WO2018059270A1 - 一种上行控制信号的传输方法、网络侧设备及终端设备 - Google Patents

一种上行控制信号的传输方法、网络侧设备及终端设备 Download PDF

Info

Publication number
WO2018059270A1
WO2018059270A1 PCT/CN2017/102206 CN2017102206W WO2018059270A1 WO 2018059270 A1 WO2018059270 A1 WO 2018059270A1 CN 2017102206 W CN2017102206 W CN 2017102206W WO 2018059270 A1 WO2018059270 A1 WO 2018059270A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
time slot
pilot
uplink
sequence
Prior art date
Application number
PCT/CN2017/102206
Other languages
English (en)
French (fr)
Inventor
徐波
马尔科夫安德烈
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018059270A1 publication Critical patent/WO2018059270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for transmitting an uplink control signal, a network side device, and a terminal device.
  • the uplink physical channel includes: a physical uplink shared channel (English: Physical Uplink Shared Channel, abbreviated as: PUSCH) and a physical uplink control channel (English: Physical Uplink Control Channel). , referred to as: PUCCH).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the PUCCH is used to carry control signaling, and different control signaling can be transmitted in different PUCCH transmission formats.
  • the user equipment can feed back a channel quality indicator (CQI) through a PUCCH format (Format 2). If the base station requires the user equipment to simultaneously feed back the CQI and the acknowledgement information (English: Acknowledgement, ACK)/Negative Acknowledgement (NACK), the user equipment can pass the PUCCH Format 2a (for 1 bit ACK/ NACK) or PUCCH Format 2b (for 2bits ACK/NACK) feeds back CQI and ACK/NACK.
  • CQI channel quality indicator
  • Form 2 PUCCH Format 2a
  • PUCCH Format 2b for 2bits ACK/NACK
  • the resource allocation of the PUCCH channel is granular by two physical resource blocks (English: Physical Resource Block, PRB for short).
  • PRB Physical Resource Block
  • Each PRB occupies 12 consecutive subcarriers in the frequency domain and occupies one time slot in time.
  • the 12 subcarriers of the two PRBs are completely different.
  • the 12 subcarriers of the first PRB are subcarriers of the low frequency band
  • the 12 subcarriers of the second PRB are subcarriers of the high frequency band. This case is called frequency hopping.
  • These two PRBs are also referred to as a PUCCH domain.
  • Each time slot includes seven Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols in the time domain, where two SC-FDMA symbols are used for pilot transmission.
  • the remaining 5 SC-FDMA symbols are used for data transmission (the data herein includes control data and traffic data), such as transmission CQI.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • PUCCH signals from different users may be scheduled into the same PUCCH domain.
  • different users are distinguished by orthogonal code division multiplexing sequences.
  • code division multiplexing of up to 12 users is allowed. Therefore, resource utilization is low.
  • the embodiments of the present invention provide a method for transmitting an uplink control signal, a network side device, and a terminal device, which are used to solve the technical problem of low resource utilization in the prior art.
  • an embodiment of the present invention provides a method for transmitting an uplink control signal, including:
  • the terminal device encodes and modulates the uplink control signal to obtain uplink modulated data; the terminal device performs spreading processing on the uplink modulated data by using two orthogonal sequences to obtain spread spectrum data; wherein the two orthogonal The sequence is an orthogonal sequence obtained by cyclically shifting based on the same base sequence; the terminal device maps the spread spectrum data a subcarrier on a physical resource block PRB corresponding to a first time slot and a second time slot of the uplink transmission resource, and a single carrier frequency division multiple access SC-FDMA symbol for data transmission; the terminal device is a pilot sequence is placed on the SC-FDMA symbol for pilot transmission on the PRB corresponding to the first time slot and the second time slot respectively; the terminal device sends uplink data, where the uplink data includes The SC-FDMA symbol for data transmission and the SC-FDMA symbol for pilot transmission.
  • the uplink modulation data is spread-spreaded by using two orthogonal sequences, so that the number of multiplexing of the user can be improved compared to the case where only one orthogonal sequence is used for spreading processing.
  • the number of multiplexed users 12 in the prior art is increased to 18, and the utilization of uplink transmission resources is improved.
  • the method further includes:
  • the terminal device receives the first indication information, where the first indication information is used to indicate that the terminal device needs to perform spreading processing on the uplink modulated data by using two orthogonal sequences.
  • the method further includes: receiving, by the terminal device, second indication information, where The two indication information is used to indicate that the subcarriers included in the PRB corresponding to the first time slot are identical to the subcarriers included in the PRB corresponding to the second time slot.
  • the non-frequency hopping structure is adopted, so that the number of pilot sequences is improved, and on the other hand, the dynamic indication is performed by the indication information to achieve the purpose of dynamic configuration, which is flexible and convenient to use.
  • the method further includes: The terminal device receives the third indication information, where the third indication information is used to indicate: the pilot of the terminal device on the first SC-FDMA symbol used for pilot transmission on the first time slot
  • the sequence is opposite to the pilot sequence of the terminal device on the first SC-FDMA symbol for pilot transmission on the second time slot.
  • the method further includes: the terminal device receiving the resource index The terminal device determines a PRB corresponding to the first time slot and the second time slot according to the following formula:
  • n s is the slot number, Indicates rounding down
  • n PRB is the PRB number corresponding to the first time slot and the second time slot respectively
  • the method further includes: the terminal device receiving a resource index The terminal device according to the resource index Determining the first orthogonal sequence The terminal device according to the resource index Determining the second orthogonal sequence among them; For the antenna number or user number,
  • the terminal device performs a spreading process on the uplink modulated data by using two orthogonal sequences, including: The terminal device performs spreading processing on the uplink modulated data according to the following formula:
  • the method can be compatible with the new spread spectrum processing method and the existing spread spectrum processing method, so that the new terminal device and the existing terminal device can work normally.
