WO2018059425A1 - 上行功率控制方法及装置 - Google Patents

上行功率控制方法及装置 Download PDF

Info

Publication number
WO2018059425A1
WO2018059425A1 PCT/CN2017/103610 CN2017103610W WO2018059425A1 WO 2018059425 A1 WO2018059425 A1 WO 2018059425A1 CN 2017103610 W CN2017103610 W CN 2017103610W WO 2018059425 A1 WO2018059425 A1 WO 2018059425A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
domain resource
resource
terminal device
time domain
Prior art date
Application number
PCT/CN2017/103610
Other languages
English (en)
French (fr)
Inventor
王亚飞
张弛
龚政委
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854875.6A priority Critical patent/EP3506687B1/en
Publication of WO2018059425A1 publication Critical patent/WO2018059425A1/zh
Priority to US16/365,698 priority patent/US10932200B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences

Definitions

  • the embodiments of the present application relate to communications technologies, and in particular, to an uplink power control method and apparatus.
  • Dynamic Time Division Duplex can dynamically adjust the TDD uplink and downlink subframe configuration according to the requirements of different services for uplink and downlink resources, so as to optimize resource utilization.
  • the dynamic TDD has the above advantages, there are serious cross-interferences in the actual deployment and application, including inter-network interference and interference between User Equipment (UE), which seriously reduces the uplink performance/downlink edge. performance.
  • UE User Equipment
  • a dual-ring uplink power control enhancement based on a subframe set is adopted.
  • the scheme includes an open loop power control enhancement and a closed loop power control enhancement, wherein the subframe set includes a variable subframe set and a fixed subframe set.
  • different subframe sets are semi-statically configured by the network side. Since the variable subframe set may have cross interference between UEs and UEs, and there is no cross interference on the fixed subframe set, two different types of children are used.
  • the frame set uses different sets of power control parameters.
  • the power control parameters of the open loop and the closed loop are determined by two types of subframe set types, the switching of the subframe configuration mode and the power control according to different data transmission service types can be implemented.
  • the power control mode there is still room for improvement in cross-interference reduction between UEs.
  • the embodiment of the present application provides an uplink power control method and apparatus to solve the problem that the system throughput is low due to cross interference between UEs in the prior art.
  • an uplink power control method including:
  • the first UE measures the first signal on the first time-frequency resource, and obtains a measurement result;
  • the first signal is a signal formed by superimposing the second signal sent by the at least one second UE on the second time-frequency resource;
  • the time domain resource of the first time-frequency resource belongs to the first time domain resource unit;
  • the first UE controls uplink power on the first time domain resource unit according to the measurement result.
  • the first time domain resource unit is the currently scheduled time domain resource unit. Therefore, after determining the measurement result, the first UE controls the power of the uplink data on the current time domain resource unit according to the measurement result.
  • the uplink power may include power of uplink data and/or power of uplink control information.
  • the first UE is configured to receive an uplink scheduling assignment delivered by the network side device a UE
  • the second UE is a UE that receives the downlink scheduling allocation delivered by the network side device
  • the first UE measures the first signal on the first time-frequency resource, obtains a measurement result, and controls the first time according to the measurement result.
  • the power of the uplink data on the domain resource unit. Since the first UE dynamically measures and senses the first signal and flexibly controls the power of the uplink data according to the measurement result, the cross interference between the UEs can be effectively reduced, thereby greatly improving the throughput of the system.
  • the first UE controls the power of the uplink data on the first time domain resource unit according to the measurement result, including:
  • the first UE selects at least one uplink power control parameter set in the preset power control parameter set according to the measurement result;
  • the first UE controls the power of the uplink data on the first time domain resource unit according to the power control parameter.
  • the preset power control parameter set includes at least an open-loop parameter set semi-statically configured by the network side device. And the closed-loop transmission power control (Transmitter Power Control; TPC) parameter specified by DCI.
  • TPC Transmitter Power Control
  • the first UE measures the first signal on the first time-frequency resource, including:
  • the frequency domain resource is indicated by a number of a physical resource block PRB that is scheduled to be allocated by the first UE, or the frequency domain resource is located Predefined frequency domain resources;
  • the first UE measures the first signal according to the time domain resource unit, the frequency domain resource, the symbol resource, and the timing.
  • the time domain resource unit is configured to indicate a time unit that is scheduled or allocated by the network side device in the time domain; the symbol resource is used to indicate, by using a granularity of symbols, a time domain resource that receives the first signal;
  • the first UE determines to receive the time domain resource unit of the first signal, including:
  • the first UE determines the time domain resource unit that receives the first signal according to the static indication mode, the semi-static indication mode, or the dynamic indication mode.
  • the first UE determines the symbol resource and timing of receiving the first signal, including:
  • the first UE determines, according to the preset timing offset, the control channel resource information, and the parameter of the first signal, a symbol resource and a timing for receiving the first signal; the control channel resource information is used to indicate a symbol of the downlink control region.
  • the number of the first signal is used to indicate the length of time the symbol is occupied (also represented by the subcarrier spacing).
  • the first UE determines the time domain resource unit, the frequency domain resource, the symbol resource, and the timing of receiving the first signal, and according to the time domain resource unit, the frequency domain resource, The symbol resource and timing, the first signal is measured, the measurement result is obtained, and at least one uplink power control parameter set is selected in the preset power control parameter set according to the measurement result, to control the uplink power, because the measurement result is
  • the power control parameters can be flexibly selected, which can effectively reduce the cross interference between UEs, thereby improving the throughput of the system.
  • the first UE selects at least one uplink power control parameter set in the preset power control parameter set according to the measurement result, including:
  • the first UE quantizes the interference strength to obtain an interference level
  • the first UE selects at least one uplink power control parameter set in the preset power control parameter set according to the interference level.
  • the first UE determines, according to the measurement result, the interference strength that is perceived by the first UE, including:
  • the first UE obtains the interference strength perceived by the first UE according to the weight value.
  • the uplink power control method provided by each of the foregoing possible designs, after the first UE determines its own perceived interference strength according to the measurement result, and determines an interference level according to the interference strength, between the interference level and the power control parameter set. Correspondence, select the appropriate power control parameters, so that the determined power control parameters are more accurate.
  • an embodiment of the present application provides an uplink power control device, where the device includes a corresponding function module, and each function module can be used to perform the steps in the foregoing method.
  • each function module can be used to perform the steps in the foregoing method.
  • the beneficial effects of the various possible designs of aspects are not repeated here.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the embodiment of the present application provides a UE, including:
  • a receiver for receiving the first signal
  • a processor configured to measure the first signal on a first time-frequency resource, to obtain a measurement result, where the first signal is formed by superimposing a second signal sent by the at least one second UE on the second time-frequency resource
  • the time domain resource of the first time-frequency resource belongs to the first time domain resource unit
  • the processor is further configured to control, according to the measurement result, the power of the uplink data on the first time domain resource unit.
  • the processor is further configured to select at least one uplink power control parameter set in the preset power control parameter set according to the measurement result;
  • the processor is further configured to control power of the uplink data on the first time domain resource unit according to the power control parameter.
  • the processor is further configured to determine a time domain resource unit, a frequency domain resource, a symbol resource, and a timing that receive the first signal, where the frequency domain resource is scheduled to be allocated by the first UE.
  • the number of the PRB indicates that the frequency domain resource is located on a predefined frequency domain resource;
  • the time domain resource unit is a time unit that is scheduled or allocated by the network side device on the time domain;
  • the symbol resource is used to indicate that the first Time domain resources of the signal;
  • the processor is further configured to measure the first signal according to the time domain resource unit, the frequency domain resource, the symbol resource, and timing.
  • the processor is further configured to determine, according to a static indication manner, a semi-static indication manner, or a dynamic indication manner, a time domain resource unit that receives the first signal.
  • the processor is further configured to determine a symbol resource and a timing for receiving the first signal according to a preset timing offset, control channel resource information, and a parameter of the first signal; the control channel
  • the resource information is used to indicate the number of symbols of the downlink control region; the parameter of the first signal is used to indicate the length of time occupied by the symbol.
  • the processor is further configured to determine, according to the measurement result, an interference strength that is perceived by the first UE;
  • the processor is further configured to quantize the interference intensity to obtain an interference level
  • the processor is further configured to select at least one uplink power control parameter set in the preset power control parameter set according to the interference level.
  • the processor is further configured to determine, according to a preset interference interval where the measurement result on different RBs on the first time-frequency resource is located, a weight value of each RB in the interference strength calculation. ;
  • the processor is further configured to obtain the interference strength perceived by the first UE according to the weight value.
  • an embodiment of the present application provides an apparatus, which may include one or more processors and a communication unit.
  • the one or more processors are configured to support the communication device to perform corresponding functions in the methods described above.
  • the communication unit is configured to support the communication device to communicate with other devices to implement a receiving and/or transmitting function.
  • the communication device may further include one or more memories for coupling with the processor, which store program instructions and data necessary for the communication device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the communication device may be a base station or a transmission point (TP, or a transmitting and receiving point, TRP), etc.
