioning as the seating posture detection unit 50c has the first maximum surface pressure value Pr in the rear region Ar exceeding the first threshold value THr, and the second maximum surface pressure value Pf in the front region Af is the first value. It is confirmed (determined) that the threshold value THf is equal to or smaller than 2. Further, the ECU 11B confirms (determines) that the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is not detected in the intermediate region Am of the seating surface 1s. When all of these conditions are satisfied, the ECU 11B determines that the driver DR is in a sitting posture with both legs 24a and 24b extended in front of the driver seat 21.
  • the ECU 11B functioning as the reference value detection unit 50g has a first maximum surface pressure value in the rear region Ar of the seating surface 1s where the hip point HP of the driver DR is formed when the vehicle is in an occupant driving state. Pr is detected. Then, the ECU 11B functioning as the threshold value determining unit 50h, based on the detected first maximum surface pressure value Pr, the first to third threshold values THr, THf, Determine THm.
  • the change in the surface pressure P at the portion where the leg L of the occupant 20 abuts against the seating surface 1s and the surface pressure distribution ⁇ according to the seating posture of the occupant 20 is a rear region where the hip point HP of the occupant 20 is formed.
  • the first maximum surface pressure value Pr in Ar can be considered as a reference.
  • the durations in the driving monitoring posture determination and the non-driving monitoring posture determination (steps 302 and 305 in FIG. 9 and steps 402 and 405 in FIG. 10) may also be arbitrarily changed.
  • the first non-monitoring attitude detection condition based on the seat load W acting on the entire seat 1 and the first load based on the rear load (rear load ratio ⁇ ) of the seat 1 (driver's seat 21).
  • the two non-monitoring posture detection conditions are satisfied (see FIG. 10, step 407: YES), it is determined that the driver DR is in the non-driving monitoring posture.
  • the present invention is not limited to this, and when either one of the first and second non-monitoring posture detection conditions is satisfied, it may be configured to detect that the driver DR is in the non-driving monitoring posture. Further, the non-operation monitoring posture determination may be performed using only one of the seat load W acting on the entire seat 1 or the rear load of the seat 1. Similarly, when detecting that the driver DR is in the driving monitoring posture, similarly, the first monitoring posture detection condition based on the seat load W and the second monitoring posture based on the rear load (rear load ratio ⁇ ) of the seat 1 are used. Only one of the detection conditions may be satisfied, and the operation monitoring posture determination may be performed using only one of the seat load W or the rear load of the seat 1.
  • the ECU 11 functioning as the driving monitoring posture transition detection unit 30e first detects that the sitting posture of the driver DR has shifted to the driving monitoring posture in which both feet 24a and 24b are placed on the floor 5. After that, the ECU 11 functioning as the non-driving monitoring posture transition detection unit 30f shifts the sitting posture of the driver DR from the driving monitoring posture to the non-driving monitoring posture in which both feet 24a and 24b are placed on the seating surface 1s of the driver seat 21. It is good also as a structure which detects having performed.
  • the ECU 11 first determines whether or not the seating posture of the driver DR has shifted to the driving monitoring posture based on the driving monitoring posture flag (step 801).
  • the driving monitoring posture determination is executed (step 802).
  • driving indicating that the sitting posture is shifted to the driving monitoring posture is shifted to the driving monitoring posture.
  • a monitoring posture flag is set (step 804), and a non-driving monitoring posture determination is executed (step 805).
  • step 801 if the ECU 11 determines that the seating posture of the driver DR has shifted to the driving monitoring posture (step 801: YES), the ECU 11 does not execute the processing in steps 802 to 804. If the ECU 11 determines in step 803 that the sitting posture of the driver DR is not in the driving monitoring posture (step 803: NO), the ECU 11 does not execute step 804 and step 805.
  • the sitting posture of the driver DR once shifts to the driving monitoring posture. Therefore, according to the above configuration, it is possible to more accurately detect that the sitting posture of the driver DR is in the non-driving monitoring posture.
  • the number of load sensors 10 provided on the seat 1 and the arrangement thereof may be arbitrarily changed.
  • the load sensor 10 may be provided on the rear end side and the front end side of the seating surface 1s.
  • the ECU 11B determines that the first and second maximum surface pressure values Pr and Pf in the rear region Ar and the front region Af of the seating surface 1s correspond to the first and second corresponding values, respectively. It is determined whether or not the threshold values THr and THf are greater. Further, the ECU 11B determines whether or not the front-rear direction position Ym at which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am of the seating surface 1s. When both of these determination conditions are satisfied, it is determined that the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 are detected on the seating surface 1s.
  • the present invention is not limited to this, and the first maximum surface pressure value Pr in the rear region Ar exceeds the first threshold value THr, and the second maximum surface pressure value Pf in the front region Af exceeds the second threshold value THf. Accordingly, it may be configured to determine that the first and second surface pressure concentration portions ⁇ 1 and ⁇ 2 have been detected.
  • the ECU 11B determines that the first maximum surface pressure value Pr in the rear region Ar exceeds the first threshold value THr, and the second maximum surface pressure value Pf in the front region Af is equal to or less than the second threshold value THf. Further, it is determined whether or not the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is not detected in the intermediate area Am. When these determination conditions are satisfied, it is detected that the driver DR is in a driving posture or a driving monitoring posture, that is, in a normal sitting posture in which both feet 24a and 24b are extended in front of the driver's seat 21. did. However, the present invention is not limited to this, and the detection determination of the normal sitting posture is not necessarily performed.
  • the smallest value Py ′ is compared with the third threshold value THm. Then, when the smallest value Py ′ is equal to or greater than the third threshold value THm, it may be determined that the driver DR is in a sitting posture with both legs 24 a and 24 b extended in front of the driver seat 21.
  • the ECU 11B detects the non-driving monitoring posture of the driver DR in the automatic driving state by detecting the surface pressure distribution ⁇ on the seating surface 1s of the driver seat 21.
  • the present invention is not limited to this, and the seat 1B other than the driver's seat 21 may be configured to detect the seating posture of the occupant 20 based on the surface pressure distribution ⁇ of the seating surface 1s. And this seating detection determination may be used for uses other than automatic driving.
  • the second surface pressure independent of the first surface pressure concentration portion ⁇ 1 is located in front of the first surface pressure concentration portion ⁇ 1. It is determined whether or not the concentrated portion ⁇ 2 is detected. And when these 1st and 2nd surface pressure concentration parts (gamma) 1, (gamma) 2 are detected, the passenger
  • the ECU 11B detects the first maximum surface pressure value Pr in the rear region Ar of the seating surface 1s when the vehicle is in the passenger operation state. Then, based on the detected first maximum surface pressure value Pr, the first to third threshold values THr, THf, THm used for the determination of the sitting posture of the driver DR are determined.
  • the threshold values THr, THf, THm may be fixed values determined in advance.
  • the seat 1B has a surface pressure sensor 40 that can set a plurality of detection regions on the seating surface 1s and detect the surface pressure P of the seating surface 1s for each detection region.
  • the ECU 11B detects the seating posture of the driver DR when the vehicle is in the automatic driving state based on the surface pressure distribution ⁇ of the seating surface 1s obtained from the surface pressure P for each detection region.
  • the present invention is not limited to this, and if the surface pressure distribution ⁇ of the seating surface 1 s necessary for detecting the seating posture of the occupant 20 characterized by the arrangement of the legs L can be detected, the second pressure is not necessarily required.
  • the surface pressure sensor 40 in the embodiment may not be used.
  • pressure sensitive sensors such as membrane switches are arranged in the rear area Ar, the front area Af, and the intermediate area Am of the seating surface 1s.
  • the surface pressure P at which each of these pressure sensitive sensors is turned on may be set with reference to the values of the first to third threshold values THr, THf, THm in the second embodiment. And it is good also as a structure which detects the surface pressure distribution (beta) of the seating surface 1s based on the on / off output of each of these pressure-sensitive sensors.
  • the ECU 11B functioning as the distance calculation unit 50i includes the first and second surface pressure concentration units ⁇ 1, ⁇ 2 appearing on the seating surface 1s (surface pressure distribution ⁇ ) of the seat 1B.
  • the distance D between them is calculated (step 901).
  • the ECU 11B functioning as the physique detection unit 50j may detect the physique of the passenger sitting on the seat 1B based on the distance D (step 902).
  • the load sensor 10 and the surface pressure sensor 40 are provided on the seat 1C, etc., based on the seat load W of the driver's seat 21 as exemplified in the first embodiment. It may be configured to use both the detection determination of the sitting posture and the detection determination of the sitting posture based on the surface pressure distribution of the seating surface 1s as exemplified in the second embodiment. Further, when the camera 60 that reflects the driver DR is provided in the passenger compartment, the driver DR is photographed, and the seating posture detection determination based on the image Scm obtained by the photographing is also used. Good. Accordingly, the sitting posture of the driver DR when the vehicle is in the automatic driving state can be detected with higher accuracy.
  • the ECU 11C when the vehicle is in the automatic driving state (step 1001: YES), the ECU 11C first executes the first sitting posture detection determination based on the seat load W of the driver seat 21. (Step 1002). Further, when the ECU 11C determines in the first sitting posture detection determination that the driver DR is in the non-driving monitoring posture (step 1003: YES), subsequently, the ECU 11C is based on the surface pressure distribution ⁇ of the seating surface 1s. The second sitting posture detection determination is executed (step 1004). In the second sitting posture detection determination, when it is determined that the driver DR is in the non-driving monitoring posture (step 1005: YES), a warning output via the alarm device 22 is executed (step 1006).
  • the ECU 11C determines that the driver DR is not in the non-driving monitoring posture in the first sitting posture detection determination or the second sitting posture detection determination (step 1003: NO or step 1005: NO). ), A third sitting posture detection determination based on the captured image Scm of the driver DR is executed (step 1007). In the third sitting posture detection determination, even when it is determined that the driver DR is in the non-driving monitoring posture (step 1008: YES), warning output via the alarm device 22 is executed (step 1006). .
  • warning output is executed in case of However, the present invention is not limited to this, and a warning output may be executed when it is determined in any one of these determinations that the vehicle is in the non-driving monitoring posture. Further, in all of the first sitting posture detection determination, the second sitting posture detection determination, and the third sitting posture detection determination, a warning output is executed when it is determined that the driver DR is in the non-driving monitoring posture. It is good also as composition to do. In other words, it may be configured to detect that the driver DR is in the non-driving monitoring posture by using one or two or more arbitrary combinations selected from the first to third sitting posture detection determinations.
  • the seating position of the driver DR with respect to the driver seat 21, more specifically, the driver DR is on the seating surface 1s. It is detected whether the user is sitting on the front side (front sitting) or the rear side (rear sitting) (step 1101). Then, in accordance with the seating position detected in step 1101, the posture determination is performed based on the threshold used when detecting the seating posture of the driver DR based on the rear load of the seat 1, that is, the rear load ratio ⁇ of the seat load W. It is good also as a structure which correct
  • the physique of the occupant 20 is detected based on the captured image Scm of the occupant 20 (including the driver DR) (step 1103). And it is good also as a structure which correct
  • crew 20 in the said step 1103 you may apply other detection methods, such as estimating from a seat slide position (front-back direction position of a seat), for example. Then, based on the detection of the sitting position of the driver DR shown in steps 1101 and 1102 and the determination threshold correction based on the sitting position, the detection of the physique of the occupant 20 shown in steps 1103 and 1104, and the physique thereof.
  • the seating area correction may be performed independently.
  • the ECU 11 includes the seat load detection unit 30a, the automatic operation detection unit 30b, the seating posture detection unit 30c, the rear load detection unit 30d, the driving monitoring posture transition detection unit 30e, and the non- It is supposed to function as the driving monitoring posture transition detection unit 30f.
  • the configuration is not limited thereto, and a configuration in which these function control units are distributed among a plurality of information processing apparatuses may be employed.
  • the ECU 11B includes the surface pressure distribution detection unit 50a, the automatic operation detection unit 50b, the seating posture detection unit 50c, the surface pressure concentration detection unit 50d, the maximum surface pressure detection unit 50e, and the independent condition determination unit. 50f, a reference value detection unit 50g, and a threshold value determination unit 50h.
  • the ECU 11B further functions as the distance calculation unit 50i and the physique detection unit 50j.
  • the configuration is not limited thereto, and a configuration in which these function control units are distributed among a plurality of information processing apparatuses may be employed.
  • the ECU 11C includes the first sitting posture detection determination unit 70a, the second sitting posture detection determination unit 70b, the third sitting posture detection determination unit 70c, the warning output execution unit 70d, and the sitting position detection.
  • the configuration is not limited thereto, and a configuration in which these function control units are distributed among a plurality of information processing apparatuses may be employed.
  • a warning output is executed through the alarm device 22.
  • the control mode of the automatic driving may be changed to one that emphasizes safety on the vehicle side, such as increasing the inter-vehicle distance from the preceding vehicle.
  • a surface pressure distribution detector configured to detect a distribution of surface pressure acting on the seating surface of the seat, and a seating of an occupant seated on the seat based on the distribution of surface pressure acting on the seating surface
  • a seating posture detection unit that detects a posture, and the seating posture detection unit detects the first surface pressure concentration portion, which is a position where the surface pressure is concentrated on the seating surface, and the first surface pressure.
  • (B) an occupant comprising: detecting a seat load acting on the driver seat; and detecting a seating posture of the driver seated on the driver seat in an automatic vehicle driving state based on the transition of the seat load. Detection method.
  • the detection of the seating posture based on the transition of the seat load means that after the vehicle transitions to the automatic driving state, the seat load shifts to the automatic driving state. And determining that the driver is in a posture in which both feet are placed on the seating surface of the driver seat.
  • detecting the seat load includes detecting a rear load acting on a rear portion of the driver's seat, and detecting the seating posture based on a transition of the seat load.
  • the driver puts both feet on the seating surface of the driver's seat when the vehicle is in the automatic driving state and the afterload is in a reduced state than before the automatic driving state.
  • An occupant detection method including determining that the vehicle is in a posture.
  • detecting the seating posture based on the transition of the seat load means that after the vehicle shifts to the automatic operation state, the seat load shifts to the automatic operation state. And determining that the driver is in a posture with both feet on the floor of the vehicle when the vehicle is in a reduced state.
  • detecting the seat load includes detecting a rear load acting on a rear portion of the driver's seat, and detecting the seating posture based on a transition of the seat load.
  • the driver puts both feet on the floor of the vehicle when the afterload is higher than that before the automatic driving state is shifted.
  • a method for detecting an occupant including determining that the vehicle is in a vehicle
  • detecting the seating posture based on the transition of the seat load detects that the seating posture has shifted to a driving monitoring posture in which both feet are placed on the floor of the vehicle. And detecting that the seating posture has shifted from a driving monitoring posture to a posture in which both feet are placed on the seating surface of the driver seat.
  • An occupant detection method comprising: detecting an occupant's physique; and setting each region of the seating surface based on the occupant's physique.
  • Threshold value used when photographing the driver, detecting the sitting position of the driver based on an image obtained by photographing, and detecting the sitting posture based on a rear load of the driver seat Is corrected according to the driver's seating position.

Abstract

An ECU functioning as a surface pressure distribution detection unit detects the distribution of the surface pressure acting on the seating surface of a driver's seat in a vehicle. An ECU functioning as an automatic driving detection unit detects that the vehicle has entered an automatic driving state. Then, an ECU functioning as a seating posture detection unit detects the seating posture of a driver seated in the driver's seat in the automatic driving state, on the basis of the distribution of the surface pressure acting on the seating surface.

Description

乗員検知方法及び乗員検知装置Occupant detection method and occupant detection device
 本発明は、乗員検知方法及び乗員検知装置に関するものである。 The present invention relates to an occupant detection method and an occupant detection device.
 特許文献1には、車室内に設けられたカメラが取得した撮影画像に基づいて車両のシートに着座する乗員の検知を行う乗員検知装置が開示されている。また、例えば、特許文献2には、カメラが取得した撮影画像に基づき運転者の姿勢崩れを検知する構成が開示されている。これらの特許文献1,2では、画像解析技術を用いることにより、例えば、車両が自動運転状態にある場合に、その運転者の着座姿勢が車両の自動運転を監視する姿勢であるか否かを判定することができる。 Patent Document 1 discloses an occupant detection device that detects an occupant seated on a vehicle seat based on a captured image acquired by a camera provided in a vehicle interior. Further, for example, Patent Document 2 discloses a configuration for detecting a driver's posture collapse based on a captured image acquired by a camera. In these Patent Documents 1 and 2, by using image analysis technology, for example, when the vehicle is in an automatic driving state, whether or not the driver's sitting posture is a posture for monitoring the automatic driving of the vehicle. Can be determined.
 即ち、車両の自動運転レベルが「準自動走行システム(レベル2又はレベル3)」に分類される場合、運転者は、車両が自動運転状態にある場合においても、その監視義務を負う。つまり、緊急時には、自ら運転できる状態で待機することが求められる。この点を踏まえ、車両が自動運転状態にある場合において、その運転者の着座姿勢を検知する。そして、例えば、検出した着座姿勢が車両の自動運転を監視する姿勢ではない場合には、警告出力を実行して着座姿勢の是正を運転者に促す等により、高い安全性を確保することができる。 That is, when the automatic driving level of the vehicle is classified as “semi-automated driving system (level 2 or level 3)”, the driver is obliged to monitor even when the vehicle is in the automatic driving state. That is, in an emergency, it is required to stand by in a state where it can be driven by itself. Based on this point, when the vehicle is in an automatic driving state, the sitting posture of the driver is detected. For example, when the detected sitting posture is not a posture for monitoring the automatic driving of the vehicle, high safety can be ensured by executing a warning output to prompt the driver to correct the sitting posture. .
特開2008-109301号公報JP 2008-109301 A 特開2016-38793号公報JP 2016-38793 A
 通常、カメラを用いた乗員検知には、その乗員の上体を映した撮影画像が用いられる。即ち、乗員の上体を映すことで、より多くの情報を得ることができる。これにより、例えば、居眠り検知や安全確認行動の実行検知等、その車両の乗員に関する様々な状態検知を行うことができる。 Usually, for occupant detection using a camera, a photographed image showing the occupant's upper body is used. That is, more information can be obtained by reflecting the upper body of the passenger. Thereby, for example, various state detections regarding the occupant of the vehicle, such as detection of falling asleep or detection of safety confirmation behavior, can be performed.
 しかしながら、こうした車両に設けられた既存のカメラから取得される撮影画像には、シートに着座する乗員の脚が写り難い。このため、上記従来技術の構成では、運転者がシートの着座面に両足を載せるような着座姿勢(例えば、足抱え姿勢や胡座姿勢等)を取った場合に、このような即座に運転を開始できない着座姿勢を非運転監視姿勢として検知することが難しい。 However, it is difficult for the occupant's leg sitting on the seat to be captured in the captured image obtained from the existing camera provided in such a vehicle. For this reason, in the configuration of the above prior art, when the driver takes a sitting posture (for example, a foot holding posture or a crossed seat posture) such that both feet are placed on the seating surface of the seat, the driving is immediately started. It is difficult to detect a sitting posture that cannot be performed as a non-driving monitoring posture.
 本発明の目的は、脚の配置に特徴のある乗員の着座姿勢を検知することのできる乗員検知方法及び乗員検知装置を提供することにある。 An object of the present invention is to provide an occupant detection method and an occupant detection device that can detect an occupant's sitting posture that is characteristic of the arrangement of legs.
