WO2018082672A1 - 一种上行测量参考信号传输方法、装置和系统 - Google Patents

一种上行测量参考信号传输方法、装置和系统 Download PDF

Info

Publication number
WO2018082672A1
WO2018082672A1 PCT/CN2017/109385 CN2017109385W WO2018082672A1 WO 2018082672 A1 WO2018082672 A1 WO 2018082672A1 CN 2017109385 W CN2017109385 W CN 2017109385W WO 2018082672 A1 WO2018082672 A1 WO 2018082672A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
measurement reference
uplink measurement
configuration information
uplink
Prior art date
Application number
PCT/CN2017/109385
Other languages
English (en)
French (fr)
Inventor
窦圣跃
王婷
秦熠
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710682220.0A external-priority patent/CN108024364B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17866445.4A priority Critical patent/EP3528569B1/en
Publication of WO2018082672A1 publication Critical patent/WO2018082672A1/zh
Priority to US16/402,975 priority patent/US11095412B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink measurement reference signal transmission method, apparatus, and system.
  • FIG. 1 is a structural diagram of a communication system including a plurality of network devices (such as base stations) and a plurality of user equipments (UEs) covered by each network device.
  • network devices such as base stations
  • UEs user equipments
  • a user equipment may transmit an uplink measurement reference signal (eg, a sounding reference signal (SRS) in an LTE system, or other new definitions).
  • the uplink measurement reference signal eg, a sounding reference signal (SRS) in an LTE system, or other new definitions.
  • the uplink measurement reference signal may estimate the channel state of the uplink channel according to the uplink measurement reference signal sent by the UE, so that the network device performs uplink data scheduling according to the estimated uplink channel state (eg, frequency selective scheduling, modulation, and Modulation and coding scheme (MCS) selection, etc.).
  • MCS Modulation and coding scheme
  • the network device may also estimate the downlink channel state by using the uplink measurement reference signal sent by the UE according to the channel dissimilarity.
  • each UE transmits an uplink measurement reference signal, such as an SRS, and the time-frequency code resource is configured by the base station.
  • an uplink measurement reference signal such as an SRS
  • the time-frequency code resource is configured by the base station.
  • the uplink measurement of the UE measures the interference between the reference signals, which in turn affects the channel sounding quality of the UE located at the cell edge.
  • Embodiments of the present invention provide a method, an apparatus, a communication system, and a terminal for uplink reference signal transmission, so that interference received by an uplink reference signal of a UE is measurable.
  • an embodiment of the present invention provides an uplink reference signal transmission method, including:
  • first configuration information of the first uplink measurement reference signal from the wireless network device and second configuration information of the second uplink measurement reference signal, where the first configuration information is used to configure the first uplink measurement reference signal
  • the time-frequency resource the second configuration information is used to configure a time-frequency resource of the second uplink measurement reference signal, where the first uplink measurement reference signal is a zero-power uplink measurement reference signal, and the second uplink measurement reference signal is a non- Zero power uplink measurement reference signal;
  • the user equipment sends the second uplink on the time-frequency resource that is not the first uplink measurement reference signal in the time-frequency resource of the second uplink measurement reference signal according to the first configuration information and the second configuration information. Measure the reference signal.
  • the wireless network device can receive the non-zero power uplink measurement reference signal on the time-frequency resource of the first uplink measurement reference signal in the time-frequency resource of the second uplink measurement reference signal.
  • the uplink measurement reference signal or data sent by other user equipments so as to implement measurement of interference on these resources, and then perform power control, interference suppression, interference cancellation, or resource reconfiguration according to the measurement result, so that the UE uplink The interference to the measurement reference signal is reduced.
  • the first configuration information and the second configuration information are carried in the same message, or are carried in different messages. That is to say, the first configuration information and the second configuration information may not be received at the same time, or may be received at the same time, and the specific manner may be determined according to protocol settings or system requirements.
  • “simultaneously” may refer to the same time domain unit (also referred to as a time domain resource unit) in a 5G NR system, and the time domain unit may be, for example, a subframe subframe, a slot slot, and a slot. Mini time slot minislot etc.
  • the user equipment sends the time-frequency resource that is not the first uplink measurement reference signal in the time-frequency resource of the second uplink measurement reference signal according to the first configuration information and the second configuration information.
  • the second uplink measurement reference signal includes: the user equipment sends the second time on the time-frequency resource of the first uplink measurement reference signal indicated by the non-first configuration information in the time-frequency resource of the second uplink measurement reference signal indicated by the second configuration information. Upstream measurement reference signal.
  • the user equipment may further send the first uplink measurement reference signal on the time-frequency resource of the first uplink measurement reference signal indicated by the first configuration information.
  • the time-frequency resource of the first uplink measurement reference signal is a subset of time-frequency resources of the second uplink measurement reference signal.
  • the first configuration information and/or the second configuration information are carried in the high layer signaling.
  • the first configuration information and/or the second configuration information are carried in a downlink control channel, where the downlink control information of the control channel is as follows.
  • the first configuration information of the first uplink measurement reference signal and the second configuration information of the second uplink measurement reference signal are included in a same uplink measurement reference signal process. In this way, the association between the first configuration information and the second configuration information can be indicated, and the form of the first configuration information can be made more flexible.
  • an uplink measurement reference signal process may include one or more zero-power uplink measurement reference signal resources and one or more non-zero-power uplink measurement reference signal resources, where one or more zeros The power uplink measurement reference signal resource is included in the first configuration information, and one or more non-zero power uplink measurement reference signal resources are included in the second configuration information.
  • the first configuration information is used to multiplex the configuration signaling (message) of the second configuration information, and the first indication determines that the configuration signaling carries the first configuration information and/or the second configuration information.
  • the existing second configuration information can be compatible, and the configuration signaling is simplified.
  • the configuration signaling includes the first indication, or the first indication is not included in the configuration signaling, but is carried in other signaling (message).
  • the specific indication of how the first indication is sent may be determined according to the settings of the protocol or the requirements of the system.
  • the first configuration information and the second configuration information are carried in different configuration signalings (messages).
  • the first configuration information can be made more flexible.
  • the first indication is carried in downlink control information (DCI) or high layer signaling.
  • DCI downlink control information
  • the specific transmission method can be determined according to the setting of the protocol or the requirements of the system.
  • it is carried in the DCI, and may be carried by a specific cell in the DCI, or may be carried by using a format of the DCI, which is not limited herein, and the other part in the embodiment of the present application refers to “carrying In the DCI” or similar description, reference can be made to the description herein.
  • the first configuration information may be a configuration of a first uplink measurement reference signal that is periodically transmitted, or a configuration of a first uplink measurement reference signal that is a non-periodic transmission, or a semi-persistent The configuration of the transmitted first uplink measurement reference signal.
  • semi-persistent transmission means that activation can be triggered by DCI or MAC CE, and can be deactivated by DCI or MAC CE triggering, or can be activated by DCI or MAC CE for a period of time.
  • this time can be specified by protocol (no need for base station configuration, local pre-storage or pre-configuration) or can be configured through the base station, or it can be activated after receiving the configuration information for a period of time, triggered by DCI or MAC CE.
  • the time between receiving the configuration information and the activation can be specified by the protocol (no base station configuration, local pre-storage or pre-configuration) or can be passed through
  • the station configuration, the period between activation and deactivation can also be specified by the protocol (no base station configuration, local pre-storage or pre-configuration) or can be configured by the base station.
  • the method further includes: the user equipment receives a second indication from the wireless network device, where the second indication is used to indicate that the first uplink measurement reference signal configured by the first configuration information is periodic. Transmission is either acyclic or semi-persistent.
  • the second indication is carried in the high layer signaling, or is carried in the downlink control channel, in the downlink control information of the following control channel.
  • the second configuration information may be a configuration of a second uplink measurement reference signal that is periodically transmitted, or a configuration of a second uplink measurement reference signal that is a non-periodic transmission, or a second that is a semi-persistent transmission.
  • the user equipment may receive a third indication from the wireless network device, where the third indication is used to indicate that the second uplink measurement reference signal configured by the second configuration information is a periodic transmission or a non-periodic transmission.
  • the second indication and the third indication may be different signaling, or may be the same signaling.
  • the second indication and the third indication may be the same
  • An indication may indicate that the configuration of the first configuration information and the second configuration information is applicable to periodic transmission or non-periodic transmission or semi-persistent transmission by the same indication.
  • the first configuration information of the first uplink measurement reference signal is used for aperiodic transmission
  • the first configuration information that the user equipment receives the first uplink measurement reference signal from the wireless network device includes:
  • the user equipment receives first configuration information of the first uplink measurement reference signal from the wireless network device, and is used to indicate multiple sets of time-frequency resources of the first uplink measurement reference signal;
  • the method further includes: the user equipment receives trigger information from a wireless network device, where the trigger information is used to trigger at least one of the multiple sets of time-frequency resources, and the user equipment is in the second uplink measurement reference
  • the second uplink measurement reference signal is sent on the time-frequency resource that is triggered in the non-multiple groups of time-frequency resources in the time-frequency resource of the signal.
  • the configuration information for the aperiodic transmission is transmitted separately from the trigger information, the number of times of configuration information of the aperiodic transmission can be reduced, and the configuration overhead is reduced.
  • the user equipment sends the first uplink measurement reference signal on a time-frequency resource that is triggered in multiple sets of time-frequency resources.
  • the first configuration information is carried in a high-level signaling, where the trigger information is carried in a downlink control channel, such as downlink control information (DCI) carried in a downlink control channel.
  • DCI downlink control information
  • the embodiment of the present invention further provides an uplink measurement reference signal transmission method, which is described in the perspective of the wireless network device, and may refer to the uplink measurement reference signal transmission method provided in the first aspect.
  • the method can include:
  • the wireless network device sends the first configuration information of the first uplink measurement reference signal and the second configuration information of the second uplink measurement reference signal to the user equipment, where the first configuration information is used to configure the time of the first uplink measurement reference signal
  • the second configuration information is used to configure a time-frequency resource of the second uplink measurement reference signal, where the first uplink measurement reference signal is a zero-power uplink measurement reference signal, and the second uplink measurement reference signal is non-zero. Power uplink measurement reference signal;
  • the wireless network device receives the second uplink measurement reference signal from the user equipment, where the second uplink measurement reference signal is not in the first uplink of the time-frequency resource of the second uplink measurement reference signal. Measure the time-frequency resource of the reference signal.
  • the time-frequency resource of the first uplink measurement reference signal is a subset of time-frequency resources of the second uplink measurement reference signal.
  • the first configuration information and the second configuration information are carried in the same message, or are carried in different In the message. That is to say, the first configuration information and the second configuration information may not be sent at the same time, or may be sent at the same time, and the specific manner may be determined according to protocol settings or system requirements.
  • the method further includes:
  • the wireless network device receives signals from other user equipments on time-frequency resources of the first uplink measurement reference signal.
  • the signals of the other user equipment include uplink measurement reference signals or data signals of other user equipments.
  • the first configuration information and/or the second configuration information are carried in the high layer signaling.
  • the first configuration information and/or the second configuration information are carried in a downlink control channel, where the downlink control information of the control channel is as follows.
  • the first configuration information of the first uplink measurement reference signal and the second configuration information of the second uplink measurement reference signal are included in a same uplink measurement reference signal process. In this way, the association between the first configuration information and the second configuration information can be indicated, and the form of the first configuration information can be made more flexible.
  • the first configuration information is used to multiplex the configuration signaling (message) of the second configuration information, and the first indication determines that the configuration signaling carries the first configuration information and/or the second configuration information.
  • the existing second configuration information can be compatible, and the configuration signaling is simplified.
  • the configuration signaling includes the first indication, or the first indication is not included in the configuration signaling, but is carried in other signaling (message).
  • the specific indication of how the first indication is sent may be determined according to the settings of the protocol or the requirements of the system.
  • the first configuration information and the second configuration information are carried in different configuration signalings (messages).
  • the first configuration information can be made more flexible.
  • the first indication is carried in downlink control information (DCI) or high layer signaling.
  • DCI downlink control information
  • the specific transmission method can be determined according to the setting of the protocol or the requirements of the system.
  • the first configuration information may be a configuration of a first uplink measurement reference signal that is periodically transmitted, or a configuration of a first uplink measurement reference signal that is a non-periodic transmission, or a first of a semi-persistent transmission.
  • the configuration of the uplink measurement reference signal may be a configuration of a first uplink measurement reference signal that is periodically transmitted, or a configuration of a first uplink measurement reference signal that is a non-periodic transmission, or a first of a semi-persistent transmission.
  • the method further includes:
  • the wireless network device sends a second indication to the UE, where the second indication is used to indicate that the first uplink measurement reference signal configured by the first configuration information is a periodic transmission or a non-periodic transmission or a semi-persistent transmission. .
  • the second indication is carried in the high layer signaling, or is carried in the downlink control channel, in the downlink control information of the following control channel.
  • the second configuration information may be a configuration of a second uplink measurement reference signal that is periodically transmitted, or a configuration of a second uplink measurement reference signal that is a non-periodic transmission, or a first The configuration of the uplink measurement reference signal.
  • the wireless network device may send a third indication to the UE, where the third indication is used to indicate that the second uplink measurement reference signal configured by the second configuration information is a periodic transmission or a non-periodic transmission or a semi-persistent transmission.
  • the second indication and the third indication may be different signaling, or may be the same signaling.
  • the second indication and the third indication may be the same
  • An indication may indicate that the configuration of the first configuration information and the second configuration information is applicable to periodic transmission or non-periodic transmission or semi-persistent transmission by the same indication.
  • the first configuration information of the first uplink measurement reference signal is used for aperiodic transmission
  • the first configuration information that the wireless network device sends the first uplink measurement reference signal to the user equipment includes:
  • the method further includes: the wireless network device sending trigger information to the user equipment, where the trigger information is used to trigger at least one of the multiple configuration information;
  • the wireless network device And transmitting, by the wireless network device, the second uplink measurement reference signal from the user equipment to the time-frequency resource that is triggered in the non-multiple groups of time-frequency resources in the time-frequency resource of the second uplink measurement reference signal
  • the second uplink measurement reference signal is described.
  • the configuration information for the aperiodic transmission is transmitted separately from the trigger information, the number of times of configuration information of the aperiodic transmission can be reduced, and the configuration overhead is reduced.
  • the first configuration information is carried in the high layer signaling, and the trigger information is carried in the downlink control information (DCI).
  • DCI downlink control information
  • a user equipment including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions for executing the memory stored instructions to control transceivers to receive and transmit signals, and when the processor executes the instructions stored by the memory, the user equipment is used by Any one of the methods involved in the user equipment as described in the first aspect is completed.
  • a wireless network device including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the wireless network device uses Any of the methods involved in the wireless network device as described in the second aspect are completed.
  • an apparatus for uplink reference signal transmission including modules for implementing any of the methods involved in the foregoing user equipment.
  • the specific modules may correspond to the method steps, and are not described herein.
  • an apparatus for uplink reference signal transmission including modules for implementing any of the methods involved in the foregoing wireless network device.
  • the specific modules may correspond to the method steps, and are not described herein.
  • a computer storage medium for storing instructions that, when executed, can perform any of the methods involved in the foregoing user equipment or wireless network device.
  • the eighth aspect further provides a communication system, comprising the user equipment provided by the foregoing third aspect and the wireless network device provided by the fourth aspect.
  • a communication device having a function of implementing the behavior of a wireless network device or user equipment in the above method aspect, comprising means for performing the steps or functions described in the above method aspects .
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the communication device described above includes one or more processors.
  • the one or more processors are configured to support the wireless network device or user equipment to perform corresponding functions in the methods described above. For example, first configuration information and/or second configuration information is generated.
  • the above communication device including one or more processors may further include one or more memories for coupling with the processor, which store programs and/or instructions necessary for the communication device, and may further store data.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the communication device performs the corresponding functions of the wireless network device or the user device in the above method.
  • the communication device described above includes one or more processors and transceiver units.
  • the one or more processors are configured to support the wireless network device or user equipment to perform corresponding functions in the methods described above. For example, first configuration information and/or second configuration information is generated.
  • the transceiver unit is configured to support the wireless network device or the user equipment to communicate with other devices to implement a receiving/transmitting function. For example, transmitting the first configuration information and/or the second configuration generated by the processor Set information, send RRC signaling or MAC CE signaling, and so on.
  • the communication device may further include one or more memories for coupling with the processor, which store program instructions and data necessary for the communication device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the communication device may be a base station, a TRP or a user equipment (which may also be a terminal device), and the transceiver unit may be a transceiver or a transceiver circuit.
  • the transceiver unit can also be an input/output circuit or an interface.
  • the communication device can also be a communication chip.
  • the transceiver unit can be an input/output circuit or an interface of a communication chip.
  • One or more of the above processors may be set centrally or separately.
  • the above one or more memories may be set collectively or separately. This is not limited here.
  • the 3rd generation partnership project (English: 3rd generation partnership project, 3GPP) is a project dedicated to the development of wireless communication networks. Generally, a 3GPP related organization is referred to as a 3GPP organization.
  • a wireless communication network is a network that provides wireless communication functions.
  • the wireless communication network may use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (English: time) Division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division Multiple Carrier (English: Single Carrier FDMA, SC-FDMA for short), Carrier Sense Multiple Access with Collision Avoidance (English: Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • Single carrier frequency division Multiple Carrier English: Single Carrier FDMA, SC-FDMA for short
  • Carrier Sense Multiple Access with Collision Avoidance English: Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM global system for mobile communications/general packet radio service
  • GPRS general packet radio service
  • a typical 3G network is used.
  • the network includes a universal mobile telecommunications system (UMTS) network.
  • UMTS universal mobile telecommunications system
  • a typical 4G network includes a long term evolution (LTE) network.
  • LTE network long term evolution
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • UTRAN universal terrestrial radio access network
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (English: evolved universal terrestrial) Radio access network, referred to as E-UTRAN.
  • a cellular communication network can be divided into a cellular communication network and a wireless local area network (English: wireless local area networks, WLAN for short), wherein the cellular communication network is dominated by scheduling, and the WLAN is dominant.
  • the aforementioned 2G, 3G and 4G networks are all cellular communication networks. It should be understood by those skilled in the art that as the technology advances, the technical solutions provided by the embodiments of the present invention are equally applicable to other wireless communication networks, such as 4.5G or 5G networks, or other non-cellular communication networks. For the sake of brevity, embodiments of the present invention sometimes refer to a wireless communication network as a network.
  • the cellular communication network is a type of wireless communication network, which adopts a cellular wireless networking mode, and is connected between the terminal device and the network device through a wireless channel, thereby enabling users to communicate with each other during activities. Its main feature is the mobility of the terminal, and it has the function of handoff and automatic roaming across the local network.
  • FDD frequency division duplex, frequency division duplex
  • TDD time division duplex, time division duplex
  • User equipment (English: user equipment, abbreviated as: UE) is a terminal device, which can be a mobile terminal. It can also be a non-removable terminal device. The device is mainly used to receive or send business data. User equipment can be distributed in the network. User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees. Upper computer, cordless phone, wireless local loop station, etc. The user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a base station (English: base station, BS for short) device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functions.
  • a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and a device that provides a base station function in a 3G network.
  • BTS base transceiver station
  • BSC base station controller
  • the device providing the base station function in the 4G network includes the evolved Node B (English: evolved NodeB, eNB for short)
  • the device that provides the function of the base station is an access point (English: access point, abbreviated as AP).
  • the device providing the base station function in the future 5G new radio includes the Node B (gNB) that continues to evolve.
  • a wireless device refers to a device that is located in a wireless communication network and that can communicate wirelessly.
  • the device may be a base station, a user equipment, or other network elements.
