WO2018075635A1 - Asymmetric double inlet backward curved blower - Google Patents

Asymmetric double inlet backward curved blower Download PDF

Info

Publication number
WO2018075635A1
WO2018075635A1 PCT/US2017/057182 US2017057182W WO2018075635A1 WO 2018075635 A1 WO2018075635 A1 WO 2018075635A1 US 2017057182 W US2017057182 W US 2017057182W WO 2018075635 A1 WO2018075635 A1 WO 2018075635A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller blades
assembly according
blower assembly
wheel portion
blower
Prior art date
Application number
PCT/US2017/057182
Other languages
French (fr)
Inventor
Jackie S. ANDERSON
Peter R. Bushnell
Original Assignee
Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corporation filed Critical Carrier Corporation
Priority to US16/339,684 priority Critical patent/US11242864B2/en
Priority to BR112019007618A priority patent/BR112019007618A2/en
Priority to EP17791892.7A priority patent/EP3529496A1/en
Publication of WO2018075635A1 publication Critical patent/WO2018075635A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/424Double entry casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/162Double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis

Definitions

  • the disclosure relates generally to heating and cooling systems and, more particularly, to a fan wheel of a blower assembly configured for use in such heating and cooling systems.
  • HVAC & R Heating, ventilation and air conditioning and refrigeration
  • HVAC & R systems typically use a blower driven by a blower motor to supply air through ducts.
  • HVAC & R systems are typically designed to provide an amount of airflow expressed as cubic feet per minute (CFM) (cubic meters per second in SI units).
  • CFM cubic feet per minute
  • HVAC & R systems use a forward curved centrifugal fan to drive airflow to the other components of the system.
  • CFM cubic feet per minute
  • a blower assembly includes a blower housing and a fan wheel mounted within the blower housing and being rotatable about an axis of rotation.
  • the fan wheel includes a support disk positioned near a center of the fan wheel.
  • a first wheel portion having a first plurality of impeller blades is positioned adjacent a first side of the support disk.
  • a second wheel portion having a second plurality of impeller blades is positioned adjacent a second side of the support disk.
  • the first wheel portion and the second wheel portion are asymmetrical about a plane oriented perpendicular to the axis of rotation and intersecting the support disk.
  • At least one of a number of impeller blades, a blade angle, blade height, inlet diameter, and chord of the first wheel portion is different than the second wheel portion.
  • a configuration of the first wheel portion is optimized for integration with a motor and a configuration of the second wheel portion is optimized for maximum fan efficiency.
  • the first plurality of impeller blades is greater in number than the second plurality of impeller blades.
  • a blade angle of the first plurality of impeller blades is greater than a blade angle of the second plurality of impeller blades.
  • an inlet diameter defined by the first plurality of impeller blades is greater than an inlet diameter defined by the second plurality of impeller blades.
  • At least one of the first plurality of impeller blades and the second plurality of impeller blades has a backward curved configuration.
  • the first plurality of impeller blades includes between about 8 and about 19 impeller blades.
  • the first plurality of impeller blades have an outlet blade angle between 35° and 55°.
  • the first wheel portion has a diameter ratio between about .6 and about .8.
  • the first plurality of impeller blades have a blade height ratio between about 1.2 and 1.8.
  • the first plurality of impeller blades have a thickness between about 2mm and about 5mm.
  • the second plurality of impeller blades includes between about 15 and about 30 impeller blades.
  • the second plurality of impeller blades have an outlet blade angle between 45° and 75°.
  • the second wheel portion has a diameter ratio between about .7 and about .9.
  • the second plurality of impeller blades have a blade height ratio between about 1.0 and about 1.6.
  • the second plurality of impeller blades have a thickness between about 2mm and about 5mm.
  • the first shroud ring includes a plurality of openings configured to receive the distal end of the first plurality of impeller blades.
  • the distal end of the first plurality of impeller blades includes a feature complementary to the plurality of openings such that when the feature is inserted into an opening movement of the first impeller blade is restricted.
  • a plurality of mounting brackets couple the motor to a sidewall of the blower housing.
  • the blower is a portion of a furnace or an air handling unit.
  • FIG. 1 is a perspective view of an example of a gas furnace system
  • FIG. 2 is a perspective view of a blower assembly of the gas furnace system according to an embodiment
  • FIG. 3 is a perspective view of a fan wheel of the blower assembly according to an embodiment
  • FIGS. 4a and 4b are various perspective views of the fan wheel of the blower assembly according to an embodiment
  • FIGS. 5a and 5b are various cross-sectional views of the fan wheel of the blower assembly according to an embodiment
  • FIG. 6 is a perspective cross-sectional view of the fan wheel of the blower assembly according to an embodiment
  • FIG. 7 is an exploded perspective view of the fan wheel of the blower assembly according to an embodiment
  • FIG. 8 is a detailed view of the interface between an impeller blade of the fan wheel and an annular plate according to an embodiment
  • FIG. 9 is a perspective view of a blower assembly according to an embodiment
  • FIG. 10 is a cross-sectional view of the blower assembly of FIG. 8 according to an embodiment
  • FIG. 11 is an exploded perspective view of the blower assembly of FIG. 8 according to an embodiment.
  • the gas furnace system 20 includes a housing 22 having a plurality of exterior walls 24, 26, 28 and an interior dividing wall 30 that forms a heat exchange portion 32 and a blower portion 34.
  • Heat exchange portion 32 includes a component support wall 36 which, as will be discussed more fully below, provides structure for mounting various components of the gas furnace system 20.
  • Housing 22 is also shown to include an access panel 38 that provides access to the blower portion 34 and another access panel (not shown) that provides access to heat exchange portion 32.
  • the gas furnace system 20 additionally includes a burner assembly 40 mounted to component support wall 36. Burner assembly 40 includes a burner box 42 and a gas valve 44.
  • Burner assembly 40 combusts a fuel, in the form of gas, to generate heat used to condition a comfort zone such as living spaces, work spaces and the like. As will be discussed more fully below, products of combustion or exhaust gases generated by the burning of the fuel are expelled to ambient.
  • burner assembly 40 is operativeiy connected to a primary heat exchanger 46 arranged within heat exchange portion 32.
  • Primary heat exchanger 46 is operativeiy coupled to a condensing heat exchanger 48.
  • Condensing heat exchanger 48 includes a plurality of heat exchange members 50.
  • a blower assembly 52 arranged within the blower portion 34 draws in air from a space to be heated. The air is guided over primary heat exchanger 46 and heat exchange members 50 of condensing heat exchanger 48 such that the air is heated before being reintroduced into the space.
  • Gas furnace system 20 further includes an inducer fan assembly 58 mounted to condensate collection box 52.
  • Inducer fan assembly 58 creates an air flow that establishes a draft which draws the products of combustion from burner box 32 through heat exchanger 40 and heat exchange members 46 of condensing heat exchanger 48. More specifically, inducer fan assembly 58 produces a pressure rise and flow rate to achieve a desired combustion performance while overcoming flow losses within gas furnace system 20. The products of combustion are then exhausted through a flue vent 60.
  • the blower assembly 52 includes a fan wheel 62 positioned within a blower housing 64.
  • the blower housing 64 has an outer wall 66 having a scroll-shaped length that extends from a first end edge 68 of the outer wall 66 to an opposite second end edge 70 of the outer wall 66.
  • the first end edge 68 the second end edge 70 define opposite sides of an outlet opening 72 of the blower housing 64.
  • the blower housing 64 additionally includes a first sidewall 74 and a second sidewall 76. As seen in FIG. 3, portions of the peripheries of the first sidewall 74 and the second sidewall 76 are connected to opposite sides of the outer wall 66.
  • the first sidewall 74 has a first straight edge portion 78 extending between the outer wall first end edge 68 and the outer wall second end edge 70 and the second sidewall 76 has a second straight edge portion 80 extending between the outer wall first end edge 68 and the outer wall second end edge 70.
  • the first sidewall 74 includes a first aperture 82 and the second sidewall includes a second aperture 84 (best shown in FIG. 10).
  • the fan wheel 62 includes a support disk 86.
  • the disk 86 may be any suitable type and may include a hub 88 for mounting the wheel 62 to a drive shaft 90 (FIG. 9) for rotation about an axis X.
  • the disk 86 is located near a central portion of the wheel 62 such that a first wheel portion 92 is defined adjacent a first side 94 of the disk 86 and a second wheel portion 96 is defined adjacent a second, opposite side 98 of the disk 86.
  • the first wheel portion 92 includes a first plurality of impeller blades 100 arranged near an outer periphery of the disk 86 and extending generally perpendicular from the first side 94 of the disk 86.
  • the second wheel portion 96 includes a second plurality of impeller blades 102 arranged near an outer periphery of the disk 86 and extending generally perpendicular from the second side 98 of the disk 86.
  • the first plurality of impeller blades 100 is axially spaced from the second plurality of impeller blades 102.
  • one or both of the first plurality and the second plurality of impeller blades 100, 102 are configured as backward curved impeller blades.
  • both the first wheel portion and the second wheel portion are configured to provide air to an adjacent component, and are associated with a single plenum.