 上記課題を解決する乗員検知方法は、運転席の着座面に作用する面圧の分布を検出することと、車両が自動運転状態に移行したことを検出することと、前記着座面に作用する前記面圧の分布に基づいて、前記運転席に着座する運転者の前記自動運転状態における着座姿勢を検知することと、を備えることが好ましい。 An occupant detection method that solves the above problems is to detect the distribution of surface pressure acting on the seating surface of the driver's seat, to detect that the vehicle has shifted to the automatic driving state, and to act on the seating surface. Preferably detecting a seating posture of the driver sitting in the driver seat in the automatic driving state based on a distribution of surface pressure.
 上記課題を解決する乗員検知方法は、シートの着座面に作用する面圧の分布を検出することと、前記着座面に作用する面圧の分布に基づいて前記シートに着座する乗員の着座姿勢を検知することと、を備え、前記着座姿勢を検知することは、前記着座面において前記面圧が集中する位置である第1の面圧集中部が検出されるとともに、前記第1の面圧集中部よりも前方側で前記着座面において前記面圧が集中する位置であって前記第1の面圧集中部から独立した第2の面圧集中部が検出された場合に、前記乗員が前記着座面に両足を載せた着座姿勢にあると判定することを含むことが好ましい。 An occupant detection method that solves the above problem is to detect the distribution of surface pressure acting on the seating surface of the seat and to determine the seating posture of the occupant seated on the seat based on the distribution of surface pressure acting on the seating surface. Detecting the seating posture includes detecting a first surface pressure concentration portion where the surface pressure is concentrated on the seating surface, and detecting the first surface pressure concentration. If the second surface pressure concentration portion that is independent of the first surface pressure concentration portion is detected at a position where the surface pressure is concentrated on the seating surface in front of the seat, the occupant is seated It is preferable to include determining that the user is in a sitting posture with both feet on the surface.
 上記課題を解決する乗員検知装置は、運転席の着座面に作用する面圧の分布を検出するように構成された面圧分布検出部と、車両が自動運転状態に移行したことを検出するように構成された自動運転検出部と、前記着座面に作用する前記面圧の分布に基づいて、前記運転席に着座する運転者の前記自動運転状態における着座姿勢を検知するように構成された着座姿勢検知部と、を備えることが好ましい。 An occupant detection device that solves the above-described problem is a surface pressure distribution detector configured to detect a distribution of surface pressure acting on a seating surface of a driver's seat, and to detect that the vehicle has shifted to an automatic driving state. An automatic driving detector configured to detect the seating posture in the automatic driving state of the driver sitting on the driver seat based on the distribution of the surface pressure acting on the seating surface And an attitude detection unit.
車両の運転席及びこの運転席に着座する運転者の運転姿勢を模式的に示す説明図。Explanatory drawing which shows typically the driving posture of the driver | operator seated in the driver's seat of this vehicle, and this driver's seat. 第1の実施形態における乗員検知装置の概略構成図。1 is a schematic configuration diagram of an occupant detection device according to a first embodiment. 図1の運転席に着座する運転者の運転監視姿勢を模式的に示す説明図。FIG. 2 is an explanatory diagram schematically showing a driving monitoring posture of a driver sitting on the driver seat of FIG. 1. 図1の運転席に着座する運転者の非運転監視姿勢(足抱え姿勢)を模式的に示す説明図。Explanatory drawing which shows typically the non-driving monitoring attitude | position (foot holding attitude | position) of the driver | operator who sits in the driver's seat of FIG. 図1の運転席に着座する運転者の非運転監視姿勢(胡座姿勢)を模式的に示す説明図。Explanatory drawing which shows typically the non-driving monitoring attitude | position (cross-legged attitude) of the driver | operator who sits in the driver's seat of FIG. シート荷重及び後荷重比率の検出、並びに基準値設定の処理手順を示すフローチャート。The flowchart which shows the detection procedure of a seat load and a back load ratio, and the process sequence of a reference value setting. 第1の実施形態における運転者の着座姿勢検知及びその検知結果に基づいた警告出力の処理手順を示すフローチャート。The flowchart which shows the driver | operator's seating attitude | position detection in 1st Embodiment, and the warning output processing procedure based on the detection result. 車両が自動運転状態に移行する前後における、シート荷重の推移と運転者の着座姿勢との関係を示す説明図。Explanatory drawing which shows the relationship between transition of a seat load, and a driver | operator's seating attitude before and after a vehicle transfers to an automatic driving state. 運転監視姿勢判定の処理手順を示すフローチャート。The flowchart which shows the process sequence of driving | operation monitoring attitude | position determination. 非運転監視姿勢判定の処理手順を示すフローチャート。The flowchart which shows the process sequence of non-driving monitoring attitude | position determination. 第2の実施形態における乗員検知装置の概略構成図。The schematic block diagram of the passenger | crew detection apparatus in 2nd Embodiment. 運転姿勢(通常着座姿勢)にある乗員が形成する着座面の面圧分布を示す説明図。Explanatory drawing which shows the surface pressure distribution of the seating surface which the passenger | crew in a driving posture (normal seating posture) forms. 非運転監視姿勢(足抱え姿勢)にある乗員が形成する着座面の面圧分布を示す説明図。Explanatory drawing which shows the surface pressure distribution of the seating surface which the passenger | crew in a non-driving monitoring posture (foot holding posture) forms. 非運転監視姿勢(胡座姿勢)にある乗員が形成する着座面の面圧分布を示す説明図。Explanatory drawing which shows the surface pressure distribution of the seating surface which the passenger | crew who exists in a non-driving monitoring posture (cross seat posture) forms. 着座面における前後方向位置毎の第3の最大面圧値と乗員の着座姿勢との関係を示すグラフ。The graph which shows the relationship between the 3rd maximum surface pressure value for every position in the front-back direction in a seating surface, and a passenger | crew's sitting posture. 第1~第3の最大面圧値検出、並びに着座面の面圧分布に基づいた着座姿勢検知に用いる閾値決定の処理手順を示すフローチャート。10 is a flowchart showing processing procedures for determining a threshold value used for first to third maximum surface pressure value detection and seating posture detection based on the surface pressure distribution of the seating surface. 第2の実施形態における運転者の着座姿勢検知及びその検知結果に基づいた警告出力の処理手順を示すフローチャート。The flowchart which shows the driver | operator's seating attitude | position detection in 2nd Embodiment, and the warning output processing procedure based on the detection result. 着座面の面圧分布に基づいた着座姿勢検知の処理手順を示すフローチャート。The flowchart which shows the process sequence of the seating attitude | position detection based on the surface pressure distribution of a seating surface. 別例における着座姿勢検知の処理手順を示すフローチャート。The flowchart which shows the process sequence of the seating attitude | position detection in another example. 別例における乗員体格検知の処理手順を示すフローチャート。The flowchart which shows the process sequence of the passenger | crew physique detection in another example. 別例における乗員検知装置の概略構成図。The schematic block diagram of the passenger | crew detection apparatus in another example. 図21の乗員検知装置が実行する着座姿勢検知の態様を示すフローチャート。The flowchart which shows the aspect of the seating attitude | position detection which the passenger | crew detection apparatus of FIG. 21 performs. 乗員の着座位置に応じた後荷重比率の閾値補正及び乗員の体格に応じた着座面領域補正の態様を示すフローチャート。The flowchart which shows the aspect of the threshold value correction | amendment of the rear load ratio according to a passenger | crew's seating position, and the seating surface area | region correction | amendment according to a passenger | crew's physique.
 [第1の実施形態]
 以下、車両用のシートに実装された乗員検知装置に関する第1の実施形態を図面に従って説明する。
[First Embodiment]
Hereinafter, a first embodiment relating to an occupant detection device mounted on a vehicle seat will be described with reference to the drawings.
 図1に示すように、車両用のシート1は、シートクッション2と、このシートクッション2の後端部に対して傾動自在に設けられたシートバック3と、を備えている。そして、そのシートバック3の上端には、ヘッドレスト4が設けられている。図1に示すシート1は運転席21である。 As shown in FIG. 1, the vehicle seat 1 includes a seat cushion 2 and a seat back 3 provided so as to be tiltable with respect to the rear end portion of the seat cushion 2. A headrest 4 is provided at the upper end of the seat back 3. The seat 1 shown in FIG.
 また、車両の床部5には、車両前後方向に延びる左右一対のロアレール6が設けられている。更に、各ロアレール6には、その延伸方向に沿って当該ロアレール6上を相対移動可能なアッパレール7が装着されている。シート1は、これらロアレール6及びアッパレール7が形成するシートスライド装置8上に支持される。 The vehicle floor 5 is provided with a pair of left and right lower rails 6 extending in the vehicle longitudinal direction. Further, each lower rail 6 is provided with an upper rail 7 that can be relatively moved on the lower rail 6 along its extending direction. The seat 1 is supported on a seat slide device 8 formed by the lower rail 6 and the upper rail 7.
 図1及び図2に示すように、シート1の下側には、複数の荷重センサ10が設けられている。これらの荷重センサ10(10a~10d)は、支持部材としてのアッパレール7と当該アッパレール7上に支持されたシート1との間、詳しくは、アッパレール7とシートクッション2のサイドフレームとの間に介在されている。各荷重センサ10には、例えば、周知の歪みセンサが用いられている。これらの荷重センサ10は、それぞれ、シートクッション2が形成する略矩形状の着座面1sの四隅に対応する位置に配置されている。 As shown in FIGS. 1 and 2, a plurality of load sensors 10 are provided on the lower side of the seat 1. These load sensors 10 (10a to 10d) are interposed between the upper rail 7 as a support member and the seat 1 supported on the upper rail 7, more specifically, between the upper rail 7 and the side frame of the seat cushion 2. Has been. For example, a known strain sensor is used for each load sensor 10. These load sensors 10 are arranged at positions corresponding to the four corners of the substantially rectangular seating surface 1s formed by the seat cushion 2, respectively.
 図2に示すように、各荷重センサ10の出力信号は、乗員検知装置としてのECU(電子制御装置)11に入力される。ECU11は、各荷重センサ10a~10dの出力信号に基づいて、当該各荷重センサ10a~10dが設けられた4つの領域、即ちシート1の着座面1sを前後左右に4分割した各領域A1~A4毎に、着座面1sに作用する荷重であるシート荷重(荷重検出値Wa~Wd)を検出する。 As shown in FIG. 2, the output signal of each load sensor 10 is input to an ECU (electronic control unit) 11 as an occupant detection device. Based on the output signals of the load sensors 10a to 10d, the ECU 11 divides the four areas where the load sensors 10a to 10d are provided, that is, the areas A1 to A4 obtained by dividing the seating surface 1s of the seat 1 into the front, rear, left and right. Every time, a seat load (load detection values Wa to Wd) which is a load acting on the seating surface 1s is detected.
 第1の荷重センサ10aの荷重検出値Waは、シート1における前部外側(図2中、領域A1)のシート荷重を示し、第2の荷重センサ10bの荷重検出値Wbは、シート1における前部内側(図2中、領域A2)のシート荷重を示している。また、第3の荷重センサ10cの荷重検出値Wcは、シート1における後部外側(図2中、領域A3)のシート荷重を示し、第4の荷重センサ10dの荷重検出値Wdは、シート1における後部内側(図2中、領域A4)のシート荷重を示している。ECU11は、これら荷重検出値Wa~Wdの合計値を、シート1全体に作用するシート荷重Wとして求める(W=Wa+Wb+Wc+Wd)。 The load detection value Wa of the first load sensor 10a indicates the seat load outside the front portion (region A1 in FIG. 2) of the seat 1, and the load detection value Wb of the second load sensor 10b is the front load of the seat 1. The seat load on the inner side (area A2 in FIG. 2) is shown. Further, the load detection value Wc of the third load sensor 10c indicates the seat load on the rear outer side (region A3 in FIG. 2) in the seat 1, and the load detection value Wd of the fourth load sensor 10d is on the seat 1. The seat load on the rear inner side (region A4 in FIG. 2) is shown. The ECU 11 determines the total value of these load detection values Wa to Wd as the seat load W acting on the entire seat 1 (W = Wa + Wb + Wc + Wd).
 ECU11は、マイクロコンピュータ等により構成されてもよいし、各種処理のうち少なくとも一部の処理を実行する専用のハードウェア(特定用途向け集積回路:ASIC)を備えたものであってもよい。すなわち、ECU11は、1)コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ、2)ASIC等の1つ以上の専用のハードウェア回路、或いは3)それらの組み合わせ、を含む回路(circuitry)として構成し得る。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。 ECU11 may be comprised by the microcomputer etc., and may be provided with the hardware for exclusive use (Application Specific Integrated Circuit: ASIC) which performs at least one part process among various processes. That is, the ECU 11 is a circuit including 1) one or more processors that operate according to a computer program (software), 2) one or more dedicated hardware circuits such as ASIC, or 3) a combination thereof. Can be configured. The processor includes a CPU and a memory such as a RAM and a ROM, and the memory stores program codes or instructions configured to cause the CPU to execute processing. Memory or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer.
 (自動運転状態における運転者の着座姿勢検知)
 次に、車両が自動運転状態にある場合においてECU11が実行する運転者の着座姿勢検知について説明する。
(Detecting the driver's sitting posture in the automatic driving state)
Next, the detection of the driver's sitting posture performed by the ECU 11 when the vehicle is in the automatic driving state will be described.
 図2に示すように、ECU11には、車両が自動運転状態に移行したことを示す自動運転移行信号Sadが入力される。そして、ECU11は、この自動運転移行信号Sadに基づいて、車両が自動運転状態に移行したことを検出する。 As shown in FIG. 2, the ECU 11 receives an automatic driving transition signal Sad indicating that the vehicle has shifted to the automatic driving state. Then, the ECU 11 detects that the vehicle has shifted to the automatic driving state based on the automatic driving shift signal Sad.
 また、本実施形態の車両では、その自動運転レベルが「準自動走行システム(レベル2又はレベル3)」に分類されている。この点を踏まえ、本実施形態のECU11は、車両が自動運転状態に移行する前後のシート荷重Wの推移に基づいて、運転席21に着座する乗員20、即ち運転者DRの着座姿勢を検知する(図1参照)。そして、その自動運転状態における運転者DRの着座姿勢が、緊急時、即座に運転を開始できない非運転監視姿勢であること検知した場合には、ウォーニングランプやスピーカー等の警報装置22を介して乗員20に着座姿勢の是正を促す警告出力を実行する構成になっている。 Further, in the vehicle of the present embodiment, the automatic driving level is classified as “semi-automated driving system (level 2 or level 3)”. Based on this point, the ECU 11 of the present embodiment detects the seating posture of the occupant 20 seated in the driver's seat 21, that is, the driver DR, based on the transition of the seat load W before and after the vehicle shifts to the automatic driving state. (See FIG. 1). When it is detected that the seating posture of the driver DR in the automatic driving state is a non-driving monitoring posture in which driving cannot be immediately started in an emergency, an occupant is provided via an alarm device 22 such as a warning lamp or a speaker. 20 is configured to execute a warning output that prompts the user to correct the sitting posture.
 詳述すると、図1に示すように、運転者DRが自らハンドル23を握って車両を運転する運転姿勢にある場合、通常、この運転者DRは、その一方の足24aで車両のフットペダル25(アクセルペダル25a又はブレーキペダル25b)を操作する。そして、このとき、他方の足24bは、車両の床部5に置かれた状態となっている(所謂マニュアル車におけるクラッチ操作時を除く)。 More specifically, as shown in FIG. 1, when the driver DR is in a driving posture of driving the vehicle while holding the steering wheel 23, the driver DR usually has one foot 24a on the foot pedal 25 of the vehicle. (Accelerator pedal 25a or brake pedal 25b) is operated. At this time, the other foot 24b is in a state of being placed on the floor 5 of the vehicle (except during clutch operation in a so-called manual vehicle).
 また、図3に示すように、車両が自動運転状態に移行することで、多くの運転者DRは、ハンドル23から手26を離してシートバック3にもたれ掛かる。このとき、運転者DRは、緊急時に車両の運転を即座に開始できるよう、両足24a,24bを車両の床部5に置いた運転監視姿勢をとることが推奨されている。 Further, as shown in FIG. 3, when the vehicle shifts to the automatic driving state, many drivers DR release the hand 26 from the handle 23 and lean against the seat back 3. At this time, the driver DR is recommended to take a driving monitoring posture in which both feet 24a and 24b are placed on the floor 5 of the vehicle so that the vehicle can be started immediately in an emergency.
 しかしながら、図4及び図5に示すように、例えば、自動運転状態が長く続いた状況にある場合等、緊張の弛みから、運転者DRが、その両足24a,24bをシート1の着座面1sに載せた姿勢をとることがある。即ち、図4に示す着座姿勢は、運転者DRが、その両足24a,24bを手26で抱え込んだ所謂「足抱え姿勢」であり、図5は、その両足24a,24bを交差させる状態で着座面1sに載せた所謂「胡座姿勢」である。そして、これらの着座姿勢は、何れも、緊急時、車両の運転を即座に開始することができない「非運転監視姿勢」と考えられる。 However, as shown in FIGS. 4 and 5, for example, when the automatic driving state continues for a long time, the driver DR causes the legs 24 a and 24 b to move to the seating surface 1 s of the seat 1 due to slackness of tension. May take the posture. That is, the sitting posture shown in FIG. 4 is a so-called “foot holding posture” in which the driver DR holds the both feet 24a and 24b with the hand 26, and FIG. 5 shows the sitting posture in a state where the feet 24a and 24b are crossed. This is a so-called “cross-legged posture” placed on the surface 1s. These seating postures are considered to be “non-driving monitoring postures” in which driving of the vehicle cannot be started immediately in an emergency.
 本実施形態のECU11は、シート荷重Wの推移に基づいて、このような脚L(足24a,24b)の配置に特徴のある運転者DRの非運転監視姿勢を検知する。そして、上記のように警告出力を実行することで、その是正を促す構成になっている。 The ECU 11 of the present embodiment detects the non-driving monitoring posture of the driver DR, which is characterized by the arrangement of the legs L ( foot 24a, 24b), based on the transition of the seat load W. And it is the structure which prompts the correction by performing warning output as mentioned above.
 さらに詳述すると、図6のフローチャートに示すように、ECU11は、荷重検出値Wa~Wdを取得し(ステップ101)、シート1全体に作用するシート荷重Wを検出すると(ステップ102)、続いて、後荷重比率α(α=(Wc+Wd)/W)を検出する(ステップ103)。また、ECU11は、運転者DRが自ら車両を運転する状態(乗員運転状態)にあり(ステップ104:YES)、且つシート荷重W及び後荷重比率αが安定している場合(ステップ105:YES)に、これらシート荷重W及び後荷重比率αの検出値を、それぞれ乗員運転状態における基準値W0,α0に設定する(ステップ106)。尚、ECU11は、これらの基準値W0,α0を、自身の記憶領域11aに保持する(図2参照)。ECU11は、これらの基準値W0,α0と新たに検出されるシート荷重W及び後荷重比率αとを比較するかたちで、シート荷重W及び後荷重比率αの推移を監視する。 More specifically, as shown in the flowchart of FIG. 6, the ECU 11 acquires the load detection values Wa to Wd (step 101), detects the seat load W acting on the entire seat 1 (step 102), and then continues. Then, the post-load ratio α (α = (Wc + Wd) / W) is detected (step 103). Further, the ECU 11 is in a state where the driver DR drives the vehicle (passenger driving state) (step 104: YES), and the seat load W and the rear load ratio α are stable (step 105: YES). Then, the detected values of the seat load W and the rear load ratio α are set to reference values W0 and α0 in the occupant operating state, respectively (step 106). The ECU 11 holds these reference values W0 and α0 in its own storage area 11a (see FIG. 2). The ECU 11 monitors the transition of the seat load W and the rear load ratio α by comparing the reference values W0, α0 with the newly detected seat load W and the rear load ratio α.
