WO2018074664A1 - 가변 날개가 형성된 냉각팬 - Google Patents

가변 날개가 형성된 냉각팬 Download PDF

Info

Publication number
WO2018074664A1
WO2018074664A1 PCT/KR2016/015094 KR2016015094W WO2018074664A1 WO 2018074664 A1 WO2018074664 A1 WO 2018074664A1 KR 2016015094 W KR2016015094 W KR 2016015094W WO 2018074664 A1 WO2018074664 A1 WO 2018074664A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
wing
rotation
stopper
cooling fan
Prior art date
Application number
PCT/KR2016/015094
Other languages
English (en)
French (fr)
Inventor
윤국영
Original Assignee
주식회사 한미마이크로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한미마이크로닉스 filed Critical 주식회사 한미마이크로닉스
Publication of WO2018074664A1 publication Critical patent/WO2018074664A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/002Details, component parts, or accessories especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • F04D29/36Blade mountings adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • F04D29/36Blade mountings adjustable
    • F04D29/362Blade mountings adjustable during rotation

Definitions

  • the present invention relates to a cooling fan of an electronic device, and more particularly, to a cooling fan or an impeller having a variable vane.
  • the cooling fan is composed of a hub and rotating blades connected to the outer circumferential surface of the hub and connected to generate a flow of air, that is, wind while rotating.
  • An electric motor is provided inside the hub, and the electric motor is fixed to the frame.
  • the cooling fan is mounted on an electronic device such as a computer, and is used for cooling the heat of various built-in heating parts by forcibly flowing the surrounding air.
  • Rotating blades provided in the conventional cooling fan the width is gradually increased or a constant shape while extending in the radial direction from the portion connected to the hub.
  • a cooling fan including a large rotary blade is used or the rotation speed of the rotary blade is increased.
  • an object of the present invention is to rotate the variable blades of the blades formed in the radial direction in the hub in accordance with the rotational speed or rotational speed low and high rotational speed It is to provide a cooling fan with a variable blade that can improve the cooling performance in each.
  • Still another object of the present invention is to activate the air flow in the hub center through the wing engaging portion, and by variably configuring the variable wing to rotate, the angle of the variable wing to the rotating surface is reduced by the rotation when the rotation speed is above a predetermined speed It is to provide a cooling fan is formed with a variable wing that can improve the performance.
  • the hub having a cylindrical shape coupled to the drive shaft of the drive motor; A plurality of wing coupling portions formed radially arranged on an outer circumferential surface of the hub; A plurality of variable vanes each disposed at radial ends of the plurality of vane couplings; And an end portion of each wing coupling portion and an end portion of each of the variable wings corresponding to each other, one end of which is inserted into a rotation hole formed in any one of an end of each wing coupling portion and an end of each variable wing corresponding thereto, and each It can be achieved by providing a cooling fan is provided with a variable vane comprising a rotational axis located in the center of rotation so that the variable vane is capable of rotational movement.
  • Each of the variable vanes may be rotated about a rotational axis when the hub rotates at a predetermined speed so that an angle formed with the rotational surface becomes smaller.
  • a stopper structure may be formed at an end portion of each wing coupling portion and an end portion of each variable wing corresponding thereto, or in a rotation shaft and a rotation hole to allow a rotation movement within a predetermined rotation angle.
  • a stopper protrusion and a stopper groove are formed at each end of each wing engaging portion and an end of each variable wing corresponding thereto, and the stopper protrusion It may be a structure inserted into the stopper groove having a predetermined play corresponding to the rotation angle.
  • a stopper protrusion is formed on the outer circumferential surface of one end of the rotation shaft, a stopper groove is formed in the width direction inside the rotation hole, and the stopper protrusion corresponds to the rotation angle. It may be a structure seated in a stopper groove having a play.
  • the cooling fan having a variable vane further includes restoring means for generating a restoring force corresponding to the rotational movement between an end portion of each vane coupling portion and an end portion of each variable vane corresponding thereto, or between the rotational shaft and the rotational hole. It may be.
  • cooling performance can be improved at low and high rotational speeds by allowing the variable vanes of the vanes formed in the radial direction to the hub to be variably rotated according to the rotational speed or rotational speed. have.
