WO2018080778A1 - Bonded abrasive articles including oriented abrasive particles, and methods of making same - Google Patents
Bonded abrasive articles including oriented abrasive particles, and methods of making same Download PDFInfo
- Publication number
- WO2018080778A1 WO2018080778A1 PCT/US2017/055822 US2017055822W WO2018080778A1 WO 2018080778 A1 WO2018080778 A1 WO 2018080778A1 US 2017055822 W US2017055822 W US 2017055822W WO 2018080778 A1 WO2018080778 A1 WO 2018080778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- abrasive article
- abrasive
- bonded abrasive
- bonded
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 566
- 238000000034 method Methods 0.000 title claims abstract description 82
- 239000000843 powder Substances 0.000 claims abstract description 169
- 239000011230 binding agent Substances 0.000 claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 claims abstract description 59
- 230000007480 spreading Effects 0.000 claims abstract description 50
- 238000003892 spreading Methods 0.000 claims abstract description 50
- 230000000717 retained effect Effects 0.000 claims abstract description 49
- 239000011159 matrix material Substances 0.000 claims abstract description 36
- 239000000654 additive Substances 0.000 claims abstract description 32
- 238000004458 analytical method Methods 0.000 claims abstract description 30
- 238000001000 micrograph Methods 0.000 claims abstract description 30
- 230000000996 additive effect Effects 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 238000000151 deposition Methods 0.000 claims abstract description 8
- 230000004044 response Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 59
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 45
- 229920005989 resin Polymers 0.000 claims description 30
- 239000011347 resin Substances 0.000 claims description 30
- 238000010191 image analysis Methods 0.000 claims description 9
- 238000000227 grinding Methods 0.000 claims description 7
- 238000010146 3D printing Methods 0.000 claims description 5
- 239000002243 precursor Substances 0.000 description 49
- 238000002844 melting Methods 0.000 description 34
- 230000008018 melting Effects 0.000 description 34
- 239000007788 liquid Substances 0.000 description 33
- 239000000203 mixture Substances 0.000 description 32
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 24
- 239000002923 metal particle Substances 0.000 description 21
- 150000002894 organic compounds Chemical class 0.000 description 20
- 238000001816 cooling Methods 0.000 description 19
- 239000002585 base Substances 0.000 description 18
- 239000011521 glass Substances 0.000 description 16
- 229920000647 polyepoxide Polymers 0.000 description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 15
- 238000000879 optical micrograph Methods 0.000 description 15
- -1 polytetrafluoroethylene Polymers 0.000 description 15
- 229920001568 phenolic resin Polymers 0.000 description 13
- 239000005011 phenolic resin Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000003981 vehicle Substances 0.000 description 13
- 229910044991 metal oxide Inorganic materials 0.000 description 12
- 150000004706 metal oxides Chemical class 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000001993 wax Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 229910052582 BN Inorganic materials 0.000 description 7
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 7
- 229920000858 Cyclodextrin Polymers 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 229910003460 diamond Inorganic materials 0.000 description 7
- 239000010432 diamond Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000000411 inducer Substances 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 238000001723 curing Methods 0.000 description 6
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229920003987 resole Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052580 B4C Inorganic materials 0.000 description 5
- 229920001353 Dextrin Polymers 0.000 description 5
- 239000004375 Dextrin Substances 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- 239000006061 abrasive grain Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 235000019425 dextrin Nutrition 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229920003261 Durez Polymers 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 239000001116 FEMA 4028 Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 4
- 229960004853 betadex Drugs 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000011224 oxide ceramic Substances 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 239000003082 abrasive agent Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000010974 bronze Substances 0.000 description 3
- 239000012700 ceramic precursor Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920001228 polyisocyanate Polymers 0.000 description 3
- 239000005056 polyisocyanate Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 2
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- 229920003270 Cymel® Polymers 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920001774 Perfluoroether Polymers 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 229920003180 amino resin Polymers 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229920006187 aquazol Polymers 0.000 description 2
- 239000012861 aquazol Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- LMMDJMWIHPEQSJ-UHFFFAOYSA-N bis[(3-methyl-7-oxabicyclo[4.1.0]heptan-4-yl)methyl] hexanedioate Chemical compound C1C2OC2CC(C)C1COC(=O)CCCCC(=O)OCC1CC2OC2CC1C LMMDJMWIHPEQSJ-UHFFFAOYSA-N 0.000 description 2
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 229940080345 gamma-cyclodextrin Drugs 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000011146 organic particle Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- YZOUYRAONFXZSI-SBHWVFSVSA-N (1S,3R,5R,6R,8R,10R,11R,13R,15R,16R,18R,20R,21R,23R,25R,26R,28R,30R,31S,33R,35R,36R,37S,38R,39S,40R,41S,42R,43S,44R,45S,46R,47S,48R,49S)-5,10,15,20,25,30,35-heptakis(hydroxymethyl)-37,39,40,41,42,43,44,45,46,47,48,49-dodecamethoxy-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontane-36,38-diol Chemical compound O([C@@H]([C@H]([C@@H]1OC)OC)O[C@H]2[C@@H](O)[C@@H]([C@@H](O[C@@H]3[C@@H](CO)O[C@@H]([C@H]([C@@H]3O)OC)O[C@@H]3[C@@H](CO)O[C@@H]([C@H]([C@@H]3OC)OC)O[C@@H]3[C@@H](CO)O[C@@H]([C@H]([C@@H]3OC)OC)O[C@@H]3[C@@H](CO)O[C@@H]([C@H]([C@@H]3OC)OC)O3)O[C@@H]2CO)OC)[C@H](CO)[C@H]1O[C@@H]1[C@@H](OC)[C@H](OC)[C@H]3[C@@H](CO)O1 YZOUYRAONFXZSI-SBHWVFSVSA-N 0.000 description 1
- PCWPQSDFNIFUPO-VDQKLNDWSA-N (1S,3R,5R,6S,8R,10R,11S,13R,15R,16S,18R,20R,21S,23R,25R,26S,28R,30R,31S,33R,35R,36R,37S,38R,39S,40R,41S,42R,43S,44R,45S,46R,47S,48R,49S)-37,39,41,43,45,47,49-heptakis(2-hydroxyethoxy)-5,10,15,20,25,30,35-heptakis(hydroxymethyl)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontane-36,38,40,42,44,46,48-heptol Chemical compound OCCO[C@H]1[C@H](O)[C@@H]2O[C@H]3O[C@H](CO)[C@@H](O[C@H]4O[C@H](CO)[C@@H](O[C@H]5O[C@H](CO)[C@@H](O[C@H]6O[C@H](CO)[C@@H](O[C@H]7O[C@H](CO)[C@@H](O[C@H]8O[C@H](CO)[C@@H](O[C@H]1O[C@@H]2CO)[C@@H](O)[C@@H]8OCCO)[C@@H](O)[C@@H]7OCCO)[C@@H](O)[C@@H]6OCCO)[C@@H](O)[C@@H]5OCCO)[C@@H](O)[C@@H]4OCCO)[C@@H](O)[C@@H]3OCCO PCWPQSDFNIFUPO-VDQKLNDWSA-N 0.000 description 1
- YCIHPQHVWDULOY-FMZCEJRJSA-N (4s,4as,5as,6s,12ar)-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide;hydrochloride Chemical compound Cl.C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C(O)C2=C1O YCIHPQHVWDULOY-FMZCEJRJSA-N 0.000 description 1
- LEECYHUVEPKMQZ-UHFFFAOYSA-N (5-methyl-7-oxabicyclo[4.1.0]heptan-4-yl)methyl 5-methyl-7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2C(C)C1C(=O)OCC1CCC2OC2C1C LEECYHUVEPKMQZ-UHFFFAOYSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- LAVARTIQQDZFNT-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-yl acetate Chemical compound COCC(C)OCC(C)OC(C)=O LAVARTIQQDZFNT-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- IBLKWZIFZMJLFL-UHFFFAOYSA-N 1-phenoxypropan-2-ol Chemical compound CC(O)COC1=CC=CC=C1 IBLKWZIFZMJLFL-UHFFFAOYSA-N 0.000 description 1
- FENFUOGYJVOCRY-UHFFFAOYSA-N 1-propoxypropan-2-ol Chemical compound CCCOCC(C)O FENFUOGYJVOCRY-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- WMDZKDKPYCNCDZ-UHFFFAOYSA-N 2-(2-butoxypropoxy)propan-1-ol Chemical compound CCCCOC(C)COC(C)CO WMDZKDKPYCNCDZ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical compound COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 description 1
- XYVAYAJYLWYJJN-UHFFFAOYSA-N 2-(2-propoxypropoxy)propan-1-ol Chemical compound CCCOC(C)COC(C)CO XYVAYAJYLWYJJN-UHFFFAOYSA-N 0.000 description 1
- JDSQBDGCMUXRBM-UHFFFAOYSA-N 2-[2-(2-butoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCOC(C)COC(C)COC(C)CO JDSQBDGCMUXRBM-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- FYYLCPPEQLPTIQ-UHFFFAOYSA-N 2-[2-(2-propoxypropoxy)propoxy]propan-1-ol Chemical compound CCCOC(C)COC(C)COC(C)CO FYYLCPPEQLPTIQ-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- RSROEZYGRKHVMN-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;oxirane Chemical compound C1CO1.CCC(CO)(CO)CO RSROEZYGRKHVMN-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- GRWFFFOEIHGUBG-UHFFFAOYSA-N 3,4-Epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclo-hexanecarboxylate Chemical compound C1C2OC2CC(C)C1C(=O)OCC1CC2OC2CC1C GRWFFFOEIHGUBG-UHFFFAOYSA-N 0.000 description 1
- VATRWWPJWVCZTA-UHFFFAOYSA-N 3-oxo-n-[2-(trifluoromethyl)phenyl]butanamide Chemical compound CC(=O)CC(=O)NC1=CC=CC=C1C(F)(F)F VATRWWPJWVCZTA-UHFFFAOYSA-N 0.000 description 1
- HVMHLMJYHBAOPL-UHFFFAOYSA-N 4-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)propan-2-yl]-7-oxabicyclo[4.1.0]heptane Chemical compound C1CC2OC2CC1C(C)(C)C1CC2OC2CC1 HVMHLMJYHBAOPL-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- ADAHGVUHKDNLEB-UHFFFAOYSA-N Bis(2,3-epoxycyclopentyl)ether Chemical compound C1CC2OC2C1OC1CCC2OC21 ADAHGVUHKDNLEB-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 108091092920 SmY RNA Proteins 0.000 description 1
- 241001237710 Smyrna Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 239000012179 bayberry wax Substances 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- JRPRCOLKIYRSNH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 JRPRCOLKIYRSNH-UHFFFAOYSA-N 0.000 description 1
- ZXOATMQSUNJNNG-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,3-dicarboxylate Chemical compound C=1C=CC(C(=O)OCC2OC2)=CC=1C(=O)OCC1CO1 ZXOATMQSUNJNNG-UHFFFAOYSA-N 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 229960002737 fructose Drugs 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000010680 novolac-type phenolic resin Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N oxalic acid group Chemical group C(C(=O)O)(=O)O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 239000004209 oxidized polyethylene wax Substances 0.000 description 1
- 235000013873 oxidized polyethylene wax Nutrition 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 125000005489 p-toluenesulfonic acid group Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000162 poly(ureaurethane) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229940113115 polyethylene glycol 200 Drugs 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229940097346 sulfobutylether-beta-cyclodextrin Drugs 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000007651 thermal printing Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical group COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical class OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/06—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/001—Manufacture of flexible abrasive materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0009—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/009—Tools not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/14—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/20—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
- B24D3/28—Resins or natural or synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/06—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/10—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with cooling provisions, e.g. with radial slots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/14—Zonally-graded wheels; Composite wheels comprising different abrasives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D7/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
- B24D7/06—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/004—Devices for shaping artificial aggregates from ceramic mixtures or from mixtures containing hydraulic binder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/243—Setting, e.g. drying, dehydrating or firing ceramic articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/35—Cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1436—Composite particles, e.g. coated particles
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1481—Pastes, optionally in the form of blocks or sticks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D2203/00—Tool surfaces formed with a pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2077/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2509/00—Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
- B29K2509/02—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2509/00—Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
- B29K2509/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/736—Grinding or polishing equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Definitions
- the present disclosure broadly relates to bonded abrasive articles and methods of making abrasive articles having abrasive particles in a metallic, vitreous, or resin bonding matrix.
- vitrified bond abrasive articles e.g., abrasive wheels, abrasive segments, and whetstones
- abrasive particles e.g., diamond, cubic boron nitride, alumina, or SiC
- a vitreous bond precursor e.g., glass frit, ceramic precursor
- an optional pore inducer e.g., glass bubbles, naphthalene, crushed coconut or walnut shells, or acrylic glass or PMMA
- a temporary resin bond in a liquid vehicle e.g., aqueous solutions of phenolic resin, polyvinyl alcohol, urea-formaldehyde resin, or dextrin.
- the abrasive particles, vitreous bond precursor, and usually the pore inducer are typically dry blended together.
- the temporary resin bond solution is then added to wet out the grain mix.
- the blended mix is then placed in a hardened steel mold treated with a mold release.
- the filled mold is then compressed in a press to form a molded green body.
- the green body then is ejected from the mold, and subsequently heated until the temporary resin bond is burned out and the vitreous bond precursor is converted into a vitreous bond matrix (also referred to in the art as "vitreous bond” and "vitreous binder".
- metal bond abrasive articles are made by mixing an abrasive grit, such as diamond, cubic boron nitride (cBN), or other abrasive grains with a non-melting metal powder (e.g., tungsten, stainless steel, or others), a melting metal powder (e.g., bronze or copper), or a combination thereof. Pore inducers, temporary binders and other additives may be added. The mixture is then introduced into a mold that has been coated with a mold release agent. The filled mold is then compressed in a press to form a molded green body.
- abrasive grit such as diamond, cubic boron nitride (cBN), or other abrasive grains
- a non-melting metal powder e.g., tungsten, stainless steel, or others
- a melting metal powder e.g., bronze or copper
- the green body then is ejected from the mold and subsequently heated in a furnace at high temperature to melt a portion of the metal composition, or it is infused with a molten metal.
- the heating is typically done in a suitable controlled atmosphere of inert or reducing gas (e.g., nitrogen, argon, hydrogen) or in a vacuum.
- each abrasive article shape requires a special mold; the molds typically are expensive and have a long lead time to make; any design change requires the manufacture of a new mold; the abrasive grains are randomly oriented in the abrasive article; there are limitations to the shapes that can be molded, complicated shapes with undercuts or internal structures such as cooling channels are generally not possible; molds wear out and have a limited number of units that can be manufactured per mold; while the molds are filled with the abrasive mixture, separation of the components can occur, leading to inhomogeneous abrasive components and density variation, which is easily visible and may cause performance variations. Moreover, the processes are often manual and labor intensive.