 具体的には、図7のフローチャートに示すように、ECU11は、車両が自動運転状態にある場合(ステップ201:YES)、検出されるシート荷重Wから上記基準値W0を減ずることにより、車両が自動運転状態に移行した後におけるシート荷重Wの変動値ΔW(ΔW=W-W0)を演算する(ステップ202)。また、ECU11は、同様に、検出される後荷重比率αから基準値α0を減ずることにより、自動運転状態移行後における後荷重比率αの変動値Δα(Δα=α-α0)を演算する(ステップ203)。そして、ECU11は、これらシート荷重Wの変動値ΔW及び後荷重比率αの変動値Δαに基づいて、運転者DRの着座姿勢検知判定を実行する(ステップ204)。 Specifically, as shown in the flowchart of FIG. 7, when the vehicle is in an automatic driving state (step 201: YES), the ECU 11 reduces the reference value W0 from the detected seat load W, thereby A fluctuation value ΔW (ΔW = W−W0) of the seat load W after the shift to the automatic operation state is calculated (step 202). Similarly, the ECU 11 calculates a variation value Δα (Δα = α−α0) of the post-load ratio α after the shift to the automatic operation state by subtracting the reference value α0 from the detected post-load ratio α (step α). 203). Then, the ECU 11 performs the seating posture detection determination of the driver DR based on the fluctuation value ΔW of the seat load W and the fluctuation value Δα of the rear load ratio α (step 204).
 即ち、図1及び図3、並びに図8に示すように、運転者DRの着座姿勢が、自らハンドル23を握る運転姿勢(図1参照)から運転監視姿勢(図3参照)に移行した場合、この運転者DRが車両の床部5に両足24a,24bを置くことで、その運転者DRの体重が床部5に置かれた両足24a,24bに分散される。これにより、運転席21のシート荷重Wが減少することで、自動運転状態移行後におけるシート荷重Wの変動値ΔWは、負の値(ΔW<0)となる。 That is, as shown in FIGS. 1, 3, and 8, when the seating posture of the driver DR shifts from the driving posture (see FIG. 1) holding the handle 23 to the driving monitoring posture (see FIG. 3), When the driver DR places both feet 24a, 24b on the floor 5 of the vehicle, the weight of the driver DR is distributed to both feet 24a, 24b placed on the floor 5. As a result, the seat load W of the driver's seat 21 decreases, so that the variation value ΔW of the seat load W after the shift to the automatic operation state becomes a negative value (ΔW <0).
 また、このとき、運転者DRはシートバック3にもたれ掛かることが多い。これにより、シート荷重Wの後荷重比率αが増加する。その結果、自動運転状態移行後における後荷重比率αの変動値Δαは、正の値(Δα>0)をとることになる。 At this time, the driver DR often leans against the seat back 3. As a result, the post-load ratio α of the seat load W increases. As a result, the fluctuation value Δα of the afterload ratio α after the shift to the automatic operation state takes a positive value (Δα> 0).
 一方、図4及び図5、並びに図8に示すように、運転者DRが両足24a,24bをシート1の着座面1sに載せるような非運転監視姿勢をとった場合、この運転者DRの体重が全てシート1に加わることになる。これにより、運転席21のシート荷重Wが増加することで、自動運転状態移行後におけるシート荷重Wの変動値ΔWは、正の値(ΔW>0)となる。 On the other hand, as shown in FIGS. 4, 5, and 8, when the driver DR takes a non-driving monitoring posture in which both feet 24 a and 24 b are placed on the seating surface 1 s of the seat 1, the weight of the driver DR Are all added to the sheet 1. As a result, the seat load W of the driver's seat 21 increases, so that the variation value ΔW of the seat load W after the shift to the automatic operation state becomes a positive value (ΔW> 0).
 更に、運転者DRが、シート1の着座面1sに載せた両足24a,24bに体重を預けることにより、シート荷重Wの後荷重比率αは減少する。その結果、自動運転状態移行後における後荷重比率αの変動値Δαは、負の値(Δα<0)をとることになる。 Furthermore, when the driver DR deposits his / her weight on both feet 24a and 24b placed on the seating surface 1s of the seat 1, the rear load ratio α of the seat load W decreases. As a result, the fluctuation value Δα of the afterload ratio α after the transition to the automatic operation state takes a negative value (Δα <0).
 この点を踏まえ、本実施形態のECU11は、図7中のステップ204に示される着座姿勢検知判定において、ステップ202において演算したシート荷重Wの変動値ΔW及びステップ203において演算した後荷重比率αの変動値Δαを、それぞれ、閾値W1,W2,α1,α2と比較する。これにより、上記のような運転者DRの着座姿勢に応じたシート荷重Wや後荷重比率αの変化を検出することで、車両が自動運転状態にある場合における運転者DRの運転監視姿勢及び非運転監視姿勢を検知する構成になっている。 In consideration of this point, the ECU 11 of the present embodiment determines the variation value ΔW of the seat load W calculated in step 202 and the post-load ratio α calculated in step 203 in the sitting posture detection determination shown in step 204 in FIG. The fluctuation value Δα is compared with threshold values W1, W2, α1, and α2, respectively. Thus, by detecting changes in the seat load W and the rear load ratio α in accordance with the sitting posture of the driver DR as described above, the driving monitoring posture and non-control of the driver DR when the vehicle is in the automatic driving state are detected. It is configured to detect the driving monitoring posture.
 詳述すると、図9のフローチャートに示すように、ECU11は、運転監視姿勢の検知判定(運転監視姿勢判定)において、先ず、自動運転状態移行後におけるシート荷重Wの変動値ΔWが第1の閾値W1以下の負の値(ΔW<0)であるか否かを判定する(ステップ301)。尚、この第1の閾値W1は、自動運転状態移行後のシート荷重Wが、自動運転状態に移行する前の値、つまりは基準値W0から、例えば5%~25%程度減少した場合に相当する負の値(W1<0)に設定される。ECU11は、上記ステップ301において、自動運転状態移行後におけるシート荷重Wの変動値ΔWが第1の閾値W1以下の負の値である(ΔW≦W1)、つまりは自動運転状態移行前よりもシート荷重Wが減少したと判定した場合(ステップ301:YES)、この状態が所定時間以上継続しているか否かを判定する(ステップ302)。そして、ECU11は、このステップ302において、自動運転状態移行前よりもシート荷重Wが減少した状態が所定時間以上継続していると判定した場合(ステップ302:YES)には、運転者DRの運転監視姿勢を検知可能な第1の監視姿勢検知条件が成立したものと判定する(ステップ303)。 More specifically, as shown in the flowchart of FIG. 9, in the detection determination of the driving monitoring posture (driving monitoring posture determination), the ECU 11 first determines that the variation value ΔW of the seat load W after the shift to the automatic driving state is the first threshold value. It is determined whether or not the negative value is less than W1 (ΔW <0) (step 301). The first threshold value W1 corresponds to a case where the seat load W after the shift to the automatic operation state is decreased by, for example, about 5% to 25% from the value before the shift to the automatic operation state, that is, the reference value W0. Negative value (W1 <0). In step 301 described above, the ECU 11 determines that the fluctuation value ΔW of the seat load W after the shift to the automatic driving state is a negative value equal to or less than the first threshold value W1 (ΔW ≦ W1), that is, the seat before the shift to the automatic driving state. When it is determined that the load W has decreased (step 301: YES), it is determined whether or not this state continues for a predetermined time or more (step 302). When the ECU 11 determines in step 302 that the state in which the seat load W has decreased from before the shift to the automatic driving state continues for a predetermined time or longer (step 302: YES), the driving of the driver DR is performed. It is determined that the first monitoring posture detection condition capable of detecting the monitoring posture is satisfied (step 303).
 ECU11は、上記ステップ301において、シート荷重Wの変動値ΔWが第1の閾値W1よりも大きい場合(ΔW>W1)、つまりは自動運転状態移行前よりもシート荷重Wが減少したと認められない場合(ステップ301:NO)には、このステップ303の処理を実行しない。そして、上記ステップ302において、シート荷重Wが減少した状態が所定時間以上継続していないと判定した場合(ステップ302:NO)にも、このステップ303の処理を実行しない。 In step 301, the ECU 11 does not recognize that the seat load W has decreased when the variation value ΔW of the seat load W is larger than the first threshold value W1 (ΔW> W1), that is, before the shift to the automatic operation state. In the case (step 301: NO), the processing of step 303 is not executed. If it is determined in step 302 that the state in which the seat load W has decreased does not continue for a predetermined time or longer (step 302: NO), the processing in step 303 is not executed.
 また、ECU11は、自動運転状態移行後におけるシート荷重Wの後荷重比率αについて、その変動値Δαが第1の閾値α1以上の正の値(Δα>0)であるか否かを判定する(ステップ304)。尚、この第1の閾値α1は、自動運転状態移行後の後荷重比率αが、自動運転状態に移行する前の値、つまりは基準値α0から、例えば5%~30%程度増加した場合に相当する正の値に設定される(α1>0)。ECU11は、ステップ304において、自動運転状態移行後における後荷重比率αの変動値Δαが第1の閾値α1以上の正の値である(Δα≧α1)、つまり自動運転状態移行前よりもシート荷重Wの後荷重比率αが増加したと判定した場合(ステップ304:YES)、この状態が所定時間以上継続しているか否かを判定する(ステップ305)。そして、ECU11は、このステップ305において、自動運転状態移行前よりもシート荷重Wの後荷重比率αが増加した状態が所定時間以上継続していると判定した場合(ステップ305:YES)には、運転者DRの運転監視姿勢を検知可能な第2の監視姿勢検知条件が成立したものと判定する(ステップ306)。 Further, the ECU 11 determines whether or not the variation value Δα of the seat load W after the shift to the automatic driving state is a positive value (Δα> 0) that is equal to or greater than the first threshold value α1 (Δα> 0). Step 304). The first threshold value α1 is set when the post-load ratio α after the shift to the automatic operation state is increased by, for example, about 5% to 30% from the value before the shift to the automatic operation state, that is, the reference value α0. The corresponding positive value is set (α1> 0). In step 304, the ECU 11 determines that the fluctuation value Δα of the post-load ratio α after the transition to the automatic driving state is a positive value that is equal to or greater than the first threshold value α1 (Δα ≧ α1). When it is determined that the post load ratio α of W has increased (step 304: YES), it is determined whether or not this state continues for a predetermined time or more (step 305). When the ECU 11 determines in step 305 that the state in which the rear load ratio α of the seat load W has increased more than a predetermined time than before the transition to the automatic operation state (step 305: YES), It is determined that the second monitoring posture detection condition that can detect the driving monitoring posture of the driver DR is satisfied (step 306).
 ECU11は、上記ステップ304において、後荷重比率αの変動値Δαが第1の閾値α1よりも小さい場合(Δα<α1)、つまりは自動運転状態移行前よりもシート荷重Wが増加したと認められない場合(ステップ304:NO)には、このステップ306の処理を実行しない。そして、上記ステップ305において、シート荷重Wの後荷重比率αが増加した状態が所定時間以上継続していないと判定した場合(ステップ305:NO)にも、このステップ306の処理を実行しない。 In step 304, the ECU 11 recognizes that the seat load W has increased when the variation value Δα of the rear load ratio α is smaller than the first threshold value α1 (Δα <α1), that is, before the shift to the automatic operation state. If not (step 304: NO), the process of step 306 is not executed. Even when it is determined in step 305 that the post load ratio α of the seat load W has not increased for a predetermined time or longer (step 305: NO), the processing in step 306 is not executed.
 次に、ECU11は、上記第1及び第2の監視姿勢検知条件が、ともに成立しているか否かを判定する(ステップ307)。そして、これら第1及び第2の監視姿勢検知条件が、ともに成立している場合(ステップ307:YES)に、運転者DRが運転監視姿勢にあることを検知する(ステップ308)。 Next, the ECU 11 determines whether or not both of the first and second monitoring posture detection conditions are satisfied (step 307). Then, when the first and second monitoring posture detection conditions are both satisfied (step 307: YES), it is detected that the driver DR is in the driving monitoring posture (step 308).
 また、図10のフローチャートに示すように、ECU11は、非運転監視姿勢の検知判定(非運転監視姿勢判定)についても同様に、先ず、自動運転状態移行後におけるシート荷重Wの変動値ΔWが第2の閾値W2以上の正の値(ΔW>0)であるか否かを判定する(ステップ401)。尚、この第2の閾値W2は、自動運転状態移行後のシート荷重Wが、自動運転状態に移行する前の値、つまりは基準値W0から、例えば5%~25%程度増加した場合に相当する正の値に設定される(W2>0)。ECU11は、上記ステップ401において、自動運転状態移行後におけるシート荷重Wの変動値ΔWが第2の閾値W2以上の正の値である(ΔW≧W2)、つまりは自動運転状態移行前よりもシート荷重Wが増加したと判定した場合(ステップ401:YES)、この状態が所定時間以上継続しているか否かを判定する(ステップ402)。そして、ECU11は、このステップ402において、自動運転状態移行前よりもシート荷重Wが増加した状態が所定時間以上継続していると判定した場合(ステップ402:YES)には、運転者DRの非運転監視姿勢を検知可能な第1の非監視姿勢検知条件が成立したものと判定する(ステップ403)。 Further, as shown in the flowchart of FIG. 10, the ECU 11 also first detects the fluctuation value ΔW of the seat load W after the shift to the automatic driving state in the same manner for the detection determination of the non-driving monitoring posture (non-driving monitoring posture determination). It is determined whether or not a positive value (ΔW> 0) equal to or greater than a threshold value W2 of 2 (step 401). The second threshold value W2 corresponds to a case where the seat load W after the shift to the automatic operation state is increased by, for example, about 5% to 25% from the value before the shift to the automatic operation state, that is, the reference value W0. Is set to a positive value (W2> 0). In step 401, the ECU 11 determines that the variation value ΔW of the seat load W after the shift to the automatic driving state is a positive value greater than or equal to the second threshold value W2 (ΔW ≧ W2). When it is determined that the load W has increased (step 401: YES), it is determined whether or not this state continues for a predetermined time or more (step 402). If the ECU 11 determines in step 402 that the state in which the seat load W has increased from before the shift to the automatic driving state continues for a predetermined time or longer (step 402: YES), the ECU 11 It is determined that the first non-monitoring posture detection condition capable of detecting the driving monitoring posture is satisfied (step 403).
 ECU11は、上記ステップ401において、シート荷重Wの変動値ΔWが第2の閾値W2よりも小さい場合(ΔW<W2)、つまりは自動運転状態移行前よりもシート荷重Wが増加したと認められない場合(ステップ401:NO)には、このステップ403の処理を実行しない。そして、上記ステップ402において、シート荷重Wが増大した状態が所定時間以上継続していないと判定した場合(ステップ402:NO)にも、このステップ403の処理を実行しない。 In step 401, the ECU 11 does not recognize that the seat load W has increased compared to the case where the variation value ΔW of the seat load W is smaller than the second threshold value W2 (ΔW <W2). In the case (step 401: NO), the processing of step 403 is not executed. If it is determined in step 402 that the state in which the seat load W has increased does not continue for a predetermined time or longer (step 402: NO), the processing in step 403 is not executed.
 更に、ECU11は、自動運転状態移行後におけるシート荷重Wの後荷重比率αについて、その変動値Δαが第2の閾値α2以下の負の値(Δα<0)であるか否かを判定する(ステップ404)。尚、この第2の閾値α2は、自動運転状態移行後の後荷重比率αが、自動運転状態に移行する前の値、つまりは基準値α0から、例えば5%~30%程度減少した場合に相当する負の値(α2<0)に設定される。ECU11は、ステップ404において、自動運転状態移行後における後荷重比率αの変動値Δαが第2の閾値α2以下である(Δα≦α2)、つまりは自動運転状態移行前よりもシート荷重Wの後荷重比率αが減少したと判定した場合(ステップ404:YES)、この状態が所定時間以上継続しているか否かを判定する(ステップ405)。そして、ECU11は、このステップ405において、自動運転状態移行前よりもシート荷重Wの後荷重比率αが減少した状態が所定時間以上継続していると判定した場合(ステップ405:YES)には、運転者DRの非運転監視姿勢を検知可能な第2の非監視姿勢検知条件が成立したものと判定する(ステップ406)。 Further, the ECU 11 determines whether or not the variation value Δα of the rear load ratio α of the seat load W after the shift to the automatic driving state is a negative value (Δα <0) equal to or less than the second threshold value α2 ( Step 404). The second threshold value α2 is set when the post-load ratio α after the shift to the automatic operation state is reduced by, for example, about 5% to 30% from the value before the shift to the automatic operation state, that is, the reference value α0. The corresponding negative value (α2 <0) is set. In step 404, the ECU 11 determines that the fluctuation value Δα of the afterload ratio α after the shift to the automatic driving state is equal to or less than the second threshold value α2 (Δα ≦ α2), that is, after the seat load W than before the shift to the automatic driving state. When it is determined that the load ratio α has decreased (step 404: YES), it is determined whether or not this state continues for a predetermined time or more (step 405). When the ECU 11 determines in this step 405 that the state in which the rear load ratio α of the seat load W is reduced than before the shift to the automatic operation state continues for a predetermined time or longer (step 405: YES), It is determined that the second non-monitoring posture detection condition capable of detecting the non-driving monitoring posture of the driver DR is satisfied (step 406).
 ECU11は、上記ステップ404において、後荷重比率αの変動値Δαが第2の閾値α2よりも大きい場合(Δα>α2)、つまりは自動運転状態移行前よりもシート荷重Wが減少したと認められない場合(ステップ404:NO)には、このステップ406の処理を実行しない。そして、上記ステップ405において、シート荷重Wの後荷重比率αが減少した状態が所定時間以上継続していないと判定した場合(ステップ405:NO)にも、このステップ406の処理を実行しない。 In step 404, the ECU 11 recognizes that the seat load W has decreased when the variation value Δα of the rear load ratio α is larger than the second threshold value α2 (Δα> α2), that is, before the shift to the automatic operation state. If not (step 404: NO), the processing of step 406 is not executed. If it is determined in step 405 that the state in which the rear load ratio α of the seat load W is reduced does not continue for a predetermined time or longer (step 405: NO), the processing in step 406 is not executed.
 次に、ECU11は、上記第1及び第2の非監視姿勢検知条件が、ともに成立しているか否かを判定する(ステップ407)。そして、これら第1及び第2の非監視姿勢検知条件が、ともに成立している場合(ステップ407:YES)に、運転者DRが非運転監視姿勢にあることを検知する(ステップ408)。 Next, the ECU 11 determines whether or not both the first and second non-monitoring posture detection conditions are satisfied (step 407). When both the first and second non-monitoring posture detection conditions are satisfied (step 407: YES), it is detected that the driver DR is in the non-driving monitoring posture (step 408).