  • a network-side device is a device located on the network side in a wireless communication network, and may be an access network element, such as a base station or a controller (if any), or may be a core network element or other network. yuan.
  • NR new radio refers to a new generation of wireless access network technology that can be applied to future evolved networks, such as 5G networks.
  • Wireless local area network (English: wireless local area networks, referred to as WLAN) refers to a local area network using radio waves as a data transmission medium, and the transmission distance is generally only several tens of meters.
  • An access point (English: access point, abbreviated as AP) that connects to a wireless network and can also be connected to a wired network device. It can be used as an intermediary point to connect wired and wireless Internet devices to each other and transmit data.
  • RRC radio resource control
  • the RRC processes the third layer information of the control plane between the UE and the UTRAN.
  • the RRC processes the third layer information of the control plane between the UE and the UTRAN.
  • Usually contains at least one of the following features:
  • the information provided by the non-access stratum of the broadcast core network is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition. It also supports the broadcast of upper layer information.
  • the RRC is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition.
  • the RRC connection between the UE and the UTRAN is established, re-established, maintained, and released.
  • an RRC connection is established by the higher layer of the UE.
  • the RRC connection setup procedure includes several steps of reselection of available cells, access grant control, and establishment of a layer 2 signal link.
  • the RRC connection release is also requested by the upper layer to tear down the last signal connection; or when the RRC link fails, it is initiated by the RRC layer. If the connection fails, the UE will request to re-establish an RRC connection. If the RRC connection fails, the RRC releases the allocated resources.
  • the uplink measurement reference signal refers to a known pilot signal transmitted by the user equipment to the network side device for channel estimation or channel sounding.
  • the uplink measurement reference signal may be an uplink sounding reference signal (Sounding Reference Signal, SRS for short).
  • the zero-power uplink measurement reference signal (such as Zero-power SRS, referred to as ZP-SRS) is an uplink measurement reference signal with zero transmit power.
  • the non-zero power uplink measurement reference signal (such as Non zero-power SRS, referred to as NZP SRS) is an uplink measurement reference signal with a non-zero transmit power.
  • the zero-power uplink measurement reference signal resource (such as ZP-SRS resource) includes a time-frequency resource for transmitting a zero-power uplink measurement reference signal.
  • the non-zero power uplink measurement reference signal resource (eg, NZP-SRS resource) includes time-frequency resources for transmitting non-zero power uplink measurement reference signals.
  • the uplink measurement reference signal process (English: SRS process) includes one or more zero-power uplink measurement reference signal resources and one or more non-zero-power uplink measurement reference signal resources.
  • Figure 1 is a schematic diagram of a communication system (only base station and UE are shown);
  • FIG. 2 is a simplified schematic diagram of the internal structure of a base station and a UE
  • FIG. 3 is a schematic flowchart of an uplink reference signal transmission method according to an embodiment of the present disclosure
  • FIG. 3b is a schematic flowchart diagram of another uplink reference signal transmission method according to an embodiment of the present disclosure.
  • 4a is a schematic diagram of an apparatus (such as a wireless network device) for uplink reference signal transmission according to an embodiment of the present invention
  • 4b is a schematic diagram of another apparatus (such as a user equipment) for uplink reference signal transmission according to an embodiment of the present invention
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a network device in accordance with one embodiment of the present application.
  • Figure 7 is a schematic block diagram of a communication device in accordance with one embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread in execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures thereon.
  • These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
  • the network interacts with other systems to communicate in a local and/or remote process.
  • the wireless network device may be a base station, the base station may be used to communicate with one or more user equipments, or may be used to communicate with one or more base stations having partial user equipment functions (such as a macro base station and a micro base station, such as Incoming, communication between the two); the wireless device can also be a user equipment, the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
  • partial user equipment functions such as a macro base station and a micro base station, such as Incoming, communication between the two
  • the wireless device can also be a user equipment, the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
  • User equipment can also Known as a user terminal, and may include functions of a system, a subscriber unit, a subscriber station, a mobile station, a mobile wireless terminal, a mobile device, a node, a device, a remote station, a remote terminal, a terminal, a wireless communication device, a wireless communication device, or a user agent. Some or all of the features.
  • User equipment can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, smart phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), laptop computers, handheld communication devices, handheld computing Devices, satellite wireless devices, wireless modem cards, and/or other processing devices for communicating over wireless systems.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • a base station may also be referred to as an access point, a node, a Node B, an evolved Node B (eNB), or some other network entity, and may include some or all of the functions of the above network entities.
  • the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
  • the base station can act as a router between the wireless terminal and the rest of the access network by converting the received air interface frame to an IP packet, wherein the access network includes an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the management of air interface attributes and can also be a gateway between the wired network and the wireless network.
  • the base station may be an evolved Node B (eNB), a Radio Network Controller (RNC), a Node B (NB), and a Base Station Controller (BSC).
  • Base Transceiver Station (BTS) home base station (for example, Home evolved NodeB, or Home Node B, HNB), BaseBand Unit (BBU), Wireless Fidelity (WIFI), access Point (AP), transmission and receiver point (TRP or transmission point, TP), etc.
  • BTS Base Transceiver Station
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • BBU BaseBand Unit
  • WIFI Wireless Fidelity
  • AP transmission and receiver point
  • TRP or transmission point, TP transmission point
  • 5G such as NR (new radio), gNB in the system, or transmission point (TRP (transmission) And receiving point) or TP (transmission point)
  • a network node constituting a gNB or a transmission point such as a baseband unit (BBU), or
  • the gNB may include a control unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB
  • the DU implements some functions of the gNB.
  • the CU implements the functions of RRC (radio resource control), PDCP (packet data convergence protocol) layer
  • DU implements RLC ( Radio link control, MAC (media access control) and PHY (physical) layer functions. Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture. It is considered to be sent by the DU or sent by the DU+RU.
  • the application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
  • the word "exemplary” is used to mean an example, an illustration, or a description. Any embodiment or design described as “example” in this application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the term use examples is intended to present concepts in a concrete manner.
  • information, signal, message, and channel may sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the difference is not emphasized. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the distinction is not emphasized.
  • Embodiments of the present invention may form the subject of the non-typo as W1, while not emphasize the difference, to express their meaning is the same.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solution provided by the embodiment of the present invention is similar to the technical problem, the evolution of the architecture and the appearance of a new service scenario. The same applies.
  • the embodiment of the present invention can be applied to a time division duplex (TDD) scenario or a frequency division duplex (FDD) scenario.
  • TDD time division duplex
  • FDD frequency division duplex
  • each UE transmits an uplink measurement reference signal, such as an SRS, and the time-frequency code resource is configured by the base station.
  • an uplink measurement reference signal such as an SRS
  • the time-frequency code resource is configured by the base station.
  • the uplink measurement of the UE measures the interference between the reference signals, which in turn affects the channel sounding quality of the UE located at the cell edge.
  • a non-cell network architecture is introduced, that is, a large number of small stations are deployed in a specific area to form a super cell.
  • Each station is a transmission point (TP) of the Hyper cell and is connected to a centralized controller.
  • the UE needs to periodically send an uplink measurement reference signal, and after receiving the reference signal sent by the UE, the network side device can select an optimal TP set (sub-cluster) for the UE. service.
  • the network side device selects a new sub-cluster for the UE to serve, thereby avoiding true cell handover and achieving continuity of the UE service.
  • the uplink measurement reference signal resources are limited, the uplink measurement reference signals sent by multiple UEs, such as SRS, also have serious mutual interference.
  • the network side device includes a wireless network device.
  • the embodiment of the present invention provides an uplink measurement reference signal transmission method, so that interference between uplink measurement reference signals sent by the UE can be measured, so that the network side device can perform power control or uplink measurement according to the measured interference. Reconfiguration of the reference signal or interference cancellation, thereby reducing interference of the uplink measurement reference signal of the UE located at the edge of the cell.
  • the embodiment of the present invention is described by taking a scenario of a 4G network in a wireless communication network as an example. It should be noted that the solution in the embodiment of the present invention may also be applied to other wireless communication networks, and corresponding names may also be used in other wireless communication networks. Replace the name of the corresponding function in .
  • the method or device in the embodiment of the present invention may be applied between a base station and a user equipment, and may also be applied between a base station and a base station (such as a macro base station and a micro base station), and may also be applied to user equipments and users.
  • a base station and a base station such as a macro base station and a micro base station
  • user equipments and users may also be applied to user equipments and users.
  • Between devices such as D2D scenarios), in all embodiments of the present invention, communication between a base station and a UE is taken as an example for description.
  • FIG. 1 is a schematic structural diagram of a communication system.
  • the communication system can include a core network, an access network, and a terminal. Only the wireless network devices included in the access network, such as base stations, and terminals, such as user equipment, are shown in FIG.
  • FIG. 2 is a simplified schematic diagram of the internal structure of a base station and a UE.
  • Exemplary base stations may include an antenna array, a duplexer, a transmitter (TX), and a receiver (RX) (sometimes, TX and RX are collectively referred to as transceiver TRX), and a baseband processing portion.
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include power amplifier PA, digital-to-analog converter DAC and frequency converter.
  • RX can include low noise amplifier LNA, analog-to-digital converter ADC and frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the base station may further include a control portion for performing multi-user scheduling and resource allocation, pilot scheduling, user physical layer parameter configuration, and the like.
  • Exemplary UEs may include an antenna, a duplexer, a transmitter (TX), and a receiver (RX) (sometimes, TX and RX are collectively referred to as transceiver TRX), and a baseband processing portion.
  • TX transmitter
  • RX receiver
  • the UE has a single antenna. Understandably, the UE can also To have multiple antennas (ie antenna arrays).
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include power amplifier PA, digital-to-analog converter DAC and frequency converter.
  • RX can include low noise amplifier LNA, analog-to-digital converter ADC and frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the UE may further include a control part, configured to request an uplink physical resource, calculate channel state information (CSI) corresponding to the downlink channel, determine whether the downlink data packet is successfully received, or the like.
  • CSI channel state information
  • FIG. 3 is a flowchart of a method for transmitting an uplink measurement reference signal according to an embodiment of the present invention, as shown in FIG. 3a, including:
  • the first wireless network device sends configuration information of the first uplink measurement reference signal to the first UE, where the configuration information is used to configure a time-frequency resource of the first uplink measurement reference signal, where the first uplink measurement reference signal is Zero power measurement reference signal;
  • the first UE may be a UE served by the first wireless network device.
  • the configuration information is user-specific (UE-specific).
  • the configuration information may be carried in a high layer signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the configuration information may include time-frequency resource information of the first uplink measurement reference signal.
  • the configuration information may be used to configure other related information of the first uplink measurement reference signal, such as a cycle time, a frequency comb, an antenna port, a bandwidth, a frequency hopping bandwidth, a cyclic offset, and a symbol.
  • CP cyclic prefix
  • time domain length such as one symbol, half symbol, x ms, y us, where x and y are positive numbers, etc.
  • the first time may be defined or configured. The time domain length of the upstream measurement reference signal.
  • the first uplink measurement reference signal when the first uplink measurement reference signal is a periodic transmission, and the first uplink measurement reference signal is a non-periodic transmission or a semi-persistent transmission, the first uplink measurement reference signal
  • the candidate set of the configuration information may be different from the aperiodic transmission, and/or the type of the configuration information of the first uplink measurement reference signal is different from the period of the aperiodic transmission, the difference includes some or all of the differences, and may also include configuration information. The number of types included is different.
  • the candidate set of other related information in the configuration information of the first uplink measurement reference signal may be different from the non-periodic transmission, and/or other related information in the configuration information of the first uplink measurement reference signal.
  • the candidate set is a set of configurable candidate values in the configuration information of the first uplink measurement reference signal, for example, the candidate set of the frequency domain comb rule may be ⁇ 2, 4 ⁇ , or may be ⁇ 2 ⁇ or ⁇ 1 ,2 ⁇ .
  • the candidate set of other related information of the first uplink measurement reference signal is a set of configurable candidate values of one of: cycle time, frequency comb, antenna port, bandwidth, frequency hopping bandwidth, cyclic offset, symbol Number, subcarrier spacing, CP length, time domain length.
  • the type of other related information of the first uplink measurement reference signal includes at least one of the following: cycle time, frequency comb, antenna port, bandwidth, frequency hopping bandwidth, cyclic offset, number of symbols, subcarrier spacing, CP Length, time domain length.
  • the above method can make the overhead of the configuration information when the periodic transmission and the aperiodic transmission are different. Specifically, when the first uplink measurement reference signal is aperiodic transmission, the candidate set and/or type of other related information of the first uplink measurement reference signal in the configuration information is less than the first uplink measurement reference signal.
  • the candidate set and/or type of other related information of the first uplink measurement reference signal in the configuration information may reduce the configuration information during aperiodic transmission, and reduce overhead during aperiodic transmission. Especially when the configuration information is transmitted in the DCI during aperiodic transmission, the overhead of DCI can be reduced.
  • the frequency comb may be 2 or 4 candidates, for example, ⁇ 0, 1 ⁇ or ⁇ 0, 1, 2, 3 ⁇ , where ⁇ 0 , 1 ⁇ corresponds to the number of combs is 2, 0 and 1 are the identification or index of the two combs, the difference between the adjacent subcarriers corresponding to the two combs is 2 subcarrier spacing, ⁇ 0, 1, 2, 3 ⁇ corresponds to the number of combs is 4, 0-3 is the identification or index of the four combs, and the difference between adjacent subcarriers corresponding to the comb is 4 subcarrier spacing.
  • the frequency domain comb ruler may be only two candidates, for example, in the case of the above ⁇ 0, 1 ⁇ , or there may be no candidate, such as the comb rule is specified by the protocol, Local pre-configured or pre-stored, without the network device configured by message, the protocol specified by this protocol can correspond to all sub-carriers (ie, no comb), that is, the difference between adjacent sub-carriers is one sub-carrier. Case.
  • the first uplink measurement reference signal when the first uplink measurement reference signal is periodically transmitted, one or more of a cycle time, a frequency comb, an antenna port, a bandwidth, a frequency hopping bandwidth, and a cyclic offset may be configured.
  • the first uplink reference signal is aperiodic, the one or more of the cycle time, the frequency comb, the bandwidth, the frequency hopping bandwidth, and the cyclic offset may not be configured.
  • the bandwidth of the first uplink measurement reference signal may be one of the following when the bandwidth and/or the frequency hopping bandwidth are not configured.
  • the transmission bandwidth of the uplink data channel (such as the physical uplink shared channel PUSCH) of the UE, or the bandwidth of the second uplink measurement reference signal, or the bandwidth of the bandwidth part (BWP) configured by the UE is the bandwidth that the UE configured for the base station can use for uplink PUSCH transmission. Which bandwidth is specified by the agreement.
  • the transmission bandwidth of the PUSCH scheduled by the UE may be a subset of the BWPs configured by the UE.
  • the predefined first uplink measurement reference signal occupies each subcarrier within the bandwidth of the first uplink measurement reference signal.
  • the configuration signaling overhead can be reduced by reducing the configured items, for example, for a time slot configured with 4 symbols for transmitting the first uplink measurement reference signal, if no cycle time is configured , frequency comb, antenna port, bandwidth, frequency hopping bandwidth, cyclic offset, then only symbols can be configured.
  • 4 bits can be used to configure whether the 4 symbols are used to map the first uplink measurement reference signal ( That is, the bit map bitmap method), the overhead is low.
  • the time interval between the first uplink measurement reference signal and the configuration signaling may also be configured, for example, the time interval may be N time domain units (also referred to as time domain resources).
  • Unit N is an integer greater than or equal to 0, and is used to indicate the interval of the time domain unit in which the first uplink measurement reference signal is located and the time domain unit in which the channel to which the signaling is transmitted is located, where the time domain unit may be time Gap or symbol or mini-slot or sub-frame.
  • N can be specified by the protocol or configured by the network device.
  • the aperiodic first uplink measurement reference signal or the first uplink measurement reference signal triggered by the DCI, occupies all the sub-bands in the bandwidth of the first uplink measurement reference signal on the mapped symbol. Carrier.
  • the base station may first pass the high layer signaling, such as RRC signaling or media access control control element (MAC CE).
  • the signaling configures a plurality of candidate first uplink measurement reference signal configurations (also referred to as configuration information of the first uplink measurement reference signal), and then the one or more first uplink measurement reference signal configurations are triggered by the DCI.
  • the specific triggering method may include, in a domain in which the DCI is used to trigger the candidate first uplink measurement reference signal configuration, an element corresponding to the candidate first uplink measurement reference signal configuration, where each element may correspond to one candidate first uplink measurement reference.
  • the signal configuration is used to indicate whether the corresponding candidate first uplink measurement reference signal configuration is triggered, where each element may include 1 bit, or multiple bits, which is not limited herein.
  • the base station may configure one or more candidate first uplink measurement reference signal configuration groups by using high layer signaling, such as RRC signaling or MAC CE signaling, and one or more groups are triggered by the DCI.
  • the base station can trigger multiple first uplink measurement reference signal configurations more efficiently.
  • the correspondence between the domain for triggering the configuration of the candidate first uplink measurement reference signal and the candidate first uplink measurement reference signal configuration group in the DCI may be expressed as a list, a formula, a string of characters, an array, or A piece of code. This correspondence can be pre-configured or pre-stored locally by the protocol. Taking the form of the correspondence as a list, a specific example is given in the following table.
  • the base station triggers a candidate first uplink measurement reference signal configuration group by using a domain indication in the DCI for triggering the configuration of the candidate first uplink measurement reference signal. . For example, the base station triggers a candidate first uplink measurement reference signal configuration group 0 by using a field “00” in the DCI for triggering the candidate first uplink measurement reference signal configuration.
  • the values in the fields in the following table are binary numbers, and can also be expressed in decimal, octal or hexadecimal numbers.
  • the value of the field in the DCI for triggering the configuration of the candidate first uplink measurement reference signal may not be limited to 0-3 in the following table, and may be other values, which is not limited herein.
  • the candidate first uplink measurement reference signal configuration group may include one or more candidate first uplink reference signal configurations.
  • the candidate first uplink measurement reference signal configuration group and its corresponding one or more candidate first uplink reference signal configurations may be represented by a list, a formula, a string of characters, an array, or a piece of code.
  • the correspondence may be pre-configured or pre-stored locally by a protocol; the correspondence may also be configured by the base station. For example, the correspondence between the candidate first uplink measurement reference signal configuration group and the candidate first uplink reference signal configuration is given in the following table.
  • Candidate first uplink measurement reference signal configuration group Candidate first uplink measurement reference signal configuration
  • Candidate first uplink measurement reference signal configuration group 0 Candidate first uplink measurement reference signal configuration ⁇ 0, 1 ⁇
  • Candidate first uplink measurement reference signal configuration group 1 Candidate first uplink measurement reference signal configuration ⁇ 0, 2 ⁇
  • Candidate first uplink measurement reference signal configuration group 2 Candidate first uplink measurement reference signal configuration ⁇ 2 ⁇
  • Candidate first uplink measurement reference signal configuration group 3 Candidate first uplink measurement reference signal configuration ⁇ 0, 1, 2, 3 ⁇
  • the value of 0-3 is the identifier or the index of the configuration of the first uplink measurement reference signal or the configuration group. The value is not limited herein.
  • a first uplink measurement reference signal configuration may correspond to a first uplink measurement reference signal resource.
  • the candidate first uplink measurement reference signal configuration group in the foregoing embodiment may be a first uplink measurement reference signal.
  • the resource group, the candidate first uplink measurement reference signal configuration may be the first uplink measurement reference signal resource.
