WO2018076440A1 - 阻抗匹配电路、天线和终端 - Google Patents

阻抗匹配电路、天线和终端 Download PDF

Info

Publication number
WO2018076440A1
WO2018076440A1 PCT/CN2016/107821 CN2016107821W WO2018076440A1 WO 2018076440 A1 WO2018076440 A1 WO 2018076440A1 CN 2016107821 W CN2016107821 W CN 2016107821W WO 2018076440 A1 WO2018076440 A1 WO 2018076440A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance matching
microstrip line
matching circuit
circuit according
line
Prior art date
Application number
PCT/CN2016/107821
Other languages
English (en)
French (fr)
Inventor
信哲鑫
牛彦明
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2018076440A1 publication Critical patent/WO2018076440A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM

Definitions

  • the present invention relates to the field of radio frequency technologies, and in particular, to an impedance matching circuit, an antenna, and a terminal.
  • the present invention is based on at least one of the above technical problems, and proposes a new impedance matching circuit for connecting a microstrip line (or called a stub) to an output end of a radio frequency module to achieve an impedance of the radio frequency circuit.
  • a microstrip line or called a stub
  • the second harmonic in the transmitted signal is reduced, and the communication quality of the terminal is improved.
  • an impedance matching circuit including: a radio frequency module provided with a nonlinear device; a microstrip line, the first end of the microstrip line is connected to the The output end of the nonlinear device, the second end of the microstrip line is directly grounded or grounded by a frequency offset adjusting element, wherein the electrical length of the microstrip line is a positive even multiple of ⁇ /4, and the ⁇ is The carrier wavelength of the radio frequency circuit.
  • the microstrip line short-circuited to the output terminal non-linear devices, and the electrical length of the microstrip line is positive even multiple of the carrier wavelength of a frequency f x 1/4, i.e., a frequency of an even multiple of a positive fx
  • the harmonics are short-circuited, and at the same time, they have an open-circuit characteristic for the carrier fundamental wave, which in turn not only increases the transmission loss, but also suppresses the load of the even-order harmonic transmission to the RF circuit, thereby improving the transmission efficiency of the fundamental carrier. Improve the communication quality of the terminal.
  • the microstrip line also constitutes the impedance matching component of the RF circuit.
  • the lumped component in the RF circuit to a distributed parameter component (open microstrip line or short-circuit microstrip line)
  • Richards formula The calculation is as follows:
  • the transmission line having the characteristic impedance Z 0 at one end has a purely reactive input impedance Z in if the length of the transmission line is And the corresponding working frequency .
  • the electrical length of the transmission line is a geometric length Its electromagnetic wave wavelength
  • the ratio of the line width of the microstrip line and the substrate parameters determine the characteristic impedance of the transmission line.
  • the line length of the microstrip line and the substrate parameter frequency determine the electrical length of the transmission line.
  • the nonlinear device is a field effect transistor, and a drain of the FET is connected to a first end of the microstrip line.
  • the nonlinear device is a field effect transistor
  • the FET has a gate, a source and a drain, and the even frequency harmonic in the RF circuit can be filtered by shorting the microstrip line at the drain , thereby increasing the output efficiency of the drain.
  • the method further includes: a DC blocking capacitive element, the first end of the DC blocking capacitive element is connected to a drain of the FET, and the second end of the DC blocking capacitive element is grounded.
  • power is output by ensuring that the DC blocking capacitor element is connected in parallel to the drain and larger than the parasitic output capacitance of the FET, wherein the DC blocking capacitor element can also be replaced by an open stub.
  • the DC blocking capacitive element is a variable capacitance element.
  • the frequency offset adjusting component is a variable resistive component and/or a variable inductance component, wherein the variable resistance component has a resistance greater than or equal to zero.
  • the frequency offset caused by the short-circuited microstrip line is adjusted by setting the frequency offset adjusting component to ensure the reliability of the center frequency band of the carrier.
  • the resistance of the variable resistance element is zero.
  • the impedance line width of the microstrip line ranges from 40 to 60 ⁇ .
  • the impedance line width of the microstrip line is 50 ⁇ .
  • an antenna comprising the impedance matching circuit according to any one of the above aspects, wherein the terminal has the impedance according to any one of the above aspects.
  • the matching circuit will not be described here.
  • a terminal comprising the antenna and the impedance matching circuit according to any of the above aspects, wherein the terminal has the antenna according to any one of the above aspects.
  • the same technical effects of the impedance matching circuit will not be described here.
  • Embodiment 1 shows an equivalent schematic view of Embodiment 1 of an impedance matching circuit in accordance with the present invention
  • FIG. 2 shows an equivalent schematic diagram of a second embodiment of an impedance matching circuit in accordance with the present invention.