  • the terminal device corresponding to the first time slot and the second time slot respectively Before placing a pilot sequence on an SC-FDMA symbol for pilot transmission on a PRB, the method further includes: the terminal device according to the resource index Determining the first orthogonal sequence The terminal device determines the pilot sequence by the following formula:
  • m' is the slot number, equal [1,1] or [1,-1], when the ACK or NACK information carried on the SC-FDMA symbol used for pilot transmission, z(e) is the ACK or NACK information, if not Carrying the ACK or NACK information, then z(e) is 1.
  • the embodiment of the present invention further provides a method for transmitting an uplink control signal, including:
  • the network side device determines two physical resource blocks PRB of the uplink transmission resource that the terminal device sends the uplink data, where the time slots of the two PRBs are different; the network side device receives the uplink on the two PRBs. Data and a pilot sequence; wherein the uplink data is spread spectrum data spread by two orthogonal sequences; pilot sequences of different terminal devices are orthogonal to each other; and the network side device transmits according to the terminal device
  • the pilot sequence demodulates the uplink data sent by the terminal device.
  • the method before the network side device receives the uplink data and the pilot sequence on the two PRBs, the method further includes: The network side device sends the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device needs to perform spreading processing on the uplink modulated data by using two orthogonal sequences.
  • the method further includes: the network side device sending the second indication information to the The terminal device, where the second indication information is used to indicate that the subcarriers included in the two PRBs are identical.
  • the method further includes: The network side device sends the third indication information to the terminal device, where the third indication information is used to indicate the terminal device on the first pilot symbol on different time slots where the two PRBs are located.
  • the pilot sequence is reversed.
  • the method further includes: the network side device sends a resource index And resource indexing Giving the terminal device, wherein the resource index Means for determining a location of the two PRBs, an orthogonal sequence of the two orthogonal sequences, and the pilot sequence, the resource index Used to determine another orthogonal sequence of the two orthogonal sequences; Is the antenna number or user number.
  • the network side device determines the two PRBs, including: the network side device determines according to the following formula The two PRBs:
  • n s is the slot number, Indicates rounding down
  • n PRB is the PRB number corresponding to the different time slots included in the two PRBs; when a is 0, the subcarriers included in the two PRBs are identical, and when a is 1, the characterization station The subcarriers contained in the two PRBs are completely different.
  • the sub-carriers corresponding to the PRBs in the first time slot and the sub-carriers in the PRB corresponding to the second time slot are identical.
  • the pilot sequence of the terminal device on the first SC-FDMA symbol for pilot transmission on the first time slot and the second time slot in the second time slot is reversed.
  • an embodiment of the present invention provides a terminal device, which can perform the method according to the first aspect and various possible implementation manners of the first aspect.
  • a terminal device includes a processor, a transmitter, and a receiver.
  • the processor can be used to perform processing operations such as acquiring, modulating, encoding, determining, mapping, and the like.
  • the receiver can be used to perform a receiving action.
  • the sender is used to perform the sending action.
  • an embodiment of the present invention provides a network side device, which can perform the method according to the second aspect and various possible implementation manners of the second aspect.
  • the network side device includes a processor, a transmitter, and a receiver.
  • the processor can be used to perform processing operations such as acquisition, determination, and demodulation.
  • the receiver can be used to perform a receiving action.
  • the sender is used to perform the sending action.
  • the two PRBs contain identical subcarriers.
  • the pilot sequences of the terminal devices on the first pilot symbols on different time slots in which the two PRBs are located are opposite.
  • an embodiment of the present invention provides a transmission apparatus for an uplink control signal, where the transmission apparatus includes a functional module for implementing the method described in the first aspect.
  • an embodiment of the present invention further provides a transmission apparatus for an uplink control signal, where the transmission apparatus includes a functional module for implementing the method described in the second aspect.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores program code, where the program code includes any possible method for implementing the method of the first aspect and the second aspect.
  • the instructions for the implementation are described in detail below.
  • FIG. 1 is a schematic diagram of resources of an uplink time slot T slot according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of two PRBs being a frequency hopping structure according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for transmitting an uplink control signal according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of two PRBs being non-hopping structures according to an embodiment of the present disclosure.
  • FIG. 7 is a functional block diagram of an apparatus for transmitting an uplink control signal according to an embodiment of the present invention.
  • the embodiments of the present invention provide a method for transmitting an uplink control signal, a network side device, and a terminal device, which are used to solve the technical problem of low resource utilization in the prior art.
  • the embodiment of the present invention is described by taking the transmission mode of the transmission control signaling of the PUCCH Format 2/2a/2b in the LTE system as an example.
  • the LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) technology to subdivide the "frequency" and "time” resources into: "subcarrier” and "SC-FDMA symbol".
  • OFDM Orthogonal Frequency Division Multiplexing
  • Each time slot contains 7 SC-FDMA symbols, denoted as It is a PRB.
  • FIG. 1 it is a schematic diagram of resources of an uplink time slot T slot , where one subcarrier k and one symbol t correspond to one resource element (English: Resource Element, abbreviated as RE).
  • RE Resource Element
  • the specific resource allocation of the PUCCH is based on two PRBs.