  • the first wheel portion 92 is dissimilar from the second wheel portion 96 such that the fan wheel 62 has an asymmetrical configuration about a plane, illustrated schematically at P in FIG. 4A oriented perpendicular to the axis of rotation and intersecting the support disk 86. More specifically, the first plurality of impeller blades 100 and the second plurality of impeller blades 102 are asymmetrical about plane P, oriented parallel to the support disk 86. However, in an embodiment, the first wheel portion 92 and the second wheel portion 96 may be configured to achieve a substantially similar flow rate, such as within 10%.
  • the configuration of the first wheel portion 92 may be optimized for integration with a motor and the configuration of the second wheel portion 96 may be optimized for maximum fan efficiency.
  • optimization for integration with a motor may include a configuration having a larger inlet diameter, a higher blade count, and a larger blade angle.
  • optimization for fan efficiency may include a smaller inlet diameter, a reduced number of blades and a lesser blade angle for example.
  • the asymmetry of the fan wheel 62 may be achieved by varying the number of blades, the blade angle, the height of the blades, the inlet diameter defined by the blades, and the chord between the first wheel portion 92 and the second wheel portion 96.
  • these parameters are intended as an example only and other parameters of the fan wheel 62 or blower assembly 52 may be modified to achieve the desired asymmetry.
  • the first wheel portion 92 includes between about 8 and 19 impeller blades, has an outlet blade angle, beta2 (see FIG. 5A), between about 35° and about 55°, a diameter ratio, Dlp/D2 (see FIG. 5B), between about 0.6-08, and a blade height ratio, B lp/B2 (see FIG. 5B), between about 1.2-1.8.
  • the first plurality of impeller blades 100 may have a thickness of about 2 and about 5mm.
  • the second wheel portion 96 may include between about 15 and 30 impeller blades, have an outlet blade angle between about 45° and about 75°, a diameter ratio of about 0.7-0.9, and a blade height ratio of about 1.0-1.6.
  • a thickness of the second plurality of impeller blades 102 is between about 2mm and about 5mm.
  • the blower assembly 52 additionally includes a first annular plate or shroud ring 104 coupled to the peripheral edge defined by the free ends 106 of the first plurality of impeller blades 100 and includes a second annular plate or shroud ring 108 coupled to the peripheral edge defined by the free ends 110 of the second plurality of impeller blades 102.
  • at least one of the first shroud ring 104 and the second shroud ring 108 includes a plurality of openings 112 complementary to and configured to align within the first plurality of impeller blades 100 and the second plurality of impeller blades 102, respectively.
  • a feature 114 such as angle or pointed tip as shown in FIG.
  • the feature 114 may be designed to restrict motion of the blade 100, 102 relative to the shroud ring 104, 108.
  • a fastening mechanism 116 such as an ultrasonic weld or other suitable mechanism, may be applied or formed at the interface to permanently or temporarily affix the shroud ring 104, 108 to the respective plurality of blades 100, 102.
  • a motor 120 coupled to the fan wheel 62 is operable to drive rotation of the fan wheel 62 about an axis X to draw ambient air into the blower assembly 52.
  • the first plurality of impeller blades 100 defines a cavity 122 (best shown in FIG. 3) within the first wheel portion 92.
  • a diameter of the cavity 122 is defined between opposing impeller blades 100, and the depth of the cavity 122 is defined by the length of the plurality of impeller blades 100 measured parallel to the axis of rotation.
  • the cavity 122 is sized to receive at least a portion of the motor 120.
  • the motor 120 may extend through the opening 82 formed in the sidewall 74 and into the cavity 122.
  • Brackets 124 may be used to mount the motor 120 to the adjacent sidewall 74 of the blower housing 64.
  • the plurality of brackets 124 may be equidistantly spaced about the periphery of the motor 120.
  • three L-shaped brackets 124 are integrally formed with the motor 120.
  • a flange 126 arranged at an end of each bracket 124 is configured to align with the adjacent sidewall 74 such that a fastening mechanism 128 may couple the bracket 124 thereto.
  • the fastening mechanism 128 illustrated is a screw or bolt, other suitable fastening mechanisms are also contemplated herein.
  • the motor is illustrated and described as being positioned within a cavity formed in the first wheel portion, embodiments where the second wheel portion is adapted to receive a portion of the motor are also within the scope of the disclosure.
  • blower assembly 52 illustrated and described herein has an improved efficiency compared to conventional blower assemblies.
  • the blower assembly 52 may be adapted for use in the blower portion 34 of existing furnaces 20 without requiring modification of the cabinet or housing.
  • Embodiment 1 A blower assembly comprising: a blower housing; a fan wheel mounted within the blower housing and being rotatable about an axis of rotation, the fan wheel including: a support disk positioned near a center of the fan wheel; a first wheel portion having a first plurality of impeller blades, the first wheel portion being positioned adjacent a first side of the support disk; and a second wheel portion having a second plurality of impeller blades, the second wheel portion being positioned adjacent a second side of the support disk, wherein the first wheel portion and the second wheel portion are asymmetrical about a plane oriented perpendicular to the axis of rotation and intersecting the support disk.
  • Embodiment 2 The blower assembly according to embodiment 1, wherein at least one of a number of impeller blades, a blade angle, blade height, inlet diameter, and chord of the first wheel portion is different than the second wheel portion.
  • Embodiment 3 The blower assembly according to embodiment 1, wherein a configuration of the first wheel portion is optimized for integration with a motor and a configuration of the second wheel portion is optimized for maximum fan efficiency.
  • Embodiment 4 The blower assembly according to embodiment 3, wherein the first plurality of impeller blades is greater in number than the second plurality of impeller blades.
  • Embodiment 5 The blower assembly according to embodiment 3, wherein a blade angle of the first plurality of impeller blades is greater than a blade angle of the second plurality of impeller blades.
  • Embodiment 6 The blower assembly according to embodiment 3, wherein an inlet diameter defined by the first plurality of impeller blades is greater than an inlet diameter defined by the second plurality of impeller blades.
  • Embodiment 7 The blower assembly according to any of the preceding embodiments, wherein at least one of the first plurality of impeller blades and the second plurality of impeller blades has a backward curved configuration.
  • Embodiment 8 The blower assembly according to any of the preceding embodiments, wherein the first plurality of impeller blades includes between about 8 and about 19 impeller blades.
  • Embodiment 9 The blower assembly according to any of the preceding embodiments, wherein the first plurality of impeller blades has an outlet blade angle between 35° and 55°.
  • Embodiment 10 The blower assembly according to any of the preceding embodiments, wherein the first wheel portion has a diameter ratio between about .6 and about .8.
  • Embodiment 11 The blower assembly according to any of the preceding embodiments, wherein the first plurality of impeller blades have a blade height ratio between about 1.2 and 1.8.
  • Embodiment 12 The blower assembly according to any of the preceding embodiments, wherein the first plurality of impeller blades have a thickness between about 2mm and about 5mm.
  • Embodiment 13 The blower assembly according to any of the preceding embodiments, wherein the second plurality of impeller blades includes between about 15 and about 30 impeller blades.
  • Embodiment 14 The blower assembly according to any of the preceding embodiments, wherein the second plurality of impeller blades has an outlet blade angle between 45° and 75°.
  • Embodiment 15 The blower assembly according to any of the preceding embodiments, wherein the second wheel portion has a diameter ratio between about .7 and about .9.
  • Embodiment 16 The blower assembly according to any of the preceding embodiments, wherein the second plurality of impeller blades have a blade height ratio between about 1.0 and about 1.6.
  • Embodiment 17 The blower assembly according to any of the preceding embodiments, wherein the second plurality of impeller blades have a thickness between about 2mm and about 5mm.
  • Embodiment 18 The blower assembly according to any of the preceding embodiments, further comprising a first shroud ring coupled to a distal end of the first plurality of impeller blades.
  • Embodiment 19 The blower assembly according to any of the preceding embodiments, further comprising a second shroud ring coupled to a distal end of the second plurality of impeller blades.
  • Embodiment 20 The blower assembly according to any of the preceding embodiments, wherein the first shroud ring includes a plurality of openings configured to receive the distal end of the first plurality of impeller blades.
  • Embodiment 21 The blower assembly according to any of the preceding embodiments, wherein the distal end of the first plurality of impeller blades includes a feature complementary to the plurality of openings such that when the feature is inserted into an opening movement of the first impeller blade is restricted.
  • Embodiment 22 The blower assembly according any of the preceding embodiments, further comprising a motor for driving rotation of the fan wheel about an axis, wherein the first wheel portion defines a cavity within which a portion of the motor is received.
  • Embodiment 23 The blower assembly according to embodiment 22, wherein a plurality of mounting brackets couple the motor to a sidewall of the blower housing.
  • Embodiment 24 The blower assembly according to any of the preceding embodiments, wherein the blower is a portion of a furnace or an air handling unit.
  • the disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various embodiments of the disclosure have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A blower assembly includes a blower housing and a fan wheel mounted within the blower housing and being rotatable about an axis of rotation. The fan wheel includes a support disk positioned near a center of the fan wheel. A first wheel portion having a first plurality of impeller blades is positioned adjacent a first side of the support disk. A second wheel portion having a second plurality of impeller blades is positioned adjacent a second side of the support disk. The first wheel portion and the second wheel portion are asymmetrical about a plane oriented perpendicular to the axis of rotation and intersecting the support disk.