- the present disclosure provides a bonded abrasive article.
- the bonded abrasive article includes abrasive particles retained in a binder, wherein the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article. Fifty percent or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- the present disclosure provides another bonded abrasive article.
- the bonded abrasive article includes a plurality of abrasive particles retained in a binder, wherein a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article.
- a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle. Fifty percent or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region, wherein the loose powder particles comprise matrix particles and abrasive particles; ii) spreading the layer of loose powder particles with a spreading bar or roller to provide a substantially uniform thickness, wherein a gap between the spreading bar or roller and a base plane of the confined region is selected to be shorter than an average length of the abrasive particles; and iii) selectively treating an area of the layer of loose powder particles to bond powder particles together.
- Step b) includes independently carrying out step a) a plurality of times to generate a bonded abrasive article preform comprising the bonded powder particles and remaining loose powder particles.
- the loose powder particles are independently selected.
- Step c) includes separating substantially all of the remaining loose powder particles from the abrasive article preform.
- Step d) includes heating the bonded abrasive article preform to provide the bonded abrasive article comprising the abrasive particles retained in a matrix material.
- a non-transitory machine readable medium has data representing a three-dimensional model of a bonded abrasive article, when accessed by one or more processors interfacing with a 3D printer, causes the 3D printer to create a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform includes abrasive particles retained in a binder.
- the abrasive particles either a) are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle; or b) a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform and a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle, wherein 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively.
- the angle is as measured using microscopy image analysis at 10 to 1,000 times magnification.
- a method in a fifth aspect, includes retrieving, from a non- transitory machine readable medium, data representing a 3D model of a bonded abrasive article; executing, by one or more processors, a 3D printing application interfacing with a manufacturing device using the data; and generating, by the manufacturing device, a physical object of a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform includes abrasive particles retained in a binder.
- the abrasive particles either a) are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle; or b) a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform and a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle, wherein 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively.
- the angle is as measured using microscopy image analysis at 10 to 1,000 times magnification.
- the method includes receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying a plurality of layers of a bonded abrasive article; and generating, with the manufacturing device by an additive manufacturing process, a bonded abrasive article preform of the bonded abrasive article based on the digital object.
- the bonded abrasive article preform includes abrasive particles retained in a binder.
- the abrasive particles either a) are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle; or b) a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform and a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle, wherein 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively.
- the angle is as measured using microscopy image analysis at 10 to 1,000 times magnification.
- a system in a seventh aspect, includes a display that displays a 3D model of a bonded abrasive article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform includes abrasive particles retained in a binder.
- the abrasive particles either a) are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle; or b) a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform and a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle, wherein 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively.
- the angle is as measured using microscopy image analysis at 10 to 1,000 times magnification.
- FIG. 1 is a schematic diagram of a method of molding a bonded abrasive article according to the prior art.
- FIG. 2A is a schematic process flow diagram of a method of making a bonded abrasive article according to the present disclosure.
- FIG. 2B is a schematic cross-sectional side view of the third step of the process of FIG. 2A with a thermal print head heat source.
- FIG. 2C is a schematic cross-sectional side view of the third step of the process of FIG. 2A with a heated tip heat source.
- FIG. 2D is a schematic cross-sectional side view of the third step of the process of FIG. 2A with a laser heat source.
- FIG. 3 is a schematic cross-sectional side view of a spreading roller pushing abrasive particles into a substantially horizontal orientation.
- FIG. 4A is a schematic cross-sectional side view of a portion of a bonded abrasive article including two layers of abrasive particles, preparable according to the present disclosure.
- FIG. 4B is an optical microscope image of a bonded abrasive article prepared according to the present disclosure.
- FIG. 4C is a schematic cross-sectional side view of a confined region of powder with a modified movable piston and hinged plate for tilting the powder bed.
- FIG. 5A is a schematic cross-sectional side view of a bonded abrasive article, preparable according to the present disclosure.
- FIG. 5B is an optical microscope image of a bonded abrasive article prepared according to the present disclosure, the image being of a portion of an upper (axial) surface of the article as indicated by the arrow of FIG. 5A.
- FIG. 5C is a schematic cross-sectional side view of the bonded abrasive article of FIG. 5A.
- FIG. 5D is an optical microscope image of a bonded abrasive article prepared according to the present disclosure, the image being of a portion of a side (radial) surface of the article as indicated by the arrow of FIG. 5C.
- FIG. 6A is a schematic cross-sectional side view of a bonded abrasive article, preparable according to the present disclosure.
- FIG. 6B is an optical microscope image of a bonded abrasive article prepared according to the present disclosure, the image being of a portion of a side (radial) surface of the article.
- FIG. 6C is an optical microscope image of the bonded abrasive article of FIG. 6B at a lower magnification.
- FIG. 7A is a schematic cross-sectional side view of a bonded abrasive article, preparable according to the present disclosure.
- FIG. 7B is an optical microscope image of a bonded abrasive article prepared according to the present disclosure, the image being of a portion of an upper (axial) surface of the article as indicated by the arrow of FIG. 7A.
- FIG. 7C is a schematic cross-sectional side view of the bonded abrasive article of FIG. 7A.
- FIG. 7D is an optical microscope image of a bonded abrasive article prepared according to the present disclosure, the image being of a portion of a side (radial) surface of the article as indicated by the arrow of FIG. 7C.
- FIG. 8 is a graph of total weight of material moved versus time during abrasion for bonded abrasive articles of Example 1.
- FIG. 9 is a schematic cross-sectional top view of an exemplary vitreous bond or metal bond abrasive wheel 900, preparable according to the present disclosure.
- FIG. 10 is a schematic cross-sectional top view of an exemplary vitreous bond or metal bond abrasive wheel 1000, preparable according to the present disclosure.
- FIG. 1 1 is a schematic perspective view of an exemplary vitreous bond or metal bond abrasive segment 1 100, preparable according to the present disclosure.
- FIG. 12 is a schematic perspective view of a vitreous bond or metal bond abrasive wheel
- FIG. 13 is a schematic perspective view of rotary abrasive tool 1300, preparable according to the present disclosure.
- FIG. 14 is a schematic perspective view of an exemplary dental bur 1400, preparable according to the present disclosure.
- FIG. 15 is a block diagram of a generalized system 1500 for additive manufacturing of an article.
- FIG. 16 is a block diagram of a generalized manufacturing process for an article preform.
- FIG. 17 is a high-level flow chart of an exemplary article manufacturing process.
- FIG. 18 is a high-level flow chart of an exemplary article additive manufacturing process.
- FIG. 19 is a schematic front view of an exemplary computing device 1900.
- a bonded abrasive article can be prepared including abrasive particles and bond material, in which the abrasive particles are preferentially oriented so the bonded abrasive article has effective performance in a chosen orientation.
- Such a structure may be formed using additive manufacturing methods.
- the present disclosure provides a bonded abrasive article.
- the bonded abrasive article includes abrasive particles retained in a binder, wherein the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article. Fifty percent or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- the present disclosure provides a bonded abrasive article including a plurality of abrasive particles retained in a binder.
- a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article and a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle.
- Fifty percent or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- the bonded abrasive article further includes a third portion of the plurality of abrasive particles oriented at a predetermined third angle that is different from the first angle and the second angle. Fifty percent or more of the abrasive particles of the third portion are oriented within 15 degrees above or below the third angle.
- the predetermined angle of orientation of the abrasive particles is selected from the range of 1 degree to 89 degrees with respect to a longitudinal axis of the bonded abrasive article.
- the angle is 2 degrees or greater, 5 degrees or greater, 10 degrees or greater, 15 degrees or greater, 20 degrees or greater, 25 degrees or greater, 30 degrees or greater, 40 degrees or greater, or 45 degrees; and 89 degrees or less, 85 degrees or less, 80 degrees or less, 75 degrees or less, 70 degrees or less, 65 degrees or less, 60 degrees or less, 55 degrees or less, or 50 degrees or less.
- the first angle may be 45 degrees and the second angle may be 60 degrees.
- the difference between the first angle and the second angle may be less than 5 degrees.
- Suitable imaging methods for determining the angles include optical microscopy and scanning electron microscopy (SEM).
- Methods of making vitreous bond abrasive articles, metal bond abrasive articles, and resin bond abrasive articles according to the present disclosure include a common additive subprocess.
- the subprocess comprises sequentially, preferably consecutively (although not required), carrying out at least three steps.
- the methods involve selectively treating an area of the loose powder particles to bond powder particles together. More particularly, in a third aspect, the present disclosure provides a method of making a bonded abrasive article, the method comprising sequential steps.
- Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region, wherein the loose powder particles comprise matrix particles and abrasive particles; ii) spreading the layer of loose powder particles with a spreading bar or roller to provide a substantially uniform thickness, wherein a gap between the spreading bar or roller and a base plane of the confined region is selected to be shorter than an average length of the abrasive particles; and iii) selectively treating an area of the layer of loose powder particles to bond powder particles together.
- Step b) includes independently carrying out step a) a plurality of times to generate a bonded abrasive article preform comprising the bonded powder particles and remaining loose powder particles.
- Step a) the loose powder particles are independently selected.
- Step c) includes separating substantially all of the remaining loose powder particles from the abrasive article preform.
- Step d) includes heating the bonded abrasive article preform to provide the bonded abrasive article comprising the abrasive particles retained in a matrix material.
- FIG. 2A schematically depicts an exemplary powder bed process 100 used in making a bonded abrasive article.
- a layer 138 of loose powder particles 1 10 from powder chamber 120a with movable piston 122a is deposited in a confined region 140 in powder chamber 120b with movable piston 122b.
- a layer of loose particles may be supplied to the confined region from a hopper, an auger, a trough, a sifter, or another suitable powder handling mechanism.
- the layer of loose powder particles is spread using a spreading bar or roller to provide a substantially uniform thickness.
- a gap between the spreading bar or roller and a base plane of the confined region is selected to be shorter than an average length of the abrasive particles.
- the "base plane” is the planar surface of the confined region upon which a first layer of loose powder particles is disposed, or the upper surface of the prior layer when a second or subsequent layer of loose powder particles is disposed on the layer added immediately prior to the second or subsequent layer of loose powder particles.
- FIG. 3 a schematic cross-sectional side view is provided of a spreading roller 130 pushing abrasive particles 1 12 (mixed with the matrix particles 1 14) into a substantially horizontal orientation.
- a gap 132 between the base plane 134 of the confined region 140 and (e.g., a lower surface of) the spreading bar or roller 130 that is about the average length of the abrasive particles 1 12 allows for the spreading roller 130 to push or otherwise force the abrasive particles 1 12 into a generally horizontal orientation (with respect to the base plane 134 of the confined region 140).
- the abrasive particles 112 in the portion of the layer 138 that has been contacted by the spreading roller 130 are disposed in an approximately horizontal orientation.
- the exact orientation of each abrasive particle 1 12 will likely vary as opposed to being perfectly parallel with the base plane 134 of the confined region 140.
- the orientation angle of 50% or more, 60% or more, 70% or more, 75% or more, 80% or more, 85% or more, or 90% or more of the abrasive particles can vary by plus or minus 15 degrees, plus or minus 10 degrees, or plus or minus 5 degrees.
- the loose powder of the layer 138 can be compressed by the spreading roller 130; with a smaller thickness than the portion of the layer 138 that has not yet been spread.
- the layer 138 should be of substantially uniform thickness.
- the thickness of the layer may vary less than 50 microns, preferably less than 30 microns, and more preferably less than 10 microns.
- the layer thickness can range from slightly larger than the length of the smallest particle up to 5 millimeters, as long as treatment can bind all the loose powder where it is selectively applied.
- the thickness of the layer is from about 10 microns to about 500 microns, 10 microns to about 250 microns, more preferably about 50 microns to about 250 microns, and more preferably from about 100 microns to about 200 microns.
- the length of the gap between the spreading bar or roller and the base plane of the confined region is approximately the same as the length dimension of abrasive particle.
- typically a ratio of the length of the gap between the spreading bar or roller and the base plane of the confined region and the average length of the abrasive particle may range from 2 : 1 to 0.5 : 1, inclusive, and smaller, while still keeping the gap larger than the smallest dimension (i.e., thickness) of the abrasive particle.
- a ratio of the length of the gap between the spreading bar or roller and the base plane of the confined region and the average length of the matrix particle is 0.1 : 1 or greater, 5 : 1 or greater, or 10 : 1 or greater.
- these ratios can be adjusted to accomplish the objective of orienting (or substantially orienting) the abrasive particles.
- FIG. 4A a schematic cross-sectional side view of a portion of a bonded abrasive article preparable according to the present disclosure is provided, including two layers of abrasive particles.
- a first portion of the plurality of abrasive particles 112a are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article and a second portion of the plurality of abrasive particles 112b are oriented at a predetermined second angle that is different from the first angle.
- the bonded abrasive article further includes a third portion of the plurality of abrasive particles oriented at a predetermined third angle that is different from the first angle and the second angle. Fifty percent or more of the abrasive particles of the third portion are oriented within 15 degrees above or below the third angle.
- One method of providing a second angle is to change the gap between the spreading bar or roller and a base plane of the confined region after one sequential spreading step before a subsequent sequential spreading step.
- FIG. 4B an optical microscope image at 1.6x magnification is provided of a bonded abrasive article prepared according to the present disclosure.
- the ruler marks provide a contrast to emphasize the range of angles of the plurality of layers of the bonded abrasive article. Preparation of the bonded abrasive article of FIG. 4B is described below in Example 3.
- FIG. 4C an exemplary modified powder bed is schematically depicted, in which the powder bed can be tilted during the process used in making a bonded abrasive article.
- a post 162 (or posts) fixed onto the piston 122b such that the post 162 moves vertically with the piston 122b.
- a plate 164 operably connected to a hinge 166, which is attached to a side 124 of the powder chamber 120b.
- a layer of loose particles may alternatively be supplied to the confined region from a hopper, an auger, a trough, a sifter or other suitable powder handling mechanism.
- a spreading roller 130 pushes abrasive particles (mixed with matrix particles) into a substantially horizontal orientation.
- a treatment is selectively applied to treat an (e.g., predetermined) area of the layer.
- the piston 122b and the post(s) 162 are lowered and the plate 164 tilts relative to the horizontal axis.
- the next layer of powder is spread on the lowered and tilted plate 164 where the abrasive particles are in substantially horizontal orientation.
- treatment is selectively applied to treat another predetermined area.