  • the frequency resources of the two PRBs are located on the two sides of the useful bandwidth, and the entire entire spectrum resource is used to transmit the uplink data. It can effectively utilize spectrum resources while maintaining the single carrier characteristics of uplink transmission.
  • slot 0 the uplink control signal is mapped to a certain PRB at the edge of the system band.
  • slot 1 the uplink control signal is mapped to the corresponding PRB at the other edge of the system band.
  • p can be called the resource number of the PUCCH.
  • a network side device such as a base station (e.g., an eNB or an eNodeB), indicates in which subframes, on which PRBs of the subframe, the uplink control signals, such as CQI, ACK/NACK, are transmitted.
  • the base station sends a PUCCH resource index of Format2/2a/2b.
  • the PRB used by himself is calculated by formula (1) and formula (2).
  • n s is the slot number
  • the two PRBs are frequency hopping designs.
  • 7 symbols contain 2 pilot symbols and 5 data symbols, and the two slots contain a total of 14 symbols, 4 pilot symbols, 10 data symbols, as described above, each symbol Contains 12 subcarriers.
  • each user's uplink control signal for example, CQI is between 4-11 bits, and 20-bit encoded data is obtained through channel coding, and then subjected to four-phase phase shift keying (English: Quadrature Phase Shift Keying (QPSK) is modulated into 10 modulated data.
  • QPSK Quadrature Phase Shift Keying
  • the function of PUCCH Format2 is to transmit the 10 modulated data d(0),...,d(9) on 10 data symbols.
  • the pilot symbol is usually used to transmit a pilot signal, and the pilot signal is, for example, a demodulation reference signal (English: Demodulation Reference Signal, DMRS for short).
  • orthogonal code division multiplexing sequences are used on PUCCH Format 2 to distinguish different users. Specifically, a base sequence of length 12, such as a Zadoff-Chu sequence, is selected first. The base sequence is then cyclically shifted to obtain 12 orthogonal cyclic shift sequences, also referred to as code channels, with one code channel per user. Then, 10 modulated data d(0), ..., d(9) are modulated into 120 spread data, that is, each modulated data is spread by a sequence of length 12.
  • a base sequence of length 12 such as a Zadoff-Chu sequence
  • d(n) is the aforementioned modulation data
  • different ⁇ (0 ⁇ ⁇ ⁇ 12) will generate orthogonal sequences
  • is determined by the following formula (4).
  • the UE maps its own 10 spread spectrum data obtained by the formula (3) to the REs of the PRB0 and the PRB99. If 12 users simultaneously multiplex the same PUCCH resource, the two PRBs will carry 120 spread spectrum data.
  • the second pilot symbol in each slot of the PUCCH resource is used to carry ACK/NACK data, and the ACK/NACK data may be referred to as data d(10).
  • data d(10) the ACK/NACK data
  • only one pilot symbol per slot can be used to carry the pilot signal, and because the frequency hopping design between the two slots is different, the channel characteristics are different, so the respective The 12 orthogonal pilots in the slot perform channel estimation, so the number of orthogonal pilots on one PUCCH resource is at most 12.
  • a PUCCH resource can allow up to 12 users to code division multiplexing, in the existing LTE system, a maximum of 12 users can be supported on one PUCCH resource for uplink control signal transmission. Therefore, resource utilization is low.
  • FIG. 3 is a structural diagram of a possible communication network system according to an embodiment of the present invention.
  • the communication network system includes a network side device and a plurality of terminal devices.
  • the network side device is the service network side device of the terminal device, and the service side network device refers to the RRC connection and non-access stratum (English: non-access stratum, NAS) mobility management for the terminal device through the wireless air interface protocol.
  • Network-side devices for services such as security input.
  • the network side device and the terminal device can communicate through the air interface protocol.
  • terminal devices isolated terminals
  • network side device may further include other network entities, such as a network controller and/or a mobility management entity, which are not limited in the embodiment of the present invention.
  • the network side equipment mentioned in this paper may be a base station in Global Mobile Communication (English: Global System of Mobile communication; GSM for short) or Code Division Multiple Access (CDMA: CDMA).
  • Base Transceiver Station; referred to as BTS it can also be a base station (English: NodeB; NB for short) in Wideband Code Division Multiple Access (WCDMA), or it can be long-term evolution.
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • :Long Term Evolution referred to as: evolved base station (English: Evolutional Node B; eNB or eNodeB), or a relay station or access point, or
  • the base station in the future 5G network, etc. is not limited herein.
  • the terminal device mentioned herein may be a wireless terminal device or a wired terminal device, and the wireless terminal device may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connection function, or Connect to other processing devices of the wireless modem.
  • the wireless terminal device can communicate with one or more core networks via a radio access network (English: Radio Access Network; RAN), and the wireless terminal device can be a mobile terminal, such as a mobile phone (or "cellular" phone).
  • a computer having a mobile terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal device may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, or a remote terminal. Access Terminal, User Terminal, User Agent, User Device or User Equipment.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • the communication device is, for example, the above network side device and terminal device.
  • the communication device includes a processor 10, a transmitter 20, a receiver 30, a memory 40, and an antenna 50.
  • the memory 40, the transmitter 20 and the receiver 30 and the processor 10 can be connected via a bus.
  • the memory 40, the transmitter 20, and the receiver 30 and the processor 10 may not be a bus structure, but may be other structures, such as a star structure, which is not specifically limited herein.
  • the processor 10 may be a general-purpose central processing unit or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, and may be A hardware circuit developed using a Field Programmable Gate Array (FPGA) can be a baseband processor.
