WO2018079536A1 - Workpiece dividing device and workpiece dividing method - Google Patents

Workpiece dividing device and workpiece dividing method Download PDF

Info

Publication number
WO2018079536A1
WO2018079536A1 PCT/JP2017/038321 JP2017038321W WO2018079536A1 WO 2018079536 A1 WO2018079536 A1 WO 2018079536A1 JP 2017038321 W JP2017038321 W JP 2017038321W WO 2018079536 A1 WO2018079536 A1 WO 2018079536A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
ring
dicing tape
work
region
Prior art date
Application number
PCT/JP2017/038321
Other languages
French (fr)
Japanese (ja)
Inventor
翼 清水
Original Assignee
株式会社東京精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京精密 filed Critical 株式会社東京精密
Priority to KR1020227010904A priority Critical patent/KR102434738B1/en
Priority to JP2018547681A priority patent/JP6920629B2/en
Priority to CN201780066523.8A priority patent/CN109891556B/en
Priority to KR1020197011634A priority patent/KR102246098B1/en
Priority to KR1020217012222A priority patent/KR102383560B1/en
Publication of WO2018079536A1 publication Critical patent/WO2018079536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing

Definitions

  • the present invention relates to a workpiece dividing apparatus and a workpiece dividing method, and more particularly, to a workpiece dividing apparatus and a workpiece dividing method for dividing a workpiece such as a semiconductor wafer into individual chips along a planned division line.
  • wafers semiconductor wafers (hereinafter referred to as wafers) in which lines to be divided are formed in advance by half-cutting with a dicing blade or formation of modified regions by laser irradiation. ) Is divided into individual chips along a planned division line (see Patent Document 1 etc.).
  • FIG. 22A and 22B are explanatory views of the wafer unit 2 to which the disk-shaped wafer 1 to be divided by the workpiece dividing apparatus is attached.
  • FIG. 22A is a perspective view of the wafer unit 2
  • FIG. 3 is a cross-sectional view of a unit 2.
  • the wafer 1 is affixed to the center of a dicing tape 3 (also called an expansion tape or an adhesive sheet) 3 having an adhesive layer formed on one side and having a thickness of about 100 ⁇ m.
  • a fixed frame (hereinafter referred to as a frame) 4 is fixed.
  • the frame 4 of the wafer unit 2 is fixed by a frame fixing member (also referred to as a frame fixing mechanism) 7 indicated by a two-dot chain line.
  • a frame fixing member also referred to as a frame fixing mechanism
  • an expanding ring also referred to as a push-up ring
  • the tension of the dicing tape 3 generated at this time is applied to the division line 5 of the wafer 1, whereby the wafer 1 is divided into individual chips 6.
  • the division lines 5 are formed in the X direction and the Y direction that intersect each other.
  • the shape of the divided chip 6 is a square.
  • the shape of the divided chip 6 is a rectangle.
  • the dicing tape 3 is a flexible member having a low Young's modulus. For this reason, in order to smoothly divide the wafer 1 into the individual chips 6, it is conceivable that the dicing tape 3 is cooled and the dicing tape 3 is expanded while the spring constant of the dicing tape 3 is increased.
  • the tape expansion device (work dividing device) of Patent Document 2 includes a cold air supply means. According to Patent Document 2, the dicing tape is cooled by operating the cold air supply means to supply cold air into the processing space and cooling the processing space to, for example, 0 ° C. or lower.
  • This film surface support mechanism includes a plurality of support mechanisms that are independent in the circumferential direction, and adjusts the tension of the dicing tape by individually controlling the relative heights of the plurality of support mechanisms. The elongation in the direction and the elongation in the Y direction are controlled independently.
  • a circular area in plan view where the wafer 1 is affixed is referred to as a central area 3 ⁇ / b> A, and between the outer edge of the central area 3 ⁇ / b> A and the inner edge of the frame 4.
  • the planar donut-shaped region provided in FIG. 5 is referred to as an annular portion region 3B, and the planar donut-shaped region at the outermost peripheral portion fixed to the frame 4 is referred to as a fixed portion region 3C.
  • the annular portion region 3B is a region that is expanded by being pressed by the expanding ring 8.
  • the force required to divide the wafer 1, that is, the tension that must be generated in the annular region 3 ⁇ / b> B in order to divide the wafer 1, must be increased as the number of division lines 5 increases.
  • the wafer 1 having a diameter of 300 mm and the chip size is 5 mm about 120 (60 in each of the XY directions) division planned lines 5 are formed and the chip size is 1 mm. Approximately 600 division planned lines 5 are formed. Therefore, the tension that must be generated in the annular portion region 3B must be increased as the chip size is reduced.
  • the inner diameter of the frame 4 on which the wafer 1 having a diameter of 300 mm is mounted (the diameter of the inner edge of the frame) is based on the SEMI standard (Semiconductor Equipment and Materials International standards) (G74-0699 for tape frame related to 300 mm wafer). It is defined as 350 mm. According to this standard, an annular region 3B having a width of 25 mm exists between the outer edge of the wafer 1 and the inner edge of the frame 4 as shown in the longitudinal sectional view of the wafer unit 2 in FIG. .
  • the frame fixing member 7 that fixes the frame 4 does not come into contact with the annular portion region 3B that is expanded by the expand ring 8, as shown in the longitudinal sectional view of the main part of the workpiece dividing device.
  • the dicing tape 3 is installed at a position spaced outward from the annular portion region 3B in the in-plane direction of the dicing tape 3 indicated by the arrow A.
  • the force for dividing the wafer 1 caused by the upward movement of the expand ring 8 is (i) the force for expanding the entire region of the annular portion region 3B, (ii) the force for dividing the wafer 1 into the chips 6, and (iii) It is decomposed into three forces of force for expanding the dicing tape 3 between adjacent chips 6.
  • the expanding ring 8 comes into contact with the annular portion region 3B of the dicing tape 3, and the expansion of the expanding ring 8 starts the expansion of the dicing tape 3.
  • FIG. 25A first, the expansion of the annular portion region 3B having the lowest spring constant begins (FIG. 25B).
  • a tension is generated in the annular portion region 3B, and when this tension increases to some extent, the increased tension is transmitted to the wafer 1 to start dividing the wafer 1 into chips 6 (FIG. 25C).
  • the expansion of the annular portion region 3B and the expansion of the dicing tape 3 between the chips proceed simultaneously (FIGS. 25D to 25E).
  • the individual chips 6 can be divided without any problem due to the tension generated in the annular portion region 3B.
  • chips having a smaller chip size of 1 mm or less have also appeared.
  • the force required to divide the wafer 1 increases due to an increase in the number of scheduled dividing lines 5 for dividing the wafer 1, and a force greater than the tension due to the expansion of the annular region 3B is required. was there.
  • the longitudinal sectional view of the wafer unit 2 in FIG. 26 even if the expansion operation by the expanding ring 8 is completed, a part of the division line 5 formed on the wafer 1 remains undivided without being divided. A problem occurred.
  • Japanese Patent Application Laid-Open No. 2004-228561 copes with this by cooling the dicing tape and increasing the spring constant of the dicing tape. Can not get enough effect.
  • the chip dividing / separating device of Patent Document 3 can independently control the expansion in the X direction and the Y direction of the dicing tape, but applies a force greater than the tension due to the expansion of the annular region to the wafer. Since this is not possible, the problem of undivided lines to be divided cannot be solved.
  • the present invention has been made in view of such a problem, and provides a workpiece dividing apparatus and a workpiece dividing method capable of solving the problem of undivided division lines that occur when the chip size is a small chip. With the goal.
  • the workpiece dividing device of the present invention divides a workpiece adhered to the dicing tape by fixing the outer peripheral portion of the dicing tape to a ring-shaped frame having an inner diameter larger than the outer diameter of the workpiece.
  • the frame fixing member that fixes the ring-shaped frame, and the back surface of the dicing tape on the opposite side of the workpiece attachment surface are arranged.
  • An expanding ring that is formed in a ring shape that is smaller and larger than the outer diameter of the work, and that generates tension on the dicing tape by expanding the dicing tape by pressing the back surface of the dicing tape, and the work application surface of the dicing tape Is smaller than the inner diameter of the ring frame,
  • One expand ring is formed in a ring shape having a larger opening than the outer diameter of, and an extended regulation ring dicing tape is abut upon dicing tape extended by expanding the ring.
  • the dicing tape comes into contact with the expansion restriction ring when the dicing tape is expanded.
  • the dicing tape is divided into an outer peripheral side region located on the outer peripheral side and an inner peripheral side region located on the inner peripheral side, with the contact portion being in contact with the expansion restriction ring as a boundary.
  • the expansion operation by the expanding ring after the dicing tape comes into contact with the expansion restriction ring the expansion of the outer peripheral area is restricted by the expansion restriction ring, and only the inner peripheral area is expanded. That is, the tension of the spring constant in the inner peripheral region that is larger than the spring constant of the dicing tape is applied to the workpiece.
  • work increases, the undivided problem of the division
  • the expansion restricting ring has a tape position restricting portion that comes into contact with the dicing tape when the dicing tape is expanded by the expand ring, and the dicing tape of the ring frame is attached to the tape position restricting portion. It is preferable to be arranged on the same surface as the applied tape application surface or on the side where the expanding ring is arranged than the same surface.
  • the expansion restriction ring includes a frame fixing portion fixed to the ring-shaped frame, and a protruding portion protruding toward the dicing tape along the peripheral edge portion of the opening of the expansion restriction ring.
  • the tape position restricting portion is preferably constituted by the tip portion of the ridge portion.
  • One aspect of the present invention is a frame fixing portion that is disposed on the same side as the work affixing surface of the dicing tape on the expansion regulating ring, and is a frame fixing portion that contacts the ring-shaped frame and fixes the ring-shaped frame. Is preferably provided.
  • the expansion restriction ring since the expansion restriction ring also has a function of fixing the ring-shaped frame, the number of parts of the work dividing device can be reduced, and the expansion restriction ring can be used as the work dividing device.
  • the frame can be fixed by the frame fixing portion in the assembling work.
  • the expansion restricting ring is a frame fixing member disposed on the same side as the work affixing surface of the dicing tape, and is attached to and detached from the frame fixing member for fixing the ring-shaped frame via the expansion restricting ring. It is preferable that it is fixed freely.
  • the expansion restriction ring when the chip size is a small chip, can be assembled to the frame fixing member.
  • the expansion restriction ring is removed from the frame fixing member. Can be removed.
  • a workpiece with a small chip size can be divided by attaching the expansion regulating ring to the frame fixing member of the workpiece dividing device. .
  • the opening of the expansion restriction ring is preferably formed in a circular shape.
  • the X direction and the Y direction intersecting each other, for example, in the X direction and the Y direction, like a workpiece divided into square chips having the same dimensions in the X direction and the Y direction.
  • an expansion restricting ring having a circular opening in the case of a work affixed to a dicing tape having the same spring constant in the X direction and the spring constant in the Y direction.
  • the opening of the expansion restriction ring is preferably formed in an elliptical shape.
  • the workpiece in the X direction and the Y direction orthogonal to each other, for example, is divided in the X direction and the Y direction, such as a work divided into rectangular chips having different dimensions in the X direction and the Y direction.
  • the direction of the minor axis of the ellipse is aligned in parallel with the direction in which the density of the planned dividing line is high (the direction along the short side of the chip, the direction of the high density of the chip), and the direction of the major axis of the ellipse is scheduled to be divided
  • the lines are aligned parallel to the direction in which the line density is low (the direction along the long side of the chip, the direction in which the chip density is low).
  • the annular region located in the direction where the density of the planned division lines is low has a small spring constant, but can impart a suitable tension to the work to divide the small division lines. Therefore, it is possible to realize a suitable dividing ability for such a workpiece.
  • the direction of the minor axis of the ellipse is aligned in parallel with the direction where the spring constant is small, and the direction of the major axis of the ellipse is aligned parallel to the direction where the spring constant is large.
  • the spring constant of the inner peripheral region located in the direction parallel to the direction in which the spring constant is small increases, and the inner peripheral side located in the direction parallel to the major axis direction of the ellipse. Since it approaches the spring constant of the region, a substantially uniform tension can be applied to the workpiece from the inner peripheral region. Therefore, it is possible to realize a suitable dividing ability for a work mounted on dicing tape having anisotropy in which the spring constant in the X direction and the spring constant in the Y direction are different.
  • the work dividing method divides a work affixed to the dicing tape by fixing the outer peripheral portion of the dicing tape to a ring-shaped frame having an inner diameter larger than the outer diameter of the work.
  • the dicing tape is expanded by pressing the dicing tape to expand the dicing tape, and the dicing tape is expanded when the dicing tape is expanded.
  • an expansion restriction step for restricting expansion of the outer peripheral region located on the outer peripheral side
  • the work dividing method of the present invention it is possible to solve the problem of undivision of the line to be divided that occurs when the chip size is a small chip.
  • Main part structure diagram of work dividing apparatus of first embodiment The principal part expansion perspective view of the workpiece
  • Main part structure diagram of work dividing apparatus of second embodiment The principal part expansion perspective view of the workpiece
  • a graph that calculates the change in expansion rate relative to the amount of push-up Schematic showing the operation during the extended division process A graph that calculates the change in expansion rate relative to the push-up speed Illustration of the wafer unit with a wafer attached Vertical section of wafer unit Side view of main part of work dividing device Operation diagram of work dividing device Longitudinal cross section of wafer unit with wafer divided
  • FIG. 1 is a longitudinal sectional view of a main part of a workpiece dividing apparatus 10A according to the first embodiment
  • FIG. 2 is an enlarged perspective view of a main part of the workpiece dividing apparatus 10A.
  • the size of the wafer unit to be divided by the workpiece dividing apparatus 10A is not limited, the embodiment exemplifies the wafer unit 2 on which the wafer 1 having a diameter of 300 mm shown in FIG. 23 is mounted.
  • the work dividing apparatus 10A is an apparatus that divides the wafer 1 on which the planned division line 5 is formed into individual chips 6 along the planned division line 5.
  • a plurality of division lines 5 are formed in the X direction and the Y direction intersecting each other.
  • the number of the planned division lines 5 parallel to the X direction and the number of the planned division lines 5 parallel to the Y direction are 300, and the distance between them is equal, that is, a chip having a chip size of 1 mm.
  • segmented into 6 is illustrated.
  • the wafer 1 is attached to the center of a dicing tape 3 whose outer periphery is fixed to the frame 4.
  • the dicing tape 3 has a circular central portion region 3A to which the wafer 1 is attached, and an annular portion region 3B having a planar donut shape between the outer edge portion of the central portion region 3A and the inner edge portion of the frame 4. .
  • the thickness of the wafer 1 is, for example, about 50 ⁇ m.
  • a dicing tape 3 for example, a PVC (polyvinyl chloride) tape is used.
  • the wafer 1 may be attached to the dicing tape 3 through a film adhesive such as DAF (DieFAttach Film).
  • a film adhesive for example, a PO (polyolefin) -based adhesive can be used.
  • the expand ring 14 is disposed on the back side of the dicing tape 3 opposite to the wafer 1 application surface, and is an opening for expansion that is smaller than the inner diameter (350 mm) of the frame 4 and larger than the outer diameter (300 mm) of the wafer 1. It is formed in a ring shape having a portion 14A.
  • the expand ring 14 expands the annular portion region 3B by pressing the back surface of the annular portion region 3B of the dicing tape 3. That is, the expand ring 14 is moved upward in the B direction intersecting the in-plane direction indicated by the arrow A of the dicing tape 3 with respect to the annular portion region 3B. As a result, the annular portion region 3B is pushed up by the expand ring 14 and radially expanded.
  • the expanding ring 14 may be fixed and the wafer unit 2 moved downward in the direction of the arrow C to expand the annular portion region 3B with the expanding ring 14.
  • the expansion restriction ring 16 includes an expansion restriction portion 17 and a frame fixing portion 12.
  • the frame fixing portion 12 is disposed on the same side as the application surface of the wafer 1 in the dicing tape 3, and the frame 4 is fixed to the lower surface 12A thereof.
  • the expansion restricting portion 17 extends from the frame fixing portion 12 toward the center of the expansion restricting ring 16 rather than the frame 4.
  • the annular portion region 3 ⁇ / b> B of the dicing tape 3 is brought into contact with the expansion restricting portion 17 during expansion by the expand ring 14. Note that the boundary between the frame fixing portion 12 and the expansion restricting portion 17 is indicated by the symbol D in FIGS.
  • the expansion restricting portion 17 is formed in a ring shape having an expansion restricting opening (opening) 16A that is smaller than the inner diameter (350 mm) of the frame 4 and larger than the outer diameter of the expanding ring 14.
  • FIG. 3 is a longitudinal sectional view of the wafer unit 2 showing the shape of the annular portion region 3B that is being expanded by the expand ring 14. As shown in FIG. FIG. 4 is an enlarged cross-sectional view of the annular portion region 3B during expansion.
  • the diameter of the expansion restricting opening 16A is set to 338 mm.
  • the width dimension of the outer peripheral side region 3E whose expansion is restricted by the expansion restricting portion 17 is set to 6 mm, and the width dimension of the inner peripheral side region 3F excluding the outer peripheral side region 3E in the annular portion region 3B is set to 19 mm. Is done.
  • the inner peripheral side region 3F in which the expansion is not restricted by the expansion restricting portion 17 in the annular portion region 3B is a region that substantially contributes to the division of the wafer 1. That is, as the width dimension of the inner peripheral region 3F is reduced, the spring constant of the inner peripheral region 3F is increased, so that the tension applied to the wafer 1 from the inner peripheral region 3F can be increased. Therefore, it is preferable that the width dimension of the inner peripheral side region 3F is set according to the number of lines to be divided 5 and the size of the chip 6.
  • step S100 of FIG. 5 the frame 4 of the wafer unit 2 is fixed by the frame fixing portion 12 of the expansion restriction ring 16 (fixing step).
  • step S110 in FIG. 5 the expanding ring 14 is moved upward in the direction of arrow B from the position in FIG. 1, and expansion of the entire region of the annular portion region 3B is started (expansion step).
  • step S120 in FIG. 5 when the upward movement amount of the expand ring 14 exceeds the thickness of the frame 4, the annular portion region 3 ⁇ / b> B comes into contact with the expansion restricting portion 17.
  • the annular portion region 3 ⁇ / b> B is located on the outer peripheral side region 3 ⁇ / b> E located on the outer peripheral side and the inner peripheral side with the contact portion 3 ⁇ / b> D contacting the inner edge portion 16 ⁇ / b> B of the expansion restricting portion 17 as a boundary. It is divided into an inner peripheral region 3F. And expansion of the outer peripheral side area
  • step S130 in FIG. 5 the expanding movement of the expanding ring 14 is continued, and the expansion of the inner peripheral side region 3F excluding the outer peripheral side region 3E in the annular portion region 3B is continuously performed, whereby the wafer 1 Is divided into individual chips 6 (dividing step). Thereafter, the upward movement of the expanding ring 14 is stopped.
  • the length of the annular portion region 3B that contributes to the division of the wafer 1 is shortened from 25 mm (width size of the annular portion region 3B) to 19 mm (width size of the inner peripheral region 3F). Increases inversely with it.
  • the spring constant of the inner peripheral region 3F is larger than the spring constant of the annular portion region 3B.
  • a tension sufficient to divide the chip 6 can be applied to the wafer 1. Therefore, according to the workpiece dividing apparatus 10A, it is possible to solve the problem of undivided lines to be divided that occurs when the chip size is a small chip (1 mm).
  • the inner edge portion 16B of the expansion restricting portion 17 that is in line contact with the adhesive layer in the annular portion region 3B is subjected to surface processing with an arithmetic average roughness (Ra) of 1.6 ( ⁇ m) as an example. .
  • Ra arithmetic average roughness
  • the inner edge portion 16B is chamfered with C0.2 (0.2 mm Chamber) as an example.
  • the expansion restriction ring 16 of the workpiece dividing apparatus 10A includes the frame fixing unit 12 and also has a function of fixing the frame 4, the number of parts of the workpiece dividing apparatus 10A can be reduced.
  • the frame 4 can be fixed by the frame fixing portion 12 in the operation of assembling the expansion restriction ring 16 to the workpiece dividing apparatus 10A.
  • the expanding ring 14 of the workpiece dividing apparatus 10A is configured in a ring shape having an opening 14A for expansion that surrounds the wafer 1 of the wafer unit 2 fixed to the frame fixing unit 12.
  • the expansion restricting portion 17 includes an expansion restricting opening 16 ⁇ / b> A that surrounds the ring-shaped expand ring 14.
  • FIG. 6 is a longitudinal sectional view of main parts of a workpiece dividing apparatus 10B according to the second embodiment
  • FIG. 7 is an enlarged perspective view of essential parts of the workpiece dividing apparatus 10B.
  • the wafer unit processed by the workpiece dividing apparatus 10B the wafer unit 2 on which the wafer 1 having a diameter of 300 mm shown in FIG. 23 is mounted is exemplified.
  • the same or similar members as those of the workpiece dividing apparatus 10A shown in FIGS. 1 and 2 will be described with the same reference numerals.
  • the difference between the workpiece dividing device 10B of the second embodiment and the workpiece dividing device 10A of the first embodiment is that the frame fixing member 7 (see FIG. 24: existing frame fixing member) and the expansion restriction ring 18 are configured separately.
  • the expansion restricting ring 18 is detachably provided to the frame fixing member 7.
  • the attachment / detachment structure of the expansion restriction ring 18 with respect to the frame fixing member 7 is not particularly limited, but may be a fastening structure using a bolt as an example, or a clamp structure using a clamp mechanism.
  • the frame fixing member 7 is disposed on the same side as the affixing surface of the wafer 1 in the dicing tape 3. Further, the frame fixing member 7 is installed at a position spaced outward from the annular portion region 3B in the in-plane direction of the dicing tape 3 indicated by an arrow A so as not to contact the annular portion region 3B expanded by the expand ring 14.
  • the shape of the frame fixing member 7 is a ring shape, but the shape is not particularly limited as long as the expansion restriction ring 18 can be detachably attached.
  • the expansion restriction ring 18 includes an expansion restriction opening (opening) 18A that is smaller than the inner diameter (350 mm) of the frame 4 and larger than the outer diameter of the expanding ring 14.
  • the diameter of the expansion restricting opening 18A is also 338 mm.
  • FIG. 8 is a longitudinal sectional view of the wafer unit 2 showing the shape of the annular portion region 3 ⁇ / b> B being expanded by the expand ring 14.
  • the annular portion region 3 ⁇ / b> B is brought into contact with the inner edge portion 18 ⁇ / b> B of the expansion restriction ring 18 when expanded by the expand ring 14.
  • the expansion restriction ring 18 restricts the expansion of the outer peripheral side region 3 ⁇ / b> E between the contact portion 3 ⁇ / b> D that contacts the inner edge portion 18 ⁇ / b> B and the inner edge portion of the frame 4 in the annular portion region 3 ⁇ / b> B.
  • the frame 4 of the wafer unit 2 is fixed to the frame fixing member 7 via the expansion restricting ring 18 (fixing step).
  • the annular portion region 3 ⁇ / b> B comes into contact with the inner edge portion 18 ⁇ / b> B of the expansion restriction ring 18, and is located on the outer peripheral side of the annular portion region 3 ⁇ / b> B.
  • the expansion of the outer peripheral side region 3E is regulated (expansion regulation process).
  • the annular portion region 3B has an outer peripheral side region 3E positioned on the outer peripheral side and an inner peripheral side region 3F positioned on the inner peripheral side with the contact portion 3D contacting the inner edge 18B as a boundary. And divided.
  • the expanding movement of the expanding ring 14 is continued, and the wafer 1 is divided into individual chips 6 by continuing to expand the inner peripheral side region 3F excluding the outer peripheral side region 3E in the annular portion region 3B. (Dividing step). Thereafter, the upward movement of the expanding ring 14 is stopped.
  • the expansion restriction ring 18 restricts the expansion of the outer peripheral region 3E while being sandwiched between the frame fixing member 7 and the frame 4. That is, even when the inner diameter (for example, 361 mm) of the frame fixing member 7 is larger than 350 mm, which is the inner diameter of the frame 4, by providing the expansion restriction ring 18 with the expansion restriction opening 18A having a diameter of 338 mm separately. The same effect as when the inner diameter of the frame fixing member 7 is less than 350 mm can be obtained. That is, an effect equivalent to that of the expansion restriction ring 16 (see FIGS. 1 and 2) of the first embodiment can be obtained.
  • the expansion restriction rings 18 having different diameters (inner diameters) of the expansion restriction openings 18A are arranged in advance.
  • the expansion restricting ring 18 having an inner diameter designated in advance as a processing condition can be selected and used.
  • the expansion restriction ring 18 can be retrofitted to an existing (shipped) work dividing apparatus that does not include the expansion restriction ring 18, the existing work dividing apparatus is used to process from a large chip to a small chip. Will be able to.
  • the expansion restriction ring 18 can be detached from the existing work dividing device.
  • the diameter (inner diameter) of the expansion restricting opening 18A for example, 346 mm, 342 mm, and 334 mm can be exemplified in addition to 338 mm.
  • FIG. 9 is a plan view in which the expansion restriction ring 20 having the circular expansion restriction opening 20A and the wafer unit 2 are overlapped.
  • the wafer 22 shown in FIG. 9 is a wafer in which the number of the planned dividing lines 5 parallel to the X direction is the same as the number of the planned dividing lines 5 parallel to the Y direction, and the distance between them is the same.
  • the shape of 24 is a square having the same dimensions in the X and Y directions. That is, the wafer 22 shown in FIG. 9 is a wafer in which the density of the division planned lines 5 is equal in the X direction and the Y direction.
  • the wafer 22 and the expansion restriction opening 20A are circular, and the inner peripheral side region 3F having a donut shape in plan view surrounded by the outer edge of the wafer 22 and the inner edge of the expansion restriction opening 20A is formed in the circumferential direction. It has the same width dimension e in any position of the throat.
  • FIG. 10 is a plan view in which the expansion restriction ring 26 having the elliptical expansion restriction opening 26A and the wafer unit 2 are overlapped.
  • the wafer 28 shown in FIG. 10 is a wafer in which the number of planned division lines 5 parallel to the Y direction is larger than the number of planned division lines 5 parallel to the X direction, and the shape of the divided chips 30 is X A rectangle with a short dimension in the direction and a long dimension in the Y direction. That is, the wafer 28 shown in FIG. 10 is a wafer in which the density of the division lines 5 (the density of the chips 6) is different between the X direction and the Y direction. When such a wafer 28 is divided smoothly, it is preferable to use an expansion restriction ring 26 whose expansion restriction opening 26A has an elliptical shape.
  • the direction of the minor axis a of the ellipse of the expansion restricting opening 26A is parallel to the X direction (the direction in which the density of the chip 30 is high, the direction parallel to the short side of the chip 30) of the division line 5 being high. Accordingly, the direction of the major axis b of the ellipse is aligned in parallel with the Y direction (the direction of low density of the chip 30, the direction parallel to the long side of the chip 30) with the low density of the division line 5.
  • the inner peripheral area 3FA located in the direction parallel to the high-density X direction of the division line 5 has a small width dimension and a high spring constant, so that the high-density division line 5 in the X direction has a high density.
  • a suitable tension for splitting can be applied to the wafer 28.
  • the inner peripheral side region 3FB located in the direction parallel to the low Y direction of the division line 5 has a small width and a small spring constant, but the low division density line 5 in the Y direction is divided.
  • a suitable tension can be applied to the wafer 28. Therefore, it is possible to realize a suitable division capability for the wafer 28 in which the density of the division planned lines 5 is different in the X direction and the Y direction.
  • the spring constant in the X direction and the spring constant in the Y direction are equal, or a difference occurs between the spring constant in the X direction and the spring constant in the Y direction due to the tape generation direction.
  • the expansion restricting opening 20A as shown in FIG. 9 is circular. It is preferable to use the expansion restricting ring 20. Thereby, since the extension amount in the X direction and the extension amount in the Y direction of the inner peripheral side region at the time of expansion become equal, an equal tension can be applied to the wafer from the inner peripheral side region 3F.
  • an expansion restriction ring having an elliptical expansion restriction opening 26A as shown in FIG. Preferably 26 is used.
  • the direction of the minor axis a of the ellipse is aligned with the X direction having a small spring constant
  • the direction of the major axis b of the ellipse is aligned with the Y direction having a large spring constant.
  • the graph of FIG. 11 shows the expansion rate (diameter 350 mm) of the annular portion region when the expansion restricting ring is not used and the expansion of the inner peripheral region when the expansion restricting ring is used with respect to the wafer unit 2 of FIG.
  • the expansion rate when the diameter of the expansion restricting opening is set to 346 mm, 342 mm, and 338 mm is shown.
  • “MD (Machine Direction)” in FIG. 11 is a direction parallel to the feeding direction at the time of manufacturing the dicing tape 3 and having a small spring constant.
  • CD (Cross Direction)” is a direction orthogonal to MD and having a large spring constant.
  • the expansion rate of the annular region when not using the expansion restriction ring was 6.1% for “MD” and 6.0% for “CD”.
  • the expansion rate of the inner peripheral region is 6.8%, 7.5%, 8.4 for “MD”.
  • CD it increased to 7.2%, 7.5%, and 8.1%. That is, it was confirmed that as the diameter of the expansion restricting opening was reduced, the chip dividing ability was improved.
  • the graph of FIG. 12 shows the chip division rate (diameter 350 mm) when the expansion restriction ring is not used and the chip division ratio when the expansion restriction ring is used for the wafer unit 2 of FIG.
  • the division ratio when the diameter of the expansion restricting opening is set to 338 mm is shown.
  • the division ratio “with DAF” in FIG. 12 is the division ratio of the chip 6 when the wafer 1 is attached to the dicing tape 3 via the DAF, and the division ratio “without DAF” The division ratio of the chip 6 when the wafer 1 is directly attached to the dicing tape 3.
  • the division ratio of the chip 6 was 15.0% when “with DAF” and 41.0% when “without DAF”.
  • the split ratio of the tip 6 increases to 61.0% when “with DAF” and 100% when “without DAF”. Rose. In other words, it was confirmed that the division capability of the chip 6 was improved by using the extended restriction ring regardless of whether “DAF is present” or “without DAF”.
  • the expansion restriction ring 16 restricts the expansion of the outer peripheral side region 3E and expands only the inner peripheral side region 3F.
  • the expansion rate can be increased, and the tension applied to the wafer 1 can be increased. Therefore, it has been confirmed that the undivided problem of the division line 5 that occurs when the chip size is a small chip can be solved.
  • FIG. 13 is a cross-sectional view of a main part of a workpiece dividing apparatus 10C according to the third embodiment.
  • the difference in structure between the workpiece dividing apparatus 10C in FIG. 13 and the workpiece dividing apparatus 10A shown in FIG. 1 is that a protrusion 34 is provided on the expansion restriction ring 32 of the workpiece dividing apparatus 10C in FIG. .
  • a tape position restricting portion is constituted by the tip portion 34A of the ridge 34, and the tip portion 34A is connected to the back surface (tape applying surface) 4A of the frame 4 to which the outer peripheral portion of the dicing tape 3 is fixed (attached). They are arranged on the same plane. That is, the tip end 34A of the ridge 34 constituting the tape position restricting portion is arranged at a position on the same surface as the attaching surface 3G of the dicing tape 3 when the frame 4 is fixed to the expansion restricting ring 32. Yes.
  • the tip 34 ⁇ / b> A of the protrusion 34 of the expansion restricting ring 32 is already in contact with the application surface 3 ⁇ / b> G of the dicing tape 3 from the state before the dicing tape 3 is expanded by the expand ring 14. ing. That is, the expansion restriction ring 32 restricts the expansion of the outer peripheral side region 3E of the dicing tape 3 from the state before the expansion of the dicing tape 3 by the expand ring 14.
  • the expansion of the inner peripheral side region 3F of the dicing tape can be started immediately after the expanding ring 14 contacts the dicing tape 3. Therefore, according to the workpiece dividing apparatus 10C, the problem of undivided lines to be divided that occurs when the chip size is a small chip is further increased as compared with the case where the extended restriction ring 14 of FIG. It can be solved efficiently.
  • the workpiece dividing apparatus 10C of FIG. 13 when the height of the expansion operation end position of the expand ring 14 is the same, the workpiece dividing apparatus 10C of FIG. The expansion amount (tension) of the inner region 3F of the dicing tape 3 is increased as compared with the dividing device 10A. Therefore, according to the workpiece dividing apparatus 10C of FIG. 13, the problem of undivided division lines that occurs when the chip size is a small chip can be further solved.
  • the work dividing apparatus 10C of FIG. Compared with the dividing device 10 ⁇ / b> A, the height of the expansion operation end position of the expanding ring 14 can be lowered by the thickness of the frame 4.
  • a sufficient expansion amount (tension) can be obtained even with a small upward movement amount of the expanding ring 14, and thus the division that occurs when the chip size is a small chip. The problem of undivided scheduled lines can be solved more efficiently.
  • the expansion restriction ring 14 of FIG. 14 when the expansion restriction ring 32 is used as shown in the enlarged cross-sectional view of the main part of the workpiece dividing apparatus 10C shown in FIG. 14, the expansion restriction ring 14 of FIG. Compared with the case where the expansion ring 14 is used, the height of the expansion operation end position of the expand ring 14 can be lowered by the thickness of the frame 4. The division problem can be solved efficiently. Note that, in FIG. 14, the expansion operation end position of the expand ring 14 in the case where the expansion restriction ring 14 that does not include the ridge portion 32 is used is indicated by a two-dot chain line.
  • the arithmetic average roughness (Ra) is, as an example, in the distal end portion 34A of the protruding portion 34 of the expansion restriction ring 32, as in the case of the inner edge portion 16B of the expansion restriction ring 14 in FIG.
  • Surface processing to 1.6 ( ⁇ m) is performed. This prevents the tip portion 34A and the annular portion region 3B from slipping relatively due to the frictional force between the tip portion 34A and the annular portion region 3B.
  • FIG. 15 is a cross-sectional view of a main part of a workpiece dividing apparatus 10D according to the fourth embodiment.
  • the difference in structure between the workpiece dividing device 10D of FIG. 15 and the workpiece dividing device 10C shown in FIG. 13 is that the tip portion 38A of the protruding strip portion 38 of the expansion regulating ring 36 of the workpiece dividing device 10D is attached to the dicing tape 3. It exists in the point arrange
  • the pasting surface 3G of the dicing tape 3 is already pressed against the tip 38 ⁇ / b> A of the protruding strip 38 of the expansion restricting ring 36 from the state before the dicing tape 3 is expanded by the expand ring 14. ing. That is, the expansion of the outer peripheral side region 3E of the dicing tape 3 from the state before the expansion of the dicing tape 3 by the expanding ring 14 is restricted by the expansion restricting ring 32, and the inner peripheral side region 3F has already been expanded. Therefore, according to the workpiece dividing apparatus 10D, compared to the workpiece dividing apparatus C in FIG. 13, it is possible to more efficiently solve the problem of undivided lines to be divided that occur when the chip size is a small chip.
  • the workpiece dividing apparatus 10D of FIG. 15 and the workpiece dividing apparatus 10C of FIG. 13 when the height of the expansion operation end position of the expand ring 14 is the same, the workpiece dividing apparatus 10D of FIG.
  • the expansion amount (tension) of the inner region 3F of the dicing tape 3 is increased as compared with the dividing device 10C. Therefore, according to the workpiece dividing apparatus 10D of FIG. 15, the problem of undivided division lines that occurs when the chip size is a small chip can be further solved.
  • the work dividing apparatus 10D of FIG. Compared with the dividing device 10 ⁇ / b> C, the height of the expansion operation end position of the expand ring 14 can be lowered by the difference in the protruding length of the protruding line portion 38 relative to the protruding line portion 34.
  • the work dividing apparatus 10D of FIG. 15 the problem of undivided lines to be divided that occurs when the chip size is a small chip can be solved more efficiently than the work dividing apparatus 10C of FIG.
  • the expansion restriction ring 32 of FIG. Compared with the case of using, the height of the expansion end position of the expanding ring 14 can be shortened by the difference in the protruding length of the protruding strip portion 38 relative to the protruding strip portion 34, and the chip size is reduced by the difference. In this case, the problem of undivided lines to be divided that occurs can be efficiently solved.
  • the expansion operation end position of the expand ring 14 in the case where the expansion restriction ring 32 including the ridge portion 32 is used is indicated by a two-dot chain line.
  • the arithmetic average roughness (Ra) is, as an example, in the distal end portion 38A of the protruding strip portion 38 of the expansion restriction ring 36, similarly to the inner edge portion 16B of the expansion restriction ring 14 in FIG. Surface processing to 1.6 ( ⁇ m) is performed. This prevents the tip portion 38A and the annular portion region 3B from slipping relatively due to the frictional force between the tip portion 38A and the annular portion region 3B.
  • FIG. 17 is an enlarged cross-sectional view of a main part of a workpiece dividing apparatus 10E according to the fifth embodiment.
  • an expansion regulating ring 40 is detachably provided on the frame fixing member 7.
  • the tip end portion 34 ⁇ / b> A of the ridge 34 is disposed at a position (see FIG. 13) on the same plane as the pasting surface 3 ⁇ / b> G of the dicing tape 3.
  • the expansion of the inner peripheral side region 3F of the dicing tape can be started immediately after the expanding ring 14 contacts the dicing tape 3. Therefore, according to the workpiece dividing device 10E, the problem of undivided lines to be divided that occurs when the chip size is a small chip is further increased than when the extended restriction ring 14 of FIG. It can be solved efficiently.
  • FIG. 18 is an enlarged cross-sectional view of a main part of a workpiece dividing apparatus 10F according to the sixth embodiment.
  • the work dividing apparatus 10F in FIG. 18 is provided with an expansion regulating ring 42 detachably attached to the frame fixing member 7.
  • an expansion regulating ring 42 detachably attached to the frame fixing member 7.
  • line part 38 is arrange
  • the dicing tape 3 is held in an expanded state by fitting an expansion holding ring called a sub-ring into the frame 4 in the subsequent step of the dividing step S130 shown in FIG.
  • the extended holding ring is fitted to the frame 4 in a state where the outer peripheral side region 3E is extended.
  • the expansion of the outer peripheral side region 3E can be restricted by the tip portions 34A and 38A of the ridges 34 and 38, so that the outer peripheral side region It is possible to prevent the 3E dicing tape 3 from extending and reducing its thickness. Therefore, even when the extended holding ring is attached to the frame 4 in a state where the outer peripheral side region 3E is extended, the outer peripheral side region 3E can be prevented from being broken.
  • the thickness of the outer peripheral side region 3E is not reduced. Therefore, in the heat shrinking process of the outer peripheral side region 3E by light heating, the light of the outer peripheral side region 3E Absorption rate increases, and conversion efficiency from light to heat increases. Thereby, the outer peripheral side area
  • the expansion rate (%) of the dicing tape 3 is shown on the vertical axis
  • the push-up amount (mm) of the annular portion region 3B due to the upward movement of the expand ring 14 is shown on the horizontal axis.
  • FIG. 19 also shows that the expansion rate corresponding to the push-up amount differs for each expansion restriction ring 16, 18, 32, 36, 40, 42 as described later. Since the expansion rate by the expansion restriction ring 18 is equal to the expansion rate by the expansion restriction ring 16, the description of the expansion rate by the expansion restriction ring 18 is omitted. Similarly, the expansion rate due to the expansion restriction ring 40 is equal to the expansion rate due to the expansion restriction ring 32, and the expansion rate due to the expansion restriction ring 42 is equal to the expansion rate due to the expansion restriction ring 36. A description of the rate is also omitted.
  • a line A in FIG. 19 shows a change in the expansion rate when the expansion restriction ring is not used (the diameter of the expansion restriction opening 16A corresponds to 350 mm).
  • Line B shows the change in expansion rate when the expansion restriction ring 16 having a diameter of the expansion restriction opening 16A of 338 mm is applied.
  • a line C indicates a change in expansion rate when the expansion restriction ring 32 having a diameter of the expansion restriction opening 32A of 338 mm is applied.
  • Line D shows the change in the expansion rate when the expansion restricting ring 36 having the expansion restricting opening 36A having a diameter of 338 mm is applied.
  • the protrusion length of the protrusion 34 of the expansion restriction ring 32 is set to 1.5 mm, which is equal to the thickness of the frame 4 as described later, and the protrusion length of the protrusion 38 of the expansion restriction ring 36 is Set to 4.5 mm.
  • FIG. 20 is a schematic diagram showing the operation of the expanding ring 14 during the expansion division process.
  • FIG. 20 shows the dimensions of each member for calculating the expansion rate of the lines A, B, C, and D shown in FIG.
  • the inner diameter D1 of the frame 4 is 350 mm
  • the thickness t of the frame 4 is 1.5 mm
  • the symbol x in FIG. 20 indicates the push-up amount of the annular portion region 3B due to the upward movement of the expand ring 14.
  • a roller 44 for reducing the frictional force with the dicing tape 3 is disposed at the upper end of the expanding ring 14, and the arrangement diameter D3 of the roller 44 is 323.2 mm.
  • a symbol d in FIG. 20 indicates the diameter of the roller 44.
  • the expansion rate (%) of the line A was calculated with the diameter d of the roller 44 being 5 mm, and the expansion rates (%) of the lines B, C, and D were calculated with the diameter d of the roller 44 being 7 mm.
  • the annular portion region 3B is pushed up by the upward movement of the expand ring 14 and comes into contact with the expansion restriction ring 16.
  • the expansion rate immediately after the contact is higher than the expansion rate when the expansion restriction ring is not applied (see line A). That is, when the expansion restriction ring 16 is applied, the expansion rate after the push-up amount exceeds about 5.0 mm is higher than the expansion rate when the expansion restriction ring is not applied.
  • the tip portion 38 of the ridge portion 38 presses the annular portion region 3B in advance, so that the expansion ring 14 is expanded before contacting the annular portion region 3B.
  • the rate is already over 0%. For this reason, when the expansion restriction ring 36 is applied, the expansion rate immediately after the expansion ring 14 contacts the annular portion region 3B becomes higher than the expansion rate when the expansion restriction ring 32 is applied (see line C).
  • FIG. 21 shows the rate of increase per unit time of each expansion rate (%) of lines A, B, C, and D shown in FIG. 19 (hereinafter referred to as expansion rate speed (% / sec)). A graph showing the change is shown.
  • the expansion rate speed (% / sec) is shown on the left vertical axis
  • the push-up speed (mm / sec) of the annular portion region 3B is shown on the right vertical axis
  • the ring due to the upward movement of the expand ring 14 is shown.
  • the push-up amount (mm) of the partial region 3B is shown on the horizontal axis.
  • FIG. 21 shows, as an example, a change in the expansion rate speed when the push-up speed of the annular region 3B is constant. As the expansion rate speed increases, the tension generated in the dicing tape 3 increases and the force for dividing the wafer into chips increases.
  • a line E in FIG. 21 shows a change in push-up speed with a push-up amount from 0.00 mm to 20.00 mm.
  • the line E indicates the upward moving speed of the expanding ring 14.
  • the expanding ring 14 moves up at a constant speed (200 mm / sec) within a range of 0.00 mm to about 18.50 mm, and thereafter moves up to 20.00 mm while decelerating.
  • FIG. 21 shows a change in the expansion rate speed corresponding to the expansion rate of line B in FIG. 19 when the expansion regulating ring 16 in which the diameter of the expansion regulating opening 16A is 338 mm is applied.
  • a line H in FIG. 21 shows a change in expansion rate speed corresponding to the expansion rate in lines C and D in FIG. 19 when the expansion restriction rings 32 and 36 in which the diameters of the expansion restriction openings 32A and 36A are 338 mm are applied. Is shown.
  • the expansion restricting ring 36 When the expansion restricting ring 36 is applied, the annular portion region 3B is preliminarily expanded by the ridge portion 38 before expansion by the expand ring 14, but the expansion rate speed is different from that when the expansion restricting ring 32 is applied. There is no. For this reason, the change of the expansion rate speed when the expansion restriction rings 32 and 36 are applied is indicated by the same line H.
  • the speed increases according to the push-up amount, and reaches the maximum (maximum expansion rate speed) when the push-up amount reaches about 18.50 mm. After that, it goes down each.
  • the expansion restriction ring 16 when the expansion restriction ring 16 is applied (see the line G), the annular portion region 3B is pushed up by the upward movement of the expanding ring 14 and comes into contact with the expansion restriction ring 16.
  • the expansion rate speed immediately after the contact becomes higher than the expansion rate speed when the expansion restriction ring is not applied (see the line F).
  • the expansion rate speed after the pushing amount exceeds about 4.00 mm becomes higher than the expansion rate speed when the expansion restriction ring is not applied, and the maximum expansion rate speed is applied to the expansion restriction ring. It increases more than the case where it does not (increase from about 95% / sec to about 115% / sec).
  • the expansion restricting ring 16 by applying the expansion restricting ring 16, the amount of expansion of the dicing tape 3 is increased (see FIG. 19) and the maximum expansion rate speed is increased to the dicing tape 3 as compared with the case where the expansion restricting ring is not applied. Since the generated tension increases, it is possible to solve the problem of undivided lines to be divided that occurs when the chip size is a small chip.
  • the dicing tape 3 increases in the amount of expansion (see FIG. 19) and increases the maximum expansion rate speed as compared with the case where the expansion restricting ring is not applied. Since the tension generated in 3 increases, the above-described undivided problem can be solved.