  • FIG. 1 shows an equivalent schematic view of a first embodiment of an impedance matching circuit in accordance with the present invention.
  • FIG. 2 shows an equivalent schematic diagram of a second embodiment of an impedance matching circuit in accordance with the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • an impedance matching circuit includes: a radio frequency module 102 provided with a nonlinear device; a microstrip line 104, a first end of the microstrip line 104 connected to an output of the nonlinear device The second end of the microstrip line 104 is directly grounded or grounded by a frequency offset adjusting component 106, wherein the electrical length of the microstrip line 104 is a positive even multiple of ⁇ /4, and the ⁇ is the radio frequency The carrier wavelength of the circuit.
  • the microstrip line 104 (or called a stub) to the output end of the radio frequency module 102, the impedance matching of the radio frequency circuit is realized, and the second harmonic in the transmission signal is reduced. Improve the communication quality of the terminal.
  • the short-circuit microstrip line 104 connected to the output of the nonlinear device, and the electrical length of the microstrip line 104 is positive even multiple of the carrier frequency f x wavelength of 1/4, i.e. a frequency of a positive even fx
  • the harmonics of the times are short-circuited, and at the same time, the carrier fundamental wave is open-circuited, thereby not only increasing the transmission loss but also suppressing the transmission of the even-order harmonics to the load 108 of the radio frequency circuit, thereby improving the fundamental carrier. Transmission efficiency improves the communication quality of the terminal.
  • the microstrip line 104 also constitutes an impedance matching component of the radio frequency circuit.
  • the Richards formula is calculated as follows:
  • the transmission line having the characteristic impedance Z 0 at one end has a purely reactive input impedance Z in if the length of the transmission line is And the corresponding working frequency .
  • the electrical length of the transmission line is a geometric length Its electromagnetic wave wavelength
  • the ratio of the line width of the microstrip line 104 and the substrate parameters determine the characteristic impedance of the transmission line.
  • the line length of the microstrip line 104 and the substrate parameter frequency determine the electrical length of the transmission line.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the impedance matching circuit further includes: the nonlinear device is a field effect transistor 1022, and the drain of the FET 1022 and the microstrip The first end of line 104 is connected.
  • the FET 1022 when the nonlinear device is the FET 1022, the FET 1022 has a gate, a source and a drain. By shorting the microstrip line 104 at the drain, the even time in the RF circuit can be filtered out. Frequency harmonics, which in turn increase the output efficiency of the drain.
  • the method further includes: a DC blocking capacitive element 1024, the first end of the DC blocking capacitive element 1024 is connected to a drain of the FET 1022, and the DC blocking capacitive element 1024 is The two ends are grounded.
  • the DC blocking capacitive element 1024 by connecting the DC blocking capacitive element 1024 to the drain and larger than the parasitic output capacitance of the FET 1022, the power is outputted, wherein the DC blocking capacitive element 1024 can also adopt an open stub.
  • the drain is connected to the DC regulated source Vdd through the inductor 1026.
  • the DC blocking capacitive element 1024 is a variable capacitance element.
  • the frequency offset adjusting component 106 is a variable resistive component and/or a variable inductance component, wherein the variable resistance component has a resistance greater than or equal to zero.
  • the frequency offset caused by the short-circuited microstrip line 104 is adjusted by setting the frequency offset adjusting element 106 to ensure the reliability of the center frequency band of the carrier.
  • the resistance of the variable resistance element is zero.
  • the impedance line width of the microstrip line 104 ranges from 40 to 60 ⁇ .
  • the impedance line width of the microstrip line 104 is 50 ⁇ .
  • An antenna according to an embodiment of the present invention includes the impedance matching circuit according to any one of the above aspects, and therefore, the terminal has the same technical effect as the impedance matching circuit according to any one of the above aspects, No longer.
  • An antenna according to an embodiment of the present invention includes the antenna and the impedance matching circuit according to any one of the above aspects, and therefore, the terminal has the same technique as the antenna and impedance matching circuit according to any one of the above aspects. The effect will not be described here.
  • the present invention proposes a new impedance matching circuit, an antenna and a terminal by using a microstrip line (or As a stub line, the short circuit is connected to the output end of the RF module, and the impedance matching of the RF circuit is realized, the second harmonic in the transmission signal is reduced, and the communication quality of the terminal is improved.
  • a microstrip line or As a stub line, the short circuit is connected to the output end of the RF module, and the impedance matching of the RF circuit is realized, the second harmonic in the transmission signal is reduced, and the communication quality of the terminal is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microwave Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