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • processor 10 may include at least one processing core.
  • the memory 40 may include one or more of a read only memory (English: Read Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM), and a disk storage.
  • Memory 40 is used to store data and/or instructions needed by processor 10 to operate.
  • the number of memories 40 may be one or more.
  • the transmitter 20 and the receiver 30 may be physically independent of each other or integrated.
  • Transmitter 20 can transmit data via antenna 50.
  • Receiver 30 can receive data via antenna 50.
  • FIG. 5 is a flowchart of a method for transmitting an uplink control signal according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
  • Step 101 The terminal device encodes and modulates an uplink control signal to obtain uplink modulation data.
  • Step 102 The terminal device performs spreading processing on the uplink modulated data by using two orthogonal sequences to obtain spread spectrum data, where the two orthogonal sequences are orthogonally obtained by cyclically shifting based on the same base sequence.
  • Step 103 The terminal device maps the spread spectrum data to subcarriers on a physical resource block PRB corresponding to a first time slot and a second time slot of an uplink transmission resource, and a single carrier frequency division for data transmission. Address on the SC-FDMA symbol;
  • Step 104 The terminal device places a pilot sequence on the SC-FDMA symbol for pilot transmission on the PRB corresponding to the first time slot and the second time slot respectively;
  • Step 105 The terminal device sends uplink data, where the uplink data includes the SC-FDMA symbol used for data transmission and the SC-FDMA symbol used for pilot transmission.
  • the uplink control signal to be sent acquired by the terminal device is, for example, CQI, and the CQI is transmitted through the PUCCH format2.
  • the uplink control signal to be transmitted is, for example, CQI and 1 bit ACK/NACK, and the CQI and ACK/NACK are transmitted through PUCCH format 2a.
  • the uplink control signal to be transmitted may also be CQI and ACK/NACK of 2 bits, and the CQI and ACK/NACK are transmitted through PUCCH format 2b.
  • encoding the uplink control signal may be performing channel coding.
  • the CQI is between 4-11 bits, and 20 bits of coded data is obtained by channel coding.
  • the uplink control signal may be an uplink control signal that appears along with the evolution of the system, and the coding method and the modulation method may also evolve with the system. A new encoding method or modulation method appears, so the number of modulated data obtained may also be other values, that is, n may also be an integer greater than or equal to 10.
  • the terminal device performs step 102, that is, performing spreading processing on the uplink modulated data by using two orthogonal sequences to obtain spread spectrum data; wherein the two orthogonal sequences are cyclically shifted based on the same base sequence. Bit obtained orthogonal sequence.
  • the two orthogonal sequences are orthogonal sequences obtained by cyclically shifting according to the same cyclic sequence according to the same base sequence.
  • the terminal device performing step 102 may be a protocol agreement, or may perform step 102 according to the indication.
  • the terminal device further receives the first indication information, where the first indication information is used to indicate that the terminal device needs to perform spreading processing on the uplink modulated data by using two orthogonal sequences.
  • Step 102 is only executed when the first indication information is received. If the terminal device does not receive the first indication information, or receives the spreading processing for instructing the terminal device to use only one orthogonal sequence to perform modulation, the terminal device may use only one orthogonal according to the prior art described above.
  • the method of the sequence performs spreading, for example, spread spectrum processing by the above formula (3).
  • all terminal devices applicable in the communication system support the case of using two orthogonal sequences for spreading.
  • the indication is needed to be compatible with existing terminal devices that cannot support the use of two orthogonal sequences for spreading.
  • the terminal device receives the network side device, for example, the first indication information sent by the serving base station.
  • the two orthogonal sequences may be preset orthogonal sequences, or may be calculated by the terminal device according to a predetermined rule. In either case, the two orthogonal sequences are cyclically shifted based on the same base sequence. Orthogonal sequence. How the terminal device calculates two orthogonal sequences according to a predetermined rule will be described in detail below.
  • the terminal device before step 102, the terminal device further receives the resource index. And resource indexing Terminal device based on resource index Determining the first orthogonal sequence Terminal device based on resource index Determining the second orthogonal sequence Wherein determining the first orthogonal sequence The same way as the second orthogonal sequence; For the antenna number or user number,
  • the terminal device is a receiving network side device, for example, a resource index sent by the serving base station.
  • resource indexing for example, a resource index sent by the serving base station.
  • resource index And resource indexing Do not differ by more than 12, such as resource index And resource indexing All are any two different values within 0-11.
  • resource indexing And resource indexing All are two different values within 12-23.
  • each PRB includes 12 subcarriers. If the number of subcarriers included in each PRB changes in the future, as the communication technology develops, the resource index And resource indexing The numerical relationship between them will also change. For example, if the number of subcarriers is 24, the resource index And resource indexing The difference between the two does not exceed 24. Therefore, resource indexing And resource indexing The difference between each other does not exceed the number of subcarriers included in each PRB.
  • Resource index And resource indexing For example, if there is no difference between 12 and 12, for each user, use any two resource index values in 0-11, that is, each user uses two code channels, which can theoretically distinguish Users, so in theory the spread spectrum method in this embodiment supports multiplexing of 66 users. Compared with the prior art, only 12 users can be reused, which greatly increases the number of users that are reused.
  • is determined by the following formula (5).
  • the manner of determining the first orthogonal sequence is the same as the manner of determining the second orthogonal sequence, except that the resource index used is different.
  • the above determination manner is well known to those skilled in the art, except that in this embodiment, there are two different resource indexes, and two orthogonal sequences are calculated, and only one resource index is available in the prior art. So only get an orthogonal sequence.