Abstract

Provided are a workpiece dividing device and a workpiece dividing method that are capable of solving a problem in which division is not performed along a scheduled division line and which occurs when the chip size is small. A frame 4 of a wafer unit 2 is fixed by means of a frame fixing section 12 of an expansion restricting ring 16. Next, an expand ring 14 is moved upward so as to start the expansion of the whole area of an annular area 3B. Next, when the upward movement amount of the expand ring 14 exceeds the thickness of the frame 4, the annular area 3B makes contact with an expansion restriction section 17, and the expansion of an outer circumferential area 3E located on the outer circumferential side of the annular area 3B is restricted. Next, upward movement of the expand ring 14 is continued and expansion of an inner circumferential area 3F excluding the outer circumferential area 3E in the annular area 3B is continuously performed, so that a wafer 1 is divided into individual chips 6.

Description

ワーク分割装置及びワーク分割方法Work dividing apparatus and work dividing method
 本発明は、ワーク分割装置及びワーク分割方法に係り、特に、半導体ウェーハ等のワークを分割予定ラインに沿って個々のチップに分割するワーク分割装置及びワーク分割方法に関する。 The present invention relates to a workpiece dividing apparatus and a workpiece dividing method, and more particularly, to a workpiece dividing apparatus and a workpiece dividing method for dividing a workpiece such as a semiconductor wafer into individual chips along a planned division line.
 従来、半導体チップ(以下、チップと言う。)の製造にあたり、ダイシングブレードによるハーフカット或いはレーザ照射による改質領域形成により予めその内部に分割予定ラインが形成された半導体ウェーハ(以下、ウェーハと言う。)を、分割予定ラインに沿って個々のチップに分割するワーク分割装置が知られている(特許文献1等参照)。 Conventionally, in the manufacture of semiconductor chips (hereinafter referred to as chips), semiconductor wafers (hereinafter referred to as wafers) in which lines to be divided are formed in advance by half-cutting with a dicing blade or formation of modified regions by laser irradiation. ) Is divided into individual chips along a planned division line (see Patent Document 1 etc.).
 図22は、ワーク分割装置にて分割される円盤状のウェーハ1が貼付されたウェーハユニット2の説明図であり、図22(A)はウェーハユニット2の斜視図、図22(B)はウェーハユニット2の断面図である。 22A and 22B are explanatory views of the wafer unit 2 to which the disk-shaped wafer 1 to be divided by the workpiece dividing apparatus is attached. FIG. 22A is a perspective view of the wafer unit 2, and FIG. 3 is a cross-sectional view of a unit 2.
 ウェーハ1は、片面に粘着層が形成された厚さ約100μmのダイシングテープ(拡張テープ又は粘着シートとも言う。)3の中央部に貼付され、ダイシングテープ3は、その外周部が剛性のあるリング状フレーム(以下、フレームと言う。)4に固定されている。 The wafer 1 is affixed to the center of a dicing tape 3 (also called an expansion tape or an adhesive sheet) 3 having an adhesive layer formed on one side and having a thickness of about 100 μm. A fixed frame (hereinafter referred to as a frame) 4 is fixed.
 ワーク分割装置では、ウェーハユニット2のフレーム4が、二点鎖線で示すフレーム固定部材(フレーム固定機構とも言う。)7によって固定される。この後、ウェーハユニット2の下方から二点鎖線で示すエキスパンドリング(突上げリングとも言う。)8が上昇移動され、このエキスパンドリング8によってダイシングテープ3が押圧されて放射状に拡張される。このときに生じるダイシングテープ3の張力が、ウェーハ1の分割予定ライン5に付与されることにより、ウェーハ1が個々のチップ6に分割される。分割予定ライン5は、互いに交差するX方向及びY方向に形成されている。分割予定ライン5に関して、X方向と平行な本数とY方向と平行な本数とが同数の場合であって、それぞれの方向の間隔が等しい場合には、分割されたチップ6の形状は正方形となる。また、X方向と平行な本数とY方向と平行な本数とが異なる場合であって、それぞれの方向の間隔が等しい場合には、分割されたチップ6の形状は長方形となる。 In the workpiece dividing apparatus, the frame 4 of the wafer unit 2 is fixed by a frame fixing member (also referred to as a frame fixing mechanism) 7 indicated by a two-dot chain line. Thereafter, an expanding ring (also referred to as a push-up ring) 8 indicated by a two-dot chain line is moved upward from below the wafer unit 2, and the dicing tape 3 is pressed and expanded radially by the expanding ring 8. The tension of the dicing tape 3 generated at this time is applied to the division line 5 of the wafer 1, whereby the wafer 1 is divided into individual chips 6. The division lines 5 are formed in the X direction and the Y direction that intersect each other. When the number of lines to be divided 5 is the same as the number parallel to the X direction and the number parallel to the Y direction, and the intervals in the respective directions are equal, the shape of the divided chip 6 is a square. . In addition, when the number parallel to the X direction is different from the number parallel to the Y direction, and the intervals in the respective directions are equal, the shape of the divided chip 6 is a rectangle.
 ところで、ダイシングテープ3はヤング率が低く柔軟な部材である。このため、ウェーハ1を個々のチップ6に円滑に分割するためには、ダイシングテープ3を冷却し、ダイシングテープ3のバネ定数を大きくした状態でダイシングテープ3を拡張することが考えられる。 Incidentally, the dicing tape 3 is a flexible member having a low Young's modulus. For this reason, in order to smoothly divide the wafer 1 into the individual chips 6, it is conceivable that the dicing tape 3 is cooled and the dicing tape 3 is expanded while the spring constant of the dicing tape 3 is increased.
 特許文献2のテープ拡張装置(ワーク分割装置)は、冷気供給手段を備えている。特許文献2によれば、冷気供給手段を作動して、処理空間内に冷気を供給し、処理空間内を例えば0℃以下に冷却することにより、ダイシングテープを冷却している。 The tape expansion device (work dividing device) of Patent Document 2 includes a cold air supply means. According to Patent Document 2, the dicing tape is cooled by operating the cold air supply means to supply cold air into the processing space and cooling the processing space to, for example, 0 ° C. or lower.
 一方、特許文献3のチップ分割離間装置(ワーク分割装置)では、ダイシングテープに異方性があることに着目し、その異方性を加味してダイシングテープを一様にエキスパンドさせるために、フィルム面支持機構を備えている。このフィルム面支持機構は、円周方向において独立した複数の支持機構を備え、複数の支持機構の相対的な高さを個別に制御してダイシングテープの張力を調整することにより、ダイシングテープのX方向の伸びとY方向の伸びを独立して制御している。 On the other hand, in the chip dividing / separating device (work dividing device) of Patent Document 3, attention is paid to the fact that the dicing tape has anisotropy, and in order to expand the dicing tape uniformly in consideration of the anisotropy, a film is used. A surface support mechanism is provided. This film surface support mechanism includes a plurality of support mechanisms that are independent in the circumferential direction, and adjusts the tension of the dicing tape by individually controlling the relative heights of the plurality of support mechanisms. The elongation in the direction and the elongation in the Y direction are controlled independently.
 ここで、本願明細書において、ダイシングテープ3のうち、ウェーハ1が貼付される平面視円形状の領域を中央部領域3Aと称し、中央部領域3Aの外縁部とフレーム4の内縁部との間に備えられる平面視ドーナツ形状の領域を環状部領域3Bと称し、フレーム4に固定される最外周部分の平面視ドーナツ形状の領域を固定部領域3Cと称する。環状部領域3Bが、エキスパンドリング8に押圧されて拡張される領域である。 Here, in the present specification, of the dicing tape 3, a circular area in plan view where the wafer 1 is affixed is referred to as a central area 3 </ b> A, and between the outer edge of the central area 3 </ b> A and the inner edge of the frame 4. The planar donut-shaped region provided in FIG. 5 is referred to as an annular portion region 3B, and the planar donut-shaped region at the outermost peripheral portion fixed to the frame 4 is referred to as a fixed portion region 3C. The annular portion region 3B is a region that is expanded by being pressed by the expanding ring 8.
 なお、ウェーハ1の分割に要する力は、すなわち、ウェーハ1を分割するために環状部領域3Bに発生させなければならない張力は、分割予定ライン5の本数が多くなるに従って大きくしなければならないことが知られている。分割予定ライン5の本数について、例えば、直径300mmのウェーハ1でチップサイズが5mmの場合には約120本(XY方向に各60本)の分割予定ライン5が形成され、チップサイズが1mmの場合は約600本の分割予定ライン5が形成される。よって、環状部領域3Bに発生させなければならない張力は、チップサイズが小さくなるに従って大きくしなければならない。 Note that the force required to divide the wafer 1, that is, the tension that must be generated in the annular region 3 </ b> B in order to divide the wafer 1, must be increased as the number of division lines 5 increases. Are known. For example, when the wafer 1 having a diameter of 300 mm and the chip size is 5 mm, about 120 (60 in each of the XY directions) division planned lines 5 are formed and the chip size is 1 mm. Approximately 600 division planned lines 5 are formed. Therefore, the tension that must be generated in the annular portion region 3B must be increased as the chip size is reduced.
特開2016-149581号公報JP 2016-149581 A 特開2016-12585号公報JP 2016-12585 A 特開2012-204747号公報JP 2012-204747 A
 ところで、直径300mmのウェーハ1がマウントされるフレーム4の内径(フレームの内縁部の径)は、SEMI規格(Semiconductor Equipment and Materials International standards)(G74-0699 300mmウェーハに関するテープフレームのための仕様)により350mmと定められている。この規格により、図23のウェーハユニット2の縦断面図の如く、ウェーハ1の外縁部とフレーム4の内縁部との間には、25mmの幅寸法を有する環状部領域3Bが存在することになる。また、図24(A)、(B)で示すワーク分割装置の要部縦断面図の如く、フレーム4を固定するフレーム固定部材7は、エキスパンドリング8によって拡張される環状部領域3Bに接触しないように、矢印Aで示すダイシングテープ3の面内方向において環状部領域3Bから外方に離間した位置に設置されている。 By the way, the inner diameter of the frame 4 on which the wafer 1 having a diameter of 300 mm is mounted (the diameter of the inner edge of the frame) is based on the SEMI standard (Semiconductor Equipment and Materials International standards) (G74-0699 for tape frame related to 300 mm wafer). It is defined as 350 mm. According to this standard, an annular region 3B having a width of 25 mm exists between the outer edge of the wafer 1 and the inner edge of the frame 4 as shown in the longitudinal sectional view of the wafer unit 2 in FIG. . 24A and 24B, the frame fixing member 7 that fixes the frame 4 does not come into contact with the annular portion region 3B that is expanded by the expand ring 8, as shown in the longitudinal sectional view of the main part of the workpiece dividing device. As described above, the dicing tape 3 is installed at a position spaced outward from the annular portion region 3B in the in-plane direction of the dicing tape 3 indicated by the arrow A.
 このため、エキスパンドリング8の上昇動作によって生じるウェーハ1を分割する力は、(i)環状部領域3Bの全領域を拡張する力、(ii)ウェーハ1をチップ6に分割する力、(iii)隣接するチップ6とチップ6との間のダイシングテープ3を拡張する力の3つの力に分解される。 For this reason, the force for dividing the wafer 1 caused by the upward movement of the expand ring 8 is (i) the force for expanding the entire region of the annular portion region 3B, (ii) the force for dividing the wafer 1 into the chips 6, and (iii) It is decomposed into three forces of force for expanding the dicing tape 3 between adjacent chips 6.
 図25(A)~(E)に示すワーク分割装置の動作図の如く、ダイシングテープ3の環状部領域3Bにエキスパンドリング8が当接し、エキスパンドリング8の上昇動作によってダイシングテープ3の拡張が始まると(図25(A))、まず最もバネ定数の低い環状部領域3Bの拡張が始まる(図25(B))。これにより、環状部領域3Bに張力が発生し、この張力がある程度大きくなると、大きくなった張力がウェーハ1に伝達されてウェーハ1のチップ6への分割が始まる(図25(C))。ウェーハ1が個々のチップ6に分割されると、環状部領域3Bの拡張とチップ間のダイシングテープ3の拡張とが同時に進行する(図25(D)~(E))。 As shown in the operation diagrams of the workpiece dividing apparatus shown in FIGS. 25A to 25E, the expanding ring 8 comes into contact with the annular portion region 3B of the dicing tape 3, and the expansion of the expanding ring 8 starts the expansion of the dicing tape 3. (FIG. 25A), first, the expansion of the annular portion region 3B having the lowest spring constant begins (FIG. 25B). As a result, a tension is generated in the annular portion region 3B, and when this tension increases to some extent, the increased tension is transmitted to the wafer 1 to start dividing the wafer 1 into chips 6 (FIG. 25C). When the wafer 1 is divided into individual chips 6, the expansion of the annular portion region 3B and the expansion of the dicing tape 3 between the chips proceed simultaneously (FIGS. 25D to 25E).
 従来のワーク分割装置では、直径300mmのウェーハ1において、チップサイズが5mm以上の場合には、環状部領域3Bで発生した張力により、個々のチップ6に問題無く分割することができた。しかしながら、ウェーハ1に形成される回路パターンの微細化に伴いチップサイズがより小さい1mm以下のチップも現れてきた。この場合、ウェーハ1を分割する分割予定ライン5の本数が増大することに起因して、ウェーハ1の分割に要する力が大きくなり、環状部領域3Bの拡張による張力以上の力が必要となる場合があった。そうすると、図26のウェーハユニット2の縦断面図の如く、エキスパンドリング8による拡張動作が終了しても、ウェーハ1に形成された分割予定ライン5の一部が分割されずに未分割のまま残存するという問題が発生した。 In the conventional workpiece dividing apparatus, when the chip size is 5 mm or more in the wafer 1 having a diameter of 300 mm, the individual chips 6 can be divided without any problem due to the tension generated in the annular portion region 3B. However, with the miniaturization of the circuit pattern formed on the wafer 1, chips having a smaller chip size of 1 mm or less have also appeared. In this case, the force required to divide the wafer 1 increases due to an increase in the number of scheduled dividing lines 5 for dividing the wafer 1, and a force greater than the tension due to the expansion of the annular region 3B is required. was there. Then, as shown in the longitudinal sectional view of the wafer unit 2 in FIG. 26, even if the expansion operation by the expanding ring 8 is completed, a part of the division line 5 formed on the wafer 1 remains undivided without being divided. A problem occurred.
 このような分割予定ライン5の未分割の問題は、ダイシングテープ3の拡張量や拡張速度を増加させても解消することはできない。例えば、ダイシングテープ3の拡張量を増やした場合には、環状部領域3Bが塑性変形を始めてしまうからである。塑性変形中の環状部領域3Bのバネ定数は、弾性変形中のバネ定数よりも小さいことから、環状部領域3Bの弾性変形を超えた領域では、ウェーハ1を個々のチップ6に分割する張力は発生しない。一方、ダイシングテープ3の拡張速度を増やした場合でも、環状部領域3Bの一部分が塑性変形を始めてしまうので、ウェーハ1を個々のチップ6に分割する張力は発生しない。これはダイシングテープ3の周波数応答が低いため、ダイシングテープ3の全体に時間差なく力が伝達しないからである。 Such an undivided problem of the division line 5 cannot be solved even if the expansion amount or expansion speed of the dicing tape 3 is increased. For example, when the expansion amount of the dicing tape 3 is increased, the annular portion region 3B starts plastic deformation. Since the spring constant of the annular portion region 3B during plastic deformation is smaller than the spring constant during elastic deformation, the tension that divides the wafer 1 into individual chips 6 in the region beyond the elastic deformation of the annular portion region 3B is Does not occur. On the other hand, even when the expansion speed of the dicing tape 3 is increased, a part of the annular portion region 3B starts plastic deformation, so that tension for dividing the wafer 1 into individual chips 6 does not occur. This is because since the frequency response of the dicing tape 3 is low, no force is transmitted to the entire dicing tape 3 without a time difference.
 分割予定ライン5の未分割の問題を解消するために特許文献2では、ダイシングテープを冷却し、ダイシングテープのバネ定数を大きくすることで対応しているが、近年の1mm以下の小チップに対しては十分な効果を得ることができない。 In order to solve the undivided problem of the division line 5, Japanese Patent Application Laid-Open No. 2004-228561 copes with this by cooling the dicing tape and increasing the spring constant of the dicing tape. Can not get enough effect.
 また、特許文献3のチップ分割離間装置は、ダイシングテープのX方向の伸びとY方向の伸びを独立して制御することはできるが、環状部領域の拡張による張力以上の力をウェーハに付与することができないので、分割予定ラインの未分割の問題を解消することはできない。 In addition, the chip dividing / separating device of Patent Document 3 can independently control the expansion in the X direction and the Y direction of the dicing tape, but applies a force greater than the tension due to the expansion of the annular region to the wafer. Since this is not possible, the problem of undivided lines to be divided cannot be solved.
 本発明はこのような問題に鑑みて成されたものであり、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を解消することができるワーク分割装置及びワーク分割方法を提供することを目的とする。 The present invention has been made in view of such a problem, and provides a workpiece dividing apparatus and a workpiece dividing method capable of solving the problem of undivided division lines that occur when the chip size is a small chip. With the goal.
 本発明のワーク分割装置は、本発明の目的を達成するために、ワークの外径よりも大きい内径を有するリング状フレームにダイシングテープの外周部が固定され、ダイシングテープに貼付されたワークを分割予定ラインに沿って個々のチップに分割するワーク分割装置において、リング状フレームを固定するフレーム固定部材と、ダイシングテープにおけるワークの貼付面と反対側の裏面側に配置され、リング状フレームの内径よりも小さく、かつワークの外径よりも大きいリング状に形成され、ダイシングテープの裏面を押圧してダイシングテープを拡張することによりダイシングテープに張力を発生させるエキスパンドリングと、ダイシングテープにおけるワークの貼付面と同一側に配置され、リング状フレームの内径よりも小さく、かつエキスパンドリングの外径よりも大きい開口部を有するリング状に形成され、エキスパンドリングによるダイシングテープの拡張の際にダイシングテープが当接される拡張規制リングと、を備える。 In order to achieve the object of the present invention, the workpiece dividing device of the present invention divides a workpiece adhered to the dicing tape by fixing the outer peripheral portion of the dicing tape to a ring-shaped frame having an inner diameter larger than the outer diameter of the workpiece. In the workpiece dividing device that divides the chip into individual chips along the planned line, the frame fixing member that fixes the ring-shaped frame, and the back surface of the dicing tape on the opposite side of the workpiece attachment surface are arranged. An expanding ring that is formed in a ring shape that is smaller and larger than the outer diameter of the work, and that generates tension on the dicing tape by expanding the dicing tape by pressing the back surface of the dicing tape, and the work application surface of the dicing tape Is smaller than the inner diameter of the ring frame, One expand ring is formed in a ring shape having a larger opening than the outer diameter of, and an extended regulation ring dicing tape is abut upon dicing tape extended by expanding the ring.
 本発明のワーク分割装置によれば、エキスパンドリングによってダイシングテープの拡張を開始すると、ダイシングテープの拡張の際にダイシングテープが拡張規制リングに当接する。このとき、ダイシングテープは、拡張規制リングに当接した当接部を境界として、外周側に位置する外周側領域と、内周側に位置する内周側領域とに分けられる。そして、ダイシングテープが拡張規制リングに当接した以降のエキスパンドリングによる拡張動作では、外周側領域の拡張が拡張規制リングによって規制され、内周側領域のみが拡張されていく。つまり、ダイシングテープのバネ定数よりも大きくなった内周側領域のバネ定数の張力がワークに付与される。これにより、ワークに付与される張力が増大するので、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を解消することができる。 According to the work dividing apparatus of the present invention, when expansion of the dicing tape is started by the expand ring, the dicing tape comes into contact with the expansion restriction ring when the dicing tape is expanded. At this time, the dicing tape is divided into an outer peripheral side region located on the outer peripheral side and an inner peripheral side region located on the inner peripheral side, with the contact portion being in contact with the expansion restriction ring as a boundary. In the expansion operation by the expanding ring after the dicing tape comes into contact with the expansion restriction ring, the expansion of the outer peripheral area is restricted by the expansion restriction ring, and only the inner peripheral area is expanded. That is, the tension of the spring constant in the inner peripheral region that is larger than the spring constant of the dicing tape is applied to the workpiece. Thereby, since the tension | tensile_strength provided to a workpiece | work increases, the undivided problem of the division | segmentation scheduled line which arises when a chip size is a small chip | tip can be eliminated.
 本発明の一形態は、拡張規制リングは、エキスパンドリングによるダイシングテープの拡張の際に、ダイシングテープに当接するテープ位置規制部を有し、テープ位置規制部は、リング状フレームのダイシングテープが貼付されたテープ貼付面と同一面上、又は同一面よりもエキスパンドリングが配置される側に配置されることが好ましい。 In one embodiment of the present invention, the expansion restricting ring has a tape position restricting portion that comes into contact with the dicing tape when the dicing tape is expanded by the expand ring, and the dicing tape of the ring frame is attached to the tape position restricting portion. It is preferable to be arranged on the same surface as the applied tape application surface or on the side where the expanding ring is arranged than the same surface.
 本発明の一形態は、拡張規制リングは、リング状フレームに固定されるフレーム固定部と、拡張規制リングの開口部の周縁部に沿ってダイシングテープに向けて突出した凸条部と、を備え、テープ位置規制部は、凸条部の先端部によって構成されることが好ましい。 According to one aspect of the present invention, the expansion restriction ring includes a frame fixing portion fixed to the ring-shaped frame, and a protruding portion protruding toward the dicing tape along the peripheral edge portion of the opening of the expansion restriction ring. The tape position restricting portion is preferably constituted by the tip portion of the ridge portion.
 本発明の一態様は、拡張規制リングには、ダイシングテープにおけるワークの貼付面と同一側に配置されたフレーム固定部であって、リング状フレームに当接してリング状フレームを固定するフレーム固定部が備えられることが好ましい。 One aspect of the present invention is a frame fixing portion that is disposed on the same side as the work affixing surface of the dicing tape on the expansion regulating ring, and is a frame fixing portion that contacts the ring-shaped frame and fixes the ring-shaped frame. Is preferably provided.
 本発明の一態様によれば、拡張規制リングがリング状フレームを固定する機能も具備しているので、ワーク分割装置の部品点数を削減することができ、また、拡張規制リングをワーク分割装置に組み付ける作業でフレームをフレーム固定部によって固定することができる。 According to one aspect of the present invention, since the expansion restriction ring also has a function of fixing the ring-shaped frame, the number of parts of the work dividing device can be reduced, and the expansion restriction ring can be used as the work dividing device. The frame can be fixed by the frame fixing portion in the assembling work.
 本発明の一態様は、拡張規制リングは、ダイシングテープにおけるワークの貼付面と同一側に配置されたフレーム固定部材であって、拡張規制リングを介してリング状フレームを固定するフレーム固定部材に着脱自在に固定されることが好ましい。 One aspect of the present invention is that the expansion restricting ring is a frame fixing member disposed on the same side as the work affixing surface of the dicing tape, and is attached to and detached from the frame fixing member for fixing the ring-shaped frame via the expansion restricting ring. It is preferable that it is fixed freely.