本发明提供了一种阻抗匹配电路、天线和终端,其中,阻抗匹配电路包括:射频模块,设有非线性器件;微带线,微带线的第一端连接至非线性器件的输出端,微带线的第二端直接接地或通过频偏调节元件接地,其中,微带线的电长度为λ/4的正偶数倍,λ为射频电路的载波波长。通过本发明技术方案,在实现射频电路的阻抗匹配的同时,降低了传输信号中的二次谐波,提升了终端的通信质量。

Description

阻抗匹配电路、天线和终端
本申请要求于2016年10月31日提交中国专利局,申请号为201610926842.9、发明名称为“阻抗匹配电路、天线和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及射频技术领域,具体而言,涉及一种阻抗匹配电路、一种天线和一种终端。
背景技术
在射频电路的相关技术中,诸如功率放大器、低噪声放大器等非线性器件的工作过程中,会产生二次谐波、三次谐波或其他高次谐波,也即对射频电路中的载波基波的干扰信号。
但是,如果在射频电路中增加滤波模块来滤除谐波成分,会增加射频电路的传输损耗,无法满足手机、笔记本电脑和智能穿戴设备等移动通信终端对传输效率的高要求,已经成为改善移动通信终端的通信质量的瓶颈问题。
发明内容
本发明正是基于上述技术问题至少之一,提出了一种新的阻抗匹配电路,通过将微带线(或称作短截线)短路连接于射频模块的输出端,在实现射频电路的阻抗匹配的同时,降低了传输信号中的二次谐波,提升了终端的通信质量。
有鉴于此,根据本发明的第一方面的实施例,提出了一种阻抗匹配电路,包括:射频模块,设有非线性器件;微带线,所述微带线的第一端连接至所述非线性器件的输出端,所述微带线的第二端直接接地或通过频偏调节元件接地,其中,所述微带线的电长度为λ/4的正偶数倍,所述λ为所述射频电路的载波波长。
在该技术方案中,通过将微带线(或称作短截线)短路连接于射频模块的输出端,在实现射频电路的阻抗匹配的同时,降低了传输信号中的二次谐波,提升了终端的通信质量。
一方面,微带线短路连接至非线性器件的输出端,且微带线的电长度为fx频率的载波波长的1/4的正偶数倍,也即对频率为fx的正偶数倍的谐波呈短路特性,同时,对于载波基波呈开路特性,进而在不过多得提高传输损耗的同时,抑制了偶数次谐波传输至射频电路的负载,进而提高了基波载波的传输效率,提升了终端的通信质量。
另一方面,微带线同时也构成了射频电路的阻抗匹配元件,为了将射频电路中的集总元件变化为分布参数元件(开路微带线或短路微带线),需要借助于Richards公式进行计算,如下:
Figure WO40322-appb-I000001
(1)
Figure WO40322-appb-I000002
(2)
Figure WO40322-appb-I000003
(3)
Figure WO40322-appb-I000004
(4)
上述公式(1)至(4)中,一端特性阻抗为Z0的传输线具有纯电抗性输入阻抗Zin,如果传输线的长度为
Figure WO40322-appb-I000005
,而相应的工作频率
Figure WO40322-appb-I000006
Figure WO40322-appb-I000007
为传输线的相速度,则电长度
Figure WO40322-appb-I000008
可根据公式(2)确定,
Figure WO40322-appb-I000009
即为Richards变换,电容性集总元件可以用一段开路传输线实现(如公式(4)所示),也即基于Richards变换可以实现用特性阻抗Z0=L的一段短路传输线替代集总参数电感,也可以用特性阻抗Z0=1/C的一端开路传输线替代集总参数电容,可以选用传输线的长度为
Figure WO40322-appb-I000010
,但并不是必须的。
其中,传输线的电长度为几何长度
Figure WO40322-appb-I000011
与其电磁波波长
Figure WO40322-appb-I000012
的比值,微带线的线宽和基板参数决定其传输线的特性阻抗,微带线的线长和基板参数频率决定传输线的电长度
Figure WO40322-appb-I000013
,每一条射频发射和接受频段路径一旦确定,其每条传输线的工作频率也就确定了,因此,可以根据工作频率确定微带线的线宽和线长。
例如,特性阻抗为120Ω,电长度为88°,频率为2.5GHz的短路微带线,其史密斯圆图的电阻接近50Ω,其电抗为0.727,在2.5GHz左右换算电感为L=0.28nH。
值得特别指出的是,集总参数电路中电容和电感之间的互换公式如下:
L=-1/(C×(2×π×f)2) (5)
例如,f=2GHz的10pF电容换算为电感值为0.633nH,因此,短路短截线和开路短截线并不一定只和电容或者电感搭配使用。
在上述技术方案中,优选地,所述非线性器件为场效应管,所述场效应管的漏极与所述微带线的第一端连接。
在该技术方案中,非线性器件为场效应管时,场效应管具有栅极、源极和漏极,通过在漏极短接微带线,可以滤除射频电路中的偶次频率谐波,进而提高了漏极的输出效率。