  • the communication unit may be a transceiver, or a transceiver circuit.
  • the communication device may also be a communication chip, and may be disposed in a base station or a TRP.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the communication device may be a smart terminal or a wearable device, etc.
  • the communication unit may be a transceiver, or a transceiver circuit.
  • the communication device can also be a communication chip, which can be disposed in the user equipment.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the first UE measures the first signal on the first time-frequency resource, obtains the measurement result, and controls the first time domain resource unit according to the measurement result.
  • the power of the uplink data where the time domain resource of the first time-frequency resource belongs to the first time domain resource unit. Since the first UE dynamically measures and senses the first signal, the power of the uplink data on the first time domain resource unit is flexibly controlled according to the measurement result, so that cross interference between the UEs can be effectively reduced, thereby greatly Increased system throughput.
  • Figure 1 is a block diagram of a communication system
  • FIG. 3 is a schematic structural diagram of an uplink power control system according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of Embodiment 1 of an uplink power control method according to the present application.
  • FIG. 6 is a schematic diagram of determining symbol resources and timing of a perceptual signal
  • FIG. 7 is a schematic flow chart of measuring a first signal
  • FIG. 8 is a schematic diagram of determining, by a first UE, a time domain resource unit according to a predefined indication manner
  • FIG. 9 is a schematic diagram of determining, by a first UE, a time domain resource unit according to a dynamic indication manner
  • Figure 10 is a map between interference levels and power control parameters
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of an uplink power control apparatus according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of an uplink power control apparatus according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of an embodiment of a UE according to an embodiment of the present disclosure.
  • FIG. 1 is a frame diagram of a communication system.
  • the communication system includes a backbone network, a Core Network (CN), and a Radio Access Network (RAN), and the terminal accesses the RAN through a network side device, such as a base station. And accessing the backbone network through the core network to achieve data interaction with the external network or other networks.
  • CN Core Network
  • RAN Radio Access Network
  • LTE is used as an example to illustrate the role of each network element and interface in the system architecture.
  • Figure 2 is a system architecture diagram of LTE, as shown in Figure 2.
  • the mobility management entity Mobility Management Entity; MME
  • MME mobility Management Entity
  • 3GPP 3rd Generation Partnership Project
  • the key control node in the 3rd Generation Partnership Project (3GPP) LTE belongs to the core network element and is mainly responsible for the signaling processing part, that is, the control plane function, including access control, mobility management, attach and go. Features such as attachment, session management, and gateway selection.
  • Serving GateWay (S-GW) is an important network element of the core network in 3GPP LTE. It is mainly responsible for the user plane function of user data forwarding, that is, routing and forwarding of data packets under the control of the MME.
  • the evolved base station (Evolved Node B; eNB for short) is mainly responsible for radio resource management, quality of service (QoS) management, data compression, and encryption on the air interface side.
  • the eNB On the core network side, the eNB is mainly responsible for forwarding control plane signaling to the MME and forwarding user plane service data to the S-GW.
  • the UE is a device in the LTE that accesses the network side through the eNB, and may be, for example, a handheld terminal, a notebook computer, or other devices that can access the network.
  • the S1 interface is a standard interface between the eNB and the core network.
  • the eNB is connected to the MME through the S1-MME interface, and is used for control signaling transmission; the eNB is connected to the S-GW through the S1-U interface, and is used for transmission of user data.
  • the S1-MME interface and the S1-U interface are collectively referred to as an S1 interface.
  • the X2 interface is a standard interface between the eNB and the eNB, and is used to implement interworking between the base stations.
  • the Uu interface is a radio interface between the UE and the base station, and the UE accesses the LTE network through the Uu interface.
  • the device involved includes a network side device, such as a base station or other type of transmission point device, and is of course not limited to the above two devices.
  • the base station may be an evolved base station (Evolved Node B, referred to as an eNB or an e-NodeB), a macro base station, a micro base station (also referred to as a "small base station"), a pico base station, and an access in an LTE system or an evolved system thereof.
  • An access point (AP) or a transmission point (TP) may also be a base station in a future network, such as a base station in a 5G network.
  • the terminal may also be referred to as a user equipment (User Equipment, UE for short), or may be called a terminal, a mobile station (Mobile Station, MS for short), a mobile terminal (Mobile Terminal), etc.
  • the terminal may communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, or the like.
  • RAN Radio Access Network
  • the terminal can also be portable, pocket, handheld, built-in or car-mounted. Mobile devices that exchange voice and/or data with a wireless access network.
  • the terminal in the embodiment of the present application may also be a Device to Device (D2D) terminal or a Machine to Machine (M2M) terminal.
  • D2D Device to Device
  • M2M Machine to Machine
  • the uplink power control method is mainly directed to how to avoid cross interference between the UE and the UE in the communication system.
  • a dual-ring uplink power control enhancement scheme based on a subframe set is adopted, including an open loop power control enhancement scheme and a closed loop power control enhancement scheme, where the subframe set includes a variable subframe set and a fixed Subframe collection. Since the variable subframe set may have cross interference between UEs and UEs, and there is no cross interference on the fixed subframe set, different power control parameter sets are used for two different types of subframe sets.
  • the power control parameters of the open loop and the closed loop are determined by two types of subframe set types, the switching of the subframe configuration mode and the power control according to different data transmission service types can be implemented, but in this power control mode, There is still room for improvement in cross interference between UEs.
  • the uplink power control method and apparatus provided by the embodiments of the present application are directed to further reducing cross interference between the UE and the UE.
  • FIG. 3 is a schematic structural diagram of an uplink power control system according to an embodiment of the present disclosure.
  • the system includes a first UE and at least one second UE.
  • two second UEs are included as an example.
  • the first UE is a UE that receives an uplink scheduling allocation (Uplink Grant; abbreviated as: UL Grant) delivered by the network side
  • the second UE is a downlink scheduling assignment (Downlink Grant; DL Grant for short) that is sent by the network side. ) UE.
  • the first UE that is scheduled by the uplink may cause interference to the second UE that is in the downlink scheduling in the neighboring cell.
  • the two second UEs may respectively be the first in the second time-frequency resource.
  • the UE sends the second signal, and the first UE may measure the first signal formed by superimposing the two second signals, and control the uplink power according to the measurement result, so as to reduce interference generated by the second UE of the neighboring cell.
  • the first signal may be, for example, a sensing signal
  • the second signal is a superimposed signal formed by superimposing two sensing signals.
  • FIG. 4 is a schematic structural diagram of a time domain resource unit.
  • the time domain resource unit may include a downlink control region (for carrying downlink control information), a downlink data region, and an uplink control region. (for carrying the uplink control information), wherein the downlink control area and the downlink data area include a time zone, where the time zone can be used to send a sensing signal, where the sensing information is a signal used to measure cross interference between UEs, and thus
  • This time zone may also be referred to as a perceptual zone (ie, a time domain resource in the figure for transmitting a second signal).
  • the time domain resource unit may include a downlink control area, an uplink data area, and an uplink control area, where the downlink control area and the uplink data area include a time zone, where the time zone is used.
  • the time region may further be used to receive the sensing signal, where the sensing information is a signal for measuring cross interference between the UEs,
  • the time zone can also be referred to as a perceptual zone (ie, the time domain resource used to measure the first signal in the figure).
  • the channel heterogeneity can be utilized, and the second UE that is scheduled by the downlink transmits the sensing signal, and the first UE scheduled by the uplink measures the superposed signal to obtain the interference strength and the interference level.
  • the first UE may use the at least one uplink power control parameter set selected in the power control parameter set pre-configured on the base station side as a reference, and according to the obtained interference strength and interference level, the change amount of the parameter set with respect to the pre-configured power Perform uplink power control. Because in this case, the base station side blind detection determines the complexity of the Modulation and Coding Scheme (MCS). The degree is high.
  • MCS Modulation and Coding Scheme
  • the uplink control information when the uplink power is controlled on the time domain unit of the resource, the uplink control information may be sent in front of the uplink data, and the power control indication information may be performed by using the uplink control information.
  • the bearer wherein the indication information includes information such as a change amount and an MCS with respect to a preset power control parameter set.
  • FIG. 5 is a schematic flowchart of Embodiment 1 of an uplink power control method according to the present application.
  • the embodiment of the present application provides an uplink power control method, which may be performed by any device that performs an uplink power control method, and the device may be implemented by software and/or hardware.
  • the device can be integrated in the UE.
  • the method in this embodiment may include:
  • Step 501 The first UE performs measurement on the first time-frequency resource to obtain a measurement result, where the first signal is a signal formed by superimposing a second signal sent by the second UE on the second time-frequency resource.
  • the time domain resource of the first time-frequency resource belongs to the first time domain resource unit.
  • the first UE is the UE that receives the uplink scheduling allocation that is sent by the network side device
  • the second UE is the UE that receives the downlink scheduling allocation that is sent by the network side device
  • the first time domain resource unit is the current time domain resource unit.
  • the time domain resource unit may be a time domain resource scheduling and allocation unit in a wireless communication technology, such as LTE or New Radio Access Technology (New RAT; NR for short, including but not limited to subframes, Slot, mini-slot, Transmit Time Interval (TTI).
  • New RAT New Radio Access Technology
  • the time-frequency resource includes two resources in a time domain and a frequency domain, where the time domain resource may include N symbol resource units, where N is a positive integer, and the frequency domain resource refers to a resource block (Resource Block; RB) Or Resource Element (RE) is the frequency band resource of the basic allocation unit.
  • resource Block Resource Block
  • RE Resource Element
  • the at least one second UE sends a second signal to the first UE on the second time-frequency resource, and the at least one second signal is superimposed on each other to form a first signal.