- the process of lowering and tilting the plate 164 continues and provides changing orientation of abrasive particles relative to the plate 162 and the previous powder layers.
- the double ended arrows in FIG. 4C each illustrates the substantially horizontal orientation of the abrasive particles in a layer, thus it can be seen that when a plurality of layers is formed per this embodiment, the fan shape depicted in the image of 4B can be achieved.
- the abrasive particles according to the present disclosure typically include shaped abrasive particles, precisely shaped abrasive particles, abrasive platelets, abrasive rods, shaped agglomerates of abrasive particles, or combinations thereof.
- the abrasive particles comprise crushed abrasive particles, agglomerates of abrasive particles, or combinations thereof.
- the abrasive particles may comprise two substantially parallel planar surfaces.
- the matrix particles comprise vitreous bond precursor particles, metal bond precursor particles, resin bond precursor particles, organic compound particles, or combinations thereof.
- the bonded abrasive article optionally further includes a plurality of abrasive particles retained in the binder and oriented randomly with respect to the longitudinal axis of the bonded abrasive article.
- the abrasive particles comprise two or more adjacent layers of abrasive particles, wherein a first layer comprises a different type of abrasive particles than a second layer.
- Suitable abrasive particles may comprise any abrasive particle used in the abrasives industry.
- the abrasive particles have a Mohs hardness of at least 4, preferably at least 5, more preferably at least 6, more preferably at least 7, more preferably at least 8, more preferably at least 8.5, and more preferably at least 9.
- the abrasive particles comprise superabrasive particles.
- the term "superabrasive” refers to any abrasive particle having a hardness greater than or equal to that of silicon carbide (e.g., silicon carbide, boron carbide, cubic boron nitride, and diamond).
- the abrasive particles comprise an aspect ratio of an average length to an average thickness of 1.5 or greater.
- the term “length” with respect to a particle refers to the longest dimension of the particle.
- the term “thickness” with respect to a particle refers to the shortest dimension of the particle.
- the abrasive particles comprise an aspect ratio of an average length to an average thickness of 2.0 or greater, 2.5 or greater, 3.0 or greater, 4.0 or greater, 5.0 or greater, 7.5 or greater, 10.0 or greater, 12.5 or greater, or 15.0 or greater; and 20.0 or less, 18.0 or less, or 16 or less, or 15 or less, or 14 or less, or 12 or less.
- suitable abrasive particles could include shapes such as rods, prisms, ellipsoids, platelets, irregular (e.g., crushed) shapes, as long as they have these aspect ratios.
- the abrasive particles comprise a length (i.e., largest dimension) of 2500 micrometers or less, 2000 micrometers or less, 1500 micrometers or less, 1000 micrometers or less, 800 micrometers or less, 600 micrometers or less, 500 micrometers or less, 400 micrometers or less, 300 micrometers or less, 250 micrometers or less, or 200 micrometers or less; and 10 micrometers or more, 15 micrometers or more, 25 micrometers or more, 50 micrometers or more, 75 micrometers or more, 100 micrometers or more, 125 micrometers or more, 150 micrometers or more, or 175 micrometers or more.
- the abrasive particles comprise a thickness (i.e., smallest dimension) of 700 micrometers or less, 600 micrometers or less, 500 micrometers or less, 400 micrometers or less, 300 micrometers or less, 200 micrometers or less, 100 micrometers or less, 55 micrometers or less, or 50 micrometers or less; and 4 micrometers or more, 5 micrometers or more, 6 micrometers or more, 8 micrometers or more, 10 micrometers or more, 15 micrometers or more, 20 micrometers or more, or 25 micrometers or more.
- abrasive materials include aluminum oxide (e.g., alpha alumina) materials (e.g., fused, heat-treated, ceramic, and/or sintered aluminum oxide materials), silicon carbide, titanium diboride, titanium nitride, boron carbide, tungsten carbide, titanium carbide, aluminum nitride, diamond, cubic boron nitride (CBN), garnet, fused alumina-zirconia, sol-gel derived abrasive particles, metal oxides such as cerium oxide, zirconium oxide, titanium oxide, and combinations thereof.
- the abrasive particles comprise metal oxide ceramic particles.
- sol-gel derived abrasive particles can be found in U.S. Pat. No. 4,314,827 (Leitheiser et al.), U.S. Pat. No. 4,623,364 (Cottringer et al.); U.S. Pat. No.
- the loose powder particles comprise vitreous bond precursor particles and abrasive particles.
- the loose powder particles comprise metal particles and abrasive particles.
- the metal particles comprise higher melting metal particles.
- the loose powder particles comprise resin bond precursor particles and abrasive particles.
- organic compound particles are included in any of the above articles.
- the vitreous bond precursor particles may comprise particles of any material that can be thermally converted into a vitreous material. Examples include glass frit particles, ceramic particles, ceramic precursor particles, and combinations thereof.
- the vitreous bond which binds together the abrasive grain in accordance with this disclosure can be of any suitable composition which is known in the abrasives art.
- the vitreous bond phase also variously known in the art as a “ceramic bond”, “vitreous phase”, “vitreous matrix”, or “glass bond” (e.g., depending on the composition) may be produced from one or more oxide (e.g., a metal oxide and/or boria) and/or at least one silicate as frit (i.e., small particles), which upon being heated to a high temperature react to form an integral vitreous bond phase.
- oxide e.g., a metal oxide and/or boria
- silicate as frit i.e., small particles
- glass particles e.g., recycled glass frit, water glass frit
- silica frit e.g., sol-gel silica frit
- alumina trihydrate particles e.g., alumina particles, zirconia particles, and combinations thereof.
- Suitable frits, their sources and compositions are well known in the art.
- Vitreous bonded abrasive articles are typically prepared by forming a green structure comprised of abrasive grain, the vitreous bond precursor, an optional pore former, and a temporary binder. The green structure is then fired.
- the vitreous bond phase is usually produced in the firing step of the process for producing the abrasive article of this disclosure. Typical firing temperatures are in the range of from 540°C to 1700°C (1000°F to 3100°F). It should be understood that the temperature selected for the firing step and the composition of the vitreous bond phase must be chosen so as to not have a detrimental effect on the physical properties and/or composition of abrasive particles contained in the vitreous bond abrasive article.
- Useful glass frit particles may include any glass frit material known for use in vitreous bond abrasive articles. Examples include glass frit selected from the group consisting of silica glass frit, silicate glass frit, borosilicate glass frit, and combinations thereof. In one embodiment, a typical vitreous binding material contains about 70 - 90% Si0 2 + ⁇ 2 ⁇ 3' 1 ⁇ 20% alkali oxides, 1-
- the vitreous binding material has a composition of about 82 wt% Si0 2 + ⁇ 2 ⁇ 3' ⁇ a ⁇ an me t a l oxide,
- a frit having about 20% B 2 0 3 , 60% silica, 2% soda, and 4% magnesia may be utilized as the vitreous binding material.
- a frit having about 20% B 2 0 3 , 60% silica, 2% soda, and 4% magnesia may be utilized as the vitreous binding material.
- the particular components and the amounts of those components can be chosen in part to provide particular properties of the final abrasive article formed from the composition.
- the size of the glass frit can vary. For example, it may be the same size as the abrasive particles, or different. Typically, the average particle size of the glass frit ranges from about 0.01 micrometer to about 100 micrometers, preferably about 0.05 micrometer to about 50 micrometers, and most preferably about 0.1 micrometer to about 25 micrometers. The average particle size of the glass frit in relation to the average particle size of the abrasive particles having a Mohs hardness of at least about 4 can vary. Typically, the average particle size of the glass frit is about 1 to about 200 percent of the average particle size of the abrasive, preferably about 10 to about 100 percent, and most preferably about 15 to about 50 percent.
- the weight ratio of vitreous bond precursor particles to abrasive particles in the loose powder particles ranges from about 10:90 to about 90: 10.
- the shape of the vitreous bond precursor particles can also vary. Typically, they are irregular in shape (e.g., crushed and optionally graded), although this is not a requirement. For example, they may be spheroidal, cubic, or some other predetermined shape.
- the coefficient of thermal expansion of the vitreous bond precursor particles is the same or substantially the same as that of the abrasive particles.
- One preferred vitreous bond has an oxide-based mole percent (%) composition of Si0 2 63.28; Ti0 2 0.32; A1 2 0 3 10.99; B 2 0 3 5.11; Fe 2 0 3 0.13; 3.81; ⁇ 3 ⁇ 40 4.20; L_ 2 0 4.98; CaO
- Firing of these ingredients is typically accomplished by raising the temperature from room temperature to the desired sintering temperature (e.g., 1149° C (2100° F)), over a prolonged period of time (e.g., about 25-26 hours), holding at the maximum temperature (e.g., for several hours), and then cooling the fired article to room temperature over an extended period of time (e .g . , 25 -30 hours) .
- desired sintering temperature e.g., 1149° C (2100° F)
- a prolonged period of time e.g., about 25-26 hours
- the maximum temperature e.g., for several hours
- additives in the making of vitreous bonded abrasive articles both to assist in the making of the abrasive article and/or improve the performance of such articles.
- Such conventional additives which may also be used in the practice of this disclosure include but are not limited to lubricants, fillers, pore inducers, and processing aids.
- lubricants include, graphite, sulfur, polytetrafluoroethylene and molybdenum disulfide.
- pore inducers include glass bubbles and organic particles. Concentrations of the additives as are known in the art may be employed for the intended purpose of the additive, for example.
- the additives have little or no adverse effect on abrasive particles employed in the practice of this disclosure.
- the vitreous bond precursor particles may comprise ceramic particles. In such cases sintering and/or fusing of the ceramic particles forms the vitreous matrix. Any sinterable and/or fusible ceramic material may be used. Preferred ceramic materials include alumina, zirconia, and combinations thereof.
- the inorganic vitreous bond precursor optionally includes a precursor of alpha alumina. In certain embodiments, the abrasive particles and the vitreous bond material have the same chemical composition.
- alpha-alumina ceramic particles may be modified with oxides of metals such as magnesium, nickel, zinc, yttria, rare earth oxides, zirconia, hafnium, chromium, or the like.
- metals such as magnesium, nickel, zinc, yttria, rare earth oxides, zirconia, hafnium, chromium, or the like.
- Alumina and zirconia abrasive particles may be made by a sol-gel process, for example, as disclosed in U.S. Pat. Nos. 4,314,827 (Leitheiser et al.); 4,518,397 (Leitheiser et al); 4,574,003 (Gerk); 4,623,364 (Cottringer et al.); 4,744,802 (Schwabel); and 5,551,963 (Larmie).
- the vitreous bond precursor particles may be present in an amount from 10 to 40 volume percent of the combined volume of the vitreous bond precursor particles and abrasive particles, preferably from 15 to 35 volume percent of the abrasive composition.
- the optional higher melting metal particles may comprise any metal from group 2 through to group 15 of the Periodic Table of the elements, for example. Alloys of these metals, and optionally with one or more elements (e.g., metals and/or non-metals such as carbon, silicon, boron) in groups 1 and 15 of the Periodic Table, may also be used.
- suitable metal particles include powders comprising magnesium, aluminum, iron, titanium, niobium, tungsten, chromium, tantalum, cobalt, nickel, vanadium, zirconium, molybdenum, palladium, platinum, copper, silver, gold, cadmium, tin, indium, tantalum, zinc, alloys of any of the foregoing, and combinations thereof.
- Higher melting metal particles preferably having a melting point of at least about 1 100°C, and more preferably at least 1200°C, although lower melting metals may also be used.
- Examples include stainless steel (about 1360-1450°C), nickel (1452°C), steel ( 1371°C), tungsten (3400°C), chromium (1615°C), Inconel (Ni+Cr+Fe, 1390- 1425°C), iron (1530°C), manganese (1245- 1260°C), cobalt (1 132°C), molybdenum (2625°C), Monel (Ni+Cu, 1300-1350°C), niobium (2470°C), titanium ( 1670°C), vanadium ( 1900°C), antimony ( 1167°C), Nichrome (Ni+Cr, 1400°C), alloys of the foregoing (optionally also including one or more of carbon, silicon, and boron), and combinations thereof. Combinations of two or more different higher melting metal particles may also be used
- the loose powder particles may optionally further comprise lower melting metal particles (e.g., braze particles).
- the lower melting metal particles preferably have a maximum melting point that is at least 50°C lower (preferably at least 75°C lower, at least 100°C, or even at least 150°C lower) than the lowest melting point of the higher melting metal particles.
- melting point includes all temperatures in a melting temperature range of a material.
- suitable lower melting metal particles include particles of metals such as aluminum (660°C), indium ( 157°C), brass (905-1083°C), bronze (798-1083°C), silver (961°C), copper (1083°C), gold ( 1064°C), lead (327°C), magnesium (671°C), nickel (1452°C, if used in conjunction with higher melting point metals), zinc (419°C), tin (232°C), active metal brazes (e.g., InCuAg, TiCuAg, CuAg), alloys of the foregoing, and combinations thereof.
- metals such as aluminum (660°C), indium ( 157°C), brass (905-1083°C), bronze (798-1083°C), silver (961°C), copper (1083°C), gold ( 1064°C), lead (327°C), magnesium (671°C), nickel (1452°C, if used in conjunction with higher melting point metals), zinc (419°C), tin (232°C), active metal brazes (e.g.,
- the weight ratio of high melting metal particles and/or optional lower melting metal particles to the abrasive particles ranges from about 10:90 to about 90: 10, although this is not a requirement.
- binder material precursors for resin bond precursor materials generally include one or more organic thermosetting compounds, typically containing one or more additive(s) such as, for example, fillers, curatives (e.g., catalysts, hardeners, free-radical initiators (photo- or thermal), grinding aids (e.g., cryolite), pigments, plasticizers, antiloading compounds, lubricants, coupling agents, antioxidants, light stabilizers, and/or antistatic agents.
- additive(s) such as, for example, fillers, curatives (e.g., catalysts, hardeners, free-radical initiators (photo- or thermal), grinding aids (e.g., cryolite), pigments, plasticizers, antiloading compounds, lubricants, coupling agents, antioxidants, light stabilizers, and/or antistatic agents.
- thermosetting compounds examples include phenolic resins (e.g., novolac and/or resole phenolic resins), acrylic monomers (e.g., poly(meth)acrylates, (meth)acrylic acid, (meth)acrylamides), epoxy resins, cyanate resins, isocyanate resins (include polyurea and polyurethane resins), alkyd resins, urea- formaldehyde resins, aminoplast resins, and combinations thereof.