在上述技术方案中,优选地,还包括:隔直电容元件,所述隔直电容元件的第一端连接至所述场效应管的漏极,所述隔直电容元件的第二端接地。
在该技术方案中,通过将隔直电容元件并联至漏极,且大于场效应管的寄生输出电容,以保证功率得以输出,其中,隔直电容元件也可以采用开路的短截线代替。
在上述技术方案中,优选地,所述隔直电容元件为可变电容元件。
在上述技术方案中,优选地,所述频偏调节元件为可变电阻元件和/或可变电感元件,其中,所述可变电阻元件的阻值大于或等于零。
在该技术方案中,通过设置频偏调节元件,进而对于短路的微带线造成的频偏进行调节,以保证载波的中心频段的可靠性。
在上述技术方案中,优选地,所述漏极的输出信号的频偏为零时,所述可变电阻元件的阻值为零。
在上述技术方案中,优选地,所述微带线的阻抗线宽范围为40~60Ω。
在上述技术方案中,优选地,所述微带线的阻抗线宽为50Ω。
根据本发明的第二方面的实施例,还提出了一种天线,包括如上述任一项技术方案所述的阻抗匹配电路,因此,该终端具有和上述技术方案中任一项所述的阻抗匹配电路相同的技术效果,在此不再赘述。
根据本发明的第三方面,还提出了一种终端,包括如上述任一项技术方案所述的天线和阻抗匹配电路,因此,该终端具有和上述技术方案中任一项所述的天线和阻抗匹配电路相同的技术效果,在此不再赘述。
通过以上技术方案,通过将微带线(或称作短截线)短路连接于射频模块的输出端,在实现射频电路的阻抗匹配的同时,降低了传输信号中的二次谐波,提升了终端的通信质量。
附图说明
图1示出了根据本发明的阻抗匹配电路的实施例一的等效示意图;
图2示出了根据本发明的阻抗匹配电路的实施例二的等效示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用第三方不同于在此描述的第三方方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图1示出了根据本发明的阻抗匹配电路的实施例一的等效示意图。
图2示出了根据本发明的阻抗匹配电路的实施例二的等效示意图。
实施例一:
如图1所示,根据本发明的阻抗匹配电路,包括:射频模块102,设有非线性器件;微带线104,所述微带线104的第一端连接至所述非线性器件的输出端,所述微带线104的第二端直接接地或通过频偏调节元件106接地,其中,所述微带线104的电长度为λ/4的正偶数倍,所述λ为所述射频电路的载波波长。
在该技术方案中,通过将微带线104(或称作短截线)短路连接于射频模块102的输出端,在实现射频电路的阻抗匹配的同时,降低了传输信号中的二次谐波,提升了终端的通信质量。
一方面,微带线104短路连接至非线性器件的输出端,且微带线104的电长度为fx频率的载波波长的1/4的正偶数倍,也即对频率为fx的正偶数倍的谐波呈短路特性,同时,对于载波基波呈开路特性,进而在不过多得提高传输损耗的同时,抑制了偶数次谐波传输至射频电路的负载108,进而提高了基波载波的传输效率,提升了终端的通信质量。
另一方面,微带线104同时也构成了射频电路的阻抗匹配元件,为了将射频电路中的集总元件变化为分布参数元件(开路微带线104或短路微带线104),需要借助于Richards公式进行计算,如下:
Figure WO40322-appb-I000014
(1)
Figure WO40322-appb-I000015
(2)
Figure WO40322-appb-I000016
(3)
Figure WO40322-appb-I000017
(4)
上述公式(1)至(4)中,一端特性阻抗为Z0的传输线具有纯电抗性输入阻抗Zin,如果传输线的长度为
Figure WO40322-appb-I000018
,而相应的工作频率
Figure WO40322-appb-I000019
Figure WO40322-appb-I000020
为传输线的相速度,则电长度
Figure WO40322-appb-I000021
可根据公式(2)确定,
Figure WO40322-appb-I000022
即为Richards变换,电容性集总元件可以用一段开路传输线实现(如公式(4)所示),也即基于Richards变换可以实现用特性阻抗Z0=L的一段短路传输线替代集总参数电感,也可以用特性阻抗Z0=1/C的一端开路传输线替代集总参数电容,可以选用传输线的长度为
Figure WO40322-appb-I000023
,但并不是必须的。
其中,传输线的电长度为几何长度
Figure WO40322-appb-I000024
与其电磁波波长
Figure WO40322-appb-I000025
的比值,微带线104的线宽和基板参数决定其传输线的特性阻抗,微带线104的线长和基板参数频率决定传输线的电长度
Figure WO40322-appb-I000026
,每一条射频发射和接受频段路径一旦确定,其每条传输线的工作频率也就确定了,因此,可以根据工作频率确定微带线104的线宽和线长。
例如,特性阻抗为120Ω,电长度为88°,频率为2.5GHz的短路微带线104,其史密斯圆图的电阻接近50Ω,其电抗为0.727,在2.5GHz左右换算电感为L=0.28nH。