 図7のフローチャートに示すように、ECU11は、ステップ204の着座姿勢検知判定において、以上のような運転監視姿勢判定(図9参照)及び非運転監視姿勢判定(図10参照)を実行する。そして、運転者DRの着座姿勢が非運転監視姿勢にあることが検知されている場合(ステップ205:YES)に、警報装置22を介した警告出力を実行する(ステップ206)。 As shown in the flowchart of FIG. 7, the ECU 11 performs the driving monitoring posture determination (see FIG. 9) and the non-driving monitoring posture determination (see FIG. 10) as described above in the sitting posture detection determination in step 204. Then, when it is detected that the sitting posture of the driver DR is in the non-driving monitoring posture (step 205: YES), warning output via the alarm device 22 is executed (step 206).
 本実施形態によれば、以下のような効果を得ることができる。
 (1)シート荷重検出部30aとして機能するECU11は、運転席21に作用するシート荷重W(及び後荷重比率α)を検出する。また、自動運転検出部30bとして機能するECU11は、車両が自動運転状態に移行したことを検出する。そして、着座姿勢検知部30cとして機能するECU11は、シート荷重W(及び後荷重比率α)の推移に基づいて、運転席21に着座する運転者DRの自動運転状態における着座姿勢を検知する。
According to this embodiment, the following effects can be obtained.
(1) The ECU 11 functioning as the seat load detection unit 30a detects the seat load W (and the rear load ratio α) acting on the driver's seat 21. Further, the ECU 11 functioning as the automatic driving detection unit 30b detects that the vehicle has shifted to the automatic driving state. The ECU 11 functioning as the seating posture detection unit 30c detects the seating posture in the automatic driving state of the driver DR seated on the driver seat 21 based on the transition of the seat load W (and the rear load ratio α).
 即ち、車両が自動運転状態に移行した後、運転者DRが着座姿勢を変更することにより、運転席21のシート荷重Wが変化する。そして、このようなシート荷重Wの変化は、運転者DRの体重を支える脚L(足24a,24b)の配置状態が変わることで、より顕著なものとなる。従って、車両が自動運転状態に移行する前後のシート荷重Wの推移を監視することで、簡素な構成にて、精度よく、車両が自動運転状態にある場合に、脚Lの配置に特徴のある運転者DRの着座姿勢を検知することができる。そして、例えば、その着座姿勢が車両の自動運転を監視する姿勢にない場合には、警告出力を実行して運転者DRに姿勢の是正を促す等により、高い安全性を確保することができる。 That is, after the vehicle shifts to the automatic driving state, the seat load W of the driver's seat 21 changes as the driver DR changes the sitting posture. Such a change in the seat load W becomes more prominent when the arrangement state of the legs L ( foot 24a, 24b) supporting the weight of the driver DR is changed. Therefore, by monitoring the transition of the seat load W before and after the vehicle shifts to the automatic driving state, the arrangement of the legs L is characteristic when the vehicle is in the automatic driving state with high accuracy and with a simple configuration. The seating posture of the driver DR can be detected. For example, when the seating posture is not a posture for monitoring the automatic driving of the vehicle, high safety can be ensured by executing a warning output to prompt the driver DR to correct the posture.
 (2)着座姿勢検知部30cとして機能するECU11は、車両が自動運転状態に移行した後、シート荷重Wが、自動運転状態に移行する前よりも増加した場合(ΔW=W-W0≧W2,W2>0)に、運転者DRが両足24a,24bを着座面1sに載せた非運転監視姿勢にあると判定する。 (2) The ECU 11 functioning as the seating posture detection unit 30c, after the vehicle shifts to the automatic driving state, when the seat load W increases from before the shift to the automatic driving state (ΔW = W−W0 ≧ W2, When W2> 0), it is determined that the driver DR is in the non-driving monitoring posture with both feet 24a and 24b placed on the seating surface 1s.
 即ち、車両の運転者DRは、一方の足24aでフットペダル25(アクセルペダル25a又はブレーキペダル25b)を操作する。このとき、他方の足24bは、車両の床部5に置かれている。つまり、運転者DRが運転姿勢にある場合、運転者DRの体重は、車両の床部5に置かれた他方の足24bにも分散した状態となっている。しかしながら、例えば、所謂「足抱え姿勢」や「胡座姿勢」等、運転者DRが、両足24a,24bをシート1の着座面1sに載せるような非運転監視姿勢をとった場合、その運転者DRの体重が全てシート1に加わることになる。そして、これにより生ずるシート荷重Wの増加を検出することで、車両が自動運転状態にある場合に、脚Lの配置に特徴のある運転者DRの非運転監視姿勢を精度よく検知することができる。 That is, the driver DR of the vehicle operates the foot pedal 25 (accelerator pedal 25a or brake pedal 25b) with one foot 24a. At this time, the other leg 24b is placed on the floor 5 of the vehicle. That is, when the driver DR is in the driving posture, the weight of the driver DR is also distributed to the other leg 24b placed on the floor 5 of the vehicle. However, for example, when the driver DR takes a non-driving monitoring posture such as placing the both feet 24a and 24b on the seating surface 1s of the seat 1 such as a so-called “foot holding posture” or “cross-legged posture”, the driver DR Will be added to the seat 1. Then, by detecting the increase in the seat load W caused by this, when the vehicle is in an automatic driving state, it is possible to accurately detect the non-driving monitoring posture of the driver DR that is characteristic in the arrangement of the legs L. .
 (3)後荷重検出部30dとして機能するECU11は、シート荷重Wの後荷重比率αを検出する。そして、着座姿勢検知部30cとして機能するECU11は、車両が自動運転状態に移行した後、この後荷重比率αが、自動運転状態に移行する前よりも減少した場合(Δα=α-α0≦α2,α2<0)に、運転者DRが両足24a,24bを着座面1sに載せた非運転監視姿勢にあると判定する。 (3) The ECU 11 functioning as the post load detecting unit 30d detects the post load ratio α of the seat load W. Then, the ECU 11 functioning as the seating posture detection unit 30c, after the vehicle shifts to the automatic driving state, when the load ratio α thereafter decreases from before the shift to the automatic driving state (Δα = α−α0 ≦ α2). , Α2 <0), it is determined that the driver DR is in the non-driving monitoring posture with both feet 24a, 24b placed on the seating surface 1s.
 即ち、運転者DRが、シート1の着座面1sに載せた両足24a,24bに体重を預けることにより、シート荷重Wの後荷重比率αは減少する。従って、上記構成によれば、車両が自動運転状態にある場合に、脚Lの配置に特徴のある運転者DRの非運転監視姿勢を精度よく検知することができる。 That is, when the driver DR deposits weight on both feet 24a and 24b placed on the seating surface 1s of the seat 1, the rear load ratio α of the seat load W decreases. Therefore, according to the above configuration, when the vehicle is in an automatic driving state, it is possible to accurately detect the non-driving monitoring posture of the driver DR that is characterized by the arrangement of the legs L.
 (4)着座姿勢検知部30cとして機能するECU11は、車両が自動運転状態に移行した後、シート荷重Wが、自動運転状態に移行する前よりも減少した状態にある場合(ΔW=W-W0≦W1,W1<0)に、運転者DRが両足24a,24bを車両の床部5に置いた運転監視姿勢にあると判定する。 (4) The ECU 11 functioning as the seating posture detection unit 30c is in a state where the seat load W is smaller than before the transition to the automatic driving state after the vehicle has shifted to the automatic driving state (ΔW = W−W0). ≦ W1, W1 <0), it is determined that the driver DR is in a driving monitoring posture with both feet 24a, 24b placed on the floor 5 of the vehicle.
 即ち、運転者DRの着座姿勢が自らハンドル23を握る運転姿勢から運転監視姿勢に移行した場合に、この運転者DRが車両の床部5に両足24a,24bを置くことで、運転者DRの体重が床部5に置かれた両足24a,24bに分散される。そして、これにより生ずるシート荷重Wの減少を検出することで、精度よく、自動運転状態における運転者DRの運転監視姿勢を検知することができる。 That is, when the seating posture of the driver DR shifts from the driving posture in which the driver DR grips the steering wheel 23 to the driving monitoring posture, the driver DR puts both feet 24a and 24b on the floor 5 of the vehicle, so that the driver DR The weight is distributed to both feet 24a and 24b placed on the floor 5. Then, by detecting the decrease in the seat load W caused by this, it is possible to accurately detect the driving monitoring posture of the driver DR in the automatic driving state.
 (5)着座姿勢検知部30cとして機能するECU11は、車両が自動運転状態に移行した後、シート荷重Wの後荷重比率αが、自動運転状態に移行する前よりも増加した場合(Δα=α-α0≧α1,α1>0)に、運転者DRが両足24a,24bを車両の床部5に置いた運転監視姿勢にあると判定する。 (5) The ECU 11 functioning as the seating posture detection unit 30c, when the rear load ratio α of the seat load W increases after the vehicle shifts to the automatic driving state than before the shift to the automatic driving state (Δα = α -Α0 ≧ α1, α1> 0), it is determined that the driver DR is in a driving monitoring posture with both feet 24a, 24b placed on the floor 5 of the vehicle.
 即ち、運転者DRが両足24a,24bを車両の床部5に置いた運転監視姿勢をとった場合、この運転者DRはシートバック3にもたれ掛かることが多い。これにより、シート荷重Wの後荷重比率αが増加することになる。従って、上記構成によれば、精度よく、自動運転状態における運転者DRの運転監視姿勢を検知することができる。 That is, when the driver DR takes a driving monitoring posture in which both feet 24 a and 24 b are placed on the floor 5 of the vehicle, the driver DR often leans against the seat back 3. As a result, the post-load ratio α of the seat load W increases. Therefore, according to the above configuration, the driving monitoring posture of the driver DR in the automatic driving state can be detected with high accuracy.
 [第2の実施形態]
 以下、車両用のシートに実装された乗員検知装置に関する第2の実施形態を図面に従って説明する。尚、説明の便宜上、上記第1の実施形態と同様の構成については、同一の符号を付して、その説明を省略することとする。
[Second Embodiment]
Hereinafter, a second embodiment relating to an occupant detection device mounted on a vehicle seat will be described with reference to the drawings. For convenience of explanation, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図11に示すように、運転席21であるシート1Bは、そのシートクッション2の内側に、面圧センサ40を有している。ECU11Bは、この面圧センサ40の出力信号に基づいて、シート1Bの着座面1sに作用する面圧Pを検出する。 As shown in FIG. 11, the seat 1 </ b> B which is the driver's seat 21 has a surface pressure sensor 40 inside the seat cushion 2. The ECU 11B detects the surface pressure P acting on the seating surface 1s of the seat 1B based on the output signal of the surface pressure sensor 40.
 具体的には、面圧センサ40は、着座面1sの下方において、シート1Bの幅方向(図11中、上下方向)及びシート1Bの前後方向すなわち長さ方向(図11中、左右方向)に整列配置された図示しない複数の圧力検出セル(例えば、静電容量式等)を有している。ECU11Bは、これらの圧力検出セルの検出結果に基づき、着座面1sに形成される図示しない複数の検出領域毎に、着座面1sの面圧Pを検出する。 Specifically, the surface pressure sensor 40 is below the seating surface 1s in the width direction of the seat 1B (vertical direction in FIG. 11) and the front-rear direction of the seat 1B, that is, the length direction (left-right direction in FIG. 11). A plurality of pressure detection cells (not shown) (for example, electrostatic capacitance type) arranged in alignment are provided. The ECU 11B detects the surface pressure P of the seating surface 1s for each of a plurality of detection regions (not shown) formed on the seating surface 1s based on the detection results of these pressure detection cells.
 面圧センサ40が着座面1sに形成する各検出領域の位置は、幅方向位置Xと前後方向位置Yとによって定まる座標(X,Y)として表すことができる。ECU11Bは、複数の検出領域の面圧Pの分布、すなわち着座面1sの面圧分布βに基づいて、車両が自動運転状態にある場合における運転者DRの着座姿勢を検知する。 The position of each detection region formed on the seating surface 1s by the surface pressure sensor 40 can be expressed as coordinates (X, Y) determined by the position X in the width direction and the position Y in the front-rear direction. The ECU 11B detects the seating posture of the driver DR when the vehicle is in the automatic driving state based on the distribution of the surface pressure P in the plurality of detection regions, that is, the surface pressure distribution β of the seating surface 1s.
 詳述すると、図12~図14に示すように、シート1Bの着座面1sにおいて乗員20の尻Laが当接する位置、即ちヒップポイントHPは、概ね、その着座面1sの前後方向中央位置よりも後側(図12~図14中、下側)に存在する。即ち、着座面1sの面圧分布βでは、乗員20の脚L(図1参照、着座面1s上に位置する尻La、腿Lb及び膝裏Lc)が当接する部分の面圧Pが高くなる。尚、図1は、車両の床部5に足24bを置いた側の脚Lが、着座面1sから浮きぎみとなる状態を誇張した図になっている。そして、図1及び図12に示すように、運転者DRが運転姿勢(通常着座姿勢)にある場合、脚Lが当接する部分の面圧Pは、上記ヒップポイントHPが形成される位置を面圧集中部γ、即ち面圧Pが集中する位置として、シート1Bの前方に向かって延びる運転者DRの脚Lに沿うように、着座面1sの後側から前側に向かって徐々に低くなっている。 More specifically, as shown in FIGS. 12 to 14, the position where the butt La of the occupant 20 abuts on the seating surface 1s of the seat 1B, that is, the hip point HP is generally larger than the center position in the front-rear direction of the seating surface 1s. It exists on the rear side (lower side in FIGS. 12 to 14). That is, in the surface pressure distribution β of the seating surface 1s, the surface pressure P of the portion where the leg L of the occupant 20 (see FIG. 1, buttocks La, thigh Lb, and knee sole Lc located on the seating surface 1s) abuts increases. . FIG. 1 is an exaggerated view of the state in which the leg L on the side where the foot 24b is placed on the floor 5 of the vehicle is floating from the seating surface 1s. As shown in FIGS. 1 and 12, when the driver DR is in the driving posture (normal sitting posture), the surface pressure P of the portion with which the leg L abuts faces the position where the hip point HP is formed. The pressure concentration portion γ, that is, the position where the surface pressure P is concentrated, gradually decreases from the rear side to the front side of the seating surface 1s so as to follow the leg L of the driver DR that extends toward the front of the seat 1B. Yes.
 しかしながら、図4及び図13、並びに図5及び図14に示すように、シート1Bに着座する乗員20が所謂「足抱え姿勢」や「胡座姿勢」をとった場合、つまり、運転者DRが、両足24a,24bを運転席21の着座面1sに載せるような非運転監視姿勢にある場合には、両足24a,24bを載せた位置にも面圧集中部γが現れる。 However, as shown in FIGS. 4 and 13, and FIGS. 5 and 14, when the occupant 20 seated on the seat 1 </ b> B takes a so-called “foot holding posture” or “cross-legged posture”, that is, the driver DR In a non-driving monitoring posture where both feet 24a, 24b are placed on the seating surface 1s of the driver's seat 21, the surface pressure concentration portion γ also appears at the position where both feet 24a, 24b are placed.
 具体的には、図13及び図14に示すように、乗員20のヒップポイントHPに対応する第1の面圧集中部γ1よりも前方側に、この第1の面圧集中部γ1から独立した第2の面圧集中部γ2が現れる。即ち、乗員20が両足24a,24bを運転席21の着座面1sに載せることにより、乗員20の脚Lのうち、腿Lb及び膝裏Lcに相当する部分が着座面1sから離れる。これにより、着座面1sに置かれた両足24a,24bが、上記のような乗員20の尻Laが形成する第1の面圧集中部γ1から独立した第2の面圧集中部γ2を形成する。 Specifically, as shown in FIGS. 13 and 14, the first surface pressure concentration portion γ1 corresponding to the hip point HP of the occupant 20 is independent of the first surface pressure concentration portion γ1 in front of the first surface pressure concentration portion γ1. A second surface pressure concentration portion γ2 appears. That is, when the occupant 20 places both feet 24a and 24b on the seating surface 1s of the driver's seat 21, the portions of the leg L of the occupant 20 corresponding to the thigh Lb and the knee sole Lc are separated from the seating surface 1s. Thereby, both feet 24a and 24b placed on the seating surface 1s form a second surface pressure concentration portion γ2 independent of the first surface pressure concentration portion γ1 formed by the butt La of the occupant 20 as described above. .
 この点を踏まえ、本実施形態のECU11Bは、シート1Bに着座する乗員20の着座姿勢検知判定において、このような第1及び第2の面圧集中部γ1,γ2が着座面1sの面圧分布βに現れているか否かを判定する。そして、車両が自動運転状態にある場合に、これら第1及び第2の面圧集中部γ1,γ2が検出された場合には、この運転席21の乗員20、つまりは車両の運転者DRが非運転監視姿勢にあると判定する。 In consideration of this point, the ECU 11B of the present embodiment determines that the first and second surface pressure concentration portions γ1 and γ2 are the surface pressure distribution of the seating surface 1s in the sitting posture detection determination of the occupant 20 seated on the seat 1B. It is determined whether or not it appears in β. When the first and second surface pressure concentration portions γ1 and γ2 are detected when the vehicle is in an automatic driving state, the occupant 20 of the driver seat 21, that is, the driver DR of the vehicle, It is determined that the vehicle is in a non-driving monitoring posture.
 さらに詳述すると、図11及び図15に示すように、ECU11Bは、着座面1sの前後方向位置Y(図11中、左右方向の各位置)毎に面圧Pの最大値(第3の最大面圧値)Pyを検出する。「前後方向位置Y毎の第3の最大面圧値Py」とは、着座面1sの前後方向(長さ方向)における各位置で着座面1sの幅方向に沿って面圧Pを検出した場合に、前後方向における同じ位置で幅方向に沿って得られた面圧Pのうちの最大値である。また、ECU11Bは、シート1Bに着座する乗員20のヒップポイントHPが形成される位置、即ち着座面1sの前後方向中央位置よりも後側を当該着座面1sの後部領域Arとして、その着座面1sを前後方向に三分割する。つまり、シート1Bの着座面1sには、この後部領域Arの他、着座面1sの前側に位置する前部領域Af、及び当該前部領域Afと後部領域との間に位置する中間領域Amが設定される。そして、ECU11Bは、これら三分割された着座面1sの領域のうち、後部領域Arにおける面圧Pの最大値Pr及び前部領域Afにおける面圧Pの最大値Pfを検出する。以後、後部領域Arにおける面圧Pの最大値Prを第1の最大面圧値Prといい、前部領域Afにおける面圧Pの最大値Pfを第2の最大面圧値Pfという。 More specifically, as shown in FIGS. 11 and 15, the ECU 11B determines the maximum value (third maximum) of the surface pressure P for each position Y in the front-rear direction of the seating surface 1s (each position in the left-right direction in FIG. 11). (Surface pressure value) Py is detected. The “third maximum surface pressure value Py for each position Y in the front-rear direction” refers to the case where the surface pressure P is detected along the width direction of the seating surface 1s at each position in the front-rear direction (length direction) of the seating surface 1s. The maximum value of the surface pressure P obtained along the width direction at the same position in the front-rear direction. Further, the ECU 11B sets the seating surface 1s as the rear region Ar of the seating surface 1s at the position where the hip point HP of the occupant 20 seated on the seat 1B is formed, that is, the rear side of the seating surface 1s in the longitudinal direction. Is divided into three in the front-rear direction. That is, on the seating surface 1s of the seat 1B, in addition to the rear region Ar, there are a front region Af located on the front side of the seating surface 1s, and an intermediate region Am located between the front region Af and the rear region. Is set. Then, the ECU 11B detects the maximum value Pr of the surface pressure P in the rear region Ar and the maximum value Pf of the surface pressure P in the front region Af among these three divided regions of the seating surface 1s. Hereinafter, the maximum value Pr of the surface pressure P in the rear region Ar is referred to as a first maximum surface pressure value Pr, and the maximum value Pf of the surface pressure P in the front region Af is referred to as a second maximum surface pressure value Pf.