  • the specific multiple designs of the first uplink measurement reference signal in this application may be independently applied (decoupled) or may be The specific design decoupling or the respective combination of the two uplink measurement reference signals does not affect the application or implementation of the present application.
  • the first UE receives configuration information of the first uplink measurement reference signal sent by the first wireless network device.
  • the foregoing method may further include: S3.
  • the first UE sends the first uplink measurement reference signal on a time-frequency resource of the first uplink measurement reference signal according to the configuration information.
  • the time-frequency resource of the first uplink measurement reference signal configured by the configuration information of the first uplink measurement reference signal in S1 may be the time-frequency resource of the uplink measurement reference signal of the non-zero power of the first UE. Subset.
  • the first uplink measurement reference signal sent by the first UE can be implemented in multiple manners. For example, two of the foregoing may be: first, the first UE sends a zero-power uplink measurement reference signal; UE does not send Non-zero power upstream measurement reference signal.
  • the first wireless network device Transmitting, by the first wireless network device, configuration information of the zero-power uplink measurement reference signal to the first UE, so that the first UE may be silent on the time-frequency resource of the non-zero-power uplink measurement reference signal (ie, not transmitting non-zero power) Uplink measurement reference signal, or send zero power uplink measurement reference signal).
  • the first wireless network device can measure the signals of other UEs on the time-frequency resources (also referred to as interference signals) on the time-frequency resources of the zero-power uplink measurement reference signals, so that the first wireless network device
  • the power control, resource reconfiguration, or interference cancellation may be performed according to the measured result, thereby reducing the interference of the non-zero power uplink measurement reference signal of the first UE, and improving the accuracy of the channel state estimation.
  • the foregoing method may further include:
  • the first wireless network device receives the signal sent by the second UE on the time-frequency resource of the first uplink measurement reference signal.
  • the signal may be a third uplink measurement reference signal, and the third uplink measurement reference signal is a non-zero power measurement reference signal; or the signal may be data (for example, the second UE is adjacent to the first wireless network device) When the UE served by the wireless network device).
  • the second UE is a UE served by the first wireless network device, and may also be a UE served by a neighboring wireless network device of the first wireless network device.
  • the first radio network device may also configure the second UE to send the time-frequency resource and sequence information of the third uplink measurement reference signal.
  • the sequence of the third uplink measurement reference signal is orthogonal to the sequence of the second uplink measurement reference signal of the first UE.
  • the second wireless network device may also configure the second UE to send the third uplink measurement reference for the second UE. Time-frequency resources and sequence information of the signal.
  • the second radio network device configures the second UE to send the time-frequency resource and the sequence information of the third uplink measurement reference signal, where the second UE may send the second UE with the first UE.
  • the time-frequency resources and sequence information of the uplink measurement reference signal are independently configured.
  • the second wireless network device may perform information with the first wireless network device.
  • the interaction may be such that the configuration of the third uplink measurement reference signal and the second uplink measurement reference signal may cooperate, for example, such that the sequence of the third uplink measurement reference signal is orthogonal to the sequence of the second uplink measurement reference signal, for example,
  • the power of the third uplink measurement reference signal and the second uplink measurement reference signal may be adjusted accordingly, so that the interference between the two is reduced.
  • the method may further include:
  • the first wireless network device sends configuration information of the second uplink measurement reference signal to the first UE, where the configuration information is used to configure a time-frequency resource of the second uplink measurement reference signal, and the second uplink measurement reference signal Measuring the reference signal for non-zero power;
  • the configuration information is carried in high layer signaling, such as RRC signaling.
  • the configuration information may include time-frequency resource information of the second uplink measurement reference signal.
  • the first UE receives configuration information of the second uplink measurement reference signal sent by the first wireless network device.
  • the first UE sends the second uplink measurement reference signal on a time-frequency resource that is not the first uplink measurement reference signal in the time-frequency resource of the second uplink measurement reference signal according to the configuration information.
  • the time-frequency resource of the first uplink measurement reference signal is a subset of time-frequency resources of the second uplink measurement reference signal.
  • the second uplink measurement reference signal that is originally to be sent on the time-frequency resource of the first uplink measurement reference signal is not sent.
  • the uplink channel when the user equipment sends an uplink channel, the uplink channel is mapped on a time-frequency resource other than the time-frequency resource of the first uplink measurement reference signal, or the uplink channel is not Mapping on a time-frequency resource of the first uplink measurement reference signal.
  • the uplink channel may be an uplink data channel, for example, a physical uplink shared channel (PUSCH) and/or an uplink control channel, such as a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the PUSCH is mapped on the resource that is not used to transmit the first uplink measurement reference signal, and the user needs to perform rate matching according to the time-frequency resource that can be mapped by the PUSCH.
  • the uplink channel is a PUCCH
  • the user equipment does not map the PUCCH on the time-frequency resource of the first uplink measurement reference signal, or the PUCCH is mapped on the time-frequency resource of the first uplink measurement reference signal.
  • the user equipment needs to perform rate matching according to a PUCCH mappable time-frequency resource.
  • the user equipment does not send the first uplink measurement reference signal on the resource of the PUCCH, or the first uplink measurement reference signal is mapped on the time-frequency resource of the first uplink measurement reference signal other than the resource of the PUCCH.
  • the second uplink measurement reference signal may be determined according to the mapping manner of the foregoing first uplink measurement reference signal and the PUSCH and/or the PUCCH. Or a mapping method of PUSCH and/or PUCCH.
  • the resource of the first uplink measurement reference signal may also be part or all of a rate matching resource (RMR), or part or all of an uplink RMR.
  • RMR rate matching resource
  • the time resource, the cycle time, the frequency comb, the bandwidth, the frequency hopping bandwidth, the number of symbols, the subcarrier spacing, the CP length, and the time domain length in the configuration information of the first uplink measurement reference signal can also be understood as the first uplink. Measure configuration information of reference signal resources.
  • frequency comb information and sequence information (also referred to as code information) of the first uplink measurement reference signal may be the same as the second uplink measurement reference signal.
  • a cycle time of the first uplink measurement reference signal is longer than a cycle time of the second uplink measurement reference signal.
  • any one of S5 and S1-S4 may not be limited, and the time relationship between any of the steps S1 and S1 may not be limited, and S6 may be after S5. .
  • the method may further include:
  • the first radio network device obtains sequence information of the third uplink measurement reference signal sent by the second UE received on the time-frequency resource of the first uplink measurement reference signal, and determines, according to the sequence information, whether it is caused to be the first The interference of the second uplink measurement reference signal sent by the UE.
  • Determining whether the third uplink measurement reference signal causes interference to the second uplink measurement reference signal according to whether the sequence of the third uplink measurement reference signal is orthogonal to the sequence of the second uplink measurement reference signal.
  • the sequence of the third uplink measurement reference signal is not orthogonal to the sequence of the second uplink measurement reference signal, determining that the third uplink measurement reference signal causes interference on the second uplink measurement reference signal;
  • the first network device can not only measure the interference condition in the power dimension, but also determine whether the third uplink measurement reference signal is the interference of the second uplink measurement reference signal in the sequence dimension, and further improve the accuracy of the interference measurement. .
  • the method may further include:
  • the first user equipment receives a first indication from the first wireless network device, where the first indication is used to indicate that the configuration information is configuration information of the first uplink measurement reference signal.
  • the first indication, the configuration information of the first uplink measurement reference signal and the configuration information of the second uplink measurement reference signal may be used to multiplex signaling (message), or the first UE may correctly parse the received configuration information. . It can be understood that, in the case that there is no explicit first indication, the first UE may be configured according to the format of the configuration information or the occupied resource information (such as at least one of a time domain resource and a frequency domain resource), or In another manner of implicit indication, the configuration information is determined to be configuration information of the first uplink measurement reference signal.
  • the first indication may be transmitted independently of the configuration information, or may be carried in the configuration information for transmission.
  • the first indication may be a UE-specific parameter
  • the first indication may also be referred to as a type indication, that is, the uplink measurement reference signal configured by the configuration information is a zero power measurement reference signal, or a non-zero power measurement reference signal.
  • the first indication may be used to indicate that the configuration information is configuration information of the first uplink measurement reference signal or configuration information of the second uplink measurement reference signal.
  • the first indication may be 1 bit. For example, when the first indication is 0, the configuration information is configuration information of the first uplink measurement reference signal, and when the first indication is 1, the configuration information is the second uplink measurement. Reference signal configuration information.
  • the configuration information is used to indicate configuration information of the first uplink measurement reference signal or configuration information of the second uplink measurement reference signal by using the first indication. For example, if the first indication exists, the configuration information is configured as the configuration information of the first uplink measurement reference signal; if the first indication does not exist, the configuration information is indicated as the configuration information of the second uplink measurement reference signal.
  • the method may further include:
  • the first user equipment receives a first indication from the first wireless network device, where the first indication is used to indicate that the configuration information is configuration information of the second uplink measurement reference signal.
  • the method may further include:
  • the first wireless network device sends a second indication to the first UE, where the second indication is used to indicate that the first uplink measurement reference signal configured by the configuration information is a periodic transmission or a non-periodic transmission or a semi-persistent transmission.
  • the second indication may enable the first UE to correctly parse the received configuration information. Or, because the parameters included in the configuration information for the periodic transmission, the aperiodic transmission, and the semi-persistent transmission may be different, or the parameters are the same and the meanings are different, the first UE may be correctly parsed by the second indication.
  • Received Configuration information may be used to indicate the parameters included in the configuration information for the periodic transmission and the aperiodic transmission.
  • the second indication may be carried in high layer signaling, such as RRC signaling.
  • the configuration information that the first user equipment receives the first uplink measurement reference signal from the first wireless network device includes:
  • the first user equipment receives configuration information of the first uplink measurement reference signal from the first wireless network device, and is used to indicate multiple sets of time-frequency resources of the first uplink measurement reference signal;
  • the method further includes: the first user equipment receives trigger information from a first wireless network device, where the trigger information is used to trigger at least one time-frequency resource of the first user equipment in multiple sets of time-frequency resources. Transmitting the first uplink measurement reference signal.
  • the trigger information may include identifier information of at least one group of time-frequency resources of the plurality of sets of time-frequency resources, such as an identifier of the uplink measurement reference signal, such as an SRS ID.
  • the configuration information may be carried in a high-level signaling, such as RRC signaling, where the trigger information may be carried in downlink control information (DCI).
  • DCI downlink control information
  • the method may further include:
  • the first wireless network device sends a third indication to the first UE, where the third indication is used to indicate that the second uplink measurement reference signal configured by the configuration information is a periodic transmission or a non-periodic transmission or a semi-persistent transmission.
  • the third indication may be carried in high layer signaling, such as RRC signaling.
  • the configuration information that the first user equipment receives the second uplink measurement reference signal from the first wireless network device includes:
  • the first user equipment receives configuration information of a second uplink measurement reference signal from the first wireless network device, and is used to indicate multiple sets of time-frequency resources of the second uplink measurement reference signal;
  • the first user equipment receives the trigger information from the first wireless network device, where the trigger information is used to trigger the first user equipment to send the second on at least one set of time-frequency resources of the multiple sets of time-frequency resources.
  • Upstream measurement reference signal is used to trigger the first user equipment to send the second on at least one set of time-frequency resources of the multiple sets of time-frequency resources.
  • the trigger information may include identifier information of at least one group of time-frequency resources of the plurality of sets of time-frequency resources.
  • the configuration information may be carried in a high-level signaling, such as RRC signaling, where the trigger information may be carried in downlink control information (DCI).
  • DCI downlink control information
  • the first uplink measurement reference signal and the second uplink measurement reference signal may be included in a same uplink measurement reference signal process.
  • One uplink measurement reference signal process may include one or more information for resources of the first uplink measurement reference signal transmission, and/or one or more information for resources of the second uplink measurement reference signal transmission.
  • the information of the resource includes one or more of resource information such as time domain resource information, frequency domain resource information, and sequence information. That is, the configuration information of the first uplink measurement reference signal may include one or more information for resources of the first uplink measurement reference signal transmission, and the configuration information of the second uplink measurement reference signal may include one or A plurality of information for resources of the second uplink measurement reference signal transmission.
  • the first uplink measurement reference signal and the second uplink measurement reference signal may also be separately configured, that is, the concept of no uplink measurement reference signal process.
  • the first UE may be located at an edge of a cell served by the first wireless network device.
  • the second UE when the second UE is served by the second wireless network device, the second UE may be located at an edge of a cell served by the second wireless network device.
  • the method for transmitting the uplink measurement reference signal may enable the wireless network device to measure the non-zero power uplink measurement reference signal sent by the other user equipment on the time-frequency resource of the zero-power uplink measurement reference signal sent by the user equipment ( It can also be referred to as interference, and then, by the wireless network device, based on the measured interference, performing power control, uplink measurement reference signal reconfiguration, or interference cancellation, etc., thereby reducing non-zero power uplink of the user equipment.
  • the purpose of measuring interference on the reference signal may enable the wireless network device to measure the non-zero power uplink measurement reference signal sent by the other user equipment on the time-frequency resource of the zero-power uplink measurement reference signal sent by the user equipment ( It can also be referred to as interference, and then, by the wireless network device, based on the measured interference, performing power control, uplink measurement reference signal reconfiguration, or interference cancellation, etc., thereby reducing non-zero power uplink of the user equipment.
  • the purpose of measuring interference on the reference signal may enable the wireless network
  • the foregoing configuration information may further include one or more of a frequency hopping bandwidth, a number of symbols, a subcarrier spacing, a CP length, a time domain length, and the like.
  • the uplink measurement reference signal is an example of a sounding reference signal (SRS), and the zero-power uplink measurement reference signal may be represented as a ZP SRS (zero power SRS), and the non-zero power uplink
  • the measurement reference signal can be expressed as NZP SRS (non-zero power SRS).
  • the configuration information of the specific first uplink measurement reference signal (that is, the zero-power uplink measurement reference signal) may be:
  • the CSI-RS-ConfigZPId-r11 indicates the ID of the ZP SRS resource corresponding to the group configuration information
  • the srs-AntennaPort-r10 indicates the antenna port number used by the UE to send the ZP SRS
  • the srs-Bandwidth indicates the ZP SRS Bandwidth
  • srs-HoppingBandwidth indicates the frequency hopping bandwidth of the ZP SRS
  • frequency hopping for ZP SRS usually used for periodic transmission of ZP SRS
  • freqDomainPosition indicates the frequency domain start position of ZP SRS
  • duration indicates the duration of ZP SRS Time
  • srs-ConfigIndex indicates the configuration index of ZP SRS
  • transmissionComb indicates the value of the comb (also called frequency comb) used by ZP SRS
  • cyclicShift indicates the cyclic shift used by the ZP SRS sequence
  • Periodicity indicates the cycle time of ZP SRS. .
  • the above configuration information is an example of configuration information of a periodically transmitted ZP SRS.
  • the content included in the configuration information may have other forms, for example, a combination of one or more of the information included in the above configuration information, and the specific information of the foregoing information is taken.
  • the value may also differ from the value in the above example, and is not limited herein.
  • the configuration information of the specific non-zero power uplink measurement reference signal may be:
  • the CSI-RS-ConfigNZPId-r11 indicates the ID of the NZP SRS resource corresponding to the group configuration information, and the other parameters in the configuration information all indicate the corresponding configuration information of the NZP SRS, and the specific meaning and the ZP SRS configuration information. The meaning is the same.
  • an uplink measurement reference signal process such as an SRS process, may be defined, and the process may include resource information of one or more zero-power uplink measurement reference signals (each resource information may correspond to one identifier (ID) )) and/or information of resources of one or more non-zero power uplink measurement reference signals (each resource information corresponds to an identification (ID)).
  • ID identifier
  • ID an identification
  • the information of the uplink measurement reference signal process is carried by high layer signaling, such as RRC signaling.
  • the UE obtains a zero-power uplink measurement reference signal or a non-power uplink measurement reference corresponding to the current configuration information by using a difference between the IDs of the configuration information of the zero-power uplink measurement reference signal and the non-zero-power uplink measurement reference signal. signal.
  • an SRS process can be defined as:
  • the SRS-ProcessId represents the identifier (ID) of the SRS process
  • the SRS-ConfigNZPId represents the NZP SRS resource ID
  • the SRS-ConfigZPId represents the ZP SRS resource ID.
  • the NZP SRS resource ID and the ZP SRS resource ID are different, and the difference may identify different resources, and may also identify whether the resource is used for the NZP SRS or the ZP SRS.
  • the NZP SRS resource ID is also used to identify different NZP SRS resources.
  • the ZP SRS resource ID is also used to identify different ZP SRS resources.
  • the uplink measurement reference signal process may not be defined, but the configuration of the zero-power uplink measurement reference signal and the non-zero-power uplink measurement reference signal may be directly performed, for example, carrying one or Resource information of a plurality of zero-power uplink measurement reference signals (the information of each resource may correspond to one identifier (ID)), and/or resource information of one or more non-zero power uplink measurement reference signals (information of each resource) Can correspond to an identification (ID)).
  • ID identifier
  • ID identification
  • the configuration information of the zero-power uplink measurement reference signal of the configuration information may be distinguished by the identifier information of the zero-power uplink measurement reference signal or the identifier information of the non-zero power uplink measurement reference signal included in the configuration information. It is also the configuration information of the non-zero power uplink measurement reference signal.
  • the information of the resources of the zero-power uplink measurement reference signal may be differentiated by the identifier information of the zero-power uplink measurement reference signal, and/or the non-zero power uplink measurement is performed.
  • the identification information of the reference signal distinguishes information of resources of different non-zero power uplink measurement reference signals.
  • a type indication (ie, the foregoing first indication) may be defined, where the configuration information is used to indicate configuration information of the configuration information as a zero power uplink measurement reference signal, or configuration information of a non-zero power uplink measurement reference signal.
  • the type indication may be carried in the configuration information or may be carried in the DCI or high layer signaling independently.
  • whether the zero-power uplink measurement reference signal is a periodic transmission or an aperiodic transmission may be indicated by a second indication.
  • whether the zero power uplink measurement reference signal is a periodic transmission or a non-periodic transmission or a semi-persistent transmission may be indicated by a second indication.
  • the second indication may be carried in the high layer signaling.
  • the second indication may be a trigger type 0 or a trigger type 1, where the trigger type 0 indicates a zero-power uplink measurement reference signal periodically transmitted, and the trigger type 1 indicates a zero-power uplink measurement of the aperiodic transmission.
  • Reference signal may be a trigger type 0 or a trigger type 1 or a trigger type 2, where the trigger type 0 indicates a zero-power uplink measurement reference signal for periodic transmission, and the trigger type 1 indicates zero for non-periodic transmission.
  • the power uplink measurement reference signal, trigger type 2 indicates a zero-power uplink measurement reference signal for semi-continuous transmission.
  • the semi-persistent transmission may be activated by DCI or MAC CE, such as activating the transmission of the first or second uplink measurement reference signal, and triggering deactivation by DCI or MAC CE, such as stopping the first or the first
  • the transmission of the second uplink measurement reference signal may be triggered by DCI or MAC CE activation, and may be activated after a period of time, which may be specified by the protocol (no base station configuration, local pre-storage or pre-configuration) or It can be configured by the base station, or it can be activated for a period of time after receiving the configuration information (such as activation by a timer), deactivated by DCI or MAC CE, or activated after a period of time (such as deactivation by a timer).
  • the time between receipt of configuration information and activation can be specified by protocol (no base station configuration, local pre-storage or pre-configuration) or can be configured by the base station.
  • the time between activation and deactivation can also be specified by agreement ( No base station configuration, local pre-storage or pre-configuration is required or can be configured through the base station.
  • the value of the specific trigger type 0-2 and the meaning indicated by the foregoing is an example.