值得特别指出的是,集总参数电路中电容和电感之间的互换公式如下:
L=-1/(C×(2×π×f)2) (5)
例如,f=2GHz的10pF电容换算为电感值为0.633nH,因此,短路短截线和开路短截线并不一定只和电容或者电感搭配使用。
实施例二:
如图2所示,在实施例一的基础上,根据本发明的阻抗匹配电路具体还包括:所述非线性器件为场效应管1022,所述场效应管1022的漏极与所述微带线104的第一端连接。
在该技术方案中,非线性器件为场效应管1022时,场效应管1022具有栅极、源极和漏极,通过在漏极短接微带线104,可以滤除射频电路中的偶次频率谐波,进而提高了漏极的输出效率。
在上述技术方案中,优选地,还包括:隔直电容元件1024,所述隔直电容元件1024的第一端连接至所述场效应管1022的漏极,所述隔直电容元件1024的第二端接地。
在该技术方案中,通过将隔直电容元件1024并联至漏极,且大于场效应管1022的寄生输出电容,以保证功率得以输出,其中,隔直电容元件1024也可以采用开路的短截线代替,另外,为了保证场效应管能够稳定工作,将漏极通过电感1026连接至直流稳压源Vdd。
在上述技术方案中,优选地,所述隔直电容元件1024为可变电容元件。
在上述技术方案中,优选地,所述频偏调节元件106为可变电阻元件和/或可变电感元件,其中,所述可变电阻元件的阻值大于或等于零。
在该技术方案中,通过设置频偏调节元件106,进而对于短路的微带线104造成的频偏进行调节,以保证载波的中心频段的可靠性。
在上述技术方案中,优选地,所述漏极的输出信号的频偏为零时,所述可变电阻元件的阻值为零。
在上述技术方案中,优选地,所述微带线104的阻抗线宽范围为40~60Ω。
在上述技术方案中,优选地,所述微带线104的阻抗线宽为50Ω。
根据本发明的实施例的天线,包括如上述任一项技术方案所述的阻抗匹配电路,因此,该终端具有和上述技术方案中任一项所述的阻抗匹配电路相同的技术效果,在此不再赘述。
根据本发明的实施例的天线,包括如上述任一项技术方案所述的天线和阻抗匹配电路,因此,该终端具有和上述技术方案中任一项所述的天线和阻抗匹配电路相同的技术效果,在此不再赘述。
以上结合附图详细说明了本发明的技术方案,考虑到相关技术中如何提升通信质量的技术问题,本发明提出了一种新的阻抗匹配电路、天线和终端,通过将微带线(或称作短截线)短路连接于射频模块的输出端,在实现射频电路的阻抗匹配的同时,降低了传输信号中的二次谐波,提升了终端的通信质量。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种阻抗匹配电路,其特征在于,适用于含有直流信号的射频天线线路,包括:
    射频模块,设有非线性器件;
    微带线,所述微带线的第一端连接至所述非线性器件的输出端,所述微带线的第二端直接接地或通过频偏调节元件接地,
    其中,所述微带线的电长度为λ/4的正偶数倍,所述λ为所述射频电路的载波波长。
  2. 根据权利要求1所述的阻抗匹配电路,其特征在于,
    所述非线性器件为场效应管,所述场效应管的漏极与所述微带线的第一端连接。
  3. 根据权利要求2所述的阻抗匹配电路,其特征在于,还包括:
    隔直电容元件,所述隔直电容元件的第一端连接至所述场效应管的漏极,所述隔直电容元件的第二端接地。
  4. 根据权利要求3所述的阻抗匹配电路,其特征在于,
    所述隔直电容元件为可变电容元件。
  5. 根据权利要求1所述的阻抗匹配电路,其特征在于,
    所述频偏调节元件为可变电阻元件和/或可变电感元件,
    其中,所述可变电阻元件的阻值大于或等于零。
  6. 根据权利要求5所述的阻抗匹配电路,其特征在于,
    所述漏极的输出信号的频偏为零时,所述可变电阻元件的阻值为零。
  7. 根据权利要求1至6中任一项所述的阻抗匹配电路,其特征在于,
    所述微带线的阻抗线宽范围为40~60Ω。
  8. 根据权利要求1至6中任一项所述的阻抗匹配电路,其特征在于,
    所述微带线的阻抗线宽为50Ω。
  9. 一种天线,其特征在于,包括:
    如权利要求1至6中任一项所述的阻抗匹配电路。
  10. 一种终端,其特征在于,包括:
    如权利要求9所述的天线或如权利要求1至6中任一项所述的阻抗匹配电路。
PCT/CN2016/107821 2016-10-31 2016-11-30 阻抗匹配电路、天线和终端 WO2018076440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610926842.9A CN106654585A (zh) 2016-10-31 2016-10-31 阻抗匹配电路、天线和终端
CN201610926842.9 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076440A1 true WO2018076440A1 (zh) 2018-05-03