 また、ECU11Bは、後部領域Arにおける第1の最大面圧値Pr及び前部領域Afにおける第2の最大面圧値Pfが、それぞれ、対応する第1及び第2の閾値THr,THfよりも大きいか否かを判定する。更に、ECU11Bは、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが中間領域Amに検出されているか否かを判定する。そして、これらの判定条件が全て成立している場合に、着座面1sに第1及び第2の面圧集中部γ1,γ2が検出されたものと判定する。 Further, the ECU 11B determines that the first maximum surface pressure value Pr in the rear region Ar and the second maximum surface pressure value Pf in the front region Af are larger than the corresponding first and second threshold values THr and THf, respectively. It is determined whether or not. Further, the ECU 11B determines whether or not the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am. When all these determination conditions are satisfied, it is determined that the first and second surface pressure concentration portions γ1 and γ2 are detected on the seating surface 1s.
 即ち、図13及び図14、並びに図15に示すように、通常、乗員20の尻Laが形成する第1の面圧集中部γ1は、着座面1sの後部領域Arに現れ、その着座面1sに置かれた両足24a,24bが形成する第2の面圧集中部γ2は、前部領域Afに現れる。また、これら第1及び第2の面圧集中部γ1,γ2は、それぞれ、後部領域Ar及び前部領域Afにおいて最も面圧Pの高い部位と考えることができる。そして、第2の面圧集中部γ2については、運転者DRの運転操作に基づく車両の走行状態、例えば、アクセルペダル25aを踏む加速状態(図15中の面圧分布β1)、或いはブレーキペダル25bを踏む減速状態(図15中の面圧分布β2)においても、着座面1sの面圧分布βには現れない。 That is, as shown in FIGS. 13, 14, and 15, the first surface pressure concentration portion γ <b> 1 normally formed by the butt La of the occupant 20 appears in the rear region Ar of the seating surface 1 s, and the seating surface 1 s The second surface pressure concentration portion γ2 formed by both feet 24a, 24b placed on the front surface appears in the front region Af. Further, the first and second surface pressure concentration portions γ1 and γ2 can be considered as the portions having the highest surface pressure P in the rear region Ar and the front region Af, respectively. And about the 2nd surface pressure concentration part (gamma) 2, the driving | running | working state of the vehicle based on driving | operation operation of driver | operator DR, for example, the acceleration state (surface pressure distribution (beta) 1 in FIG. 15) which depresses accelerator pedal 25a, or brake pedal 25b Even in a decelerating state (surface pressure distribution β2 in FIG. 15), the surface pressure distribution β of the seating surface 1s does not appear.
 この点を踏まえ、本実施形態のECU11Bは、着座面1sの後部領域Ar及び前部領域Afにおける第1及び第2の最大面圧値Pr,Pfが、それぞれ、対応する第1及び第2の閾値THr,THfを超えた場合に、後部領域Ar及び前部領域Afに面圧集中部γが現れたものと判定する(図15中の面圧分布β3,β4参照)。更に、ECU11Bは、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが着座面1sの中間領域Amに検出されている場合に、後部領域Ar及び前部領域Afに現れた2つの面圧集中部γが互いに独立していると判定する。そして、ECU11Bは、運転者DRの尻Laが形成する第1の面圧集中部γ1、及びこの第1の面圧集中部γ1よりも前方に位置する独立した第2の面圧集中部γ2が検出された場合に、自動運転状態における運転者DRの非運転監視姿勢を検知する。 In consideration of this point, the ECU 11B of the present embodiment has the first and second maximum surface pressure values Pr and Pf corresponding to the first and second maximum surface pressure values Pr and Pf in the rear region Ar and the front region Af of the seating surface 1s, respectively. When the threshold values THr and THf are exceeded, it is determined that the surface pressure concentration portion γ appears in the rear region Ar and the front region Af (see the surface pressure distributions β3 and β4 in FIG. 15). Further, the ECU 11B detects the rear region Ar and the front region when the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am of the seating surface 1s. It is determined that the two surface pressure concentration portions γ that appear in Af are independent of each other. The ECU 11B includes a first surface pressure concentration portion γ1 formed by the bottom La of the driver DR and an independent second surface pressure concentration portion γ2 positioned in front of the first surface pressure concentration portion γ1. When detected, the non-driving monitoring posture of the driver DR in the automatic driving state is detected.
 さらに詳述すると、図16のフローチャートに示すように、ECU11Bは、面圧センサ40の出力信号に基づいて、先ず、着座面1sの前後方向位置Y毎に第3の最大面圧値Pyを検出する(ステップ501)。また、ECU11Bは、着座面1sに設定された後部領域Arにおける第1の最大面圧値Pr、及び前部領域Afにおける第2の最大面圧値Pfを検出する(ステップ502)。更に、ECU11Bは、運転者DRが自ら車両を運転する状態にあるか否かを判定するとともに(ステップ503)、着座面1sの面圧分布βが安定した状態にあるか否かを判定する(ステップ504)。そして、車両が乗員運転状態にあり(ステップ503:YES)、且つ着座面1sの面圧分布βが安定している場合(ステップ504:YES)に、後部領域Arにおける第1の最大面圧値Prに基づいて、運転者DRの着座姿勢検知判定に用いる上記第1~第3の閾値THr,THf,THmを決定する(ステップ505)。 More specifically, as shown in the flowchart of FIG. 16, the ECU 11B first detects the third maximum surface pressure value Py for each longitudinal position Y of the seating surface 1s based on the output signal of the surface pressure sensor 40. (Step 501). Further, the ECU 11B detects the first maximum surface pressure value Pr in the rear region Ar set on the seating surface 1s and the second maximum surface pressure value Pf in the front region Af (step 502). Further, the ECU 11B determines whether or not the driver DR is in a state of driving the vehicle (step 503) and determines whether or not the surface pressure distribution β of the seating surface 1s is in a stable state (step 503). Step 504). When the vehicle is in an occupant driving state (step 503: YES) and the surface pressure distribution β of the seating surface 1s is stable (step 504: YES), the first maximum surface pressure value in the rear region Ar. Based on Pr, the first to third thresholds THr, THf, THm used for the determination of the sitting posture of the driver DR are determined (step 505).
 ECU11Bは、第1の閾値THrとして、上記ステップ502において検出した後部領域Arにおける第1の最大面圧値Prよりも低い値を設定する(図15参照)。また、第2の閾値THfは、この第1の閾値THrよりも低い値に設定される。そして、第3の閾値THmは、この第2の閾値THfよりも低い値、詳しくは、「0」に近い値に設定される。 The ECU 11B sets a value lower than the first maximum surface pressure value Pr in the rear region Ar detected in step 502 as the first threshold value THr (see FIG. 15). The second threshold value THf is set to a value lower than the first threshold value THr. The third threshold value THm is set to a value lower than the second threshold value THf, specifically, a value close to “0”.
 また、図17のフローチャートに示すように、ECU11Bは、車両が自動運転状態にあるか否かを判定する(ステップ601)。そして、車両が自動運転状態にあると判定した場合(ステップ602:YES)に、運転席21に着座する運転者DRについて着座姿勢検知判定を実行する(ステップ602)。そして、ECU11Bは、運転者DRの着座姿勢が非運転監視姿勢にあることが検知されている場合(ステップ603:YES)に、警報装置22を介した警告出力を実行する(ステップ604)。 Further, as shown in the flowchart of FIG. 17, the ECU 11B determines whether or not the vehicle is in an automatic driving state (step 601). If it is determined that the vehicle is in the automatic driving state (step 602: YES), the seating posture detection determination is executed for the driver DR seated on the driver seat 21 (step 602). Then, when it is detected that the sitting posture of the driver DR is in the non-driving monitoring posture (step 603: YES), the ECU 11B executes a warning output via the alarm device 22 (step 604).
 上記ステップ602の処理の詳細を図18のフローチャートに示す。ECU11Bは、先ず、着座面1sの後部領域Arにおける第1の最大面圧値Prが第1の閾値THrを超えているか否かを判定する(ステップ701)。ECU11Bは、このステップ701において、第1の最大面圧値Prが第1の閾値THrを超えていると判定した場合(Pr>THr、ステップ701:YES)、続いて着座面1sの前部領域Afにおける第2の最大面圧値Pfが第2の閾値THfを超えているか否かを判定する(ステップ702)。ECU11Bは、第2の最大面圧値Pfが第2の閾値THfを超えていると判定した場合(Pf>THf、ステップ702:YES)、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが着座面1sの中間領域Amに検出されているか否かを判定する(ステップ703)。そして、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが中間領域Amに検出された場合(ステップ703:YES)に、第1及び第2の面圧集中部γ1,γ2が検出されたものと判定し(ステップ704)、運転者DRが非運転監視姿勢にあることを検知する(ステップ705)。 Details of the processing in step 602 are shown in the flowchart of FIG. The ECU 11B first determines whether or not the first maximum surface pressure value Pr in the rear region Ar of the seating surface 1s exceeds the first threshold value THr (step 701). If the ECU 11B determines in step 701 that the first maximum surface pressure value Pr exceeds the first threshold value THr (Pr> THr, step 701: YES), then the front area of the seating surface 1s It is determined whether or not the second maximum surface pressure value Pf at Af exceeds the second threshold value THf (step 702). When the ECU 11B determines that the second maximum surface pressure value Pf exceeds the second threshold value THf (Pf> THf, step 702: YES), the third maximum surface pressure value Py is the third threshold value THm. It is determined whether or not a position Ym in the front-rear direction that is smaller than that is detected in the intermediate area Am of the seating surface 1s (step 703). Then, when the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am (step 703: YES), the first and second surface pressure concentrations. It is determined that the parts γ1 and γ2 have been detected (step 704), and it is detected that the driver DR is in the non-driving monitoring posture (step 705).
 また、ECU11Bは、ステップ702において、前部領域Afにおける第2の最大面圧値Pfが第2の閾値THf以下である場合(Pf≦THf、ステップ702:NO)には、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが中間領域Amに検出されていないことを確認する(ステップ706)。そして、このステップ706において、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが中間領域Amに検出されていないと判定(確認)した場合に(ステップ706:NO)に、運転者DRが、運転席21の前方に向かって脚Lを伸ばした着座姿勢(通常着座姿勢)にあることを検知する(ステップ707)。つまりは、運転者DRの着座姿勢が、運転姿勢(図1参照)又は運転監視姿勢(図3参照)に該当する通常の着座姿勢にあることを検知する。 In step 702, the ECU 11B determines that the third maximum surface when the second maximum surface pressure value Pf in the front region Af is equal to or less than the second threshold value THf (Pf ≦ THf, step 702: NO). It is confirmed that the front-rear direction position Ym in which the pressure value Py is smaller than the third threshold value THm has not been detected in the intermediate area Am (step 706). In Step 706, when it is determined (confirmed) that the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is not detected in the intermediate area Am (Step 706: NO), it is detected that the driver DR is in the sitting posture (normal sitting posture) with the legs L extended toward the front of the driver's seat 21 (step 707). That is, it is detected that the sitting posture of the driver DR is a normal sitting posture corresponding to the driving posture (see FIG. 1) or the driving monitoring posture (see FIG. 3).
 本実施形態によれば、以下のような効果を得ることができる。
 (1)面圧分布検出部50aとして機能するECU11Bは、車両の運転席21であるシート1Bの着座面1sに作用する面圧分布βを検出する。また、自動運転検出部50bとして機能するECU11Bは、車両が自動運転状態に移行したことを検出する。そして、着座姿勢検知部50cとして機能するECU11Bは、着座面1sの面圧分布βに基づいて、運転席21に着座する運転者DRの自動運転状態における着座姿勢を検知する。
According to this embodiment, the following effects can be obtained.
(1) The ECU 11B that functions as the surface pressure distribution detection unit 50a detects the surface pressure distribution β that acts on the seating surface 1s of the seat 1B that is the driver's seat 21 of the vehicle. Moreover, ECU11B which functions as the automatic driving | operation detection part 50b detects that the vehicle shifted to the automatic driving | running state. Then, the ECU 11B functioning as the seating posture detection unit 50c detects the seating posture in the automatic driving state of the driver DR seated on the driver seat 21 based on the surface pressure distribution β of the seating surface 1s.
 即ち、着座面1sの面圧分布βは、シート1Bに着座する乗員20の着座姿勢、特に、その脚Lの配置状態に応じて変化する。従って、上記構成によれば、簡素な構成にて、精度よく、車両が自動運転状態にある場合に、脚Lの配置に特徴のある運転者DRの着座姿勢を検知することができる。そして、例えば、その着座姿勢が車両の自動運転を監視する姿勢にない場合には、警告出力を実行して運転者DRに姿勢の是正を促す等により、高い安全性を確保することができる。 That is, the surface pressure distribution β of the seating surface 1s varies depending on the seating posture of the occupant 20 seated on the seat 1B, in particular, the arrangement state of the legs L thereof. Therefore, according to the above configuration, when the vehicle is in an automatic driving state with a simple configuration, it is possible to detect the sitting posture of the driver DR characteristic of the arrangement of the legs L. For example, when the seating posture is not a posture for monitoring the automatic driving of the vehicle, high safety can be ensured by executing a warning output to prompt the driver DR to correct the posture.
 (2)着座姿勢検知部50cとして機能するECU11Bは、着座面1sに第1の面圧集中部γ1が検出されるとともに、この第1の面圧集中部γ1よりも前方側に当該第1の面圧集中部γ1から独立した第2の面圧集中部γ2が検出された場合に、運転者DRが着座面1sに両足24a,24bを載せた非運転監視姿勢にあると判定する。 (2) The ECU 11B functioning as the seating posture detection unit 50c detects the first surface pressure concentration unit γ1 on the seating surface 1s, and the first surface pressure concentration unit γ1 on the front side of the first surface pressure concentration unit γ1. When the second surface pressure concentration portion γ2 independent of the surface pressure concentration portion γ1 is detected, it is determined that the driver DR is in the non-driving monitoring posture with both feet 24a and 24b placed on the seating surface 1s.
 即ち、シート1Bの着座面1sには、乗員20のヒップポイントHPが形成される位置に面圧集中部γ(γ1)が現れる。また、この乗員20が着座面1sに両足24a,24bを載せることで、その両足24a,24bが置かれた位置にも面圧集中部γ(γ2)が現れる。このとき、乗員20の脚Lは、腿Lb及び膝裏Lcに相当する部分が着座面1sから離れる状態になる。 That is, the surface pressure concentration portion γ (γ1) appears on the seating surface 1s of the seat 1B at the position where the hip point HP of the occupant 20 is formed. Further, when the occupant 20 places both feet 24a, 24b on the seating surface 1s, the surface pressure concentration portion γ (γ2) also appears at the position where the feet 24a, 24b are placed. At this time, the leg L of the occupant 20 is in a state in which portions corresponding to the thigh Lb and the knee sole Lc are separated from the seating surface 1s.
 つまり、運転者DRが、両足24a,24bをシート1の着座面1sに載せるような非運転監視姿勢をとった場合、着座面1s(の面圧分布β)には、運転者DRのヒップポイントHPに対応する第1の面圧集中部γ1よりも前方側に当該第1の面圧集中部γ1から独立した第2の面圧集中部γ2が現れる。従って、上記構成によれば、車両が自動運転状態にある場合に、脚Lの配置に特徴のある運転者DRの非運転監視姿勢を精度よく検知することができる。 That is, when the driver DR takes a non-driving monitoring posture in which both feet 24a and 24b are placed on the seating surface 1s of the seat 1, the seating surface 1s (surface pressure distribution β) has a hip point of the driver DR. A second surface pressure concentration portion γ2 independent of the first surface pressure concentration portion γ1 appears in front of the first surface pressure concentration portion γ1 corresponding to HP. Therefore, according to the above configuration, when the vehicle is in an automatic driving state, it is possible to accurately detect the non-driving monitoring posture of the driver DR that is characterized by the arrangement of the legs L.
 (3)面圧集中検出部50dとして機能するECU11Bは、シート1Bに着座する乗員20のヒップポイントHPが形成される位置を着座面1sの後部領域Arとして当該着座面1sを前後方向に三分割する。つまり、シート1Bの着座面1sには、この後部領域Arの他、着座面1sの前側に位置する前部領域Af、及び当該前部領域Afと後部領域との間に位置する中間領域Amが設定される。また、ECU11Bは、後部領域Arにおける第1の最大面圧値Prが第1の閾値THrを超えた状態にあるか否かを判定する。更に、ECU11Bは、前部領域Afにおける第2の最大面圧値Pfが第2の閾値THfを超えた状態にあるか否かを判定する。そして、ECU11Bは、第1の最大面圧値Prが第1の閾値THrを超え、且つ第2の最大面圧値Pfが第2の閾値THfを超えた状態にあることを条件に、上記第1及び第2の面圧集中部γ1,γ2が検出されたものと判定する。 (3) The ECU 11B functioning as the surface pressure concentration detection unit 50d divides the seating surface 1s in the front-rear direction by using the position where the hip point HP of the occupant 20 seated on the seat 1B is formed as the rear region Ar of the seating surface 1s. To do. That is, on the seating surface 1s of the seat 1B, in addition to the rear region Ar, there are a front region Af located on the front side of the seating surface 1s, and an intermediate region Am located between the front region Af and the rear region. Is set. In addition, the ECU 11B determines whether or not the first maximum surface pressure value Pr in the rear region Ar exceeds the first threshold value THr. Further, the ECU 11B determines whether or not the second maximum surface pressure value Pf in the front region Af exceeds the second threshold value THf. Then, the ECU 11B is on the condition that the first maximum surface pressure value Pr exceeds the first threshold value THr and the second maximum surface pressure value Pf exceeds the second threshold value THf. It is determined that the first and second surface pressure concentration portions γ1 and γ2 have been detected.
 即ち、運転者DRが運転姿勢又は運転監視姿勢にある場合を含め、乗員20が脚Lを伸ばした通常の着座姿勢にある場合、脚Lが着座面1sに当接する部分の面圧Pは、前方に向かって延びる乗員20の脚Lに沿うように、そのヒップポイントHPが形成される着座面1sの後側から前側に向かって徐々に低くなる。従って、上記構成によれば、精度よく、ヒップポイントHPに対応する第1の面圧集中部γ1とともに、着座面1sに置かれた両足24a,24bが形成する第2の面圧集中部γ2が現れたことを検出することができる。これにより、車両が自動運転状態にある場合に、運転者DRが両足24a,24bを着座面1sに載せた非運転監視姿勢にあることを精度よく検知することができる。 That is, when the driver DR is in a normal sitting posture with the leg L extended, including the case where the driver DR is in the driving posture or the driving monitoring posture, the surface pressure P of the portion where the leg L abuts on the seating surface 1s is The height gradually decreases from the rear side to the front side of the seating surface 1s on which the hip point HP is formed, along the leg L of the occupant 20 extending forward. Therefore, according to the above configuration, the second surface pressure concentration portion γ2 formed by the both feet 24a and 24b placed on the seating surface 1s is accurately formed together with the first surface pressure concentration portion γ1 corresponding to the hip point HP. It can be detected that it has appeared. Thereby, when the vehicle is in an automatic driving state, it is possible to accurately detect that the driver DR is in the non-driving monitoring posture with both feet 24a and 24b placed on the seating surface 1s.
