WO2018070628A1 - 풍향 추적 풍력발전기 - Google Patents

풍향 추적 풍력발전기 Download PDF

Info

Publication number
WO2018070628A1
WO2018070628A1 PCT/KR2017/005509 KR2017005509W WO2018070628A1 WO 2018070628 A1 WO2018070628 A1 WO 2018070628A1 KR 2017005509 W KR2017005509 W KR 2017005509W WO 2018070628 A1 WO2018070628 A1 WO 2018070628A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind direction
shaft
direction tracking
coupled
Prior art date
Application number
PCT/KR2017/005509
Other languages
English (en)
French (fr)
Inventor
방부현
Original Assignee
주식회사 지엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지엘 filed Critical 주식회사 지엘
Priority to JP2019541059A priority Critical patent/JP2019530829A/ja
Priority to EP17861064.8A priority patent/EP3524811A4/en
Priority to AU2017341596A priority patent/AU2017341596A1/en
Priority to CA3039319A priority patent/CA3039319A1/en
Priority to CN201780059359.8A priority patent/CN109790821A/zh
Publication of WO2018070628A1 publication Critical patent/WO2018070628A1/ko
Priority to ZA2019/01355A priority patent/ZA201901355B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • F05B2270/402Type of control system passive or reactive, e.g. using large wind vanes