- phenolic resins e.g., novolac and/or resole phenolic resins
- acrylic monomers e.g., poly(meth)acrylates, (meth)acrylic acid, (meth)acrylamides
- epoxy resins cyanate resins
- isocyanate resins include polyurea and polyurethane resins
- alkyd resins urea- formaldehyde resins
- aminoplast resins aminoplast resins
- Useful phenolic resins include novolac and resole phenolic resins.
- Novolac phenolic resins are characterized by being acid-catalyzed and having a ratio of formaldehyde to phenol of less than one, typically between 0.5 : 1 and 0.8: 1.
- Resole phenolic resins are characterized by being alkaline catalyzed and having a ratio of formaldehyde to phenol of greater than or equal to one, typically from 1 : 1 to 3 : 1.
- Novolac and resole phenolic resins may be chemically modified (e.g., by reaction with epoxy compounds), or they may be unmodified.
- Exemplary acidic catalysts suitable for curing phenolic resins include sulfuric, hydrochloric, phosphoric, oxalic, and p- toluenesulfonic acids.
- Alkaline catalysts suitable for curing phenolic resins include sodium hydroxide, barium hydroxide, potassium hydroxide, calcium hydroxide, organic amines, and/or sodium carbonate.
- Examples of commercially available phenolic resins include those known by the trade designations "DUREZ” and “VARCUM” from Durez Corporation, Novi, Michigan; “RESINOX” from Monsanto Corp., Saint Louis, Missouri; “AROFENE” and “AROTAP” from Ashland Chemical Co., Columbus, Ohio; and “RUTAPHEN” by Momentive, Columbus, Ohio; and “PHENOLITE” by Kangnam Chemical Company Ltd. of Seoul, South Korea.
- Examples of commercially available novolac resins include those marketed as DUREZ 1364 and VARCUM 29302 from Durez Corporation.
- Examples of commercially available resole phenolic resins include VARCUM resoles in grades 29217, 29306, 29318, 29338, and 29353; AEROFENE 295; and PHENOLITE TD-2207.
- Examples of useful aminoplasts include those available as CYMEL 373 and CYMEL 323 from Cytec Inc., Stamford, Connecticut.
- Examples of useful urea-formaldehyde resins include that marketed as AL3029R from Borden Chemical, Columbus, Ohio, and those marketed as AMRES LOPR, AMRES PR247HV and AMRES PR335CU by Georgia Pacific Corp., Atlanta, Georgia.
- polyisocyanates examples include monomelic, oligomeric, and polymeric polyisocyanates (e.g., diisocyanates and triisocyanates), and mixtures and blocked versions thereof.
- Polyisocyanates may be aliphatic, aromatic, and/or a mixture thereof.
- polyepoxides examples include monomelic polyepoxides, oligomeric polyepoxides, polymeric polyepoxides, and mixtures thereof.
- the polyepoxides may be aliphatic, aromatic, or a mixture thereof.
- Examples of alicyclic polyepoxides monomers include epoxycyclohexane-carboxylates (e.g., 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (e.g., as available under the trade designation "ERL-4221 " from Dow Chemical Co.
- epoxycyclohexane-carboxylates e.g., 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (e.g., as available under the trade designation "ERL-4221 " from Dow Chemical Co.
- vinylcyclohexene dioxide available as ERL-4206 from Dow Chemical Co.
- bis(2,3- epoxycyclopentyl)ether available as ERL-0400 from Dow Chemical Co.
- bis(3,4-epoxy-6- methylcyclohexylmethyl)adipate available as ERL-4289 from Dow Chemical Co.
- dipenteric dioxide available as ERL-4269 from Dow Chemical Co.
- aromatic polyepoxides include polyglycidyl ethers of polyhydric phenols such as: Bisphenol A- type resins and their derivatives, including such epoxy resins having the trade designation "EPON" available from Resolution Performance Products, Houston, Texas; epoxy ere sol-no volac resins; Bisphenol-F resins and their derivatives; epoxy phenol-novolac resins; and glycidyl esters of aromatic carboxylic acids (e.g., phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, trimellitic acid triglycidyl ester, and pyromellitic acid tetraglycidyl ester), and mixtures thereof.
- aromatic carboxylic acids e.g., phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, trimellitic acid triglycidyl ester, and pyromellitic acid tetraglycidyl ester
- aromatic polyepoxides include, for example, those having the trade designation "ARALDITE” available from Ciba Specialty Chemicals, Tarrytown, New York; aromatic polyepoxides having the trade designation “EPON” available from Resolution Performance Products; and aromatic polyepoxides having the trade designations "DER”, "DEN”, and "QUATREX” available from Dow Chemical Co.
- Polyepoxide(s) are typically combined with a curing agent such as for example, a polyamine (e.g., a bis(imidazole)), polyamide (e.g., dicyandiamide), polythiol, or an acidic catalyst, although may not be required for curing.
- a curing agent such as for example, a polyamine (e.g., a bis(imidazole)), polyamide (e.g., dicyandiamide), polythiol, or an acidic catalyst, although may not be required for curing.
- Useful acrylic resins may include at least one (meth)acrylate (the term "(meth)acrylate” refers to acrylate and/or methacrylate) monomer or oligomer having an average acrylate functionality of at least two, for example, at least 3, 4, or even 5, and may be a blend of different (meth) acrylate monomers, (meth)acrylate oligomers, and/or (meth)acrylated polymers.
- a wide variety of (meth)acrylate monomers, (meth)acrylate oligomers, and (meth)acrylated polymers are readily commercially available, for example, from such vendors as Sartomer Company, Exton, Pennsylvania, and UCB Radcure, Smyrna, Georgia.
- Exemplary acrylate monomers include ethylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, glycerol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, neopentyl glycol di(meth) acrylate,
- Additional useful polyfunctional (meth)acrylate oligomers include polyether oligomers such as a polyethylene glycol 200 diacrylate marketed by Sartomer Company as SR 259; and polyethylene glycol 400 diacrylate marketed by Sartomer Company as SR 344.
- Polymerizable acrylic monomers and oligomers such as those above are typically cured with the aid of at least one free-radical thermal initiator (e.g., organic peroxides) or photoinitiator (e.g., thioxanthones, acylphosphines, acylphosphine oxides, benzoin ketals, alpha-hydroxy ketones, and alpha-dialkylamino ketones).
- free-radical thermal initiator e.g., organic peroxides
- photoinitiator e.g., thioxanthones, acylphosphines, acylphosphine oxides, benzoin ketals, alpha-hydroxy ketones, and alpha-dialkylamino ketones.
- Typical amounts range from 0.1 to 10 percent by weight, preferably 1 to 3 percent by weight, based on the weight of the resin bond material precursor.
- Organic thermosetting compound(s) and optional thermoplastic polymer (if present) are typically used in an amount sufficient to result in a total resin bond material content of from about 5 to about 30 percent, more typically about 10 to about 25 percent, and more typically about 15 to about 24 percent by weight, based on the total weight of the resultant bonded abrasive article, although other amounts may also be used.
- the binder material precursor comprises a novolac-type phenolic resin in combination with furfuryl alcohol and filler.
- Novolac resins are typically solids at room temperature, but by addition of furfuryl alcohol and filler (and any additional components) they are preferably formulated to form a malleable and/or putty-like composition that is moldable, but will retain its shape unless heated and/or subjected to mechanical force (e.g., stretched or squished).
- novolac phenolic resins examples include those available as: GP 2074, GP 5300, GP 5833, RESI-FLAKE GP-2049, RESI-FLAKE GP-2050, and RESI-FLAKE GP-221 1 from Georgia Pacific Resins, Atlanta, Georgia; RUTAPHEN 8656F from Bakelite AG, Frielendorf, Germany; and DURITE 423 A and DURITE SD 1731 from Borden Chemical, Inc. Columbus, Ohio.
- the loose powder particles optionally include organic compound particles, which have been discovered to be capable of holding together the abrasive particles (as well as other types of particles present in the loose powder particles) upon the select application of heat.
- the organic compound particles have a melting point between 50 degrees Celsius and 250 degrees Celsius, inclusive, such as between 100 degrees Celsius to 180 degrees Celsius, inclusive.
- the organic compound particles have a melting point of at least 50 degrees Celsius, or at least 60, or at least 70, or at least 80, or at least 90, or at least 100, or at least 110, or at least 120, or at least 130 degrees Celsius; and a melting point of up to 250 degrees Celsius, or up to 240, or up to 230, or up to 220, or up to 210, or up to 200, or up to 190, or up to 180, or up to 170, or up to 160 degrees Celsius.
- the organic compound particles are not particularly limited, and are optionally selected from waxes, sugars, dextrins, thermoplastics having a melting point of no greater than 250 degrees Celsius, acrylates, methacrylates, and combinations thereof.
- Suitable waxes include for example and without limitation, materials of vegetable, animal, petroleum, and/or mineral derived origin.
- Representative waxes include carnauba wax, candelilla wax, oxidized Fischer-Tropsch wax, microcrystalline wax, lanolin, bayberry wax, palm kernel wax, mutton tallow wax, polyethylene wax, polyethylene copolymer wax, petroleum derived waxes, montan wax derivatives, polypropylene wax, oxidized polyethylene wax, and combinations thereof.
- Suitable sugars include for example and without limitation, lactose, trehalose, glucose, sucrose, levulose, dextrose, and combinations thereof.
- Suitable dextrins include for example and without limitation, gamma-cyclodextrin, alpha- cyclodextrin, beta-cyclodextrin, glucosyl-alpha-cyclodextrin, maltosyl-alpha-cyclodextrin, glucosyl-beta-cyclodextrin, maltosyl-beta-cyclodextrin, 2-hydroxy-beta-cyclodextrin, 2- hydroxypropyl-beta-cyclodextrin, 2-hydroxypropyl-gamma-cyclodextrin, hydroxyethyl-beta- cyclodextrin, methyl-beta-cyclodextrin, sulfobutylether-alpha-cyclodextrin, sulfobutylether-beta- cyclodextrin, sulfobutylether-gamma-cyclodextrin
- thermoplastics include for example and without limitation, thermoplastics having a melting point of no greater than 250 degrees Celsius, such as polyethyleneterephthalate (PET), polylactic acid (PLA), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA),
- PET polyethyleneterephthalate
- PLA polylactic acid
- PVC polyvinyl chloride
- PMMA polymethyl methacrylate
- polypropylene PP
- bisphenol-A polycarbonate BPA-PC
- polysulfone PSF
- polyether imide PEI
- Suitable acrylates and methacrylates include for example and without limitation, urethane acrylates, epoxy acrylates, polyester acrylates, acrylated (meth)acrylics, polyether acrylates, acrylated polyolefins, and combinations thereof, or their methacrylate analogs.
- the organic compound particles are typically present in an amount of 2.5 weight percent to 30 weight percent of the loose powder particles, inclusive, such as 5 weight percent to 20 weight percent of the loose powder particles, inclusive. Stated another way, in certain embodiments the organic compound particles are present in an amount of at least 2.5 weight percent, or at least 3 weight percent, or at least 4 weight percent, or at least 5 weight percent, or at least 7 weight percent, or at least 8 weight percent, or at least 10 weight percent, or at least 12 weight percent of the loose powder particles; and up to 30 weight percent, or up to 28 weight percent, or up to 25 weight percent, or up to 23 weight percent, or up to 20 weight percent, or up to 18 weight percent of the loose powder particles.
- the average particle size of the organic compound particles ranges from about 1 micrometer to about 100 micrometers, preferably about 5 micrometers to about 50 micrometers, and most preferably about 10 micrometers to about 30 micrometers.
- the loose powder particles may optionally further comprise other components such as, for example, pore inducers, fillers, and/or fluxing agent particles.
- pore inducers include glass bubbles and organic particles.
- the lower melting metal particles may also serve as a fluxing agent; for example as described in U.S. Pat. No. 6,858,050 (Palmgren).
- the loose powder particles may optionally be modified to improve their flowability and the uniformity of the layer spread. Methods of improving the powders include agglomeration, spray drying, gas or water atomization, flame forming, granulation, milling, and sieving.
- flow agents such as, for example, fumed silica, nanosilica, stearates, and starch may optionally be added.
- the loose powder particles are preferably sized (e.g., by screening) to have a maximum size of less than or equal to 2500 microns, preferably less than or equal to 750 microns, more preferably less than or equal to 200 microns, more preferably less than or equal to 150 microns, less than or equal to 100 microns, or even less than or equal to 80 microns, although larger sizes may also be used.
- the loose powder particles have an average particle diameter of less than or equal to one micron (e.g., "submicron"); for example less than or equal to 500 nanometers (nm), or even less than or equal to 150 nm.
- the various components of the loose powder particles may have the same or different maximum particle sizes, D90, D50, and/or D10 particle size distribution parameters.
- treatment 170 is selectively applied to treat an (e.g., predetermined) area 180 of the layer 138.
- treatment 170 comprises binder jetting, applying heat via conduction or irradiation, or combinations thereof.
- binder jetting a liquid binder precursor material is jetted by a printer 150 onto the predetermined area 180.
- the source 150 of treatment is not particularly limited, and includes for instance and without limitation, a single source or a multipoint source. Suitable single point sources include for instance, a heated tip 156 and a laser 158.
- a heated tip typically includes a heated metal tip or a heated ceramic tip, such as a metal tip found on a common soldering tool.
- a suitable low powered laser for instance, the CUBE 405-lOOC Diode Laser System from Coherent Inc. (Santa Clara, CA).
- Useful multipoint sources include a thermal print head, such as commonly used in direct thermal printing or thermal transfer printing, and two or more lasers.
- one suitable thermal print head is model KEE-57-24GAG4-STA, available from KYOCERA Corporation (Kyoto, Japan).
- FIG. 2B the third step of the process of FIG. 2A is shown with a thermal print head 152 heat source.
- a film 154 is disposed on the layer 138 to provide a barrier between the thermal print head 152 heat source and the area 180 of the layer 138.
- Suitable films include, for instance and without limitation, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), and other films known to be stable at high temperatures.
- FIG. 2C the third step of the process of FIG. 2A is shown with a single tip 156 heat source.
- a film 154 is disposed on the layer 138 to provide a barrier between the single tip 156 heat source and the area 180 of the layer 138.
- FIG. 2D the third step of the process of FIG. 2A is shown with a laser 158 heat source.
- FIG. 2D further includes the laser beam 170 being directed at the area 180 of the layer 138. No film is provided in this illustrated exemplary embodiment.
- the tip optionally further applies pressure to the (e.g., predetermined) area of the layer of loose powder particles.
- pressure may be effective to densify the powder particles, especially if the loose powder particles contain a large amount of organic compound particles.
- the matrix material and/or the organic compound material bonds together the loose powder particles in at least one predetermined region (or area) of the loose powder particles to form a layer of bonded powder particles.