 (4)最大面圧検出部50eとして機能するECU11Bは、着座面1sの前後方向位置Y毎に第3の最大面圧値Pyを検出する。そして、独立条件判定部50fとして機能するECU11Bは、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが着座面1sの中間領域Amに検出されることを条件に、第1及び第2の面圧集中部γ1,γ2が検出されたものと判定する。 (4) The ECU 11B functioning as the maximum surface pressure detection unit 50e detects the third maximum surface pressure value Py for each position Y in the front-rear direction of the seating surface 1s. Then, the ECU 11B functioning as the independent condition determination unit 50f has a condition that the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am of the seating surface 1s. In addition, it is determined that the first and second surface pressure concentration portions γ1 and γ2 have been detected.
 即ち、乗員20が両足24a,24bを着座面1sに載せた場合、その着座面1sから脚Lの腿Lb及び膝裏Lcに相当する部分が離れることで、着座面1sの中間領域Amに、第3の最大面圧値Pyが極めて小さくなる(「0」に近づく)前後方向位置Ymが形成されることになる。従って、上記構成によれば、精度よく、着座面1sの面圧分布βに現れた第1及び第2の面圧集中部γ1,γ2を検出することができる。これにより、車両が自動運転状態にある場合に、運転者DRが両足24a,24bを着座面1sに載せた非運転監視姿勢にあることをより精度よく検知することができる。 That is, when the occupant 20 places both feet 24a, 24b on the seating surface 1s, the portions corresponding to the thigh Lb and the knee sole Lc of the leg L are separated from the seating surface 1s, so that the intermediate region Am of the seating surface 1s The third maximum surface pressure value Py is extremely small (close to “0”), and the front-rear direction position Ym is formed. Therefore, according to the above configuration, the first and second surface pressure concentration portions γ1 and γ2 appearing in the surface pressure distribution β of the seating surface 1s can be detected with high accuracy. Thereby, when the vehicle is in the automatic driving state, it can be detected with higher accuracy that the driver DR is in the non-driving monitoring posture with both feet 24a and 24b placed on the seating surface 1s.
 (5)着座姿勢検知部50cとして機能するECU11Bは、後部領域Arにおける第1の最大面圧値Prが第1の閾値THrを超え、前部領域Afにおける第2の最大面圧値Pfが第2の閾値THf以下であることを確認(判定)する。更に、ECU11Bは、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが着座面1sの中間領域Amに検出されていないことを確認(判定)する。そして、ECU11Bは、これらの条件が全て満たされる場合に、運転者DRが運転席21の前方に両足24a,24bを伸ばした着座姿勢にあると判定する。 (5) The ECU 11B functioning as the seating posture detection unit 50c has the first maximum surface pressure value Pr in the rear region Ar exceeding the first threshold value THr, and the second maximum surface pressure value Pf in the front region Af is the first value. It is confirmed (determined) that the threshold value THf is equal to or smaller than 2. Further, the ECU 11B confirms (determines) that the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is not detected in the intermediate region Am of the seating surface 1s. When all of these conditions are satisfied, the ECU 11B determines that the driver DR is in a sitting posture with both legs 24a and 24b extended in front of the driver seat 21.
 上記構成によれば、運転者DRが、運転姿勢又は運転監視姿勢に該当する運転席21の前方に両足24a,24bを伸ばした通常の着座姿勢にあることを精度よく検知することができる。 According to the above configuration, it is possible to accurately detect that the driver DR is in a normal seating posture in which both feet 24a and 24b are extended in front of the driver seat 21 corresponding to the driving posture or the driving monitoring posture.
 (6)基準値検出部50gとして機能するECU11Bは、車両が乗員運転状態にある場合に、運転者DRのヒップポイントHPが形成される着座面1sの後部領域Arにおける第1の最大面圧値Prを検出する。そして、閾値決定部50hとして機能するECU11Bは、この検出された第1の最大面圧値Prに基づいて、運転者DRの着座姿勢検知判定に用いる上記第1~第3の閾値THr,THf,THmを決定する。 (6) The ECU 11B functioning as the reference value detection unit 50g has a first maximum surface pressure value in the rear region Ar of the seating surface 1s where the hip point HP of the driver DR is formed when the vehicle is in an occupant driving state. Pr is detected. Then, the ECU 11B functioning as the threshold value determining unit 50h, based on the detected first maximum surface pressure value Pr, the first to third threshold values THr, THf, Determine THm.
 即ち、乗員20の脚Lが着座面1sに当接する部分の面圧P、及び乗員20の着座姿勢に応じた面圧分布βの変化は、その乗員20のヒップポイントHPが形成される後部領域Arにおける第1の最大面圧値Prを基準に考えることができる。そして、車両が乗員運転状態にある場合、運転者DRは、両足24a,24bを運転席21の前方に延ばした運転姿勢にあると推定することができる。従って、上記構成によれば、着座面1sの面圧分布βに基づいて、自動運転状態における運転者DRの着座姿勢をより精度よく検知することができる。 That is, the change in the surface pressure P at the portion where the leg L of the occupant 20 abuts against the seating surface 1s and the surface pressure distribution β according to the seating posture of the occupant 20 is a rear region where the hip point HP of the occupant 20 is formed. The first maximum surface pressure value Pr in Ar can be considered as a reference. When the vehicle is in the occupant driving state, it can be estimated that the driver DR is in a driving posture in which both feet 24 a and 24 b are extended in front of the driver seat 21. Therefore, according to the above configuration, the seating posture of the driver DR in the automatic driving state can be detected with higher accuracy based on the surface pressure distribution β of the seating surface 1s.
 なお、上記各実施形態は以下のように変更してもよい。
 ・上記第1の実施形態では、シート1(運転席21)の後部に作用する後荷重を、シート荷重Wの後荷重比率α(=(Wc+Wd)/W)により表すこととしたが、後荷重の値(Wc+Wd)により直接的に表す構成としてもよい。そして、運転監視姿勢判定及び非運転監視姿勢判定における継続時間(図9のステップ302,305及び図10のステップ402,405)についてもまた、任意に変更してもよい。
In addition, you may change each said embodiment as follows.
In the first embodiment, the rear load acting on the rear portion of the seat 1 (driver's seat 21) is represented by the rear load ratio α (= (Wc + Wd) / W) of the seat load W. It is good also as a structure directly expressed by the value of (Wc + Wd). The durations in the driving monitoring posture determination and the non-driving monitoring posture determination ( steps 302 and 305 in FIG. 9 and steps 402 and 405 in FIG. 10) may also be arbitrarily changed.
 ・上記第1の実施形態では、シート1全体に作用するシート荷重Wに基づいた第1の非監視姿勢検知条件及びシート1(運転席21)の後荷重(後荷重比率α)に基づいた第2の非監視姿勢検知条件が、ともに成立している場合(図10参照、ステップ407:YES)に、運転者DRが非運転監視姿勢にあることを検知することとした。 In the first embodiment, the first non-monitoring attitude detection condition based on the seat load W acting on the entire seat 1 and the first load based on the rear load (rear load ratio α) of the seat 1 (driver's seat 21). When the two non-monitoring posture detection conditions are satisfied (see FIG. 10, step 407: YES), it is determined that the driver DR is in the non-driving monitoring posture.
 しかし、これに限らず、これら第1及び第2の非監視姿勢検知条件の何れか一方が成立している場合に、運転者DRが非運転監視姿勢にあることを検知する構成としてもよい。また、シート1全体に作用するシート荷重W又はシート1の後荷重の一方のみを用いて、非運転監視姿勢判定を行う構成であってもよい。そして、運転者DRが運転監視姿勢にあること検知する場合も同様に、シート荷重Wに基づく第1の監視姿勢検知条件及びシート1の後荷重(後荷重比率α)に基づく第2の監視姿勢検知条件の何れか一方のみの成立を要件としてもよく、シート荷重W又はシート1の後荷重の一方のみを用いて、運転監視姿勢判定を行う構成であってもよい。 However, the present invention is not limited to this, and when either one of the first and second non-monitoring posture detection conditions is satisfied, it may be configured to detect that the driver DR is in the non-driving monitoring posture. Further, the non-operation monitoring posture determination may be performed using only one of the seat load W acting on the entire seat 1 or the rear load of the seat 1. Similarly, when detecting that the driver DR is in the driving monitoring posture, similarly, the first monitoring posture detection condition based on the seat load W and the second monitoring posture based on the rear load (rear load ratio α) of the seat 1 are used. Only one of the detection conditions may be satisfied, and the operation monitoring posture determination may be performed using only one of the seat load W or the rear load of the seat 1.
 ・更に、運転監視姿勢移行検知部30eとして機能するECU11が、先ず、運転者DRの着座姿勢が床部5に両足24a,24bを置いた運転監視姿勢に移行したことを検知する。そして、その後、非運転監視姿勢移行検知部30fとして機能するECU11が、運転者DRの着座姿勢が運転監視姿勢から運転席21の着座面1sに両足24a,24bを載せた非運転監視姿勢に移行したことを検知する構成としてもよい。 Further, the ECU 11 functioning as the driving monitoring posture transition detection unit 30e first detects that the sitting posture of the driver DR has shifted to the driving monitoring posture in which both feet 24a and 24b are placed on the floor 5. After that, the ECU 11 functioning as the non-driving monitoring posture transition detection unit 30f shifts the sitting posture of the driver DR from the driving monitoring posture to the non-driving monitoring posture in which both feet 24a and 24b are placed on the seating surface 1s of the driver seat 21. It is good also as a structure which detects having performed.
 例えば、図19のフローチャートに示すように、ECU11は、先ず、運転監視姿勢フラグに基づき運転者DRの着座姿勢が運転監視姿勢に移行した状態にあるか否かを判定し(ステップ801)、その着座姿勢が運転監視姿勢に移行した状態にないと判定した場合(ステップ801:NO)には、運転監視姿勢判定を実行する(ステップ802)。そして、この運転監視姿勢判定により運転者DRの着座姿勢が運転監視姿勢にあると判定した場合(ステップ803:YES)には、その着座姿勢が運転監視姿勢に移行した状態にあることを示す運転監視姿勢フラグをセットして(ステップ804)、非運転監視姿勢判定を実行する(ステップ805)。 For example, as shown in the flowchart of FIG. 19, the ECU 11 first determines whether or not the seating posture of the driver DR has shifted to the driving monitoring posture based on the driving monitoring posture flag (step 801). When it is determined that the seating posture is not in the state of shifting to the driving monitoring posture (step 801: NO), the driving monitoring posture determination is executed (step 802). Then, when it is determined by the driving monitoring posture determination that the sitting posture of the driver DR is in the driving monitoring posture (step 803: YES), driving indicating that the sitting posture is shifted to the driving monitoring posture. A monitoring posture flag is set (step 804), and a non-driving monitoring posture determination is executed (step 805).
 上記ステップ801において、ECU11は、運転者DRの着座姿勢が運転監視姿勢に移行した状態にあると判定した場合(ステップ801:YES)、上記ステップ802~ステップ804の処理を実行しない。そして、ECU11は、上記ステップ803において、運転者DRの着座姿勢が運転監視姿勢にないと判定した場合(ステップ803:NO)には、上記ステップ804及びステップ805を実行しない。 In step 801, if the ECU 11 determines that the seating posture of the driver DR has shifted to the driving monitoring posture (step 801: YES), the ECU 11 does not execute the processing in steps 802 to 804. If the ECU 11 determines in step 803 that the sitting posture of the driver DR is not in the driving monitoring posture (step 803: NO), the ECU 11 does not execute step 804 and step 805.
 即ち、通常、車両が自動運転状態に移行することで、運転者DRの着座姿勢は、一度、運転監視姿勢に移行する。従って、上記構成によれば、運転者DRの着座姿勢が非運転監視姿勢にあることをより精度よく検知することができる。 That is, normally, when the vehicle shifts to the automatic driving state, the sitting posture of the driver DR once shifts to the driving monitoring posture. Therefore, according to the above configuration, it is possible to more accurately detect that the sitting posture of the driver DR is in the non-driving monitoring posture.
 ・シート1に設ける荷重センサ10の数、及びその配置は、任意に変更してもよい。そして、シート1の後荷重比率αを用いる場合には、着座面1sの後端側及び前端部側に荷重センサ10を設けるとよい。 The number of load sensors 10 provided on the seat 1 and the arrangement thereof may be arbitrarily changed. When the rear load ratio α of the seat 1 is used, the load sensor 10 may be provided on the rear end side and the front end side of the seating surface 1s.
 ・上記第2の実施形態では、ECU11Bは、着座面1sの後部領域Ar及び前部領域Afにおける第1及び第2の最大面圧値Pr,Pfが、それぞれ、対応する第1及び第2の閾値THr,THfよりも大きいか否かを判定する。更に、ECU11Bは、第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが着座面1sの中間領域Amに検出されているか否かを判定する。そして、これらの判定条件がいずれも成立している場合に、着座面1sに第1及び第2の面圧集中部γ1,γ2が検出されたものと判定することとした。しかし、これに限らず、後部領域Arにおける第1の最大面圧値Prが第1の閾値THrを超え、且つ前部領域Afにおける第2の最大面圧値Pfが第2の閾値THfを超えることをもって、第1及び第2の面圧集中部γ1,γ2が検出されたものと判定する構成としてもよい。 In the second embodiment, the ECU 11B determines that the first and second maximum surface pressure values Pr and Pf in the rear region Ar and the front region Af of the seating surface 1s correspond to the first and second corresponding values, respectively. It is determined whether or not the threshold values THr and THf are greater. Further, the ECU 11B determines whether or not the front-rear direction position Ym at which the third maximum surface pressure value Py is smaller than the third threshold value THm is detected in the intermediate region Am of the seating surface 1s. When both of these determination conditions are satisfied, it is determined that the first and second surface pressure concentration portions γ1 and γ2 are detected on the seating surface 1s. However, the present invention is not limited to this, and the first maximum surface pressure value Pr in the rear region Ar exceeds the first threshold value THr, and the second maximum surface pressure value Pf in the front region Af exceeds the second threshold value THf. Accordingly, it may be configured to determine that the first and second surface pressure concentration portions γ1 and γ2 have been detected.
 ・また、ECU11Bは、後部領域Arにおける第1の最大面圧値Prが第1の閾値THrを超え、前部領域Afにおける第2の最大面圧値Pfが第2の閾値THf以下であり、且つ第3の最大面圧値Pyが第3の閾値THmよりも小さくなる前後方向位置Ymが中間領域Amに検出されない状態にあるかを判定する。そして、これらの判定条件が成立する場合に、運転者DRが運転姿勢又は運転監視姿勢にある、即ち運転席21の前方に両足24a,24bを伸ばした通常の着座姿勢にあると検知することとした。しかし、これに限らず、このような通常着座姿勢の検知判定は、必ずしも行わなくともよい。 Further, the ECU 11B determines that the first maximum surface pressure value Pr in the rear region Ar exceeds the first threshold value THr, and the second maximum surface pressure value Pf in the front region Af is equal to or less than the second threshold value THf. Further, it is determined whether or not the front-rear direction position Ym in which the third maximum surface pressure value Py is smaller than the third threshold value THm is not detected in the intermediate area Am. When these determination conditions are satisfied, it is detected that the driver DR is in a driving posture or a driving monitoring posture, that is, in a normal sitting posture in which both feet 24a and 24b are extended in front of the driver's seat 21. did. However, the present invention is not limited to this, and the detection determination of the normal sitting posture is not necessarily performed.
 ・更に、着座面1sの中間領域Amにおいて前後方向位置Y毎に検出される第3の最大面圧値Pyのうち、最も小さな値(減少ピーク)Py´が第3の閾値THmよりも小さいか否かを判定する(図15参照)。そして、その最も小さな値Py´が第3の閾値THmよりも小さいことを条件に、第1及び第2の面圧集中部γ1,γ2が検出されたものと判定する構成としてもよい。 Furthermore, is the smallest value (decrease peak) Py ′ smaller than the third threshold value THm among the third maximum surface pressure values Py detected for each position Y in the front-rear direction in the intermediate area Am of the seating surface 1s? It is determined whether or not (see FIG. 15). And it is good also as a structure determined with the 1st and 2nd surface pressure concentration part (gamma) 1, (gamma) 2 having been detected on the condition that the smallest value Py 'is smaller than 3rd threshold value THm.
 ・また、後部領域Arにおける第1の最大面圧値Prが第1の閾値THrを超え、前部領域Afにおける第2の最大面圧値Pfが第2の閾値THf以下である場合には、着座面1sの中間領域Amにおいて前後方向位置Y毎に検出される第3の最大面圧値Pyのうち、最も小さな値Py´を第3の閾値THmと比較する。そして、その最も小さな値Py´が第3の閾値THm以上である場合に、運転者DRが運転席21の前方に両足24a,24bを伸ばした着座姿勢にあると判定する構成としてもよい。 Further, when the first maximum surface pressure value Pr in the rear region Ar exceeds the first threshold value THr, and the second maximum surface pressure value Pf in the front region Af is equal to or less than the second threshold value THf, Among the third maximum surface pressure values Py detected for each position Y in the front-rear direction in the intermediate area Am of the seating surface 1s, the smallest value Py ′ is compared with the third threshold value THm. Then, when the smallest value Py ′ is equal to or greater than the third threshold value THm, it may be determined that the driver DR is in a sitting posture with both legs 24 a and 24 b extended in front of the driver seat 21.
 ・上記第2の実施形態では、ECU11Bは、運転席21の着座面1sについて面圧分布βを検出することにより、自動運転状態における運転者DRの非運転監視姿勢を検知することとした。しかし、これに限らず、運転席21以外のシート1Bについても同様に、着座面1sの面圧分布βに基づいた乗員20の着座姿勢検知を実行する構成を採用してもよい。そして、この着座検知判定は、自動運転以外の用途に用いてもよい。 In the second embodiment, the ECU 11B detects the non-driving monitoring posture of the driver DR in the automatic driving state by detecting the surface pressure distribution β on the seating surface 1s of the driver seat 21. However, the present invention is not limited to this, and the seat 1B other than the driver's seat 21 may be configured to detect the seating posture of the occupant 20 based on the surface pressure distribution β of the seating surface 1s. And this seating detection determination may be used for uses other than automatic driving.
 具体的には、この場合においても、着座面1sの面圧分布βにおいて、第1の面圧集中部γ1よりも前方側に当該第1の面圧集中部γ1から独立した第2の面圧集中部γ2が検出されているか否かを判定する。そして、これら第1及び第2の面圧集中部γ1,γ2が検出された場合に、シート1Bに着座する乗員20が、着座面1sの前部に両足24a,24bを載せた着座姿勢にあると判定する構成にするとよい。 Specifically, in this case as well, in the surface pressure distribution β of the seating surface 1s, the second surface pressure independent of the first surface pressure concentration portion γ1 is located in front of the first surface pressure concentration portion γ1. It is determined whether or not the concentrated portion γ2 is detected. And when these 1st and 2nd surface pressure concentration parts (gamma) 1, (gamma) 2 are detected, the passenger | crew 20 seated on the seat 1B is in the seating posture which mounted both legs 24a, 24b on the front part of the seating surface 1s. It is good to have a configuration for determining.