Definitions

  • the present disclosure relates to a wind power generator, and more particularly, to a wind power generator having a function of automatically tracking a wind direction and a function of adjusting an incoming wind speed.
  • a wind turbine is a device that produces electrical energy based on wind. When the wind rotates the rotating blades, the power is used to drive the generator to produce electricity.
  • a wind turbine is composed of a rotating blade and a generator.
  • the generator produces electricity by forming a magnetic field by a central rotor and a stator surrounding the outside.
  • the basic principle of generator operation follows Ampere's law and Faraday's law of electromagnetic induction.
  • wind turbines require an average wind speed of 4m / s or more, and the wind direction must be perpendicular to rotation to achieve maximum efficiency.
  • the prior art is Republic of Korea Patent Registration No. 10-1288177 (2013.07.15 announcement), and discloses a non-powered wind direction automatic tracking wind generator.
  • the prior art is provided with a wind direction tracking device, so that the rotor housing is always rotated in the wind blowing direction even if the wind direction is changed.
  • the wind direction buffer member is provided to prevent the vertical frame from being damaged even when the instantaneous wind speed rises sharply.
  • the wind direction tracking device of the prior art has a problem in that the operating range is limited.
  • Wind turbine according to an embodiment the wind direction plate for improving the efficiency described above can rotate the wind direction tracking axis according to the change in the wind direction.
  • a plurality of rotating blades may be provided.
  • the wind turbine described herein may be provided with a wind speed dispersion device.
  • the wind speed spreader does not work in the case of low winds, but in the case of high winds, the device operates to distribute a certain amount of wind.
  • the direction of the wind is automatically tracked by the combination of the wind direction plate, and as a result, it has the effect of increasing the efficiency of the wind power generator, and when the wind direction and the wind direction tracking axis coincide, the maximum efficiency can be exhibited.
  • a wind speed dispersion device when the wind of sudden high wind speed is applied to prevent the damage of the wind power generator and to have an effect of preventing the damage to the electrical equipment under load due to the rapid high current.
  • FIG. 1 is a perspective view showing a wind direction wind turbine according to an embodiment disclosed herein.
  • FIG. 2 is a side cross-sectional view of the wind direction wind turbine according to an embodiment of the present disclosure.
  • Figure 3 is an exploded perspective view showing a side of the power generation unit according to an embodiment of the present disclosure.
  • Figure 4 is an exploded perspective side view showing a wind speed dispersion unit according to an embodiment posted herein.
  • FIG. 5 is a cross-sectional view of a normal wind speed dispersion device as a state diagram of a wind speed dispersion device according to an embodiment of the present disclosure
  • FIG. 6 is a cross-sectional view of the wind speed dispersion device when a strong wind blows as a state diagram of a wind speed dispersion device according to an embodiment of the present disclosure.
  • FIG. 7 is a side exploded perspective view showing a wind direction tracking unit according to an embodiment of the present disclosure.
  • FIG. 8 is a rear view showing the wind direction tracking unit according to an embodiment of the present disclosure.
  • FIG. 1 is a perspective view of a wind direction tracking wind power generator 10 according to an embodiment.
  • the support frame 20 should be designed to support the vertical center axis 40 and the support ring 30.
  • the upper end of the support frame 20 may be formed crosswise.
  • the vertical center axis 40 may be formed to extend at the intersection of the cross.
  • the support ring 30 may be formed horizontally at the stop of the support frame 20.
  • the support ring 30 is coupled to the middle of each side pillar of the support frame 20. However, it is not necessary to be located in the middle, and the position may be changed as necessary.
  • the central shaft bearing 42 may be coupled to the middle of the vertical center axis 40, and the central axis bearing 42 may be fixed to not move up and down based on the vertical center axis 40. It is for the purpose of horizontally rotating the reference numeral 50 to the vertical center axis 40.
  • the first bearing 62 is coupled to the front of the wind direction tracking shaft 50, and the second bearing 68 is coupled to the rear end of the wind direction tracking shaft 50.
  • the central axis bearing 42, the first bearing 62, and the second bearing 68 help the wind direction tracking axis 50 to be easily rotated with respect to the vertical center axis 40.
  • FIG. 2 is a side cross-sectional view of the wind direction wind turbine.
  • One embodiment relates to a device having a wind speed dispersion unit 200.
  • the wind speed dispersion unit 200 in front of the wind direction tracking shaft 50; is formed.
  • the coupling 44 of the end of the wind direction tracking shaft 50 and the central shaft bearing 42 may be a nail or a nut, but the type of the fastener is not limited.
  • the third bearing 64 is coupled to the front end of the rotating shaft 54.
  • the third bearing 64 may be coupled to the central shaft bearing 42.
  • the coupling 44 of the central shaft bearing 42 and the third bearing 64 may be a nail or a nut, but the type of the fastener is not limited.
  • the fourth bearing 66 is coupled to the rear end of the rotary shaft 54. Therefore, the rotation shaft 54 may be rotated separately from the wind direction tracking shaft 50.
  • the generator 110 is coupled to the wind direction tracking shaft 50, and the generator 110 is coupled to the central shaft bearing 42 and attached to the vertical shaft 40 using a U-bolt or the like.
  • the rotor of the generator 110 is coupled to the rotating shaft 54, it can produce electricity due to the rotation of the rotor.