  • FIG. 1 is a perspective view of a variable vane rotation of an embodiment according to the present invention the cooling fan is formed with a variable vane
  • Figure 2 is a perspective view after the variable wing rotation of one embodiment according to the present invention, the cooling fan is formed with a variable wing,
  • FIG. 3 is a front view of FIG. 2;
  • FIG. 4 is an exploded perspective view of one embodiment according to the present invention, the cooling fan is formed with a variable wing,
  • cooling fan is formed with a variable wing
  • FIG. 6 is a bottom view of FIG. 5.
  • FIG. 1 is a perspective view before the variable wing rotation of an embodiment according to the present invention the cooling fan is formed with a variable vane
  • Figure 2 is a perspective view after the variable wing rotation of an embodiment according to the present invention is formed with a variable vane
  • Figure 3 is a view It is a front view of 2.
  • a cooling fan 1 is formed with a variable wing, as shown in Figures 1 to 3 are connected to the hub 10, a plurality of wing coupling portion 20 and each wing coupling portion 20 It includes a plurality of variable vanes 30, as shown in Figures 4 to 6, connecting each wing coupling portion 20 and each of the variable vanes 30, the rotation of the center of rotation of each of the variable vanes 30 It further comprises a shaft (50).
  • the cooling fan 1 has a drive shaft and a driving motor connected to the hub 10 and the frame is formed outside, as in the prior art, and thus a detailed description thereof will be omitted and only the cooling fan 1 according to the present embodiment will be described below. It is detailed.
  • the cooling fan 1 includes a plurality of wing coupling parts radially formed along the outer circumferential surface of the hub 10 at an equiangular angle, and includes a variable wing (20) at the end of each wing coupling part 20. 30 is positioned and connected in the radial direction, the variable wing 30 is formed by the number corresponding to the wing coupling portion 20.
  • the hub 10 may be in the form of a cylinder, but may also be a prismatic pillar having a plurality of corners.
  • the hub 10 is hollow so that the driving shaft (or shaft) and the driving motor can be accommodated in the bottom.
  • the center of the hub 10 is coaxial with the rotation axis C that rotates in a counterclockwise direction, and on the outer circumferential surface thereof, a variable wing 30 is formed at an end of the wing engaging part 20 and the wing engaging part 20 which will be described later. Is formed.
  • the variable vanes 30 are fluidly connected to the wing coupler 20, as shown in FIGS. 2 and 3. That is, the wing coupling portion 20 is fixed to the hub 10, but the variable wing 30 is not fixed to the wing coupling portion 20.
  • the hub 10 rotates
  • the wing coupling portion 20 rotates while maintaining the shape along the hub 10, while the variable wing 30 has a shape as shown in FIGS. 2 and 3 at high speed rotation. Is changed to Specifically, the angle formed by the wing coupling portion 20 with the rotation plane is not changed at low speed rotation or high speed rotation, but the angle formed with the rotation plane at low speed rotation and high speed rotation of the variable wing 30 is changed by rotation. .
  • the wing coupling portion 20 is configured in the form of a short inner wing and the variable wing 30 is configured in the outer wing shape, but as another example, the wing coupling portion 20 is integrally formed in the hub 10 It may also be configured in a convex or flat form.
  • the angle formed by the plane of rotation can be defined as the angle formed by the tangent of the blade to the plane of rotation.
  • the angle formed by the wing joint 20 with the plane of rotation is 20 degrees or more to activate the air flow at the center of the hub 10.
  • the wings may be selected at 50 degrees or less, and the wing coupling portion 20 formed at the selected angle does not change its angle regardless of the rotation of the hub 10.
  • the variable vane 30 has an angle formed with the rotation plane smaller than that at the low speed rotation by pressing the selected angle before rotation to the rotation plane perpendicular to the rotation axis C during the high speed rotation.
  • variable vanes 30 have an optimal performance as the angle formed with the rotation plane is smaller, the variable vanes 30 are adaptively moved to find the optimum vane angle. On the contrary, in the low speed rotation, the wind pressure (or air resistance) of the lower part is weakened, thereby rotating in the opposite direction.
  • FIG. 4 and 5 is an exploded perspective view of an embodiment according to the present invention the cooling fan is formed with a variable wing
  • Figure 4 is a view of the end of the variable wing 30 from the bottom
  • FIG. 6 is a bottom view of FIG. 5.
  • the variable vanes 30 rotate about the rotation axis 50.