  • first orthogonal sequence and the second orthogonal sequence may be determined by different methods, which are not specifically limited by the present invention.
  • step 102 is performed next, that is, the terminal device performs spreading processing on the uplink modulated data using two orthogonal sequences.
  • the terminal device performs spreading processing on the uplink modulated data according to formula (6).
  • equation (6) the first orthogonal sequence And second orthogonal sequence And to perform spread spectrum processing.
  • the terminal device may also receive another indication information, for example, the indication information that b is 0.
  • the manner in which the terminal device performs the spreading processing is the same as the prior art, and refer to formula (3).
  • the spread spectrum processing method of the formula (6) can be compatible with the spread spectrum processing in the prior art and the spread spectrum processing method in the embodiment of the present invention.
  • the coefficient b can be directly removed in the formula (6).
  • the terminal device performs step 103, that is, the terminal device maps the spread spectrum data to the PRB corresponding to the first time slot and the second time slot of the uplink transmission resource respectively.
  • the PRB corresponding to the first time slot and the second time slot may be agreed by the protocol, or may be determined by using a preset rule.
  • the subcarriers corresponding to the PRBs in the first slot and the subcarriers in the PRB corresponding to the second slot are identical, that is, the non-hopping structure, in other words, the PRB corresponding to the first slot.
  • the 12 subcarriers included are exactly the same as the 12 subcarriers included in the PRB corresponding to the second slot. This case applies to PUCCH format 2/2a/2b.
  • the non-hopping structure please refer to FIG. 6.
  • the subcarrier included in the PRB corresponding to the first slot and the subcarrier included in the PRB corresponding to the second slot are completely different, that is, a frequency hopping structure, and the case is applicable to PUCCH format 2.
  • PUCCH format2 In the case, two pilot symbols in each slot can be used to transmit the pilot sequence, so even if the frequency hopping structure is adopted, each pilot slot can transmit 24 pilot sequences, which can be used by 24 users.
  • PUCCH format 2a/2b the second pilot symbol of each slot is occupied and cannot be used to transmit a pilot sequence, so a non-hopping structure is required, so that two pilot symbols of two slots are used. A total of 24 pilots are transmitted for 24 users.
  • the spreading method described above can support multiplexing of 66 users, and the number of pilot sequences can also be mentioned 24, the number of users supported by one uplink transmission resource can be increased to 24.
  • the terminal device further receives the second indication information, where the second indication information is used to indicate that the sub-carrier included in the PRB corresponding to the first time slot is the same as the sub-carrier included in the PRB corresponding to the second time slot. the same.
  • the terminal device receives the resource index. This step and the foregoing receiving the resource index when determining two orthogonal sequences may be the same step.
  • the terminal device determines the PRBs corresponding to the two time slots according to formula (7).
  • the value of a is 0, which is the foregoing second indication information, and is used to indicate that the sub-carrier included in the PRB corresponding to the first time slot is the same as the sub-carrier included in the PRB corresponding to the second time slot. It can be seen from equation (7) that when a is 0, the position of the PRB is independent of the time slot, and the PRBs in the two slots are the same, so the PRBs of the two slots contain the same subcarriers, for example, Subcarrier 0 to subcarrier 11.
  • formula (7) is the same as formula (2), the position of the PRB is related to the time slot, and the PRBs of different time slots are different. For example, when the time slot is 0, the PRB is PRB0, and when the time slot is 1, PRB is PRB99.
  • a can be directly 0 through the protocol, or directly agree to use the formula after a is 0.
  • the terminal device maps the spread spectrum data to subcarriers on the PRB corresponding to the first slot and the second slot of the uplink transmission resource and the SC-FDMA symbol for data transmission. This part of the content is well known to those skilled in the art, so it will not be described here.
  • step 104 the terminal device places a pilot sequence on the SC-FDMA symbol for pilot transmission on the PRB corresponding to the first slot and the second slot respectively.
  • steps 104 and 103 does not limit the order.
  • the content of the pilot sequence is well known to those skilled in the art, and therefore will not be described in detail herein. A method of determining a pilot sequence will be described below.
  • the terminal device is indexed according to resources. Determining the first orthogonal sequence The terminal device determines the pilot sequence according to equation (10).
  • m' is the slot number, equal [1,1] or [1,-1], when the ACK or NACK information carried on the SC-FDMA symbol used for pilot transmission, z(e) is the ACK or NACK information, if not Carrying the ACK or NACK information, then z(e) is 1.
  • Equation (10) represents a pilot sequence corresponding to 48 subcarriers.
  • i is 0-11 for traversing 12 subcarriers on one symbol.
  • m' is 0 and 1 for traversing two time slots.
  • e is 0 and 1 for traversing 2 pilot symbols in each slot.
  • pilot sequence length on each pilot symbol is 12, the first orthogonal sequence There are only 12, which can be recorded as P1, P2, P3, ..., P12, wherein each sequence Pi has a length of 12.
  • the pilot sequence length is limited to 12, so there can only be 12 orthogonal pilot sequences.
  • the non-frequency hopping method is adopted, and the first pilot symbol in two time slots is regarded as a whole, and a sequence of length 24 is formed, so that there may be 24 orthogonal pilot sequences.
  • the sequence on the first pilot symbol of the first slot and the sequence on the second pilot symbol of the second slot are sequentially used: [P1 P1], [P2 P2], [P3 P3], whil,[P12 P12].
  • the sequence on the first pilot symbol of the first slot and the sequence on the second pilot symbol of the second slot are: [P1 - P1], [P2 - P2], [P3 - P3], ... [P12 – P12].