  • FIG 3 is an exploded view illustrating the rotating shaft 54 and the power generating unit 100.
  • the rotating shaft 54 may have a rotating blade 120.
  • the rotary blade 120 rotates the rotary shaft 54 when the wind is blowing.
  • the number of feathers of the rotary blade 120 is three.
  • the number of feathers of the rotating blade 120 is not limited, and the number of feathers of the rotating blade 120 may be changed based on a person having ordinary knowledge.
  • the rotary blade 120 is three.
  • each rotation blade 120 may be formed by being twisted so as not to overlap completely when viewed from the front. Therefore, the wind can be easily rotated while passing through each rotary blade (120).
  • the number of the rotating blades 120 is not limited, and the number of the rotating blades 120 may be changed based on a person having ordinary knowledge.
  • One embodiment shown in FIG. 3 may include a generator 110.
  • the generator 110 includes a magnet that generates a magnetic field, and a coil constituting the rotor may be coupled to the rotating shaft 54 inside the generator. Therefore, when the rotating shaft 54 is rotated, the rotating force of the rotating shaft 54 is transmitted to the coil, the rotation of the coil generates an induced electromotive force to produce electricity.
  • FIG 4 is an exploded perspective view showing the wind speed dispersion unit 200 according to an embodiment disclosed in the present specification.
  • the front of the wind speed dispersion unit 210 is coupled to the wind direction tracking axis (50).
  • the rear of the wind speed dispersion unit 210 reaches the vertical center axis 40.
  • the rear of the wind speed dispersion unit 210 and the vertical center axis 40 may be connected to the fixed bearing (222).
  • the fixed bearing 222 may be made of the same kind of bearing as the central shaft bearing 42.
  • the rear end of the wind speed dispersion apparatus 210 and the fixing rod bearing 222 may be connected by a fixing pin.
  • the fixing pin 224 of the fixing rod bearing 222 may be made of the same type as the fixing pin 44 that connects the central shaft bearing 42 and the wind direction tracking shaft 50.
  • a portion of the lower end of the wind speed dispersion device 210 is coupled to the holder 220, the holder 220 is coupled to the wind direction tracking shaft (50).
  • the position of the holder 220 is variable, but preferably located at the bottom center of the wind speed dispersion device 210.
  • the wind speed dispersion device 210 Since the wind speed dispersion device 210 is inclined from the front to the rear, the wind speed dispersion device 210 may be subjected to wind resistance.
  • 5 is a diagram showing a state of use of the wind speed dispersion device 210.
  • the wind speed dispersion unit 210 may have a left side 212 and a right side 214. As shown in FIG. 5, the left side and the right side of the wind speed dispersion apparatus are normally folded so that the wind speed dispersion apparatus 210 does not interfere with the movement of the wind.
  • the rotating blade 120 rotates quickly to prevent the connected electronic device or the power generation unit 100 from being damaged.
  • the wind speed dispersion device 210 may include a spring 230.
  • the spring 230 connects between the left side 212 and the right side 214 of the wind speed dispersion unit 210. As shown in FIG. 5, the spring 230 is normally folded to the left side and the right side so that the wind speed dispersion unit 210 does not interfere with the movement of the wind when strong wind is not blown.
  • the spring 230 may be located behind the wind speed dispersion device 210.
  • the front of the wind speed dispersion device 210 is opened first when the wind is blown, and the wind is further subjected to wind resistance, so that the rear may be more easily opened. have.
  • Wind direction dispersion device 210 is equipped with eight, four winds are spread when the wind blows more than 15 meters per second, and if the wind blows more than 25 meters per second, the remaining four are spread out to rotate the rotating blades 120 to maintain constant speed rotation To help.
  • an auxiliary pillar is mounted between the rotating blade 120 and the wind direction plate 310 to prevent sagging due to the length of the rotating shaft.
  • auxiliary ring is also installed in the support ring 30 to prevent deformation due to the load.
  • Rotating blades 120 may be mounted up to 12 or more.
  • FIG. 7 is an exploded perspective view showing the wind direction tracking unit 300 according to an embodiment of the present disclosure.
  • the wind direction tracking unit includes a wind direction plate 310 and a second bearing 68.
  • the wind vane 310 has two upper and lower plates vertically coupled to the wind direction tracking axis.
  • the wind direction plate 310 causes the rotating shaft to yaw in accordance with the wind direction.
  • the central shaft bearing 42, the first bearing 62 and the second bearing 68 serves to facilitate the yawing of the rotating shaft 50 by reducing the friction force.
  • the wind direction plate 310 yaws to match the direction of the wind direction and the wind direction tracking axis 50. Accordingly, the efficiency of the wind power generator can be maximized.
  • the side of the wind direction tracking shaft 50 may be formed with an auxiliary bearing support 320, and an auxiliary bearing at the end of the auxiliary bearing support 320. 330 may be combined.
  • FIG. 8 is a rear view showing the rear of the wind direction tracking unit 300 according to an embodiment of the present disclosure.
  • the auxiliary bearing 330 may be configured as four auxiliary bearings on the left side and the right side, respectively, up-down.
  • the auxiliary bearing 330 serves to prevent the wind generator from rolling, thereby improving the efficiency of the wind generator.
  • the auxiliary bearing 330 may be changed in the number and coupling form of the auxiliary bearing based on a person having ordinary knowledge.
  • wind direction tracking wind generator 20 support frame
  • support ring 40 vertical center axis
  • 320 auxiliary bearing support 330: auxiliary bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