  • the first UE measures the superposed first signal on the first time-frequency resource to obtain a measurement result.
  • the first time-frequency resource may be predefined, or may be indicated by the network-side device by sending control information, and the control information may be dynamic control information, such as uplink scheduling allocation information, or semi-static control.
  • Information such as Radio Resource Control (RRC) signaling or broadcast messages.
  • RRC Radio Resource Control
  • the second time-frequency resource may be predefined, or may be indicated by the network-side device by issuing control information, and the control information may be dynamic control information, such as downlink scheduling allocation, or semi-static control. Information, such as RRC signaling or broadcast messages.
  • the embodiment is not limited herein.
  • the following takes the second signal as the sensing signal sent by the second UE as an example, and details the process in which the second UE sends the sensing signal.
  • the second UE When transmitting the sensing signal, the second UE needs to determine information such as a time domain resource unit, a frequency domain resource, a symbol resource, and a timing for transmitting the sensing signal.
  • the second UE may determine, according to the static indication manner, a time domain resource unit that needs to send the sensing signal, such as all time-domain resource units scheduled to be downlink or all downlinks except the fixed time domain resource unit.
  • the domain resource unit may also determine the time domain resource unit that needs to send the sensing signal according to the semi-static indication manner, for example, by using RRC signaling, and determining the time domain resource unit that needs to send the sensing signal according to the dynamic indication manner, for the time domain resource.
  • the specific manner of determining the unit is not limited in this embodiment.
  • the time domain resource unit may be, for example, a subframe.
  • the uplink subframe includes downlink control information, a time domain resource used by the first UE to measure the first signal, an uplink data region, and an uplink control. information.
  • the first UE may indicate the subframe type according to the subframe type indication information in the downlink control information, that is, determine whether the DL or the UL, the size of the time domain resource may be N symbols, and N is an integer greater than or equal to 1, and uplink.
  • the data area can be used for transmission of uplink data information, and the uplink control information can be used for transmission of uplink control information.
  • the downlink subframe includes downlink control information, a time domain resource used by the second UE to transmit the second signal, a downlink data region, and uplink control information.
  • the structure of the downlink control information is similar to that in the uplink subframe, and details are not described herein again.
  • the size of the time domain resource may be N symbols, and N is an integer greater than or equal to 1.
  • the downlink data area may be used for transmission of downlink data information, and the uplink control information may be used for transmission of uplink control information.
  • a guard interval may be included between the downlink data region and the uplink control information.
  • the second UE may determine symbol resources and timings for transmitting the sensing signals according to preset timing offsets, control channel resource information, and parameters of the sensing signals.
  • the parameter of the sensing signal may be, for example, a time interval in which the time domain resource may occupy one symbol. For example, when the subcarrier spacing is 15 kHz, the duration of one symbol is 66.7 us.
  • FIG. 6 is a schematic diagram of determining symbol resources and timing of a sensing signal. As shown in FIG.
  • the control channel resource information that is, the number of symbols of the downlink control channel (indicated by downlink control information), the timing offset is The time offset of the perceived signal relative to the downlink control information, for example, the time offset from the first symbol start position of the downlink control channel or the time offset from the last symbol end position of the downlink control channel
  • the quantity, the parameter of the sensing signal includes information about the length of time occupied by the symbol of the sensing signal, and the symbol resource indicates the time domain resource of the second UE transmitting the sensing signal, as shown in FIG. 6, according to the timing offset, the control channel resource information And by sensing the parameters of the signal, the start timing and the end timing of the sensing signal can be determined, and then the time domain resource for transmitting the sensing signal can be determined.
  • the frequency domain resource of the sensing signal may be indicated by a physical resource block (Physical Resource Block; PRB) number allocated by the second UE, or may be located on a predefined frequency domain resource.
  • PRB Physical Resource Block
  • FIG. 7 is a schematic flowchart of the measurement of the first signal, where the foregoing step 501 may specifically include:
  • Step 5011 The first UE determines a time domain resource unit, a frequency domain resource, a symbol resource, and a timing for receiving the first signal; the frequency domain resource is indicated by a number of a PRB that is scheduled to be allocated by the first UE, or the frequency domain resource is located in a predefined
  • the time domain resource unit is used to indicate a time unit that the network side device schedules or allocates on the time domain; the symbol resource is used to indicate a time domain resource that receives the first signal.
  • Step 5012 Perform measurement on the first signal according to the subframe resource, the frequency domain resource, the symbol resource, and the timing.
  • the first UE determines the time domain resource unit that receives the first signal, and the first UE determines, according to the static indication mode, the semi-static indication mode, or the dynamic indication manner, the time domain resource unit that receives the first signal.
  • the determining, by the first UE, the symbol resource and the timing of receiving the first signal including: determining, according to the preset timing offset, the control channel resource information, and the parameter of the first signal, the symbol resource and timing of receiving the first signal;
  • the control channel resource information is used to indicate the number of symbols in the downlink control region;
  • the parameter of the first signal is used to indicate the length of time occupied by the symbol.
  • the following is an example of the signal that is superimposed by the sensing signal sent by the at least one second UE that is received by the first UE in the interference sensing phase, and the first UE is used to measure the sensing signal in the interference sensing phase.
  • the first UE When measuring the first signal, the first UE needs to determine information such as a time domain resource unit, a frequency domain resource, a symbol resource, and a timing for receiving the first signal.
  • the first UE may determine, according to the static indication manner, a time domain resource unit that receives the first signal, such as all time-domain resource units scheduled to be downlink or all downlinks except the fixed time domain resource unit.
  • the domain resource unit may also determine the time domain resource unit that receives the first signal according to the semi-static indication manner, for example, by using RRC signaling, and may also determine the time domain resource unit that receives the first signal according to the dynamic indication manner, for the time domain resource.
  • the specific manner of determining the unit is not limited in this embodiment.
  • time domain resource unit may be, for example, a subframe, where the structure of the subframe is similar to the structure of the subframe determined by the second UE when transmitting the sensing signal, and details are not described herein again.
  • the first UE may determine, according to the preset timing offset, the control channel resource information, and the parameter of the first signal, the symbol resource and the timing of measuring the first signal.
  • the parameter of the first signal may be, for example, a time interval in which the time domain resource may occupy one symbol. When the subcarrier spacing is 15 kHz, the duration of one symbol is 66.7 us.
  • the manner in which the first UE determines to measure the symbol resource and the timing of the first signal is similar to the manner in which the second UE determines the symbol resource and the timing of sending the second signal, and details are not described herein again.
  • the frequency domain resource of the first signal may be indicated by a PRB number that is scheduled to be allocated by the first UE, or may be located on a predefined frequency domain resource.
  • the measurement result obtained by the first UE measuring the first signal on the first time-frequency resource may be a Radio Resource Management (RRM) measurement result of the first signal, for example, a reference signal receiving power of the first signal.
  • RRM Radio Resource Management
  • RSRP Reference Signal Received Power
  • FIG. 8 is a schematic diagram of determining, by a first UE, a time domain resource unit according to a predefined indication manner.
  • the second UE sends a sensing signal on a predefined transmission resource, where the first UE is in a predefined manner.
  • the type of interference detected and perceived on the transmission resource including the presence or absence of interference and interference strength.
  • the predefined transmission resource may occupy a fixed transmission resource of a middle resource block (Resource Block; RB for short) of the system bandwidth, and may also occupy other fixed transmission resources of the system bandwidth.
  • the implementation is not limited here.
  • N is 2 as an example.
  • FIG. 1 is 2 as an example.
  • the sensing signals transmitted by the three second UEs occupy the same resources, the sensing signals are superimposed.
  • the first UE can obtain the interference intensity by measuring the superposed sensing signal.
  • FIG. 9 is a schematic diagram of determining, by the first UE, a time domain resource unit according to a dynamic indication manner.
  • the second UE may determine physical downlink sharing according to downlink control information (Downlink Control Information; DCI) type and downlink scheduling assignment.
  • DCI Downlink Control Information
  • the resource allocation type of the channel Physical Downlink Shared Channel; PDSCH for short
  • the transmission resource allocated to the second UE is determined according to the resource allocation type.
  • the virtual resource block Virtual Resource Block; VRB
  • VRB Virtual Resource Block
  • the first UE may determine a resource allocation type of a physical uplink shared channel (Physical Uplink Shared Channel; PUSCH) according to the DCI type and the uplink scheduling assignment, and according to the resource allocation
  • the allocation type determines the transmission resource allocated to the first UE, and after determining the transmission resource, the PRB number of the allocated resource is obtained according to the resource mapping type of the VRB to the PRB, and then the first signal is performed on the PRB corresponding to the PRB number.
  • Measurement and perception wherein the resource allocation type is a transmission resource allocation manner, for example, including centralized allocation or distributed allocation.
  • the mapping sets the specifically transmitted symbol on the RB occupied by the sensing signal to all ones, and the power remains consistent. Since the resources occupied by the sensing signals transmitted by the three second UEs are not completely orthogonal, a superposition phenomenon may occur.
  • the first UE performs measurement and sensing according to the resource allocation indicated by the DCI and the related field and the mapped RB position to obtain a measurement result.
  • the related field may be, for example, an uplink resource indicated in the UL Grant.
  • Step 502 The first UE controls uplink power on the first time domain resource unit according to the measurement result.
  • the uplink power may include power of uplink data and/or power of uplink control information.
  • the first UE controls the uplink power according to the measurement result to reduce interference to each second UE, thereby achieving the purpose of improving system throughput.