  • the pilot sequences for every two users are orthogonal.
  • [1,1] indicates that the pilot sequence of a certain user's pilot sequence on the first pilot symbol of the two slots is the same.
  • the sequence of [1, -1] indicating that a user's pilot sequence is on the first pilot symbol of two slots is reversed.
  • [1, 1] or [1, -1] may be agreed by the protocol, or may be indicated by the indication information, for example, the terminal device receives the third indication information, and the third indication information is used to indicate: the pilot sequence of the user The sequence on the first pilot symbol on the first time slot is opposite to the sequence on the first pilot symbol on the second time slot.
  • the sequence index Noc is the aforementioned third indication information.
  • step 105 is performed next, that is, the terminal device sends uplink data, where the uplink data includes the SC-FDMA symbol for data transmission and the SC-FDMA for pilot transmission.
  • a symbol for example, transmits uplink data through a physical antenna.
  • the network side device determines two physical resource blocks PRB of the uplink transmission resource that the terminal device sends the uplink data, where the time slots of the two PRBs are different; the network side device is on the two PRBs.
  • the transmitted pilot sequence demodulates the uplink data sent by the terminal device.
  • the method for determining, by the network side device, the two PRBs that the terminal device sends the uplink data is the same as the method for determining the terminal device side, for example, also by using the formula (7).
  • the network side device receives the uplink data and the pilot sequence on the two PRBs, and demodulates the uplink data according to the pilot sequence, which is well known to those skilled in the art, for example, performing channel estimation according to the pilot sequence, and then may adopt The Maximum Likelihood (ML) algorithm demodulates the uplink data, so it will not be described here.
  • ML Maximum Likelihood
  • the network side device further sends any one or any combination of the foregoing first indication information to the third indication information to the terminal device.
  • the network side device further sends a resource index to the terminal device.
  • resource indexing
  • users 1-6 use 1 code channel respectively, and the corresponding resource index They are 0, 2, 4, 6, 8, and 10, respectively.
  • Users 7-18 respectively use 2 code channels, and each user uses any two code channels of 1, 3, 5, 7, 9, and 11, respectively, through resource indexing. And resource indexing Instructions. In theory, each user can use any two of the 1, 3, 5, 7, 9, and 11 code channels.
  • User multiplexing but because the pilot sequence is only 2 times of 6 code channels, that is, 12, because each user needs to use an orthogonal pilot sequence to distinguish, so only 12 user multiplexing is supported here, so plus The use of 6 users of 1 code channel achieves the technical effect of the uplink transmission resource supporting the multiplexing of 18 users.
  • an embodiment of the present invention further provides a communication device (shown in FIG. 4), which is used to implement any one of the foregoing methods.
  • the processor 10 is configured to encode and modulate an uplink control signal to obtain uplink modulation data, and perform spreading processing on the uplink modulation data by using two orthogonal sequences to obtain spread spectrum data.
  • the two orthogonal sequences are orthogonal sequences obtained by cyclically shifting based on the same base sequence; mapping the spread spectrum data to the first time slot and the second time slot of the uplink transmission resource respectively a subcarrier on the corresponding physical resource block PRB and a single carrier frequency division multiple access SC-FDMA symbol for data transmission; on the PRB corresponding to the first time slot and the second time slot respectively a pilot sequence is placed on the SC-FDMA symbol for pilot transmission; a transmitter 20 is configured to transmit uplink data, the uplink data including the SC-FDMA symbol for data transmission and the pilot transmission SC-FDMA symbol.
  • the receiver 30 is configured to receive first indication information, where the first indication information is used to indicate that the terminal device needs to perform spreading processing on the uplink modulated data by using two orthogonal sequences.
  • the sub-carriers included in the PRB corresponding to the first time slot are identical to the sub-carriers included in the PRB corresponding to the second time slot.
  • the receiver 30 is configured to receive the second indication information, where the second indication information is used to indicate the subcarrier included in the PRB corresponding to the first time slot and the PRB corresponding to the second time slot.
  • the included subcarriers are identical.
  • a pilot sequence of the terminal device on the first SC-FDMA symbol used for pilot transmission on the first time slot and a first sequence on the second time slot is reversed.
  • the receiver 30 is configured to receive third indication information, where the third indication information is used to indicate: on the first SC-FDMA symbol used for pilot transmission on the first time slot.
  • the pilot sequence of the terminal device is opposite to the pilot sequence of the terminal device on the first SC-FDMA symbol for pilot transmission on the second time slot.
  • the receiver 30 is configured to receive a resource index.
  • the processor 10 is configured to determine a PRB corresponding to the first time slot and the second time slot according to the following formula:
  • n s is the slot number, Indicates rounding down
  • n PRB is the PRB number corresponding to the first time slot and the second time slot respectively;
  • a is 0 the subcarriers included in the PRB corresponding to the first time slot and the subcarriers corresponding to the PRB corresponding to the second time slot are identical, and when a is 1, The subcarriers included in the PRB corresponding to the first time slot and the subcarriers included in the PRB corresponding to the second time slot are completely different.
  • the receiver 30 is further configured to: receive a resource index.
  • the processor 10 is further configured to: according to the resource index Determining the first orthogonal sequence According to the resource index Determining the second orthogonal sequence among them; For the antenna number or user number,
  • the processor 10 is configured to perform spreading processing on the uplink modulated data according to the following formula:
  • the processor 10 is further configured to: perform index according to the resource Determining the first orthogonal sequence
  • the pilot sequence is determined by the following formula:
  • m' is the slot number, equal [1,1] or [1,-1], when the ACK or NACK information carried on the SC-FDMA symbol used for pilot transmission, z(e) is the ACK or NACK information, if not Carrying the ACK or NACK information, then z(e) is 1.