  • the center of rotation should be optimized in consideration of the area of the wing so that the wind pressure below the rotation shaft 50 of the variable blade 30 is greater than the wind pressure above the rotation shaft 50.
  • the rotation shaft 50 is configured such that one end is fixed to one of the wing coupling portion 20 and the variable wing 30, and the other end is freely rotatable.
  • one end of the rotating shaft 50 is fixed to the end of the wing coupling portion 20, and the other end of the rotating shaft 50 is inserted into the rotating hole 40 at the end of the variable wing 30 It was configured to be rotatable.
  • the rotational motion of the variable wing 30 is preferably rotated within a predetermined rotation angle range. Therefore, the present embodiment is a stopper structure to enable the rotational movement within the predetermined rotation angle at the end of each wing coupling portion 20 and the corresponding end of each variable wing 30, or in the rotation axis and the rotation hole 40, Can be formed.
  • FIGS. 4 to 6 An example of such a stopper structure is shown in FIGS. 4 to 6.
  • An example of the stopper structure may be formed at the end of each wing coupling portion 20 and the end of each variable wing 30 corresponding thereto. That is, the stopper protrusions 60 and 62 and the stopper grooves 70 and 72 are formed at the end of each wing coupling portion 20 and the end of each variable wing 30 corresponding thereto.
  • the stopper protrusions 60 and 62 are inserted into the stopper grooves 70 and 72 having a play at a width corresponding to the rotation angle. Therefore, the rotational movement is made within the range of play, and as a result, the variable vanes 30 may have a constant rotational angle.
  • two stopper protrusions 60 and 62 are at the ends of the variable vanes 30, and two stopper grooves 70 and 72 are also at the wing engaging portions 30. It is formed at the end of the).
  • the stopper protrusions 60 and 62 and the stopper grooves 70 and 72 may be formed on opposite sides, and the stopper protrusions 60 and 62 and the stopper grooves 70 and 72 are not two, respectively. Only one may be formed.
  • the stopper groove (70, 72) in consideration of its function should be understood as a concept including a channel shape or similar structure that is opened in both directions.
  • a modification of the stopper structure may be formed in the rotation shaft 50 and the rotation hole 40, unlike the above-described example. That is, a stopper protrusion (not shown) is formed on an outer circumferential surface of one end of the rotation shaft 50, and a stopper groove (not shown) is formed in the width direction inside the rotation hole 40. Therefore, the stopper protrusion (not shown) may be seated in the stopper groove (not shown) having a predetermined clearance corresponding to the rotation angle, and may be rotated within a certain rotation angle range. Variations of the stopper structure may be formed independently or may be formed with the above-described example.
  • the cooling fan 1 in which the variable vanes are formed is provided between an end portion of each wing coupling portion 20 and an end portion of each variable wing 30 corresponding thereto, or between the rotation shaft 50 and the rotation hole 40, Restoring means (not shown) for generating a restoring force corresponding to the rotational motion may be further included. That is, the restoring force means may be further added in order to facilitate the rotational movement in the opposite direction during the low-speed rotation of the variable wing 30 lying in the rotational movement at high speed.
  • the restoring force means may use a tension spring using the tension force by the rotational motion as a restoring force, a torsion spring using the torque by the rotational motion, or simply a release spring.
  • the restoring force means in addition to the spring, a member made of silicon or rubber may be located between the end of each wing coupling portion 20 and the end of each variable wing 30 corresponding thereto.
  • a restoring means is not limited to the above because it has various forms, materials and the like.
  • the above-mentioned restoring means such as springs, silicones, rubbers, etc., may be designed to obtain optimal design after obtaining experimental data while changing the wind pressure generating the rotational motion, the degree of deformation of the restoring means according to the rotational motion, and the mounting position thereof. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명의 일 실시예에 의하면, 허브에 방사상 방향으로 형성된 날개 중 가변 날개가 회전 속도 또는 회전 수에 따라 가변적으로 회동되게 함으로써 저 회전 수 및 고 회전 수 각각에서 냉각 성능이 향상될 수 있다. 이를 위해 특히, 본 발명의 일 실시예는, 구동 모터의 구동축에 결합되는 원통 형상의 허브; 허브의 외주면에 방사상으로 배열되어 형성된 다수의 날개 결합부; 다수의 날개 결합부의 방사상 방향 단부에 각 배치된 다수의 가변 날개; 및 각 날개 결합부의 단부와 이에 대응하는 각 가변 날개의 단부를 상호 연결하고, 일 단이 각 날개 결합부의 단부 및 이에 대응하는 각 가변 날개의 단부 중 어느 하나에 형성된 회동 홀에 삽입되고, 그리고 각 가변 날개가 회동 운동이 가능하도록 회동 중심에 위치하는 회동 축이 포함된 가변 날개가 형성된 냉각팬을 포함한다.