 本発明の一態様によれば、チップサイズが小チップの場合には、拡張規制リングをフレーム固定部材に組み付けることができ、チップサイズが大チップの場合には、拡張規制リングをフレーム固定部材から取り外すことができる。つまり、拡張規制リングを備えていない既存のワーク分割装置であっても、そのワーク分割装置のフレーム固定部材に拡張規制リングを取り付けることで、チップサイズが小チップのワークを分割処理することができる。 According to one aspect of the present invention, when the chip size is a small chip, the expansion restriction ring can be assembled to the frame fixing member. When the chip size is a large chip, the expansion restriction ring is removed from the frame fixing member. Can be removed. In other words, even with an existing workpiece dividing device that does not include an expansion regulating ring, a workpiece with a small chip size can be divided by attaching the expansion regulating ring to the frame fixing member of the workpiece dividing device. .
 本発明の一態様は、拡張規制リングの開口部は円形に形成されることが好ましい。 In one aspect of the present invention, the opening of the expansion restriction ring is preferably formed in a circular shape.
 本発明の一態様によれば、互いに交差するX方向とY方向において、例えば、X方向とY方向の寸法が同一である正方形のチップに分割されるワークのように、X方向とY方向における分割予定ラインの本数(密度)が等しいワークの場合には、円形の開口部を有する拡張規制リングを使用することが好ましい。同様に、X方向のバネ定数とY方向のバネ定数とが同一であるダイシングテープに貼付されたワークの場合には、円形の開口部を有する拡張規制リングを使用することが好ましい。これにより、拡張される内周側領域からワークの周縁部に均等な張力を付与することができるので、このようなワークに対して好適な分割能力を実現できる。 According to one aspect of the present invention, in the X direction and the Y direction intersecting each other, for example, in the X direction and the Y direction, like a workpiece divided into square chips having the same dimensions in the X direction and the Y direction. In the case of a workpiece having the same number of divided lines (density), it is preferable to use an expansion regulating ring having a circular opening. Similarly, in the case of a work affixed to a dicing tape having the same spring constant in the X direction and the spring constant in the Y direction, it is preferable to use an expansion restricting ring having a circular opening. Thereby, since uniform tension can be given to the peripheral part of a work from the inner peripheral side field expanded, suitable division capacity can be realized to such a work.
 本発明の一態様は、拡張規制リングの開口部は楕円形に形成されることが好ましい。 In one aspect of the present invention, the opening of the expansion restriction ring is preferably formed in an elliptical shape.
 本発明の一態様によれば、互いに直交するX方向とY方向において、例えば、X方向とY方向の寸法が異なる長方形のチップに分割されるワークのように、X方向とY方向において分割予定ラインの本数(密度)が異なるワークの場合には、楕円形の開口部を有する拡張規制リングを使用することが好ましい。 According to one aspect of the present invention, in the X direction and the Y direction orthogonal to each other, for example, the workpiece is divided in the X direction and the Y direction, such as a work divided into rectangular chips having different dimensions in the X direction and the Y direction. In the case of workpieces having different numbers (density) of lines, it is preferable to use an expansion regulating ring having an elliptical opening.
 この場合、楕円の短径の方向を、分割予定ラインの密度が高い方向(チップの短辺に沿った方向、チップの密度の高い方向)と平行に合わせ、楕円の長径の方向を、分割予定ラインの密度が低い方向(チップの長辺に沿った方向、チップの密度の低い方向)と平行に合わせる。これにより、分割予定ラインの密度が高い方向に位置する内周側領域は、バネ定数が大きくなるので、本数の多い分割予定ラインを分割するための好適な張力をワークに付与することができる。一方、分割予定ラインの密度が低い方向に位置する環状部領域は、バネ定数が小さいが、本数の少ない分割予定ラインを分割するための好適な張力をワークに付与することができる。よって、このようなワークに対して好適な分割能力を実現することができる。 In this case, the direction of the minor axis of the ellipse is aligned in parallel with the direction in which the density of the planned dividing line is high (the direction along the short side of the chip, the direction of the high density of the chip), and the direction of the major axis of the ellipse is scheduled to be divided The lines are aligned parallel to the direction in which the line density is low (the direction along the long side of the chip, the direction in which the chip density is low). As a result, since the spring constant is increased in the inner peripheral region located in the direction in which the density of the planned division lines is high, it is possible to apply a suitable tension to the workpiece for dividing the large number of planned division lines. On the other hand, the annular region located in the direction where the density of the planned division lines is low has a small spring constant, but can impart a suitable tension to the work to divide the small division lines. Therefore, it is possible to realize a suitable dividing ability for such a workpiece.
 また、X方向のバネ定数とY方向のバネ定数とが異なる異方性のあるダイシングテープに貼付されたワークの場合にも、楕円形の拡張規制リングを使用することが好ましい。 Also, in the case of a work affixed to dicing tape having anisotropy in which the spring constant in the X direction and the spring constant in the Y direction are different, it is preferable to use an elliptical expansion restriction ring.
 この場合、楕円の短径の方向をバネ定数が小さい方向と平行に合わせ、楕円の長径の方向を、バネ定数が大きい方向と平行に合わせる。これにより、内周側領域の拡張時には、バネ定数の小さい方向と平行な方向に位置する内周側領域のバネ定数が高くなって、楕円の長径の方向と平行な方向に位置する内周側領域のバネ定数に近づくので、内周側領域からワークに略均等な張力を付与することができる。よって、X方向のバネ定数とY方向のバネ定数とが異なる異方性のあるダイシングテープにマウントされたワークに対して、好適な分割能力を実現することができる。 In this case, the direction of the minor axis of the ellipse is aligned in parallel with the direction where the spring constant is small, and the direction of the major axis of the ellipse is aligned parallel to the direction where the spring constant is large. As a result, when the inner peripheral region is expanded, the spring constant of the inner peripheral region located in the direction parallel to the direction in which the spring constant is small increases, and the inner peripheral side located in the direction parallel to the major axis direction of the ellipse. Since it approaches the spring constant of the region, a substantially uniform tension can be applied to the workpiece from the inner peripheral region. Therefore, it is possible to realize a suitable dividing ability for a work mounted on dicing tape having anisotropy in which the spring constant in the X direction and the spring constant in the Y direction are different.
 本発明のワーク分割方法は、本発明の目的を達成するために、ワークの外径よりも大きい内径を有するリング状フレームにダイシングテープの外周部が固定され、ダイシングテープに貼付されたワークを分割予定ラインに沿って個々のチップに分割するワーク分割方法において、ダイシングテープを押圧してダイシングテープを拡張することによりダイシングテープに張力を発生させる拡張工程と、ダイシングテープの拡張の際にダイシングテープのうち外周側に位置する外周側領域の拡張を規制する拡張規制工程と、外周側領域を除くダイシングテープの拡張を継続してワークを個々のチップに分割する分割工程と、を備える。 In order to achieve the object of the present invention, the work dividing method according to the present invention divides a work affixed to the dicing tape by fixing the outer peripheral portion of the dicing tape to a ring-shaped frame having an inner diameter larger than the outer diameter of the work. In the work dividing method of dividing into individual chips along a predetermined line, the dicing tape is expanded by pressing the dicing tape to expand the dicing tape, and the dicing tape is expanded when the dicing tape is expanded. Of these, there are provided an expansion restriction step for restricting expansion of the outer peripheral region located on the outer peripheral side, and a dividing step for dividing the work into individual chips by continuing expansion of the dicing tape excluding the outer peripheral region.
 本発明のワーク分割方法によれば、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を解消することができる。 According to the work dividing method of the present invention, it is possible to solve the problem of undivision of the line to be divided that occurs when the chip size is a small chip.
 本発明によれば、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を解消することができる。 According to the present invention, it is possible to solve the problem of undivision of the line to be divided that occurs when the chip size is a small chip.
第1実施形態のワーク分割装置の要部構造図Main part structure diagram of work dividing apparatus of first embodiment 図1に示したワーク分割装置の要部拡大斜視図The principal part expansion perspective view of the workpiece | work division | segmentation apparatus shown in FIG. 拡張途中の環状部領域の形状を示したウェーハユニットの断面図Sectional view of the wafer unit showing the shape of the annular region during expansion 拡張途中の環状部領域の拡大断面図Expanded cross-sectional view of the annular region during expansion ウェーハ分割方法のフローチャートFlow chart of wafer splitting method 第2実施形態のワーク分割装置の要部構造図Main part structure diagram of work dividing apparatus of second embodiment 図6に示したワーク分割装置の要部拡大斜視図The principal part expansion perspective view of the workpiece | work division | segmentation apparatus shown in FIG. 拡張途中の環状部領域の拡大断面図Expanded cross-sectional view of the annular region during expansion 円形の拡張規制用開口部を有する拡張規制リングとウェーハユニットとを重ねた平面図Plan view in which an expansion restriction ring having a circular expansion restriction opening and a wafer unit are stacked. 楕円形の拡張規制用開口部を有する拡張規制リングとウェーハユニットとを重ねた平面図Plan view in which an expansion restriction ring having an elliptical expansion restriction opening and a wafer unit are stacked. 拡張規制リングを使用しないときと使用したときの環状部領域及び内周側領域の拡張率を示したグラフGraph showing the expansion rate of the annular region and the inner peripheral region when the expansion restriction ring is not used and when it is used 拡張規制リングを使用しないときと使用したときのチップの分割率を示したグラフA graph showing the chip split ratio when the extended restriction ring is not used and when it is used 第3実施形態に係るワーク分割装置の要部断面図Sectional drawing of the principal part of the workpiece | work division apparatus which concerns on 3rd Embodiment. 図13に示したワーク分割装置の要部拡大断面図The principal part expanded sectional view of the workpiece | work division | segmentation apparatus shown in FIG. 第4実施形態に係るワーク分割装置の要部断面図Sectional drawing of the principal part of the workpiece | work division apparatus which concerns on 4th Embodiment. 図15に示したワーク分割装置の要部拡大断面図The principal part expanded sectional view of the workpiece | work division | segmentation apparatus shown in FIG. 図6に示した拡張規制リングの第1変形例を示した説明図Explanatory drawing which showed the 1st modification of the expansion control ring shown in FIG. 図6に示した拡張規制リングの第2変形例を示した説明図Explanatory drawing which showed the 2nd modification of the expansion control ring shown in FIG. 突き上げ量に対する拡張率の変化を算出したグラフA graph that calculates the change in expansion rate relative to the amount of push-up 拡張分割工程時の動作を示した概略図Schematic showing the operation during the extended division process 突き上げ速度に対する拡張率速度の変化を算出したグラフA graph that calculates the change in expansion rate relative to the push-up speed ウェーハが貼付されたウェーハユニットの説明図Illustration of the wafer unit with a wafer attached ウェーハユニットの縦断面図Vertical section of wafer unit ワーク分割装置の要部側面図Side view of main part of work dividing device ワーク分割装置の動作図Operation diagram of work dividing device ウェーハが分割されたウェーハユニットの縦断面図Longitudinal cross section of wafer unit with wafer divided
 以下、添付図面に従って本発明に係るワーク分割装置及びワーク分割方法の好ましい実施形態について詳説する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲であれば、以下の実施形態に種々の変形及び置換を加えることができる。 Hereinafter, preferred embodiments of a workpiece dividing apparatus and a workpiece dividing method according to the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the following embodiments, and various modifications and substitutions can be made to the following embodiments within the scope of the present invention.
 〔第1実施形態のワーク分割装置10A〕
 図1は、第1実施形態に係るワーク分割装置10Aの要部縦断面図であり、図2は、ワーク分割装置10Aの要部拡大斜視図である。なお、ワーク分割装置10Aによって分割処理されるウェーハユニットのサイズは限定されるものではないが、実施形態では、図23に示した直径300mmのウェーハ1がマウントされたウェーハユニット2を例示する。
[Work Dividing Device 10A of First Embodiment]
FIG. 1 is a longitudinal sectional view of a main part of a workpiece dividing apparatus 10A according to the first embodiment, and FIG. 2 is an enlarged perspective view of a main part of the workpiece dividing apparatus 10A. Although the size of the wafer unit to be divided by the workpiece dividing apparatus 10A is not limited, the embodiment exemplifies the wafer unit 2 on which the wafer 1 having a diameter of 300 mm shown in FIG. 23 is mounted.
 ワーク分割装置10Aは、分割予定ライン5が形成されたウェーハ1を分割予定ライン5に沿って個々のチップ6に分割する装置である。分割予定ライン5は、互いに交差するX方向及びY方向に複数本形成される。実施形態では、X方向と平行な分割予定ライン5の本数と、Y方向と平行な分割予定ライン5の本数とがそれぞれ300本でそれぞれの間隔が等しいウェーハ1、すなわち、チップサイズが1mmのチップ6に分割されるウェーハ1を例示する。 The work dividing apparatus 10A is an apparatus that divides the wafer 1 on which the planned division line 5 is formed into individual chips 6 along the planned division line 5. A plurality of division lines 5 are formed in the X direction and the Y direction intersecting each other. In the embodiment, the number of the planned division lines 5 parallel to the X direction and the number of the planned division lines 5 parallel to the Y direction are 300, and the distance between them is equal, that is, a chip having a chip size of 1 mm. The wafer 1 divided | segmented into 6 is illustrated.
 ウェーハ1は図1、図2の如く、フレーム4に外周部が固定されたダイシングテープ3の中央部に貼付される。ダイシングテープ3は、ウェーハ1が貼付される平面視円形状の中央部領域3A、及び中央部領域3Aの外縁部とフレーム4の内縁部との間の平面視ドーナツ形状の環状部領域3Bを有する。 As shown in FIGS. 1 and 2, the wafer 1 is attached to the center of a dicing tape 3 whose outer periphery is fixed to the frame 4. The dicing tape 3 has a circular central portion region 3A to which the wafer 1 is attached, and an annular portion region 3B having a planar donut shape between the outer edge portion of the central portion region 3A and the inner edge portion of the frame 4. .
 ウェーハ1の厚さは、例えば50μm程度である。また、ダイシングテープ3としては、例えばPVC(polyvinyl chloride:ポリ塩化ビニール)系のテープが使用される。なお、ウェーハ1をDAF(Die Attach Film)等のフィルム状接着材を介してダイシングテープ3に貼付してもよい。フィルム状接着材としては、例えばPO(polyolefin:ポリオレフィン)系のものを使用することができる。 The thickness of the wafer 1 is, for example, about 50 μm. As the dicing tape 3, for example, a PVC (polyvinyl chloride) tape is used. The wafer 1 may be attached to the dicing tape 3 through a film adhesive such as DAF (DieFAttach Film). As the film adhesive, for example, a PO (polyolefin) -based adhesive can be used.
 ワーク分割装置10Aは、フレーム4を固定するフレーム固定部12を備えた拡張規制リング16と、ダイシングテープ3の環状部領域3Bに下方側から当接されるエキスパンドリング14と、を備える。 10 A of workpiece | work division | segmentation apparatuses are equipped with the expansion control ring 16 provided with the frame fixing | fixed part 12 which fixes the flame | frame 4, and the expand ring 14 contact | abutted from the downward side to the cyclic | annular part area | region 3B of the dicing tape 3. FIG.
 エキスパンドリング14は、ダイシングテープ3におけるウェーハ1の貼付面と反対側の裏面側に配置され、フレーム4の内径(350mm)よりも小さく、かつウェーハ1の外径(300mm)よりも大きい拡張用開口部14Aを有するリング状に形成される。このエキスパンドリング14は、ダイシングテープ3の環状部領域3Bの裏面を押圧して環状部領域3Bを拡張する。すなわち、エキスパンドリング14は、環状部領域3Bに対してダイシングテープ3の矢印Aで示す面内方向と交差するB方向に上昇移動される。これによって、環状部領域3Bがエキスパンドリング14に突き上げられて放射状に拡張される。なお、エキスパンドリング14を固定して、ウェーハユニット2を矢印C方向に下降移動させることにより、環状部領域3Bをエキスパンドリング14によって拡張してもよい。 The expand ring 14 is disposed on the back side of the dicing tape 3 opposite to the wafer 1 application surface, and is an opening for expansion that is smaller than the inner diameter (350 mm) of the frame 4 and larger than the outer diameter (300 mm) of the wafer 1. It is formed in a ring shape having a portion 14A. The expand ring 14 expands the annular portion region 3B by pressing the back surface of the annular portion region 3B of the dicing tape 3. That is, the expand ring 14 is moved upward in the B direction intersecting the in-plane direction indicated by the arrow A of the dicing tape 3 with respect to the annular portion region 3B. As a result, the annular portion region 3B is pushed up by the expand ring 14 and radially expanded. Alternatively, the expanding ring 14 may be fixed and the wafer unit 2 moved downward in the direction of the arrow C to expand the annular portion region 3B with the expanding ring 14.
 拡張規制リング16は、拡張規制部17とフレーム固定部12とから構成される。フレーム固定部12は、ダイシングテープ3におけるウェーハ1の貼付面と同一側に配置され、その下面12Aにフレーム4が固定される。拡張規制部17は、フレーム固定部12からフレーム4よりも拡張規制リング16の中心に向けて延設される。ダイシングテープ3の環状部領域3Bは、エキスパンドリング14による拡張の際に、拡張規制部17に当接される。なお、フレーム固定部12と拡張規制部17との境界を、図1、図2では符号Dで示している。 The expansion restriction ring 16 includes an expansion restriction portion 17 and a frame fixing portion 12. The frame fixing portion 12 is disposed on the same side as the application surface of the wafer 1 in the dicing tape 3, and the frame 4 is fixed to the lower surface 12A thereof. The expansion restricting portion 17 extends from the frame fixing portion 12 toward the center of the expansion restricting ring 16 rather than the frame 4. The annular portion region 3 </ b> B of the dicing tape 3 is brought into contact with the expansion restricting portion 17 during expansion by the expand ring 14. Note that the boundary between the frame fixing portion 12 and the expansion restricting portion 17 is indicated by the symbol D in FIGS.
 拡張規制部17は、フレーム4の内径(350mm)よりも小さく、かつエキスパンドリング14の外径よりも大きい拡張規制用開口部(開口部)16Aを有するリング状に形成される。 The expansion restricting portion 17 is formed in a ring shape having an expansion restricting opening (opening) 16A that is smaller than the inner diameter (350 mm) of the frame 4 and larger than the outer diameter of the expanding ring 14.
 図3は、エキスパンドリング14によって拡張途中の環状部領域3Bの形状を示したウェーハユニット2の縦断面図である。図4は、拡張途中の環状部領域3Bの拡大断面図である。 FIG. 3 is a longitudinal sectional view of the wafer unit 2 showing the shape of the annular portion region 3B that is being expanded by the expand ring 14. As shown in FIG. FIG. 4 is an enlarged cross-sectional view of the annular portion region 3B during expansion.
 図3、図4に示すように、エキスパンドリング14による環状部領域3Bの拡張の際に、環状部領域3Bが拡張規制部17に当接される。具体的には、拡張規制部17の内縁部16Bに環状部領域3Bが当接される。 3 and 4, when the annular portion region 3B is expanded by the expand ring 14, the annular portion region 3B is brought into contact with the expansion restricting portion 17. Specifically, the annular portion region 3B is brought into contact with the inner edge portion 16B of the expansion restriction portion 17.
 実施形態では、図1の如く、拡張規制用開口部16Aの径が338mmに設定されている。これにより、拡張規制部17によって拡張が規制される外周側領域3Eの幅寸法が6mmに設定され、環状部領域3Bのうち外周側領域3Eを除く内周側領域3Fの幅寸法が19mmに設定される。 In the embodiment, as shown in FIG. 1, the diameter of the expansion restricting opening 16A is set to 338 mm. Thereby, the width dimension of the outer peripheral side region 3E whose expansion is restricted by the expansion restricting portion 17 is set to 6 mm, and the width dimension of the inner peripheral side region 3F excluding the outer peripheral side region 3E in the annular portion region 3B is set to 19 mm. Is done.
 ここで、環状部領域3Bのうち拡張規制部17によって拡張が規制されない内周側領域3Fが、ウェーハ1の分割に実質的に寄与する領域となる。すなわち、内周側領域3Fの幅寸法を小さくするに従って、内周側領域3Fのバネ定数が大きくなるので、内周側領域3Fからウェーハ1に付与する張力を増大することができる。よって、内周側領域3Fの幅寸法は、分割予定ライン5の本数及びチップ6のサイズに応じて設定することが好ましい。 Here, the inner peripheral side region 3F in which the expansion is not restricted by the expansion restricting portion 17 in the annular portion region 3B is a region that substantially contributes to the division of the wafer 1. That is, as the width dimension of the inner peripheral region 3F is reduced, the spring constant of the inner peripheral region 3F is increased, so that the tension applied to the wafer 1 from the inner peripheral region 3F can be increased. Therefore, it is preferable that the width dimension of the inner peripheral side region 3F is set according to the number of lines to be divided 5 and the size of the chip 6.
 以下、図5のフローチャートに従って、ワーク分割装置10Aによるワーク分割方法を説明する。 Hereinafter, the work dividing method by the work dividing apparatus 10A will be described with reference to the flowchart of FIG.
 まず、図5のステップS100において、図1の如く、ウェーハユニット2のフレーム4を、拡張規制リング16のフレーム固定部12によって固定する(固定工程)。 First, in step S100 of FIG. 5, as shown in FIG. 1, the frame 4 of the wafer unit 2 is fixed by the frame fixing portion 12 of the expansion restriction ring 16 (fixing step).
 次に、図5のステップS110において、エキスパンドリング14を図1の位置から矢印B方向に上昇移動させ、環状部領域3Bの全領域の拡張を開始する(拡張工程)。 Next, in step S110 in FIG. 5, the expanding ring 14 is moved upward in the direction of arrow B from the position in FIG. 1, and expansion of the entire region of the annular portion region 3B is started (expansion step).
 次に、図5のステップS120において、エキスパンドリング14の上昇移動量が、フレーム4の厚さを超えると、環状部領域3Bが拡張規制部17に当接する。このとき、図4の如く環状部領域3Bは、拡張規制部17の内縁部16Bに当接した当接部3Dを境界として、外周側に位置する外周側領域3Eと、内周側に位置する内周側領域3Fとに分けられる。そして、環状部領域3Bのうち、外周側領域3Eの拡張が拡張規制部17によって規制される(拡張規制工程)。 Next, in step S120 in FIG. 5, when the upward movement amount of the expand ring 14 exceeds the thickness of the frame 4, the annular portion region 3 </ b> B comes into contact with the expansion restricting portion 17. At this time, as shown in FIG. 4, the annular portion region 3 </ b> B is located on the outer peripheral side region 3 </ b> E located on the outer peripheral side and the inner peripheral side with the contact portion 3 </ b> D contacting the inner edge portion 16 </ b> B of the expansion restricting portion 17 as a boundary. It is divided into an inner peripheral region 3F. And expansion of the outer peripheral side area | region 3E is controlled by the expansion control part 17 among the cyclic | annular part area | regions 3B (expansion control process).
 次に、図5のステップS130において、エキスパンドリング14の上昇移動を続行し、環状部領域3Bのうち、外周側領域3Eを除く内周側領域3Fの拡張を継続して行うことにより、ウェーハ1を個々のチップ6に分割する(分割工程)。この後、エキスパンドリング14の上昇移動を停止する。 Next, in step S130 in FIG. 5, the expanding movement of the expanding ring 14 is continued, and the expansion of the inner peripheral side region 3F excluding the outer peripheral side region 3E in the annular portion region 3B is continuously performed, whereby the wafer 1 Is divided into individual chips 6 (dividing step). Thereafter, the upward movement of the expanding ring 14 is stopped.