Description

ASYMMETRIC DOUBLE INLET BACKWARD CURVED BLOWER
BACKGROUND
[0001] The disclosure relates generally to heating and cooling systems and, more particularly, to a fan wheel of a blower assembly configured for use in such heating and cooling systems.
[0002] Heating, ventilation and air conditioning and refrigeration (HVAC & R) systems typically use a blower driven by a blower motor to supply air through ducts. HVAC & R systems are typically designed to provide an amount of airflow expressed as cubic feet per minute (CFM) (cubic meters per second in SI units). Conventionally, HVAC & R systems use a forward curved centrifugal fan to drive airflow to the other components of the system. However, there is a need to increase the efficiency of the blower without increasing the size of the housing of the HVAC & R system.
BRIEF DESCRIPTION
[0003] According to an embodiment, a blower assembly includes a blower housing and a fan wheel mounted within the blower housing and being rotatable about an axis of rotation. The fan wheel includes a support disk positioned near a center of the fan wheel. A first wheel portion having a first plurality of impeller blades is positioned adjacent a first side of the support disk. A second wheel portion having a second plurality of impeller blades is positioned adjacent a second side of the support disk. The first wheel portion and the second wheel portion are asymmetrical about a plane oriented perpendicular to the axis of rotation and intersecting the support disk.
[0004] In addition to one or more of the features described above, or as an alternative, in further embodiments at least one of a number of impeller blades, a blade angle, blade height, inlet diameter, and chord of the first wheel portion is different than the second wheel portion.
[0005] In addition to one or more of the features described above, or as an alternative, in further embodiments a configuration of the first wheel portion is optimized for integration with a motor and a configuration of the second wheel portion is optimized for maximum fan efficiency.
[0006] In addition to one or more of the features described above, or as an alternative, in further embodiments the first plurality of impeller blades is greater in number than the second plurality of impeller blades. [0007] In addition to one or more of the features described above, or as an alternative, in further embodiments a blade angle of the first plurality of impeller blades is greater than a blade angle of the second plurality of impeller blades.
[0008] In addition to one or more of the features described above, or as an alternative, in further embodiments an inlet diameter defined by the first plurality of impeller blades is greater than an inlet diameter defined by the second plurality of impeller blades.
[0009] In addition to one or more of the features described above, or as an alternative, in further embodiments at least one of the first plurality of impeller blades and the second plurality of impeller blades has a backward curved configuration.
[0010] In addition to one or more of the features described above, or as an alternative, in further embodiments the first plurality of impeller blades includes between about 8 and about 19 impeller blades.
[0011] In addition to one or more of the features described above, or as an alternative, in further embodiments the first plurality of impeller blades have an outlet blade angle between 35° and 55°.
[0012] In addition to one or more of the features described above, or as an alternative, in further embodiments the first wheel portion has a diameter ratio between about .6 and about .8.
[0013] In addition to one or more of the features described above, or as an alternative, in further embodiments the first plurality of impeller blades have a blade height ratio between about 1.2 and 1.8.
[0014] In addition to one or more of the features described above, or as an alternative, in further embodiments the first plurality of impeller blades have a thickness between about 2mm and about 5mm.
[0015] In addition to one or more of the features described above, or as an alternative, in further embodiments the second plurality of impeller blades includes between about 15 and about 30 impeller blades.
[0016] In addition to one or more of the features described above, or as an alternative, in further embodiments the second plurality of impeller blades have an outlet blade angle between 45° and 75°.
[0017] In addition to one or more of the features described above, or as an alternative, in further embodiments the second wheel portion has a diameter ratio between about .7 and about .9. [0018] In addition to one or more of the features described above, or as an alternative, in further embodiments the second plurality of impeller blades have a blade height ratio between about 1.0 and about 1.6.
[0019] In addition to one or more of the features described above, or as an alternative, in further embodiments the second plurality of impeller blades have a thickness between about 2mm and about 5mm.
[0020] In addition to one or more of the features described above, or as an alternative, in further embodiments comprising a first shroud ring coupled to a distal end of the first plurality of impeller blades.
[0021] In addition to one or more of the features described above, or as an alternative, in further embodiments comprising a second shroud ring coupled to a distal end of the second plurality of impeller blades.
[0022] In addition to one or more of the features described above, or as an alternative, in further embodiments the first shroud ring includes a plurality of openings configured to receive the distal end of the first plurality of impeller blades.
[0023] In addition to one or more of the features described above, or as an alternative, in further embodiments the distal end of the first plurality of impeller blades includes a feature complementary to the plurality of openings such that when the feature is inserted into an opening movement of the first impeller blade is restricted.
[0024] In addition to one or more of the features described above, or as an alternative, in further embodiments comprising a motor for driving rotation of the fan wheel about an axis, wherein the first wheel portion defines a cavity within which a portion of the motor is received.
[0025] In addition to one or more of the features described above, or as an alternative, in further embodiments a plurality of mounting brackets couple the motor to a sidewall of the blower housing.
[0026] In addition to one or more of the features described above, or as an alternative, in further embodiments the blower is a portion of a furnace or an air handling unit.
[0027] These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWING
[0028] The subject matter, which is regarded as the disclosure, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
[0029] FIG. 1 is a perspective view of an example of a gas furnace system;
[0030] FIG. 2 is a perspective view of a blower assembly of the gas furnace system according to an embodiment;
[0031] FIG. 3 is a perspective view of a fan wheel of the blower assembly according to an embodiment;
[0032] FIGS. 4a and 4b are various perspective views of the fan wheel of the blower assembly according to an embodiment;
[0033] FIGS. 5a and 5b are various cross-sectional views of the fan wheel of the blower assembly according to an embodiment;
[0034] FIG. 6 is a perspective cross-sectional view of the fan wheel of the blower assembly according to an embodiment;
[0035] FIG. 7 is an exploded perspective view of the fan wheel of the blower assembly according to an embodiment;
[0036] FIG. 8 is a detailed view of the interface between an impeller blade of the fan wheel and an annular plate according to an embodiment;
[0037] FIG. 9 is a perspective view of a blower assembly according to an embodiment;
[0038] FIG. 10 is a cross-sectional view of the blower assembly of FIG. 8 according to an embodiment;
[0039] FIG. 11 is an exploded perspective view of the blower assembly of FIG. 8 according to an embodiment.
DETAILED DESCRIPTION