Description

가변 날개가 형성된 냉각팬
본 발명은 전자기기의 냉각팬에 관한 것으로서 보다 상세하게는 가변 날개가 형성된 냉각팬 또는 임펠러에 관한 것이다.
냉각팬은 허브와, 허브의 외주면에 방사상으로 배열되어 연결된 회전날개들로 구성되어 회전하면서 공기의 유동, 즉 바람을 발생시킨다. 허브의 내부에는 전기모터가 구비되고, 이러한 전기모터는 프레임에 고정되게 된다.
냉각팬은 컴퓨터와 같은 전자장치에 장착되어, 내장된 각종 발열부품의 열을 주변의 공기를 강제유동시켜 냉각시키기 위한 용도로 사용된다.
종래의 냉각팬에 구비된 회전날개는, 허브에 연결된 부분에서 방사상 방향으로 연장되면서 폭이 점차 커지거나 일정한 형상이다. 이러한 종래의 냉각팬의 경우, 냉각시키고자 하는 열의 양이 많은 경우, 강한 바람을 만들어 내기 위해, 큰 회전날개를 포함한 냉각팬을 사용하거나, 회전날개의 회전속도를 늘리게 된다.
하지만, 통상 냉각팬의 장착을 위한 공간은 한정되어 있기 때문에, 회전날개의 길이와 폭을 늘이는 것에는 한계가 있다는 문제가 있다. 또한, 회전속도를 늘이게 되면, 소음이 크게 증가하게 되고, 소비되는 전기량도 증대된다는 문제점이 있다. 고속회전은 냉각팬의 수명이 짧게 하는 단점도 있다.
또한, 종래의 냉각팬의 경우, 허브에서 멀어지면서 점차 폭이 넓어지는 회전날개의 형상의 한계로 인해, 허브에 가까운 중심부에는 공기의 유동이 극히 적다는 문제점이 있다.
이러한 문제점을 해결하고자 일부 선행기술에서는 회전날개의 중심부에 공간을 확보한 후, 이 공간에 별도의 작은 회전날개를 추가로 구비하는 등의 구성을 시도하였으나, 이러한 종래기술은 구성이 복잡하고 효과도 충분하지 않다는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 도출된 것으로서, 본 발명의 목적은 허브에 방사상 방향으로 형성된 날개 중 가변 날개가 회전 속도 또는 회전 수에 따라 가변적으로 회동되게 함으로써 저 회전 수 및 고 회전 수 각각에서 냉각 성능이 향상될 수 있는 가변 날개가 형성된 냉각팬을 제공하는 데 있다.
본 발명의 또 다른 목적은 날개 결합부를 통해 허브 중심부의 공기 유동을 활성화하고, 가변 날개를 회동 가능하도록 가변적으로 구성함으로써 회전 속도가 소정 속도 이상일 때 회동에 의해 가변 날개가 회전면과 이루는 각이 작아져 성능이 향상될 수 있는 가변 날개가 형성된 냉각팬을 제공하는 데 있다.
상기와 같은 본 발명의 목적은, 구동 모터의 구동축에 결합되는 원통 형상의 허브; 허브의 외주면에 방사상으로 배열되어 형성된 다수의 날개 결합부; 다수의 날개 결합부의 방사상 방향 단부에 각 배치된 다수의 가변 날개; 및 각 날개 결합부의 단부와 이에 대응하는 각 가변 날개의 단부를 상호 연결하고, 일 단이 각 날개 결합부의 단부 및 이에 대응하는 각 가변 날개의 단부 중 어느 하나에 형성된 회동 홀에 삽입되고, 그리고 각 가변 날개가 회동 운동이 가능하도록 회동 중심에 위치하는 회동 축이 포함된 가변 날개가 형성된 냉각팬을 제공함으로써 달성될 수 있다.
각 가변 날개는, 허브가 소정 속도로 회전할 때 회동 축을 중심으로 회동하여 회전면과 이루는 각이 작아지는 것일 수 있다.
그리고 각 날개 결합부의 단부와 이에 대응하는 각 가변 날개의 단부에, 또는 회전 축과 회동 홀에, 소정 회동 각 이내로 회동 운동이 가능하도록 스토퍼 구조가 형성될 수 있다.
아울러 스토퍼 구조는, 각 날개 결합부의 단부와 이에 대응하는 각 가변 날개의 단부에 형성된 경우, 각 날개 결합부의 단부 및 이에 대응하는 각 가변 날개의 단부에 각각 스토퍼 돌기와 스토퍼 홈이 형성되고, 스토퍼 돌기가 회동 각에 대응하는 소정 유격을 갖는 스토퍼 홈에 삽입된 구조일 수 있다.
한편 스토퍼 구조는, 회동 축과 회동 홀에 형성되는 경우, 회동 축 일 단의 외주면에 스토퍼 돌기가 형성되고, 회동 홀 내부에 너비 방향으로 스토퍼 홈이 형성되며, 스토퍼 돌기가 회동 각에 대응하는 소정 유격을 갖는 스토퍼 홈에 안착된 구조일 수도 있다.
그리고 가변 날개가 형성된 냉각팬은, 각 날개 결합부의 단부 및 이에 대응하는 각 가변 날개의 단부 사이에, 또는 회동 축과 회동 홀 사이에, 회동 운동에 대응하는 복원력을 발생시키는 복원 수단이 더 포함된 것일 수 있다.
상기와 같은 본 발명의 일 실시예에 의하면, 허브에 방사상 방향으로 형성된 날개 중 가변 날개가 회전 속도 또는 회전 수에 따라 가변적으로 회동되게 함으로써 저 회전 수 및 고 회전 수 각각에서 냉각 성능이 향상될 수 있다.
그리고 날개 결합부를 통해 허브 중심부의 공기 유동을 활성화하고, 회전 속도가 소정 속도 이상일 때 회동에 의해 가변 날개가 회전면과 이루는 각이 작아져 회전 속도에 적응적으로 반응하는 효과가 있다.