- step 185) The above steps are then repeated (step 185) with changes to the region where applying heat is carried out according to a predetermined design resulting through repetition, layer on layer, in a three-dimensional (3-D) abrasive article preform.
- the loose powder particles may be independently selected; that is, some or all of the loose powder particles may be the same as, or different from those in adjacent deposited layers.
- Powder bed binder jetting is an additive manufacturing, or "3D printing" technology, in which a thin layer of a powder is temporarily bonded at desired locations by a jetted liquid binder mixture.
- that binder mixture is dispensed by an inkjet printing head, and consists of a polymer dissolved in a suitable solvent or carrier solution.
- the binder is a powder which is mixed with the other powder, or coated onto the powder and dried, and then an activating liquid, such as water or a solvent mixture, is jetted onto the powder, activating the binder in select areas.
- the printed powder layer is then at least partially dried and lowered so that a next powder layer can be spread.
- the powder spreading, bonding and drying processes can be repeated until the full object is created.
- the object and surrounding powder is removed from the printer and often dried or cured to impart additional strength so that the now hardened object can be extracted from the surrounding powder.
- a liquid binder precursor material 170 is jetted by printer 150 onto predetermined region(s) 180 of layer 138.
- the liquid binder precursor material thus coats the loose powder particles in region 180, and is subsequently converted to a binder material that binds the loose powder particles in region 180 to each other.
- the liquid binder precursor material may be any composition that can be converted (e.g., by evaporation, or thermal, chemical, and/or radiation curing (e.g., using UV or visible light)) into a binder material that bonds the loose powder particles together according to the jetted pattern (and ultimate 3-D shape upon multiple repetitions).
- the liquid binder precursor material comprises a liquid vehicle having a polymer dissolved therein.
- the liquid may include one or more of organic solvent and water.
- organic solvents include alcohols (e.g., butanol, ethylene glycol monomethyl ether), ketones, and ethers, preferably having a flash point above 100°C. Selection of a suitable solvent or solvents will typically depend upon requirements of the specific application, such as desired surface tension and viscosity, the selected particulate solid, for example.
- the liquid vehicle can be entirely water, or can contain water in combination with one or more organic solvents.
- the aqueous vehicle contains, on a total weight basis, at least 20 percent water, at least 30 percent water, at least 40 percent water, at least 50 percent water, or even at least 75 percent water.
- one or more organic solvents may be included in the liquid vehicle, for instance, to control drying speed of the liquid vehicle, to control surface tension of the liquid vehicle, to allow dissolution of an ingredient (e.g., of a surfactant), or, as a minor component of any of the ingredients; e.g., an organic co-solvent may be present in a surfactant added as an ingredient to the liquid vehicle.
- an ingredient e.g., of a surfactant
- an organic co-solvent may be present in a surfactant added as an ingredient to the liquid vehicle.
- Exemplary organic solvents include: alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t- butyl alcohol, and isobutyl alcohol; ketones or ketoalcohols such as acetone, methyl ethyl ketone, and diacetone alcohol; esters such as ethyl acetate and ethyl lactate; polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, 1,4- butanediol, 1,2,4-butanetriol, 1,5-pentanediol, 1,2,6-hexanetriol, hexylene glycol, glycerol, glycerol ethoxylate, trimethylolpropane ethoxylate; lower alkyl ethers such as ethylene glycol methyl or ethyl
- the amounts of organic solvent and/or water within the liquid vehicle can depend on a number of factors, such as the particularly desired properties of the liquid binder precursor material such as the viscosity, surface tension, and/or drying rate, which can in turn depend on factors such as the type of ink jet printing technology intended to be used with the liquid vehicle ink, such as piezo-type or thermal -type printheads, for example.
- the liquid binder precursor material may include a polymer that is soluble or dispersible in the liquid vehicle.
- suitable polymers may include polyvinyl pyrrolidones, polyvinyl caprolactams, polyvinyl alcohols, polyacrylamides, poly(2-ethyl-2-oxazoline) (PEOX), polyvinyl butyrate, copolymers of methyl vinyl ether and maleic anhydride, certain copolymers of acrylic acid and/or hydroxyethyl acrylate, methyl cellulose, natural polymers (e.g., dextrin, guar gum, xanthan gum).
- PEOX poly(2-ethyl-2-oxazoline)
- polyvinyl butyrate copolymers of methyl vinyl ether and maleic anhydride
- acrylic acid and/or hydroxyethyl acrylate methyl cellulose
- natural polymers e.g., dextrin, guar gum, xanthan gum.
- the liquid binder precursor material may include one or more free-radically polymerizable or otherwise radiation-curable materials; for example, acrylic monomers and/or oligomers and/or epoxy resins.
- An effective amount of photoinitiator and/or photocatalysts for curing the free- radically polymerizable or otherwise radiation-curable materials may also be included.
- suitable (meth)acrylate monomers and oligomers and otherwise radiation-curable materials e.g., epoxy resins
- suitable (meth)acrylate monomers and oligomers and otherwise radiation-curable materials can be found in, for example, U.S. Pat. No. 5,766,277 (DeVoe et al.).
- the liquid binder precursor material is essentially free of (e.g., contains less than 1 percent, less than 0.1 percent, less than 0.01 percent, or is even free of) metal nanoparticles and/or metal oxide nanoparticles.
- nanoparticles refers to particles having an average particle diameter of less than or equal to one micron; for example less than or equal to 500 nanometers (nm), or even less than or equal to 150 nm.
- the liquid binder precursor may be an aqueous sol comprising a ceramic precursor for alumina and/or zirconia.
- aqueous boehmite sols and zirconia sols examples include aqueous boehmite sols and zirconia sols.
- the liquid binder precursor may have the same or different composition as the abrasive particles. Details concerning zirconia sols can be found, for example, in U. S. Pat. No. 6,376,590 (Kolb et al.). Details concerning boehmite sols can be found, for example, in U.S. Pat. Nos.
- the jetted liquid binder precursor material is converted into a binder material that bonds together the loose powder particles in predetermined regions of the loose powder particles to form a layer of bonded powder particles; for example, by evaporation of a liquid vehicle in the liquid binder precursor material.
- heating the binder material to sufficiently high temperature causes it to volatilize and/or decompose (e.g., "burn out") during a subsequent firing step. Cooling may be accomplished by any means known to the art (e.g., cold quenching or air cooling to room temperature).
- the jetted liquid binder precursor material 170 is converted (step 190) into a binder material that bonds together the loose powder particles in at least one predetermined region of the loose powder particles to form a layer of bonded powder particles; for example, by evaporation of a liquid vehicle in the liquid binder precursor material.
- heating the binder material to sufficiently high temperature causes it to volatilize and/or decompose (e.g., "burn out") during subsequent sintering or infusion steps.
- step 185) The above steps are then repeated (step 185) with changes to the region where jetting is carried out according to a predetermined design resulting through repetition, layer on layer, in a three-dimensional (3-D) abrasive article preform.
- the loose powder particles and the liquid binder precursor material may be independently selected; that is, either or both or the loose powder particles and the liquid binder precursor material may be the same as, or different from those in adjacent deposited layers.
- the abrasive article preform comprises the bonded powder particles and remaining loose powder particles. Once sufficient repetitions have been carried out to form the abrasive article preform, it is preferably separated from substantially all (e.g., at least 85 percent, at least 90 percent, preferably at least 95 percent, and more preferably at least 99 percent) of the remaining loose powder particles, although this is not a requirement. In certain embodiments, at least a portion of any resin bond precursor material and/or organic compound material is burned off (e.g., volatilizing and/or decomposing) following the separation of the bonded powder particles and prior to or concurrently with infusing with a metal.
- multiple particle reservoirs each containing a different powder may be used. This results in different powders/binders distributed in different and discrete regions of the abrasive article.
- relatively inexpensive, but lower performing abrasive particles and/or vitreous bond precursor particles may be relegated to regions of a vitrified bond abrasive article where it is not particularly important to have high performance properties (e.g., in the interior away from the abrading surface).
- the same approach can apply to metal bond abrasive articles or resin bond abrasive articles.
- vitreous bond abrasive articles made in ways according to the present disclosure have considerable porosity throughout their volumes. Accordingly, the abrasive article preform may then be infused with a solution or dispersion of additional vitreous bond precursor material, or grain growth modifiers.
- the abrasive article preform may be heated sufficiently to cause the lower melting metal particles to soften/melt and bond to at least a portion of the loose powder particles, and then cooled to provide the metal bond abrasive article.
- the abrasive article preform may be heated sufficiently to cause the higher melting metal particles to at least sinter and bond to at least a portion of the loose powder particles, and then cooled to provide the metal bond abrasive article. Cooling may be accomplished by any means known to the art; for example cold quenching or air cooling to room temperature.
- Metal bond abrasive articles and/or abrasive article preforms made according to the present disclosure may comprise a porous metal-containing matrix (e.g., which may comprise metal particles and abrasive particles, and which may be sintered) with considerable porosity throughout its volume, although this is not a requirement.
- the porous metal- containing matrix may have a void fraction of 1 to 60 volume percent, preferably 5 to 50 volume percent, and more preferably 15 to 50 volume percent, more preferably 40 to 50 volume percent, although this is not a requirement.
- the abrasive article preform may then be infused with a molten metal that has a temperature below the melting point(s) of any other metallic components, then cooled.
- suitable metals that can be made molten and infused into the abrasive article preform include aluminum, indium, brass, bronze, silver, copper, gold, lead, cobalt, magnesium, nickel, zinc, tin, iron, chromium, silicon alloys, alloys of the foregoing, and combinations thereof.
- cooling channels having tortuous and or arcuate paths can be readily manufactured using methods of the present disclosure. Cooling channels are open to the exterior of the bonded abrasive article. In some embodiments, they have a single opening, but more typically they have two or more openings.
- a cooling medium e.g., air, water, emulsion, or oil
- the present disclosure provides a bonded abrasive article comprising at least one of: at least one tortuous cooling channel extending at least partially through the metal bonded abrasive article; at least one arcuate cooling channel extending at least partially through the bonded abrasive article.
- the abrasive article preform 190 is then heated (step 195 in FIG. 2A) to sinter the abrasive particles with the metal or vitreous bond precursor particles or to bond the abrasive particles with the resin bond precursor particles (and to remove any organic compound material that may be present, e.g., by burning off the organic compound material), thereby providing the bonded abrasive article.
- the bonded abrasive article is selected from the group consisting of an abrasive grinding bit, abrasive segments, abrasive rims, abrasive pads, and an abrasive wheel, as well as many hitherto unknown bonded abrasive articles.
- a metal bond abrasive article comprises at least a portion of a rotary dental tool (e.g., a dental drill bit, a dental bur, or a dental polishing tool).
- FIG. 5A a schematic cross-sectional side view is provided of a bonded abrasive article.
- the abrasive particles of the bonded abrasive article are substantially horizontal with respect to the base plane of the confined region upon which each layer was deposited.
- FIG. 5B is an optical microscope image at lOOx magnification of a bonded abrasive article, the image being of a portion of an upper (axial) surface of the article as indicated by the arrow of FIG. 5A.
- the image shows the planar surfaces of a plurality of triangular prism shaped abrasive particles, with at least fifty percent of the abrasive particles on the surface of the bonded abrasive article oriented within 15% of a zero degree angle.
- FIG. 5C a schematic cross-sectional side view of the bonded abrasive article of FIG. 5A is provided.
- FIG. 5D is an optical microscope image at lOOx magnification of a bonded abrasive article, the image being of a portion of a side (radial) surface of the article as indicated by the arrow of FIG. 5C.
- the image shows the edge surfaces of a plurality of triangular prism shaped abrasive particles, with at least fifty percent of the abrasive particles on the surface of the bonded abrasive article oriented within 15% of a zero degree angle.
- FIG. 6A is a schematic cross-sectional side view of a bonded abrasive article, preparable according to the present disclosure.
- the bonded abrasive article comprises abrasive particles retained in a binder, wherein the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using image analysis at 10,000 times magnification.
- FIG. 6C is an optical microscope image of the bonded abrasive article of FIG. 6B at a 30x magnification, and the edges of individual bonded layers can be seen.
- FIG. 7A is a schematic cross-sectional side view of a bonded abrasive article
- FIG. 7B is an optical microscope image at 5 Ox magnification of a bonded abrasive article prepared according to the present disclosure, the image being of a portion of an upper (axial) surface of the article as indicated by the arrow of FIG. 7A.
- the image shows the planar surfaces of a plurality of prism shaped abrasive particles, with at least fifty percent of the abrasive particles on the surface of the bonded abrasive article oriented within 15% of a zero degree angle.
- FIG. 7A is a schematic cross-sectional side view of a bonded abrasive article
- FIG. 7B is an optical microscope image at 5 Ox magnification of a bonded abrasive article prepared according to the present disclosure, the image being of a portion of an upper (axial) surface of the article as indicated by the arrow of FIG. 7A.
- the image shows the planar surfaces of
- FIG. 7C is a schematic cross-sectional side view of the bonded abrasive article of FIG. 7A
- FIG. 7D is an optical microscope image at 5 Ox magnification of a bonded abrasive article prepared according to the present disclosure, the image being of a portion of a side (radial) surface of the article as indicated by the arrow of FIG. 7C.
- the image shows the edge surfaces of a plurality of prism shaped abrasive particles, with at least fifty percent of the abrasive particles on the surface of the bonded abrasive article oriented within 15% of a zero degree angle.
- bonded abrasive articles having a variety of different shapes is possible due to the capability of selecting areas of each loose powder layer to bond.
- an exemplary bonded abrasive wheel 900 has arcuate and tortuous cooling channels 920, respectively.
- FIG. 10 shows another exemplary bonded abrasive wheel 1000 that has tortuous cooling channels 1020.
- FIG. 1 1 shows an exemplary bonded abrasive segment 1 100.
- multiple bonded abrasive segments 1 100 are mounted evenly spaced along the circumference of a metal disc to form an abrasive wheel.
- FIG. 12 shows a vitreous bond or metal bond abrasive disc 1200 having two regions 1210, 1220. Each region has abrasive particles 1230, 1240 retained in a resin bond, vitreous bond, or metal bond matrix material 1250, 1260, respectively.
- FIG. 13 shows a rotary abrasive tool 1300 (a bit for a handheld motor driven shaft such as, for example, a Dremel tool).
- dental bur 1400 includes head 1430 secured to shank 1420.
- Dental bur 1400 comprises abrasive particles 1405 secured in porous metal bond, resin bond, or vitreous bond 1410.
- the foregoing abrasive wheels shown in FIGS. 9 and 10 can be prepared by firing corresponding green bodies (i.e., having the same general shape features, but comprising a vitreous bond or metal bond precursor particles held together by a temporary binder).