 ・上記第2の実施形態では、ECU11Bは、車両が乗員運転状態にある場合に、着座面1sの後部領域Arにおける第1の最大面圧値Prを検出する。そして、この検出された第1の最大面圧値Prに基づいて、運転者DRの着座姿勢検知判定に用いる上記第1~第3の閾値THr,THf,THmを決定することとした。しかし、これに限らず、各閾値THr,THf,THmは、予め定められた固定値であってもよい。 In the second embodiment, the ECU 11B detects the first maximum surface pressure value Pr in the rear region Ar of the seating surface 1s when the vehicle is in the passenger operation state. Then, based on the detected first maximum surface pressure value Pr, the first to third threshold values THr, THf, THm used for the determination of the sitting posture of the driver DR are determined. However, the present invention is not limited to this, and the threshold values THr, THf, THm may be fixed values determined in advance.
 ・上記第2の実施形態では、シート1Bには、着座面1sに複数の検出領域を設定して当該検出領域毎に着座面1sの面圧Pを検出することが可能な面圧センサ40が設けられる。そして、ECU11Bは、検出領域毎の面圧Pから得られる着座面1sの面圧分布βに基づいて、車両が自動運転状態にある場合における運転者DRの着座姿勢を検知することとした。 In the second embodiment, the seat 1B has a surface pressure sensor 40 that can set a plurality of detection regions on the seating surface 1s and detect the surface pressure P of the seating surface 1s for each detection region. Provided. Then, the ECU 11B detects the seating posture of the driver DR when the vehicle is in the automatic driving state based on the surface pressure distribution β of the seating surface 1s obtained from the surface pressure P for each detection region.
 しかし、これに限らず、脚Lの配置に特徴のある乗員20の着座姿勢を検知するために必要な着座面1sの面圧分布βを検出することが可能であれば、必ずしも、上記第2の実施形態における面圧センサ40を用いなくともよい。例えば、着座面1sの後部領域Ar、前部領域Af、及び中間領域Amに、それぞれ、メンブレンスイッチ等の感圧センサを配置する。尚、これら各感圧センサがオン作動する面圧Pは、上記第2の実施形態における第1~第3の閾値THr,THf,THmの値を参考に設定するとよい。そして、これら各感圧センサのオン/オフ出力に基づいて、着座面1sの面圧分布βを検出する構成としてもよい。 However, the present invention is not limited to this, and if the surface pressure distribution β of the seating surface 1 s necessary for detecting the seating posture of the occupant 20 characterized by the arrangement of the legs L can be detected, the second pressure is not necessarily required. The surface pressure sensor 40 in the embodiment may not be used. For example, pressure sensitive sensors such as membrane switches are arranged in the rear area Ar, the front area Af, and the intermediate area Am of the seating surface 1s. The surface pressure P at which each of these pressure sensitive sensors is turned on may be set with reference to the values of the first to third threshold values THr, THf, THm in the second embodiment. And it is good also as a structure which detects the surface pressure distribution (beta) of the seating surface 1s based on the on / off output of each of these pressure-sensitive sensors.
 ・また、図20のフローチャートに示すように、距離演算部50iとして機能するECU11Bは、シート1Bの着座面1s(面圧分布β)に現れた第1及び第2の面圧集中部γ1,γ2間の距離Dを演算する(ステップ901)。そして、体格検知部50jとして機能するECU11Bが、この距離Dに基づいて、シート1Bに着座する乗員の体格を検知する(ステップ902)ようにしてもよい。 As shown in the flowchart of FIG. 20, the ECU 11B functioning as the distance calculation unit 50i includes the first and second surface pressure concentration units γ1, γ2 appearing on the seating surface 1s (surface pressure distribution β) of the seat 1B. The distance D between them is calculated (step 901). Then, the ECU 11B functioning as the physique detection unit 50j may detect the physique of the passenger sitting on the seat 1B based on the distance D (step 902).
 即ち、シート1Bの乗員20が両足24a,24bを着座面1sに載せた場合、この乗員20のヒップポイントHPに対応する第1の面圧集中部γ1と着座面1sに置かれた両足24a,24bが形成する第2の面圧集中部γ2との間の距離Dは、その乗員20の体格が大きいほど長くなる。従って、上記構成によれば、簡素な構成にて、精度よく、シート1Bに着座する乗員の体格を検知することができる。 That is, when the occupant 20 of the seat 1B places both feet 24a, 24b on the seating surface 1s, the first surface pressure concentration portion γ1 corresponding to the hip point HP of the occupant 20 and the both feet 24a placed on the seating surface 1s, The distance D between the second surface pressure concentrating portion γ2 formed by 24b increases as the physique of the occupant 20 increases. Therefore, according to the said structure, the physique of the passenger | crew who seats on the sheet | seat 1B can be detected accurately with a simple structure.
 ・図21に示すように、シート1Cに荷重センサ10及び面圧センサ40が設けられている場合等には、上記第1の実施形態に例示されるような運転席21のシート荷重Wに基づいた着座姿勢の検知判定、及び上記第2の実施形態に例示されるような着座面1sの面圧分布に基づいた着座姿勢の検知判定を併用する構成としてもよい。更に、車室内に運転者DRを映すカメラ60が設けられている場合等には、運転者DRを撮影し、撮影によって得られた画像Scmに基づいた着座姿勢の検知判定を併用する構成としてもよい。これにより、より精度よく、車両が自動運転状態にある場合における運転者DRの着座姿勢を検知することができる。 As shown in FIG. 21, when the load sensor 10 and the surface pressure sensor 40 are provided on the seat 1C, etc., based on the seat load W of the driver's seat 21 as exemplified in the first embodiment. It may be configured to use both the detection determination of the sitting posture and the detection determination of the sitting posture based on the surface pressure distribution of the seating surface 1s as exemplified in the second embodiment. Further, when the camera 60 that reflects the driver DR is provided in the passenger compartment, the driver DR is photographed, and the seating posture detection determination based on the image Scm obtained by the photographing is also used. Good. Accordingly, the sitting posture of the driver DR when the vehicle is in the automatic driving state can be detected with higher accuracy.
 例えば、図22のフローチャートに示すように、ECU11Cは、車両が自動運転状態にある場合(ステップ1001:YES)、先ず、運転席21のシート荷重Wに基づいた第1の着座姿勢検知判定を実行する(ステップ1002)。更に、ECU11Cは、この第1の着座姿勢検知判定において、運転者DRが非運転監視姿勢にあると判定した場合(ステップ1003:YES)、続いて、着座面1sの面圧分布βに基づいた第2の着座姿勢検知判定を実行する(ステップ1004)。そして、この第2の着座姿勢検知判定において、運転者DRが非運転監視姿勢にあると判定した場合(ステップ1005:YES)に、警報装置22を介した警告出力を実行する(ステップ1006)。 For example, as shown in the flowchart of FIG. 22, when the vehicle is in the automatic driving state (step 1001: YES), the ECU 11C first executes the first sitting posture detection determination based on the seat load W of the driver seat 21. (Step 1002). Further, when the ECU 11C determines in the first sitting posture detection determination that the driver DR is in the non-driving monitoring posture (step 1003: YES), subsequently, the ECU 11C is based on the surface pressure distribution β of the seating surface 1s. The second sitting posture detection determination is executed (step 1004). In the second sitting posture detection determination, when it is determined that the driver DR is in the non-driving monitoring posture (step 1005: YES), a warning output via the alarm device 22 is executed (step 1006).
 また、ECU11Cは、上記第1の着座姿勢検知判定又は第2の着座姿勢検知判定において、運転者DRが非運転監視姿勢にあると判定されなかった場合(ステップ1003:NO、又はステップ1005:NO)、運転者DRの撮影画像Scmに基づいた第3の着座姿勢検知判定を実行する(ステップ1007)。そして、この第3の着座姿勢検知判定において、運転者DRが非運転監視姿勢にあると判定した場合(ステップ1008:YES)にも、警報装置22を介した警告出力を実行(ステップ1006)する。 The ECU 11C determines that the driver DR is not in the non-driving monitoring posture in the first sitting posture detection determination or the second sitting posture detection determination (step 1003: NO or step 1005: NO). ), A third sitting posture detection determination based on the captured image Scm of the driver DR is executed (step 1007). In the third sitting posture detection determination, even when it is determined that the driver DR is in the non-driving monitoring posture (step 1008: YES), warning output via the alarm device 22 is executed (step 1006). .
 尚、この図22に示す例では、第1の着座姿勢検知判定(ステップ1002)及び第2の着座姿勢検知判定(ステップ1004)において、ともに、運転者DRが非運転監視姿勢にあると判定された場合に警告出力を実行することとした。しかし、これに限らず、これらの判定の何れか一方において非運転監視姿勢にあると判定された場合に警告出力を実行する構成としてもよい。また、第1の着座姿勢検知判定、第2の着座姿勢検知判定、及び第3の着座姿勢検知判定の全てにおいて、運転者DRが非運転監視姿勢にあると判定された場合に警告出力を実行する構成としてもよい。すなわち、第1~第3の着座姿勢検知判定から選択された1つ又は2つ以上の任意の組み合わせを用いることにより、運転者DRが非運転監視姿勢にあることを検知する構成としてもよい。 In the example shown in FIG. 22, in both the first sitting posture detection determination (step 1002) and the second sitting posture detection determination (step 1004), it is determined that the driver DR is in the non-driving monitoring posture. Warning output is executed in case of However, the present invention is not limited to this, and a warning output may be executed when it is determined in any one of these determinations that the vehicle is in the non-driving monitoring posture. Further, in all of the first sitting posture detection determination, the second sitting posture detection determination, and the third sitting posture detection determination, a warning output is executed when it is determined that the driver DR is in the non-driving monitoring posture. It is good also as composition to do. In other words, it may be configured to detect that the driver DR is in the non-driving monitoring posture by using one or two or more arbitrary combinations selected from the first to third sitting posture detection determinations.
 ・また、図23のフローチャートに示すように、カメラ60が取得した運転者DRの撮影画像Scmに基づいて、運転席21に対する運転者DRの着座位置、詳しくは、運転者DRが着座面1sの前側に座る状態(前座り)か後側に座る状態(後座り)かを検知する(ステップ1101)。そして、このステップ1101において検知された着座位置に応じて、シート1の後荷重に基づき運転者DRの着座姿勢を検知する際に用いる閾値、即ちシート荷重Wの後荷重比率αに基づき姿勢判定を実行する際に用いる第1及び第2の閾値α1,α2を補正(ステップ1102)する構成としてもよい。これにより、より精度よく、車両が自動運転状態にある場合における運転者DRの着座姿勢を検知することができる。 As shown in the flowchart of FIG. 23, based on the captured image Scm of the driver DR acquired by the camera 60, the seating position of the driver DR with respect to the driver seat 21, more specifically, the driver DR is on the seating surface 1s. It is detected whether the user is sitting on the front side (front sitting) or the rear side (rear sitting) (step 1101). Then, in accordance with the seating position detected in step 1101, the posture determination is performed based on the threshold used when detecting the seating posture of the driver DR based on the rear load of the seat 1, that is, the rear load ratio α of the seat load W. It is good also as a structure which correct | amends the 1st and 2nd threshold value (alpha) 1 and (alpha) 2 used when performing (step 1102). Accordingly, the sitting posture of the driver DR when the vehicle is in the automatic driving state can be detected with higher accuracy.
 更に、乗員20(運転者DRを含む)の撮影画像Scmに基づいて、乗員20の体格を検知する(ステップ1103)。そして、この乗員20の体格に基づいて、着座面1sに設定する各領域、即ち後部領域Ar、前部領域Af、及び中間領域Amを補正(ステップ1104)する構成としてもよい。これにより、より精度よく、乗員の着座姿勢を検知することができる。 Furthermore, the physique of the occupant 20 is detected based on the captured image Scm of the occupant 20 (including the driver DR) (step 1103). And it is good also as a structure which correct | amends each area | region set to seating surface 1s, ie, rear part area Ar, front part area | region Af, and intermediate | middle area | region Am based on the physique of this passenger | crew 20 (step 1104). Thereby, a passenger | crew's sitting posture can be detected more accurately.
 尚、上記ステップ1103における乗員20の体格検知については、例えば、シートスライド位置(シートの前後方向位置)から推定する等、その他の検知方法を適用してもよい。そして、上記ステップ1101及びステップ1102に示される運転者DRの着座位置検知及びその着座位置に基づいた判定閾値補正と、上記ステップ1103及びステップ1104に示される乗員20の体格検知及びその体格に基づいた着座面領域補正とは、それぞれ、独立に実行してもよい。 In addition, about the physique detection of the passenger | crew 20 in the said step 1103, you may apply other detection methods, such as estimating from a seat slide position (front-back direction position of a seat), for example. Then, based on the detection of the sitting position of the driver DR shown in steps 1101 and 1102 and the determination threshold correction based on the sitting position, the detection of the physique of the occupant 20 shown in steps 1103 and 1104, and the physique thereof. The seating area correction may be performed independently.
 ・上記第1の実施形態及び上記別例では、ECU11が、シート荷重検出部30a、自動運転検出部30b、着座姿勢検知部30c、後荷重検出部30d、運転監視姿勢移行検知部30e、及び非運転監視姿勢移行検知部30fとして機能することとした。しかし、これに限らず、これらの機能制御部が複数の情報処理装置に分散された構成であってもよい。 In the first embodiment and the other example, the ECU 11 includes the seat load detection unit 30a, the automatic operation detection unit 30b, the seating posture detection unit 30c, the rear load detection unit 30d, the driving monitoring posture transition detection unit 30e, and the non- It is supposed to function as the driving monitoring posture transition detection unit 30f. However, the configuration is not limited thereto, and a configuration in which these function control units are distributed among a plurality of information processing apparatuses may be employed.
 ・また、第2の実施形態では、ECU11Bが、面圧分布検出部50a、自動運転検出部50b、着座姿勢検知部50c、面圧集中検出部50d、最大面圧検出部50e、独立条件判定部50f、基準値検出部50g、及び閾値決定部50hとして機能する。そして、上記別例では、ECU11Bは、更に、距離演算部50i及び体格検知部50jとして機能することとした。しかし、これに限らず、これらの機能制御部が複数の情報処理装置に分散された構成であってもよい。 In the second embodiment, the ECU 11B includes the surface pressure distribution detection unit 50a, the automatic operation detection unit 50b, the seating posture detection unit 50c, the surface pressure concentration detection unit 50d, the maximum surface pressure detection unit 50e, and the independent condition determination unit. 50f, a reference value detection unit 50g, and a threshold value determination unit 50h. In the other example, the ECU 11B further functions as the distance calculation unit 50i and the physique detection unit 50j. However, the configuration is not limited thereto, and a configuration in which these function control units are distributed among a plurality of information processing apparatuses may be employed.
 ・更に、上記別例では、ECU11Cが、第1の着座姿勢検知判定部70a、第2の着座姿勢検知判定部70b、第3の着座姿勢検知判定部70c、警告出力実行部70d、着座位置検知部70e、後荷重閾値補正部70f、体格検知部70g、及び着座面領域補正部70hとして機能することとした。しかし、これに限らず、これらの機能制御部が複数の情報処理装置に分散された構成であってもよい。 In addition, in the other example, the ECU 11C includes the first sitting posture detection determination unit 70a, the second sitting posture detection determination unit 70b, the third sitting posture detection determination unit 70c, the warning output execution unit 70d, and the sitting position detection. Part 70e, post-load threshold value correction unit 70f, physique detection unit 70g, and seating surface area correction unit 70h. However, the configuration is not limited thereto, and a configuration in which these function control units are distributed among a plurality of information processing apparatuses may be employed.
 ・上記各実施形態では、運転者DRの非運転監視姿勢を検知した場合、警報装置22を通じて警告出力を実行することとした。しかし、これに限らず、例えば、先行車両との車間距離を広くする等、車両側において、自動運転の制御モードを安全を重視したものに変更する等の構成としてもよい。 In each of the above embodiments, when the non-driving monitoring posture of the driver DR is detected, a warning output is executed through the alarm device 22. However, the present invention is not limited to this. For example, the control mode of the automatic driving may be changed to one that emphasizes safety on the vehicle side, such as increasing the inter-vehicle distance from the preceding vehicle.
 次に、以上の実施形態から把握することのできる技術的思想を効果とともに記載する。
 (A)シートの着座面に作用する面圧の分布を検出するように構成された面圧分布検出部と、前記着座面に作用する面圧の分布に基づいて前記シートに着座する乗員の着座姿勢を検知する着座姿勢検知部と、を備え、着座姿勢検知部は、前記着座面において面圧が集中する位置である第1の面圧集中部が検出されるとともに、前記第1の面圧集中部よりも前方側で前記着座面において前記面圧が集中する位置であって前記第1の面圧集中部から独立した第2の面圧集中部が検出された場合に、前記乗員が前記着座面に両足を載せた着座姿勢にあると判定するように構成される乗員検知装置。
Next, technical ideas that can be grasped from the above embodiments will be described together with effects.
(A) A surface pressure distribution detector configured to detect a distribution of surface pressure acting on the seating surface of the seat, and a seating of an occupant seated on the seat based on the distribution of surface pressure acting on the seating surface A seating posture detection unit that detects a posture, and the seating posture detection unit detects the first surface pressure concentration portion, which is a position where the surface pressure is concentrated on the seating surface, and the first surface pressure. When a second surface pressure concentration portion that is independent of the first surface pressure concentration portion is detected at a position where the surface pressure is concentrated on the seating surface in front of the concentration portion, the occupant An occupant detection device configured to determine that the user is in a sitting posture with both feet on the seating surface.
 (B)運転席に作用するシート荷重を検出することと、前記シート荷重の推移に基づいて、前記運転席に着座する運転者の車両自動運転状態における着座姿勢を検知することと、を備える乗員検知方法。 (B) an occupant comprising: detecting a seat load acting on the driver seat; and detecting a seating posture of the driver seated on the driver seat in an automatic vehicle driving state based on the transition of the seat load. Detection method.
 (C)上記(B)において、前記シート荷重の推移に基づき前記着座姿勢を検知することは、車両が前記自動運転状態に移行した後、前記シート荷重が、前記自動運転状態に移行する前よりも増加した状態にある場合に、前記運転者が前記運転席の着座面に両足を載せた姿勢にあると判定することを含む乗員検知方法。 (C) In (B), the detection of the seating posture based on the transition of the seat load means that after the vehicle transitions to the automatic driving state, the seat load shifts to the automatic driving state. And determining that the driver is in a posture in which both feet are placed on the seating surface of the driver seat.
 (D)上記(B)において、前記シート荷重を検出することは、前記運転席の後部に作用する後荷重を検出することを含み、前記シート荷重の推移に基づき前記着座姿勢を検知することは、車両が前記自動運転状態に移行した後、前記後荷重が、前記自動運転状態に移行する前よりも減少した状態にある場合に、前記運転者が前記運転席の着座面に両足を載せた姿勢にあると判定することを含む乗員検知方法。 (D) In (B), detecting the seat load includes detecting a rear load acting on a rear portion of the driver's seat, and detecting the seating posture based on a transition of the seat load. The driver puts both feet on the seating surface of the driver's seat when the vehicle is in the automatic driving state and the afterload is in a reduced state than before the automatic driving state. An occupant detection method including determining that the vehicle is in a posture.