Family

ID=58820225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107821 WO2018076440A1 (zh) 2016-10-31 2016-11-30 阻抗匹配电路、天线和终端

Country Status (2)

Country Link
CN (1) CN106654585A (zh)
WO (1) WO2018076440A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1444345A (zh) * 2002-03-12 2003-09-24 智邦科技股份有限公司 运用微带线结构滤除假像信号的阻抗匹配电路
CN1578125A (zh) * 2003-06-26 2005-02-09 松下电器产业株式会社 功率放大器、功率分配器及功率合并器
CN101699767A (zh) * 2009-10-21 2010-04-28 上海华为技术有限公司 一种射频功率放大器馈电电路
CN101789767A (zh) * 2010-01-25 2010-07-28 北京邮电大学 用于双频放大器的谐波抑制型枝节匹配网络
EP2267886A1 (en) * 2009-06-11 2010-12-29 Alcatel Lucent Class E amplifier
JP2011035761A (ja) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp 広帯域増幅器
CN102035058A (zh) * 2009-10-02 2011-04-27 富士通株式会社 滤波器、发送-接收器以及放大电路
CN102291092A (zh) * 2011-06-14 2011-12-21 中国科学技术大学 一种逆f类功率放大器
CN103765765A (zh) * 2011-08-29 2014-04-30 国立大学法人电气通信大学 高效率功率放大器
CN104300925A (zh) * 2014-10-24 2015-01-21 天津大学 一种高效率f类/逆f类功率放大器
CN104518742A (zh) * 2014-12-10 2015-04-15 天津大学 一种高效率双频带f类功率放大器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796734A (zh) * 2007-08-20 2010-08-04 松下电器产业株式会社 天线装置及装载有该天线装置的电子设备
US9350835B2 (en) * 2014-07-23 2016-05-24 Blackberry Limited Mobile wireless communications device with improved broadband antenna impedance matching