  • the first time-frequency resource belongs to the first time-frequency resource unit, and the first UE controls the uplink power according to the measurement result, and the first UE controls the uplink power on the first time-frequency resource unit according to the measurement result.
  • the first time-frequency resource unit is the current time-frequency resource. Therefore, after determining the measurement result, the first UE controls the uplink power on the current time-frequency resource, that is, controls the uplink power in the current subframe.
  • the first UE controls the uplink power according to the measurement result, where the first UE selects at least one uplink power control parameter set in the preset power control parameter set according to the measurement result, and controls the uplink power according to the power control parameter.
  • the preset power control parameter set includes at least an open-loop parameter set semi-statically configured by the network side device. And closed loop TPC parameters specified by DCI.
  • the first UE measures the first signal on the first time-frequency resource, and after obtaining the measurement result, selecting, according to the measurement result, the power control parameter set configured by the network side device to select at least one suitable power. Control parameters.
  • selecting at least one uplink power control parameter set in the preset power control parameter set according to the measurement result includes: determining, according to the measurement result, the interference strength that is perceived by the first UE; performing quantization processing on the interference strength to obtain an interference level. And selecting at least one uplink power control parameter set in the preset power control parameter set according to the interference level.
  • the first UE may determine a weight value of each RB in the interference strength calculation according to the preset interference measurement interval in which the measurement result on the RB is located, and obtain the interference perceived by the first UE according to the weight value. strength.
  • the first UE may obtain the interference strength perceived by the first UE according to the weight value.
  • the interference strength is related to the measurement result on each RB, and can be calculated by a formula. For the specific form of the interference strength, the embodiment is not limited herein.
  • Interference measurement interval Weights (-20dBm, -10dBm) 0.1 (-10dBm, 0dBm) 0.3 (0dBm, 5dBm) 0.6 (5dBm, 10dBm) 1.0 (10dBm, 15dBm) 2.0
  • the first UE After determining the interference strength, the first UE quantizes the determined interference strength according to the preset interference threshold, and determines the interference level.
  • the interference level can be obtained according to a mapping relationship between a preset interference strength and an interference level. For example, after determining the interference strength, the interference level is obtained according to the mapping relationship in Table 2.
  • Interference intensity Interference level 0 to 1.0 1 1.0 to 2.0 2 2.0 to 2.5 3 2.5 ⁇ 3 4 3.5 to 4.0 5
  • the interference level is 2 when the interference intensity is 1.4.
  • each set of selectable power control parameters corresponds to different transmit powers of the first UE, so that the selection of the first UE is more Flexible, where N is an integer greater than or equal to 2.
  • the first UE selects an appropriate power control parameter in the power control parameter set according to the determined interference level to control the uplink power.
  • an optional pre-defined may be that the higher the interference level, the greater the interference that the first UE generates to the second UE of the neighboring cell if the uplink power is not controlled. Therefore, the first UE selects an appropriate uplink power control parameter according to the determined interference level, and performs subsequent uplink subframe transmission.
  • the first UE measures the first signal on the first time-frequency resource, obtains the measurement result, and controls the uplink power according to the measurement result. Since the first UE dynamically measures and senses the first signal, the uplink power is flexibly controlled according to the measurement result. Therefore, the cross interference between the UEs can be effectively reduced, thereby greatly improving the throughput of the system.
  • a problem can be adopted as follows: in the initial stage of the UE accessing the network, the network side can be set The measurement capability is reported to be sent by the network side device to its optional parameter set according to different interference measurement capabilities of each UE.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of an uplink power control apparatus according to an embodiment of the present disclosure.
  • the control device may be an independent UE, and may also be a device integrated in the UE, and the device may be implemented by software, hardware or a combination of software and hardware. As shown in FIG. 11, the control device includes:
  • the measuring module 11 is configured to measure the first signal on the first time-frequency resource to obtain a measurement result, where the first signal is formed by superimposing the second signal sent by the at least one second UE on the second time-frequency resource
  • the time domain resource of the first time-frequency resource belongs to the first time domain resource unit;
  • the control module 12 is configured to control, according to the measurement result, the power of the uplink data on the first time domain resource unit.
  • the foregoing measurement module 11 and the control module 12 may be corresponding to processors in the uplink power control device.
  • the uplink power control device provided by the embodiment of the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of an uplink power control apparatus according to an embodiment of the present disclosure.
  • the control module 12 includes: a selection unit 121 and a control unit 122;
  • the selecting unit 121 is configured to select at least one uplink power control parameter set in the preset power control parameter set according to the measurement result;
  • the control unit 122 is configured to control, according to the power control parameter, power of uplink data on the first time domain resource unit.
  • the foregoing measurement module 11 may further include a receiving determining unit 111 and a measuring unit 112;
  • the determining unit 111 is configured to determine a time domain resource unit, a frequency domain resource, a symbol resource, and a timing, where the first signal is received, where the frequency domain resource is indicated by a number of a physical resource block PRB that is scheduled to be allocated by the first UE, Or the frequency domain resource is located on a predefined frequency domain resource; the time domain resource unit is configured to indicate a time unit that is scheduled or allocated by the network side device on the time domain; and the symbol resource is used to indicate that the first Time domain resources of the signal;
  • the measuring unit 112 is configured to measure the first signal according to the time domain resource unit, the frequency domain resource, the symbol resource, and timing.
  • the determining unit 111 is further configured to determine, according to a static indication manner, a semi-static indication manner, or a dynamic indication manner, a time domain resource unit that receives the first signal.
  • the determining unit 111 is further configured to: determine a symbol resource and a timing for receiving the first signal according to a preset timing offset, control channel resource information, and parameters of the first signal;
  • the control channel resource information is used to indicate the number of symbols of the downlink control region;
  • the parameter of the first signal is used to indicate the length of time occupied by the symbol.
  • the selecting unit 121 is further configured to:
  • the selecting unit 121 is further configured to:
  • the uplink power control device provided by the embodiment of the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of an embodiment of a UE according to an embodiment of the present disclosure.
  • the UE may include a transmitter 20, a processor 21, and at least one communication bus 23.
  • the communication bus 23 is used to implement a communication connection between components.
  • the UE may further include a memory 22, which may include a high speed RAM memory, and may also include a non-volatile storage NVM, such as at least one disk storage, in which various programs may be stored for completing each Processing functions and method steps for implementing the embodiments.
  • the UE may further include a receiver 24.
  • the receiver 24 in this embodiment may be an input interface having a communication function and a function of receiving information, and may also be a radio frequency module or a baseband module on the UE.
  • the device 20 can be a corresponding output interface having a communication function and a function of transmitting information, and can also be a radio frequency module or a baseband module on the UE.
  • the transmitter 20 and the receiver 24 may be integrated in one communication interface, or may be two independent communication interfaces.
  • the receiver 24 is configured to receive the first signal.
  • the processor 21 is configured to measure the first signal on the first time-frequency resource to obtain a measurement result, where the first signal is performed by the second signal sent by the at least one second UE on the second time-frequency resource. a signal formed by superposition; the time domain resource of the first time-frequency resource belongs to the first time domain resource unit;
  • the processor 21 is further configured to control, according to the measurement result, power of uplink data on the first time domain resource unit.
  • the processor 21 is further configured to select at least one uplink power control parameter set in the preset power control parameter set according to the measurement result;
  • the processor 21 is further configured to determine a time domain resource unit, a frequency domain resource, a symbol resource, and a timing that receive the first signal, where the frequency domain resource is scheduled by the first UE to be allocated by the physical resource block PRB. a number indicating, or the frequency domain resource is located on a predefined frequency domain resource; the time domain resource unit is configured to indicate a time unit that the network side device schedules or allocates in the time domain; the symbol resource is used to indicate the receiving station a time domain resource of the first signal;
  • the processor 21 is further configured to measure the first signal according to the time domain resource unit, the frequency domain resource, the symbol resource, and the timing.
  • the processor 21 is further configured to determine, according to a static indication manner, a semi-static indication manner, or a dynamic indication manner, a time domain resource unit that receives the first signal.
  • the processor 21 is further configured to: according to a preset timing offset, control channel resource information, and the Determining, by a parameter of a signal, a symbol resource and a timing of receiving the first signal; the control channel resource information is used to indicate a number of symbols of a downlink control region; and a parameter of the first signal is used to indicate the symbol The length of time taken.
  • the processor 21 is further configured to determine, according to the measurement result, an interference strength that is perceived by the first UE;
  • the processor 21 is further configured to perform quantization processing on the interference intensity to obtain an interference level.
  • the processor 21 is further configured to select at least one uplink power control parameter set in the preset power control parameter set according to the interference level.
  • the processor 21 is further configured to determine, according to a preset interference interval where the measurement result on the different RBs on the first time-frequency resource is located, a weight value of each RB in the interference strength calculation;
  • the processor 21 is further configured to obtain, according to the weight value, an interference strength that is perceived by the first UE.
  • the UE provided by the embodiment of the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行功率控制方法及装置,该方法包括:第一UE在第一时频资源上对第一信号进行测量,获得测量结果;所述第一信号为至少一个第二UE在第二时频资源上发送的第二信号进行叠加形成的信号;所述第一时频资源的时域资源属于第一时域资源单元;所述第一UE根据所述测量结果控制所述第一时域资源单元上的上行数据的功率。本申请提供的上行功率控制方法及装置可以降低UE之间的交叉干扰。