도 1은 본 발명인 가변 날개가 형성된 냉각팬에 따른 일 실시예의 가변 날개 회동 전 사시도,
도 2는 본 발명인 가변 날개가 형성된 냉각팬에 따른 일 실시예의 가변 날개 회동 후 사시도,
도 3은 도 2의 정면도,
도 4는 본 발명인 가변 날개가 형성된 냉각팬에 따른 일 실시예의 분해 사시도,
도 5는 본 발명인 가변 날개가 형성된 냉각팬에 따른 일 실시예의 분해 사시도,
도 6은 도 5의 저면도이다.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.
아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
가변 날개가 형성된 냉각팬
도 1은 본 발명인 가변 날개가 형성된 냉각팬에 따른 일 실시예의 가변 날개 회동 전 사시도이고, 도 2는 본 발명인 가변 날개가 형성된 냉각팬에 따른 일 실시예의 가변 날개 회동 후 사시도이고, 도 3은 도 2의 정면도이다.
본 발명인 가변 날개가 형성된 냉각팬(1)의 일 실시예는, 도 1 내지 도 3에 도시된 바와 같이 허브(10)와 다수의 날개 결합부(20)와 각 날개 결합부(20)에 연결된 다수의 가변 날개(30)를 포함하고, 도 4 내지 도 6에 도시된 바와 같이 각 날개 결합부(20)와 각 가변 날개(30)를 연결하고 각 가변 날개(30)의 회동 중심이 되는 회동 축(50)을 더 포함하여 구성된다.
본 실시예인 냉각팬(1)은 종래 기술과 마찬가지로 허브(10)에 구동축과 구동모터가 연결되고 외부로는 프레임이 형성되므로 이에 대한 구체적인 설명은 생략하고 이하 본 실시예인 냉각팬(1)에 대해서만 상술한다.
냉각팬(1)은 도 1에 도시된 바와 같이, 날개 결합부(20)가 등각으로 허브(10)의 외주 면을 따라 방사상으로 다수 형성되며 각 날개 결합부(20)의 단부에 가변 날개(30)가 위치하여 방사상 방향으로 연결되어 있는 데, 가변 날개(30)는 날개 결합부(20)와 대응되는 숫자만큼 형성된다.
허브(10)는 원기둥 형태일 수 있으나 다수의 모서리가 형성된 각기둥일 수도 있다. 허브(10)는 저면으로 구동축(또는 샤프트)과 구동모터가 수용될 수 있도록 속이 비어 있다. 허브(10)의 중심은 반시계 방향으로 회전하는 회전 축(C)과 동일 축 선상에 있으며 외주 면에는 후술하는 날개 결합부(20)와 날개 결합부(20) 단부에 가변 날개(30)가 형성된다.
가변 날개(30)는 도 2 및 도 3에 도시된 바와 같이, 날개 결합부(20)에 유동성을 가지고 연결된다. 즉 날개 결합부(20)는 허브(10)에 고정되어 있으나 가변 날개(30)는 날개 결합부(20)에 고정되어 있지 않다. 허브(10)가 회전하면 날개 결합부(20)는 허브(10)를 따라 형태를 유지하면서 회전하는 반면 가변 날개(30)는 고속 회전 시에 형태가 도 2 및 도 3에 도시된 바와 같은 형태로 변경된다. 구체적으로는 날개 결합부(20)가 회전 평면과 이루는 각은 저속 회전이나 고속 회전 시에 변화가 없지만 가변 날개(30)는 저속 회전 시와 고속 회전 시의 회전 평면과 이루는 각이 회동에 의해 달라진다. 이와 같이, 날개 결합부(20)는 짧은 내측 날개 형태로 구성되었고 가변 날개(30)는 외측 날개 형태로 구성되었지만, 이와 다른 일 예로 날개 결합부(20)는 허브(10)에 일체로 형성되어 외형적으로 볼록하거나 평평한 형태로 구성될 수도 있다.
회전 평면과 이루는 각은 날개의 접선이 회전 평면과 이루는 각으로 정의할 수 있는 데, 날개 결합부(20)가 회전 평면과 이루는 각은 허브(10) 중심에서 공기 유동을 활성화하기 위해 20도 이상 50도 이하에서 선택될 수 있으며 선택된 각으로 형성된 날개 결합부(20)는 허브(10) 회전과 무관하게 그 각이 변동되지 않는다. 반면, 가변 날개(30)는 회동 전 선택된 각이 고속 회전 시에 회전 축(C)에 수직 평면인 회전 평면으로 누어 저속 회전 시보다 회전 평면과 이루는 각이 작아진다. 이는 고속 회전 시 가변 날개(30)의 하부(또는 후면), 즉 회동 중심의 하부에 풍압(또는 공기 저항)이 강해져 회동 축(50)을 중심으로 회동 운동을 일으킬 수 있기 때문이다. 가변 날개(30)는 회전 평면과 이루는 각이 작을수록 최적의 성능을 발휘하므로 적응적으로 최적의 날개 각을 찾아 움직이는 것이다. 반대로 저속 회전 시에는 하부의 풍압(또는 공기 저항)이 약해져 반대 방향으로 회동 운동을 하게 된다.
이하 도 4 내지 도 6을 참조하여 본 실시예 구성을 구체적으로 상술한다.
도 4 및 도 5는 본 발명인 가변 날개가 형성된 냉각팬에 따른 일 실시예의 분해 사시도인데, 도 4는 하부에서 가변 날개(30)의 단부를 바라본 것이고 도 5는 하부에서 날개 결합부(20)의 단부를 바라본 것이다. 도 6은 도 5의 저면도이다.