풍향판을 부가하여 풍향 변화에 따라 풍향을 자동으로 추적하는 기능, 및 풍속분산장치를 부가하여 풍력발전기의 내구성을 향상시키는 풍력발전기가 개시된다. 실시예에 따르면, 수직으로 연장되는 수직중심축의 둘레에 지지링이 수평으로 연결되는 지지프레임, 중심부는 상기 수직중심축에 회전가능하게 결합되고, 전-후방단부는 상기 수평링을 따라 주행가능하도록 상기 수평링에 지지되며, 후방측에는 풍향판가 결합되어, 바람의 방향에 따라 상기 수평링 상에서 상기 수직중심축을 중심으로 회전되는 풍향추적축, 상기 풍향추적축의 후방측을 분할하는 형태로 상기 풍향추적축 상에 회전가능하게 결합되고, 바람에 의해 회전구동되도록 회전블레이드가 결합되는 회전축, 및 상기 회전축에 결합되고 상기 회전축의 회전력을 전기에너지로 변환시키는 발전유닛을 포함하여 구성된다.

Description

풍향 추적 풍력발전기
본 개시안은 풍력발전기에 관한 것으로, 보다 상세하게는 풍향을 자동으로 추적하는 기능, 유입되는 풍속을 조절하는 기능을 가지는 풍력발전기에 관한 것이다.
풍력발전기는 바람을 기초로 전기에너지를 생산하는 장치이다. 바람이 회전블레이드를 회전시키면 그 회전력으로 발전기를 구동하여 전기를 생산한다.
일반적으로 풍력발전기는 회전블레이드, 발전기로 구성된다. 상기 발전기는 중심의 회전자와 외부를 감싸는 고정자에 의해 자기장을 형성하면서 전기를 생산한다. 발전기 동작의 기본원리는 암페어 법칙과 패러데이의 전자기유도법칙을 따른다.
한편, 풍력발전기가 적합하게 작동할 조건으로는 평균 초속 4m/s 이상의 바람이 필요하며, 풍향은 회전에 수직방향이어야 최대 효율을 발휘할 수 있다.
종래기술로는 대한민국 특허등록공보 제 10-1288177호(2013.07.15 공고)가 있으며, 무동력 풍향자동추종 풍력발전기에 대하여 개시한다. 상기 종래기술은 풍향추종장치를 구비함으로써, 바람의 방향이 바뀌더라도 로터하우징을 항상 바람이 불어오는 방향으로 회전시키도록 한다. 또한 풍향완충부재가 구비됨으로써, 순간풍속이 급격히 상승하더라도 수직프레임이 파손되는 것을 방지한다. 다만, 상기 종래기술의 풍향추종장치는 작동범위에 한계가 있다는 점에서 문제점을 가진다. 또한 일정범위 이상의 강한 바람이 불어올 경우 발건기 및 전기기기가 손상될 위험이 있다는 문제가 있다.
상기 종래기술의 문제를 해결하기 위하여, 전 범위로 회전이 가능한 풍향추종장치를 제공하기 위함이고, 풍속이 낮은 지역에서도 발전기 효율을 향상시키기 위함이다.
또한, 높은 풍속의 바람이 급격히 인가되는 경우 풍력발전기의 내구성을 향상시키기 위함이다.
일 실시예에 따른 풍력발전기는, 상기 기재한 효율향상을 위하여 풍향판을 구비하여 풍향의 변화에 따라 풍향추적축을 회전시킬 수 있다. 또한, 다수의 회전블레이드를 구비할 수 있다.
한편, 본 명세서에 기재된 풍력발전기는 풍속분산장치를 구비할 수 있다. 풍속분산장치는 낮은 풍속의 바람이 부는 경우에는 작동하지 아니하나, 높은 풍속의 바람이 부는 경우 장치가 작동하여 일정량의 바람을 분산시킨다.
개시된 내용에 따르면, 풍향판의 결합으로 풍향을 자동 추적하며, 그 결과 풍력발전기의 효율을 증대시키는 효과를 가지며, 풍향과 풍향추적축이 일치하는 경우 극대의 효율을 발휘할 수 있다.
또한, 풍속분산장치를 구비하며, 갑자기 높은 풍속의 바람이 인가되는 경우 풍력발전기의 손상을 방지함과 더불어 급격히 높은 전류가 발생되어 부하인 전기기기가 손상되는 것을 방지하는 효과를 가진다.
도 1은 본 명세서에 게시된 일 실시예에 의한 풍향추적 풍력발전기를 나타낸 사시도이다.
도 2는 본 명세서에 게시된 일 실시예에 의한 풍향추적 풍력발전기에 관한 측면 단면도이다.
도 3은 본 명세서에 게시된 일 실시예에 의한 발전유닛를 나타낸 측면 분해사시도이다.
도 4는 본 명세서에 게시된 일 실시예에 의한 풍속분산장치부를 나타낸 측면 분해사시도이다.
도 5는 본 명세서에 게시된 일 실시예에 의한 풍속분산장치의 사용상태도로서 평상시의 풍속분산장치의 단면도,
도 6은 본 명세서에 게시된 일 실시예에 의한 풍속분산장치의 사용상태도로서 강풍이 불 경우의 풍속분산장치의 단면도.
도 7은 본 명세서에 게시된 일 실시예에 의한 풍향추적부를 나타낸 측면 분해사시도이다.
도 8은 본 명세서에 게시된 일 실시예에 의한 풍향추적부를 나타낸 배면도이다.
이하에서는 도면을 참고하여 풍향추적 풍력발전기(10)에 관하여 바람직한 실시예를 예시로 들어 설명한다.
후술하는 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 주지·관용기술을 통하여 용이하게 실시할 수 있는 범위까지 포함될 수 있으며, 본 명세서에 기재된 내용에 한하지 않는다.