 (E)上記(B)において、前記シート荷重の推移に基づき前記着座姿勢を検知することは、車両が前記自動運転状態に移行した後、前記シート荷重が、前記自動運転状態に移行する前よりも減少した状態にある場合に、前記運転者が前記車両の床部に両足を置いた姿勢にあると判定することを含む乗員検知方法。 (E) In the above (B), detecting the seating posture based on the transition of the seat load means that after the vehicle shifts to the automatic operation state, the seat load shifts to the automatic operation state. And determining that the driver is in a posture with both feet on the floor of the vehicle when the vehicle is in a reduced state.
 (F)上記(B)において、前記シート荷重を検出することは、前記運転席の後部に作用する後荷重を検出することを含み、前記シート荷重の推移に基づき前記着座姿勢を検知することは、車両が前記自動運転状態に移行した後、前記後荷重が、前記自動運転状態に移行する前よりも増加した状態にある場合に、前記運転者が前記車両の床部に両足を置いた姿勢にあると判定することを含む乗員検知方法。 (F) In (B), detecting the seat load includes detecting a rear load acting on a rear portion of the driver's seat, and detecting the seating posture based on a transition of the seat load. When the vehicle is shifted to the automatic driving state, the driver puts both feet on the floor of the vehicle when the afterload is higher than that before the automatic driving state is shifted. A method for detecting an occupant including determining that the vehicle is in a vehicle
 (G)上記(B)において、前記シート荷重の推移に基づき前記着座姿勢を検知することは、前記着座姿勢が前記車両の床部に両足を置いた運転監視姿勢に移行したことを検知することと、前記着座姿勢が運転監視姿勢から前記運転席の着座面に両足を載せた姿勢に移行したことを検知することと、を含む乗員検知方法。 (G) In (B), detecting the seating posture based on the transition of the seat load detects that the seating posture has shifted to a driving monitoring posture in which both feet are placed on the floor of the vehicle. And detecting that the seating posture has shifted from a driving monitoring posture to a posture in which both feet are placed on the seating surface of the driver seat.
 (H)乗員の体格を検知することと、前記乗員の体格に基づいて前記着座面の各領域を設定することと、を備える乗員検知方法。
 (I)前記運転者を撮影することと、撮影によって得られた画像に基づき前記運転者の着座位置を検知することと、前記運転席の後荷重に基づき前記着座姿勢を検知する際に用いる閾値を、前記運転者の着座位置に応じて補正することと、を備える乗員検知方法。
(H) An occupant detection method comprising: detecting an occupant's physique; and setting each region of the seating surface based on the occupant's physique.
(I) Threshold value used when photographing the driver, detecting the sitting position of the driver based on an image obtained by photographing, and detecting the sitting posture based on a rear load of the driver seat Is corrected according to the driver's seating position.

Claims (15)

  1.  運転席の着座面に作用する面圧の分布を検出することと、
     車両が自動運転状態に移行したことを検出することと、
     前記着座面に作用する前記面圧の分布に基づいて、前記運転席に着座する運転者の前記自動運転状態における着座姿勢を検知することと、を備える乗員検知方法。
    Detecting the distribution of surface pressure acting on the seating surface of the driver seat;
    Detecting that the vehicle has entered an automatic driving state;
    An occupant detection method comprising: detecting a seating posture of the driver sitting in the driver's seat in the automatic driving state based on a distribution of the surface pressure acting on the seating surface.
  2.  請求項1に記載の乗員検知方法において、
     前記着座姿勢を検知することは、前記着座面において前記面圧が集中する位置である第1の面圧集中部が検出されるとともに、前記第1の面圧集中部よりも前方側で前記着座面において前記面圧が集中する位置であって前記第1の面圧集中部から独立した第2の面圧集中部が検出された場合に、前記運転者が前記着座面に両足を載せた姿勢にあると判定することを含む乗員検知方法。
    The occupant detection method according to claim 1,
    Detecting the seating posture means that the first surface pressure concentration portion, which is the position where the surface pressure is concentrated on the seating surface, is detected, and the seating is further forward than the first surface pressure concentration portion. A posture in which the driver puts both feet on the seating surface when a second surface pressure concentration portion that is independent of the first surface pressure concentration portion is detected at a position where the surface pressure is concentrated on the surface A method for detecting an occupant including determining that the vehicle is on the road.
  3.  請求項2に記載の乗員検知方法において、
     前記着座面は、前記運転席に着座する乗員のヒップポイントが形成される位置である後部領域、前記着座面の前側に位置する前部領域、及び該前部領域と前記後部領域との間に位置する中間領域を有し、
     前記後部領域における前記面圧の最大値である第1の最大面圧値が第1の閾値を超え、且つ前記前部領域における前記面圧の最大値である第2の最大面圧値が第2の閾値を超えることを条件に、前記第1及び第2の面圧集中部が検出されたと判定することを更に備える乗員検知方法。
    The occupant detection method according to claim 2,
    The seating surface is a rear region where a hip point of an occupant seated on the driver's seat is formed, a front region located on the front side of the seating surface, and between the front region and the rear region. Having an intermediate region located;
    A first maximum surface pressure value that is the maximum value of the surface pressure in the rear region exceeds a first threshold value, and a second maximum surface pressure value that is the maximum value of the surface pressure in the front region is a first value. A passenger detection method further comprising determining that the first and second surface pressure concentration portions are detected on condition that the threshold value of 2 is exceeded.
  4.  請求項3に記載の乗員検知方法において、
     前記着座面の前後方向位置毎に、前記着座面の幅方向に沿って得られた前記面圧のうちの最大値である第3の最大面圧値を検出することと、
     前記第3の最大面圧値が第3の閾値よりも小さくなる前後方向位置が前記着座面の中間領域に存在することを条件に、前記第1及び第2の面圧集中部が検出されたと判定することと、を更に備える乗員検知方法。
    The occupant detection method according to claim 3,
    Detecting a third maximum surface pressure value, which is the maximum value of the surface pressures obtained along the width direction of the seating surface, for each longitudinal position of the seating surface;
    The first and second surface pressure concentration portions are detected on the condition that a front-rear direction position at which the third maximum surface pressure value is smaller than a third threshold value exists in an intermediate region of the seating surface. An occupant detection method further comprising: determining.
  5.  請求項4に記載の乗員検知方法において、
     前記着座姿勢を検知することは、前記後部領域における前記第1の最大面圧値が前記第1の閾値を超えるとともに、前記前部領域における前記第2の最大面圧値が前記第2の閾値以下であり、且つ、前記第3の最大面圧値が前記第3の閾値よりも小さくなる前後方向位置が前記中間領域に存在しない場合に、前記運転者が前記運転席の前方に向かって脚を伸ばした着座姿勢にあると判定することを含む乗員検知方法。
    The occupant detection method according to claim 4,
    Detecting the sitting posture means that the first maximum surface pressure value in the rear region exceeds the first threshold value, and the second maximum surface pressure value in the front region is the second threshold value. And when the front-rear direction position where the third maximum surface pressure value is smaller than the third threshold value does not exist in the intermediate area, the driver moves his legs toward the front of the driver seat. An occupant detection method including determining that the seating posture is extended.
  6.  請求項3~請求項5の何れか一項に記載の乗員検知方法において、
     車両が乗員運転状態にある場合に前記後部領域における前記第1の最大面圧値を検出することと、
     前記乗員運転状態において検出された前記第1の最大面圧値に基づいて、前記着座姿勢を検知する際に用いる前記閾値を決定することと、を更に備える乗員検知方法。
    In the occupant detection method according to any one of claims 3 to 5,
    Detecting the first maximum surface pressure value in the rear region when the vehicle is in an occupant driving state;
    An occupant detection method further comprising: determining the threshold value used when detecting the seating posture based on the first maximum surface pressure value detected in the occupant operating state.
  7.  請求項1~請求項6の何れか一項に記載の乗員検知方法において、
     運転者を撮影することと、
     撮影によって得られた画像に基づいて該運転者の着座姿勢を検知することと、を更に備える乗員検知方法。
    The occupant detection method according to any one of claims 1 to 6,
    Photographing the driver,
    An occupant detection method further comprising: detecting a sitting posture of the driver based on an image obtained by photographing.
  8.  請求項2~請求項5の何れか一項に記載の乗員検知方法において、
     前記第1及び第2の面圧集中部間の距離を演算することと、
     前記第1及び第2の面圧集中部間の距離に基づいて、前記運転席に着座する乗員の体格を検知することと、を更に備える乗員検知方法。
    In the occupant detection method according to any one of claims 2 to 5,
    Calculating a distance between the first and second surface pressure concentration portions;
    An occupant detection method further comprising: detecting a physique of an occupant seated in the driver's seat based on a distance between the first and second surface pressure concentration portions.
  9.  請求項3に記載の乗員検知方法において、
     前記着座面の前後方向位置毎に、前記着座面の幅方向に沿って得られた前記面圧のうちの最大値である第3の最大面圧値を検出することと、
     前記中間領域において検出された前記第3の最大面圧値のうちの最も小さな値が第3の閾値よりも小さいことを条件に、前記第1及び第2の面圧集中部が検出されたと判定することと、を更に備える乗員検知方法。
    The occupant detection method according to claim 3,
    Detecting a third maximum surface pressure value, which is the maximum value of the surface pressures obtained along the width direction of the seating surface, for each longitudinal position of the seating surface;
    It is determined that the first and second surface pressure concentration portions are detected on condition that the smallest value among the third maximum surface pressure values detected in the intermediate region is smaller than a third threshold value. An occupant detection method further comprising:
  10.  請求項9に記載の乗員検知方法において、
     前記着座姿勢を検知することは、前記後部領域における前記第1の最大面圧値が前記第1の閾値を超えるとともに、前記前部領域における前記第2の最大面圧値が前記第2の閾値以下であり、且つ、前記中間領域において検出された前記第3の最大面圧値のうちの最も小さな値が第3の閾値以上である場合に、前記運転者が前記運転席の前方に向かって脚を伸ばした着座姿勢にあると判定することを含む乗員検知方法。
    The occupant detection method according to claim 9,
    Detecting the sitting posture means that the first maximum surface pressure value in the rear region exceeds the first threshold value, and the second maximum surface pressure value in the front region is the second threshold value. And when the smallest value of the third maximum surface pressure values detected in the intermediate region is equal to or greater than a third threshold value, the driver moves toward the front of the driver seat. An occupant detection method including determining that the user is in a sitting posture with legs extended.
  11.  シートの着座面に作用する面圧の分布を検出することと、
     前記着座面に作用する面圧の分布に基づいて前記シートに着座する乗員の着座姿勢を検知することと、を備え、
     前記着座姿勢を検知することは、前記着座面において前記面圧が集中する位置である第1の面圧集中部が検出されるとともに、前記第1の面圧集中部よりも前方側で前記着座面において前記面圧が集中する位置であって前記第1の面圧集中部から独立した第2の面圧集中部が検出された場合に、前記乗員が前記着座面に両足を載せた着座姿勢にあると判定することを含む乗員検知方法。
    Detecting the distribution of surface pressure acting on the seating surface of the seat;
    Detecting a seating posture of an occupant seated on the seat based on a distribution of surface pressure acting on the seating surface,
    Detecting the seating posture means that the first surface pressure concentration portion, which is the position where the surface pressure is concentrated on the seating surface, is detected, and the seating is further forward than the first surface pressure concentration portion. A seating posture in which the occupant places both feet on the seating surface when a second surface pressure concentration portion that is independent of the first surface pressure concentration portion is detected at a position where the surface pressure is concentrated on a surface A method for detecting an occupant including determining that the vehicle is on the road.
  12.  運転席の着座面に作用する面圧の分布を検出するように構成された面圧分布検出部と、
     車両が自動運転状態に移行したことを検出するように構成された自動運転検出部と、
     前記着座面に作用する面圧の分布に基づいて、前記運転席に着座する運転者の前記自動運転状態における着座姿勢を検知するように構成された着座姿勢検知部と、を備える乗員検知装置。
    A surface pressure distribution detector configured to detect a distribution of surface pressure acting on the seating surface of the driver seat;
    An automatic driving detector configured to detect that the vehicle has entered an automatic driving state; and
    An occupant detection device comprising: a seating posture detection unit configured to detect a seating posture of the driver sitting in the driver seat in the automatic driving state based on a distribution of surface pressure acting on the seating surface.
  13.  請求項12に記載の乗員検知装置において、
     前記着座姿勢検知部は、前記着座面において前記面圧が集中する位置である第1の面圧集中部が検出されるとともに、前記第1の面圧集中部よりも前方側で前記着座面において前記面圧が集中する位置であって前記第1の面圧集中部から独立した第2の面圧集中部が検出された場合に、前記運転者が前記着座面に両足を載せた姿勢にあると判定するように構成される乗員検知装置。
    The occupant detection device according to claim 12,
    The seating posture detection unit detects a first surface pressure concentration portion that is a position where the surface pressure is concentrated on the seating surface, and further on the seating surface on the front side of the first surface pressure concentration portion. The driver is in a posture where both feet are placed on the seating surface when a second surface pressure concentration portion that is independent of the first surface pressure concentration portion is detected at a position where the surface pressure is concentrated. An occupant detection device configured to determine.
  14.  請求項13に記載の乗員検知装置において、
     前記着座面は、前記運転席に着座する乗員のヒップポイントが形成される位置である後部領域、前記着座面の前側に位置する前部領域、及び該前部領域と前記後部領域との間に位置する中間領域を有し、
     前記後部領域における前記面圧の最大値である第1の最大面圧値が第1の閾値を超え、且つ前記前部領域における前記面圧の最大値である第2の最大面圧値が第2の閾値を超えることを条件に、前記第1及び第2の面圧集中部が検出されたと判定するように構成された面圧集中検出部を更に備える乗員検知装置。
    The occupant detection device according to claim 13,
    The seating surface is a rear region where a hip point of an occupant seated on the driver's seat is formed, a front region located on the front side of the seating surface, and between the front region and the rear region. Having an intermediate region located;
    A first maximum surface pressure value that is the maximum value of the surface pressure in the rear region exceeds a first threshold value, and a second maximum surface pressure value that is the maximum value of the surface pressure in the front region is a first value. An occupant detection device further comprising a surface pressure concentration detection unit configured to determine that the first and second surface pressure concentration units are detected on condition that the threshold value of 2 is exceeded.
  15.  請求項14に記載の乗員検知装置において、
     前記着座面の前後方向位置毎に、前記着座面の幅方向に沿って得られた前記面圧のうちの最大値である第3の最大面圧値を検出するように構成された最大面圧検出部と、
     前記第3の最大面圧値が第3の閾値よりも小さくなる前後方向位置が前記着座面の前記中間領域に存在することを条件に、前記第1及び第2の面圧集中部が検出されたと判定するように構成された独立条件判定部と、を更に備える乗員検知装置。
    The occupant detection device according to claim 14,
    Maximum surface pressure configured to detect a third maximum surface pressure value, which is the maximum value of the surface pressures obtained along the width direction of the seating surface, for each longitudinal position of the seating surface. A detection unit;
    The first and second surface pressure concentration portions are detected on the condition that a position in the front-rear direction where the third maximum surface pressure value is smaller than a third threshold value exists in the intermediate region of the seating surface. An occupant detection device further comprising an independent condition determination unit configured to determine that the
PCT/JP2017/039346 2016-11-07 2017-10-31 Occupant detection method and occupant detection apparatus WO2018084147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016217217A JP6759991B2 (en) 2016-11-07 2016-11-07 Crew detection method and occupant detection device
JP2016-217217 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018084147A1 true WO2018084147A1 (en) 2018-05-11

Family

ID=62076976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039346 WO2018084147A1 (en) 2016-11-07 2017-10-31 Occupant detection method and occupant detection apparatus

Country Status (2)

Country Link
JP (1) JP6759991B2 (en)
WO (1) WO2018084147A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113080941A (en) * 2021-03-15 2021-07-09 深圳数联天下智能科技有限公司 Sitting posture assessment method and related device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10744910B1 (en) * 2019-01-25 2020-08-18 Volvo Car Corporation Deployable driver station for an autonomous driving vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999760A (en) * 1995-10-09 1997-04-15 Nissan Motor Co Ltd Vehicular rear seat
JP2002219987A (en) * 2001-01-26 2002-08-06 Matsushita Electric Works Ltd Placed object sensing device
JP2015141560A (en) * 2014-01-29 2015-08-03 アイシン・エィ・ダブリュ株式会社 Navigation device, navigation method, and program
US20160082976A1 (en) * 2014-09-24 2016-03-24 Volvo Car Corporation System and method for control of an autonomous drive related operation
JP2017030390A (en) * 2015-07-29 2017-02-09 修一 田山 Vehicle automatic driving system
JP2017208002A (en) * 2016-05-20 2017-11-24 トヨタ自動車株式会社 vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999760A (en) * 1995-10-09 1997-04-15 Nissan Motor Co Ltd Vehicular rear seat
JP2002219987A (en) * 2001-01-26 2002-08-06 Matsushita Electric Works Ltd Placed object sensing device
JP2015141560A (en) * 2014-01-29 2015-08-03 アイシン・エィ・ダブリュ株式会社 Navigation device, navigation method, and program
US20160082976A1 (en) * 2014-09-24 2016-03-24 Volvo Car Corporation System and method for control of an autonomous drive related operation
JP2017030390A (en) * 2015-07-29 2017-02-09 修一 田山 Vehicle automatic driving system
JP2017208002A (en) * 2016-05-20 2017-11-24 トヨタ自動車株式会社 vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113080941A (en) * 2021-03-15 2021-07-09 深圳数联天下智能科技有限公司 Sitting posture assessment method and related device
CN113080941B (en) * 2021-03-15 2024-02-02 深圳数联天下智能科技有限公司 Sitting posture assessment method and related device

Also Published As

Publication number Publication date
JP2018075862A (en) 2018-05-17
JP6759991B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP5332997B2 (en) Seat belt warning device
JP6503848B2 (en) Driving attitude adjustment device for an autonomous driving vehicle
WO2018084147A1 (en) Occupant detection method and occupant detection apparatus
JP5858976B2 (en) Occupant determination device and occupant determination method
JP4896467B2 (en) Occupant detection device
US7786882B2 (en) Occupant-detecting apparatus
JP2008056040A (en) Occupant discrimination device for vehicle seat
JP6565598B2 (en) Occupant detection method and occupant detection device
WO2018084148A1 (en) Occupant detection method and occupant detection apparatus
JP2005326962A (en) Driving support device
JP6606973B2 (en) Occupant detection method and occupant detection device
JP2017105224A (en) Vehicle control apparatus
US7222879B2 (en) Seating condition detecting system for vehicle
KR20130138013A (en) Apparatus for hill start assist control of a vehicle and method thereof
JP5369470B2 (en) Vehicle seat device
JP2001074542A (en) Seating occupant detecting device and seating occupant detecting method
US20140305713A1 (en) Occupant classification apparatus using load sensor
US10053053B2 (en) Occupant decision device for vehicle
JP2005170300A (en) Occupant determining device
JP6418225B2 (en) Driver physical condition detection device
JP2006096084A (en) Vehicular braking support device
JP4522224B2 (en) Occupant detection device
JP6450977B2 (en) Seat position adjustment system
JP2006123835A (en) Occupant detection device
JP6405884B2 (en) Vehicle seat pinching detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866646

Country of ref document: EP

Kind code of ref document: A1