  • the value of the trigger type may also be other definitions, which is not limited herein.
  • the multiple sets of time-frequency resource information of the non-periodic zero-power uplink measurement reference signal may be configured by using the high-layer signaling. Since the configuration of the high-level signaling is a static or semi-static configuration, the application period of these configuration information is long.
  • the activation of one or more groups of the foregoing time-frequency resource information is triggered by a downlink control channel, such as a DCI format of a PDCCH (physical downlink control channel), or to indicate that activation of any resource information is not triggered.
  • a downlink control channel such as a DCI format of a PDCCH (physical downlink control channel)
  • the activation of the group or groups of resource information in the foregoing time-frequency resource information may be triggered, and may be indicated by a specific DCI format, that is, a specific DCI format and a group that can trigger the foregoing time-frequency resource information (or
  • the activation of the resource information is further indicated by the parameters (domains) carried in the DCI format.
  • the DCI format 4 can pass 2 bits, such as a Value of SRS request field.
  • any of the three sets of time-frequency resource information is triggered or does not trigger any configuration information
  • the three sets of time-frequency resource information that can be triggered by DCI format 4 can be bound to DCI format 4, and the binding is
  • the relationship can be pre-scheduled for the protocol, and no configuration is required during the communication process.
  • DCI formats 0/1A/2B/2C/2D one type of resource information can be triggered by one bit or no resource information can be triggered, and which one group can be triggered by DCI formats 0/1A/2B/2C/2D.
  • Frequency resource Information can be determined by a predetermined binding relationship.
  • the above measurement reference signal is an SRS as an example, and how the sequence, time domain, and frequency domain resources of the SRS are configured according to parameters in the configuration information.
  • sequence, time domain and frequency domain resources of the NZP SRS and the ZP SRS can be configured according to the parameters in the configuration information can be the same.
  • the parameters in the information may be configured in a manner that may be used in a future communication system, such as a protocol specified in a 5G communication system, and may have different parameter names and definitions in the manner of the LTE protocol (eg, a time domain resource unit (corresponding to LTE)
  • LTE protocol eg, a time domain resource unit (corresponding to LTE)
  • the definition of the subframe, the time slot, the symbol, and the like), the frame structure, the subcarrier spacing, and the cyclic prefix (CP) length are not limited herein.
  • part or all of the configuration information of the first uplink measurement reference signal and/or the second uplink measurement reference signal may be carried in user-specific (UE-specific) signaling, where
  • the configuration information of the first uplink measurement reference signal and/or the second uplink measurement reference signal includes at least one of the following: time resource, cycle time, frequency comb, bandwidth, frequency hopping bandwidth, number of symbols, subcarrier spacing, CP length , the length of the time domain.
  • the configuration information of the first uplink measurement reference signal and/or the second uplink measurement reference signal may also be understood as information for configuring resources of the first uplink measurement reference signal and/or resources of the second uplink measurement reference signal.
  • the configuration information of the first uplink measurement reference signal and/or the second uplink measurement reference signal is all carried in user-specific (UE-specific) signaling, and the configuration information in the NR multi-numerology scenario can be avoided to be cell-specific.
  • UE-specific user-specific
  • the numerology refers to a parameter of a frame structure, and may include a subcarrier spacing and/or a CP length.
  • the uplink sounding reference signal SRS signal sequence may be any uplink sounding reference signal SRS signal sequence.
  • u ⁇ 0,1,...29 ⁇ is the number of physical uplink control channel (PUCCH) sequence groups, and v is the number of base sequences in each group.
  • PUCCH physical uplink control channel
  • v is the number of base sequences in each group.
  • SRS cyclic shift can be
  • the subframe in which the SRS sent by any UE in the cell is located may be determined by a 4-bit cell-specific "SRS subframe configuration" parameter "srsSubframeConfiguration", which has 16 modes and can be configured with one physical frame (10 ms).
  • the T SFC is a subframe configuration period
  • the ⁇ SFC is a cell-specific subframe offset. Where ⁇ SFC is an offset with respect to a certain subframe, and is an offset with respect to subframe 0 in LTE.
  • the specific 16 modes are as shown in Table 1 below:
  • Table 1 SRS subframe configuration for frame structure type 1
  • the SRS transmission is located in the last OFDM symbol of the configured subframe, and the OFDM symbol allocated to the SRS does not allow data transmission of the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the periodic transmission SRS configuration is performed on one UE, and the value of the specific period may be determined according to the Periodicity parameter in the foregoing configuration information.
  • the value of the specific period may be one of the set of T1, T2, T3, T4, and the like in the foregoing configuration information.
  • the set of periods may be ⁇ 2, 5, 10, 20, 40, 80, 160, 320 ⁇ ms.
  • the specific subframe offset T offset can be configured by a 10-bit "SRS Configuration Index, SRS Configuration Index ISRS".
  • frequency hopping there is no frequency hopping for the non-periodic SRS.
  • frequency hopping can be used. In this case, the frequency hopping is between subframes, and the frequency domain resources occupied by the SRSs in different subframes are different.
  • the cell-level SRS bandwidth C SRS ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ is configured through high-level signaling, such as Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the SRS bandwidth configuration B SRS of the UE level may be indicated by the srs-Bandwidth parameter in the foregoing configuration information).
  • a cell-level SRS bandwidth may include four UE-level SRS bandwidths B SRS ⁇ 0, 1, 2, 3 ⁇ , and configure sub-carrier comb (comb) parameters for SRS transmission.
  • the terminal can determine the specific frequency domain resources of the SRS transmission.
  • the embodiment of the present invention further provides a method for transmitting an uplink measurement reference signal, by controlling the power of the non-zero power uplink measurement reference signal, so that the transmission power of the non-zero power uplink measurement reference signal on some preset time-frequency resources is 0. (equivalent to transmitting a zero-power uplink measurement reference signal), so that a wireless network device (such as a first wireless network device) can measure the received signal on these time-frequency resources to obtain a user equipment (such as the first The interference condition of the uplink measurement reference signal of the UE).
  • a wireless network device such as a first wireless network device
  • the preset time-frequency resource may be determined according to a configuration of a protocol predefined or a zero-power uplink measurement reference signal selected by the wireless network device.
  • the difference from the embodiment corresponding to FIG. 3a is that, in this embodiment, the configuration information of the zero-power uplink measurement reference signal may not be sent to the UE, but the wireless network device directly measures the reference signal by using the non-zero power uplink according to the configuration.
  • the power control is performed on the time-frequency resource indicated by the configuration to implement the transmission of the zero-power uplink measurement reference signal (that is, the transmission power on the time-frequency resource indicated by the configuration is zero).
  • the user equipment is in a time domain resource unit (such as the i-th) (the time domain resource unit may be a unit of time domain resources defined in a protocol such as a subframe or a time slot), and the transmit power of the non-zero power uplink measurement reference signal P SRS is
  • P SRS (i) min ⁇ P CMAX (i), P SRS_OFFSET (m)+10log 10 (M SRS )+P O_PUSCH (j)+ ⁇ (j) ⁇ PL+f(i) ⁇
  • the unit of P SRS may be dBm, P CMAX (i) is the maximum transmit power of the user equipment in the i-th subframe configured on the network side, and P SRS_OFFSET (m) is a high-level parameter configured by the upper layer semi-statically, for periodicity.
  • the indication related to the time domain resource unit in the parameter (referred to as the power configuration parameter) included in the formula may be indicated by an existing manner, and the indication may be a time domain resource unit level (eg, Sub-frame level).
  • the control parameters may be carried in higher layer signaling (such as RRC signaling) or in the downlink control channel, in the DCI of the following line control information.
  • the configuration of the power control parameter may be a time domain resource unit level, for example, may be indicated by an indication manner of a parameter related to a time domain resource unit in formula (1), such as an existing formula. (1) The indication method of the parameters related to the time domain resource unit.
  • the UE controls the transmit power of the uplink measurement reference signal to be 0. Otherwise, the transmit power of the uplink measurement reference signal is determined according to the above formula 1.
  • the method may include:
  • the wireless network device sends a zero power configuration parameter to the UE, where the zero power configuration parameter is used to indicate that the emission control of the uplink measurement reference signal on one or more time-frequency resources is 0;
  • the zero power configuration parameter is used to indicate that the emission control of the uplink measurement reference signal on a time domain resource unit is 0;
  • the UE receives the zero power configuration parameter, and controls a transmit power of the uplink measurement reference signal on the one or more time-frequency resources to be zero.
  • it may also include:
  • the wireless network device sends, to the UE, configuration information of a non-zero power uplink measurement reference signal, where the configuration information is used to indicate a time-frequency resource for transmitting a non-zero power uplink measurement reference signal;
  • the UE receives configuration information of a non-zero power uplink measurement reference signal from the wireless network device, and sends a non-zero power uplink measurement reference signal on the time-frequency resource indicated by the configuration information.
  • S303-304 and S301-302 may be unlimited.
  • the power of the non-zero power uplink measurement reference signal is determined by a power configuration parameter from the wireless network device.
  • the power configuration parameter has a lower priority than the zero power configuration parameter.
  • the power configuration parameter includes a parameter of a time domain resource unit level.
  • the configuration of the non-zero power uplink measurement reference signal may refer to the non-zero power uplink measurement reference signal in the foregoing embodiment corresponding to FIG. 3a. Description (such as steps S5, S6), which will not be described here.
  • the interference control of the uplink measurement reference signal of the UE can be measured by controlling the transmission control of the non-zero power uplink measurement reference signal to be zero.
  • an embodiment of the present invention further provides an apparatus for uplink measurement reference signal transmission, which may be a wireless device 10.
  • the wireless device 10 can correspond to a first wireless network device of the above methods.
  • the first wireless network device may be a base station or other devices, which is not limited herein.
  • the apparatus can include a processor 110, a memory 120, a bus system 130, a receiver 140, and a transmitter 150.
  • the processor 110, the memory 120, the receiver 140 and the transmitter 150 are connected by a bus system 130 for storing instructions for executing instructions stored in the memory 120 to control the receiver 140 to receive.
  • the signal, and controlling the transmitter 150 to transmit a signal completes the steps of the first wireless network device (e.g., base station) in the above method.
  • the receiver 140 and the transmitter 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the receiver 140 and the transmitter 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 110, the receiver 140 and the transmitter 150 is stored in a memory, and the general purpose processor implements the functions of the processor 110, the receiver 140 and the transmitter 150 by executing the code in the memory.
  • the embodiment of the present invention further provides another apparatus for uplink measurement reference signal transmission, and the apparatus may be a wireless device 20, where the wireless device 20 corresponds to the first user equipment in the foregoing method.
  • the second wireless device may be a UE, or may be a micro base station or a small base station, which is not limited herein.
  • the apparatus can include a processor 210, a memory 220, a bus system 230, a receiver 240, and a transmitter 250.
  • the processor 210, the memory 220, the receiver 240, and the transmitter 250 are connected by a bus system 230, and the memory 220 is used by the memory 220.
  • the processor 210 is configured to execute the instructions stored by the memory 220 to control the receiver 240 to receive signals and control the transmitter 250 to transmit signals to complete the steps of the first UE in the above method.
  • the receiver 240 and the transmitter 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the receiver 240 and the transmitter 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 210, the receiver 240 and the transmitter 250 is stored in a memory, and the general purpose processor implements the functions of the processor 210, the receiver 240, and the transmitter 250 by executing code in the memory.
  • the embodiment of the present invention further provides a communication system, including the foregoing first wireless network device and one or more user devices.
  • the processor 110 or 210 may be a central processing unit ("CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 120 or 220 can include read only memory and random access memory and provides instructions and data to the processor 310.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system 130 or 230 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for the sake of clarity, the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 110 or 210 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device can be adapted for use in the system shown in FIG.
  • FIG. 5 shows only the main components of the terminal device.
  • the terminal device 100 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the terminal device to perform the actions described in the foregoing method embodiments, such as And mapping the first uplink measurement reference signal based on the received first configuration information, and/or mapping the second uplink measurement reference signal and the like based on the received second configuration information.
  • the memory is mainly used for storing software programs and data, for example, storing the correspondence between the first indication information and the first configuration information and/or the second configuration information described in the foregoing embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, and are mainly used for transmitting and receiving electromagnetic waves.
  • RF signal RF signal.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 5 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 5 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 101 of the terminal device 100, for example, for supporting the terminal device to perform the receiving function described in the aforementioned method or device portion.
  • the processor having the processing function is regarded as the processing unit 102 of the terminal device 10.
  • the terminal device 100 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the processor 102 can be configured to execute instructions stored in the memory to control the transceiver unit 101 to receive signals and/or transmit signals to perform the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 101 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure, which may be a schematic structural diagram of a base station.
  • the base station can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 200 includes one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 202.
  • RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
  • the RRU 201 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 202 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 201 and the BBU 202 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing unit
  • the BBU can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may separately support different access modes of wireless. Access network (such as LTE network, 5G network or other network).
  • the BBU 202 also includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the memory 2021 stores the correspondence between the first indication information and the first configuration information and/or the second configuration information in the above embodiment.
  • the processor 2022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the memory 2021 and the processor 2022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • FIG. 7 is a schematic structural diagram of a communication device 700.
  • the device 700 can be used to implement the method described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments.
  • the communication device 700 can be a chip, a network device (such as a base station), a terminal device or other network device, and the like.
  • the communication device 700 includes one or more processors 701.
  • the processor 701 can be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • the communication device 700 includes one or more of the processors 701, and the one or more processors 701 can implement the methods of the network devices or terminal devices in the foregoing embodiments.
  • the communication device 700 includes means for receiving first configuration information and/or second configuration information, and means for transmitting a second uplink measurement reference signal.
  • Means for parsing the received first configuration information and/or second configuration information may be implemented by one or more processors, and for mapping the first uplink measurement reference signal and/or the second uplink measurement reference The function of the signal's means.
  • the received first configuration information and/or second configuration information may be parsed by one or more processors and the first uplink measurement reference signal and/or the second uplink measurement reference signal may be mapped, through the transceiver, or input/ The output circuit, or the interface of the chip, receives the first configuration information and/or the second configuration information, and transmits the second uplink measurement reference signal.
  • the second uplink measurement reference signal may refer to the related description in the foregoing method embodiment.
  • the communication device 700 includes means for transmitting first configuration information and/or second configuration information, and means for receiving a second uplink measurement reference signal.
  • first configuration information and/or the second configuration information refer to the related description in the foregoing method embodiments.
  • the first configuration information and/or the second configuration information may be generated by one or more processors, and the second uplink measurement reference signal may be parsed, and the first may be sent through a transceiver, an input/output circuit, or an interface of the chip.
  • the configuration information and/or the second configuration information receives the second uplink measurement reference signal.
  • processor 701 can implement other functions in addition to the methods of the foregoing embodiments.
  • the processor 701 may also include instructions 703 that may be executed on the processor such that the communication device 700 performs the methods described in the above method embodiments.
  • the communication device 700 can also include circuitry that can implement the functions of the foregoing method embodiments.
  • the communication device 700 can include one or more memories 702, where the instructions 704 are stored, Instructions may be executed on the processor such that the communication device 700 performs the methods described in the above method embodiments.
  • data may also be stored in the memory.
  • Instructions and/or data can also be stored in the optional processor.
  • the one or more memories 702 may store the correspondence between the indication information and the combination information described in the foregoing embodiments, the parameters related to the combination information, or related parameters or tables involved in the foregoing embodiments, and the like.
  • the processor and the memory may be provided separately or integrated.
  • the communication device 700 may further include a transceiver unit 705 and an antenna 706.
  • the processor 701 may be referred to as a processing unit that controls a communication device (terminal or base station).
  • the transceiver unit 705 can be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 706.