가변 날개(30)는 회동 축(50)을 중심으로 회동한다. 고속 회전 시 가변 날개(30)의 회동 축(50) 하부의 풍압이 회동 축(50) 상부의 풍압보다 클 수 있도록 날개의 면적을 고려하여 회동 중심을 최적화하여야 한다. 이러한 회동 축(50)은 날개 결합부(20) 및 가변 날개(30) 중 어느 하나에 일 단이 고정되고, 다른 하나에는 타단이 자유롭게 회동 가능하도록 구성된다. 본 실시예에서는 날개 결합부(20)의 단부에 회동 축(50)의 일 단을 고정하고, 가변 날개(30)의 단부에서는 회동 축(50)의 타단이 회동 홀(40) 내부에 삽입되어 회동 가능하도록 구성하였다.
또한 가변 날개(30)의 회동 운동은 소정 회동 각 범위 내에서 회동되는 것이 바람직하다. 따라서 본 실시예는 각 날개 결합부(20)의 단부와 이에 대응하는 각 가변 날개(30)의 단부에, 또는 회전 축과 회동 홀(40)에, 소정 회동 각 이내로 회동 운동이 가능하도록 스토퍼 구조가 형성될 수 있다.
이러한 스토퍼 구조의 일 예는 도 4 내지 도 6에 도시되어 있다. 스토퍼 구조의 일 예는, 각 날개 결합부(20)의 단부와 이에 대응하는 각 가변 날개(30)의 단부에 형성될 수 있다. 즉 각 날개 결합부(20)의 단부 및 이에 대응하는 각 가변 날개(30)의 단부에, 스토퍼 돌기(60, 62)와 스토퍼 홈(70, 72)이 각각 형성된다. 스토퍼 돌기(60, 62)는, 회동 각에 대응하는 너비로 유격을 갖는 스토퍼 홈(70, 72)에 삽입된다. 따라서 유격의 범위 내에서 회동 운동이 이루어지고 그 결과, 가변 날개(30)는 일정한 회동 각을 가질 수 있다.
본 실시예에서는, 도 4 및 도 5에 도시된 바와 같이 스토퍼 돌기(60, 62)는 2 개가 가변 날개(30)의 단부에, 그리고 스토퍼 홈(70, 72)도 2 개가 날개 결합부(30)의 단부에 형성되어 있다. 그러나 본 실시예와 달리 상호 반대편에 스토퍼 돌기(60, 62)와 스토퍼 홈(70, 72) 형성될 수도 있고, 스토퍼 돌기(60, 62)와 스토퍼 홈(70, 72)은 각 2 개씩이 아니라 1 개씩만 형성될 수도 있다. 한편, 스토퍼 홈(70, 72)은 그 기능을 고려하면 양방향으로 뚫려있는 채널(channel) 형태 또는 이와 유사한 구조를 포함하는 개념으로 이해되어야 한다.
스토퍼 구조의 변형 예는, 전술한 일 예와 달리, 회동 축(50)과 회동 홀(40)에 형성될 수도 있다. 즉 회동 축(50) 일 단의 외주 면에 스토퍼 돌기(도시되지 않음)가 형성되고, 회동 홀(40) 내부에 너비 방향으로 스토퍼 홈(도시되지 않음)이 형성되는 구조이다. 따라서 스토퍼 돌기(도시되지 않음)가 회동 각에 대응하는 소정 유격을 갖는 스토퍼 홈(도시되지 않음)에 안착되어 일정한 회동 각 범위 내에서 회동될 수 있다. 스토퍼 구조의 변형 예는 독립적으로 형성될 수 있으며 전술한 일 예와 함께 형성될 수도 있을 것이다.
가변 날개가 형성된 냉각팬(1)은, 각 날개 결합부(20)의 단부 및 이에 대응하는 각 가변 날개(30)의 단부 사이에, 또는 회동 축(50)과 회동 홀(40) 사이에, 회동 운동에 대응하는 복원력을 발생시키는 복원 수단(도시되지 않음)이 더 포함된 것일 수 있다. 즉 고속 회전 시 회동 운동으로 누운 가변 날개(30)가 저속 회전 시 반대 방향으로 회동 운동을 쉽게 하기 위해 복원력 수단이 더 추가될 수 있다.
이러한 복원력 수단은 회동 운동에 의한 인장력을 복원력으로 이용하는 인장 스프링이나 회동 운동에 의한 토크를 이용하는 토션스프링(torsion spring)이나 간단히 이형 스프링을 사용할 수도 있다. 또한 복원력 수단은 스프링 이외에 실리콘 재질 또는 고무 재질의 부재가 각 날개 결합부(20)의 단부 및 이에 대응하는 각 가변 날개(30)의 단부 사이에 위치할 수도 있다. 이러한 복원 수단은 그 형태나 재질 등이 다양하므로 전술한 것에 한정하지는 않는다.
전술한 스프링이나 실리콘, 고무 등의 복원 수단은, 회동 운동을 발생시키는 풍압과 회동 운동에 따른 복원 수단의 변형 정도, 그 장착 위치 등을 변경해가면서 실험 데이터를 얻은 후 최적의 설계가 이루어지도록 할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하였지만, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술 분야의 당 업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 한다. 아울러, 본 발명의 범위는 상기의 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어진다. 또한, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (6)