 分割工程(S130)において、環状部領域3Bが拡張規制部17の内縁部16Bに当接した以降のエキスパンドリング14による拡張動作では、外周側領域3Eの拡張が拡張規制部17によって規制され、内周側領域3Fのみが拡張されていく。つまり、環状部領域3Bのバネ定数よりも大きくなった内周側領域3Fのバネ定数の張力がウェーハ1に付与される。 In the dividing step (S130), in the expansion operation by the expand ring 14 after the annular portion region 3B comes into contact with the inner edge portion 16B of the expansion restricting portion 17, the expansion of the outer peripheral side region 3E is restricted by the expansion restricting portion 17. Only the peripheral region 3F is expanded. That is, the tension of the spring constant of the inner peripheral region 3F that is larger than the spring constant of the annular portion region 3B is applied to the wafer 1.
 具体的に説明すると、ウェーハ1の分割に寄与する環状部領域3Bの長さが25mm(環状部領域3Bの幅寸法)から19mm(内周側領域3Fの幅寸法)に短くなるので、バネ定数はそれに反比例して増大する。これにより、内周側領域3Fのみを拡張しても、内周側領域3Fのバネ定数は環状部領域3Bのバネ定数よりも大きいので、チップサイズが小チップ(1mm)であっても個々のチップ6に分割するだけの張力をウェーハ1に付与することができる。よって、ワーク分割装置10Aによれば、チップサイズが小チップ(1mm)の場合に生じる分割予定ラインの未分割問題を解消することができる。 More specifically, the length of the annular portion region 3B that contributes to the division of the wafer 1 is shortened from 25 mm (width size of the annular portion region 3B) to 19 mm (width size of the inner peripheral region 3F). Increases inversely with it. As a result, even if only the inner peripheral region 3F is expanded, the spring constant of the inner peripheral region 3F is larger than the spring constant of the annular portion region 3B. A tension sufficient to divide the chip 6 can be applied to the wafer 1. Therefore, according to the workpiece dividing apparatus 10A, it is possible to solve the problem of undivided lines to be divided that occurs when the chip size is a small chip (1 mm).
 なお、環状部領域3Bの粘着層に線接触される拡張規制部17の内縁部16Bには、一例として算術平均粗さ(Ra)が1.6(μm)となる表面加工が施されている。これにより、内縁部16Bと環状部領域3Bとの間の摩擦力によって、内縁部16Bと環状部領域3Bとが相対的に滑ることを防止することができる。また、内縁部16Bには、一例としてC0.2(0.2mm Chamfer)の面取り加工が行われている。これにより、環状部領域3Bから拡張力を受けた際に、その反力で環状部領域3Bが破れることを防止することができる。 Note that the inner edge portion 16B of the expansion restricting portion 17 that is in line contact with the adhesive layer in the annular portion region 3B is subjected to surface processing with an arithmetic average roughness (Ra) of 1.6 (μm) as an example. . Thereby, it is possible to prevent the inner edge portion 16B and the annular portion region 3B from slipping relatively due to the frictional force between the inner edge portion 16B and the annular portion region 3B. Further, the inner edge portion 16B is chamfered with C0.2 (0.2 mm Chamber) as an example. Thereby, when the expansion force is received from the annular portion region 3B, the annular portion region 3B can be prevented from being broken by the reaction force.
 また、ワーク分割装置10Aの拡張規制リング16は、フレーム固定部12を備えることで、フレーム4を固定する機能も具備しているので、ワーク分割装置10Aの部品点数を削減することができ、また、拡張規制リング16をワーク分割装置10Aに組み付ける作業でフレーム4をフレーム固定部12によって固定することができる。 In addition, since the expansion restriction ring 16 of the workpiece dividing apparatus 10A includes the frame fixing unit 12 and also has a function of fixing the frame 4, the number of parts of the workpiece dividing apparatus 10A can be reduced. The frame 4 can be fixed by the frame fixing portion 12 in the operation of assembling the expansion restriction ring 16 to the workpiece dividing apparatus 10A.
 また、ワーク分割装置10Aのエキスパンドリング14は、フレーム固定部12に固定されたウェーハユニット2のウェーハ1を包囲する拡張用開口部14Aを有するリング状に構成されている。また、拡張規制部17は、リング状のエキスパンドリング14を包囲する拡張規制用開口部16Aを備えている。これにより、ワーク分割装置10Aによれば、リング状のエキスパンドリング14によって環状部領域3Bが全領域において均等に拡張されていき、そして、拡張規制部17の拡張規制用開口部16Aの内縁部16Bに、環状部領域3Bが均等に線接触する。これにより、外周側領域3Eの拡張を確実に規制することができる。 Further, the expanding ring 14 of the workpiece dividing apparatus 10A is configured in a ring shape having an opening 14A for expansion that surrounds the wafer 1 of the wafer unit 2 fixed to the frame fixing unit 12. The expansion restricting portion 17 includes an expansion restricting opening 16 </ b> A that surrounds the ring-shaped expand ring 14. Thereby, according to the workpiece dividing device 10A, the annular portion region 3B is uniformly expanded in the entire region by the ring-shaped expand ring 14, and the inner edge portion 16B of the expansion restricting opening portion 16A of the expansion restricting portion 17 is expanded. In addition, the annular portion region 3B is in line contact evenly. Thereby, the expansion of the outer peripheral side region 3E can be reliably regulated.
 〔第2実施形態のワーク分割装置10B〕
 図6は、第2実施形態に係るワーク分割装置10Bの要部縦断面図であり、図7は、ワーク分割装置10Bの要部拡大斜視図である。なお、ワーク分割装置10Bによって処理されるウェーハユニットについても、図23に示した直径300mmのウェーハ1がマウントされたウェーハユニット2を例示する。また、図1、図2に示したワーク分割装置10Aと同一又は類似の部材については同一の符号を付して説明する。
[Work Dividing Device 10B of Second Embodiment]
FIG. 6 is a longitudinal sectional view of main parts of a workpiece dividing apparatus 10B according to the second embodiment, and FIG. 7 is an enlarged perspective view of essential parts of the workpiece dividing apparatus 10B. As the wafer unit processed by the workpiece dividing apparatus 10B, the wafer unit 2 on which the wafer 1 having a diameter of 300 mm shown in FIG. 23 is mounted is exemplified. Further, the same or similar members as those of the workpiece dividing apparatus 10A shown in FIGS. 1 and 2 will be described with the same reference numerals.
 第1実施形態のワーク分割装置10Aに対する、第2実施形態のワーク分割装置10Bの相違点は、フレーム固定部材7(図24参照:既存のフレーム固定部材)と拡張規制リング18とを別々に構成し、フレーム固定部材7に対して拡張規制リング18を着脱自在に設けた点にある。フレーム固定部材7に対する拡張規制リング18の着脱構造は、特に限定されるものでないが、一例としてボルトを使用した締結構造でもよく、クランプ機構によるクランプ構造でもよい。 The difference between the workpiece dividing device 10B of the second embodiment and the workpiece dividing device 10A of the first embodiment is that the frame fixing member 7 (see FIG. 24: existing frame fixing member) and the expansion restriction ring 18 are configured separately. However, the expansion restricting ring 18 is detachably provided to the frame fixing member 7. The attachment / detachment structure of the expansion restriction ring 18 with respect to the frame fixing member 7 is not particularly limited, but may be a fastening structure using a bolt as an example, or a clamp structure using a clamp mechanism.
 フレーム固定部材7は、ダイシングテープ3におけるウェーハ1の貼付面と同一側に配置される。また、フレーム固定部材7は、エキスパンドリング14によって拡張される環状部領域3Bに接触しないように、矢印Aで示すダイシングテープ3の面内方向において環状部領域3Bから外方に離間した位置に設置されている。図7の如く、フレーム固定部材7の形状はリング状であるが、その形状は特に限定されるものではなく、拡張規制リング18が着脱自在に取り付け可能な形状であればよい。 The frame fixing member 7 is disposed on the same side as the affixing surface of the wafer 1 in the dicing tape 3. Further, the frame fixing member 7 is installed at a position spaced outward from the annular portion region 3B in the in-plane direction of the dicing tape 3 indicated by an arrow A so as not to contact the annular portion region 3B expanded by the expand ring 14. Has been. As shown in FIG. 7, the shape of the frame fixing member 7 is a ring shape, but the shape is not particularly limited as long as the expansion restriction ring 18 can be detachably attached.
 拡張規制リング18は、フレーム4の内径(350mm)よりも小さく、かつエキスパンドリング14の外径よりも大きい拡張規制用開口部(開口部)18Aを備える。この拡張規制用開口部18Aの径も338mmである。 The expansion restriction ring 18 includes an expansion restriction opening (opening) 18A that is smaller than the inner diameter (350 mm) of the frame 4 and larger than the outer diameter of the expanding ring 14. The diameter of the expansion restricting opening 18A is also 338 mm.
 図8は、エキスパンドリング14によって拡張途中の環状部領域3Bの形状を示したウェーハユニット2の縦断面図である。 FIG. 8 is a longitudinal sectional view of the wafer unit 2 showing the shape of the annular portion region 3 </ b> B being expanded by the expand ring 14.
 図8の如く、環状部領域3Bは、エキスパンドリング14による拡張の際に、拡張規制リング18の内縁部18Bに当接される。これにより、環状部領域3Bのうち、内縁部18Bに当接される当接部3Dとフレーム4の内縁部との間の外周側領域3Eの拡張が、拡張規制リング18によって規制される。 As shown in FIG. 8, the annular portion region 3 </ b> B is brought into contact with the inner edge portion 18 </ b> B of the expansion restriction ring 18 when expanded by the expand ring 14. As a result, the expansion restriction ring 18 restricts the expansion of the outer peripheral side region 3 </ b> E between the contact portion 3 </ b> D that contacts the inner edge portion 18 </ b> B and the inner edge portion of the frame 4 in the annular portion region 3 </ b> B.
 次に、ワーク分割装置10Bによるワーク分割方法を説明するが、ワーク分割装置10Aによるワーク分割方法と略同一である。 Next, the work dividing method by the work dividing apparatus 10B will be described, but it is substantially the same as the work dividing method by the work dividing apparatus 10A.
 まず、図6の如く、ウェーハユニット2のフレーム4をフレーム固定部材7に、拡張規制リング18を介して固定する(固定工程)。 First, as shown in FIG. 6, the frame 4 of the wafer unit 2 is fixed to the frame fixing member 7 via the expansion restricting ring 18 (fixing step).
 次に、エキスパンドリング14を図6の位置から矢印B方向に上昇移動させ、環状部領域3Bの全領域の拡張を開始する(拡張工程)。 Next, the expanding ring 14 is moved upward in the direction of arrow B from the position shown in FIG. 6, and expansion of the entire region of the annular portion region 3B is started (expansion step).
 次に、エキスパンドリング14の上昇移動量が、フレーム4の厚さを超えると、環状部領域3Bが拡張規制リング18の内縁部18Bに当接し、環状部領域3Bのうち、外周側に位置する外周側領域3Eの拡張を規制する(拡張規制工程)。このとき、図8の如く環状部領域3Bは、内縁部18Bに当接した当接部3Dを境界として、外周側に位置する外周側領域3Eと、内周側に位置する内周側領域3Fとに分けられる。 Next, when the upward movement amount of the expand ring 14 exceeds the thickness of the frame 4, the annular portion region 3 </ b> B comes into contact with the inner edge portion 18 </ b> B of the expansion restriction ring 18, and is located on the outer peripheral side of the annular portion region 3 </ b> B. The expansion of the outer peripheral side region 3E is regulated (expansion regulation process). At this time, as shown in FIG. 8, the annular portion region 3B has an outer peripheral side region 3E positioned on the outer peripheral side and an inner peripheral side region 3F positioned on the inner peripheral side with the contact portion 3D contacting the inner edge 18B as a boundary. And divided.
 次に、エキスパンドリング14の上昇移動を続行し、環状部領域3Bのうち、外周側領域3Eを除く内周側領域3Fの拡張を継続して行うことにより、ウェーハ1を個々のチップ6に分割する(分割工程)。この後、エキスパンドリング14の上昇移動を停止する。 Next, the expanding movement of the expanding ring 14 is continued, and the wafer 1 is divided into individual chips 6 by continuing to expand the inner peripheral side region 3F excluding the outer peripheral side region 3E in the annular portion region 3B. (Dividing step). Thereafter, the upward movement of the expanding ring 14 is stopped.
 分割工程において、環状部領域3Bが拡張規制リング18の内縁部18Bに当接した以降のエキスパンドリング14による拡張動作では、外周側領域3Eの拡張が拡張規制リング18によって規制され、内周側領域3Fのみが拡張されていく。つまり、環状部領域3Bのバネ定数よりも大きくなった内周側領域3Fのバネ定数の張力がウェーハ1に付与される。これにより、ワーク分割装置10Bによれば、ワーク分割装置10Aと同様にチップサイズが小チップ(1mm)の場合に生じる分割予定ラインの未分割問題を解消することができる。 In the dividing step, in the expansion operation by the expand ring 14 after the annular portion region 3B comes into contact with the inner edge portion 18B of the expansion restricting ring 18, the expansion of the outer peripheral region 3E is restricted by the expansion restricting ring 18, and the inner peripheral region Only 3F will be expanded. That is, the tension of the spring constant of the inner peripheral region 3F that is larger than the spring constant of the annular portion region 3B is applied to the wafer 1. Thereby, according to the workpiece | work dividing apparatus 10B, the undivision | segmentation problem of the division | segmentation scheduled line which arises when a chip size is a small chip | tip (1 mm) similarly to the workpiece | work dividing apparatus 10A can be eliminated.
 また、エキスパンドリング14による環状部領域3Bの拡張時において、拡張規制リング18は、フレーム固定部材7とフレーム4に挟持された状態で外周側領域3Eの拡張を規制する。すなわち、フレーム固定部材7の内径(例えば361mm)が、フレーム4の内径である350mmよりも大きい場合であっても、拡張規制用開口部18Aの径が338mmの拡張規制リング18を別途設けることにより、フレーム固定部材7の内径が350mm未満であるのと同等の効果を得ることができる。つまり、第1実施形態の拡張規制リング16(図1、図2参照)と同等の効果を得ることができる。 Further, when the annular portion region 3B is expanded by the expand ring 14, the expansion restriction ring 18 restricts the expansion of the outer peripheral region 3E while being sandwiched between the frame fixing member 7 and the frame 4. That is, even when the inner diameter (for example, 361 mm) of the frame fixing member 7 is larger than 350 mm, which is the inner diameter of the frame 4, by providing the expansion restriction ring 18 with the expansion restriction opening 18A having a diameter of 338 mm separately. The same effect as when the inner diameter of the frame fixing member 7 is less than 350 mm can be obtained. That is, an effect equivalent to that of the expansion restriction ring 16 (see FIGS. 1 and 2) of the first embodiment can be obtained.
 また、ワーク分割装置10Bでは、拡張規制用開口部18Aの径(内径)が異なる複数の拡張規制リング18を予め揃えておくことが好ましい。これにより、予め加工条件として指定された内径の拡張規制リング18を選択して使用することができる。また、拡張規制リング18を備えていない既存(出荷済み)のワーク分割装置に拡張規制リング18を後付けすることができるので、既存のワーク分割装置を使用して、大きなチップから小さなチップまで処理することができるようになる。また、チップサイズが大チップの場合には、拡張規制リング18を既存のワーク分割装置から取り外すこともできる。なお、拡張規制用開口部18Aの径(内径)としては、338mmの他、例えば346mm、342mm、334mmを例示することができる。 In the work dividing apparatus 10B, it is preferable that a plurality of expansion restriction rings 18 having different diameters (inner diameters) of the expansion restriction openings 18A are arranged in advance. Thereby, the expansion restricting ring 18 having an inner diameter designated in advance as a processing condition can be selected and used. In addition, since the expansion restriction ring 18 can be retrofitted to an existing (shipped) work dividing apparatus that does not include the expansion restriction ring 18, the existing work dividing apparatus is used to process from a large chip to a small chip. Will be able to. Further, when the chip size is a large chip, the expansion restriction ring 18 can be detached from the existing work dividing device. As the diameter (inner diameter) of the expansion restricting opening 18A, for example, 346 mm, 342 mm, and 334 mm can be exemplified in addition to 338 mm.
 ところで、ウェーハ1に形成される分割予定ライン5の本数が多くなるに従って、ウェーハ1の分割に要する力を大きくしなければならないことは説明したが、ウェーハによっては、互いに交差するX方向及びY方向において、X方向と平行な分割予定ライン5の本数と、Y方向と平行な分割予定ライン5の本数とが同数のもの(図9参照)、又はX方向と平行な分割予定ライン5の本数と、Y方向と平行な分割予定ライン5の本数とが異なるもの(図10参照)がある。 By the way, although it has been explained that the force required to divide the wafer 1 has to be increased as the number of scheduled division lines 5 formed on the wafer 1 increases, the X direction and the Y direction intersecting each other depending on the wafer. , The number of the planned division lines 5 parallel to the X direction and the number of the planned division lines 5 parallel to the Y direction (see FIG. 9), or the number of the planned division lines 5 parallel to the X direction , The number of division lines 5 parallel to the Y direction is different (see FIG. 10).
 図9は、円形の拡張規制用開口部20Aを有する拡張規制リング20とウェーハユニット2とを重ねた平面図である。図9に示すウェーハ22は、X方向と平行な分割予定ライン5の本数と、Y方向と平行な分割予定ライン5の本数とが同数で、それらの間隔が等しいウェーハであり、分割されるチップ24の形状が、X方向とY方向の寸法が同一である正方形のものである。すなわち、図9に示すウェーハ22は、X方向とY方向において分割予定ライン5の密度が等しいウェーハである。このようなウェーハ22を円滑に分割する場合には、拡張規制用開口部20Aが円形の拡張規制リング20を使用することが好ましい。つまり、ウェーハ22と拡張規制用開口部20Aとは円形であり、ウェーハ22の外縁部と拡張規制用開口部20Aの内縁部とで囲まれる平面視ドーナツ形状の内周側領域3Fは、周方向のどの位置において同一の幅寸法eを有する。 FIG. 9 is a plan view in which the expansion restriction ring 20 having the circular expansion restriction opening 20A and the wafer unit 2 are overlapped. The wafer 22 shown in FIG. 9 is a wafer in which the number of the planned dividing lines 5 parallel to the X direction is the same as the number of the planned dividing lines 5 parallel to the Y direction, and the distance between them is the same. The shape of 24 is a square having the same dimensions in the X and Y directions. That is, the wafer 22 shown in FIG. 9 is a wafer in which the density of the division planned lines 5 is equal in the X direction and the Y direction. When such a wafer 22 is smoothly divided, it is preferable to use an expansion restriction ring 20 whose expansion restriction opening 20A has a circular shape. That is, the wafer 22 and the expansion restriction opening 20A are circular, and the inner peripheral side region 3F having a donut shape in plan view surrounded by the outer edge of the wafer 22 and the inner edge of the expansion restriction opening 20A is formed in the circumferential direction. It has the same width dimension e in any position of the throat.
 これにより、拡張される内周側領域3Fからウェーハ22の周縁部に均等な張力を付与することができる。すなわち、円形の拡張規制用開口部20Aを有する拡張規制リング20を使用することにより、X方向とY方向において分割予定ライン5の密度が等しいウェーハ22を分割するために好適な張力をウェーハ22に付与することができる。なお、X方向とY方向において分割予定ライン5の密度が等しいことと、X方向とY方向においてチップ6の密度が等しいことは等価である。 Thereby, uniform tension can be applied to the peripheral edge of the wafer 22 from the expanded inner peripheral region 3F. That is, by using the expansion restricting ring 20 having the circular expansion restricting opening 20A, a suitable tension is applied to the wafer 22 in order to divide the wafer 22 having the same density of the division lines 5 in the X direction and the Y direction. Can be granted. In addition, it is equivalent that the density of the division | segmentation scheduled line 5 is equal in the X direction and the Y direction, and the density of the chip 6 is equal in the X direction and the Y direction.
 図10は、楕円形の拡張規制用開口部26Aを有する拡張規制リング26とウェーハユニット2とを重ねた平面図である。図10に示すウェーハ28は、X方向と平行な分割予定ライン5の本数よりも、Y方向と平行な分割予定ライン5の本数が多いウェーハであって、分割されるチップ30の形状が、X方向の寸法が短くY方向の寸法が長い長方形のものである。すなわち、図10に示すウェーハ28は、X方向とY方向において分割予定ライン5の密度(チップ6の密度)が異なるウェーハである。このようなウェーハ28を円滑に分割する場合には、拡張規制用開口部26Aが楕円形の拡張規制リング26を使用することが好ましい。 FIG. 10 is a plan view in which the expansion restriction ring 26 having the elliptical expansion restriction opening 26A and the wafer unit 2 are overlapped. The wafer 28 shown in FIG. 10 is a wafer in which the number of planned division lines 5 parallel to the Y direction is larger than the number of planned division lines 5 parallel to the X direction, and the shape of the divided chips 30 is X A rectangle with a short dimension in the direction and a long dimension in the Y direction. That is, the wafer 28 shown in FIG. 10 is a wafer in which the density of the division lines 5 (the density of the chips 6) is different between the X direction and the Y direction. When such a wafer 28 is divided smoothly, it is preferable to use an expansion restriction ring 26 whose expansion restriction opening 26A has an elliptical shape.
 この場合、拡張規制用開口部26Aの楕円の短径aの方向を、分割予定ライン5の密度の高いX方向(チップ30の密度が高い方向、チップ30の短辺に平行な方向)と平行に合わせ、楕円の長径bの方向を、分割予定ライン5の密度の低いY方向(チップ30の密度の低い方向、チップ30の長辺に平行な方向)と平行に合わせる。 In this case, the direction of the minor axis a of the ellipse of the expansion restricting opening 26A is parallel to the X direction (the direction in which the density of the chip 30 is high, the direction parallel to the short side of the chip 30) of the division line 5 being high. Accordingly, the direction of the major axis b of the ellipse is aligned in parallel with the Y direction (the direction of low density of the chip 30, the direction parallel to the long side of the chip 30) with the low density of the division line 5.
 これにより、分割予定ライン5の密度の高いX方向と平行な方向に位置する内周側領域3FAは、幅寸法が小さくなってバネ定数が高くなるので、密度の高いX方向の分割予定ライン5を分割するための好適な張力をウェーハ28に付与することができる。
一方、分割予定ライン5の密度の低いY方向と平行な方向に位置する内周側領域3FBは、幅寸法は小さくならずバネ定数は小さいが、密度の低いY方向の分割予定ライン5を分割するための好適な張力をウェーハ28に付与することができる。よって、X方向とY方向において分割予定ライン5の密度が異なるウェーハ28に対して好適な分割能力を実現することができる。
As a result, the inner peripheral area 3FA located in the direction parallel to the high-density X direction of the division line 5 has a small width dimension and a high spring constant, so that the high-density division line 5 in the X direction has a high density. A suitable tension for splitting can be applied to the wafer 28.
On the other hand, the inner peripheral side region 3FB located in the direction parallel to the low Y direction of the division line 5 has a small width and a small spring constant, but the low division density line 5 in the Y direction is divided. Thus, a suitable tension can be applied to the wafer 28. Therefore, it is possible to realize a suitable division capability for the wafer 28 in which the density of the division planned lines 5 is different in the X direction and the Y direction.
 また、ダイシングテープ3には、X方向のバネ定数とY方向のバネ定数とが等しいもの、又はテープの生成方向に起因してX方向のバネ定数とY方向のバネ定数とに差が生じ、X方向とY方向の伸び方に違いがあるものがある。原則的には、テープの生成方向に対して平行な方向が伸び易く、交差する方向が伸び難い傾向にある。 Further, in the dicing tape 3, the spring constant in the X direction and the spring constant in the Y direction are equal, or a difference occurs between the spring constant in the X direction and the spring constant in the Y direction due to the tape generation direction. There is a difference in how the X direction and the Y direction extend. In principle, the direction parallel to the tape production direction tends to stretch, and the intersecting direction tends to be difficult to stretch.