  • the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration. Circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例提供一种上行参考信号传输方法。用户设备接收来自无线网络设备的第一上行测量参考信号的第一配置信息和第二上行测量参考信号的第二配置信息,所述第一配置信息用于配置所述第一上行测量参考信号的时频资源,所述第二配置信息用于配置第二上行测量参考信号的时频资源,所述第一上行测量参考信号为零功率上行测量参考信号,所述第二上行测量参考信号为非零功率上行测量参考信号;用户设备根据所述第一配置信息和所述第二配置信息在所述第二上行测量参考信号的时频资源中非所述第一上行测量参考信号的时频资源上发送所述第二上行测量参考信号。

Description

一种上行测量参考信号传输方法、装置和系统 技术领域
本发明涉及通信技术领域,特别是涉及一种上行测量参考信号传输方法、装置和系统。
背景技术
图1为一个通信系统的结构图,该通信系统中包括多个网络设备(如基站)和每个网络设备覆盖下的多个用户设备(user equipment,UE)。
在通信系统,如NR(New Radio)系统中,用户设备(user equipment,UE)可发送上行测量参考信号(例如,LTE系统中的探测参考信号(sounding reference signal,SRS),或者,其他新定义的上行测量参考信号),网络设备可根据UE发送的上行测量参考信号,估计上行信道的信道状态,从而使得网络设备根据估计的上行信道状态进行上行数据调度(如,频率选择性调度,调制和编码策略(modulation and coding scheme,MCS)选择等)。当通信系统为时分双工(time divison duplex,TDD)系统时,网络设备还可根据信道互异性,利用UE发送的上行测量参考信号估计下行信道状态。
在一个小区内,每个UE发送上行测量参考信号,如SRS,的时频码资源是由基站配置的。对于位于小区的边缘的UE而言,由于相邻的基站独立配置,这将导致两个相邻小区内的不同的UE在相同的时频码资源上发送上行测量参考信号,造成位于小区边缘的UE的上行测量参考信号之间的干扰问题,进而影响位于小区边缘的UE的信道探测质量。
因此,如何测量UE的上行测量参考信号受到的干扰成为首先亟需解决的问题。
发明内容
本发明实施例提供一种上行参考信号传输的方法、装置,通信系统和终端,以使得UE的上行参考信号受到的干扰可测。
第一方面,本发明实施例提供一种上行参考信号传输方法,包括:
用户设备接收来自无线网络设备的第一上行测量参考信号的第一配置信息和第二上行测量参考信号的第二配置信息,所述第一配置信息用于配置所述第一上行测量参考信号的时频资源,所述第二配置信息用于配置第二上行测量参考信号的时频资源,所述第一上行测量参考信号为零功率上行测量参考信号,所述第二上行测量参考信号为非零功率上行测量参考信号;
用户设备根据所述第一配置信息和所述第二配置信息在所述第二上行测量参考信号的时频资源中非所述第一上行测量参考信号的时频资源上发送所述第二上行测量参考信号。
这种方式下,由于在第二上行测量参考信号的时频资源中的第一上行测量参考信号的时频资源上不发送非零功率上行测量参考信号,无线网络设备可以在这些时频资源接收其他用户设备发送的上行测量参考信号或数据,从而实现在这些资源上干扰的测量,进而可以根据测量的结果,进行功率控制、干扰抑制、干扰对消或资源重配等操作,使得UE的上行测量参考信号受到的干扰降低。
可选的,所述第一配置信息和第二配置信息承载在相同的消息中,或者,承载在不同的消息中。也就是说,第一配置信息和第二配置信息可以不是同时收到的,也可以是同时收到的,具体方式可以根据协议设定或系统需求确定。
本申请中,“同时”可以指在5G NR系统中的同一个时域单元(也可称为时域资源单位),该时域单元可以为,如一个子帧subframe,一个时隙slot,一个迷你时隙minislot等。
可选的,用户设备根据所述第一配置信息和所述第二配置信息在所述第二上行测量参考信号的时频资源中非所述第一上行测量参考信号的时频资源上发送所述第二上行测量参考信号包括:用户设备在第二配置信息指示的第二上行测量参考信号的时频资源中非第一配置信息指示的第一上行测量参考信号的时频资源上发送第二上行测量参考信号。
可选的,用户设备还可以在第一配置信息指示的第一上行测量参考信号的时频资源上发送第一上行测量参考信号。
可选的,所述第一上行测量参考信号的时频资源为所述第二上行测量参考信号的时频资源的子集。
可选的,所述第一配置信息和/或第二配置信息携带在高层信令中。
可选的,所述第一配置信息和/或第二配置信息携带在下行控制信道上,如下行控制信道的下行控制信息中。
可选的,所述第一上行测量参考信号的第一配置信息和所述第二上行测量参考信号的第二配置信息包括在同一个上行测量参考信号进程中。这样,既可以指示第一配置信息和第二配置信息之间的关联,又可以使得第一配置信息的形式更灵活。
可选的,一个上行测量参考信号进程(英文:SRS process)可以包括一个或多个零功率上行测量参考信号资源和一个或多个非零功率上行测量参考信号资源,其中,一个或多个零功率上行测量参考信号资源包括在所述第一配置信息,一个或多个非零功率上行测量参考信号资源包括在所述第二配置信息。
可选的,第一配置信息复用第二配置信息的配置信令(消息),通过第一指示确定所述配置信令承载的是第一配置信息和/或第二配置信息。这样,可以兼容已有的第二配置信息,简化了配置信令。
可选的,所述配置信令包括所述第一指示,或者,第一指示不包括在所述配置信令中,而是携带在其他信令(消息)中。第一指示具体如何发送可以依据协议的设定或系统的需求进行确定。
可选的,第一配置信息和第二配置信息承载在不同的配置信令(消息)中。这样,可以使得第一配置信息更为灵活。
可选的,所述第一指示携带在下行控制信息(DCI)或高层信令中。具体的发送方式可以根据协议的设定或系统的需求确定。可选的,携带在DCI中,可以是通过DCI中的具体信元来携带,还可以是通过DCI的格式来携带,在此不予限定,在本申请实施例中的其他部分提到“携带在DCI中”或类似的描述,均可参考此处的描述。
可选的,所述第一配置信息可以为周期性传输的第一上行测量参考信号的配置,或者,为非周期传输的第一上行测量参考信号的配置,或者为半持续(semi-persistent)传输的第一上行测量参考信号的配置。其中,半持续传输是指可以通过DCI或者MAC CE触发激活(activate),并可以通过DCI或者MAC CE触发去激活(deactivate),或者,可以通过DCI或者MAC CE触发激活(activate),在一段时间后去激活,这段时间可以通过协议规定(无需基站配置,本地预存储或预配置)或者可以通过基站配置,或者,可以在收到配置信息一段时间后激活,通过DCI或者MAC CE触发去激活,或是一段时间后去激活,收到配置信息到激活之间的这段时间可以为协议规定(无需基站配置,本地预存储或预配置)或者可以通过基 站配置,激活到去激活之间的这段时间也可以为协议规定(无需基站配置,本地预存储或预配置)或者可以通过基站配置。
可选的,所述方法还包括:所述用户设备接收来自无线网络设备的第二指示,所述第二指示用于指示所述第一配置信息所配置的第一上行测量参考信号为周期性传输或是非周期传输或是半持续传输。
可选的,所述第二指示携带在高层信令中,或者,携带在下行控制信道中,如下行控制信道的下行控制信息中。
可选的,所述第二配置信息可以为周期性传输的第二上行测量参考信号的配置,或者,为非周期传输的第二上行测量参考信号的配置,或者,为半持续传输的第二上行测量参考信号的配置。用户设备可以接收来自无线网络设备的第三指示,所述第三指示用于指示所述第二配置信息所配置的第二上行测量参考信号为周期性传输或是非周期传输。第二指示和第三指示可以为不同的信令,也可以为相同的信令,比如当第一配置信息和第二配置信息复用配置信令时,第二指示和第三指示可以为同一个指示或者,可以通过同一个指示指示第一配置信息和第二配置信息的配置适用于周期性传输或是非周期传输或是半持续传输。
可选的,第一上行测量参考信号的第一配置信息用于非周期传输,所述用户设备接收来自无线网络设备的第一上行测量参考信号的第一配置信息包括:
所述用户设备接收来自所述无线网络设备的第一上行测量参考信号的第一配置信息,用于指示第一上行测量参考信号的多组时频资源;
所述方法还包括:所述用户设备接收来自无线网络设备的触发信息,所述触发信息用于触发所述多组时频资源中的至少一个,所述用户设备在所述第二上行测量参考信号的时频资源中非多组时频资源中被触发的时频资源上发送所述第二上行测量参考信号。
这样,由于用于非周期传输的配置信息与触发信息分开发送,这样可以减少非周期传输的配置信息的发送次数,减少了配置的开销。
可选的,所述用户设备在多组时频资源中被触发的时频资源上发送所述第一上行测量参考信号。
可选的,所述第一配置信息携带在高层信令中,所述触发信息携带在下行控制信道中,如承载在下行控制信道的下行控制信息(DCI)中。
这样,可以减少配置信息对动态信令的开销。
第二方面,本发明实施例还提供一种上行测量参考信号传输方法,该方法从无线网络设备的角度描述,可以参考第一方面中提供的上行测量参考信号传输方法。该方法可以包括:
无线网络设备向用户设备发送第一上行测量参考信号的第一配置信息和第二上行测量参考信号的第二配置信息,所述第一配置信息用于配置所述第一上行测量参考信号的时频资源,所述第二配置信息用于配置第二上行测量参考信号的时频资源,所述第一上行测量参考信号为零功率上行测量参考信号,所述第二上行测量参考信号为非零功率上行测量参考信号;
所述无线网络设备接收来自所述用户设备的所述第二上行测量参考信号,所述第二上行测量参考信号承载在所述第二上行测量参考信号的时频资源中非所述第一上行测量参考信号的时频资源上。
可选的,所述第一上行测量参考信号的时频资源为所述第二上行测量参考信号的时频资源的子集。
可选的,所述第一配置信息和第二配置信息承载在相同的消息中,或者,承载在不同的 消息中。也就是说,第一配置信息和第二配置信息可以不是同时发送,也可以是同时发送的,具体方式可以根据协议设定或系统需求确定。
可选的,所述方法还包括:
所述无线网络设备在所述第一上行测量参考信号的时频资源上接收来自其他用户设备的信号。
可选的,所述其他用户设备的信号包括其他用户设备的上行测量参考信号或数据信号。
可选的,所述第一配置信息和/或第二配置信息携带在高层信令中。
可选的,所述第一配置信息和/或第二配置信息携带在下行控制信道上,如下行控制信道的下行控制信息中。
可选的,所述第一上行测量参考信号的第一配置信息和所述第二上行测量参考信号的第二配置信息包括在同一个上行测量参考信号进程中。这样,既可以指示第一配置信息和第二配置信息之间的关联,又可以使得第一配置信息的形式更灵活。
可选的,第一配置信息复用第二配置信息的配置信令(消息),通过第一指示确定所述配置信令承载的是第一配置信息和/或第二配置信息。这样,可以兼容已有的第二配置信息,简化了配置信令。
可选的,所述配置信令包括所述第一指示,或者,第一指示不包括在所述配置信令中,而是携带在其他信令(消息)中。第一指示具体如何发送可以依据协议的设定或系统的需求进行确定。
可选的,第一配置信息和第二配置信息承载在不同的配置信令(消息)中。这样,可以使得第一配置信息更为灵活。
可选的,所述第一指示携带在下行控制信息(DCI)或高层信令中。具体的发送方式可以根据协议的设定或系统的需求确定。
可选的,所述第一配置信息可以为周期性传输的第一上行测量参考信号的配置,或者,为非周期传输的第一上行测量参考信号的配置,或者,为半持续传输的第一上行测量参考信号的配置。
可选的,所述方法还包括:
所述无线网络设备向所述UE发送第二指示,所述第二指示用于指示所述第一配置信息所配置的第一上行测量参考信号为周期性传输或是非周期传输或是半持续传输。
可选的,所述第二指示携带在高层信令中,或者,携带在下行控制信道中,如下行控制信道的下行控制信息中。
可选的,所述第二配置信息可以为周期性传输的第二上行测量参考信号的配置,或者,为非周期传输的第二上行测量参考信号的配置,或者,为半持续传输的第一上行测量参考信号的配置。无线网络设备可以向所述UE发送第三指示,所述第三指示用于指示所述第二配置信息所配置的第二上行测量参考信号为周期性传输或是非周期传输或是半持续传输。第二指示和第三指示可以为不同的信令,也可以为相同的信令,比如当第一配置信息和第二配置信息复用配置信令时,第二指示和第三指示可以为同一个指示或者,可以通过同一个指示指示第一配置信息和第二配置信息的配置适用于周期性传输或是非周期传输或是半持续传输。
可选的,所述第一上行测量参考信号的第一配置信息用于非周期传输,所述无线网络设备向所述用户设备发送第一上行测量参考信号的第一配置信息包括:
所述无线网络设备向所述用户设备发送第一上行测量参考信号的第一配置信息,用于指 示第一上行测量参考信号的多组时频资源;
所述方法还包括:所述无线网络设备向所述用户设备发送触发信息,所述触发信息用于触发所述多个配置信息中的至少一个;
所述无线网络设备接收的来自所述用户设备的第二上行测量参考信号承载在所述第二上行测量参考信号的时频资源中非多组时频资源中被触发的时频资源上发送所述第二上行测量参考信号。
这样,由于用于非周期传输的配置信息与触发信息分开发送,这样可以减少非周期传输的配置信息的发送次数,减少了配置的开销。
可选的,所述第一配置信息携带在高层信令中,所述触发信息携带在下行控制信息(DCI)中。
第三方面,还提供一种用户设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述用户设备用于完成如第一方面中所描述的用户设备所涉及的任意一种方法。
第四方面,还提供一种无线网络设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如第二方面中所描述的无线网络设备所涉及的任意一种方法。
第五方面,还提供一种用于上行参考信号传输的装置,包括一些模块,用于实现前述用户设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第六方面,还提供一种用于上行参考信号传输的装置,包括一些模块,用于实现前述无线网络设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第七方面,还提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述用户设备或无线网络设备所涉及的任意一种方法。
第八方面,还提供一种通信系统,包括前述第三方面提供的用户设备和第四方面提供的无线网络设备。
第九方面,还提供一种通信装置,该装置具有实现上述方法方面中无线网络设备或用户设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述通信装置包括一个或多个处理器。所述一个或多个处理器被配置为支持所述无线网络设备或用户设备执行上述方法中相应的功能。例如,生成第一配置信息和/或第二配置信息。进一步的,上述通信装置包括一个或多个处理器还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序和/或指令,还可以进一步保存数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。当程序和/或指令被处理器执行时,所述通信装置执行上述方法中无线网络设备或用户设备相应的功能。
在一种可能的设计中,上述通信装置包括一个或多个处理器和收发单元。所述一个或多个处理器被配置为支持所述无线网络设备或用户设备执行上述方法中相应的功能。例如,生成第一配置信息和/或第二配置信息。所述收发单元用于支持所述无线网络设备或用户设备与其他设备通信,实现接收/发送功能。例如,发送所述处理器生成的第一配置信息和/或第二配 置信息,发送RRC信令或MAC CE信令等。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序指令和数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述通信装置可以为基站、TRP或是用户设备(也可以为终端设备),所述收发单元可以是收发器,或收发电路。所述收发单元也可以是输入输出电路或者接口。
所述通信装置还可以为通信芯片。所述收发单元可以为通信芯片的输入输出电路或者接口。
以上一个或多个处理器可以集中设置,也可以分离设置。以上一个或多个存储器可以集中设置,也可以分离设置。在此不予限定。
为了便于理解,示例的给出了与部分与本发明相关概念的说明以供参考。如下所示:
第三代合作伙伴计划(英文:3rd generation partnership project,简称3GPP)是一个致力于发展无线通信网络的项目。通常,将3GPP相关的机构称为3GPP机构。
无线通信网络,是一种提供无线通信功能的网络。无线通信网络可以采用不同的通信技术,例如码分多址(英文:code division multiple access,简称CDMA)、宽带码分多址(wideband code division multiple access,简称WCDMA)、时分多址(英文:time division multiple access,简称:TDMA)、频分多址(英文:frequency division multiple access,简称FDMA)、正交频分多址(英文:orthogonal frequency-division multiple access,简称:OFDMA)、单载波频分多址(英文:single Carrier FDMA,简称:SC-FDMA)、载波侦听多路访问/冲突避免(英文:Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络。典型的2G网络包括全球移动通信系统(英文:global system for mobile communications/general packet radio service,简称:GSM)网络或者通用分组无线业务(英文:general packet radio service,简称:GPRS)网络,典型的3G网络包括通用移动通信系统(英文:universal mobile telecommunications system,简称:UMTS)网络,典型的4G网络包括长期演进(英文:long term evolution,简称:LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(英文:universal terrestrial radio access network,简称:UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(英文:evolved universal terrestrial radio access network,简称:E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(英文:wireless local area networks,简称:WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展本发明实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本发明实施例有时会将无线通信网络简称为网络。
蜂窝通信网络是无线通信网络的一种,其采用蜂窝无线组网方式,在终端设备和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。
FDD:频分双工,frequency division duplex
TDD:时分双工,time division duplex
用户设备(英文:user equipment,简称:UE)是一种终端设备,可以是可移动的终端设 备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经无线接入网(radio access network,简称:RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站(英文:base station,简称:BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文:base transceiver station,简称:BTS)和基站控制器(英文:base station controller,简称:BSC),3G网络中提供基站功能的设备包括节点B(英文简称:NodeB)和无线网络控制器(英文:radio network controller,简称:RNC),在4G网络中提供基站功能的设备包括演进的节点B(英文:evolved NodeB,简称:eNB),在WLAN中,提供基站功能的设备为接入点(英文:access point,简称:AP)。在未来5G新无线(英文:New Radio,简称:NR)中的提供基站功能的设备包括继续演进的节点B(gNB)。
无线设备,是指位于无线通信网络中的可以通过无线方式进行通信的设备。该设备可以是基站,也可以是用户设备,还可以是其他网元。
网络侧设备,是指位于无线通信网络中位于网络侧的设备,可以为接入网网元,如基站或控制器(如有),或者,也可以为核心网网元,还可以为其他网元。
NR(新无线,new radio),是指新一代无线接入网络技术,可以应用在未来演进网络,如5G网络中。
无线局域网络(英文:wireless local area networks,简称:WLAN),是指采用无线电波作为数据传送媒介的局域网,传送距离一般只有几十米。
接入点(英文:access point,简称:AP),连接无线网络,亦可以连接有线网络的设备。它能当作中介点,使得有线与无线上网的设备互相连接、传输数据。
RRC(radio resource control):无线资源控制
RRC处理UE和UTRAN之间控制平面的第三层信息。通常包含以下功能中的至少一项:
广播核心网非接入层提供的信息。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。也支持上层信息的广播。
将广播信息关联到接入层。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。
建立、重新建立、维持和释放在UE和UTRAN之间的RRC连接。为了建立UE的第一个信号连接,由UE的高层请求建立一个RRC的连接。RRC连接建立过程包括可用小区的重新选择、接入许可控制以及2层信号链路的建立几个步骤。RRC连接释放也是由高层请求,用于拆除最后的信号连接;或者当RRC链路失败的时候由RRC本层发起。如果连接失败,UE会要求重新建立RRC连接。如果RRC连接失败,RRC释放已经分配的资源。
上行测量参考信号是指由用户设备发送给网络侧设备用于信道估计或者信道探测的一种已知导频信号。在LTE系统中,上行测量参考信号可以是上行探测参考信号(英文:Sounding reference signal,简称:SRS)。
零功率上行测量参考信号(如Zero-power SRS,简称:ZP-SRS)为一种发射功率为零的上行测量参考信号。
非零功率上行测量参考信号(如Non zero-power SRS,简称NZP SRS)为一种发射功率为非零的上行测量参考信号。
零功率上行测量参考信号资源(如ZP-SRS resource)包括用于发送零功率上行测量参考信号的时频资源。
非零功率上行测量参考信号资源(如NZP-SRS resource)包括用于发送非零功率上行测量参考信号的时频资源。
上行测量参考信号进程(英文:SRS process)包括一个或多个零功率上行测量参考信号资源和一个或多个非零功率上行测量参考信号资源。
附图说明
图1为通信系统的示意图(仅示出基站和UE);
图2为基站和UE的内部结构的简化示意图;
图3a为本发明实施例提供的一种上行参考信号传输方法的流程示意图;
图3b为本发明实施例提供的另一种上行参考信号传输方法的流程示意图;
图4a为本发明实施例提供的用于上行参考信号传输的装置(如无线网络设备)的示意图;
图4b为本发明实施例提供的另一用于上行参考信号传输的装置(如用户设备)的示意图;
图5是根据本申请一个实施例的终端设备的示意框图。
图6是根据本申请一个实施例的网络设备的示意框图。
图7是根据本申请一个实施例的通信装置的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