  1. 구동 모터의 구동축에 결합되는 원통 형상의 허브;
    상기 허브의 외주면에 방사상으로 배열되어 형성된 다수의 날개 결합부;
    상기 다수의 날개 결합부의 방사상 방향 단부에 각 배치된 다수의 가변 날개; 및
    상기 각 날개 결합부의 단부와 이에 대응하는 상기 각 가변 날개의 단부를 상호 연결하고, 일 단이 상기 각 날개 결합부의 단부 및 이에 대응하는 상기 각 가변 날개의 단부 중 어느 하나에 형성된 회동 홀에 삽입되고, 그리고 상기 각 가변 날개가 회동 운동이 가능하도록 회동 중심에 위치하는 회동 축이 포함된 가변 날개가 형성된 냉각팬.
  2. 제1 항에 있어서,
    상기 각 가변 날개는,
    상기 허브가 소정 속도로 회전할 때 상기 회동 축을 중심으로 회동하여 회전면과 이루는 각이 작아지는 것을 특징으로 하는 가변 날개가 형성된 냉각팬.
  3. 제1 항에 있어서,
    상기 각 날개 결합부의 단부와 이에 대응하는 상기 각 가변 날개의 단부에, 또는 상기 회전 축과 상기 회동 홀에, 소정 회동 각 이내로 상기 회동 운동이 가능하도록 스토퍼 구조가 형성된 가변 날개가 형성된 냉각팬.
  4. 제3 항에 있어서,
    상기 스토퍼 구조는,
    상기 각 날개 결합부의 단부와 이에 대응하는 상기 각 가변 날개의 단부에 형성된 경우, 상기 각 날개 결합부의 단부 및 이에 대응하는 상기 각 가변 날개의 단부에 각각 스토퍼 돌기와 스토퍼 홈이 형성되고, 상기 스토퍼 돌기가 상기 회동 각에 대응하는 소정 유격을 갖는 상기 스토퍼 홈에 삽입된 구조인 가변 날개가 형성된 냉각팬.
  5. 제3 항에 있어서,
    상기 스토퍼 구조는,
    상기 회동 축과 상기 회동 홀에 형성되는 경우, 상기 회동 축 일 단의 외주면에 스토퍼 돌기가 형성되고, 상기 회동 홀 내부에 너비 방향으로 스토퍼 홈이 형성되며, 상기 스토퍼 돌기가 상기 회동 각에 대응하는 소정 유격을 갖는 상기 스토퍼 홈에 안착된 구조인 가변 날개가 형성된 냉각팬.
  6. 제1 항에 있어서,
    상기 각 날개 결합부의 단부 및 이에 대응하는 상기 각 가변 날개의 단부 사이에, 또는 상기 회동 축과 상기 회동 홀 사이에, 상기 회동 운동에 대응하는 복원력을 발생시키는 복원 수단이 더 포함된 가변 날개가 형성된 냉각팬.
PCT/KR2016/015094 2016-10-19 2016-12-22 가변 날개가 형성된 냉각팬 WO2018074664A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160135626A KR101760716B1 (ko) 2016-10-19 2016-10-19 가변 날개가 형성된 냉각팬
KR10-2016-0135626 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074664A1 true WO2018074664A1 (ko) 2018-04-26