본 발명에서 기재된 용어는 본 발명이 속하는 기술분야에서 상용되는 용어로 변경될 수 있다.
도 1은 일 실시예에 의한 풍향추적 풍력발전기(10)를 나타낸 사시도이다.
도 1에 도시된 바와 같이 지지프레임(20)은 수직중심축(40) 및 지지링(30)을 지지할 수 있도록 설계되어야 한다.
도 1에 도시된 바와 같이 지지프레임(20)의 상단은 십자로 형성될 수 있다. 십자의 교차점에서 수직중심축(40)이 신장되어 형성될 수 있다.
도 1에 도시된 바와 같이 지지프레임(20)의 중단에 수평으로 지지링(30)이 형성될 수 있다. 지지링(30)은 지지프레임(20)의 각 측면 기둥의 중간에 결합된다. 다만, 한가운데 위치할 필요는 없으며, 필요에 따라 위치는 변동될 수 있다.
수직중심축(40)의 중간에는 중심축베어링(42)이 결합될 수 있으며, 중심축베어링(42)은 수직중심축(40)을 기준으로 상하로 이동할수 없도록 고정되어 있으며, 상기 풍향추적축(50)을 수직중심축(40)을 기준으로 수평회전시키기 위한 용도이다.
풍향추적축(50)의 전방에는 제1베어링(62)이 결합되어 있고, 풍향추적축의 후방 끝단에는 제2베어링(68)이 결합되어 있다.
중심축베어링(42), 제1베어링(62) 및 제2베어링(68)은 수직중심축(40)을 기준으로 풍향추적축(50)이 용이하게 회전할 수 있도록 돕는다.
도 2는 풍향추적 풍력발전기에 관한 측면 단면도이다.
일 실시예는 풍속분산장치부(200)를 구비하는 장치에 관한 것이다.
풍향추적축(50)의 전방에는 풍속분산장치부(200);가 형성된다.
도 2에 도시된 일 실시예에 따르면, 풍향추적축(50)의 끝단과 중심축베어링(42)의 결합(44)은 못 또는 너트로 될 수 있으나, 채결구의 종류는 한정하지 않는다.
회전축(54)의 전방 끝단에는 제3베어링(64)이 결합된다. 제3베어링(64)은 중심축베어링(42)과 결합될 수 있다.
도 2에 도시된 일 실시예에 따르면, 중심축베어링(42)과 제3베어링(64)의 결합(44)은 못 또는 너트로 될 수 있으나, 채결구의 종류는 한정하지 않는다.
회전축(54)의 후방 끝단에는 제4베어링(66)이 결합되어 있다. 따라서, 회전축(54)은 풍향추적축(50)과는 별개로 회전될 수 있다.
풍향추적축(50)에 발전기(110)가 결합되며, 발전기(110)는 중심축베어링(42)에 결합되며 수직축(40)에 U-볼트 등을 사용하여 부착된다.
발전기(110)의 회전자는 회전축(54)에 결합되고, 회전자의 회전으로 인하여 전기를 생산할 수 있다.
도 3은 회전축(54) 및 발전유닛(100)을 분해한 분해도이다.
회전축(54)은 회전블레이드(120)를 구비할 수 있다. 회전블레이드(120)는 바람이 불 때 회전축(54)을 회전시킨다.
도3에 도시된 일 실시예는 회전블레이드(120)의 깃 수는 3개일 것을 특징으로 한다. 하지만, 회전블레이드(120)의 깃 수는 한정되지 않으며, 통상의 지식을 가지는 자를 기준으로 회전블레이드(120)의 깃 수는 변경 가능하다.
도3에 도시된 일 실시예는 회전블레이드(120)가 3개일 것을 특징으로 한다. 다수의 회전블레이드(120)를 결합하는 경우, 약한 바람에도 회전축(54)에 충분한 회전력을 전달할 수 있다.
그러므로 거대한 하나의 회전블레이드(120)를 쓰는 것보다 공간을 적게 차지하는 점, 하중이 저감되어 회전이 용이하다는 점에 있어 풍력발전기의 효율을 향상시키는 효과가 있다.
도 3에 도시된 일 실시예는 각 회전블레이드(120)는 전방에서 보았을 때, 완젼히 겹쳐져 있지 않게 틀어져서 형성될 수 있다. 따라서, 바람이 각 회전블레이드(120)를 지나가면서 회전이 용이하게 할 수 있다. 한편, 회전블레이드(120)의 수는 한정되지 않으며, 통상의 지식을 가지는 자를 기준으로 회전블레이드(120)의 수는 변경이 가능하다.
도3에 도시된 일 실시예는 발전기(110)를 포함할 수 있다.
발전기(110)는 자기장을 발생시키는 자석을 포함하고 있으며, 발전기의 내부에는 회전자를 구성하는 코일이 회전축(54)과 결합될 수 있다. 따라서, 회전축(54)이 회전하게 되면, 회전축(54)의 회전력은 코일에 전달되고, 코일의 회전은 유도기전력을 일으켜 전기를 생산한다.
도 4는 본 명세서에 개시된 일 실시예에 따른 풍속분산장치부(200)를 나타낸 분해 사시도이다.
풍속분산장치(210)의 전방은 풍향추적축(50)과 결합되어 있다.
풍속분산장치(210)의 후방은 수직중심축(40)에 이른다. 풍속분산장치(210)의 후방과 수직중심축(40)은 고정대베어링(222)으로 연결될 수 있다.
고정대베어링(222)은 중심축베어링(42)과 동일한 종류의 베어링으로 이루어질 수 있다.