此外,本申请结合无线设备来描述各个方面,其中,无线设备可以为无线网络设备,也可以为终端设备。该无线网络设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);该无线设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如D2D通信),也可以用于与一个或多个基站进行通信。用户设备还可以 称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、会话发起协议(SIP)电话、智能电话、无线本地环路(WLL)站、个人数字助理(PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。基站还可以称为接入点、节点、节点B、演进节点B(eNB)或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站可以通过将所接收的空中接口帧转换成IP分组,来用作无线终端和接入网络的其余部分之间的路由器,其中所述接入网络包括互联网协议(IP)网络。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。举例而言,基站可以为演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、无线保真(Wireless Fidelity,WIFI)、接入点(Access Point,AP),传输点(transmission and receiver point,TRP或者transmission point,TP)等,还可以为5G,如NR(new radio),系统中的gNB,或,传输点(TRP(transmitting and receiving point)或TP(transmission point)),或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,数据单元(DU,data unit)等。在一些部署中,gNB可以包括控制单元(CU,control unit)和DU。gNB还可以包括射频单元(RU,radio unit)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现RRC(无线资源控制,radio resource control),PDCP(packet data convergence protocol,分组数据汇聚层协议)层的功能,DU实现RLC(radio link control,无线链路控制)、MAC(media access control,媒体接入控制)和PHY(physical)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本发明实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本发明实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题, 同样适用。
本发明实施例既可以应用于时分双工(time division duplex,TDD)的场景,也可以适用于频分双工(frequency division duplex,FDD)的场景。
如背景技术中所描述的,在一个小区内,每个UE发送上行测量参考信号,如SRS,的时频码资源是由基站配置的。对于位于小区的边缘的UE而言,由于相邻的基站独立配置,这将导致两个相邻小区内的不同的UE在相同的时频码资源上发送上行测量参考信号,造成位于小区边缘的UE的上行测量参考信号之间的干扰问题,进而影响位于小区边缘的UE的信道探测质量。
而在未来的以UE为中心(UE-centric)的网络中,引入无小区(Non-cell)的网络架构,即在某个特定的区域内部署大量小站,构成一个超级小区(Hyper cell),每个小站为Hyper cell的一个传输点(Transmission Point,TP),并与一个集中控制器(controller)相连。
在UE-centric系统中,UE需周期的发送上行测量参考信号,网络侧设备收到UE发送的参考信号后,便可为该UE选择最优的TP集合(子簇,sub-cluster)为其服务。当UE在Hyper cell内移动时,网络侧设备时时为UE选择新的sub-cluster为其服务,从而避免真正的小区切换,实现UE业务的连续性。在该场景下,由于上行测量参考信号资源受限,多个UE之间发送的上行测量参考信号,如SRS,也存在较严重的相互干扰。其中,网络侧设备包括无线网络设备。
有鉴于此,本发明实施例提供一种上行测量参考信号传输方法,使得UE发送的上行测量参考信号之间的干扰可测,从而使得网络侧设备可以根据测得的干扰进行功率控制或上行测量参考信号的重配或干扰消除,进而降低位于小区边缘的UE的上行测量参考信号的干扰。
本发明实施例以无线通信网络中4G网络的场景为例进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
需指出的是,本发明实施例中的方法或装置可以应用于基站和用户设备之间,也可以应用于基站和基站(如宏基站和微基站)之间,还可以应用于用户设备和用户设备(如D2D场景)之间,在本发明所有实施例中,以基站和UE之间的通信为例进行描述。
图1所示为一种通信系统的结构示意图。通信系统可以包括核心网,接入网和终端。在图1中仅示出了接入网所包括的无线网络设备,如基站,和终端,如用户设备。
图2所示为基站和UE的内部结构的简化示意图。
示例的基站可以包括天线阵列,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器PA,数模转换器DAC和变频器,通常RX可以包括低噪放LNA,模数转换器ADC和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,基站还可以包括控制部分,用于进行多用户调度和资源分配、导频调度、用户物理层参数配置等。
示例的UE可以包括天线,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。在图2中,UE具有单天线。可以理解的是,UE也可 以具有多天线(即天线阵列)。
其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器PA,数模转换器DAC和变频器,通常RX可以包括低噪放LNA,模数转换器ADC和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,UE也可以包括控制部分,用于请求上行物理资源、计算下行信道对应的信道状态信息(CSI)、判断下行数据包是否接收成功等等。
图3a为本发明实施例提供一种上行测量参考信号传输方法的流程,如图3a所示,包括:
S1.第一无线网络设备向第一UE发送第一上行测量参考信号的配置信息,所述配置信息用于配置所述第一上行测量参考信号的时频资源,所述第一上行测量参考信号为零功率测量参考信号;
其中,第一UE可以为第一无线网络设备所服务的UE。所述配置信息为用户设备特定的(UE-specific)。
可选的,所述配置信息可以携带在高层信令,如无线资源控制(radio resource control,RRC)信令中。
可选的,所述配置信息中可以包括所述第一上行测量参考信号的时频资源信息。
可选的,所述配置信息还可以用于配置所述第一上行测量参考信号的其他相关信息,比如,周期时间,频率梳尺,天线端口,带宽,跳频带宽,循环偏移,符号个数,子载波间隔,循环前缀(cyclic prefix,CP)长度(也称为CP类型),时域长度(比如一个符号,半个符号,x ms,y us,其中x和y为正数等)等信息中的一种或多种。其中,在NR系统中,考虑不同子载波间隔符号长度不一样,对于第一上行测量参考信号,如ZP-SRS,除了定义第一上行测量参考信号的子载波间隔,还可以定义或配置第一上行测量参考信号的时域长度。
可选的,本申请中,所述第一上行测量参考信号为周期性传输时,与所述第一上行测量参考信号为非周期性传输或半持续传输时,所述第一上行测量参考信号的配置信息的候选集合可以与非周期传输时不同,和/或所述第一上行测量参考信号的配置信息的种类与非周期传输时不同,该不同包括部分或全部不同,还可以包括配置信息所包括的种类的个数不同。具体的,可以是所述第一上行测量参考信号的配置信息中其他相关信息的候选集合可以与非周期传输时不同,和/或所述第一上行测量参考信号的配置信息中其他相关信息所包括的种类与非周期传输时不同。其中,候选集合为上述第一上行测量参考信号的配置信息中可配置的候选值组成的集合,例如频域梳尺的候选集合可以为{2,4},也可以为{2}或{1,2}。所述第一上行测量参考信号的其他相关信息的候选集合为以下之一的可配置的候选值组成的集合:周期时间,频率梳尺,天线端口,带宽,跳频带宽,循环偏移,符号个数,子载波间隔,CP长度,时域长度。所述第一上行测量参考信号的的其他相关信息的种类包括以下至少之一:周期时间,频率梳尺,天线端口,带宽,跳频带宽,循环偏移,符号个数,子载波间隔,CP长度,时域长度。采用上述方法可以使周期性传输与非周期性传输时的所述配置信息的开销不同。特别的,所述第一上行测量参考信号为非周期性传输时,所述配置信息中所述第一上行测量参考信号的其他相关信息的候选集合和/或种类少于第一上行测量参考信号为周期性传输时,所述配置信息中所述第一上行测量参考信号的其他相关信息的候选集合和/或种类,可以减少非周期传输时的所述配置信息,降低非周期传输时的开销,特别是当 非周期传输时所述配置信息在DCI中传输时,可以降低DCI的开销。
例如,当所述第一上行测量参考信号为周期性传输时,所述频率梳尺可以为2或4个候选,例如{0,1}或{0,1,2,3},其中{0,1}对应的梳尺数为2,0和1为这两个梳尺的标识或索引,这两个梳尺对应的相邻子载波的差值为2个子载波间隔,{0,1,2,3}对应的梳尺数为4,0-3为这四个梳尺的标识或索引,梳尺对应的相邻子载波的差值为4个子载波间隔。当所述上行测量参考信号为非周期性传输时,所述频域梳尺可以仅为2个候选,例如上述{0,1}的情况,也可以无候选,比如梳尺为协议规定的,本地预配置或预存储的,无需网络设备通过消息进行配置的,这种协议规定的梳尺可以对应所有的子载波(即无梳尺),即,相邻子载波的差值为一个子载波的情况。
又例如,当所述第一上行测量参考信号为周期性传输时,可配置周期时间,频率梳尺,天线端口,带宽,跳频带宽,循环偏移等信息中的一种或多种,当所述第一上行参考信号为非周期性传输时,可以不配置周期时间,频率梳尺,带宽,跳频带宽,循环偏移等信息中的一种或多种。具体的,由于是非周期传输,因此可以不需要周期时间,循环偏移,当不配置所述带宽和/或跳频带宽时,所述第一上行测量参考信号的带宽可以为以下中的一种:UE被调度的上行数据信道(如物理上行共享信道PUSCH)的传输带宽,或,第二上行测量参考信号的带宽,或,UE被配置的带宽部分(bandwidth part,BWP)的带宽,所述BWP为基站配置的所述UE可用于上行PUSCH传输的带宽。具体为哪种带宽可以由协议规定。其中,UE被调度的PUSCH的传输带宽可以为UE被配置的BWP的子集。当不配置频域梳尺时,如以上例子所述,预定义的所述第一上行测量参考信号占用所述第一上行测量参考信号带宽内的每一个子载波。对于非周期的第一上行测量参考信号配置通过减少配置的项,可以降低配置信令的开销,例如对于配置有4个符号可用于传输第一上行测量参考信号的时隙,若不配置周期时间,频率梳尺,天线端口,带宽,跳频带宽,循环偏移,则可以仅配置符号,此时,可以使用4个比特对这4个符号是否用于映射第一上行测量参考信号进行配置(即比特图bitmap的方式),开销较低。此外,对于非周期的第一上行测量参考信号的配置,还可以配置第一上行测量参考信号与配置信令的时间间隔,例如时间间隔可以是N个时域单元(也可以称为时域资源单位),N为大于等于0的整数,用于表示第一上行测量参考信号所在的时域单元的与配置信令所传输的信道所在的时域单元的间隔,其中,时域单元可以为时隙或符号或迷你时隙或子帧。可选的,N可以为协议规定的,或者,网络设备配置的。
可选的,本申请中,非周期的第一上行测量参考信号,或者,通过DCI触发的第一上行测量参考信号,占用其所映射符号上的所述第一上行测量参考信号带宽内所有子载波。
可选的,本申请中,当DCI触发非周期的第一上行测量参考信号时,可以先由基站通过高层信令如RRC信令或媒体接入控制控制元素(media access control control element,MAC CE)信令配置多个候选第一上行测量参考信号配置(也称为第一上行测量参考信号的配置信息),再由DCI触发其中的一个或多个第一上行测量参考信号配置。具体触发的方法可以为在DCI用于触发候选第一上行测量参考信号配置的域中包括与候选第一上行测量参考信号配置相对应的元素,每个元素可以对应1个候选第一上行测量参考信号配置,用于指示对应的候选第一上行测量参考信号配置是否被触发,其中每个元素可以包括1比特,或者,多比特,在此不予限定。可选的,基站可以通过高层信令如RRC信令或MAC CE信令配置一个或多个候选第一上行测量参考信号配置组,由DCI触发其中的一组或多组。
这样基站可以更高效的触发多个第一上行测量参考信号配置。
所述DCI中用于触发候选第一上行测量参考信号配置的域与候选第一上行测量参考信号配置组之间的对应关系可以体现为列表(list),公式,一串字符,数组,或者为一段代码。该对应关系可以由协议规定,在本地预配置或预存储。以该对应关系为列表的形式为例,如下表中给出一个具体的示例,基站通过DCI中用于触发候选第一上行测量参考信号配置的域指示触发一个候选第一上行测量参考信号配置组。例如基站通过DCI中用于触发候选第一上行测量参考信号配置的域“00”指示触发一个候选第一上行测量参考信号配置组0。可以理解的是,下表中的域中的值为二进制的数,也可以用十进制、八进制或十六进制的数来表示。DCI中用于触发候选第一上行测量参考信号配置的域中的值也可以不限于下表中的0-3,也可以为其他值,在此不予限定。
Figure PCTCN2017109385-appb-000001
候选第一上行测量参考信号配置组可以包括一个或多个候选第一上行参考信号配置。候选第一上行测量参考信号配置组与其对应的一个或多个候选第一上行参考信号配置可以通过列表(list),公式,一串字符,数组,或者为一段代码等形式体现。该对应关系可以由协议规定,在本地预配置或预存储;该对应关系也可以由基站进行配置。例如,下表中给出了候选第一上行测量参考信号配置组与候选第一上行参考信号配置的对应关系。
候选第一上行测量参考信号配置组 候选第一上行测量参考信号配置
候选第一上行测量参考信号配置组0 候选第一上行测量参考信号配置{0,1}
候选第一上行测量参考信号配置组1 候选第一上行测量参考信号配置{0,2}
候选第一上行测量参考信号配置组2 候选第一上行测量参考信号配置{2}
候选第一上行测量参考信号配置组3 候选第一上行测量参考信号配置{0,1,2,3}
其中,0-3均为候选第一上行测量参考信号配置或配置组的标识或索引,此处仅为举例,也可以为其他值,在此不予限定。
可选的,本申请中,一个第一上行测量参考信号配置可以对应一个第一上行测量参考信号资源,例如上述实施例中的候选第一上行测量参考信号配置组可以为第一上行测量参考信号资源组,候选第一上行测量参考信号配置可以为第一上行测量参考信号资源。
可以理解的是,本申请中关于第一上行测量参考信号的具体的多种设计,包括但不限于上述的关于配置及触发的多种设计,可以各自独立应用(解耦),也可以与第二上行测量参考信号的具体设计解耦或是各自组合,并不影响本申请的应用或实现。
S2.第一UE接收第一无线网络设备发送的所述第一上行测量参考信号的配置信息。
可选的,上述方法还可以包括:S3.第一UE根据所述配置信息在所述第一上行测量参考信号的时频资源上发送所述第一上行测量参考信号。
其中,S1中所述第一上行测量参考信号的配置信息所配置所述第一上行测量参考信号的时频资源可以为所述第一UE的非零功率的上行测量参考信号的时频资源的子集。
可以理解的是,这里第一UE发送第一上行测量参考信号可以通过多种方式实现,示例的,其中两种可以为:一,第一UE发送零功率的上行测量参考信号;二,第一UE不发送 非零功率的上行测量参考信号。
通过第一无线网络设备给第一UE发送零功率上行测量参考信号的配置信息,使得第一UE可以在某些非零功率上行测量参考信号的时频资源上静默(即不发送非零功率的上行测量参考信号,或是,发送零功率的上行测量参考信号)。这样,使得第一无线网络设备可以在这些零功率的上行测量参考信号的时频资源上测量其他UE在这些时频资源上的信号(也可称为干扰信号),从而使得第一无线网络设备可以依据测量的结果来进行功率控制,资源重配或是干扰消除,进而降低第一UE的非零功率的上行测量参考信号所受到的干扰,提高信道状态估计的准确性。
进一步的,上述方法还可以包括:
S4.第一无线网络设备在所述第一上行测量参考信号的时频资源上接收第二UE发送的信号;
其中,所述信号可以为第三上行测量参考信号,第三上行测量参考信号为非零功率测量参考信号;或者,所述信号可以为数据(比如第二UE为第一无线网络设备的相邻无线网络设备所服务的UE时)。
其中,所述第二UE为第一无线网络设备所服务的UE,也可以为所述第一无线网络设备的相邻无线网络设备所服务的UE。
可以理解的是,第二UE为第一无线网络设备所服务的UE时,第一无线网络设备也可以为第二UE配置第二UE发送第三上行测量参考信号的时频资源和序列信息。可选的,第三上行测量参考信号的序列与第一UE的第二上行测量参考信号的序列为正交的。
第二UE为第一无线网络设备的相邻无线网络设备,如第二无线网络设备,所服务的UE时,第二无线网络设备也可以为第二UE配置第二UE发送第三上行测量参考信号的时频资源和序列信息。
可选的,第二无线网络设备为第二UE配置第二UE发送第三上行测量参考信号的时频资源和序列信息,可以与第一无线网络设备为第一UE配置第一UE发送第二上行测量参考信号的时频资源和序列信息为各自独立配置的。
可选的,第二无线网络设备为第二UE配置第二UE发送第三上行测量参考信号的时频资源和序列信息之前或之后,第二无线网络设备可以与第一无线网络设备进行信息的交互,使得第三上行测量参考信号与第二上行测量参考信号的配置可以相互配合,比如,使得第三上行测量参考信号的序列与第二上行测量参考信号的序列为正交的,又比如,第三上行测量参考信号与第二上行测量参考信号的功率可以有相应的调整,使得二者相互之间的干扰有所降低。
进一步的,所述方法还可以包括:
S5.第一无线网络设备向第一UE发送第二上行测量参考信号的配置信息,所述配置信息用于配置所述第二上行测量参考信号的时频资源,所述第二上行测量参考信号为非零功率测量参考信号;
可选的,所述配置信息携带在高层信令,比如RRC信令中。
可选的,所述配置信息中可以包括所述第二上行测量参考信号的时频资源信息。
S6.第一UE接收第一无线网络设备发送的第二上行测量参考信号的配置信息;
S7.第一UE根据所述配置信息在第二上行测量参考信号的时频资源中非第一上行测量参考信号的时频资源上发送所述第二上行测量参考信号;
其中,所述第一上行测量参考信号的时频资源为所述第二上行测量参考信号的时频资源的子集。
也就是说,第一上行测量参考信号需要发送时,在第一上行测量参考信号的时频资源上原本需发送的第二上行测量参考信号则不发送了。
可选的,本申请中,当所述用户设备发送上行信道时,所述上行信道映射在所述第一上行测量参考信号的时频资源以外的的时频资源上,或者所述上行信道不映射在所述第一上行测量参考信号的时频资源上。所述上行信道可以为上行数据信道,如以物理上行共享信道(PUSCH)为例和/或上行控制信道,如以物理上行控制信道(PUCCH)为例。当所述上行信道为PUSCH时,所述用户设备不映射PUSCH在所述第一上行测量参考信号的时频资源上,或,所述PUSCH映射在所述第一上行测量参考信号的时频资源以外的资源上,或,所述PUSCH映射在不用于传输所述第一上行测量参考信号的资源上,所述用户需要根据PUSCH可映射的时频资源,进行速率匹配。当所述上行信道为PUCCH时,所述用户设备不映射PUCCH在所述第一上行测量参考信号的时频资源上,或所述PUCCH映射在所述第一上行测量参考信号的时频资源以外的资源上,或所述PUCCH映射在不用于传输所述第一上行测量参考信号的资源上,所述用户设备需要根据PUCCH可映射的时频资源,进行速率匹配。或者,所述用户设备在PUCCH的资源上不发送第一上行测量参考信号,或第一上行测量参考信号映射在PUCCH的资源以外的所述第一上行测量参考信号的时频资源上。可选的,对于非零功率的上行测量参考信号,如第二上行测量参考信号,也可以按照上述第一上行测量参考信号与PUSCH和/或PUCCH的映射方法确定第二上行测量参考信号和/或PUSCH和/或PUCCH的映射方法。
可选的,本申请中,所述第一上行测量参考信号的资源也可以为速率匹配资源(rate matching resource,RMR)中的部分或全部,或,上行RMR中的部分或全部。所述第一上行测量参考信号的配置信息中的时间资源,周期时间,频率梳齿,带宽,跳频带宽,符号个数,子载波间隔,CP长度,时域长度还可以理解为第一上行测量参考信号资源的配置信息。
可选的,在所述配置信息中,所述第一上行测量参考信号的频率梳尺信息,序列信息(也可称为码信息)可以与所述第二上行测量参考信号的相同。
可选的,所述第一上行测量参考信号为周期性传输时,在所述配置信息中,所述第一上行测量参考信号的周期时间比所述第二上行测量参考信号的周期时间长。
可以理解的是,S5与S1-S4中任一步骤之间的时间关系可以不予限定,S6余S1-S4中任一步骤之间的时间关系也可以不予限定,S6在S5之后即可。
进一步的,所述方法还可以包括:
第一无线网络设备获得在所述第一上行测量参考信号的时频资源上所接收的第二UE发送的第三上行测量参考信号的序列信息,根据所述序列信息确定其是否造成对第一UE发送的第二上行测量参考信号的干扰。
可选的,根据所述序列信息确定其是否造成对第一UE发送的第二上行测量参考信号的干扰包括:
根据第三上行测量参考信号的序列与第二上行测量参考信号的序列是否正交来确定第三上行测量参考信号是否造成对第二上行测量参考信号的干扰。
具体的,当第三上行测量参考信号的序列与第二上行测量参考信号的序列不正交时,确定第三上行测量参考信号造成对第二上行测量参考信号的干扰;
当第三上行测量参考信号的序列与第二上行测量参考信号的序列不正交时,确定第三上行测量参考信号不造成对第二上行测量参考信号的干扰。
这样,可以使得第一网络设备不仅能够在功率维度上测得干扰情况,还可在序列维度上判断第三上行测量参考信号是否为第二上行测量参考信号的干扰,进一步提高干扰测量的准确性。
可选的,所述方法还可以包括:
S0.所述第一用户设备接收来自第一无线网络设备的第一指示,所述第一指示用于指示配置信息为所述第一上行测量参考信号的配置信息。
通过第一指示,可以使得第一上行测量参考信号的配置信息和第二上行测量参考信号的配置信息可以复用信令(消息),也可以使得第一UE正确的解析所接收到的配置信息。可以理解的是,没有显式的第一指示的情况下,第一UE可以根据所述配置信息的格式或所占用的资源信息(如时域资源,频域资源中的至少一个),或者,其他隐式指示的方式,确定所述配置信息为所述第一上行测量参考信号的配置信息。
可选的,第一指示可以独立于所述配置信息进行传输,或者,也可以携带在所述配置信息中进行传输。
其中,第一指示可以为用户设备特定(UE-specific)的参数;
可选的,第一指示也可以称为类型指示,即指示所述配置信息所配置的上行测量参考信号为零功率测量参考信号,或是,非零功率测量参考信号。
可选的,第一指示可以用来指示配置信息为第一上行测量参考信号的配置信息,或是,第二上行测量参考信号的配置信息。可选的,第一指示可以占1比特,比如,第一指示为0时,表示配置信息为第一上行测量参考信号的配置信息,第一指示为1时,表示配置信息为第二上行测量参考信号的配置信息。
可选的,可以通过第一指示是否存在来指示配置信息为第一上行测量参考信号的配置信息或是第二上行测量参考信号的配置信息。比如,第一指示存在,则指示配置信息为第一上行测量参考信号的配置信息;第一指示不存在,则指示配置信息为第二上行测量参考信号的配置信息。
可以理解的是在,在S5之前,所述方法还可以包括:
所述第一用户设备接收来自第一无线网络设备的第一指示,所述第一指示用于指示所述配置信息为所述第二上行测量参考信号的配置信息。
第一指示的相关描述可以参考前述S0的描述,在此不予赘述。
可选的,所述方法还可以包括:
第一无线网络设备向第一UE发送第二指示,所述第二指示用于指示所述配置信息所配置的第一上行测量参考信号为周期性传输或是非周期传输或是半持续传输。
所述第一UE接收所述第二指示,并根据所述指示以及所述配置信息周期性的传输所述第一上行测量参考信号;或是,根据所述指示以及所述配置信息非周期的传输所述第一上行测量参考信号。