  • the processor 10 is configured to determine two physical resource blocks PRB of the uplink transmission resource that the terminal device sends the uplink data, where the time slots of the two PRBs are different; the receiver 30 For receiving the uplink data and the pilot sequence on the two PRBs; wherein the uplink data is spread spectrum data that is spread by two orthogonal sequences; pilot sequences of different terminal devices are mutually positive
  • the processor 10 is further configured to demodulate the uplink data sent by the terminal device according to the pilot sequence sent by the terminal device.
  • the transmitter 20 is configured to send the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device needs to perform the uplink modulation data by using two orthogonal sequences. Spread spectrum processing.
  • the two PRBs comprise the same subcarriers.
  • the sender 20 sends the second indication information to the terminal device, where the second indication information is used to indicate that the subcarriers included in the two PRBs are identical.
  • the pilot of the terminal device on the first pilot symbol on different time slots where the two PRBs are located The sequence is reversed.
  • the transmitter 20 is configured to send the third indication information to the terminal device, where the third indication information is used to indicate the first pilot symbol on different time slots where the two PRBs are located.
  • the pilot sequence of the terminal device on the opposite is reversed.
  • the sender 20 sends a resource index And resource indexing Giving the terminal device, wherein the resource index Means for determining a location of the two PRBs, an orthogonal sequence of the two orthogonal sequences, and the pilot sequence, the resource index Used to determine another orthogonal sequence of the two orthogonal sequences.
  • the processor 10 is configured to determine the two PRBs according to the following formula:
  • n s is the slot number, Indicates rounding down
  • n PRB is a PRB number corresponding to different time slots included in the two PRBs; For the antenna number or the user number; when a is 0, the sub-carriers included in the two PRBs are identical, and when a is 1, the sub-carriers included in the two PRBs are completely different.
  • an embodiment of the present invention further provides an uplink control signal transmission apparatus, where the apparatus includes a functional module for performing the foregoing method steps.
  • the transmission device may be the aforementioned terminal device, or may be integrated as a function module in the terminal device.
  • the transmission device may also be the aforementioned network side device, or may be integrated as a function module in the network side device.
  • the apparatus includes: a receiving unit 201, a processing unit 202, and a transmitting unit 203. In actual use, other unit modules can also be configured according to actual needs.
  • the processing unit 202 is configured to encode and modulate the uplink control signal to obtain uplink modulated data, and expand the uplink modulated data by using two orthogonal sequences. Performing frequency processing to obtain spread spectrum data; wherein the two orthogonal sequences are orthogonal sequences obtained by cyclically shifting based on the same base sequence; mapping the spread spectrum data to a first time slot of an uplink transmission resource a subcarrier on a physical resource block PRB corresponding to a second slot and a single carrier frequency division multiple access SC-FDMA symbol for data transmission; in the first time slot and the second time a pilot sequence is placed on the SC-FDMA symbol for pilot transmission on the corresponding PRB, and a sending unit 203 is configured to send uplink data, where the uplink data includes the SC-FDMA symbol for data transmission and The SC-FDMA symbol for pilot transmission.
  • the receiving unit 201 is configured to receive first indication information, where the first indication information is used to indicate that the terminal device needs to perform spreading processing on the uplink modulated data by using two orthogonal sequences.
  • the subcarriers corresponding to the PRB corresponding to the first time slot and the PRBs corresponding to the second time slot include The subcarriers are identical.
  • the receiving unit 201 is configured to receive the second indication information, where the second indication information is used to indicate the subcarrier included in the PRB corresponding to the first time slot and the PRB corresponding to the second time slot.
  • the included subcarriers are identical.
  • a pilot sequence of the terminal device on the first SC-FDMA symbol used for pilot transmission on the first time slot and a first sequence on the second time slot is reversed.
  • the receiving unit 201 is configured to receive third indication information, where the third indication information is used to indicate: on the first SC-FDMA symbol used for pilot transmission on the first time slot.
  • the pilot sequence of the terminal device is opposite to the pilot sequence of the terminal device on the first SC-FDMA symbol for pilot transmission on the second time slot.
  • the receiving unit 201 is configured to receive a resource index.
  • the processing unit 202 is configured to determine, according to the following formula, a PRB corresponding to the first time slot and the second time slot respectively:
  • n s is the slot number, Indicates rounding down
  • n PRB is the PRB number corresponding to the first time slot and the second time slot respectively;
  • a is 0 the subcarriers included in the PRB corresponding to the first time slot and the subcarriers corresponding to the PRB corresponding to the second time slot are identical, and when a is 1, The subcarriers included in the PRB corresponding to the first time slot and the subcarriers included in the PRB corresponding to the second time slot are completely different.
  • the receiving unit 201 is further configured to: receive a resource index.
  • the processing unit 202 is further configured to: according to the resource index Determining the first orthogonal sequence According to the resource index Determining the second orthogonal sequence among them; For the antenna number or user number,
  • the processing unit 202 is configured to perform spreading processing on the uplink modulated data according to the following formula:
  • the processing unit 202 is further configured to: according to the resource index Determining the first orthogonal sequence
  • the pilot sequence is determined by the following formula:
  • m' is the slot number, equal [1,1] or [1,-1], when the ACK or NACK information carried on the SC-FDMA symbol used for pilot transmission, z(e) is the ACK or NACK information, if not Carrying the ACK or NACK information, then z(e) is 1.