풍속분산장치(210)의 후단과 고정대베어링(222)은 고정핀으로 연결될 수 있다. 고정대베어링(222)의 고정핀(224)은 중심축베어링(42)과 풍향추적축(50)을 연결하는 고정핀(44)과 동일한 종류로 이루어질 수 있다.
풍속분산장치(210)의 하단 일부는 고정대(220)와 결합되어있으며, 상기 고정대(220)는 풍향추적축(50)과 결합된다.
상기 고정대(220)의 위치는 변동가능하나 풍속분산장치(210)의 하단 중심에 위치하는 것이 바람직하다.
상기 풍속분산장치(210)는 전방에서부터 후방까지 기울어져 있으므로, 바람의 저항을 받을 수 있다. 도 5는 풍속분산장치(210)의 사용상태도를 도시한 도면이다.
풍속분산장치(210)는 좌측면(212)과 우측면(214)이 형성될 수 있다. 풍속분산장치의 좌측면과 우측면은 도 5에 도시된 바와 같이, 평소에는 접혀있어 풍속분산장치(210)가 바람의 이동을 방해하지 않도록 한다.
강한 바람이 부는 경우, 도 6에 도시된 바와 같이 바람의 힘이 스프링(230)의 탄성력을 초과하게 되면 풍속분산장치(210)의 좌측면(212)과 우측면(214)이 펼쳐져 풍속을 분산 및 감속시킬 수 있다.
이로써 회전블레이드(120)가 빠르게 회전함으로써 연결된 전자기기 또는 발전유닛(100)이 손상되는 것을 방지한다.
도 4 내지 도 6에 도시된 일 실시예에 따르면, 풍속분산장치(210)는 스프링(230)을 포함할 수 있다.
스프링(230)은 풍속분산장치(210)의 좌측면(212)과 우측면(214) 사이를 연결한다. 스프링(230)은 도 5에 도시된 바와 같이, 평소에는 좌측면과 우측면이 접혀있도록 하여, 강한 바람이 불지 않는 경우에 풍속분산장치(210)가 바람의 이동을 방해하지 않도록 한다.
도 4에 도시된 본 명세서에 게시된 일 실시예에 따르면 스프링(230)은 풍속분산장치(210)의 후방에 위치할 수 있다.
스프링(230)이 풍속분산장치(210)의 후방에 위치하게 되면 바람이 불 때 풍속분산장치(210)의 전방이 먼저 벌어지게 되며, 바람의 저항을 더 받게 되어 후방이 더 용이하게 벌어질 수 있다.
풍향분산장치(210)는 8개를 장착하여 바람이 초속 15미터 이상이 불 경우에는 4개가 펼쳐지고, 초속 25미터 이상의 강풍이 불 경우에는 나머지 4개가 펼쳐져서 회전블레이드(120)이 정속 회전을 유지할 수 있도록 한다.
또한 회전블레이드(120)와 풍향판(310) 사이에 보조기둥을 장착하여 회전축의 길이가 길어짐으로 인한 처짐을 방지하도록 한다.
또한 지지링(30)에도 보조기둥을 설치하여 하중으로 인한 변형을 방지할 수 있도록 한다.
회전블레이드(120)는 최대 12개 또는 그 이상도 장착할 수 있다.
도 7은 본 명세서에 게시된 일 실시예에 따른 풍향추적부(300)를 나타낸 분해사시도이다.
풍향추적부는 풍향판(310), 제2베어링(68)으로 구성된다.
도 7에 도시된 바와 같이, 풍향판(310)은 상부와 하부 2개의 판이 풍향추적축과 수직으로 결합한다.
따라서 풍향이 변하게 되면, 풍향판(310)이 풍향에 따라 회전축이 요잉(Yawing)을 하도록 한다.
이때, 중심축베어링(42), 제1베어링(62) 및 제2베어링(68)은 마찰력을 감소시켜 회전축(50)의 요잉을 용이하게 돕는 역할을 한다.
풍향이 변하게 되면 풍향판(310)이 요잉하여 풍향과 풍향추적축(50)의 방향을 일치시킨다. 이에 따라 풍력발전기의 효율을 극대와 시킬 수 있다.
본 명세서에 게시된 일 실시예에 따르면, 도 7에 도시된 바와 같이 풍향추적축(50)의 측면에는 보조베어링지지대(320)가 형성될 수 있으며, 보조베어링지지대(320)의 끝단에는 보조베어링(330)이 결합될 수 있다.
도 8은 본 명세서에 게시된 일 실시예에 따른 풍향추적부(300)의 후방을 도시한 배면도이다.
도 8에 도시된 바와 같이, 보조베어링(330)은 좌측과 우측, 각각 상-하로 하여 4개의 보조베어링으로 구성될 수 있다. 보조베어링(330)은 풍력발전기가 롤링(Rolling)하는 것을 방지하여 풍력발전기의 효율을 향상시키는 역할을 한다. 보조베어링(330)은 통상의 지식을 가지는 자를 기준으로 보조베어링의 개수 및 결합형태는 변경이 가능하다.
* 부호의 설명
10 : 풍향 추적 풍력발전기 20 : 지지프레임
30 : 지지링 40 : 수직중심축
42 : 중심축 베어링 44 : 고정핀
50 : 회전축 62 : 제1 베어링
64 : 제3 베어링 66 : 제4 베어링
68 : 제2 베어링 100 : 발전유닛
110 : 발전기 120 : 회전블레이드
200 : 풍속분산장치부 210 : 풍속분산장치
212 : 풍속분산장치의 좌측면 214 : 풍속분산장치의 우측면
220 : 고정대 222 : 고정대베어링
224 : 고정대베어링고정핀 230 : 스프링
300 : 풍향추적부 310 : 풍향판
320 : 보조베어링지지대 330 : 보조베어링