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1444345A (zh) * 2002-03-12 2003-09-24 智邦科技股份有限公司 运用微带线结构滤除假像信号的阻抗匹配电路
CN1578125A (zh) * 2003-06-26 2005-02-09 松下电器产业株式会社 功率放大器、功率分配器及功率合并器
EP2267886A1 (en) * 2009-06-11 2010-12-29 Alcatel Lucent Class E amplifier
JP2011035761A (ja) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp 広帯域増幅器
CN102035058A (zh) * 2009-10-02 2011-04-27 富士通株式会社 滤波器、发送-接收器以及放大电路
CN101699767A (zh) * 2009-10-21 2010-04-28 上海华为技术有限公司 一种射频功率放大器馈电电路
CN101789767A (zh) * 2010-01-25 2010-07-28 北京邮电大学 用于双频放大器的谐波抑制型枝节匹配网络
CN102291092A (zh) * 2011-06-14 2011-12-21 中国科学技术大学 一种逆f类功率放大器
CN103765765A (zh) * 2011-08-29 2014-04-30 国立大学法人电气通信大学 高效率功率放大器
CN104300925A (zh) * 2014-10-24 2015-01-21 天津大学 一种高效率f类/逆f类功率放大器
CN104518742A (zh) * 2014-12-10 2015-04-15 天津大学 一种高效率双频带f类功率放大器

Also Published As

Publication number Publication date
CN106654585A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN103490733B (zh) 一种频率比1.25至2.85的双频带Doherty功率放大器
EP2058943B1 (en) Harmonic processing circuit and amplifying circuit using the same
WO2016201895A1 (zh) 一种高阶f类功率放大电路及射频功率放大器
CN109167582B (zh) 基于频率选择性耦合的宽带带通滤波功率放大器
CN109728783A (zh) 一种多赫蒂功率放大电路、功率放大器、终端及基站
CN206301928U (zh) 具有谐波抑制功能的威尔金森功分器
CN103367853B (zh) 双频带可重构功率分配器
CN102355222B (zh) 阻抗匹配系统和阻抗匹配装置
WO2018053933A1 (zh) 阻抗匹配电路板、天线和终端
CN113922780A (zh) 一种可应用于Doherty PA的功分器
CN109245726B (zh) 一种适用于极高频的双推式倍频器
CN204794910U (zh) 一种基于寄生补偿的j类功率放大电路及宽带功率放大器
CN109449548A (zh) 基于半波长谐振器的可重构多功能滤波器
CN104426575B (zh) 用于设置多端口天线结构的天线谐振模态的装置及方法
WO2018076440A1 (zh) 阻抗匹配电路、天线和终端
CN108011168B (zh) 一种可端接复数阻抗的新型Wilkinson功率分配器
CN110971200B (zh) 一种新型双频带高效f类功率放大器
CN109936338A (zh) 一种高效率五阶逆f类功率放大器
CN107659277B (zh) 一种用于GaN功率器件的双频宽带功率放大器匹配电路
CN213717039U (zh) 一种小型化低通威尔金森功分器
CN104333339A (zh) 一种可调变压器
CN113892236B (zh) 滤波器以及用于发射通道的电路
CN109067364B (zh) 一种宽频高效输出的Doherty功率放大器
Zhao et al. Compact and high efficiency rectifier design based on microstrip coupled transmission line for energy harvesting
CN206388832U (zh) 一种可调压的功分器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920399

Country of ref document: EP

Kind code of ref document: A1