 このようなダイシングテープ3の伸び特性に着目し、X方向のバネ定数とY方向のバネ定数とが等しいダイシングテープ3の場合には、図9に示したような拡張規制用開口部20Aが円形の拡張規制リング20を使用することが好ましい。これにより、拡張時における内周側領域のX方向の伸び量とY方向の伸び量とが等しくなるので、内周側領域3Fからウェーハに均等な張力を付与することができる。 Paying attention to such elongation characteristics of the dicing tape 3, in the case of the dicing tape 3 in which the spring constant in the X direction and the spring constant in the Y direction are equal, the expansion restricting opening 20A as shown in FIG. 9 is circular. It is preferable to use the expansion restricting ring 20. Thereby, since the extension amount in the X direction and the extension amount in the Y direction of the inner peripheral side region at the time of expansion become equal, an equal tension can be applied to the wafer from the inner peripheral side region 3F.
 一方、X方向のバネ定数とY方向のバネ定数とが異なる異方性のあるダイシングテープ3の場合には、図10に示したような楕円形の拡張規制用開口部26Aを有する拡張規制リング26を使用することが好ましい。 On the other hand, in the case of the dicing tape 3 having anisotropy in which the spring constant in the X direction and the spring constant in the Y direction are different, an expansion restriction ring having an elliptical expansion restriction opening 26A as shown in FIG. Preferably 26 is used.
 この場合、楕円の短径aの方向をバネ定数が小さいX方向と平行に合わせ、楕円の長径bの方向を、バネ定数が大きいY方向と平行に合わせる。これにより、内周側領域の拡張時には、バネ定数の小さい方向と平行なX方向に位置する内周側領域3FAのバネ定数が高くなって、楕円の長径bの方向と平行な方向に位置する内周側領域3FBのバネ定数に近づくので、内周側領域3FA、3FBからウェーハに略均等な張力を付与することができる。よって、X方向のバネ定数とY方向のバネ定数とが異なる異方性のあるダイシングテープ3にマウントされたウェーハに対して好適な分割能力を実現することができる。 In this case, the direction of the minor axis a of the ellipse is aligned with the X direction having a small spring constant, and the direction of the major axis b of the ellipse is aligned with the Y direction having a large spring constant. As a result, when the inner peripheral side region is expanded, the spring constant of the inner peripheral side region 3FA located in the X direction parallel to the direction in which the spring constant is small increases, and is located in a direction parallel to the direction of the major axis b of the ellipse. Since the spring constant of the inner peripheral region 3FB is approached, a substantially uniform tension can be applied to the wafer from the inner peripheral regions 3FA, 3FB. Therefore, it is possible to realize a suitable dividing ability for the wafer mounted on the dicing tape 3 having anisotropy in which the spring constant in the X direction and the spring constant in the Y direction are different.
 ここで本発明の効果を確認するために、本発明者が行った実験結果について説明する。 Here, in order to confirm the effect of the present invention, the results of experiments conducted by the present inventor will be described.
 図11のグラフには、図23のウェーハユニット2に対し、拡張規制リングを使用しないときの環状部領域の拡張率(径350mm)と、拡張規制リングを使用したときの内周側領域の拡張率であって、その拡張規制用開口部の径を346mm、342mm、338mmに設定したときの拡張率とが示されている。なお、図11の「MD(Machine Direction)」とは、ダイシングテープ3の製造時の送り方向に平行な方向であって、バネ定数の小さい方向である。また、「CD(Cross Direction)」とは、MDと直交する方向であって、バネ定数の大きい方向である。 The graph of FIG. 11 shows the expansion rate (diameter 350 mm) of the annular portion region when the expansion restricting ring is not used and the expansion of the inner peripheral region when the expansion restricting ring is used with respect to the wafer unit 2 of FIG. The expansion rate when the diameter of the expansion restricting opening is set to 346 mm, 342 mm, and 338 mm is shown. In addition, “MD (Machine Direction)” in FIG. 11 is a direction parallel to the feeding direction at the time of manufacturing the dicing tape 3 and having a small spring constant. Further, “CD (Cross Direction)” is a direction orthogonal to MD and having a large spring constant.
 図11の実験結果によれば、拡張規制リングを使用しないときの環状部領域の拡張率が「MD」では6.1%、「CD」では6.0%であった。これに対して、拡張規制用開口部の径を346mm、342mm、338mmと小さくしていくに従って、内周側領域の拡張率が「MD」では6.8%、7.5%、8.4%に上昇し、「CD」では7.2%、7.5%、8.1%に上昇した。つまり、拡張規制用開口部の径を小さくするに従い、チップの分割能力が向上することを確認できた。 According to the experimental results of FIG. 11, the expansion rate of the annular region when not using the expansion restriction ring was 6.1% for “MD” and 6.0% for “CD”. On the other hand, as the diameter of the expansion restricting opening is reduced to 346 mm, 342 mm, and 338 mm, the expansion rate of the inner peripheral region is 6.8%, 7.5%, 8.4 for “MD”. In the case of “CD”, it increased to 7.2%, 7.5%, and 8.1%. That is, it was confirmed that as the diameter of the expansion restricting opening was reduced, the chip dividing ability was improved.
 図12のグラフには、図23のウェーハユニット2に対し、拡張規制リングを使用しないときのチップの分割率(径350mm)と、拡張規制リングを使用したときのチップの分割率であって、その拡張規制用開口部の径を338mmに設定した場合の分割率が示されている。なお、図12の「DAF有り」の分割率とは、DAFを介してウェーハ1をダイシングテープ3に貼付したときのチップ6の分割率であり、また、「DAF無し」の分割率とは、ウェーハ1をダイシングテープ3に直接貼付したときのチップ6の分割率である。 The graph of FIG. 12 shows the chip division rate (diameter 350 mm) when the expansion restriction ring is not used and the chip division ratio when the expansion restriction ring is used for the wafer unit 2 of FIG. The division ratio when the diameter of the expansion restricting opening is set to 338 mm is shown. The division ratio “with DAF” in FIG. 12 is the division ratio of the chip 6 when the wafer 1 is attached to the dicing tape 3 via the DAF, and the division ratio “without DAF” The division ratio of the chip 6 when the wafer 1 is directly attached to the dicing tape 3.
 図12の実験結果によれば、拡張規制リングを使用しないときのチップ6の分割率が「DAF有り」では15.0%、「DAF無し」では41.0%であった。これに対して、拡張規制用開口部の径が338mmの拡張規制リングを使用したときのチップ6の分割率が「DAF有り」では61.0%に上昇し、「DAF無し」では100%に上昇した。つまり、「DAF有り」であっても「DAF無し」であっても、拡張規制リングを使用することにより、チップ6の分割能力が向上することを確認できた。 According to the experimental results of FIG. 12, when the expansion restriction ring is not used, the division ratio of the chip 6 was 15.0% when “with DAF” and 41.0% when “without DAF”. On the other hand, when using an expansion restriction ring with an expansion restriction opening having a diameter of 338 mm, the split ratio of the tip 6 increases to 61.0% when “with DAF” and 100% when “without DAF”. Rose. In other words, it was confirmed that the division capability of the chip 6 was improved by using the extended restriction ring regardless of whether “DAF is present” or “without DAF”.
 上記の実験結果から、実施形態のワーク分割装置10A、10Bによれば、拡張規制リング16によって外周側領域3Eの拡張を規制し、内周側領域3Fのみを拡張させることで、環状部領域3Bよりも拡張率が増加し、ウェーハ1に付与する張力を増大させることができるので、チップサイズが小チップの場合に生じる分割予定ライン5の未分割問題を解消できることを確認できた。 From the above experimental results, according to the workpiece dividing devices 10A and 10B of the embodiment, the expansion restriction ring 16 restricts the expansion of the outer peripheral side region 3E and expands only the inner peripheral side region 3F. As a result, the expansion rate can be increased, and the tension applied to the wafer 1 can be increased. Therefore, it has been confirmed that the undivided problem of the division line 5 that occurs when the chip size is a small chip can be solved.
 〔第3実施形態のワーク分割装置10C〕
 図13は、第3実施形態に係るワーク分割装置10Cの要部断面図である。
[Work Dividing Device 10C of Third Embodiment]
FIG. 13 is a cross-sectional view of a main part of a workpiece dividing apparatus 10C according to the third embodiment.
 図13のワーク分割装置10Cと図1に示したワーク分割装置10Aとの構造の相違点は、図13のワーク分割装置10Cの拡張規制リング32に凸条部34が設けられている点にある。 The difference in structure between the workpiece dividing apparatus 10C in FIG. 13 and the workpiece dividing apparatus 10A shown in FIG. 1 is that a protrusion 34 is provided on the expansion restriction ring 32 of the workpiece dividing apparatus 10C in FIG. .
 図13の拡張規制リング32を説明するに当たり、図1の拡張規制リング16と同一又は類似の部材については同一の符号を付してその説明は省略する。 In describing the expansion restriction ring 32 of FIG. 13, the same or similar members as those of the expansion restriction ring 16 of FIG.
 図13の拡張規制リング32には、フレーム固定部12と、ダイシングテープ3の貼付面3Gに向けて突出形成された凸条部34と、が備えられる。凸条部34は、拡張規制リング32の拡張規制用開口部32Aの周縁部に沿って設けられている。また、凸条部34の先端部34Aによってテープ位置規制部が構成されており、先端部34Aは、ダイシングテープ3の外周部が固定(貼付)されるフレーム4の裏面(テープ貼付面)4Aと同一面上の位置に配置されている。つまり、テープ位置規制部を構成する凸条部34の先端部34Aは、フレーム4が拡張規制リング32に固定された際に、ダイシングテープ3の貼付面3Gと同一面上の位置に配置されている。 13 includes a frame fixing portion 12 and a ridge 34 that is formed to project toward the affixing surface 3G of the dicing tape 3. The ridge 34 is provided along the peripheral edge of the expansion restricting opening 32 </ b> A of the expansion restricting ring 32. Further, a tape position restricting portion is constituted by the tip portion 34A of the ridge 34, and the tip portion 34A is connected to the back surface (tape applying surface) 4A of the frame 4 to which the outer peripheral portion of the dicing tape 3 is fixed (attached). They are arranged on the same plane. That is, the tip end 34A of the ridge 34 constituting the tape position restricting portion is arranged at a position on the same surface as the attaching surface 3G of the dicing tape 3 when the frame 4 is fixed to the expansion restricting ring 32. Yes.
 図13の拡張規制リング32によれば、エキスパンドリング14によるダイシングテープ3の拡張前の状態から拡張規制リング32の凸条部34の先端部34Aがダイシングテープ3の貼付面3Gに既に当接されている。つまり、エキスパンドリング14によるダイシングテープ3の拡張前の状態からダイシングテープ3の外周側領域3Eの拡張が拡張規制リング32によって規制されている。 According to the expansion restricting ring 32 of FIG. 13, the tip 34 </ b> A of the protrusion 34 of the expansion restricting ring 32 is already in contact with the application surface 3 </ b> G of the dicing tape 3 from the state before the dicing tape 3 is expanded by the expand ring 14. ing. That is, the expansion restriction ring 32 restricts the expansion of the outer peripheral side region 3E of the dicing tape 3 from the state before the expansion of the dicing tape 3 by the expand ring 14.
 これにより、図13のワーク分割装置10Cによれば、エキスパンドリング14がダイシングテープ3に当接した直後からダイシングテープの内周側領域3Fの拡張を開始することができる。よって、ワーク分割装置10Cによれば、凸条部32を備えていない図1の拡張規制リング14を用いた場合よりも、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を更に効率よく解消することができる。 Thus, according to the workpiece dividing device 10C of FIG. 13, the expansion of the inner peripheral side region 3F of the dicing tape can be started immediately after the expanding ring 14 contacts the dicing tape 3. Therefore, according to the workpiece dividing apparatus 10C, the problem of undivided lines to be divided that occurs when the chip size is a small chip is further increased as compared with the case where the extended restriction ring 14 of FIG. It can be solved efficiently.
 また、図1のワーク分割装置10A、及び図13のワーク分割装置10Cにおいて、エキスパンドリング14の拡張動作終了位置の高さを同一とした場合、図13のワーク分割装置10Cでは、図1のワーク分割装置10Aよりも、ダイシングテープ3の内側領域3Fの拡張量(張力)が増加する。よって、図13のワーク分割装置10Cによれば、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を更に解消することができる。 Further, in the workpiece dividing apparatus 10A of FIG. 1 and the workpiece dividing apparatus 10C of FIG. 13, when the height of the expansion operation end position of the expand ring 14 is the same, the workpiece dividing apparatus 10C of FIG. The expansion amount (tension) of the inner region 3F of the dicing tape 3 is increased as compared with the dividing device 10A. Therefore, according to the workpiece dividing apparatus 10C of FIG. 13, the problem of undivided division lines that occurs when the chip size is a small chip can be further solved.
 一方で、エキスパンドリング14の拡張動作終了時における、ダイシングテープ3の内側領域3Fの拡張量を、図1のダイシング装置10Aを基準とした場合、図13のワーク分割装置10Cでは、図1のワーク分割装置10Aと比較して、エキスパンドリング14の拡張動作終了位置の高さをフレーム4の厚さ分だけ低くすることができる。これにより、図13のワーク分割装置10Cによれば、エキスパンドリング14の少ない上昇移動量であっても十分な拡張量(張力)を得ることができるので、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を更に効率よく解消することができる。 On the other hand, when the expansion amount of the inner region 3F of the dicing tape 3 at the end of the expansion operation of the expand ring 14 is based on the dicing apparatus 10A of FIG. 1, the work dividing apparatus 10C of FIG. Compared with the dividing device 10 </ b> A, the height of the expansion operation end position of the expanding ring 14 can be lowered by the thickness of the frame 4. Thus, according to the work dividing apparatus 10C of FIG. 13, a sufficient expansion amount (tension) can be obtained even with a small upward movement amount of the expanding ring 14, and thus the division that occurs when the chip size is a small chip. The problem of undivided scheduled lines can be solved more efficiently.
 具体的に説明すると、図14に示すワーク分割装置10Cの要部拡大断面図の如く、拡張規制リング32を用いた場合には、凸条部34を備えていない図1の拡張規制リング14を用いた場合と比較して、エキスパンドリング14の拡張動作終了位置の高さをフレーム4の厚さ分だけ低くすることができ、その分だけチップサイズが小チップの場合に生じる分割予定ラインの未分割問題を効率よく解消することができる。なお、図14には、凸条部32を備えていない拡張規制リング14を用いた場合における、エキスパンドリング14の拡張動作終了位置を二点鎖線で示している。 More specifically, when the expansion restriction ring 32 is used as shown in the enlarged cross-sectional view of the main part of the workpiece dividing apparatus 10C shown in FIG. 14, the expansion restriction ring 14 of FIG. Compared with the case where the expansion ring 14 is used, the height of the expansion operation end position of the expand ring 14 can be lowered by the thickness of the frame 4. The division problem can be solved efficiently. Note that, in FIG. 14, the expansion operation end position of the expand ring 14 in the case where the expansion restriction ring 14 that does not include the ridge portion 32 is used is indicated by a two-dot chain line.
 また、ワーク分割装置10Cによれば、拡張規制リング32の凸条部34の先端部34Aにおいて、図1の拡張規制リング14の内縁部16Bと同様に、一例として算術平均粗さ(Ra)が1.6(μm)となる表面加工が施されている。これにより、先端部34Aと環状部領域3Bとの間の摩擦力によって、先端部34Aと環状部領域3Bとが相対的に滑ることを防止している。 Further, according to the workpiece dividing device 10C, the arithmetic average roughness (Ra) is, as an example, in the distal end portion 34A of the protruding portion 34 of the expansion restriction ring 32, as in the case of the inner edge portion 16B of the expansion restriction ring 14 in FIG. Surface processing to 1.6 (μm) is performed. This prevents the tip portion 34A and the annular portion region 3B from slipping relatively due to the frictional force between the tip portion 34A and the annular portion region 3B.
 〔第4実施形態のワーク分割装置10D〕
 図15は、第4実施形態に係るワーク分割装置10Dの要部断面図である。
[Work Dividing Device 10D of Fourth Embodiment]
FIG. 15 is a cross-sectional view of a main part of a workpiece dividing apparatus 10D according to the fourth embodiment.
 図15のワーク分割装置10Dと図13に示したワーク分割装置10Cとの構造の相違点は、ワーク分割装置10Dの拡張規制リング36の凸条部38の先端部38Aが、ダイシングテープ3の貼付面3Gと同一面よりも拡張動作前のエキスパンドリング14が配置される側に配置されている点にある。 The difference in structure between the workpiece dividing device 10D of FIG. 15 and the workpiece dividing device 10C shown in FIG. 13 is that the tip portion 38A of the protruding strip portion 38 of the expansion regulating ring 36 of the workpiece dividing device 10D is attached to the dicing tape 3. It exists in the point arrange | positioned rather than the same surface as the surface 3G in the side by which the expand ring 14 before expansion operation | movement is arrange | positioned.
 図15の拡張規制リング36を説明するに当たり、図13の拡張規制リング32と同一又は類似の部材については同一の符号を付してその説明は省略する。 15, the same or similar members as those of the expansion restriction ring 32 of FIG. 13 are denoted by the same reference numerals and description thereof is omitted.
 図15の拡張規制リング36によれば、エキスパンドリング14によるダイシングテープ3の拡張前の状態から、ダイシングテープ3の貼付面3Gが拡張規制リング36の凸条部38の先端部38Aに既に押圧されている。つまり、エキスパンドリング14によるダイシングテープ3の拡張前の状態からダイシングテープ3の外周側領域3Eの拡張が拡張規制リング32によって規制され、かつ内周側領域3Fの拡張が既に行われている。よって、ワーク分割装置10Dによれば、図13のワーク分割装置Cと比較して、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を更に効率よく解消することができる。 According to the expansion restricting ring 36 of FIG. 15, the pasting surface 3G of the dicing tape 3 is already pressed against the tip 38 </ b> A of the protruding strip 38 of the expansion restricting ring 36 from the state before the dicing tape 3 is expanded by the expand ring 14. ing. That is, the expansion of the outer peripheral side region 3E of the dicing tape 3 from the state before the expansion of the dicing tape 3 by the expanding ring 14 is restricted by the expansion restricting ring 32, and the inner peripheral side region 3F has already been expanded. Therefore, according to the workpiece dividing apparatus 10D, compared to the workpiece dividing apparatus C in FIG. 13, it is possible to more efficiently solve the problem of undivided lines to be divided that occur when the chip size is a small chip.
 また、図15のワーク分割装置10D、及び図13のワーク分割装置10Cにおいて、エキスパンドリング14の拡張動作終了位置の高さを同一とした場合、図15のワーク分割装置10Dでは、図13のワーク分割装置10Cよりも、ダイシングテープ3の内側領域3Fの拡張量(張力)が増加する。よって、図15のワーク分割装置10Dによれば、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を更に解消することができる。 Further, in the workpiece dividing apparatus 10D of FIG. 15 and the workpiece dividing apparatus 10C of FIG. 13, when the height of the expansion operation end position of the expand ring 14 is the same, the workpiece dividing apparatus 10D of FIG. The expansion amount (tension) of the inner region 3F of the dicing tape 3 is increased as compared with the dividing device 10C. Therefore, according to the workpiece dividing apparatus 10D of FIG. 15, the problem of undivided division lines that occurs when the chip size is a small chip can be further solved.
 一方で、エキスパンドリング14の拡張動作終了時における、ダイシングテープ3の内側領域3Fの拡張量を、図13のダイシング装置10Cを基準とした場合、図15のワーク分割装置10Dでは、図13のワーク分割装置10Cと比較して、エキスパンドリング14の拡張動作終了位置の高さを、凸条部34に対する凸条部38の突出長さの差分だけ低くすることができる。これにより、図15のワーク分割装置10Dによれば、図13のワーク分割装置10Cよりも、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を更に効率よく解消することができる。 On the other hand, when the expansion amount of the inner region 3F of the dicing tape 3 at the end of the expansion operation of the expand ring 14 is based on the dicing apparatus 10C of FIG. 13, the work dividing apparatus 10D of FIG. Compared with the dividing device 10 </ b> C, the height of the expansion operation end position of the expand ring 14 can be lowered by the difference in the protruding length of the protruding line portion 38 relative to the protruding line portion 34. As a result, according to the work dividing apparatus 10D of FIG. 15, the problem of undivided lines to be divided that occurs when the chip size is a small chip can be solved more efficiently than the work dividing apparatus 10C of FIG.
 具体的に説明すると、図16に示すワーク分割装置10Dの要部拡大断面図の如く、拡張規制リング36を用いた場合には、凸条部32を備えている図13の拡張規制リング32を用いた場合と比較して、エキスパンドリング14の拡張終了位置の高さを、凸条部34に対する凸条部38の突出長さの差分だけ短くすることができ、その差分だけチップサイズが小チップの場合に生じる分割予定ラインの未分割問題を効率よく解消することができる。なお、図16には、凸条部32を備えている拡張規制リング32を用いた場合における、エキスパンドリング14の拡張動作終了位置を二点鎖線で示している。 More specifically, when the expansion restriction ring 36 is used as shown in the enlarged cross-sectional view of the main part of the workpiece dividing apparatus 10D shown in FIG. 16, the expansion restriction ring 32 of FIG. Compared with the case of using, the height of the expansion end position of the expanding ring 14 can be shortened by the difference in the protruding length of the protruding strip portion 38 relative to the protruding strip portion 34, and the chip size is reduced by the difference. In this case, the problem of undivided lines to be divided that occurs can be efficiently solved. In FIG. 16, the expansion operation end position of the expand ring 14 in the case where the expansion restriction ring 32 including the ridge portion 32 is used is indicated by a two-dot chain line.
 また、ワーク分割装置10Dによれば、拡張規制リング36の凸条部38の先端部38Aにおいて、図1の拡張規制リング14の内縁部16Bと同様に、一例として算術平均粗さ(Ra)が1.6(μm)となる表面加工が施されている。これにより、先端部38Aと環状部領域3Bとの間の摩擦力によって、先端部38Aと環状部領域3Bとが相対的に滑ることを防止している。 Further, according to the workpiece dividing device 10D, the arithmetic average roughness (Ra) is, as an example, in the distal end portion 38A of the protruding strip portion 38 of the expansion restriction ring 36, similarly to the inner edge portion 16B of the expansion restriction ring 14 in FIG. Surface processing to 1.6 (μm) is performed. This prevents the tip portion 38A and the annular portion region 3B from slipping relatively due to the frictional force between the tip portion 38A and the annular portion region 3B.
 〔第5実施形態のワーク分割装置10E〕
 図17は、第5実施形態に係るワーク分割装置10Eの要部拡大断面図である。
[Work Dividing Device 10E of Fifth Embodiment]
FIG. 17 is an enlarged cross-sectional view of a main part of a workpiece dividing apparatus 10E according to the fifth embodiment.
 図17のワーク分割装置10Eは、フレーム固定部材7に拡張規制リング40が着脱自在に設けられたものである。なお、拡張規制リング40を説明するに当たり、図13の拡張規制リング32と同一又は類似の部材については同一の符号を付してその説明する。 In the workpiece dividing device 10E of FIG. 17, an expansion regulating ring 40 is detachably provided on the frame fixing member 7. In the description of the expansion restricting ring 40, the same or similar members as those of the expansion restricting ring 32 in FIG.
 図17の拡張規制リング40には、ダイシングテープ3の貼付面3Gに向けた凸条部34が、拡張規制リング40の拡張規制用開口部40Aの周縁部に沿って設けられている。また、凸条部34の先端部34Aは、ダイシングテープ3の貼付面3Gと同一面上の位置(図13参照)に配置されている。 17 is provided with a ridge 34 directed toward the affixing surface 3G of the dicing tape 3 along the peripheral edge of the expansion restricting opening 40A of the expansion restricting ring 40. Further, the tip end portion 34 </ b> A of the ridge 34 is disposed at a position (see FIG. 13) on the same plane as the pasting surface 3 </ b> G of the dicing tape 3.