Description

上行功率控制方法及装置
本申请要求于2016年9月30日提交中国专利局、申请号为201610878909.6、申请名称为“上行功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种上行功率控制方法及装置。
背景技术
动态时分双工(Dynamic Time Division Duplex;简称:D-TDD)可以根据不同业务对上下行资源的需求动态地调整TDD上下行子帧配置,从而达到优化资源利用的目的。虽然,动态TDD具有上述优点,但在实际的部署和应用中会存在严重的交叉干扰,主要包括网络间干扰和用户设备(User Equipment;简称:UE)间干扰,严重降低了上行性能/下行边缘性能。
现有技术中,在长期演进(Long Term Evolution;简称:LTE)增强干扰管理和业务自适应(Enhanced Interference Management and Traffic Adaptation;简称:eIMTA)中,采用了基于子帧集合的双环上行功率控制增强方案,包括开环功率控制增强和闭环功率控制增强,其中,子帧集合包括可变子帧集合和固定子帧集合。另外,不同的子帧集合是由网络侧半静态配置的,由于可变子帧集合会存在UE-UE间的交叉干扰,而固定子帧集合上不存在交叉干扰,因此针对两类不同的子帧集合采用不同的功率控制参数集合。
然而,现有技术中,虽然开环和闭环的功率控制参数由两类子帧集合类型决定,这样能实现根据不同的数据传输业务类型进行子帧配置模式的切换和功率的控制,但是这种功率控制方式下,UE间的交叉干扰的降低仍有提升空间。
发明内容
本申请实施例提供一种上行功率控制方法及装置,以解决现有技术中由于UE间存在交叉干扰,造成系统吞吐量较低的问题。
第一方面,本申请实施例提供一种上行功率控制方法,包括:
第一UE在第一时频资源上对第一信号进行测量,获得测量结果;该第一信号为至少一个第二UE在第二时频资源上发送的第二信号进行叠加形成的信号;所述第一时频资源的时域资源属于第一时域资源单元;
该第一UE根据该测量结果控制所述第一时域资源单元上的上行功率。
其中,第一时域资源单元为当前被调度的时域资源单元,因此,第一UE在确定出测量结果之后,将根据测量结果控制当前的时域资源单元上的上行数据的功率。
可选的,上行功率可以包括上行数据的功率和/或上行控制信息的功率。上述第一方面提供的上行功率控制方法,第一UE为接收到网络侧设备下发的上行调度分配的 UE,第二UE为接收到网络侧设备下发的下行调度分配的UE,第一UE在第一时频资源上对第一信号进行测量,获得测量结果,并根据该测量结果控制第一时域资源单元上的上行数据的功率。由于第一UE通过对第一信号进行动态的测量和感知,并根据测量结果灵活的控制上行数据的功率,因此,可以有效地降低UE之间的交叉干扰,从而大大提高了系统的吞吐量。
在一种可能的设计中,该第一UE根据该测量结果控制该第一时域资源单元上的上行数据的功率,包括:
该第一UE根据该测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集;
该第一UE根据该功率控制参数控制所述第一时域资源单元上的上行数据的功率。
其中,预设的功率控制参数集合至少包括由网络侧设备半静态配置的开环参数集
Figure PCTCN2017103610-appb-000001
和由DCI指定的闭环传输功率控制(Transmitter Power Control;简称:TPC)参数。
在一种可能的设计中,该第一UE在第一时频资源上对第一信号进行测量,包括:
该第一UE确定接收第一信号的时域资源单元、频域资源、符号资源和定时;该频域资源由第一UE被调度分配的物理资源块PRB的编号指示,或该频域资源位于预定义的频域资源上;
该第一UE根据该时域资源单元、该频域资源、该符号资源和定时,对该第一信号进行测量。
上述时域资源单元用于指示网络侧设备在时域上调度或分配的时间单位;该符号资源用于以符号的粒度指示接收该第一信号的时域资源;
在一种可能的设计中,该第一UE确定接收第一信号的时域资源单元,包括:
该第一UE根据静态指示方式、半静态指示方式或动态指示方式确定接收该第一信号的时域资源单元。
在一种可能的设计中,该第一UE确定接收第一信号的符号资源和定时,包括:
该第一UE根据预设的定时偏置、控制信道资源信息和该第一信号的参数,确定接收该第一信号的符号资源和定时;该控制信道资源信息用于指示下行控制区域的符号的个数;该第一信号的参数用于指示该符号所占用的时间长度(也可用子载波间隔表示)。
上述各可能的设计所提供的上行功率控制方法,第一UE通过确定接收第一信号的时域资源单元、频域资源、符号资源和定时,并根据该时域资源单元、该频域资源、该符号资源和定时,对该第一信号进行测量,获得测量结果,再根据该测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集,以控制上行功率,由于根据测量结果可以灵活地选择功率控制参数,可以有效地降低UE之间的交叉干扰,从而提高了系统的吞吐量。
在一种可能的设计中,该第一UE根据该测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集,包括:
该第一UE根据该测量结果确定该第一UE感知到的干扰强度;
该第一UE对该干扰强度进行量化处理,获得干扰等级;
该第一UE根据该干扰等级,在预设的功率控制参数集合中选择至少一个上行功率控制参数集。
在一种可能的设计中,该第一UE根据该测量结果确定该第一UE感知到的干扰强度,包括:
该第一UE根据第一时频资源上的不同的RB上的测量结果所在的预设的干扰区间,确定每个RB在干扰强度计算中的权重值;
该第一UE根据该权重值获得该第一UE感知到的干扰强度。
上述各可能的设计所提供的上行功率控制方法,第一UE根据测量结果确定出其自身感知到的干扰强度之后,根据该干扰强度确定出干扰等级,由该干扰等级与功率控制参数集合之间的对应关系,选择合适的功率控制参数,这样,使得确定出的功率控制参数更加准确。
第二方面,本申请实施例提供一种上行功率控制装置,该装置中包括相应的功能模块,各功能模块可以用于执行上述方法中的步骤,其技术效果可以参照上述第一方面以及第一方面的各可能的设计所带来的有益效果,在此不再赘述。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第三方面,本申请实施例提供一种UE,包括:
接收器,用于接收第一信号;
处理器,用于在第一时频资源上对所述第一信号进行测量,获得测量结果;该第一信号为至少一个第二UE在第二时频资源上发送的第二信号进行叠加形成的信号;所述第一时频资源的时域资源属于第一时域资源单元;
该处理器,还用于根据该测量结果控制第一时域资源单元上的上行数据的功率。
在一种可能的设计中,该处理器,还用于根据该测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集;
该处理器,还用于根据该功率控制参数控制该第一时域资源单元上的上行数据的功率。
在一种可能的设计中,该处理器,还用于确定接收第一信号的时域资源单元、频域资源、符号资源和定时;该频域资源由第一UE被调度分配的物理资源块PRB的编号指示,或该频域资源位于预定义的频域资源上;该时域资源单元为网络侧设备在时域上调度或分配的时间单位;该符号资源用于指示接收所述第一信号的时域资源;
该处理器,还用于根据该时域资源单元、该频域资源、该符号资源和定时,对该第一信号进行测量。
在一种可能的设计中,该处理器,还用于根据静态指示方式、半静态指示方式或动态指示方式确定接收该第一信号的时域资源单元。
在一种可能的设计中,该处理器,还用于根据预设的定时偏置、控制信道资源信息和该第一信号的参数,确定接收该第一信号的符号资源和定时;该控制信道资源信息用于指示下行控制区域的符号的个数;该第一信号的参数用于指示所述符号所占用的时间长度。
在一种可能的设计中,该处理器,还用于根据该测量结果确定该第一UE感知到的干扰强度;
该处理器,还用于对该干扰强度进行量化处理,获得干扰等级;
该处理器,还用于根据该干扰等级,在预设的功率控制参数集合中选择至少一个上行功率控制参数集。
在一种可能的设计中,该处理器,还用于根据第一时频资源上的不同的RB上的测量结果所在的预设的干扰区间,确定每个RB在干扰强度计算中的权重值;
该处理器,还用于根据该权重值获得该第一UE感知到的干扰强度。
上述第三方面以及第三方面的各可能的设计所提供的UE,其有益效果可以参照上述第一方面以及第一方面的各可能的设计所带来的有益效果,在此不再赘述。第三方面,本申请实施例提供一种装置,可以包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述通信设备执行上述方法中相应的功能。所述通信单元用于支持所述通信设备与其他设备通信,实现接收和/或发送功能。
可选的,所述通信设备还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信设备必要的程序指令和数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述通信设备可以为基站或传输点(transmission point,TP,或,transmitting and receiving point,TRP)等,所述通信单元可以是收发器,或收发电路。
所述通信设备还可以为通信芯片,可以设置于基站或TRP内。所述通信单元可以为通信芯片的输入/输出电路或者接口。
所述通信设备可以为智能终端或者可穿戴设备等,所述通信单元可以是收发器,或收发电路。
所述通信设备还可以为通信芯片,可以设置于用户设备内。所述通信单元可以为通信芯片的输入/输出电路或者接口。
本申请实施例提供的上行功率控制方法及装置,第一UE在第一时频资源上对第一信号进行测量,获得测量结果,并根据该测量结果控制所述第一时域资源单元上的上行数据的功率,其中,第一时频资源的时域资源属于第一时域资源单元。由于第一UE通过对第一信号进行动态的测量和感知,根据测量结果灵活的控制第一时域资源单元上的上行数据的功率,因此,可以有效地降低UE之间的交叉干扰,从而大大提高了系统的吞吐量。
附图说明
图1为一种通信系统的框架图;
图2为LTE的系统架构图;
图3为本申请实施例提供的上行功率控制系统的结构示意图;
图4为一个时域资源单元的结构示意图;
图5为本申请上行功率控制方法实施例一的流程示意图;
图6为确定感知信号的符号资源和定时的示意图;
图7为对第一信号进行测量的流程示意图;
图8为第一UE根据预定义指示方式确定时域资源单元的示意图;
图9为第一UE根据动态指示方式确定时域资源单元的示意图;
图10为干扰等级和功率控制参数之间的映射图;
图11为本申请实施例提供的上行功率控制装置实施例一的结构示意图;
图12为本申请实施例提供的上行功率控制装置实施例二的结构示意图;
图13为本申请实施例提供的UE实施例的结构示意图。
具体实施方式
本申请实施例适用于LTE/第五代网络(5th Generation;简称:5G)系统中,图1为一种通信系统的框架图。如图1所示,该通信系统包括骨干网、核心网(Core Network,简称:CN)和无线接入网(Radio Access Network,简称:RAN),终端通过网络侧设备,如基站,接入RAN,并通过核心网接入骨干网实现与外网或其他网络之间的数据交互。
以LTE为例说明系统架构中各网元和接口的作用,图2为LTE的系统架构图,如图2所示,其中,移动性管理实体(Mobility Management Entity;简称:MME)是第三代合作伙伴计划(3rd Generation Partnership Project;简称:3GPP)LTE中的关键控制节点,属于核心网网元,主要负责信令处理部分,即控制面功能,包括接入控制、移动性管理、附着与去附着、会话管理功能以及网关选择等功能。服务网关(Serving GateWay;简称:S-GW)是3GPP LTE中核心网的重要网元,主要负责用户数据转发的用户面功能,即在MME的控制下进行数据包的路由和转发。
演进型基站(Evolved Node B;简称:eNB)主要负责空口侧的无线资源管理、服务质量(Quality of Service;简称:QoS)管理、数据压缩和加密等功能。在核心网侧,eNB主要负责向MME转发控制面信令以及向S-GW转发用户面业务数据。
UE是LTE中通过eNB接入网络侧的设备,例如可以是手持终端、笔记本电脑或是其他可以接入网络的设备。
S1接口是eNB与核心网之间的标准接口。其中eNB通过S1-MME接口与MME连接,用于控制信令的传输;eNB通过S1-U接口与S-GW连接,用于用户数据的传输。其中S1-MME接口和S1-U接口统称为S1接口。