- a (e.g., non-transitory) machine-readable medium is employed in additive manufacturing of bonded abrasive articles according to at least certain aspects of the present disclosure.
- Data is typically stored on the machine -readable medium.
- the data represents a three-dimensional model of a bonded abrasive article, which can be accessed by at least one computer processor interfacing with additive manufacturing equipment (e.g., a 3D printer, a manufacturing device, etc.).
- additive manufacturing equipment e.g., a 3D printer, a manufacturing device, etc.
- the data is used to cause the additive manufacturing equipment to create, for instance, a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform comprises abrasive particles retained in a binder, wherein the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using image analysis at 10 to 1,000 times magnification.
- the bonded abrasive article comprises a plurality of abrasive particles retained in a binder, wherein a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform and a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle, wherein 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Data representing a bonded abrasive article may be generated using computer modeling such as computer aided design (CAD) data.
- Image data representing the bonded abrasive article design can be exported in STL format, or in any other suitable computer processable format, to the additive manufacturing equipment.
- Scanning methods to scan a three-dimensional object may also be employed to create the data representing the bonded abrasive article.
- One exemplary technique for acquiring the data is digital scanning. Any other suitable scanning technique may be used for scanning an article, including X-ray radiography, laser scanning, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound imaging. Other possible scanning methods are described, e.g., in U.S. Patent Application Publication No.
- the initial digital data set which may include both raw data from scanning operations and data representing articles derived from the raw data, can be processed to segment an article design from any surrounding structures (e.g., a support for the bonded abrasive article).
- the computing device may have one or more processors, volatile memory (RAM), a device for reading machine-readable media, and input/output devices, such as a display, a keyboard, and a pointing device. Further, a computing device may also include other software, firmware, or combinations thereof, such as an operating system and other application software.
- a computing device may be, for example, a workstation, a laptop, a personal digital assistant (PDA), a server, a mainframe or any other general -purpose or application-specific computing device.
- PDA personal digital assistant
- a computing device may read executable software instructions from a computer-readable medium (such as a hard drive, a CD-ROM, or a computer memory), or may receive instructions from another source logically connected to computer, such as another networked computer.
- a computing device 1900 often includes an internal processor 1980, a display 1910 (e.g., a monitor), and one or more input devices such as a keyboard 1940 and a mouse 1920.
- a rotary abrasive tool 1930 is shown on the display 1910.
- the present disclosure provides a system 1500.
- the system 1500 comprises a display 1520 that displays a 3D model 1510 of a bonded abrasive article (e.g., a rotary abrasive tool 1930 as shown on the display 1910 of FIG. 19); and one or more processors 1530 that, in response to the 3D model 1510 selected by a user, cause a 3D printer / additive manufacturing device 1550 to create a physical object of an article preform 1560 of the bonded abrasive article.
- an input device 1540 e.g., keyboard and/or mouse
- the display 1520 and the at least one processor 1530 is employed with the display 1520 and the at least one processor 1530, particularly for the user to select the 3D model 1510.
- the article preform 1560 comprises a bonded abrasive article preform.
- the bonded abrasive article preform comprises abrasive particles retained in a binder, wherein the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using image analysis at 10 to 1,000 times magnification.
- the bonded abrasive article preform comprises a plurality of abrasive particles retained in a binder, wherein a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform and a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle, wherein 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- a processor 1620 (or more than one processor) is in communication with each of a machine-readable medium 1610 (e.g., a non-transitory medium), a 3D printer / additive manufacturing device 1640, and optionally a display 1630 for viewing by a user.
- the 3D printer / additive manufacturing device 1640 is configured to make one or more article preforms 1650 (e.g., a bonded abrasive article preform) of an article based on instructions from the processor 1620 providing data representing a 3D model of the article preform 1650 (e.g., a rotary abrasive tool 1930 as shown on the display 1910 of FIG. 19) from the machine-readable medium 1610.
- article preforms 1650 e.g., a bonded abrasive article preform
- an additive manufacturing method comprises retrieving 1710, from a (e.g., non-transitory) machine-readable medium, data representing a 3D model of a bonded abrasive article according to at least one embodiment of the present disclosure.
- the method further includes executing 1720, by one or more processors, an additive manufacturing application interfacing with a manufacturing device using the data; and generating 1730, by the manufacturing device, a physical object of a bonded abrasive article preform of the bonded abrasive article.
- the additive manufacturing equipment can perform the following sequential steps to form the bonded abrasive article preform:
- the bonded abrasive article preform comprises abrasive particles retained in a binder, wherein the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using image analysis at 10 to 1,000 times magnification.
- the bonded abrasive article preform comprises a plurality of abrasive particles retained in a binder, wherein a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform and a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle, wherein 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- One or more various optional post-processing steps 1740 may be undertaken to form a bonded abrasive article from the preform, such as c) separating substantially all of the remaining loose powder particles from the bonded abrasive article preform; and d) heating the bonded abrasive article preform to provide the bonded abrasive article comprising the abrasive particles retained in a matrix material.
- a method of making a bonded abrasive article preform comprises receiving 1810, by a manufacturing device having one or more processors, a digital object comprising data specifying a plurality of layers of a bonded abrasive article; and generating 1820, with the manufacturing device by an additive manufacturing process, a bonded abrasive article preform of the bonded abrasive article based on the digital object.
- the bonded abrasive article preform may undergo one or more steps of post-processing 1830, e.g., to provide the bonded abrasive article.
- Embodiment 1 is a bonded abrasive article.
- the bonded abrasive article comprises abrasive particles retained in a binder.
- the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 2 is the bonded abrasive article of embodiment 1, further comprising a vitreous bond material.
- Embodiment 3 is the bonded abrasive article of embodiment 1, further comprising a metal bond material.
- Embodiment 4 is the bonded abrasive article of embodiment 1, further comprising a resin bond material.
- Embodiment 5 is the bonded abrasive article of any of embodiments 1 to 4, wherein the angle is 45 degrees.
- Embodiment 6 is the bonded abrasive article of any of embodiments 1 to 5, wherein the abrasive particles comprise an aspect ratio of an average length to an average thickness of 1.5 or greater.
- Embodiment 7 is the bonded abrasive article of any of embodiments 1 to 6, wherein the abrasive particles comprise an aspect ratio of the average length to the average thickness of 4.0 or greater.
- Embodiment 8 is the bonded abrasive article of any of embodiments 1 to 7, wherein the abrasive particles comprise shaped abrasive particles, precisely shaped abrasive particles, abrasive platelets, abrasive rods, shaped agglomerates of abrasive particles, or combinations thereof.
- Embodiment 9 is the bonded abrasive article of any of embodiments 1 to 7, wherein the abrasive particles comprise crushed abrasive particles, agglomerates of abrasive particles, or combinations thereof.
- Embodiment 10 is the bonded abrasive article of any of embodiments 1 to 9, further comprising a plurality of abrasive particles retained in the binder and oriented randomly with respect to the longitudinal axis of the bonded abrasive article.
- Embodiment 11 is the bonded abrasive article of any of embodiments 1 to 10, wherein the abrasive particles comprise two or more adjacent layers of abrasive particles, wherein a first layer comprises a different type of abrasive particles than a second layer.
- Embodiment 12 is the bonded abrasive article of any of embodiments 1 to 11, wherein the abrasive particles comprise two substantially parallel planar surfaces.
- Embodiment 13 is the bonded abrasive article of any of embodiments 1 to 12, wherein the abrasive article is selected from the group consisting of an abrasive grinding bit, an abrasive segment, an abrasive rim, an abrasive pad, and an abrasive wheel.
- Embodiment 14 is the bonded abrasive article of any of embodiments 1 to 13, wherein the abrasive article comprises at least one of an arcuate cooling channel or a tortuous cooling channel.
- Embodiment 15 is the bonded abrasive article of any of embodiments 1 to 14, wherein the abrasive particles comprise at least one of diamond particles or cubic boron nitride particles.
- Embodiment 16 is the bonded abrasive article of any of embodiments 1 to 15, wherein the abrasive particles comprise at least one of silicon carbide, boron carbide, silicon nitride, metal oxide particles, or metal oxide ceramic particles.
- Embodiment 17 is a bonded abrasive article.
- the bonded abrasive article comprises a plurality of abrasive particles retained in a binder. A first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article.
- a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle. 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 18 is the bonded abrasive article of embodiment 17, further comprising a third portion of the plurality of abrasive particles oriented at a predetermined third angle that is different from the first angle and the second angle. 50% or more of the abrasive particles of the third portion are oriented within 15 degrees above or below the third angle.
- Embodiment 19 is the bonded abrasive article of embodiment 17 or embodiment 18, further comprising a vitreous bond material.
- Embodiment 20 is the bonded abrasive article of embodiment 17 or embodiment 18, further comprising a metal bond material.
- Embodiment 21 is the bonded abrasive article of embodiment 17 or embodiment 18, further comprising a resin bond material.
- Embodiment 22 is the bonded abrasive article of any of embodiments 17 to 21, wherein the first angle is 45 degrees.
- Embodiment 23 is the bonded abrasive article of any of embodiments 17 to 21, wherein the second angle is 60 degrees.
- Embodiment 24 is the bonded abrasive article of any of embodiments 17 to 23, wherein the abrasive particles comprise an aspect ratio of an average length to an average thickness of 1.5 or greater.
- Embodiment 25 is the bonded abrasive article of any of embodiments 17 to 24, wherein the abrasive particles comprise an aspect ratio of the average length to the average thickness of 4.0 or greater.
- Embodiment 26 is the bonded abrasive article of any of embodiments 17 to 25, wherein the abrasive particles comprise shaped abrasive particles, precisely shaped abrasive particles, abrasive platelets, abrasive rods, shaped agglomerates of abrasive particles, or combinations thereof.
- Embodiment 27 is the bonded abrasive article of any of embodiments 17 to 25, wherein the abrasive particles comprise crushed abrasive particles, agglomerates of abrasive particles, or combinations thereof.
- Embodiment 28 is the bonded abrasive article of any of embodiments 17 to 27, further comprising a plurality of abrasive particles retained in the binder and oriented randomly with respect to the longitudinal axis of the bonded abrasive article.
- Embodiment 29 is the bonded abrasive article of any of embodiments 17 to 28, wherein the abrasive particles comprise two or more adjacent layers of abrasive particles, wherein a first layer comprises a different type of abrasive particles than a second layer.
- Embodiment 30 is the bonded abrasive article of any of embodiments 17 to 29, wherein the abrasive particles comprise two substantially parallel planar surfaces.
- Embodiment 31 is the bonded abrasive article of any of embodiments 17 to 30, wherein the abrasive article is selected from the group consisting of an abrasive grinding bit, an abrasive segment, an abrasive rim, an abrasive pad, and an abrasive wheel.
- Embodiment 32 is the bonded abrasive article of any of embodiments 17 to 31, wherein the abrasive article comprises at least one of an arcuate cooling channel or a tortuous cooling channel.
- Embodiment 33 is the bonded abrasive article of any of embodiments 17 to 32, wherein the abrasive particles comprise at least one of diamond particles or cubic boron nitride particles.
- Embodiment 34 is the bonded abrasive article of any of embodiments 17 to 33, wherein the abrasive particles comprise at least one of silicon carbide, boron carbide, silicon nitride, metal oxide particles, or metal oxide ceramic particles.
- Embodiment 35 is a method of making a bonded abrasive article. The method comprising sequential steps:
- step b) independently carrying out step a) a plurality of times to generate a bonded abrasive article preform comprising the bonded powder particles and remaining loose powder particles, wherein in each step a), the loose powder particles are independently selected;
- Embodiment 36 is the method of embodiment 35, wherein a ratio of the length of the gap between the spreading bar or roller and the base plane of the confined region and the average length of the abrasive particle ranges from 2 : 1 to 0.5 : 1, inclusive.
- Embodiment 37 is the method of embodiment 35 or embodiment 36, wherein a ratio of the length of the gap between the spreading bar or roller and the base plane of the confined region and the average length of the matrix particle is 5 : 1 or greater.
- Embodiment 38 the method of any of embodiments 35 to 37, wherein the matrix particles comprise vitreous bond precursor particles, metal bond precursor particles, resin bond precursor particles, organic compound particles, or combinations thereof.
- Embodiment 39 is the method of any of embodiments 35 to 38, wherein the selectively treating an area of the layer of loose powder particles to bond powder particles together comprises binder jetting, organic compound binding, applying heat via conduction or irradiation, or combinations thereof.
- Embodiment 40 is the method of embodiment 38 or embodiment 39, wherein the organic compound particles have a melting point between 50 degrees Celsius and 250 degrees Celsius, inclusive.
- Embodiment 41 is the method of any of embodiments 38 to 40, wherein the organic compound particles are selected from waxes, sugars, dextrins, thermoplastics having a melting point of no greater than 250 degrees Celsius, acrylates, methacrylates, and combinations thereof.
- Embodiment 42 is the method of any of embodiments 38 to 41, wherein the organic compound particles are selected from waxes, acrylates, methacrylates, polyethyleneterephthalate
- PET polylactic acid
- PLA polylactic acid
- Embodiment 43 is the method of any of embodiments 35 to 42, wherein the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 44 is the method of any of embodiments 35 to 43, further comprising changing the gap between the spreading bar or roller and a base plane of the confined region from one sequential spreading step to a subsequent sequential spreading step.
- Embodiment 45 is the method of any of embodiments 35 to 44, wherein the angle is 45 degrees.
- Embodiment 46 is the method of any of embodiments 35 to 45, wherein the abrasive particles comprise an aspect ratio of an average length to an average thickness of 1.5 or greater.
- Embodiment 47 is the method of any of embodiments 35 to 46, wherein the abrasive particles comprise an aspect ratio of the average length to the average thickness of 10.0 or greater.
- Embodiment 48 is the method of any of embodiments 35 to 47, wherein the abrasive particles comprise shaped abrasive particles, precisely shaped abrasive particles, abrasive platelets, abrasive rods, shaped agglomerates of abrasive particles, or combinations thereof.
- Embodiment 49 is the method of any of embodiments 35 to 48, wherein the abrasive particles comprise crushed abrasive particles, agglomerates of abrasive particles, or combinations thereof.
- Embodiment 50 is the method of any of embodiments 35 to 49, wherein the bonded abrasive article further comprises a plurality of abrasive particles retained in the binder and oriented randomly with respect to the longitudinal axis of the bonded abrasive article.
- Embodiment 51 is the method of any of embodiments 35 to 50, wherein the abrasive particles comprise two or more adjacent layers of abrasive particles, wherein a first layer comprises a different type of abrasive particles than a second layer.