[0040] With reference to FIG. 1, an example of a gas furnace system is illustrated generally at 20. The gas furnace system 20 includes a housing 22 having a plurality of exterior walls 24, 26, 28 and an interior dividing wall 30 that forms a heat exchange portion 32 and a blower portion 34. Heat exchange portion 32 includes a component support wall 36 which, as will be discussed more fully below, provides structure for mounting various components of the gas furnace system 20. Housing 22 is also shown to include an access panel 38 that provides access to the blower portion 34 and another access panel (not shown) that provides access to heat exchange portion 32. [0041] The gas furnace system 20 additionally includes a burner assembly 40 mounted to component support wall 36. Burner assembly 40 includes a burner box 42 and a gas valve 44. Burner assembly 40 combusts a fuel, in the form of gas, to generate heat used to condition a comfort zone such as living spaces, work spaces and the like. As will be discussed more fully below, products of combustion or exhaust gases generated by the burning of the fuel are expelled to ambient. In the embodiment shown, burner assembly 40 is operativeiy connected to a primary heat exchanger 46 arranged within heat exchange portion 32. Primary heat exchanger 46 is operativeiy coupled to a condensing heat exchanger 48. Condensing heat exchanger 48 includes a plurality of heat exchange members 50. With this arrangement, a blower assembly 52 arranged within the blower portion 34 draws in air from a space to be heated. The air is guided over primary heat exchanger 46 and heat exchange members 50 of condensing heat exchanger 48 such that the air is heated before being reintroduced into the space.
[0042] During operation of the gas furnace system 20, moisture from the products of combustion condenses condensing heat exchanger 48. This moisture collected and passed on to an external drain (not shown). The moisture is guided to a condensate collector box 54. Condensate collector box 54 is secured to component support wall 36. The moisture is collected in condensate collector box 54 and passed to a condensate trap 56 and on to the external drain. Gas furnace system 20 further includes an inducer fan assembly 58 mounted to condensate collection box 52. Inducer fan assembly 58 creates an air flow that establishes a draft which draws the products of combustion from burner box 32 through heat exchanger 40 and heat exchange members 46 of condensing heat exchanger 48. More specifically, inducer fan assembly 58 produces a pressure rise and flow rate to achieve a desired combustion performance while overcoming flow losses within gas furnace system 20. The products of combustion are then exhausted through a flue vent 60.
[0043] With reference now to FIG. 2, the blower assembly 52 is illustrated in more detail. Although the blower assembly 52 is illustrated and described herein with reference to a furnace, it should be understood that the blower assembly 52 may be used in other suitable applications, such as in an air handling unit of an HVAC and/or refrigeration system for example. The blower assembly 52 includes a fan wheel 62 positioned within a blower housing 64. The blower housing 64 has an outer wall 66 having a scroll-shaped length that extends from a first end edge 68 of the outer wall 66 to an opposite second end edge 70 of the outer wall 66. The first end edge 68 the second end edge 70 define opposite sides of an outlet opening 72 of the blower housing 64. Although the outlet opening 72 is illustrated as being generally rectangular in shape, embodiments where the outlet opening 72 is another shape are also contemplated herein. The blower housing 64 additionally includes a first sidewall 74 and a second sidewall 76. As seen in FIG. 3, portions of the peripheries of the first sidewall 74 and the second sidewall 76 are connected to opposite sides of the outer wall 66. The first sidewall 74 has a first straight edge portion 78 extending between the outer wall first end edge 68 and the outer wall second end edge 70 and the second sidewall 76 has a second straight edge portion 80 extending between the outer wall first end edge 68 and the outer wall second end edge 70. The first sidewall 74 includes a first aperture 82 and the second sidewall includes a second aperture 84 (best shown in FIG. 10).
[0044] With reference now to FIGS. 3-7, the fan wheel 62 is illustrated in more detail. The fan wheel 62 includes a support disk 86. The disk 86 may be any suitable type and may include a hub 88 for mounting the wheel 62 to a drive shaft 90 (FIG. 9) for rotation about an axis X. The disk 86 is located near a central portion of the wheel 62 such that a first wheel portion 92 is defined adjacent a first side 94 of the disk 86 and a second wheel portion 96 is defined adjacent a second, opposite side 98 of the disk 86. The first wheel portion 92 includes a first plurality of impeller blades 100 arranged near an outer periphery of the disk 86 and extending generally perpendicular from the first side 94 of the disk 86. Similarly, the second wheel portion 96 includes a second plurality of impeller blades 102 arranged near an outer periphery of the disk 86 and extending generally perpendicular from the second side 98 of the disk 86. As a result, of this configuration, the first plurality of impeller blades 100 is axially spaced from the second plurality of impeller blades 102. In an embodiment, one or both of the first plurality and the second plurality of impeller blades 100, 102 are configured as backward curved impeller blades. When used in a furnace system, such as system 20 of FIG. 1, both the first wheel portion and the second wheel portion are configured to provide air to an adjacent component, and are associated with a single plenum.
[0045] In an embodiment, the first wheel portion 92 is dissimilar from the second wheel portion 96 such that the fan wheel 62 has an asymmetrical configuration about a plane, illustrated schematically at P in FIG. 4A oriented perpendicular to the axis of rotation and intersecting the support disk 86. More specifically, the first plurality of impeller blades 100 and the second plurality of impeller blades 102 are asymmetrical about plane P, oriented parallel to the support disk 86. However, in an embodiment, the first wheel portion 92 and the second wheel portion 96 may be configured to achieve a substantially similar flow rate, such as within 10%. For example, the configuration of the first wheel portion 92 may be optimized for integration with a motor and the configuration of the second wheel portion 96 may be optimized for maximum fan efficiency. For example, such optimization for integration with a motor may include a configuration having a larger inlet diameter, a higher blade count, and a larger blade angle. Similarly, optimization for fan efficiency may include a smaller inlet diameter, a reduced number of blades and a lesser blade angle for example. In an embodiment, the asymmetry of the fan wheel 62 may be achieved by varying the number of blades, the blade angle, the height of the blades, the inlet diameter defined by the blades, and the chord between the first wheel portion 92 and the second wheel portion 96. However, these parameters are intended as an example only and other parameters of the fan wheel 62 or blower assembly 52 may be modified to achieve the desired asymmetry.
[0046] In an embodiment, the first wheel portion 92 includes between about 8 and 19 impeller blades, has an outlet blade angle, beta2 (see FIG. 5A), between about 35° and about 55°, a diameter ratio, Dlp/D2 (see FIG. 5B), between about 0.6-08, and a blade height ratio, B lp/B2 (see FIG. 5B), between about 1.2-1.8. Further, the first plurality of impeller blades 100 may have a thickness of about 2 and about 5mm. Similarly, the second wheel portion 96 may include between about 15 and 30 impeller blades, have an outlet blade angle between about 45° and about 75°, a diameter ratio of about 0.7-0.9, and a blade height ratio of about 1.0-1.6. In an embodiment, a thickness of the second plurality of impeller blades 102 is between about 2mm and about 5mm.