由于用于周期性传输和非周期性传输的配置信息中所包括的参数可能不同,或者,参数相同而含义不同,通过第二指示,可以使得第一UE正确的解析所接收到的配置信息。或者,由于用于周期性传输,非周期性传输和半持续传输的配置信息中所包括的参数可能不同,或者,参数相同而含义不同,通过第二指示,可以使得第一UE正确的解析所接收到的 配置信息。
可选的,所述第二指示可以携带在高层信令,如RRC信令中。
可选的,所述第一上行测量参考信号的配置信息用于非周期传输时,所述第一用户设备接收来自第一无线网络设备的第一上行测量参考信号的配置信息包括:
所述第一用户设备接收来自所述第一无线网络设备的第一上行测量参考信号的配置信息,用于指示第一上行测量参考信号的多组时频资源;
所述方法还包括:所述第一用户设备接收来自第一无线网络设备的触发信息,所述触发信息用于触发所述第一用户设备在多组时频资源中的至少一组时频资源上发送所述第一上行测量参考信号。
可选的,所述触发信息可以包括多组时频资源中的至少一组时频资源的标识信息,比如上行测量参考信号的标识,如SRS ID。
可选的,所述配置信息可以携带在高层信令,如RRC信令中,所述触发信息可以携带在下行控制信息(downlink control information,DCI)中。
可选的,类似的,所述方法还可以包括:
第一无线网络设备向第一UE发送第三指示,所述第三指示用于指示所述配置信息所配置的第二上行测量参考信号为周期性传输或是非周期传输或是半持续传输。
所述第一UE接收所述第三指示,并根据所述指示以及所述配置信息周期性的传输所述第二上行测量参考信号;或是,根据所述指示以及所述配置信息非周期的传输所述第二上行测量参考信号。
可选的,所述第三指示可以携带在高层信令,如RRC信令中。
可选的,所述第二上行测量参考信号的配置信息用于非周期传输时,所述第一用户设备接收来自第一无线网络设备的第二上行测量参考信号的配置信息包括:
所述第一用户设备接收来自所述第一无线网络设备的第二上行测量参考信号的配置信息,用于指示第二上行测量参考信号的多组时频资源;
所述第一用户设备接收来自第一无线网络设备的触发信息,所述触发信息用于触发所述第一用户设备在多组时频资源中的至少一组时频资源上发送所述第二上行测量参考信号。
可选的,所述触发信息可以包括多组时频资源中的至少一组时频资源的标识信息。
可选的,所述配置信息可以携带在高层信令,如RRC信令中,所述触发信息可以携带在下行控制信息(downlink control information,DCI)中。
可选的,所述第一上行测量参考信号和所述第二上行测量参考信号可以包括在同一个上行测量参考信号进程中。
一个上行测量参考信号进程中可以包括一个或多个用于第一上行测量参考信号传输的资源的信息,和/或,一个或多个用于第二上行测量参考信号传输的资源的信息。其中,所述资源的信息包括时域资源信息、频域资源信息、序列信息等资源信息中的一个或多于一个。也就是说,所述第一上行测量参考信号的配置信息可以包括一个或多个用于第一上行测量参考信号传输的资源的信息,所述第二上行测量参考信号的配置信息可以包括一个或多个用于第二上行测量参考信号传输的资源的信息。
可选的,所述第一上行测量参考信号和所述第二上行测量参考信号也可以分别进行配置,即没有上行测量参考信号进程这个概念。
可选的,所述第一UE可以为位于第一无线网络设备所服务的小区的边缘。
可选的,所述第二UE由所述第二无线网络设备服务时,第二UE可以为位于第二无线网络设备所服务的小区的边缘。
通过本发明实施例中提供的上行测量参考信号的传输方法,可以使得无线网络设备在用户设备发送零功率上行测量参考信号的时频资源上测量其他用户设备发送的非零功率上行测量参考信号(也可称为干扰),进而通过无线网络设备基于所测得的干扰,进行功率控制,上行测量参考信号重配,或,干扰消除等操作,进而可以实现降低所述用户设备的非零功率上行测量参考信号上的干扰的目的。
可选的,本申请中,上述配置信息还可以包括跳频带宽,符号个数,子载波间隔,CP长度,时域长度等中的一个或多个。
示例性的,以所述上行测量参考信号为探测参考信号(sounding reference signal,SRS)为例,所述零功率上行测量参考信号可以表示为ZP SRS(zero power SRS),所述非零功率上行测量参考信号可以表示为NZP SRS(non-zero power SRS)。具体的第一上行测量参考信号(即零功率上行测量参考信号)的配置信息可以为:
Figure PCTCN2017109385-appb-000002
其中,CSI-RS-ConfigZPId-r11表示该组配置信息所对应的ZP SRS资源的ID,srs-AntennaPort-r10表示UE发送所述ZP SRS所使用的天线端口号,srs-Bandwidth表示所述ZP SRS的带宽,srs-HoppingBandwidth表示所述ZP SRS的跳频带宽,用于ZP SRS的跳频,通常用于周期性传输的ZP SRS,freqDomainPosition表示ZP SRS的频域开始位置,duration表示ZP SRS的持续时间,srs-ConfigIndex表示ZP SRS的配置索引,transmissionComb表示ZP SRS所采用的梳尺(也称为频率梳尺)值,cyclicShift表示ZP SRS序列所使用的循环移位,Periodicity表示ZP SRS的周期时间。
可以理解的是,以上配置信息为一种周期性传输的ZP SRS的配置信息的示例。根据实际系统配置需要,该配置信息中所包括的内容可以有其他形式,比如,为以上配置信息中所包括的各项信息中的一项或多项的组合,且上述各项信息的具体取值也可以与上述示例中的取值有所不同,在此不予限定。
类似的,具体的非零功率上行测量参考信号的配置信息可以为:
Figure PCTCN2017109385-appb-000003
Figure PCTCN2017109385-appb-000004
其中,CSI-RS-ConfigNZPId-r11表示该组配置信息所对应的NZP SRS资源的ID,上述配置信息中的其他参数均表示NZP SRS的相应配置信息,具体的含义与上述ZP SRS配置信息中的含义一致。
作为一种可能的配置方式,可以定义一个上行测量参考信号进程,如SRS process,该进程中可以包括一个或多个零功率上行测量参考信号的资源信息(每个资源信息可以对应一个标识(ID)),和/或,一个或多个非零功率上行测量参考信号的资源的信息(每个资源信息对应一个标识(ID))。
可选的,通过高层信令(如RRC信令)来携带所述上行测量参考信号进程的信息。
可选的,通过零功率上行测量参考信号和非零功率上行测量参考信号的配置信息的ID的不同,来使得UE获知当前的配置信息对应的为零功率上行测量参考信号或非功率上行测量参考信号。
示例的,以SRS process,ZP SRS和NZP SRS为例,一个SRS process的定义可以为:
Figure PCTCN2017109385-appb-000005
其中,SRS-ProcessId表示SRS进程的标识(ID),SRS-ConfigNZPId表示NZP SRS资源ID,SRS-ConfigZPId表示ZP SRS资源ID。
其中,NZP SRS资源ID和ZP SRS资源ID不同,该不同既可以标识不同的资源,也可以标识出该资源是用于NZP SRS还是用于ZP SRS。
可选的,NZP SRS资源ID有多个时,该NZP SRS资源ID还用于标识不同的NZP SRS资源。
类似的,ZP SRS资源ID有多个时,该ZP SRS资源ID还用于标识不同的ZP SRS资源。
作为另一种可能的配置方式,也可以不定义上述上行测量参考信号进程,而是直接进行零功率上行测量参考信号和非零功率上行测量参考信号的配置,比如在高层信令中携带一个或多个零功率上行测量参考信号的资源信息(每个资源的信息可以对应一个标识(ID)),和/或,一个或多个非零功率上行测量参考信号的资源信息(每个资源的信息可以对应一个标识(ID))。
可选的,可以通过配置信息中所包括的零功率上行测量参考信号的标识信息或非零功率上行测量参考信号的标识信息,来区分所述配置信息为零功率上行测量参考信号的配置信息, 还是非零功率上行测量参考信号的配置信息。
进一步的,当配置信息包括多个资源信息时,还可以通过该零功率上行测量参考信号的标识信息区分不同的零功率上行测量参考信号的资源的信息,和/或,通过非零功率上行测量参考信号的标识信息区分不同的非零功率上行测量参考信号的资源的信息。
可选的,还可以定义类型指示(即前述第一指示),用于指示配置信息为所述配置信息为零功率上行测量参考信号的配置信息,还是非零功率上行测量参考信号的配置信息。该类型指示可以携带在配置信息中,也可以独立携带在DCI或高层信令中。
作为一种可能的实施方式,上述零功率上行测量参考信号为周期性传输还是非周期性传输可以通过第二指示来指示。
作为一种可能的实施方式,上述零功率上行测量参考信号为周期性传输还是非周期性传输还是半持续传输可以通过第二指示来指示。
可选的,第二指示可以携带在高层信令中。
示例的,第二指示可以为触发类型(trigger type)0或触发类型1,其中,trigger type 0指示周期性传输的零功率上行测量参考信号,trigger type 1指示非周期性传输的零功率上行测量参考信号。或者,第二指示可以为触发类型(trigger type)0或触发类型1或触发类型2,其中,trigger type 0指示周期性传输的零功率上行测量参考信号,trigger type 1指示非周期性传输的零功率上行测量参考信号,trigger type 2指示半持续传输的零功率上行测量参考信号。其中,半持续传输可以通过DCI或者MAC CE触发激活(activate),如激活第一或第二上行测量参考信号的发送,并通过DCI或者MAC CE触发去激活(deactivate),如停止第一或第二上行测量参考信号的发送,或者,可以通过DCI或者MAC CE触发激活(activate),在一段时间后去激活,这段时间可以通过协议规定(无需基站配置,本地预存储或预配置)或者可以通过基站配置,或者,可以在收到配置信息后一段时间激活(如通过计时器激活),通过DCI或者MAC CE触发去激活,或是在一段时间后去激活(如通过计时器去激活),收到配置信息和激活之间的这段时间可以通过协议规定(无需基站配置,本地预存储或预配置)或者可以通过基站配置,激活和去激活之间的这段时间也可以通过协议规定(无需基站配置,本地预存储或预配置)或者可以通过基站配置。前述的具体触发类型0-2与其所指示的含义的对应为一种举例,触发类型的值也可以为其他定义,在此不予限定。
可选的,在trigger type 1的情况下,可以通过高层信令配置非周期性传输的零功率上行测量参考信号的多组时频资源信息。由于高层信令的配置为静态或半静态的配置,这些配置信息的应用周期较长。
通过下行链路控制信道,如PDCCH(physical downlink control channel)的DCI格式(format)来指示触发前述时频资源信息中的一组或多组的激活或是来指示不触发任何资源信息的激活。具体可以触发前述时频资源信息中的几组或哪几组资源信息的激活,可以通过具体的DCI format来指示,即具体的DCI format与可以触发前述时频资源信息中的几组(或哪几组)资源信息的激活相绑定,还可以通过DCI format中携带的参数(域)来进一步指示,比如DCI format 4中可以通过2比特,如Value of SRS request field(SRS请求值域),来指示触发3组时频资源信息中的任一种或是不触发任何配置信息,而DCI format 4可触发的这3组时频资源信息可以与DCI format 4有绑定关系,这种绑定关系可以为协议预先预定,在通信过程中可以无需配置。再比如DCI formats 0/1A/2B/2C/2D中可以通过1比特指示触发1种资源信息或不触发任何资源信息,而DCI formats 0/1A/2B/2C/2D具体可触发哪1组时频资源 信息,可以通过预定的绑定关系来确定。
示例的,以上行测量参考信号为SRS为例,介绍SRS的序列、时域和频域资源如何根据配置信息中的参数来进行配置。
可以理解的是,NZP SRS和ZP SRS的序列、时域和频域资源如何根据配置信息中的参数来进行配置的方式可以相同,以下以NZP SRS的配置方式进行说明,此部分的说明还可以参考现有LTE协议中对于NZP SRS的配置方式的描述。可以理解的是,这些说明只是为了使本发明实施例的方案更清楚,但并不对本发明实施例的方案造成限制,具体的NZP SRS和ZP SRS的序列、时域和频域资源如何根据配置信息中的参数来进行配置的方式还可以为未来通信系统,如5G通信系统中协议规定的方式,与LTE协议中的方式可能采用不同的参数名、定义(如时域资源单位(对应LTE中的子帧、时隙、符号等)的定义)、帧结构、子载波间隔和循环前缀(cyclic prefix,CP)长度等,在此不予限定。
本申请中,在5G NR通信系统中,第一上行测量参考信号和/或第二上行测量参考信号的配置信息中的部分或全部可以承载在用户特定(UE-specific)信令中,其中,第一上行测量参考信号和/或第二上行测量参考信号的配置信息包括以下至少之一:时间资源,周期时间,频率梳尺,带宽,跳频带宽,符号个数,子载波间隔,CP长度,时域长度。第一上行测量参考信号和/或第二上行测量参考信号的配置信息还可以理解为配置第一上行测量参考信号的资源和/或第二上行测量参考信号的资源的信息。第一上行测量参考信号和/或第二上行测量参考信号的配置信息全部承载在用户设备特定(UE-specific)信令,可以避免NR多numerology场景下配置信息通过小区特定(cell-specific)的信令进行通知时,不同numerology的UE对配置信息的理解不一致所造成的不同UE之间的上行数据信道和上行测量参考信号之间的碰撞。其中,numerology是指帧结构的参数,可以包括子载波间隔和/或CP长度。
SRS序列的生成
上行链路探测参考信号SRS信号序列可以为
Figure PCTCN2017109385-appb-000006
其中,
Figure PCTCN2017109385-appb-000007
为序列长度,u∈{0,1,…29}为物理上行控制信道(physical uplink control channel,PUCCH)序列组数,v为每组内基序列数,
Figure PCTCN2017109385-appb-000008
为基序列,
Figure PCTCN2017109385-appb-000009
为小于
Figure PCTCN2017109385-appb-000010
的序列长度,
Figure PCTCN2017109385-appb-000011
SRS的循环移位,可以为
Figure PCTCN2017109385-appb-000012
其中,
Figure PCTCN2017109385-appb-000013
为来自每个UE的配置参数(包含在前述配置信息,cyclicShift),且
Figure PCTCN2017109385-appb-000014
即共有8种循环移位。
SRS时域资源
小区内任何UE所发送的SRS所在的子帧,可以由一个4比特小区特定(cell-specific)的“SRS子帧配置”参数“srsSubframeConfiguration”确定,共16种模式,可配置一个物理帧(10ms)内可发送SRS的子帧位置。TSFC为子帧配置周期,ΔSFC为小区特定子帧偏量。其中,ΔSFC为相对于某个子帧的偏移量,在LTE中为相对0号子帧的偏移量。具体的16中模式如 下表1所示:
表1:帧结构类型1的SRS子帧配置
Figure PCTCN2017109385-appb-000015
以FDD系统为例,SRS传输位于已配置子帧的最后一个OFDM符号中,且分配给SRS的OFDM符号不允许进行物理上行共享信道(physical uplink shared channel,PUSCH)的数据传输。
对一个UE进行周期传输SRS配置,具体周期的值可以根据前述配置信息中的Periodicity参数确定。具体周期的值可以为前述配置信息中的T1,T2,T3,T4等集合中的一个。可选的,周期集合可以为{2,5,10,20,40,80,160,320}ms。具体的子帧偏移Toffset可以通过10比特的“SRS配置索引,SRS Configuration Index ISRS”进行配置。
SRS频域资源
对于非周期性的SRS没有频率跳频(hopping);而对于周期性SRS可以采用频率跳频,此时跳频是子帧间的,不同子帧上的SRS占用的频域资源不同。
LTE系统中会通过高层信令,比如:无线资源控制(Radio Resource Control,RRC)信令,配置小区级SRS带宽CSRS∈{0,1,2,3,4,5,6,7},以及UE级的SRS带宽配置BSRS(可以由前述配置信息中srs-Bandwidth参数来指示)。一种小区级SRS带宽中可以包含4种UE级SRS带宽BSRS∈{0,1,2,3},并且配置SRS传输的子载波梳尺(comb)参数
Figure PCTCN2017109385-appb-000016
(在SRS传输时只间隔一个子载波的情况,可以由前述配置信息中 transmissionComb参数来指示)以及频域位置参数nRRC(可以由前述配置信息中freqDomainPosition参数来指示)。通过这些参数,终端可以确定SRS传输的具体频域资源。
对于不同的上行带宽,SRS带宽配置,以及频域资源确定的其他方面,具体可参见第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)技术规范(Technical Specification,TS)36.211中的描述,在此不予赘述。
本发明实施例还提供一种上行测量参考信号传输的方法,通过控制非零功率上行测量参考信号的功率,使得非零功率上行测量参考信号在一些预设的时频资源上的发射功率为0(相当于发送的是零功率上行测量参考信号),使得无线网络设备(如第一无线网络设备)可以在这些时频资源上对所接收到的信号进行测量,从而获得用户设备(如第一UE)的上行测量参考信号受到的干扰情况。
所述预设的时频资源可以根据协议预定义或无线网络设备所选择的零功率上行测量参考信号的配置确定。与图3a对应的实施例的不同在于,本实施例中可以不将零功率上行测量参考信号的配置信息发送给UE,而是由无线网络设备直接根据所述配置通过非零功率上行测量参考信号在配置所指示的时频资源上进行功率控制的方式,实现零功率上行测量参考信号的发送(即实现在配置所指示的时频资源上的发射功率为零)。
具体的,用户设备在一个时域资源单位(如第i个)(时域资源单位可以为子帧或时隙等协议中定义的时域资源的单位)非零功率上行测量参考信号的发射功率PSRS
PSRS(i)=min{PCMAX(i),PSRS_OFFSET(m)+10log10(MSRS)+PO_PUSCH(j)+α(j)·PL+f(i)}
                          公式(1)
其中PSRS的单位可以为dBm,PCMAX(i)为网络侧配置的第i个子帧上的用户设备的最大发射功率,PSRS_OFFSET(m)是由高层半静态配置的高层参数,对于周期性上行测量参考信号,m=0,对于非周期性上行测量参考信号,m=1;MSRS为第i个子帧上的SRS的带宽;f(i)PO_PUSCH(j)α(j)均为物理上行共享信道(PUSCH)的功率控制调整值。可以理解的是,所述公式中所包括的参数(称为功率配置参数)中与时域资源单位相关的指示可以通过现有的方式进行指示,这些指示可以是时域资源单位级别的(如子帧级的)。
可以通过无线网络设备向UE发送的功率控制参数(称为零功率配置参数),将上述上行测量参考信号的发射功率PSRS配置为0,如PSRS=0[dBm],其中,所述功率控制参数可以携带在高层信令(如RRC信令)中,或者携带在下行控制信道,如下行控制信息的DCI中。可以理解的是,所述功率控制参数的配置可以是时域资源单位级别的,比如,可以通过与公式(1)中与时域资源单位相关的参数的指示方式进行指示,如现有的公式(1)中与时域资源单位相关的参数的指示方式。
这样,UE接收到所述零功率配置参数时,将上行测量参考信号的发射功率控制为0,否则,根据上述公式一确定上行测量参考信号的发射功率。
可以理解的是,根据协议或系统需求的变化,上述公式一也可能为其他形式,为其他公式,在此不予限定。
具体的,如图3b所示,所述方法可以包括:
S301,无线网络设备向UE发送零功率配置参数,所述零功率配置参数用于指示一个或多于一个时频资源上的上行测量参考信号的发射控制为0;
可选的,所述零功率配置参数用于指示一个时域资源单位上的上行测量参考信号的发射控制为0;
S302.UE接收所述零功率配置参数,并将该一个或多于一个时频资源上的上行测量参考信号的发射功率控制为零。
可选的,还可以包括:
S303,无线网络设备向UE发送非零功率上行测量参考信号的配置信息,所述配置信息用于指示发送非零功率上行测量参考信号的时频资源;
S304,UE接收来自无线网络设备的非零功率上行测量参考信号的配置信息,并在配置信息所指示的时频资源上发送非零功率上行测量参考信号。
其中,S303-304与S301-302之间的先后顺序可以不限。
可选的,所述非零功率上行测量参考信号的功率通过来自无线网络设备的功率配置参数确定。所述功率配置参数的优先级低于所述零功率配置参数。
可选的,所述功率配置参数包括时域资源单位级别的参数。
可选的,上述非零功率上行测量参考信号的配置(如时频资源,序列资源等信息的配置),可以参考前述如图3a所对应的实施例中的针对非零功率上行测量参考信号的描述(如步骤S5,S6),在此不予赘述。
本方法中,可以通过控制非零功率上行测量参考信号的发射控制为零,实现UE的上行测量参考信号受到的干扰可测。
根据前述方法,如图4a所示,本发明实施例还提供一种用于上行测量参考信号传输的装置,该装置可以为无线设备10。该无线设备10可以对应上述方法中的第一无线网络设备。第一无线网络设备可以为基站,也可以为其他设备,在此不予限定。
该装置可以包括处理器110、存储器120、总线系统130、接收器140和发送器150。其中,处理器110、存储器120、接收器140和发送器150通过总线系统130相连,该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以控制接收器140接收信号,并控制发送器150发送信号,完成上述方法中第一无线网络设备(如基站)的步骤。其中,接收器140和发送器150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器140和发送器150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线设备。即将实现处理器110,接收器140和发送器150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,接收器140和发送器150的功能。
该装置所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,如图4b所示,本发明实施例还提供另一种用于上行测量参考信号传输的装置,该装置可以为无线设备20,该无线设备20对应上述方法中的第一用户设备。可以理解的是,第二无线设备可以为UE,也可以为微基站或小基站,在此不予限定。
该装置可以包括处理器210、存储器220、总线系统230、接收器240和发送器250。其中,处理器210、存储器220、接收器240和发送器250通过总线系统230相连,该存储器220用 于存储指令,该处理器210用于执行该存储器220存储的指令,以控制接收器240接收信号,并控制发送器250发送信号,完成上述方法中第一UE的步骤。其中,接收器240和发送器250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器240和发送器250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线设备。即将实现处理器210,接收器240和发送器250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,接收器240和发送器250的功能。
所述装置所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本发明实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的第一无线网络设备和一个或多于一个用户设备。