- Embodiment 52 is the method of any of embodiments 35 to 51, wherein the abrasive particles comprise two substantially parallel planar surfaces.
- Embodiment 53 is the method of any of embodiments 35 to 52, wherein the abrasive article is selected from the group consisting of an abrasive grinding bit, an abrasive segment, an abrasive rim, an abrasive pad, and an abrasive wheel.
- Embodiment 54 is the method of any of embodiments 35 to 53, wherein the abrasive article comprises at least one of an arcuate cooling channel or a tortuous cooling channel.
- Embodiment 55 is the method of any of embodiments 35 to 54, wherein the abrasive particles comprise at least one of diamond particles or cubic boron nitride particles.
- Embodiment 56 is the method of any of embodiments 35 to 55, wherein the abrasive particles comprise at least one of silicon carbide, boron carbide, silicon nitride, metal oxide particles, or metal oxide ceramic particles.
- Embodiment 57 is a non-transitory machine readable medium.
- the non-transitory machine readable medium has data representing a three-dimensional model of a bonded abrasive article, when accessed by one or more processors interfacing with a 3D printer, causes the 3D printer to create a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform comprises abrasive particles retained in a binder.
- the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 58 is a non-transitory machine readable medium.
- the non-transitory machine readable medium has data representing a three-dimensional model of a bonded abrasive article, when accessed by one or more processors interfacing with a 3D printer, causes the 3D printer to create a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform comprises a plurality of abrasive particles retained in a binder. A first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform.
- a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle. 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 59 is a method.
- the method includes retrieving, from a non-transitory machine readable medium, data representing a 3D model of a bonded abrasive article; executing, by one or more processors, a 3D printing application interfacing with a manufacturing device using the data; and generating, by the manufacturing device, a physical object of a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform comprises abrasive particles retained in a binder.
- the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 60 is a method.
- the method includes retrieving, from a non-transitory machine readable medium, data representing a 3D model of a bonded abrasive article; executing, by one or more processors, a 3D printing application interfacing with a manufacturing device using the data; and generating, by the manufacturing device, a physical object of a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform comprises a plurality of abrasive particles retained in a binder.
- a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform.
- a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle. 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 61 is an article generated using the method of embodiment 59 or embodiment 60.
- Embodiment 62 is a method. The method includes receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying a plurality of layers of a bonded abrasive article; and generating, with the manufacturing device by an additive
- a bonded abrasive article preform of the bonded abrasive article based on the digital object comprises abrasive particles retained in a binder.
- the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 63 is a method. The method includes receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying a plurality of layers of a bonded abrasive article; and generating, with the manufacturing device by an additive
- a bonded abrasive article preform of the bonded abrasive article based on the digital object comprises a plurality of abrasive particles retained in a binder.
- a first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform.
- a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle. 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 64 is the method of embodiment 62 or embodiment 63, wherein the additive manufacturing equipment performs the following sequential steps to form the bonded abrasive article preform:
- step b) independently carrying out step a) a plurality of times to generate a bonded abrasive article preform comprising the bonded powder particles and remaining loose powder particles, wherein in each step a), the loose powder particles are independently selected.
- Embodiment 65 is the method of embodiment 64, further including c) separating substantially all of the remaining loose powder particles from the bonded abrasive article preform; and d) heating the bonded abrasive article preform to provide the bonded abrasive article comprising the abrasive particles retained in a matrix material.
- Embodiment 66 is a system.
- the system includes a display that displays a 3D model of a bonded abrasive article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform comprises abrasive particles retained in a binder.
- the abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform, wherein 50% or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- Embodiment 67 is a system.
- the system includes a display that displays a 3D model of a bonded abrasive article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of a bonded abrasive article preform of the bonded abrasive article.
- the bonded abrasive article preform comprises a plurality of abrasive particles retained in a binder. A first portion of the plurality of abrasive particles are oriented at a predetermined first angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article preform.
- a second portion of the plurality of abrasive particles are oriented at a predetermined second angle that is different from the first angle. 50% or more of the abrasive particles of each of the first portion and the second portion are oriented within 15 degrees above or below the first angle and the second angle, respectively, as measured using microscopy image analysis at 10 to 1,000 times magnification.
- a loose powder mixture was prepared by weight of: 75% triangular prism shaped abrasive grains with nominal dimension of 200-250 micrometers and a thickness of 70 micrometers mixed with 25% glass particles in a plastic container, and tumbled at least for one hour.
- the mixture was printed in the ExOne M-lab additive manufacturing printer.
- the height of each layer was 200 microns
- the spreader speed was 5 millimeters per second
- the printing saturation for the binder jetting was set to the nominal 100% level using the printer software
- the drying time was set at 120 seconds.
- the binder was ExOne PM-B-SR1-04.
- the resulting green parts were baked for 2 hours in an oven set at 195 degrees Celsius in ambient atmosphere, and then the excess loose powder was removed.
- V3128 90 was expected to perform as well as V3128 45, but surprisingly, the disc having particles oriented at a 45 degree angle (with respect to the longitudinal axis of the disc) outperformed the disc having particles oriented at a 90 degree angle (with respect to the longitudinal axis of the disc). This was unexpected at least because the triangular prism shaped abrasive particles are configured to fracture when used at a 90 degree angle to provide fresh abrasive surfaces, instead of simply wearing down during use.
- a loose powder mixture was prepared as described in Example 1.
- the binder solution was ExOne PM-B-SR1-04.
- the mixture was printed in the ExOne M-lab additive manufacturing printer.
- the height of each layer was about 200 microns
- the spreader speed was 5 millimeters per second
- the printing saturation for the binder jetting was set to the nominal 100% level using the printer software
- the drying time was set at 120 seconds.
- the plate supporting the powder bed was incrementally tilted with respect to the roller direction of travel such that a total tilting angle of about 24 degrees was achieved from the first layer to the last and 42 th layer of the part.
- the resulting green parts were baked for 4 hours in an oven set at 195 degrees Celsius in an ambient atmosphere, and then the excess loose powder was removed.
- An optical microscope image of a resulting abrasive article preform is shown in FIG. 4B.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780065852.0A CN109890568B (en) | 2016-10-25 | 2017-10-10 | Bonded abrasive article including oriented abrasive particles and method of making the same |
BR112019008286A BR112019008286A2 (en) | 2016-10-25 | 2017-10-10 | bonded abrasive articles including oriented abrasive particles and methods for producing them |
US16/335,402 US20200016725A1 (en) | 2016-10-25 | 2017-10-10 | Bonded Abrasive Articles Including Oriented Abrasive Particles, and Methods of Making Same |
KR1020197014820A KR102427116B1 (en) | 2016-10-25 | 2017-10-10 | Bonded Abrasive Article Comprising Oriented Abrasive Particles, and Method of Making the Same |
EP17863607.2A EP3532251A4 (en) | 2016-10-25 | 2017-10-10 | Bonded abrasive articles including oriented abrasive particles, and methods of making same |
JP2019521372A JP7030803B2 (en) | 2016-10-25 | 2017-10-10 | Bonded polished article containing oriented abrasive particles and its manufacturing method |
JP2022025174A JP2022066244A (en) | 2016-10-25 | 2022-02-22 | Bonded abrasive articles including oriented abrasive particles, and methods of making the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662412366P | 2016-10-25 | 2016-10-25 | |
US62/412,366 | 2016-10-25 | ||
US201762550126P | 2017-08-25 | 2017-08-25 | |
US62/550,126 | 2017-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018080778A1 true WO2018080778A1 (en) | 2018-05-03 |
Family
ID=62023933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/055822 WO2018080778A1 (en) | 2016-10-25 | 2017-10-10 | Bonded abrasive articles including oriented abrasive particles, and methods of making same |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200016725A1 (en) |
EP (1) | EP3532251A4 (en) |
JP (2) | JP7030803B2 (en) |
KR (1) | KR102427116B1 (en) |
CN (1) | CN109890568B (en) |
BR (1) | BR112019008286A2 (en) |
WO (1) | WO2018080778A1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10106714B2 (en) | 2012-06-29 | 2018-10-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10179391B2 (en) | 2013-03-29 | 2019-01-15 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10280350B2 (en) | 2011-12-30 | 2019-05-07 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US10286523B2 (en) | 2012-10-15 | 2019-05-14 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10351745B2 (en) | 2014-12-23 | 2019-07-16 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US10358589B2 (en) | 2015-03-31 | 2019-07-23 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10364383B2 (en) | 2012-01-10 | 2019-07-30 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US10428255B2 (en) | 2011-12-30 | 2019-10-01 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US10557067B2 (en) | 2014-04-14 | 2020-02-11 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10563106B2 (en) | 2013-09-30 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10597568B2 (en) | 2014-01-31 | 2020-03-24 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
WO2020084382A1 (en) * | 2018-10-25 | 2020-04-30 | 3M Innovative Properties Company | Elongate abrasive article with orientationally aligned formed abrasive particles |
US10711171B2 (en) | 2015-06-11 | 2020-07-14 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
WO2021020484A1 (en) * | 2019-07-31 | 2021-02-04 | マニー株式会社 | Dental diamond bar |
JP2021023402A (en) * | 2019-07-31 | 2021-02-22 | マニー株式会社 | Dental diamond bar |
JP2021023403A (en) * | 2019-07-31 | 2021-02-22 | マニー株式会社 | Dental diamond bar |
US11091678B2 (en) | 2013-12-31 | 2021-08-17 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US11718774B2 (en) | 2016-05-10 | 2023-08-08 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US11926019B2 (en) | 2019-12-27 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
US11959009B2 (en) | 2016-05-10 | 2024-04-16 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US12043784B2 (en) | 2012-05-23 | 2024-07-23 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US12064850B2 (en) | 2021-12-30 | 2024-08-20 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods for forming same |
US12122953B2 (en) | 2020-12-22 | 2024-10-22 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018127407A1 (en) * | 2018-11-02 | 2020-05-07 | Industrieanlagen-Betriebsgesellschaft Mbh | Process for the preparation and analysis of a powder by means of instrumental analysis and use |
CN111037481B (en) * | 2019-12-04 | 2021-07-30 | 福达合金材料股份有限公司 | Magnesium oxide resin grinding stone for grinding electrical contact, preparation, recycling and residual removing method |
EP3871859A1 (en) * | 2020-02-26 | 2021-09-01 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
CN113084717B (en) * | 2021-04-08 | 2022-05-03 | 华侨大学 | Porous Cu-Sn-based ultrathin grinding wheel for cutting chip and preparation method thereof |
CN113414716B (en) * | 2021-05-24 | 2023-08-25 | 江阴市科雷特工具有限公司 | Wear-resistant diamond grinding wheel and preparation method thereof |
CN113696109B (en) * | 2021-09-15 | 2022-11-01 | 郑州磨料磨具磨削研究所有限公司 | Grinding wheel for grinding insulated bearing and forming method thereof |
CN114179202A (en) * | 2022-01-11 | 2022-03-15 | 佛山市大境陶瓷科技有限公司 | Particle coloring device and preparation method of stone pattern-imitated ceramic tile |
CN115366013B (en) * | 2022-04-02 | 2023-12-08 | 珠海市世创金刚石工具制造有限公司 | Double-horse polyimide resin grinding wheel for dry grinding |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2367404A (en) | 1943-07-09 | 1945-01-16 | Fish Schurman Corp | Abrasive composition of matter and method of forming same |
US4314827A (en) | 1979-06-29 | 1982-02-09 | Minnesota Mining And Manufacturing Company | Non-fused aluminum oxide-based abrasive mineral |
US4518397A (en) | 1979-06-29 | 1985-05-21 | Minnesota Mining And Manufacturing Company | Articles containing non-fused aluminum oxide-based abrasive mineral |
US4574003A (en) | 1984-05-03 | 1986-03-04 | Minnesota Mining And Manufacturing Co. | Process for improved densification of sol-gel produced alumina-based ceramics |
US4623364A (en) | 1984-03-23 | 1986-11-18 | Norton Company | Abrasive material and method for preparing the same |
US4744802A (en) | 1985-04-30 | 1988-05-17 | Minnesota Mining And Manufacturing Company | Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products |
US4770671A (en) | 1985-12-30 | 1988-09-13 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith |
US4848041A (en) | 1987-11-23 | 1989-07-18 | Minnesota Mining And Manufacturing Company | Abrasive grains in the shape of platelets |
US4881951A (en) | 1987-05-27 | 1989-11-21 | Minnesota Mining And Manufacturing Co. | Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith |
US4960441A (en) | 1987-05-11 | 1990-10-02 | Norton Company | Sintered alumina-zirconia ceramic bodies |
US5011508A (en) | 1988-10-14 | 1991-04-30 | Minnesota Mining And Manufacturing Company | Shelling-resistant abrasive grain, a method of making the same, and abrasive products |
US5090968A (en) | 1991-01-08 | 1992-02-25 | Norton Company | Process for the manufacture of filamentary abrasive particles |
US5139978A (en) | 1990-07-16 | 1992-08-18 | Minnesota Mining And Manufacturing Company | Impregnation method for transformation of transition alumina to a alpha alumina |
US5178849A (en) | 1991-03-22 | 1993-01-12 | Norton Company | Process for manufacturing alpha alumina from dispersible boehmite |
US5201916A (en) | 1992-07-23 | 1993-04-13 | Minnesota Mining And Manufacturing Company | Shaped abrasive particles and method of making same |
US5227104A (en) | 1984-06-14 | 1993-07-13 | Norton Company | High solids content gels and a process for producing them |
US5366523A (en) | 1992-07-23 | 1994-11-22 | Minnesota Mining And Manufacturing Company | Abrasive article containing shaped abrasive particles |
US5429647A (en) | 1992-09-25 | 1995-07-04 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain containing alumina and ceria |