[0047] The blower assembly 52 additionally includes a first annular plate or shroud ring 104 coupled to the peripheral edge defined by the free ends 106 of the first plurality of impeller blades 100 and includes a second annular plate or shroud ring 108 coupled to the peripheral edge defined by the free ends 110 of the second plurality of impeller blades 102. In an embodiment, best shown in FIG. 6, at least one of the first shroud ring 104 and the second shroud ring 108 includes a plurality of openings 112 complementary to and configured to align within the first plurality of impeller blades 100 and the second plurality of impeller blades 102, respectively. A feature 114, such as angle or pointed tip as shown in FIG. 7 for example, may be formed at the distal end 106, 110 of the blades 100, 102 to facilitate positioning of the blade 100, 102 relative to an opening 112. In an embodiment, the feature 114 may be designed to restrict motion of the blade 100, 102 relative to the shroud ring 104, 108. After the feature 114 is received within an opening 112 of a directly adjacent shroud ring 104, 108, a fastening mechanism 116, such as an ultrasonic weld or other suitable mechanism, may be applied or formed at the interface to permanently or temporarily affix the shroud ring 104, 108 to the respective plurality of blades 100, 102. [0048] With reference now to FIGS. 8-10, a motor 120 coupled to the fan wheel 62 is operable to drive rotation of the fan wheel 62 about an axis X to draw ambient air into the blower assembly 52. The first plurality of impeller blades 100 defines a cavity 122 (best shown in FIG. 3) within the first wheel portion 92. For example, a diameter of the cavity 122 is defined between opposing impeller blades 100, and the depth of the cavity 122 is defined by the length of the plurality of impeller blades 100 measured parallel to the axis of rotation. In an embodiment, the cavity 122 is sized to receive at least a portion of the motor 120. As shown, the motor 120 may extend through the opening 82 formed in the sidewall 74 and into the cavity 122. One or more brackets 124 may be used to mount the motor 120 to the adjacent sidewall 74 of the blower housing 64. The plurality of brackets 124 may be equidistantly spaced about the periphery of the motor 120. In the illustrated, non-limiting embodiment, three L-shaped brackets 124 are integrally formed with the motor 120. A flange 126 arranged at an end of each bracket 124 is configured to align with the adjacent sidewall 74 such that a fastening mechanism 128 may couple the bracket 124 thereto. Although the fastening mechanism 128 illustrated is a screw or bolt, other suitable fastening mechanisms are also contemplated herein. Further, it should be understood that although the motor is illustrated and described as being positioned within a cavity formed in the first wheel portion, embodiments where the second wheel portion is adapted to receive a portion of the motor are also within the scope of the disclosure.
[0049] The blower assembly 52 illustrated and described herein has an improved efficiency compared to conventional blower assemblies. In addition, the blower assembly 52 may be adapted for use in the blower portion 34 of existing furnaces 20 without requiring modification of the cabinet or housing.
[0050] Embodiment 1: A blower assembly comprising: a blower housing; a fan wheel mounted within the blower housing and being rotatable about an axis of rotation, the fan wheel including: a support disk positioned near a center of the fan wheel; a first wheel portion having a first plurality of impeller blades, the first wheel portion being positioned adjacent a first side of the support disk; and a second wheel portion having a second plurality of impeller blades, the second wheel portion being positioned adjacent a second side of the support disk, wherein the first wheel portion and the second wheel portion are asymmetrical about a plane oriented perpendicular to the axis of rotation and intersecting the support disk.
[0051] Embodiment 2: The blower assembly according to embodiment 1, wherein at least one of a number of impeller blades, a blade angle, blade height, inlet diameter, and chord of the first wheel portion is different than the second wheel portion. [0052] Embodiment 3: The blower assembly according to embodiment 1, wherein a configuration of the first wheel portion is optimized for integration with a motor and a configuration of the second wheel portion is optimized for maximum fan efficiency.
[0053] Embodiment 4: The blower assembly according to embodiment 3, wherein the first plurality of impeller blades is greater in number than the second plurality of impeller blades.
[0054] Embodiment 5: The blower assembly according to embodiment 3, wherein a blade angle of the first plurality of impeller blades is greater than a blade angle of the second plurality of impeller blades.
[0055] Embodiment 6: The blower assembly according to embodiment 3, wherein an inlet diameter defined by the first plurality of impeller blades is greater than an inlet diameter defined by the second plurality of impeller blades.
[0056] Embodiment 7: The blower assembly according to any of the preceding embodiments, wherein at least one of the first plurality of impeller blades and the second plurality of impeller blades has a backward curved configuration.
[0057] Embodiment 8: The blower assembly according to any of the preceding embodiments, wherein the first plurality of impeller blades includes between about 8 and about 19 impeller blades.
[0058] Embodiment 9: The blower assembly according to any of the preceding embodiments, wherein the first plurality of impeller blades has an outlet blade angle between 35° and 55°.
[0059] Embodiment 10: The blower assembly according to any of the preceding embodiments, wherein the first wheel portion has a diameter ratio between about .6 and about .8.
[0060] Embodiment 11: The blower assembly according to any of the preceding embodiments, wherein the first plurality of impeller blades have a blade height ratio between about 1.2 and 1.8.
[0061] Embodiment 12: The blower assembly according to any of the preceding embodiments, wherein the first plurality of impeller blades have a thickness between about 2mm and about 5mm.
[0062] Embodiment 13: The blower assembly according to any of the preceding embodiments, wherein the second plurality of impeller blades includes between about 15 and about 30 impeller blades. [0063] Embodiment 14: The blower assembly according to any of the preceding embodiments, wherein the second plurality of impeller blades has an outlet blade angle between 45° and 75°.
[0064] Embodiment 15: The blower assembly according to any of the preceding embodiments, wherein the second wheel portion has a diameter ratio between about .7 and about .9.
[0065] Embodiment 16: The blower assembly according to any of the preceding embodiments, wherein the second plurality of impeller blades have a blade height ratio between about 1.0 and about 1.6.
[0066] Embodiment 17: The blower assembly according to any of the preceding embodiments, wherein the second plurality of impeller blades have a thickness between about 2mm and about 5mm.
[0067] Embodiment 18: The blower assembly according to any of the preceding embodiments, further comprising a first shroud ring coupled to a distal end of the first plurality of impeller blades.
[0068] Embodiment 19: The blower assembly according to any of the preceding embodiments, further comprising a second shroud ring coupled to a distal end of the second plurality of impeller blades.
[0069] Embodiment 20: The blower assembly according to any of the preceding embodiments, wherein the first shroud ring includes a plurality of openings configured to receive the distal end of the first plurality of impeller blades.
[0070] Embodiment 21: The blower assembly according to any of the preceding embodiments, wherein the distal end of the first plurality of impeller blades includes a feature complementary to the plurality of openings such that when the feature is inserted into an opening movement of the first impeller blade is restricted.
[0071] Embodiment 22: The blower assembly according any of the preceding embodiments, further comprising a motor for driving rotation of the fan wheel about an axis, wherein the first wheel portion defines a cavity within which a portion of the motor is received.
[0072] Embodiment 23: The blower assembly according to embodiment 22, wherein a plurality of mounting brackets couple the motor to a sidewall of the blower housing.
[0073] Embodiment 24: The blower assembly according to any of the preceding embodiments, wherein the blower is a portion of a furnace or an air handling unit. [0074] While the disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various embodiments of the disclosure have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims

CLAIMS:
1. A blower assembly comprising:
a blower housing;
a fan wheel mounted within the blower housing and being rotatable about an axis of rotation, the fan wheel including:
a support disk positioned near a center of the fan wheel;
a first wheel portion having a first plurality of impeller blades, the first wheel portion being positioned adjacent a first side of the support disk; and
a second wheel portion having a second plurality of impeller blades, the second wheel portion being positioned adjacent a second side of the support disk, wherein the first wheel portion and the second wheel portion are asymmetrical about a plane oriented perpendicular to the axis of rotation and intersecting the support disk.
2. The blower assembly according to claim 1, wherein at least one of a number of impeller blades, a blade angle, blade height, inlet diameter, and chord of the first wheel portion is different than the second wheel portion.
3. The blower assembly according to claim 1, wherein a configuration of the first wheel portion is optimized for integration with a motor and a configuration of the second wheel portion is optimized for maximum fan efficiency.
4. The blower assembly according to claim 3, wherein the first plurality of impeller blades is greater in number than the second plurality of impeller blades.
5. The blower assembly according to claim 3, wherein a blade angle of the first plurality of impeller blades is greater than a blade angle of the second plurality of impeller blades.
6. The blower assembly according to claim 3, wherein an inlet diameter defined by the first plurality of impeller blades is greater than an inlet diameter defined by the second plurality of impeller blades.
7. The blower assembly according to any of the preceding claims, wherein at least one of the first plurality of impeller blades and the second plurality of impeller blades has a backward curved configuration.
8. The blower assembly according to any of the preceding claims, wherein the first plurality of impeller blades includes between about 8 and about 19 impeller blades.
9. The blower assembly according to any of the preceding claims, wherein the first plurality of impeller blades have an outlet blade angle between 35° and 55°.
10. The blower assembly according to any of the preceding claims, wherein the first wheel portion has a diameter ratio between about .6 and about .8.
11. The blower assembly according to any of the preceding claims, wherein the first plurality of impeller blades have a blade height ratio between about 1.2 and 1.8.
12. The blower assembly according to any of the preceding claims, wherein the first plurality of impeller blades have a thickness between about 2mm and about 5mm.
13. The blower assembly according to any of the preceding claims, wherein the second plurality of impeller blades includes between about 15 and about 30 impeller blades.
14. The blower assembly according to any of the preceding claims, wherein the second plurality of impeller blades have an outlet blade angle between 45° and 75°.
15. The blower assembly according to any of the preceding claims, wherein the second wheel portion has a diameter ratio between about .7 and about .9.
16. The blower assembly according to any of the preceding claims, wherein the second plurality of impeller blades have a blade height ratio between about 1.0 and about 1.6.
17. The blower assembly according to any of the preceding claims, wherein the second plurality of impeller blades have a thickness between about 2mm and about 5mm.
18. The blower assembly according to any of the preceding claims, further comprising a first shroud ring coupled to a distal end of the first plurality of impeller blades.
19. The blower assembly according to any of the preceding claims, further comprising a second shroud ring coupled to a distal end of the second plurality of impeller blades.
20. The blower assembly according to any of the preceding claims, wherein the first shroud ring includes a plurality of openings configured to receive the distal end of the first plurality of impeller blades.
21. The blower assembly according to any of the preceding claims, wherein the distal end of the first plurality of impeller blades includes a feature complementary to the plurality of openings such that when the feature is inserted into an opening movement of the first impeller blade is restricted.
22. The blower assembly according any of the preceding claims, further comprising a motor for driving rotation of the fan wheel about an axis, wherein the first wheel portion defines a cavity within which a portion of the motor is received.
23. The blower assembly according to claim 22, wherein a plurality of mounting brackets couple the motor to a sidewall of the blower housing.
24. The blower assembly according to any of the preceding claims, wherein the blower is a portion of a furnace or an air handling unit.
PCT/US2017/057182 2016-10-18 2017-10-18 Asymmetric double inlet backward curved blower WO2018075635A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/339,684 US11242864B2 (en) 2016-10-18 2017-10-18 Asymmetric double inlet backward curved blower
BR112019007618A BR112019007618A2 (en) 2016-10-18 2017-10-18 fan assembly
EP17791892.7A EP3529496A1 (en) 2016-10-18 2017-10-18 Asymmetric double inlet backward curved blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662409669P 2016-10-18 2016-10-18
US62/409,669 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018075635A1 true WO2018075635A1 (en) 2018-04-26