Family

ID=59429162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015094 WO2018074664A1 (ko) 2016-10-19 2016-12-22 가변 날개가 형성된 냉각팬

Country Status (3)

Country Link
KR (1) KR101760716B1 (ko)
TW (1) TW201816275A (ko)
WO (1) WO2018074664A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126191A (ja) * 1995-10-27 1997-05-13 Nec Corp 冷却ファンの構造
KR20080028050A (ko) * 2006-09-26 2008-03-31 현대중공업 주식회사 가변 날개 냉각 팬
KR101342746B1 (ko) * 2013-03-15 2013-12-19 윤국영 냉각팬
KR101586614B1 (ko) * 2015-08-27 2016-01-19 문성군 날개각도가변기능을 갖는 회전날개결합구조를 구비한 펌프
KR101666774B1 (ko) * 2016-06-08 2016-10-14 양범석 전동모터용 가변블레이드 냉각팬

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126191A (ja) * 1995-10-27 1997-05-13 Nec Corp 冷却ファンの構造
KR20080028050A (ko) * 2006-09-26 2008-03-31 현대중공업 주식회사 가변 날개 냉각 팬
KR101342746B1 (ko) * 2013-03-15 2013-12-19 윤국영 냉각팬
KR101586614B1 (ko) * 2015-08-27 2016-01-19 문성군 날개각도가변기능을 갖는 회전날개결합구조를 구비한 펌프
KR101666774B1 (ko) * 2016-06-08 2016-10-14 양범석 전동모터용 가변블레이드 냉각팬

Also Published As

Publication number Publication date
KR101760716B1 (ko) 2017-07-24
TW201816275A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2015199332A1 (ko) 환기 및 냉각용 무코어 도너츠형 모터팬
WO2014142443A1 (ko) 냉각팬
JP5524511B2 (ja) ヘリコプタの反トルク尾部回転翼羽根
BRPI0512828B1 (pt) ventilador axial de alta eficiência
TW201200737A (en) Counter-rotating axial flow fan
JP2013170505A (ja) 二重反転式送風機
CN111749929A (zh) 风扇模块
WO2019194372A1 (ko) 세레이션 구조가 적용된 원심 펌프 임펠러
WO2018074664A1 (ko) 가변 날개가 형성된 냉각팬
CN106374661B (zh) 转子组件和电机
WO2018074663A1 (ko) 이중 날개가 형성된 냉각팬
GB2405677A (en) Rotor with collapsible fan blade
GB2508678A (en) Low noise gyroscopic wrist strength training ball
EP2149712B1 (en) Bidirectional centrifugal fan
CN211655971U (zh) 变速装置、吊扇增速冷却装置和工业吊扇
CN102575717B (zh) 转子联轴器
WO2019231200A1 (ko) 멀티 팬 유닛
US7926759B2 (en) Tail rotor hub
WO2022241974A1 (zh) 倾转结构及飞行器
CN109552599A (zh) 直升机尾桨变距用桨叶总成及直升机
CN207513883U (zh) 车用空调蒸发侧风机结构及车用空调
JPH0382402A (ja) ドライヤー
CN106837859B (zh) 风机叶轮和离心风机
JPH0431697A (ja) 軸流送風機の羽根構造
KR200303976Y1 (ko) 선풍기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919516

Country of ref document: EP

Kind code of ref document: A1