US5498269A (en) | 1992-09-25 | 1996-03-12 | Minnesota Mining And Manufacturing Company | Abrasive grain having rare earth oxide therein |
US5547479A (en) | 1993-12-28 | 1996-08-20 | Minnesota Mining And Manufacturing Company | Alpha abrasive alumina-based grain having an as sintered outer surface |
US5551963A (en) | 1992-09-25 | 1996-09-03 | Minnesota Mining And Manufacturing Co. | Abrasive grain containing alumina and zirconia |
US5725162A (en) | 1995-04-05 | 1998-03-10 | Saint Gobain/Norton Industrial Ceramics Corporation | Firing sol-gel alumina particles |
US5766277A (en) | 1996-09-20 | 1998-06-16 | Minnesota Mining And Manufacturing Company | Coated abrasive article and method of making same |
US5776214A (en) | 1996-09-18 | 1998-07-07 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain and abrasive articles |
US6004189A (en) * | 1997-09-15 | 1999-12-21 | Imation Corp. | Finishing of tungsten carbide surfaces |
US6376590B2 (en) | 1999-10-28 | 2002-04-23 | 3M Innovative Properties Company | Zirconia sol, process of making and composite material |
US20020095875A1 (en) | 2000-12-04 | 2002-07-25 | D'evelyn Mark Philip | Abrasive diamond composite and method of making thereof |
US6551366B1 (en) | 2000-11-10 | 2003-04-22 | 3M Innovative Properties Company | Spray drying methods of making agglomerate abrasive grains and abrasive articles |
US6858050B2 (en) | 2001-02-20 | 2005-02-22 | 3M Innovative Properties Company | Reducing metals as a brazing flux |
US20070031791A1 (en) | 2005-08-03 | 2007-02-08 | 3M Innovative Properties Company | Scanning models for digital orthodontics |
US20110045292A1 (en) * | 2009-08-14 | 2011-02-24 | Saint-Gobain Abrasives, Inc. | Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof |
US8142531B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with a sloping sidewall |
CN103264361A (en) | 2013-05-17 | 2013-08-28 | 华侨大学 | Manufacturing method for abrasive grain tool |
US20140259961A1 (en) * | 2011-02-16 | 2014-09-18 | 3M Innovative Properties Company | Electrostatic abrasive particle coating apparatus and method |
US20150291865A1 (en) * | 2014-04-14 | 2015-10-15 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US20160289520A1 (en) * | 2015-03-31 | 2016-10-06 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US20160289521A1 (en) | 2015-03-31 | 2016-10-06 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
WO2017127392A1 (en) | 2016-01-21 | 2017-07-27 | 3M Innovative Properties Company | Methods of making metal bond and vitreous bond abrasive articles, and abrasive article precursors |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1298980C (en) * | 1988-02-26 | 1992-04-21 | Clyde D. Calhoun | Abrasive sheeting having individually positioned abrasive granules |
CN201086242Y (en) * | 2007-05-23 | 2008-07-16 | 江苏天一超细金属粉末有限公司 | Apparatus for uniform distribution, ordered arrangement, preferred orientation of abrasive material particle |
US10137556B2 (en) * | 2009-06-22 | 2018-11-27 | 3M Innovative Properties Company | Shaped abrasive particles with low roundness factor |
CN102666022B (en) * | 2009-12-02 | 2015-05-20 | 3M创新有限公司 | Method of making a coated abrasive article having shaped abrasive particles and resulting product |
DE102013217422A1 (en) * | 2013-09-02 | 2015-03-05 | Carl Zeiss Industrielle Messtechnik Gmbh | Coordinate measuring machine and method for measuring and at least partially producing a workpiece |
US9421666B2 (en) * | 2013-11-04 | 2016-08-23 | Applied Materials, Inc. | Printed chemical mechanical polishing pad having abrasives therein |
US9919477B2 (en) * | 2015-03-02 | 2018-03-20 | Xerox Corporation | Embedding a database in a physical object |
JP2016172306A (en) * | 2015-03-18 | 2016-09-29 | 株式会社東芝 | Abrasive wheel, processing device, and manufacturing method of abrasive wheel |
-
2017
- 2017-10-10 US US16/335,402 patent/US20200016725A1/en not_active Abandoned
- 2017-10-10 WO PCT/US2017/055822 patent/WO2018080778A1/en unknown
- 2017-10-10 CN CN201780065852.0A patent/CN109890568B/en active Active
- 2017-10-10 BR BR112019008286A patent/BR112019008286A2/en not_active Application Discontinuation
- 2017-10-10 KR KR1020197014820A patent/KR102427116B1/en active IP Right Grant
- 2017-10-10 EP EP17863607.2A patent/EP3532251A4/en active Pending
- 2017-10-10 JP JP2019521372A patent/JP7030803B2/en active Active
-
2022
- 2022-02-22 JP JP2022025174A patent/JP2022066244A/en not_active Withdrawn
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2367404A (en) | 1943-07-09 | 1945-01-16 | Fish Schurman Corp | Abrasive composition of matter and method of forming same |
US4314827A (en) | 1979-06-29 | 1982-02-09 | Minnesota Mining And Manufacturing Company | Non-fused aluminum oxide-based abrasive mineral |
US4518397A (en) | 1979-06-29 | 1985-05-21 | Minnesota Mining And Manufacturing Company | Articles containing non-fused aluminum oxide-based abrasive mineral |
US4623364A (en) | 1984-03-23 | 1986-11-18 | Norton Company | Abrasive material and method for preparing the same |
US4574003A (en) | 1984-05-03 | 1986-03-04 | Minnesota Mining And Manufacturing Co. | Process for improved densification of sol-gel produced alumina-based ceramics |
US5227104A (en) | 1984-06-14 | 1993-07-13 | Norton Company | High solids content gels and a process for producing them |
US4744802A (en) | 1985-04-30 | 1988-05-17 | Minnesota Mining And Manufacturing Company | Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products |
US4770671A (en) | 1985-12-30 | 1988-09-13 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith |
US4960441A (en) | 1987-05-11 | 1990-10-02 | Norton Company | Sintered alumina-zirconia ceramic bodies |
US4881951A (en) | 1987-05-27 | 1989-11-21 | Minnesota Mining And Manufacturing Co. | Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith |
US4848041A (en) | 1987-11-23 | 1989-07-18 | Minnesota Mining And Manufacturing Company | Abrasive grains in the shape of platelets |
US5011508A (en) | 1988-10-14 | 1991-04-30 | Minnesota Mining And Manufacturing Company | Shelling-resistant abrasive grain, a method of making the same, and abrasive products |
US5139978A (en) | 1990-07-16 | 1992-08-18 | Minnesota Mining And Manufacturing Company | Impregnation method for transformation of transition alumina to a alpha alumina |
US5090968A (en) | 1991-01-08 | 1992-02-25 | Norton Company | Process for the manufacture of filamentary abrasive particles |
US5178849A (en) | 1991-03-22 | 1993-01-12 | Norton Company | Process for manufacturing alpha alumina from dispersible boehmite |
US5201916A (en) | 1992-07-23 | 1993-04-13 | Minnesota Mining And Manufacturing Company | Shaped abrasive particles and method of making same |
US5366523A (en) | 1992-07-23 | 1994-11-22 | Minnesota Mining And Manufacturing Company | Abrasive article containing shaped abrasive particles |
US5498269A (en) | 1992-09-25 | 1996-03-12 | Minnesota Mining And Manufacturing Company | Abrasive grain having rare earth oxide therein |
US5429647A (en) | 1992-09-25 | 1995-07-04 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain containing alumina and ceria |
US5551963A (en) | 1992-09-25 | 1996-09-03 | Minnesota Mining And Manufacturing Co. | Abrasive grain containing alumina and zirconia |
US5547479A (en) | 1993-12-28 | 1996-08-20 | Minnesota Mining And Manufacturing Company | Alpha abrasive alumina-based grain having an as sintered outer surface |
US5725162A (en) | 1995-04-05 | 1998-03-10 | Saint Gobain/Norton Industrial Ceramics Corporation | Firing sol-gel alumina particles |
US5776214A (en) | 1996-09-18 | 1998-07-07 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain and abrasive articles |
US5766277A (en) | 1996-09-20 | 1998-06-16 | Minnesota Mining And Manufacturing Company | Coated abrasive article and method of making same |
US6004189A (en) * | 1997-09-15 | 1999-12-21 | Imation Corp. | Finishing of tungsten carbide surfaces |
US6376590B2 (en) | 1999-10-28 | 2002-04-23 | 3M Innovative Properties Company | Zirconia sol, process of making and composite material |
US6551366B1 (en) | 2000-11-10 | 2003-04-22 | 3M Innovative Properties Company | Spray drying methods of making agglomerate abrasive grains and abrasive articles |
US20020095875A1 (en) | 2000-12-04 | 2002-07-25 | D'evelyn Mark Philip | Abrasive diamond composite and method of making thereof |
US6858050B2 (en) | 2001-02-20 | 2005-02-22 | 3M Innovative Properties Company | Reducing metals as a brazing flux |
US20070031791A1 (en) | 2005-08-03 | 2007-02-08 | 3M Innovative Properties Company | Scanning models for digital orthodontics |
US8142531B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with a sloping sidewall |
US20110045292A1 (en) * | 2009-08-14 | 2011-02-24 | Saint-Gobain Abrasives, Inc. | Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof |
US20140259961A1 (en) * | 2011-02-16 | 2014-09-18 | 3M Innovative Properties Company | Electrostatic abrasive particle coating apparatus and method |
CN103264361A (en) | 2013-05-17 | 2013-08-28 | 华侨大学 | Manufacturing method for abrasive grain tool |
US20150291865A1 (en) * | 2014-04-14 | 2015-10-15 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US20160289520A1 (en) * | 2015-03-31 | 2016-10-06 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US20160289521A1 (en) | 2015-03-31 | 2016-10-06 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
WO2017127392A1 (en) | 2016-01-21 | 2017-07-27 | 3M Innovative Properties Company | Methods of making metal bond and vitreous bond abrasive articles, and abrasive article precursors |
Non-Patent Citations (1)
Title |
---|
See also references of EP3532251A4 |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11453811B2 (en) | 2011-12-30 | 2022-09-27 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US10280350B2 (en) | 2011-12-30 | 2019-05-07 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US10428255B2 (en) | 2011-12-30 | 2019-10-01 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US11649388B2 (en) | 2012-01-10 | 2023-05-16 | Saint-Gobain Cermaics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US10364383B2 (en) | 2012-01-10 | 2019-07-30 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US11142673B2 (en) | 2012-01-10 | 2021-10-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US11859120B2 (en) | 2012-01-10 | 2024-01-02 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having an elongated body comprising a twist along an axis of the body |
US12043784B2 (en) | 2012-05-23 | 2024-07-23 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US10106714B2 (en) | 2012-06-29 | 2018-10-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10286523B2 (en) | 2012-10-15 | 2019-05-14 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US11154964B2 (en) | 2012-10-15 | 2021-10-26 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US11148254B2 (en) | 2012-10-15 | 2021-10-19 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10668598B2 (en) | 2013-03-29 | 2020-06-02 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Abrasive particles having particular shapes and methods of forming such particles |
US11590632B2 (en) | 2013-03-29 | 2023-02-28 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10179391B2 (en) | 2013-03-29 | 2019-01-15 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10563106B2 (en) | 2013-09-30 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US11091678B2 (en) | 2013-12-31 | 2021-08-17 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US11926781B2 (en) | 2014-01-31 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US10597568B2 (en) | 2014-01-31 | 2020-03-24 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US11891559B2 (en) | 2014-04-14 | 2024-02-06 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10557067B2 (en) | 2014-04-14 | 2020-02-11 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11926780B2 (en) | 2014-12-23 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US10351745B2 (en) | 2014-12-23 | 2019-07-16 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US11608459B2 (en) | 2014-12-23 | 2023-03-21 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US12084611B2 (en) | 2015-03-31 | 2024-09-10 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10358589B2 (en) | 2015-03-31 | 2019-07-23 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US11643582B2 (en) | 2015-03-31 | 2023-05-09 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US11472989B2 (en) | 2015-03-31 | 2022-10-18 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US11879087B2 (en) | 2015-06-11 | 2024-01-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10711171B2 (en) | 2015-06-11 | 2020-07-14 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11718774B2 (en) | 2016-05-10 | 2023-08-08 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US11959009B2 (en) | 2016-05-10 | 2024-04-16 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US11549040B2 (en) | 2017-01-31 | 2023-01-10 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles having a tooth portion on a surface |
US11427740B2 (en) | 2017-01-31 | 2022-08-30 | Saint-Gobain Ceramics & Plastics, Inc. | Method of making shaped abrasive particles and articles comprising forming a flange from overfilling |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11932802B2 (en) | 2017-01-31 | 2024-03-19 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles comprising a particular toothed body |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
WO2020084382A1 (en) * | 2018-10-25 | 2020-04-30 | 3M Innovative Properties Company | Elongate abrasive article with orientationally aligned formed abrasive particles |
US20220016745A1 (en) * | 2018-10-25 | 2022-01-20 | 3M Innovative Properties Company | Elongate abrasive article with orientationally aligned formed abrasive particles |
WO2021020484A1 (en) * | 2019-07-31 | 2021-02-04 | マニー株式会社 | Dental diamond bar |
JP2021023402A (en) * | 2019-07-31 | 2021-02-22 | マニー株式会社 | Dental diamond bar |
JP2021023403A (en) * | 2019-07-31 | 2021-02-22 | マニー株式会社 | Dental diamond bar |
JP7406322B2 (en) | 2019-07-31 | 2023-12-27 | マニー株式会社 | dental diamond bur |
US11926019B2 (en) | 2019-12-27 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
US12122953B2 (en) | 2020-12-22 | 2024-10-22 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US12064850B2 (en) | 2021-12-30 | 2024-08-20 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods for forming same |
US12122017B2 (en) | 2022-12-28 | 2024-10-22 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
Also Published As
Publication number | Publication date |
---|---|
JP7030803B2 (en) | 2022-03-07 |
JP2022066244A (en) | 2022-04-28 |
KR20190062601A (en) | 2019-06-05 |
BR112019008286A2 (en) | 2019-07-09 |
CN109890568B (en) | 2022-07-29 |
JP2019531913A (en) | 2019-11-07 |
KR102427116B1 (en) | 2022-08-01 |
EP3532251A4 (en) | 2020-07-01 |
CN109890568A (en) | 2019-06-14 |
EP3532251A1 (en) | 2019-09-04 |
US20200016725A1 (en) | 2020-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200016725A1 (en) | Bonded Abrasive Articles Including Oriented Abrasive Particles, and Methods of Making Same | |
US20210362297A1 (en) | Methods of making metal bond and vitreous bond abrasive articles, and abrasive article precursors | |
US20210094149A1 (en) | Methods of making metal bond abrasive articles and metal bond abrasive articles | |
CN107787264B (en) | Vitreous bonded abrasive article and method of making same | |
US20190375072A1 (en) | Metal bond abrasive articles and methods of making metal bond abrasive articles | |
JP7010566B2 (en) | Metal bond and vitreous bond Polished article manufacturing method, and polished article precursor | |
US20230219195A1 (en) | Polymer bond abrasive articles and methods of making them | |
WO2021001730A1 (en) | Methods of making metal bond abrasive articles and metal bond abrasive articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17863607 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019521372 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019008286 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20197014820 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017863607 Country of ref document: EP Effective date: 20190527 |
|
ENP | Entry into the national phase |
Ref document number: 112019008286 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190424 |