X2接口是eNB与eNB之间的标准接口,用于实现基站之间的互通。
Uu接口是UE与基站之间的无线接口,UE通过Uu接口接入到LTE网络。
在本申请实施例中,所涉及到的设备包括网络侧设备,比如基站或其他类型传输点设备,当然不也限于上述两种设备。
其中,基站可以是LTE系统或其演进系统中的演进型基站(Evolutional Node B,简称为eNB或e-NodeB)、宏基站、微基站(也称为“小基站”)、微微基站、接入站点(Access Point,简称为AP)或传输站点(Transmission Point,简称为TP)等,也可以是未来网络中的基站,如5G网络中的基站。
在本申请实施例中,终端也可称为用户设备(User Equipment,简称为UE),或者可称之为Terminal、移动台(Mobile Station,简称为MS)、移动终端(Mobile Terminal)等,该终端可以经无线接入网(Radio Access Network,简称为RAN)与一个或多个核心网进行通信,例如,终端可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载 的移动装置,它们与无线接入网交换语音和/或数据。本申请实施例中的终端还可以是设备与设备(Device to Device;简称:D2D)终端或者机器与机器(Machine to Machine,M2M)终端。
本申请实施例涉及的上行功率控制方法,主要针对的是在通信系统中,如何避免UE与UE之间进行交叉干扰的问题。现有技术中,在LTE eIMTA中,采用基于子帧集合的双环上行功率控制增强方案,包括开环功率控制增强方案和闭环功率控制增强方案,其中,子帧集合包括可变子帧集合和固定子帧集合。由于可变子帧集合会存在UE-UE间的交叉干扰,而固定子帧集合上不存在交叉干扰,因此针对两类不同的子帧集合采用不同的功率控制参数集合。但是,虽然开环和闭环的功率控制参数由两类子帧集合类型决定,这样能实现根据不同的数据传输业务类型进行子帧配置模式的切换和功率的控制,但是在这种功率控制方式,UE之间的交叉干扰仍有提升空间。
因此,本申请实施例提供的上行功率控制方法及装置,旨在进一步降低UE与UE之间进行交叉干扰。
图3为本申请实施例提供的上行功率控制系统的结构示意图,如图3所示,该系统中包括第一UE和至少一个第二UE,本实施例中以包括两个第二UE为例进行说明。其中,第一UE为接收到网络侧下发的上行调度分配(Uplink Grant;简称:UL Grant)的UE,第二UE为接收到网络侧下发的下行调度分配(Downlink Grant;简称:DL Grant)的UE。在实际应用中,被上行调度的第一UE会对相邻小区中处于下行调度的第二UE产生干扰,为了降低该干扰,两个第二UE可以分别在第二时频资源上向第一UE发送第二信号,第一UE可以对这两个第二信号进行叠加形成的第一信号进行测量,并根据测量的结果控制上行功率,以达到降低对相邻小区的第二UE产生的干扰。其中,第一信号例如可以为感知信号,第二信号为两个感知信号进行叠加形成的叠加信号。
具体地,图4为一个时域资源单元的结构示意图,一种可选的方案中,该时域资源单元可以依次包括下行控制区域(用于承载下行控制信息),下行数据区域和上行控制区域(用于承载上行控制信息),其中,下行控制区域和下行数据区域之间包括一段时间区域,该时间区域可以用于发送感知信号,其中感知信息为用于测量UE间交叉干扰的信号,因而该时间区域也可称为感知区域(即图中的用于发送第二信号的时域资源)。另一种可选的方案中,该时域资源单元可以依次包括下行控制区域,上行数据区域和上行控制区域,其中,下行控制区域和上行数据区域之间包括一段时间区域,该时间区域用于作为下行控制区域和上行数据区域之间的下/上行切换的保护间隔(GP),进一步的,该时间区域还可以用于接收感知信号,其中感知信息为用于测量UE间交叉干扰的信号,因而该时间区域也可称为感知区域(即图中的用于测量第一信号的时域资源)。在图3所示的结构示意图的基础上,可以利用信道互异性,由被下行调度的第二UE发送感知信号,由上行调度的第一UE对叠加信号进行测量,获得干扰强度和干扰等级。第一UE可以以在基站侧预先配置的功率控制参数集合中选择的至少一个上行功率控制参数集为基准,根据获得的干扰强度和干扰等级,以相对于预先配置的功率控制参数集合的变化量进行上行功率控制。由于在这种情况下基站侧盲检确定调制与编码策略(Modulation and Coding Scheme;简称:MCS)的复杂 度高,因此,在具体的实现过程中,在本资源时域单元上控制上行功率时,可通过将上行控制信息放在上行数据的前面发送,而功率控制的指示信息可通过上行控制信息进行承载,其中,该指示信息包括相对于预先配置的功率控制参数集合的变化量和MCS等信息。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图5为本申请上行功率控制方法实施例一的流程示意图。本申请实施例提供了一种上行功率控制方法,该方法可以由任意执行上行功率控制方法的装置来执行,该装置可以通过软件和/或硬件实现。本实施例中,该装置可以集成在UE中。如图5所示,本实施例的方法可以包括:
步骤501:第一UE在第一时频资源上对第一信号进行测量,获得测量结果;第一信号为至少一个第二UE在第二时频资源上发送的第二信号进行叠加形成的信号;第一时频资源的时域资源属于第一时域资源单元。
其中,第一UE为接收到网络侧设备下发的上行调度分配的UE,第二UE为接收到网络侧设备下发的下行调度分配的UE,第一时域资源单元为当前时域资源单元。值得注意的是,时域资源单元可以是无线通信技术,如LTE或新无线接入技术(New RAT;简称:NR)中的一种时域资源调度和分配单元,包括但不限于子帧、时隙(slot),短时隙(mini-slot),传输时间间隔(Transmit Time Interval;简称:TTI)等。另外,时频资源包括时域和频域两个维度的资源,其中,时域资源可包含N个符号资源单元,其中,N为正整数,频域资源指以资源块(Resource Block;RB)或资源单元(Resource Element;简称:RE)为基本分配单位的频段资源。
在本实施例中,至少一个第二UE在第二时频资源上向第一UE发送第二信号,至少一个第二信号相互叠加,即可形成第一信号。第一UE在第一时频资源上对叠加后的第一信号进行测量,以获得测量结果。其中,第一时频资源可以是预定义的,也可以是由网络侧设备通过下发控制信息进行指示的,而控制信息可以是动态控制信息,例如上行调度分配信息,也可以是半静态控制信息,例如无线资源控制(Radio Resource Control;简称:RRC)信令或广播消息等。类似地,第二时频资源可以是预定义的,也可以是由网络侧设备通过下发控制信息进行指示的,而控制信息可以是动态控制信息,例如下行调度分配,也可以是半静态控制信息,如RRC信令或广播消息等。对于第一时频资源和第二时频资源的具体确定方式,本实施例在此不作限制。
下面以第二信号为第二UE发送的感知信号为例,详细说明第二UE发送感知信号的过程。
第二UE在发送感知信号时,需要确定发送感知信号的时域资源单元、频域资源、符号资源和定时等信息。在具体的实现过程中,第二UE可以根据静态指示方式确定需要发送感知信号的时域资源单元,比如所有调度为下行的时域资源单元或除固定时域资源单元外所有调度为下行的时域资源单元,也可以根据半静态指示方式确定需要发送感知信号的时域资源单元,例如通过RRC信令确定,还可以根据动态指示方式确定需要发送感知信号的时域资源单元,对于时域资源单元的具体的确定方式,本实施例在此不作限制。
需要进行说明的是,时域资源单元例如可以为子帧,参照图4所示,上行子帧包括下行控制信息、第一UE用于测量第一信号的时域资源、上行数据区域和上行控制信息。其中,第一UE可以根据下行控制信息中的子帧类型指示信息指示子帧类型,即确定为DL还是UL,时域资源的大小可以为N个符号,N为大于或等于1的整数,上行数据区域可以用于上行数据信息的传输,上行控制信息可以用于上行控制信息的传输。
继续参照图4所示,下行子帧包括下行控制信息、第二UE用于发送第二信号的时域资源、下行数据区域和上行控制信息。其中,下行控制信息的结构与上行子帧中类似,此处不再赘述。时域资源的大小可以为N个符号,N为大于或等于1的整数,下行数据区域可以用于下行数据信息的传输,上行控制信息可以用于上行控制信息的传输。另外,在下行数据区域和上行控制信息之间还可以包括一段保护间隔。
另外,第二UE可以根据预设的定时偏置、控制信道资源信息和感知信号的参数,确定发送感知信号的符号资源和定时。其中,感知信号的参数例如可以为时域资源可以占一个符号的时间间隔,如子载波间隔是15kHz时,一个符号的持续时间是66.7us。举例来说,图6为确定感知信号的符号资源和定时的示意图,如图6所示,控制信道资源信息,即下行控制信道的符号个数(可以通过下行控制信息指示),定时偏置为感知信号相对于下行控制信息的时间偏移量,例如:相对于下行控制信道的第一个符号起始位置的时间偏移量或者相对于下行控制信道的最后一个符号结束位置的的时间偏移量,感知信号的参数包括感知信号的符号所占用的时间长度的信息,符号资源指示了第二UE发送感知信号的时域资源,如图6中所示,根据定时偏置、控制信道资源信息和感知信号的参数,即可确定出感知信号的起始定时和结束定时,继而可以确定出发送感知信号的时域资源。
另外,感知信号的频域资源可以由第二UE分配的物理资源模块(Physical Resource Block;简称:PRB)编号指示,也可以位于预定义的频域资源上。
可选地,参见图7为对第一信号进行测量的流程示意图,上述步骤501具体可以包括:
步骤5011、第一UE确定接收第一信号的时域资源单元、频域资源、符号资源和定时;该频域资源由第一UE被调度分配的PRB的编号指示,或频域资源位于预定义的频域资源上;该时域资源单元用于指示网络侧设备在时域上调度或分配的时间单位;该符号资源用于指示接收第一信号的时域资源。
步骤5012、根据子帧资源、频域资源、符号资源和定时,对第一信号进行测量。
可选地,第一UE确定接收第一信号的时域资源单元,包括:第一UE根据静态指示方式、半静态指示方式或动态指示方式确定接收第一信号的时域资源单元。
可选地,第一UE确定接收第一信号的符号资源和定时,包括:根据预设的定时偏置、控制信道资源信息和第一信号的参数,确定接收第一信号的符号资源和定时;控制信道资源信息用于指示下行控制区域的符号的个数;第一信号的参数用于指示符号所占用的时间长度。
下面以第一信号为第一UE在干扰感知阶段接收的至少一个第二UE发送的感知信号进行叠加之后的信号为例,详细说明第一UE在干扰感知阶段测量感知信号的过 程。
第一UE在测量第一信号时,需要确定接收第一信号的时域资源单元、频域资源、符号资源和定时等信息。在具体的实现过程中,第一UE可以根据静态指示方式确定接收第一信号的时域资源单元,比如所有调度为下行的时域资源单元或除固定时域资源单元外所有调度为下行的时域资源单元,也可以根据半静态指示方式确定接收第一信号的时域资源单元,例如通过RRC信令确定,还可以根据动态指示方式确定接收第一信号的时域资源单元,对于时域资源单元的具体的确定方式,本实施例在此不作限制。
需要进行说明的是,时域资源单元例如可以为子帧,其中,子帧的结构与第二UE在发送感知信号时确定的子帧的结构类似,此处不再赘述。
另外,第一UE可以根据预设的定时偏置、控制信道资源信息和第一信号的参数,确定测量第一信号的符号资源和定时。其中,第一信号的参数例如可以为时域资源可以占一个符号的时间间隔,如子载波间隔是15kHz时,一个符号的持续时间是66.7us。其中,第一UE确定测量第一信号的符号资源和定时的方式与第二UE确定发送第二信号的符号资源和定时的方式类似,此处不再赘述。
另外,第一信号的频域资源可以由第一UE被调度分配的PRB编号指示,也可以位于预定义的频域资源上。
第一UE在第一时频资源上对第一信号进行测量获得的测量结果可以是第一信号的无线资源管理(Radio Resource Management;简称:RRM)测量结果,例如第一信号的参考信号接收功率(Reference Signal Received Power;简称:RSRP)。
举例来说,图8为第一UE根据预定义指示方式确定时域资源单元的示意图,如图8所示,第二UE在预定义的传输资源上发送感知信号,第一UE在预定义的传输资源上检测和感知干扰类型,包括有无干扰和干扰强度等。其中,预定义的传输资源可以占据系统带宽的中间N个资源块(Resource Block;简称:RB)的固定传输资源,也可以占据系统带宽的其他固定传输资源,对于传输资源的具体位置,本实施例在此不作限制。本实施例中以N为2为例进行说明,如图8所示,假设第一UE所在小区周围存在三个第二UE,即三个第二UE均要发送感知信号,第二UE1、第二UE2和第二UE3的感知信号所占的资源相同,将感知信号所占的RB上具体发送的符号设置为全1,且功率保持一致。由于三个第二UE发送的感知信号所占的资源完全相同,因此,感知信号会叠加在一起。第一UE通过对叠加后的感知信号进行测量,即可获得干扰强度。