Claims (5)

  1. 수직으로 연장되는 수직중심축의 둘레에 지지링이 수평으로 연결되는 지지프레임;
    상기 수직중심축에 회전가능하게 결합되고, 전,후방단부는 지지링을 따라 주행가능하도록 형성되며, 후방측에는 풍향판이 결합되어, 바람의 방향에 따라 지지링 상에서 상기 수직중심축을 중심으로 회전되는 풍향추적축;
    상기 풍향추적축의 후방측을 분할하는 형태로 상기 풍향추적축 상에 회전가능하게 결합되고, 바람에 의해 회전구동되도록 회전블레이드가 결합되는 회전축; 및
    상기 회전축에 결합되고 상기 회전축의 회전력을 전기에너지로 변환시키는 발전유닛;
    을 포함하는 것을 특징으로 하는 풍향추적풍력발전기
  2. 제 1항에 있어서,
    수직중심축과 풍향추적축 사이에 위치하는 중심축베어링;
    풍향추적축의 전방과 지지링 사이에 위치하는 제1베어링; 및
    풍향추적축의 후방과 지지링 사이에 위치하는 제2베어링;
    을 더 포함하는 것을 특징으로 하는 풍향추적 풍력발전기.
  3. 제 1항에 있어서,
    중심축베어링의 전방에 위치하며, 일 측은 풍향추적축과 직접 결합되고, 타 측은 수직중심축과 연결되고, 하단 일부는 풍향추적축과 고정대로 결합되고, 양 끝단은 접힌 채로 스프링으로 고정되어 있어, 강풍이 불면 벌어져 풍속을 감소시키는 풍속분산장치부를 더 포함하는 것을 특징으로 하는 풍향추적 풍력발전기.
  4. 제 1항에 있어서,
    상기 발전유닛은,
    풍향추적축 상에 위치하는 회전축;
    회전축의 둘레에 결합되는 다수의 회전블레이드;
    회전축의 전방 끝단에 위치하는 제3베어링;
    회전축의 후방 끝단에 위치하는 제4베어링;
    풍향추적축에 결합하되, 회전자는 회전축에 결합되도록 하는 발전기;
    를 포함하는 것을 특징으로 하는 풍향추적 풍력발전기.
  5. 제 1항에 있어서,
    상기 풍향추적축의 측면에서 좌 또는 우로 신장되며, 일 측은 좌-우 각각에서 지지링의 상-하에 이르는 보조베어링지지대;
    보조베어링지지대와 지지링을 연결하는 보조베어링;
    을 포함하는 것을 특징으로 하는 풍향추적 풍력발전기.
PCT/KR2017/005509 2016-10-10 2017-05-26 풍향 추적 풍력발전기 WO2018070628A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019541059A JP2019530829A (ja) 2016-10-10 2017-05-26 風向き追跡風力発電機
EP17861064.8A EP3524811A4 (en) 2016-10-10 2017-05-26 WIND POWER GENERATOR WITH POSSIBILITY OF MONITORING WINDSET
AU2017341596A AU2017341596A1 (en) 2016-10-10 2017-05-26 Wind power generator allowing tracking wind direction
CA3039319A CA3039319A1 (en) 2016-10-10 2017-05-26 Wind-direction tracking wind power generator
CN201780059359.8A CN109790821A (zh) 2016-10-10 2017-05-26 风向跟踪风力发电机
ZA2019/01355A ZA201901355B (en) 2016-10-10 2019-03-04 Wind power generator allowing tracking wind direction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0130477 2016-10-10
KR1020160130477A KR101717131B1 (ko) 2016-10-10 2016-10-10 풍향 추적 풍력발전기

Publications (1)

Publication Number Publication Date
WO2018070628A1 true WO2018070628A1 (ko) 2018-04-19

Family

ID=58501944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005509 WO2018070628A1 (ko) 2016-10-10 2017-05-26 풍향 추적 풍력발전기

Country Status (8)