 これにより、図17のワーク分割装置10Eによれば、エキスパンドリング14がダイシングテープ3に当接した直後からダイシングテープの内周側領域3Fの拡張を開始することができる。よって、ワーク分割装置10Eによれば、凸条部32を備えていない図1の拡張規制リング14を用いた場合よりも、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を更に効率よく解消することができる。 Thereby, according to the workpiece dividing apparatus 10E of FIG. 17, the expansion of the inner peripheral side region 3F of the dicing tape can be started immediately after the expanding ring 14 contacts the dicing tape 3. Therefore, according to the workpiece dividing device 10E, the problem of undivided lines to be divided that occurs when the chip size is a small chip is further increased than when the extended restriction ring 14 of FIG. It can be solved efficiently.
 〔第6実施形態のワーク分割装置10F〕
 図18は、第6実施形態に係るワーク分割装置10Fの要部拡大断面図である。
[Work Dividing Device 10F of Sixth Embodiment]
FIG. 18 is an enlarged cross-sectional view of a main part of a workpiece dividing apparatus 10F according to the sixth embodiment.
 図18のワーク分割装置10Fは、フレーム固定部材7に拡張規制リング42が着脱自在に設けられたものである。なお、拡張規制リング42を説明するに当たり、図15の拡張規制リング36と同一又は類似の部材については同一の符号を付してその説明する。 The work dividing apparatus 10F in FIG. 18 is provided with an expansion regulating ring 42 detachably attached to the frame fixing member 7. In describing the expansion restriction ring 42, the same or similar members as those of the expansion restriction ring 36 in FIG.
 図18の拡張規制リング42には、ダイシングテープ3の貼付面3Gに向けた凸条部38が、拡張規制リング42の拡張規制用開口部42Aの周縁部に沿って設けられている。また、凸条部38の先端部38Aは、拡張動作前のエキスパンドリング14が配置される側に配置されている。 18 is provided with a ridge portion 38 directed toward the affixing surface 3G of the dicing tape 3 along the peripheral edge of the expansion restricting opening 42A of the expansion restricting ring 42. Moreover, the front-end | tip part 38A of the protruding item | line part 38 is arrange | positioned at the side by which the expand ring 14 before expansion operation | movement is arrange | positioned.
 これにより、図18のワーク分割装置10Fによれば、エキスパンドリング14がダイシングテープ3に当接する前からダイシングテープの内周側領域3Fの拡張が開始されているので、凸条部34を備えている図17の拡張規制リング40を用いた場合よりも、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を更に効率よく解消することができる。 Thereby, according to the workpiece dividing apparatus 10F of FIG. 18, since the expansion of the inner peripheral side region 3F of the dicing tape is started before the expanding ring 14 abuts on the dicing tape 3, the ridge portion 34 is provided. The problem of undivided lines to be divided that occurs when the chip size is a small chip can be solved more efficiently than in the case of using the expansion restriction ring 40 of FIG.
 ところで、図5に示した分割工程S130の後工程において、サブリングと称される拡張保持リングをフレーム4に嵌合させてダイシングテープ3の拡張状態を保持する場合がある。この拡張保持リングは、外周側領域3Eを引き延ばした状態でフレーム4に嵌合される。拡張保持リングを使用することにより、隣接する分割されたチップ同士の接触を規制できるので、チップの損傷を防止できるという効果がある。 Incidentally, there is a case where the dicing tape 3 is held in an expanded state by fitting an expansion holding ring called a sub-ring into the frame 4 in the subsequent step of the dividing step S130 shown in FIG. The extended holding ring is fitted to the frame 4 in a state where the outer peripheral side region 3E is extended. By using the extended holding ring, contact between adjacent divided chips can be restricted, so that the chip can be prevented from being damaged.
 既述した図13~図18のワーク分割装置10C~10Fによれば、凸条部34、38の先端部34A、38Aによって、外周側領域3Eの拡張を規制することができるので、外周側領域3Eのダイシングテープ3が伸びず、その厚さが薄くなることを防止できる。そのため、拡張保持リングが外周側領域3Eを引き延ばした状態でフレーム4に装着された場合でも、外周側領域3Eが破れることを防止できる。 According to the workpiece dividing devices 10C to 10F of FIGS. 13 to 18 described above, the expansion of the outer peripheral side region 3E can be restricted by the tip portions 34A and 38A of the ridges 34 and 38, so that the outer peripheral side region It is possible to prevent the 3E dicing tape 3 from extending and reducing its thickness. Therefore, even when the extended holding ring is attached to the frame 4 in a state where the outer peripheral side region 3E is extended, the outer peripheral side region 3E can be prevented from being broken.
 また、図5に示した分割工程S130の後工程において、拡張後の弛んだ外周側領域3Eのダイシングテープ3を光加熱によって熱収縮させて再度緊張させる加熱工程が行われる場合がある。この加熱工程が行われることにより、外周側領域3Eのダイシングテープ3を再度緊張させることができ、分割工程S130の後工程での処理が容易になるという効果がある。 Further, in the subsequent step of the dividing step S130 shown in FIG. 5, there is a case where a heating step is performed in which the dicing tape 3 in the loosened outer peripheral side region 3E after expansion is thermally contracted by light heating and is tensioned again. By performing this heating process, the dicing tape 3 in the outer peripheral side region 3E can be tensioned again, and there is an effect that the process in the subsequent process of the dividing process S130 becomes easy.
 既述した図13~図18のワーク分割装置10C~10Fによれば、外周側領域3Eの厚さが薄くならないので、光加熱による外周側領域3Eの熱収縮工程において、外周側領域3Eの光吸収率が上がり、光から熱への変換効率が高くなる。これにより、外周側領域3Eを短時間で熱収縮させることができる。 According to the workpiece dividing devices 10C to 10F of FIGS. 13 to 18 described above, the thickness of the outer peripheral side region 3E is not reduced. Therefore, in the heat shrinking process of the outer peripheral side region 3E by light heating, the light of the outer peripheral side region 3E Absorption rate increases, and conversion efficiency from light to heat increases. Thereby, the outer peripheral side area | region 3E can be heat-shrinked in a short time.
 図19のグラフは、ダイシングテープ3の拡張率(%)が縦軸に示され、エキスパンドリング14の上昇移動による環状部領域3Bの突き上げ量(mm)が横軸に示されている。 In the graph of FIG. 19, the expansion rate (%) of the dicing tape 3 is shown on the vertical axis, and the push-up amount (mm) of the annular portion region 3B due to the upward movement of the expand ring 14 is shown on the horizontal axis.
 また、図19では、後述するように突き上げ量に応じた拡張率が、拡張規制リング16、18、32、36、40、42毎に異なることが示されている。なお、拡張規制リング18による拡張率は、拡張規制リング16による拡張率と等しいので、拡張規制リング18による拡張率の説明は省略する。同様に、拡張規制リング40による拡張率は、拡張規制リング32による拡張率と等しく、拡張規制リング42による拡張率は、拡張規制リング36による拡張率と等しいので、拡張規制リング40、42による拡張率の説明も省略する。 FIG. 19 also shows that the expansion rate corresponding to the push-up amount differs for each expansion restriction ring 16, 18, 32, 36, 40, 42 as described later. Since the expansion rate by the expansion restriction ring 18 is equal to the expansion rate by the expansion restriction ring 16, the description of the expansion rate by the expansion restriction ring 18 is omitted. Similarly, the expansion rate due to the expansion restriction ring 40 is equal to the expansion rate due to the expansion restriction ring 32, and the expansion rate due to the expansion restriction ring 42 is equal to the expansion rate due to the expansion restriction ring 36. A description of the rate is also omitted.
 図19の線Aは、拡張規制リングを使用しない場合(拡張規制用開口部16Aの径が350mmに相当)の拡張率の変化を示している。線Bは、拡張規制用開口部16Aの径が338mmの拡張規制リング16を適用した場合の拡張率の変化を示している。線Cは、拡張規制用開口部32Aの径が338mmの拡張規制リング32を適用した場合の拡張率の変化を示している。線Dは、拡張規制用開口部36Aの径が338mmの拡張規制リング36を適用した場合の拡張率の変化を示している。なお、一例として、拡張規制リング32の凸条部34の突出長は、後述するようにフレーム4の厚さと等しい1.5mmに設定し、拡張規制リング36の凸条部38の突出長は、4.5mmに設定した。 A line A in FIG. 19 shows a change in the expansion rate when the expansion restriction ring is not used (the diameter of the expansion restriction opening 16A corresponds to 350 mm). Line B shows the change in expansion rate when the expansion restriction ring 16 having a diameter of the expansion restriction opening 16A of 338 mm is applied. A line C indicates a change in expansion rate when the expansion restriction ring 32 having a diameter of the expansion restriction opening 32A of 338 mm is applied. Line D shows the change in the expansion rate when the expansion restricting ring 36 having the expansion restricting opening 36A having a diameter of 338 mm is applied. As an example, the protrusion length of the protrusion 34 of the expansion restriction ring 32 is set to 1.5 mm, which is equal to the thickness of the frame 4 as described later, and the protrusion length of the protrusion 38 of the expansion restriction ring 36 is Set to 4.5 mm.
 図20は、拡張分割工程時のエキスパンドリング14の動作を示した概略図である。図20には、図19で示した線A、B、C、Dの拡張率を算出するための各部材の寸法が示されている。 FIG. 20 is a schematic diagram showing the operation of the expanding ring 14 during the expansion division process. FIG. 20 shows the dimensions of each member for calculating the expansion rate of the lines A, B, C, and D shown in FIG.
 図20によれば、フレーム4の内径D1が350mm、フレーム4の厚さtが1.5mm、拡張規制リング16(32、36)の拡張規制用開口部16A(32A、36A)の径D2が338mmであることが示されている。 According to FIG. 20, the inner diameter D1 of the frame 4 is 350 mm, the thickness t of the frame 4 is 1.5 mm, and the diameter D2 of the expansion restricting opening 16A (32A, 36A) of the expansion restricting ring 16 (32, 36). It is shown to be 338 mm.
 また、図20の符号xは、エキスパンドリング14の上昇移動による環状部領域3Bの突き上げ量を示している。更に、エキスパンドリング14の上端には、ダイシングテープ3との摩擦力を低減するローラ44が配置され、ローラ44の配置径D3が323.2mmであることが示されている。図20の符号dは、ローラ44の直径を示している。なお、線Aの拡張率(%)は、ローラ44の直径dを5mmとして算出し、線B、C、Dの拡張率(%)は、ローラ44の直径dを7mmとして算出した。 Further, the symbol x in FIG. 20 indicates the push-up amount of the annular portion region 3B due to the upward movement of the expand ring 14. Further, a roller 44 for reducing the frictional force with the dicing tape 3 is disposed at the upper end of the expanding ring 14, and the arrangement diameter D3 of the roller 44 is 323.2 mm. A symbol d in FIG. 20 indicates the diameter of the roller 44. The expansion rate (%) of the line A was calculated with the diameter d of the roller 44 being 5 mm, and the expansion rates (%) of the lines B, C, and D were calculated with the diameter d of the roller 44 being 7 mm.
 以下、図19に基づいて、拡張規制リング16、32、36の各拡張率について説明する。 Hereinafter, the expansion rates of the expansion restriction rings 16, 32, and 36 will be described with reference to FIG.
 まず、拡張規制リング16を適用(線B参照)すると、エキスパンドリング14の上昇移動により環状部領域3Bが突き上げられて拡張規制リング16に接触する。その接触直後からの拡張率が、拡張規制リングを適用しない場合(線A参照)の拡張率よりも高くなる。つまり、拡張規制リング16を適用すると、突き上げ量が約5.0mmを超えてからの拡張率が、拡張規制リングを適用しない場合の拡張率よりも高くなる。 First, when the expansion restriction ring 16 is applied (see line B), the annular portion region 3B is pushed up by the upward movement of the expand ring 14 and comes into contact with the expansion restriction ring 16. The expansion rate immediately after the contact is higher than the expansion rate when the expansion restriction ring is not applied (see line A). That is, when the expansion restriction ring 16 is applied, the expansion rate after the push-up amount exceeds about 5.0 mm is higher than the expansion rate when the expansion restriction ring is not applied.
 また、拡張規制リング32を適用(線C参照)すると、凸条部34の先端部34Aが環状部領域3Bに予め当接されている。このため、拡張規制リング32を適用すると、環状部領域3Bにエキスパンドリング14が接触した直後からの拡張率が、拡張規制リング16を適用した場合(線B参照)の拡張率よりも高くなる。 Further, when the expansion restricting ring 32 is applied (see line C), the tip 34A of the ridge 34 is in contact with the annular portion region 3B in advance. For this reason, when the expansion restriction ring 32 is applied, the expansion ratio immediately after the expansion ring 14 comes into contact with the annular portion region 3B becomes higher than the expansion ratio when the expansion restriction ring 16 is applied (see line B).
 また、拡張規制リング36を適用(線D参照)すると、凸条部38の先端部38が環状部領域3Bを予め押下しているので、環状部領域3Bにエキスパンドリング14が接触する以前に拡張率は既に0%を超えている。このため、拡張規制リング36を適用すると、環状部領域3Bにエキスパンドリング14が接触した直後からの拡張率が、拡張規制リング32を適用した場合(線C参照)の拡張率よりも高くなる。 Further, when the expansion restriction ring 36 is applied (see line D), the tip portion 38 of the ridge portion 38 presses the annular portion region 3B in advance, so that the expansion ring 14 is expanded before contacting the annular portion region 3B. The rate is already over 0%. For this reason, when the expansion restriction ring 36 is applied, the expansion rate immediately after the expansion ring 14 contacts the annular portion region 3B becomes higher than the expansion rate when the expansion restriction ring 32 is applied (see line C).
 ここで、図21は、図19に示した線A、B、C、Dの各拡張率(%)の単位時間当たりの上昇率(以下、拡張率速度(%/sec)と言う。)の変化を示したグラフが示されている。 Here, FIG. 21 shows the rate of increase per unit time of each expansion rate (%) of lines A, B, C, and D shown in FIG. 19 (hereinafter referred to as expansion rate speed (% / sec)). A graph showing the change is shown.
 図21のグラフは、拡張率速度(%/sec)が左縦軸に示され、環状部領域3Bの突き上げ速度(mm/sec)が右縦軸に示され、エキスパンドリング14の上昇移動による環状部領域3Bの突き上げ量(mm)が横軸に示されている。 In the graph of FIG. 21, the expansion rate speed (% / sec) is shown on the left vertical axis, the push-up speed (mm / sec) of the annular portion region 3B is shown on the right vertical axis, and the ring due to the upward movement of the expand ring 14 is shown. The push-up amount (mm) of the partial region 3B is shown on the horizontal axis.
 図21では、一例として、環状部領域3Bの突き上げ速度を一定とした場合における、拡張率速度の変化が示されている。拡張率速度が高いほど、ダイシングテープ3に発生する張力が大きくなりウェーハをチップ毎に分割する力が大きくなる。 FIG. 21 shows, as an example, a change in the expansion rate speed when the push-up speed of the annular region 3B is constant. As the expansion rate speed increases, the tension generated in the dicing tape 3 increases and the force for dividing the wafer into chips increases.
 図21の線Eは、0.00mm~20.00mmまでの突き上げ量における突き上げ速度の変化を示している。換言すると線Eは、エキスパンドリング14の上昇移動速度を示している。線Eによれば、エキスパンドリング14は、0.00mm~約18.50mmの範囲内では一定の速度(200mm/sec)で上昇移動し、それ以降は減速しながら20.00mmまで上昇移動する。 A line E in FIG. 21 shows a change in push-up speed with a push-up amount from 0.00 mm to 20.00 mm. In other words, the line E indicates the upward moving speed of the expanding ring 14. According to the line E, the expanding ring 14 moves up at a constant speed (200 mm / sec) within a range of 0.00 mm to about 18.50 mm, and thereafter moves up to 20.00 mm while decelerating.
 図21の線Fは、拡張規制リングを適用しない、図19の線Aの拡張率に対応した拡張率速度の変化を示している。 21 indicates a change in the expansion rate speed corresponding to the expansion rate of the line A in FIG. 19 without applying the expansion restriction ring.
 図21の線Gは、拡張規制用開口部16Aの径が338mmの拡張規制リング16を適用した場合の、図19の線Bの拡張率に対応した拡張率速度の変化を示している。 21 shows a change in the expansion rate speed corresponding to the expansion rate of line B in FIG. 19 when the expansion regulating ring 16 in which the diameter of the expansion regulating opening 16A is 338 mm is applied.
 図21の線Hは、拡張規制用開口部32A、36Aの径が338mmの拡張規制リング32、36を適用した場合の、図19の線C、Dの拡張率に対応した拡張率速度の変化を示している。なお、拡張規制リング36を適用した場合、環状部領域3Bはエキスパンドリング14による拡張前に凸条部38によって予め拡張されているが、拡張率速度に関しては拡張規制リング32を適用した場合と変わりはない。このため、拡張規制リング32、36を適用した場合の拡張率速度の変化を、同一の線Hで示している。 A line H in FIG. 21 shows a change in expansion rate speed corresponding to the expansion rate in lines C and D in FIG. 19 when the expansion restriction rings 32 and 36 in which the diameters of the expansion restriction openings 32A and 36A are 338 mm are applied. Is shown. When the expansion restricting ring 36 is applied, the annular portion region 3B is preliminarily expanded by the ridge portion 38 before expansion by the expand ring 14, but the expansion rate speed is different from that when the expansion restricting ring 32 is applied. There is no. For this reason, the change of the expansion rate speed when the expansion restriction rings 32 and 36 are applied is indicated by the same line H.
 図21の線F、G、Hで示す各拡張率速度によれば、突き上げ量に応じてそれぞれ上昇していき、突き上げ量が約18.50mmに到達した時点で最大(最大拡張率速度)となり、それ以降はそれぞれ下降していく。 According to the expansion rate velocities indicated by lines F, G, and H in FIG. 21, the speed increases according to the push-up amount, and reaches the maximum (maximum expansion rate speed) when the push-up amount reaches about 18.50 mm. After that, it goes down each.
 ここで、拡張規制リング16を適用(線G参照)すると、エキスパンドリング14の上昇移動により、環状部領域3Bが突き上げられて拡張規制リング16に接触する。その接触直後からの拡張率速度が、拡張規制リングを適用しない場合(線F参照)の拡張率速度よりも高くなっていく。具体的には、突き上げ量が約4.00mmを超えてからの拡張率速度が、拡張規制リングを適用しない場合の拡張率速度よりも高くなっていき、最大拡張率速度が拡張規制リングを適用しない場合よりも増加(約95%/secから約115%/secに増加)する。 Here, when the expansion restriction ring 16 is applied (see the line G), the annular portion region 3B is pushed up by the upward movement of the expanding ring 14 and comes into contact with the expansion restriction ring 16. The expansion rate speed immediately after the contact becomes higher than the expansion rate speed when the expansion restriction ring is not applied (see the line F). Specifically, the expansion rate speed after the pushing amount exceeds about 4.00 mm becomes higher than the expansion rate speed when the expansion restriction ring is not applied, and the maximum expansion rate speed is applied to the expansion restriction ring. It increases more than the case where it does not (increase from about 95% / sec to about 115% / sec).
 したがって、拡張規制リング16を適用することにより、拡張規制リングを適用しない場合よりも、ダイシングテープ3の拡張量が増加(図19参照)するとともに、最大拡張率速度も増加してダイシングテープ3に発生する張力が増加するので、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を解消することができる。 Therefore, by applying the expansion restricting ring 16, the amount of expansion of the dicing tape 3 is increased (see FIG. 19) and the maximum expansion rate speed is increased to the dicing tape 3 as compared with the case where the expansion restricting ring is not applied. Since the generated tension increases, it is possible to solve the problem of undivided lines to be divided that occurs when the chip size is a small chip.
 また、拡張規制リング32、36を適用した場合(線H参照)、環状部領域3Bにエキスパンドリング14が接触すると、接触直後からの拡張率速度が拡張規制リング16を適用した場合(線G参照)の拡張率速度よりも高くなっていく。また、拡張規制リング32、36を適用することにより、最大拡張率速度が拡張規制リングを適用しない場合よりも、増加(約95%/secから約115%/secに増加)する。 Further, when the expansion restricting rings 32 and 36 are applied (see the line H), when the expand ring 14 comes into contact with the annular portion region 3B, the expansion rate speed immediately after the contact is applied when the expansion restricting ring 16 is applied (see the line G). ) Expansion rate will be higher than the speed. Further, by applying the expansion restriction rings 32 and 36, the maximum expansion rate speed is increased (increased from about 95% / sec to about 115% / sec) compared to the case where the expansion restriction ring is not applied.
 したがって、拡張規制リング32、36を適用することにより、拡張規制リングを適用しない場合よりも、ダイシングテープ3の拡張量が増加(図19参照)するとともに、最大拡張率速度も増加してダイシングテープ3に発生する張力が増加するので、既述の未分割問題を解消することができる。 Accordingly, by applying the expansion restricting rings 32 and 36, the dicing tape 3 increases in the amount of expansion (see FIG. 19) and increases the maximum expansion rate speed as compared with the case where the expansion restricting ring is not applied. Since the tension generated in 3 increases, the above-described undivided problem can be solved.
 以上の如く、実施形態の拡張規制リング16、18、32、36、40、42を適用することにより、チップサイズが小チップの場合に生じる分割予定ラインの未分割問題を解消することができる。 As described above, by applying the expansion restricting rings 16, 18, 32, 36, 40, and 42 of the embodiment, it is possible to solve the problem of undivided division lines that occur when the chip size is a small chip.
 1…ウェーハ、2…ウェーハユニット、3…ダイシングテープ、3A…中央部領域、3B…環状部領域、3C…固定部領域、3D…当接部、3E…外周側領域、3F…内周側領域、3FA…内周側領域、3FB…内周側領域、4…フレーム、4A…裏面、5…分割予定ライン、6…チップ、7…フレーム固定部材、8…エキスパンドリング、10A…ワーク分割装置、10B…ワーク分割装置、10C…ワーク分割装置、10D…ワーク分割装置、10E…ワーク分割装置、10F…ワーク分割装置、12…フレーム固定部、14…エキスパンドリング、14A…拡張用開口部、16…拡張規制リング、16A…拡張規制用開口部、16B…内縁部、17…拡張規制部、18…拡張規制リング、18A…拡張規制用開口部、18B…内縁部、20…拡張規制リング、20A…拡張規制用開口部、22…ウェーハ、24…チップ、26…拡張規制リング、26A…拡張規制用開口部、28…ウェーハ、30…チップ、32…拡張規制リング、32A…拡張規制用開口部、34…凸条部、34A…先端部、36…拡張規制リング、36A…拡張規制用開口部、38…凸条部、38A…先端部、40…拡張規制リング、40A…拡張規制用開口部、42…拡張規制リング、42A…拡張規制用開口部、44…ローラ DESCRIPTION OF SYMBOLS 1 ... Wafer, 2 ... Wafer unit, 3 ... Dicing tape, 3A ... Central part area | region, 3B ... Annular part area | region, 3C ... Fixed part area | region, 3D ... Contact part, 3E ... Outer peripheral side area, 3F ... Inner peripheral side area | region 3FA ... inner peripheral side region, 3FB ... inner peripheral side region, 4 ... frame, 4A ... back surface, 5 ... division line, 6 ... chip, 7 ... frame fixing member, 8 ... expand ring, 10A ... work dividing device, DESCRIPTION OF SYMBOLS 10B ... Work dividing device, 10C ... Work dividing device, 10D ... Work dividing device, 10E ... Work dividing device, 10F ... Work dividing device, 12 ... Frame fixing part, 14 ... Expanding ring, 14A ... Opening for expansion, 16 ... Expansion restriction ring, 16A ... Opening for expansion restriction, 16B ... Inner edge, 17 ... Expansion restriction, 18 ... Expansion restriction ring, 18A ... Opening for expansion restriction, 18B ... Inner edge 20 ... Expansion restriction ring, 20A ... Expansion restriction opening, 22 ... Wafer, 24 ... Chip, 26 ... Expansion restriction ring, 26A ... Expansion restriction opening, 28 ... Wafer, 30 ... Chip, 32 ... Expansion restriction ring, 32A ... Opening for expansion regulation, 34 ... Projection, 34A ... Tip, 36 ... Expansion regulation ring, 36A ... Expansion regulation, 38 ... Projection, 38A ... Tip, 40 ... Expansion regulation ring, 40A: Expansion restriction opening, 42: Expansion restriction ring, 42A: Expansion restriction opening, 44: Roller