Family

ID=60191568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/057182 WO2018075635A1 (en) 2016-10-18 2017-10-18 Asymmetric double inlet backward curved blower

Country Status (4)

Country Link
US (1) US11242864B2 (en)
EP (1) EP3529496A1 (en)
BR (1) BR112019007618A2 (en)
WO (1) WO2018075635A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489230A (en) * 2018-11-12 2019-03-19 武城县冠智信息产业技术有限公司 A kind of air diffuser of staggeredly wall rotation
EP3517784A1 (en) 2018-01-30 2019-07-31 Carrier Corporation Fan impeller made of two bladed parts axially connected to each other
US20220287202A1 (en) * 2021-03-05 2022-09-08 Apple Inc. Fan impeller with sections having different blade design geometries
US11873825B2 (en) * 2019-10-09 2024-01-16 Shenzhen Lanhe Technologies Co., Ltd. Portable blowing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1681458S (en) * 2020-07-31 2021-03-22
WO2023086166A1 (en) * 2021-11-10 2023-05-19 Rheem Manufacturing Company Angled fan deck for air handler
USD999901S1 (en) * 2023-02-03 2023-09-26 Minhua Chen Fan blade

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182079A1 (en) * 2001-05-30 2002-12-05 Gerken Mark A. Airfoil blade and method for its manufacture
US20120156024A1 (en) * 2010-12-20 2012-06-21 Alex Horng Fan Module
US20130089425A1 (en) * 2011-10-05 2013-04-11 Chun-Ming Wu Blade structure for centrifugal fan