Country Link
EP (1) EP3524811A4 (ko)
JP (1) JP2019530829A (ko)
KR (1) KR101717131B1 (ko)
CN (1) CN109790821A (ko)
AU (1) AU2017341596A1 (ko)
CA (1) CA3039319A1 (ko)
WO (1) WO2018070628A1 (ko)
ZA (1) ZA201901355B (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919509B1 (ko) * 2018-08-09 2018-11-16 주식회사 지엘 풍향 추적 풍력발전기
KR102304938B1 (ko) * 2020-11-26 2021-09-23 방부현 풍향 추적 풍력발전기
CN113931804B (zh) * 2021-10-13 2023-01-31 福州大学 用于海上风机的双环式多功能非线性能量阱及其施工方法
KR102544893B1 (ko) 2021-11-08 2023-06-16 김한영 풍력 양수발전 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200298959Y1 (ko) * 2002-09-24 2003-01-03 서병율 풍력 발전장치
JP2003049760A (ja) * 2001-08-08 2003-02-21 Noriyasu Matsumoto 風力発電装置
KR100812788B1 (ko) * 2006-12-29 2008-03-12 엄재권 풍력 발전기
KR100981790B1 (ko) * 2010-05-04 2010-09-13 방부현 대용량 풍력 발전기
KR200459129Y1 (ko) * 2011-09-23 2012-03-19 유길호 수평축 풍력 발전 장치용 집풍 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1015416A (en) * 1911-03-07 1912-01-23 Judson A Bennett Wind-wheel.
GB2308867A (en) * 1995-12-05 1997-07-09 John Arthur Howard Automatic wind turbine control
DE19917687A1 (de) * 1999-04-19 2000-10-26 Heiner Kastl Flügelrad zur Umwandlung von Wind in nutzbare Energie
CN2604819Y (zh) * 2003-03-19 2004-02-25 谢建国 微风风力发电机
CN201080896Y (zh) * 2007-09-29 2008-07-02 李友仁 风力发电风车
CN201258829Y (zh) * 2008-09-27 2009-06-17 刘旭东 无尾水平轴下风向风力机
CN201574881U (zh) * 2009-09-04 2010-09-08 李欣华 一种风力发电机风向自动跟踪系统
KR101288177B1 (ko) 2012-09-07 2013-07-19 이대우 무동력 풍향 자동 추종 풍력발전기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049760A (ja) * 2001-08-08 2003-02-21 Noriyasu Matsumoto 風力発電装置
KR200298959Y1 (ko) * 2002-09-24 2003-01-03 서병율 풍력 발전장치
KR100812788B1 (ko) * 2006-12-29 2008-03-12 엄재권 풍력 발전기
KR100981790B1 (ko) * 2010-05-04 2010-09-13 방부현 대용량 풍력 발전기
KR200459129Y1 (ko) * 2011-09-23 2012-03-19 유길호 수평축 풍력 발전 장치용 집풍 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3524811A4 *

Also Published As

Publication number Publication date
ZA201901355B (en) 2019-12-18
EP3524811A1 (en) 2019-08-14
CN109790821A (zh) 2019-05-21
AU2017341596A1 (en) 2019-03-21
CA3039319A1 (en) 2018-04-19
EP3524811A4 (en) 2019-10-16
KR101717131B1 (ko) 2017-03-17
JP2019530829A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018070628A1 (ko) 풍향 추적 풍력발전기
WO2011055962A2 (ko) 풍력발전장치
WO2014073738A1 (ko) 사축형 윈드 터빈
US4088352A (en) Wind-driven power plant
WO2012060493A1 (ko) 개량된 형태의 저속발전기
WO2013073799A1 (en) Multi-type wind turbine
WO2011122726A1 (ko) 자기력 평형 전기발생장치
WO2011065720A2 (ko) 수직형 풍력발전용 틸트식 회전날개장치
WO2020032598A1 (ko) 풍향 추적 풍력발전기
WO2014193085A1 (ko) 풍력 발전기의 블레이드 각도 조절장치 및 이를 가지는 풍력발전기
WO2024014855A1 (ko) 풍력 발전장치
WO2016190554A1 (ko) 풍압저감장치를 구비한 태양광 발전용 솔라셀 구조물
WO2011049280A1 (ko) 수직축 풍력발전 시스템
WO2011065748A2 (ko) 블레이드지향각도조절부가 구비된 풍력발전기
BR0212263A (pt) Sistema sobre o rotor para acoplar eletricamente os enrolamentos dos rotor a uma pluralidade de fontes dc sobre o excitador, e método de acoplar uma pluralidade de circuitos retificadores de um excitador com os enrolamentos de um rotor de um gerador principal
KR101049452B1 (ko) 풍력발전시스템
WO2011139015A1 (ko) 대용량 풍력 발전기
WO2014061908A1 (ko) 이중 공극형 발전기
WO2011030977A1 (ko) 풍력발전용 편심 이중 회전자 구조체
WO2012011632A1 (ko) 회전날개의 수평유지수단이 구비된 풍력발전기
WO2011078435A1 (ko) 풍력 발전기
WO2010071339A2 (ko) 풍력발전용 가변발전장치
WO2012144764A2 (ko) 풍력 발전 장치
WO2014109496A1 (ko) 종축형 풍력발전기 및 그 제어방법
CN112601434B (zh) 信息通信柜通风调节装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017341596

Country of ref document: AU

Date of ref document: 20170526

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3039319

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019541059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017861064

Country of ref document: EP