Claims (8)

  1.  ワークの外径よりも大きい内径を有するリング状フレームにダイシングテープの外周部が固定され、前記ダイシングテープに貼付された前記ワークを分割予定ラインに沿って個々のチップに分割するワーク分割装置において、
     前記ダイシングテープにおける前記ワークの貼付面と反対側の裏面側に配置され、前記リング状フレームの内径よりも小さく、かつ前記ワークの外径よりも大きいリング状に形成され、前記ダイシングテープの裏面を押圧して前記ダイシングテープを拡張させるエキスパンドリングと、
     前記ダイシングテープにおける前記ワークの貼付面と同一側に配置され、前記リング状フレームの内径よりも小さく、かつ前記エキスパンドリングの外径よりも大きい開口部を有するリング状に形成され、前記エキスパンドリングによる前記ダイシングテープの拡張の際に前記ダイシングテープが当接される拡張規制リングと、
     を備える、ワーク分割装置。
    In a workpiece dividing apparatus in which an outer peripheral portion of a dicing tape is fixed to a ring-shaped frame having an inner diameter larger than the outer diameter of the workpiece, and the workpiece pasted on the dicing tape is divided into individual chips along a planned division line.
    The dicing tape is disposed on the back side opposite to the work sticking surface, and is formed in a ring shape smaller than the inner diameter of the ring-shaped frame and larger than the outer diameter of the work. An expanding ring that presses and expands the dicing tape;
    The dicing tape is arranged on the same side as the work sticking surface, is formed in a ring shape having an opening smaller than the inner diameter of the ring-shaped frame and larger than the outer diameter of the expanding ring, and is based on the expanding ring. An expansion regulating ring against which the dicing tape comes into contact when the dicing tape is expanded,
    A workpiece dividing device.
  2.  前記拡張規制リングは、前記エキスパンドリングによる前記ダイシングテープの拡張の際に、前記ダイシングテープに当接するテープ位置規制部を有し、
     前記テープ位置規制部は、前記リング状フレームの前記ダイシングテープが貼付されたテープ貼付面と同一面上、又は前記同一面よりも前記エキスパンドリングが配置される側に配置される、請求項1に記載のワーク分割装置。
    The expansion restricting ring has a tape position restricting portion that comes into contact with the dicing tape when the dicing tape is expanded by the expanding ring.
    The said tape position control part is arrange | positioned on the same surface as the tape sticking surface where the said dicing tape of the said ring-shaped frame was stuck, or the side by which the said expanded ring is arrange | positioned rather than the said same surface. The workpiece dividing device described.
  3.  前記拡張規制リングは、前記リング状フレームに固定されるフレーム固定部と、前記拡張規制リングの前記開口部の周縁部に沿って前記ダイシングテープに向けて突出した凸条部と、を備え、
     前記テープ位置規制部は、前記凸条部の先端部によって構成される、請求項2に記載のワーク分割装置。
    The expansion restriction ring includes a frame fixing portion that is fixed to the ring-shaped frame, and a protrusion that protrudes toward the dicing tape along a peripheral edge portion of the opening of the expansion restriction ring,
    The work dividing apparatus according to claim 2, wherein the tape position restricting portion is configured by a tip portion of the ridge portion.
  4.  前記拡張規制リングには、前記ダイシングテープにおける前記ワークの貼付面と同一側に配置されたフレーム固定部であって、前記リング状フレームに当接して前記リング状フレームを固定するフレーム固定部が備えられる、請求項1に記載のワーク分割装置。 The expansion restricting ring includes a frame fixing portion that is disposed on the same side of the dicing tape as the work attachment surface, and that is fixed to the ring-shaped frame in contact with the ring-shaped frame. The workpiece dividing device according to claim 1, wherein
  5.  前記拡張規制リングは、前記ダイシングテープにおける前記ワークの貼付面と同一側に配置されたフレーム固定部材であって、前記拡張規制リングを介して前記リング状フレームを固定するフレーム固定部材に着脱自在に固定される、請求項1に記載のワーク分割装置。 The expansion restricting ring is a frame fixing member disposed on the same side as the work attachment surface of the dicing tape, and is detachably attached to a frame fixing member that fixes the ring-shaped frame via the expansion restricting ring. The work dividing apparatus according to claim 1, which is fixed.
  6.  前記拡張規制リングの前記開口部は円形に形成される、請求項1から5のいずれか1項に記載のワーク分割装置。 The work dividing apparatus according to any one of claims 1 to 5, wherein the opening of the expansion restriction ring is formed in a circular shape.
  7.  前記拡張規制リングの前記開口部は楕円形に形成される、請求項1から5のいずれか1項に記載のワーク分割装置。 The work dividing apparatus according to any one of claims 1 to 5, wherein the opening of the expansion restriction ring is formed in an elliptical shape.
  8.  ワークの外径よりも大きい内径を有するリング状フレームにダイシングテープの外周部が固定され、前記ダイシングテープに貼付された前記ワークを分割予定ラインに沿って個々のチップに分割するワーク分割方法において、
     前記ダイシングテープを押圧して前記ダイシングテープを拡張することにより前記ダイシングテープに張力を発生させる拡張工程と、
     前記ダイシングテープの拡張の際に前記ダイシングテープのうち外周側に位置する外周側領域の拡張を規制する拡張規制工程と、
     前記外周側領域を除く前記ダイシングテープの拡張を継続して前記ワークを個々のチップに分割する分割工程と、
     を備える、ワーク分割方法。
    In the work dividing method in which the outer peripheral portion of the dicing tape is fixed to a ring-shaped frame having an inner diameter larger than the outer diameter of the work, and the work attached to the dicing tape is divided into individual chips along the division line.
    An expansion step of generating tension in the dicing tape by expanding the dicing tape by pressing the dicing tape;
    An expansion regulating step for regulating expansion of the outer peripheral side region located on the outer peripheral side of the dicing tape when the dicing tape is expanded;
    A dividing step of dividing the work into individual chips by continuing to expand the dicing tape excluding the outer peripheral region;
    A work dividing method comprising:
PCT/JP2017/038321 2016-10-28 2017-10-24 Workpiece dividing device and workpiece dividing method WO2018079536A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227010904A KR102434738B1 (en) 2016-10-28 2017-10-24 Workpiece dividing device and workpiece dividing method
JP2018547681A JP6920629B2 (en) 2016-10-28 2017-10-24 Work dividing device and work dividing method
CN201780066523.8A CN109891556B (en) 2016-10-28 2017-10-24 Workpiece dividing device and workpiece dividing method
KR1020197011634A KR102246098B1 (en) 2016-10-28 2017-10-24 Work splitting device and work splitting method
KR1020217012222A KR102383560B1 (en) 2016-10-28 2017-10-24 Workpiece dividing device and workpiece dividing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-212089 2016-10-28
JP2016212089 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079536A1 true WO2018079536A1 (en) 2018-05-03