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117005A (en) 1974-08-02 1976-02-10 Matsushita Electric Ind Co Ltd RYUTAIKI KAIYOENTOGATAHANEGURUMA
JPS55114897A (en) 1979-02-27 1980-09-04 Mikuni Plast Kk Cross flow impeller
DE3247453C1 (en) 1982-12-22 1983-12-15 Funken & Co GmbH, 5200 Siegburg Thermoplastic fan impeller - where thermo-formed V-walled blades welded to base and ring respectively are welded together at ends
DE58901573D1 (en) 1988-06-30 1992-07-09 Siemens Ag BALANCED FAN WHEEL AND METHOD AND DEVICE FOR CARRYING OUT THE BALANCE.
JPH07103190A (en) 1993-10-06 1995-04-18 Takao Kobayashi Structure of impeller for lightweight-low noise type turbofan
JP4507553B2 (en) 2003-10-23 2010-07-21 パナソニック株式会社 Cross flow fan and cross flow fan manufacturing method
US7108482B2 (en) 2004-01-23 2006-09-19 Robert Bosch Gmbh Centrifugal blower
JP5240926B2 (en) 2005-07-04 2013-07-17 ベール ゲーエムベーハー ウント コー カーゲー Impeller
JP3901200B2 (en) 2005-08-05 2007-04-04 ダイキン工業株式会社 Resin cross flow fan and method of manufacturing the same
CN1862029B (en) 2005-08-29 2010-06-30 刘希文 Bucket screw centrifugal vane of fan and application method of said vane in fluid delivering thereof
WO2007033274A2 (en) 2005-09-13 2007-03-22 Ingersoll-Rand Company Impeller for a centrifugal compressor
WO2007037699A1 (en) 2005-09-27 2007-04-05 Umoe Mandal As Centrifugal fan
JP3995010B2 (en) 2005-09-28 2007-10-24 ダイキン工業株式会社 Impeller of multiblade blower and method of manufacturing the same
CN100559031C (en) 2005-10-06 2009-11-11 三菱电机株式会社 Turbofan and air conditioner
JP4876784B2 (en) 2006-08-24 2012-02-15 パナソニック株式会社 Double suction centrifugal blower
US20080279682A1 (en) 2007-03-06 2008-11-13 Larry David Wydra Impeller Assembly and Method of Using Same
US7762778B2 (en) 2007-05-17 2010-07-27 Kurz-Kasch, Inc. Fan impeller
ES2607841T3 (en) 2009-03-25 2017-04-04 Ebm-Papst Mulfingen Gmbh & Co. Kg Radial fan
DE102009002418A1 (en) 2009-04-16 2010-10-21 Robert Bosch Gmbh Fan wheel for a fan module
CN101846087B (en) 2010-05-11 2011-09-14 东元总合科技(杭州)有限公司 Centrifugal fan and closed motor with same
US11136992B2 (en) 2010-08-05 2021-10-05 Regal Beloit America, Inc. High efficiency blower housing with unequal size inlet openings
US9140270B2 (en) 2011-09-14 2015-09-22 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Centrifugal fan assembly
DE202011052411U1 (en) 2011-12-21 2013-03-22 Ebm-Papst Mulfingen Gmbh & Co. Kg Paddle wheel for axial fans or radial and diagonal fans
US9017011B2 (en) 2011-12-29 2015-04-28 Regal Beloit America, Inc. Furnace air handler blower with enlarged backward curved impeller and associated method of use
US9109605B2 (en) 2012-04-24 2015-08-18 Asia Vital Components Co., Ltd. Fan impeller structure and manufacturing method thereof
JP5590081B2 (en) 2012-09-04 2014-09-17 ダイキン工業株式会社 Cross flow fan
CN202851448U (en) 2012-09-06 2013-04-03 江苏友奥电器有限公司 Backward centrifugal blade
JP2014134163A (en) 2013-01-11 2014-07-24 Nisshinbo Mechatronics Inc Impeller for blower
US9689264B2 (en) 2013-03-15 2017-06-27 Regal Beloit America, Inc. Centrifugal fan impeller with variable shape fan blades and method of assembly
JP6341637B2 (en) 2013-06-14 2018-06-13 三菱電機株式会社 Manufacturing method of centrifugal blower
US20150071800A1 (en) 2013-09-10 2015-03-12 Samsung Electro-Mechanics Co., Ltd. Impeller for electric blower and electric blower having the same
JP6001520B2 (en) 2013-11-01 2016-10-05 日清紡メカトロニクス株式会社 Method for manufacturing turbofan
CN103696985A (en) 2013-11-30 2014-04-02 宁波方太厨具有限公司 Centrifugal fan impeller
CN104747495A (en) 2013-12-26 2015-07-01 珠海格力电器股份有限公司 Forward type centrifugal fan blade, centrifugal fan and air conditioner of centrifugal fan
CN203685679U (en) 2014-01-23 2014-07-02 珠海格力电器股份有限公司 Centrifugal fan blade, centrifugal fan and air conditioner
CN104806567A (en) 2014-01-23 2015-07-29 珠海格力电器股份有限公司 Centrifugal blade, centrifugal fan and air conditioner
CN103807209A (en) 2014-02-13 2014-05-21 沈阳斯特机械制造有限公司 Enclosed impeller of centrifugal compressor
US9933185B2 (en) 2014-02-24 2018-04-03 Noritz Corporation Fan and water heater provided with the same, and impeller and water heater provided with the same
CN203879799U (en) 2014-05-30 2014-10-15 江苏友奥电器有限公司 Double-suction centrifugal fan blade
CN203879801U (en) 2014-06-04 2014-10-15 江苏友奥电器有限公司 Double-suction type centrifugal fan blade
JP6366389B2 (en) 2014-07-03 2018-08-01 株式会社日本クライメイトシステムズ Fan mounting structure
CN204961385U (en) 2015-07-21 2016-01-13 依必安派特风机(上海)有限公司 Back is to centrifugal fan impeller and centrifugal fan
CN105090107A (en) 2015-07-21 2015-11-25 依必安派特风机(上海)有限公司 Backward centrifugal fan impeller and centrifugal fan
CN105179281A (en) 2015-10-12 2015-12-23 珠海格力电器股份有限公司 Fan and air conditioning system comprising same
JP6210104B2 (en) 2015-10-30 2017-10-11 ダイキン工業株式会社 Cross flow fan
US11041502B2 (en) 2018-01-30 2021-06-22 Carrier Corporation Double inlet backward curved blower

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182079A1 (en) * 2001-05-30 2002-12-05 Gerken Mark A. Airfoil blade and method for its manufacture
US20120156024A1 (en) * 2010-12-20 2012-06-21 Alex Horng Fan Module
US20130089425A1 (en) * 2011-10-05 2013-04-11 Chun-Ming Wu Blade structure for centrifugal fan

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3517784A1 (en) 2018-01-30 2019-07-31 Carrier Corporation Fan impeller made of two bladed parts axially connected to each other
EP4290083A2 (en) 2018-01-30 2023-12-13 Carrier Corporation Fan impeller made of two bladed parts axially connected to each other
CN109489230A (en) * 2018-11-12 2019-03-19 武城县冠智信息产业技术有限公司 A kind of air diffuser of staggeredly wall rotation
US11873825B2 (en) * 2019-10-09 2024-01-16 Shenzhen Lanhe Technologies Co., Ltd. Portable blowing device
US20220287202A1 (en) * 2021-03-05 2022-09-08 Apple Inc. Fan impeller with sections having different blade design geometries
US11723172B2 (en) * 2021-03-05 2023-08-08 Apple Inc. Fan impeller with sections having different blade design geometries

Also Published As

Publication number Publication date
US20200072237A1 (en) 2020-03-05
BR112019007618A2 (en) 2019-07-02
EP3529496A1 (en) 2019-08-28
US11242864B2 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
US11242864B2 (en) Asymmetric double inlet backward curved blower
US11873831B2 (en) Double inlet backward curved blower
CN204678510U (en) Window-mounted air conditioner
CN104566672A (en) Window type air-conditioner
US20090114206A1 (en) Furnace Air Handler Blower Housing with an Enlarged Air Outlet Opening
KR102120183B1 (en) Fan and Shroud Assemble
US20100263653A2 (en) High Efficiency Furnace/Air Handler Blower Housing with a Side Wall Having an Exponentially Increasing Expansion Angle
JP6377172B2 (en) Outdoor unit for propeller fan, propeller fan device and air conditioner
US8025049B2 (en) High efficiency furnace having a blower housing with an enlarged air outlet opening
US20080134713A1 (en) Turbo fan and air conditioner having the same
US20150354584A1 (en) Centrifugal fan
US8584664B2 (en) Inducer fan assembly for a furnace
JP2007205268A (en) Centrifugal fan
US6881035B1 (en) Draft inducer having single piece metal impeller and improved housing
KR101184988B1 (en) Hub guid with cone for fan of air circulation in large space
US9599339B2 (en) Motor-driven chimney draft system and an impeller for use in the system
US20110189005A1 (en) Low Profile, High Efficiency Blower Assembly
CN203476757U (en) Air supply fan and air conditioner with same
US20120090590A1 (en) Inducer fan assembly for a gas furnace system
US11499716B2 (en) Furnace subassembly, furnace blower and associated method
JP6370406B2 (en) Air conditioner
KR102560344B1 (en) Air blower for generating stable airflow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17791892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019007618

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017791892

Country of ref document: EP

Effective date: 20190520

ENP Entry into the national phase

Ref document number: 112019007618

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190415