图9为第一UE根据动态指示方式确定时域资源单元的示意图,如图9所示,第二UE根据下行控制信息(Downlink Control Information;简称:DCI)类型和下行调度分配可以确定物理下行共享信道(Physical Downlink Shared Channel;简称:PDSCH)的资源分配类型,并根据该资源分配类型确定分配给第二UE的传输资源,确定出传输资源之后,将根据虚拟资源块(Virtual Resource Block;简称:VRB)到PRB的资源映射类型,得到所分配资源的PRB编号,然后在PRB编号对应的PRB上发送感知信号。同样地,第一UE根据DCI类型和上行调度分配可以确定物理上行共享信道(Physical Uplink Shared Channel;简称:PUSCH)的资源分配类型,并根据该资源分 配类型确定分配给第一UE的传输资源,,确定出传输资源之后,将根据VRB到PRB的资源映射类型,得到所分配资源的PRB编号,然后在PRB编号对应的PRB上对第一信号进行测量和感知,其中,资源分配类型为传输资源的分配方式,例如包括集中式分配或分布式分配等。
如图9所示,假设第一UE所在小区周围存在三个第二UE,即三个第二UE均要发送感知信号,第二UE1、第二UE2和第二UE3均需要完成感知信号的资源映射,将感知信号所占的RB上具体发送的符号设置为全1,且功率保持一致。由于三个第二UE发送的感知信号所占的资源并非完全正交,因此,会有叠加现象出现。第一UE按照DCI和相关字段指示的资源分配和映射后的RB位置进行测量和感知,以获得测量结果。其中,相关字段例如可以为UL Grant中指示的上行资源。
步骤502:第一UE根据测量结果控制所述第一时域资源单元上的上行功率。
其中,上行功率可以包括上行数据的功率和/或上行控制信息的功率。
在本实施例中,第一UE在获得测量结果之后,将根据该测量结果控制上行功率,以降低对各第二UE的干扰,从而达到提升系统吞吐量的目的。
可选地,第一时频资源属于第一时频资源单元,则第一UE根据测量结果控制上行功率,包括:第一UE根据测量结果,在该第一时频资源单元上控制上行功率。
具体地,第一时频资源单元为当前的时频资源,因此,第一UE在确定出测量结果之后,将在当前的时频资源上控制上行功率,也即在本子帧上控制上行功率。
可选地,第一UE根据测量结果控制上行功率,包括:第一UE根据测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集,并根据该功率控制参数控制上行功率。
其中,预设的功率控制参数集合至少包括由网络侧设备半静态配置的开环参数集
Figure PCTCN2017103610-appb-000002
和由DCI指定的闭环TPC参数。
具体地,第一UE在第一时频资源上对第一信号进行测量,获得测量结果之后,将根据测量结果在网络侧设备配置的功率控制参数集合中进行选择,以选择至少一个合适的功率控制参数。
可选地,根据测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集,包括:根据测量结果确定第一UE感知到的干扰强度;对干扰强度进行量化处理,获得干扰等级;根据干扰等级,在预设的功率控制参数集合中选择至少一个上行功率控制参数集。
具体地,第一UE可以根据不同的RB上的测量结果所在的预设的干扰测量区间,确定每个RB在干扰强度计算中的权重值,再根据该权重值获得第一UE感知到的干扰强度。在具体的实现过程中,第一UE在确定出每个RB在干扰强度计算中的权重值之后,将根据该权重值获得第一UE感知到的干扰强度。其中,干扰强度与每个RB上的测量结果有关,其可以通过公式进行计算,对于干扰强度的具体形式,本实施例在此不作限制。
举例来说,若预设的干扰测量区间根据不同的功率强度可划分为N个区间,其中,N为正整数,在本实施例中,以N=5为例,则5个干扰测量区间及对应的权重值如表1所示:
表1
干扰测量区间 权重值
(-20dBm,-10dBm) 0.1
(-10dBm,0dBm) 0.3
(0dBm,5dBm) 0.6
(5dBm,10dBm) 1.0
(10dBm,15dBm) 2.0
如在三个RB上测量的干扰功率分别为:-15dBm,-3dBm,6dBm,则感知到的干扰强度为0.1+0.3+1.0=1.4。
第一UE在确定出干扰强度之后,根据预设的干扰阈值,对确定出的干扰强度进行量化处理,确定出干扰等级。在实际应用中,可以根据预设的干扰强度和干扰等级之间的映射关系,获得干扰等级。例如:在确定出干扰强度之后,根据表2中的映射关系,获得干扰等级。
表2
干扰强度 干扰等级
0~1.0 1
1.0~2.0 2
2.0~2.5 3
2.5~3 4
3.5~4.0 5
根据表2中的映射关系,在干扰强度为1.4时,干扰等级为2。
由于网络侧设备将提供N种可选择的功率控制参数集合供第一UE根据测试结果灵活选择,每种可选功率控制参数集合对应第一UE的不同的发射功率,使得第一UE的选择更加灵活,其中,N为大于或等于2的整数。第一UE根据确定出的干扰等级,在功率控制参数集合中选择合适的功率控制参数,以控制上行功率。举例来说,图10为干扰等级和功率控制参数之间的映射图,如图10所示,干扰等级可以分为N级,本实施例中以N=9为例进行说明。假设第一UE确定出的干扰等级为4,则根据图7中的映射关系,即可选择出功率控制参数为P0_4,
Figure PCTCN2017103610-appb-000003
和TPC_4。
本领域技术人员可以理解,一种可选的预定义可以为:干扰等级越高,说明第一UE如果不进行上行功率的控制,则会对邻小区的第二UE产生越大的干扰。因此,第一UE根据确定出的干扰等级选择合适的上行功率控制参数,进行后续上行子帧的发送。
本申请实施例提供的上行功率控制方法,第一UE在第一时频资源上对第一信号进行测量,获得测量结果,并根据该测量结果控制上行功率。由于第一UE通过对第一信号进行动态的测量和感知,根据测量结果灵活的控制上行功率,因此,可以有效地降低UE之间的交叉干扰,从而大大提高了系统的吞吐量。
另外,需要强调的是,由于不同的终端设备厂商生产的UE采用的干扰测量的机制和精度等有所差异,可能会导致干扰测量的不一致性和功率参数选择时的不公平性,为了解决这一问题,可采用如下方案:在UE接入网络的初始阶段,可以向网络侧设 备上报其测量能力,由网络侧设备根据各UE具有的不同的干扰测量能力下发给其可选的参数集合。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图11为本申请实施例提供的上行功率控制装置实施例一的结构示意图。该控制装置可以为独立的UE,还可以为集成在UE中的装置,该装置可以通过软件、硬件或者软硬件结合的方式实现。如图11所示,该控制装置包括:
测量模块11,用于在第一时频资源上对第一信号进行测量,获得测量结果;所述第一信号为至少一个第二UE在第二时频资源上发送的第二信号进行叠加形成的信号;所述第一时频资源的时域资源属于第一时域资源单元;
控制模块12,用于根据所述测量结果控制所述第一时域资源单元上的上行数据的功率。
可选的,上述测量模块11和控制模块12对应可以为上行功率控制装置中的处理器。
本申请实施例提供的上行功率控制装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图12为本申请实施例提供的上行功率控制装置实施例二的结构示意图。在上述实施例的基础上,进一步地,上述控制模块12,包括:选择单元121和控制单元122;其中,
所述选择单元121,用于根据所述测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集;
所述控制单元122,用于根据所述功率控制参数控制所述第一时域资源单元上的上行数据的功率。
继续参照上述图12所示,可选的,上述测量模块11还可以包括接收确定单元111和测量单元112;其中,
所述确定单元111,用于确定接收上述第一信号的时域资源单元、频域资源、符号资源和定时;所述频域资源由第一UE被调度分配的物理资源块PRB的编号指示,或所述频域资源位于预定义的频域资源上;所述时域资源单元用于指示网络侧设备在时域上调度或分配的时间单位;所述符号资源用于指示接收所述第一信号的时域资源;
所述测量单元112,用于根据所述时域资源单元、所述频域资源、所述符号资源和定时,对所述第一信号进行测量。
可选地,上述所述确定单元111,还用于根据静态指示方式、半静态指示方式或动态指示方式确定接收所述第一信号的时域资源单元。
可选地,上述所述确定单元111,还用于:根据预设的定时偏置、控制信道资源信息和所述第一信号的参数,确定接收所述第一信号的符号资源和定时;所述控制信道资源信息用于指示下行控制区域的符号的个数;所述第一信号的参数用于指示所述符号所占用的时间长度。
可选地,上述所述选择单元121,还用于:
根据所述测量结果确定所述第一UE感知到的干扰强度;
对所述干扰强度进行量化处理,获得干扰等级;
根据所述干扰等级,在预设的功率控制参数集合中选择至少一个上行功率控制参数集。
可选地,上述所述选择单元121,还用于:
根据第一时频资源上的不同的RB上的测量结果所在的预设的干扰区间,确定每个RB在干扰强度计算中的权重值;
根据所述权重值获得所述第一UE感知到的干扰强度。
本申请实施例提供的上行功率控制装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图13为本申请实施例提供的UE实施例的结构示意图。如图10所示,该UE可以包括发送器20、处理器21和至少一个通信总线23。通信总线23用于实现元件之间的通信连接。可选地,该UE还可以包括存储器22,存储器22可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器22中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。该UE还可以包括接收器24,本实施例中的接收器24可以为相应的具有通信功能和接收信息功能的输入接口,还可以为UE上的射频模块或者基带模块,本实施例中的发送器20可以为相应的具有通信功能和发送信息功能的输出接口,还可以为UE上的射频模块或者基带模块。可选的,该发送器20和接收器24可以集成在一个通信接口中,也可以分别为独立的两个通信接口。
本实施例中,接收器24,用于接收第一信号;
处理器21,用于在第一时频资源上对所述第一信号进行测量,获得测量结果;所述第一信号为至少一个第二UE在第二时频资源上发送的第二信号进行叠加形成的信号;所述第一时频资源的时域资源属于第一时域资源单元;
该处理器21,还用于根据所述测量结果控制所述第一时域资源单元上的上行数据的功率。
可选地,该处理器21还用于根据所述测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集;
根据所述功率控制参数控制所述第一时域资源单元上的上行数据的功率。
可选地,该处理器21,还用于确定接收第一信号的时域资源单元、频域资源、符号资源和定时;所述频域资源由第一UE被调度分配的物理资源块PRB的编号指示,或所述频域资源位于预定义的频域资源上;所述时域资源单元用于指示网络侧设备在时域上调度或分配的时间单位;所述符号资源用于指示接收所述第一信号的时域资源;
该处理器21,还用于根据所述时域资源单元、所述频域资源、所述符号资源和所述定时,对所述第一信号进行测量。
可选地,该处理器21,还用于根据静态指示方式、半静态指示方式或动态指示方式确定接收所述第一信号的时域资源单元。
可选地,该处理器21,还用于根据预设的定时偏置、控制信道资源信息和所述第 一信号的参数,确定接收所述第一信号的符号资源和定时;所述控制信道资源信息用于指示下行控制区域的符号的个数;所述第一信号的参数用于指示所述符号所占用的时间长度。
可选地,该处理器21,还用于根据所述测量结果确定所述第一UE感知到的干扰强度;
该处理器21,还用于对所述干扰强度进行量化处理,获得干扰等级;
该处理器21,还用于根据所述干扰等级,在预设的功率控制参数集合中选择至少一个上行功率控制参数集。
可选地,该处理器21,还用于根据第一时频资源上的不同的RB上的测量结果所在的预设的干扰区间,确定每个RB在干扰强度计算中的权重值;
该处理器21,还用于根据所述权重值获得所述第一UE感知到的干扰强度。
本申请实施例提供的UE,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。