Family

ID=62024936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038321 WO2018079536A1 (en) 2016-10-28 2017-10-24 Workpiece dividing device and workpiece dividing method

Country Status (4)

Country Link
JP (3) JP6920629B2 (en)
KR (3) KR102246098B1 (en)
CN (1) CN109891556B (en)
WO (1) WO2018079536A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072138A (en) * 2018-10-30 2020-05-07 株式会社ディスコ Extension method of wafer and extension device of wafer
JP2020072139A (en) * 2018-10-30 2020-05-07 株式会社ディスコ Extension method of wafer and extension device of wafer
JP2021077841A (en) * 2019-11-12 2021-05-20 力成科技股▲分▼有限公司 Wafer extension device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146727A (en) * 2002-10-28 2004-05-20 Tokyo Seimitsu Co Ltd Transferring method of wafer
JP2010092992A (en) * 2008-10-06 2010-04-22 Disco Abrasive Syst Ltd Tape extending device
JP2016063016A (en) * 2014-09-17 2016-04-25 株式会社東芝 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3017827B2 (en) * 1991-03-26 2000-03-13 沖電気工業株式会社 Wafer ring holding mechanism in die bonding equipment
JPH10116801A (en) * 1996-10-09 1998-05-06 Rohm Co Ltd Method for dividing substrate and manufacture of light emitting element using the method
JP4238669B2 (en) * 2003-08-07 2009-03-18 株式会社東京精密 Expanding method and expanding apparatus
JP2004349456A (en) * 2003-05-22 2004-12-09 Tokyo Seimitsu Co Ltd Expand tool
JP4630717B2 (en) * 2005-04-12 2011-02-09 株式会社ディスコ Breaking method of adhesive film
JP2006310691A (en) 2005-05-02 2006-11-09 Hugle Electronics Inc Foldaway film sheet extension method and expander therefor
JP4835830B2 (en) * 2005-12-22 2011-12-14 株式会社東京精密 Expanding method, apparatus and dicing apparatus
JP2009054803A (en) * 2007-08-27 2009-03-12 Seiko Epson Corp Expanding tool, expanding method, and method of manufacturing unit element
JP5207455B2 (en) * 2008-05-09 2013-06-12 株式会社ディスコ Film adhesive breaking apparatus and breaking method
JP5435925B2 (en) 2008-10-28 2014-03-05 リンテック株式会社 Expanding apparatus and expanding method
JP5654810B2 (en) * 2010-09-10 2015-01-14 株式会社ディスコ Wafer processing method
JP5013148B1 (en) * 2011-02-16 2012-08-29 株式会社東京精密 Work dividing apparatus and work dividing method
JP5912274B2 (en) 2011-03-28 2016-04-27 株式会社東京精密 Chip dividing / separating device and chip dividing / separating method
JP6045313B2 (en) 2012-11-19 2016-12-14 株式会社ディスコ Tip spacing maintenance device
JP6312498B2 (en) 2014-03-31 2018-04-18 日東電工株式会社 Dicing film, dicing die-bonding film, and semiconductor device manufacturing method
JP6270642B2 (en) 2014-06-27 2018-01-31 株式会社ディスコ Tape expansion unit
JP6425435B2 (en) 2014-07-01 2018-11-21 株式会社ディスコ Tip spacing maintenance device
JP6041065B2 (en) 2016-05-16 2016-12-07 株式会社東京精密 Work dividing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146727A (en) * 2002-10-28 2004-05-20 Tokyo Seimitsu Co Ltd Transferring method of wafer
JP2010092992A (en) * 2008-10-06 2010-04-22 Disco Abrasive Syst Ltd Tape extending device
JP2016063016A (en) * 2014-09-17 2016-04-25 株式会社東芝 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072138A (en) * 2018-10-30 2020-05-07 株式会社ディスコ Extension method of wafer and extension device of wafer
JP2020072139A (en) * 2018-10-30 2020-05-07 株式会社ディスコ Extension method of wafer and extension device of wafer
CN111128840A (en) * 2018-10-30 2020-05-08 株式会社迪思科 Wafer expanding method and wafer expanding device
CN111128839A (en) * 2018-10-30 2020-05-08 株式会社迪思科 Wafer expanding method and wafer expanding device
DE102019216640B4 (en) 2018-10-30 2023-01-26 Disco Corporation WAFER EXPANSION PROCESS
JP7221649B2 (en) 2018-10-30 2023-02-14 株式会社ディスコ Wafer expansion method and wafer expansion device
JP2021077841A (en) * 2019-11-12 2021-05-20 力成科技股▲分▼有限公司 Wafer extension device

Also Published As

Publication number Publication date
KR20190067816A (en) 2019-06-17
JP2021168419A (en) 2021-10-21
KR20210048592A (en) 2021-05-03
KR102434738B1 (en) 2022-08-22
CN109891556B (en) 2022-11-22
JP7214958B2 (en) 2023-01-31
KR102383560B1 (en) 2022-04-08
JP6920629B2 (en) 2021-08-25
KR102246098B1 (en) 2021-04-29
KR20220046708A (en) 2022-04-14
CN109891556A (en) 2019-06-14
JP2023029601A (en) 2023-03-03
JPWO2018079536A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7214958B2 (en) Work dividing device and work dividing method
JP7164825B2 (en) Work division method
JP2006049591A (en) Fracture method and fracture equipment of adhesive film stuck on wafer
JP2007142199A (en) Expand ring and method for splitting substrate using it
JP2024036560A (en) Work dividing device
JP2010092992A (en) Tape extending device
JP2008171844A (en) Process for manufacturing semiconductor device
JP6270642B2 (en) Tape expansion unit
JP7110540B2 (en) Work dividing device and work dividing method
JP6301658B2 (en) Wafer processing method
JP6945152B2 (en) Work splitting device
JP6820494B2 (en) Work dividing device and work dividing method
JP6759524B2 (en) Work dividing device and work dividing method
JP7284439B2 (en) Work dividing device and work dividing method
JP2021064811A (en) Workpiece dividing device and workpiece dividing method
JP6829806B2 (en) Work dividing device and work dividing method
KR20190012996A (en) Wafer chip dicing method
JP7367297B2 (en) Work dividing device and work dividing method
JP2018107309A (en) Adhesive tape, processing method of workpiece, and adhesive tape affixing device
JP2020072139A (en) Extension method of wafer and extension device of wafer

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011634

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018547681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866121

Country of ref document: EP

Kind code of ref document: A1