应理解,在本发明实施例中,处理器110或210可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器120或220可以包括只读存储器和随机存取存储器,并向处理器310提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统130或230除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器110或210中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
下面结合图5至图7对本申请实施例的提供的通信装置做进一步说明。
图5为本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中。为了便于说明,图5仅示出了终端设备的主要部件。如图5所示,终端设备100包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如,基于接收的第一配置信息映射第一上行测量参考信号,和/或基于接收的第二配置信息映射第二上行测量参考信号等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述第一指示信息与第一配置信息和/或第二配置信息的对应关系等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的 射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图5仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图5中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在发明实施例中,可以将具有收发功能的天线和控制电路视为终端设备100的收发单元101,例如,用于支持终端设备执行前述方法或装置部分所述的接收功能。将具有处理功能的处理器视为终端设备10的处理单元102。如图5所示,终端设备100包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器102可用于执行该存储器存储的指令,以控制收发单元101接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元101的功能可以考虑通过收发电路或者收发的专用芯片实现。
图6为本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图6所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站200包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)202。所述RRU201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU202部分主要用于进行基带处理,对基站进行控制等。所述RRU201与BBU202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。例如存储器2021存储上述实施例中的第一指示信息与第一配置信息和/或第二配置信息的对应关系等。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图7给出了一种通信装置700的结构示意图,装置700可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置700可以是芯片,网络设备(如基站),终端设备或者其他网络设备等。
所述通信装置700包括一个或多个处理器701。所述处理器701可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
所述通信装置700包括一个或多个所述处理器701,所述一个或多个处理器701可实现前述各实施例中网络设备或者终端设备的方法。
在一种可能的设计中,所述通信装置700包括用于接收第一配置信息和/或第二配置信息的部件(means),以及用于发送第二上行测量参考信号的部件(means)。可以通过一个或多个处理器来实现解析所收到的第一配置信息和/或第二配置信息的部件(means),以及用于映射第一上行测量参考信号和/或第二上行测量参考信号的means的功能。例如可以通过一个或多个处理器解析所收到的第一配置信息和/或第二配置信息并映射第一上行测量参考信号和/或第二上行测量参考信号,通过收发器、或输入/输出电路、或芯片的接口接收第一配置信息和/或第二配置信息的部件(means),以及用于发送第二上行测量参考信号。所述第一配置信息和/或第二配置信息,第二上行测量参考信号可以参见上述方法实施例中的相关描述
在一种可能的设计中,所述通信装置700包括用于发送第一配置信息和/或第二配置信息的部件(means),以及用于接收第二上行测量参考信号的部件(means)。所述第一配置信息和/或第二配置信息可以参见上述方法实施例中的相关描述。例如可以通过一个或多个处理器生成第一配置信息和/或第二配置信息,及解析第二上行测量参考信号,通过收发器、或输入/输出电路、或芯片的接口发送所述第一配置信息和/或第二配置信息,接收第二上行测量参考信号。
可选的,处理器701除了实现前述各实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器701也可以包括指令703,所述指令可以在所述处理器上被运行,使得所述通信装置700执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置700也可以包括电路,所述电路可以实现前述方法实施例中的功能。
可选的,所述通信装置700中可以包括一个或多个存储器702,其上存有指令704,所述 指令可在所述处理器上被运行,使得所述通信装置700执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器702可以存储上述实施例中所描述的指示信息与组合信息的对应关系,所述组合信息相关的参数,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,所述通信装置700还可以包括收发单元705以及天线706。所述处理器701可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发单元705可以称为收发机、收发电路、或者收发器等,用于通过天线706实现通信装置的收发功能。
本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种上行参考信号传输方法,其特征在于,包括:
    接收来自无线网络设备的第一上行测量参考信号的第一配置信息和第二上行测量参考信号的第二配置信息,所述第一配置信息用于配置所述第一上行测量参考信号的时频资源,所述第二配置信息用于配置第二上行测量参考信号的时频资源,所述第一上行测量参考信号为零功率上行测量参考信号,所述第二上行测量参考信号为非零功率上行测量参考信号;
    根据所述第一配置信息和所述第二配置信息在所述第二上行测量参考信号的时频资源中非所述第一上行测量参考信号的时频资源上发送所述第二上行测量参考信号。
  2. 一种上行测量参考信号传输方法,其特征在于,
    向终端设备发送第一上行测量参考信号的第一配置信息和第二上行测量参考信号的第二配置信息,所述第一配置信息用于配置所述第一上行测量参考信号的时频资源,所述第二配置信息用于配置第二上行测量参考信号的时频资源,所述第一上行测量参考信号为零功率上行测量参考信号,所述第二上行测量参考信号为非零功率上行测量参考信号;
    接收来自所述终端设备的所述第二上行测量参考信号,所述第二上行测量参考信号承载在所述第二上行测量参考信号的时频资源中非所述第一上行测量参考信号的时频资源上。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息和/或第二配置信息携带在高层信令中。
  4. 根据权利要求1-3中任意一项所述的方法,其特征在于,所述第一上行测量参考信号的时频资源为所述第二上行测量参考信号的时频资源的子集。
  5. 根据权利要求1-4中任意一项所述的方法,其特征在于,
    所述第一上行测量参考信号的第一配置信息和所述第二上行测量参考信号的第二配置信息包括在同一个上行测量参考信号进程中。
  6. 根据权利要求1,或,3-5中任意一项所述的方法,其特征在于,所述接收来自无线网络设备的第一上行测量参考信号的第一配置信息和第二上行测量参考信号的第二配置信息包括:
    接收来自无线网络设备的第一指示和配置信息,所述第一指示用于指示所接收到的配置信息为第一上行测量参考信号的第一配置信息和/或第二上行测量参考信号的第二配置信息。
  7. 根据根据要求2-5任意一项所述的方法,所述向终端设备发送第一上行测量参考信号的第一配置信息和第二上行测量参考信号的第二配置信息包括:
    向所述终端设备发送第一指示和配置信息,所述第一指示用于指示所述配置信息包括所述第一上行测量参考信号的第一配置信息和/或所述第二上行测量参考信号的第二配置信息。
  8. 根据权利要求6或7所述的方法,其特征在于,所述配置信息还包括所述第一指示,或者,所述第一指示不包括在所述配置信息中。
  9. 根据权利要求6-8任意一项所述的方法,其特征在于,所述第一指示携带在下行控制信息(DCI)或高层信令中。
  10. 根据权利要求1,3-6,或,8-9任一项所述的方法,其特征在于,还包括:
    接收来自无线网络设备的第二指示,所述第二指示用于指示所述第一配置信息所配置 的第一上行测量参考信号为周期性传输或是非周期传输或是半持续传输。
  11. 根据权利要求2-5,或,7-9中任一项所述的方法,其特征在于,还包括:
    向所述终端设备发送第二指示,所述第二指示用于指示所述第一配置信息所配置的第一上行测量参考信号为周期性传输或是非周期传输或是半持续传输。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二指示携带在高层信令中。
  13. 根据权利要求1,3-6,8-10,或,12中任一项所述的方法,其特征在于,所述第一上行测量参考信号的第一配置信息用于指示所述第一上行测量参考信号非周期传输的时频资源,所述接收来自无线网络设备的第一上行测量参考信号的第一配置信息包括:
    接收来自所述无线网络设备的第一上行测量参考信号的第一配置信息,用于指示第一上行测量参考信号的多组时频资源;
    接收来自无线网络设备的触发信息,所述触发信息用于触发所述多组时频资源中的至少一个,所述终端设备在所述第二上行测量参考信号的时频资源中非多组时频资源中被触发的时频资源上发送所述第二上行测量参考信号。
  14. 根据权利要求2-5,7-9,或,11-12中任一项所述的方法,其特征在于,所述第一上行测量参考信号的第一配置信息指示所述第一上行测量参考信号非周期传输的时频资源,所述向所述终端设备发送第一上行测量参考信号的第一配置信息包括:
    向所述终端设备发送第一上行测量参考信号的第一配置信息,用于指示第一上行测量参考信号的多组时频资源;
    所述方法还包括:向所述终端设备发送触发信息,所述触发信息用于触发所述多组时频资源中的至少一个;
    接收的来自所述终端设备的第二上行测量参考信号承载在所述第二上行测量参考信号的时频资源中非多组时频资源中被触发的时频资源上。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一配置信息携带在高层信令中,所述触发信息携带在下行控制信息(DCI)中。
  16. 根据权利要求1,3-6,8-10,12-13,或,15任一项所述的方法,其特征在于,还包括:发送上行数据信道和/或上行控制信道;
    所述上行数据信道和/或上行控制信道映射在所述第一上行测量参考信号的时频资源以外的时频资源上。
  17. 根据权利要求1,3-6,8-10,12-13,或,15任一项所述的方法,其特征在于,还包括:接收上行数据信道和/或上行控制信道;
    所述上行数据信道和/或上行控制信道映射在所述第一上行测量参考信号的时频资源以外的时频资源上。
  18. 根据权利要求1-17任一项所述的方法,其特征在于,所述第一上行测量参考信号的第一配置信息在非周期传输时所包括的信息的种类少于在周期传输时所包括的信息的种类;和/或,所述第一上行测量参考信号的第一配置信息在非周期传输时所包括的信息的候选集合少于在周期传输时所包括的信息的候选集合。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述第一上行测量参考信号为非周期传输时占用其所映射符号上的所述第一上行测量参考信号带宽内的所有子载波。
  20. 一种通信装置,其特征在于,包括处理器、存储器和收发单元,
    所述存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器存储的计算机程序或指令,以控制收发单元进行信号的接收和发送,当处理器执行所述存储器存储的计算机程序或指令时,所述通信装置用于完成如权利要求1至19任意一项所述的方法。
  21. 如权利要求20所述的通信装置,其特征在于,所述收发单元为收发器或输入输出接口。
  22. 一种通信装置,其特征在于,用于执行如权利要求1-19任一项所述的方法。
  23. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得如权利要求1-19任一项所述的方法被执行。
PCT/CN2017/109385 2016-11-04 2017-11-03 一种上行测量参考信号传输方法、装置和系统 WO2018082672A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17866445.4A EP3528569B1 (en) 2016-11-04 2017-11-03 Techniques for uplink sounding reference signal transmission and reception
US16/402,975 US11095412B2 (en) 2016-11-04 2019-05-03 Uplink measurement reference signal transmission method, apparatus, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610964711.X 2016-11-04
CN201610964711 2016-11-04
CN201710682220.0 2017-08-10
CN201710682220.0A CN108024364B (zh) 2016-11-04 2017-08-10 一种上行测量参考信号传输方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/402,975 Continuation US11095412B2 (en) 2016-11-04 2019-05-03 Uplink measurement reference signal transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018082672A1 true WO2018082672A1 (zh) 2018-05-11

Family

ID=62075522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109385 WO2018082672A1 (zh) 2016-11-04 2017-11-03 一种上行测量参考信号传输方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2018082672A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110859004A (zh) * 2018-08-23 2020-03-03 维沃移动通信有限公司 用于确定物理上行共享信道发送功率的方法和设备
CN111224766A (zh) * 2020-01-10 2020-06-02 北京紫光展锐通信技术有限公司 参考信号发送方法、参考信号接收方法及通信装置
CN111757478A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种上报srs能力的方法、装置及系统
CN113243135A (zh) * 2018-12-25 2021-08-10 华为技术有限公司 获取下行信道信息的方法和装置
CN113810089A (zh) * 2020-06-11 2021-12-17 华为技术有限公司 一种通信方法及装置
WO2023216880A1 (zh) * 2022-05-12 2023-11-16 华为技术有限公司 通信方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077822A1 (en) * 2010-12-07 2012-06-14 Sharp Kabushiki Kaisha A user equipment (ue) configured for reporting uplink control information (uci) and a method for reporting uplink control information (uci) on a user equipment (ue)
CN102694622A (zh) * 2011-03-25 2012-09-26 中兴通讯股份有限公司 一种测量集合的信令通知方法及系统
CN103297153A (zh) * 2012-02-28 2013-09-11 华为技术有限公司 功率测量方法、信号测量方法和设备
CN103491637A (zh) * 2012-06-12 2014-01-01 电信科学技术研究院 一种pdsch传输资源的确定方法及装置
CN103580819A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
CN105991231A (zh) * 2015-02-28 2016-10-05 中兴通讯股份有限公司 获取信道状态信息csi的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077822A1 (en) * 2010-12-07 2012-06-14 Sharp Kabushiki Kaisha A user equipment (ue) configured for reporting uplink control information (uci) and a method for reporting uplink control information (uci) on a user equipment (ue)
CN102694622A (zh) * 2011-03-25 2012-09-26 中兴通讯股份有限公司 一种测量集合的信令通知方法及系统
CN103297153A (zh) * 2012-02-28 2013-09-11 华为技术有限公司 功率测量方法、信号测量方法和设备
CN103491637A (zh) * 2012-06-12 2014-01-01 电信科学技术研究院 一种pdsch传输资源的确定方法及装置
CN103580819A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
CN105991231A (zh) * 2015-02-28 2016-10-05 中兴通讯股份有限公司 获取信道状态信息csi的方法及装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110859004A (zh) * 2018-08-23 2020-03-03 维沃移动通信有限公司 用于确定物理上行共享信道发送功率的方法和设备
CN110859004B (zh) * 2018-08-23 2023-12-08 维沃移动通信有限公司 用于确定物理上行共享信道发送功率的方法和设备
CN113243135A (zh) * 2018-12-25 2021-08-10 华为技术有限公司 获取下行信道信息的方法和装置
CN111757478A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种上报srs能力的方法、装置及系统
CN111757478B (zh) * 2019-03-28 2023-11-14 华为技术有限公司 一种上报srs能力的方法、装置及系统
CN111224766A (zh) * 2020-01-10 2020-06-02 北京紫光展锐通信技术有限公司 参考信号发送方法、参考信号接收方法及通信装置
CN113810089A (zh) * 2020-06-11 2021-12-17 华为技术有限公司 一种通信方法及装置
CN113810089B (zh) * 2020-06-11 2023-09-29 华为技术有限公司 一种通信方法及装置
WO2023216880A1 (zh) * 2022-05-12 2023-11-16 华为技术有限公司 通信方法及相关装置

Similar Documents

Publication Publication Date Title
US11095412B2 (en) Uplink measurement reference signal transmission method, apparatus, and system
US10944521B2 (en) Data sending method, related device, and system
JP7237862B2 (ja) 端末、無線通信方法、基地局及びシステム
CN108347778B (zh) 通信方法及装置
WO2018082670A1 (zh) 通信方法、装置、网络设备及终端
US11153774B2 (en) Signal transmission method and device, and system
US10856268B2 (en) Subframe configuration method and related device
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
JP6153575B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2019062003A1 (zh) 数据传输的方法、终端设备和网络设备
WO2019214383A1 (zh) 准共址信息的配置方法、网络设备及用户设备
WO2018124028A1 (ja) ユーザ端末及び無線通信方法
JP6243115B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2018137703A1 (zh) 一种信息传输方法和装置
US11337094B2 (en) Interference measurement reporting method, device, and system
US20190260565A1 (en) Information transmission method, apparatus, and system
US10420137B2 (en) System and method for signal density reduction in the frequency domain
WO2017170448A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US20210014736A1 (en) Communication method, communications apparatus, and system
JP7390438B2 (ja) 受信装置、送信装置、無線通信方法及びシステム
JPWO2017164141A1 (ja) ユーザ端末、無線基地局及び無線通信方法
KR20220050157A (ko) 리소스 다중화 방법 및 장치
JP2023552433A (ja) RedCap UEの識別のための方法及び装置
CN111492698A (zh) 用户终端以及无线通信方法
WO2021031048A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866445

Country of ref document: EP

Effective date: 20190513