Claims (17)

  1. 一种上行功率控制方法,其特征在于,包括:
    第一终端设备在第一时频资源上对第一信号进行测量,获得测量结果;所述第一信号为至少一个第二终端设备在第二时频资源上发送的第二信号进行叠加形成的信号;所述第一时频资源的时域资源属于第一时域资源单元;
    所述第一终端设备根据所述测量结果控制所述第一时域资源单元上的上行数据的功率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备根据所述测量结果控制所述第一时域资源单元上的上行数据的功率,包括:
    所述第一终端设备根据所述测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集;
    所述第一终端设备根据所述功率控制参数控制所述第一时域资源单元上的上行数据的功率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一终端设备在第一时频资源上对第一信号进行测量,包括:
    所述第一终端设备确定接收所述第一信号的时域资源单元、频域资源、符号资源和定时;所述频域资源由第一终端设备被调度分配的物理资源块PRB的编号指示,或所述频域资源位于预定义的频域资源上;
    所述第一终端设备根据所述时域资源单元、所述频域资源、所述符号资源和所述定时,对所述第一信号进行测量。
  4. 根据权利要求3所述的方法,其特征在于,所述第一终端设备确定接收第一信号的时域资源单元,包括:
    所述第一终端设备根据静态指示方式、半静态指示方式或动态指示方式确定接收所述第一信号的时域资源单元。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一终端设备确定接收第一信号的符号资源和定时,包括:
    所述第一终端设备根据预设的定时偏置、控制信道资源信息和所述第一信号的参数,确定接收所述第一信号的符号资源和定时;所述控制信道资源信息用于指示下行控制区域的符号的个数;所述第一信号的参数用于指示所述符号所占用的时间长度。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述第一终端设备根据所述测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集,包括:
    所述第一终端设备根据所述测量结果确定所述第一终端设备感知到的干扰强度;
    所述第一终端设备对所述干扰强度进行量化处理,获得干扰等级;
    所述第一终端设备根据所述干扰等级,在预设的功率控制参数集合中选择至少一个上行功率控制参数集。
  7. 根据权利要求6所述的方法,其特征在于,所述第一终端设备根据所述测量结果确定所述第一终端设备感知到的干扰强度,包括:
    所述第一终端设备根据第一时频资源上的不同的RB上的测量结果所在的预设的干扰区间,确定每个RB在干扰强度计算中的权重值;
    所述第一终端设备根据所述权重值获得所述第一终端设备感知到的干扰强度。
  8. 一种上行功率控制装置,其特征在于,包括:
    接收器,用于接收第一信号;
    处理器,用于在第一时频资源上对所述第一信号进行测量,获得测量结果;所述第一信号为至少一个第二终端设备在第二时频资源上发送的第二信号进行叠加形成的信号;所述第一时频资源的时域资源属于第一时域资源单元;
    所述处理器,还用于根据所述测量结果控制所述第一时域资源单元上的上行数据的功率。
  9. 根据权利要求8所述的装置,其特征在于,
    所述处理器,还用于根据所述测量结果在预设的功率控制参数集合中选择至少一个上行功率控制参数集;
    所述处理器,还用于根据所述功率控制参数控制所述第一时域资源单元上的上行数据的功率。
  10. 根据权利要求8或9所述的装置,其特征在于,
    所述处理器,还用于确定接收所述第一信号的时域资源单元、频域资源、符号资源和定时;所述频域资源由第一终端设备被调度分配的物理资源块PRB的编号指示,或所述频域资源位于预定义的频域资源上;所述时域资源单元用于指示网络侧设备在时域上调度或分配的时间单位;所述符号资源用于指示接收所述第一信号的时域资源;
    所述处理器,还用于根据所述时域资源单元、所述频域资源、所述符号资源和所述定时,对所述第一信号进行测量。
  11. 根据权利要求10所述的装置,其特征在于,所述处理器,还用于根据静态指示方式、半静态指示方式或动态指示方式确定接收所述第一信号的时域资源单元。
  12. 根据权利要求10或11所述的装置,其特征在于,所述处理器,还用于根据预设的定时偏置、控制信道资源信息和所述第一信号的参数,确定接收所述第一信号的符号资源和定时;所述控制信道资源信息用于指示下行控制区域的符号的个数;所述第一信号的参数用于指示所述符号所占用的时间长度。
  13. 根据权利要求9-12任一项所述的装置,其特征在于,所述处理器,还用于根据所述测量结果确定所述第一终端设备感知到的干扰强度;
    所述处理器,还用于对所述干扰强度进行量化处理,获得干扰等级;
    所述处理器,还用于根据所述干扰等级,在预设的功率控制参数集合中选择至少一个上行功率控制参数集。
  14. 根据权利要求13所述的装置,其特征在于,所述处理器,还用于根据第一时频资源上的不同的RB上的测量结果所在的预设的干扰区间,确定每个RB在干扰强度计算中的权重值;
    所述处理器,还用于根据所述权重值获得所述第一终端设备感知到的干扰强度。
  15. 一种装置,其特征在于,包括通信单元和处理器,所述处理器用于执行指令结合所述通信单元实现所述权利要求1-7所述的任意一种方法。
  16. 一种装置,其特征在于,用于执行如权利要求1-7任意一项所述的方法。
  17. 一种可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程 序或指令在运行时,使得如权利要求1至7任意一项所述的方法被执行。
PCT/CN2017/103610 2016-09-30 2017-09-27 上行功率控制方法及装置 WO2018059425A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854875.6A EP3506687B1 (en) 2016-09-30 2017-09-27 Uplink power control method and device
US16/365,698 US10932200B2 (en) 2016-09-30 2019-03-27 Uplink power control method and apparatus to reduce user equipment-to-user equipment cross interference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610878909.6A CN107889205B (zh) 2016-09-30 2016-09-30 上行功率控制方法及装置
CN201610878909.6 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/365,698 Continuation US10932200B2 (en) 2016-09-30 2019-03-27 Uplink power control method and apparatus to reduce user equipment-to-user equipment cross interference

Publications (1)

Publication Number Publication Date
WO2018059425A1 true WO2018059425A1 (zh) 2018-04-05

Family

ID=61763727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103610 WO2018059425A1 (zh) 2016-09-30 2017-09-27 上行功率控制方法及装置

Country Status (4)

Country Link
US (1) US10932200B2 (zh)
EP (1) EP3506687B1 (zh)
CN (1) CN107889205B (zh)
WO (1) WO2018059425A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371119A (zh) * 2016-05-13 2017-11-21 索尼公司 电子装置、信息处理设备和信息处理方法
CN110475327A (zh) * 2018-05-11 2019-11-19 中国移动通信有限公司研究院 一种功率控制的方法、装置、终端及网络设备
CN108337727B (zh) * 2018-05-15 2021-01-29 华南师范大学 一种上行链路功率控制方法及装置
CN110972251B (zh) * 2018-09-28 2021-10-22 华为技术有限公司 信号传输方法、相关设备及系统
CN111147214B (zh) * 2018-11-02 2022-08-23 中国移动通信有限公司研究院 上行信号的发送方法、信息指示方法、终端及网络设备
US20230085934A1 (en) * 2020-02-05 2023-03-23 Nokia Technologies Oy Interference handling in telecommunication systems
WO2021253209A1 (en) * 2020-06-16 2021-12-23 Qualcomm Incorporated Timing associated with radio frequency sensing signals
US20230171625A1 (en) * 2020-07-01 2023-06-01 Qualcomm Incorporated Interference measurement of sensing signals
CN115604807A (zh) * 2021-07-09 2023-01-13 中兴通讯股份有限公司(Cn) 信号发送、信号接收方法、通信节点及存储介质
WO2023036040A1 (zh) * 2021-09-09 2023-03-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN118075901A (zh) * 2022-11-24 2024-05-24 维沃移动通信有限公司 信号传输方法、装置及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014504A (zh) * 2009-10-30 2011-04-13 大唐移动通信设备有限公司 一种分层网络中避免信号干扰的方法及基站
CN103037488A (zh) * 2012-12-07 2013-04-10 北京北方烽火科技有限公司 一种lte上行功率控制方法和相关设备
CN103703826A (zh) * 2011-07-04 2014-04-02 瑞典爱立信有限公司 无线通信网络中频谱的增强使用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104023382B (zh) * 2013-03-01 2017-12-01 中国移动通信集团公司 同频全双工系统中的功率控制方法及基站
CN105191445B (zh) * 2013-04-03 2018-11-27 交互数字专利控股公司 一种干扰测量方法、装置及基站
EP2995025B1 (en) * 2013-05-10 2019-08-28 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for signaling in dynamic time division duplex systems
WO2015041407A1 (en) * 2013-09-20 2015-03-26 Lg Electronics Inc. Triggering power headroom reporting in tdd system
WO2015093867A1 (ko) * 2013-12-18 2015-06-25 엘지전자 주식회사 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치
CN104753632B (zh) * 2013-12-31 2019-03-15 中兴通讯股份有限公司 信息处理方法及装置
US9553713B2 (en) 2014-04-30 2017-01-24 Harman International Industries, Inc. Method and system for transmitting clock reference streams with timestamps directly to audio/video end nodes in an audio/video bridging network
CN105228234B (zh) * 2014-06-12 2019-05-28 华为技术有限公司 干扰控制方法和设备、基站
CN105991251B (zh) * 2015-02-17 2019-06-21 华为技术有限公司 信息传输的方法、用户设备和基站
US10542503B2 (en) * 2016-04-01 2020-01-21 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US10412620B2 (en) * 2016-04-01 2019-09-10 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
EP3711377B1 (en) * 2017-11-17 2023-11-08 Lenovo (Singapore) Pte. Ltd. Power control for multiple uplink transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014504A (zh) * 2009-10-30 2011-04-13 大唐移动通信设备有限公司 一种分层网络中避免信号干扰的方法及基站
CN103703826A (zh) * 2011-07-04 2014-04-02 瑞典爱立信有限公司 无线通信网络中频谱的增强使用
CN103037488A (zh) * 2012-12-07 2013-04-10 北京北方烽火科技有限公司 一种lte上行功率控制方法和相关设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Interference Mitigation Schemes", RL-130586, 3GPP TSG RAN WG1 MEETING #72, 19 January 2013 (2013-01-19) - 1 February 2013 (2013-02-01), XP050663842 *
SHARP: "UL Power Control Based Interference Mitigation for elMTA", RL-132351, 3GPP TSG RAN WG1 MEETING #73, 11 May 2013 (2013-05-11), Fukuoka, Japan, XP050698116 *

Also Published As

Publication number Publication date
EP3506687A1 (en) 2019-07-03
US20190223108A1 (en) 2019-07-18
US10932200B2 (en) 2021-02-23
CN107889205A (zh) 2018-04-06
CN107889205B (zh) 2021-08-20
EP3506687B1 (en) 2021-02-03
EP3506687A4 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
WO2018059425A1 (zh) 上行功率控制方法及装置
JP6624202B2 (ja) 無線通信システムにおける電子機器と無線通信方法
JP6523278B2 (ja) 端末装置、基地局装置、および通信方法
US9894621B2 (en) Power headroom reporting accounting
US20230262608A1 (en) POWER CONTROL FOR UPLINK TRANSMISSIONS TOWARDS MULTIPLE TRPs
CN105027648B (zh) 用于网络辅助d2d的物理信道设计
WO2016106604A1 (zh) 一种传输信号的方法和设备
US9820295B2 (en) Over-the air signaling for coordination of time-division duplexing
US20130343241A1 (en) Method to support an asymmetric time-division duplex (tdd) configuration in a heterogeneous network (hetnet)
JP2020115645A (ja) デュアルコネクティビティにおけるpcmaxの導出
EP3840486A1 (en) User terminal and radio communication method
JP6587612B2 (ja) 端末装置、基地局装置、および通信方法
JP6656150B2 (ja) 端末装置、基地局装置、および通信方法
WO2018171761A1 (zh) 一种上行发射功率控制的方法和设备
KR20200136027A (ko) 공중 ue에 대한 공수 상태 종속 업링크 전력 제어 관련 작업
WO2012174813A1 (zh) 一种小区特定参考信号的配置方法及装置
TW201540011A (zh) 用於協調小區間干擾之方法與裝置
CN114223272A (zh) 侧链路功率控制
CN109155921B (zh) 用于设备到设备通信的方法和装置
JP6183377B2 (ja) 基地局装置、通信方法および端末装置
JPWO2012026603A1 (ja) 無線基地局及び通信制御方法
CN114128400B (zh) 终端以及通信方法
US20240188001A1 (en) Ul power control for transport block transmission over multiple slots
WO2022076513A1 (en) Power headroom reporting for simultaneous transmissions of new radio pucch and pusch on different component carriers
JP2016015765A (ja) 無線基地局、無線通信システム及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854875

Country of ref document: EP

Effective date: 20190325