  • the processing unit 202 is configured to determine two physical resource blocks PRB of the uplink transmission resource that the terminal device sends the uplink data, where the time slots of the two PRBs are different.
  • a receiving unit 201 configured to receive the uplink data and a pilot sequence on the two PRBs; wherein the uplink data is spread spectrum data that is spread by two orthogonal sequences; The frequency sequence is orthogonal to each other; the processing unit 202 is further configured to demodulate the uplink data sent by the terminal device according to the pilot sequence sent by the terminal device.
  • the sending unit 203 is configured to send the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device needs to perform the uplink modulation data by using two orthogonal sequences.
  • Spread spectrum processing is configured to send the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device needs to perform the uplink modulation data by using two orthogonal sequences.
  • the two PRBs comprise the same subcarriers.
  • the sending unit 203 is configured to send the second indication information to the terminal device, where the second indication information is used to indicate that the sub-carriers included in the two PRBs are identical.
  • the pilot sequence of the terminal device on the first pilot symbol on different time slots where the two PRBs are located is opposite.
  • the sending unit 203 is configured to send the third indication information to the terminal device, where the third indication information is used to indicate the first pilot symbol on different time slots where the two PRBs are located.
  • the pilot sequence of the terminal device on the opposite is reversed.
  • the sending unit 203 sends a resource index. And resource indexing Giving the terminal device, wherein the resource index Means for determining a location of the two PRBs, an orthogonal sequence of the two orthogonal sequences, and the pilot sequence, the resource index Used to determine another orthogonal sequence of the two orthogonal sequences.
  • the processing unit 202 is configured to determine, according to the following formula, a PRB corresponding to the first time slot and the second time slot respectively:
  • n s is the slot number, Indicates rounding down
  • n PRB is a PRB number corresponding to different time slots included in the two PRBs; For the antenna number or the user number; when a is 0, the sub-carriers included in the two PRBs are identical, and when a is 1, the sub-carriers included in the two PRBs are completely different.
  • embodiments of the present invention can provide a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行控制信号的传输方法、网络侧设备及终端设备,该方法包括:终端设备将上行控制信号进行编码以及调制,获得上行调制数据;终端设备使用两个正交序列对上行调制数据进行扩频处理,获得扩频数据;其中,两个正交序列为基于相同的基序列进行循环移位得到的正交序列;终端设备将扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的PRB上的子载波以及用于数据传输的SC-FDMA符号上;终端设备在第一个时隙和第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列;终端设备发送上行数据,上行数据包括用于数据传输的SC-FDMA符号和用于导频传输的SC-FDMA符号。

Description

一种上行控制信号的传输方法、网络侧设备及终端设备
本申请要求于2016年9月28日提交中国专利局、申请号为201610862048.2、申请名称为“一种上行控制信号的传输方法、网络侧设备及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种上行控制信号的传输方法、网络侧设备及终端设备。
背景技术
在长期演进(英文:Long Term Evolution,简称:LTE)系统中,上行物理信道包括:物理上行共享信道(英文:Physical Uplink Shared Channel,简称:PUSCH)和物理上行控制信道(英文:Physical Uplink Control Channel,简称:PUCCH)。
PUCCH用于承载控制信令,而且不同的控制信令可以采用不同的PUCCH传输格式传输。举例来说,用户设备可以通过PUCCH格式(Format)2反馈信道质量指示(英文:Channel Quality Indicator,简称:CQI)。如果基站要求用户设备同时反馈CQI和肯定应答信息(英文:Acknowledgement,简称:ACK)/否定应答信息(英文:Negative Acknowledgement,简称:NACK),用户设备可以通过PUCCH Format 2a(适用于1bit的ACK/NACK)或者PUCCH Format 2b(适用于2bits的ACK/NACK)反馈CQI和ACK/NACK。
在LTE系统中,PUCCH信道的资源分配是以2个物理资源块(英文:Physical Resource Block,简称:PRB)为粒度的。每个PRB在频域上占用连续的12个子载波,时间上占用一个时隙。两个PRB的12个子载波完全不相同。例如第一个PRB的12个子载波为低频段的子载波,而第二个PRB的12个子载波为高频段的子载波,这种情况称为跳频。这两个PRB也称为一个PUCCH域。每个时隙在时域上包含7个单载波频分多址(英文:Single Carrier-Frequency Division Multiple Access,简称:SC-FDMA)符号,其中,2个SC-FDMA符号用作导频传输,剩余的5个SC-FDMA符号用作数据传输(本文中的数据包括控制数据和业务数据),例如传输CQI。
在现有的LTE系统中,来自不同用户的PUCCH信号可能会被调度到同一PUCCH域中。在同一PUCCH域中,不同的用户通过正交的码分复用序列进行区分。在一个PUCCH域中,最多允许12个用户的码分复用。因此,资源利用率较低。
发明内容
本发明实施例提供一种上行控制信号的传输方法、网络侧设备及终端设备,用以解决现有技术中资源利用率较低的技术问题。
第一方面,本发明实施例提供了一种上行控制信号的传输方法,包括:
终端设备将上行控制信号进行编码以及调制,获得上行调制数据;所述终端设备使用两个正交序列对所述上行调制数据进行扩频处理,获得扩频数据;其中,所述两个正交序列为基于相同的基序列进行循环移位得到的正交序列;所述终端设备将所述扩频数据映射 到上行传输资源的第一个时隙和第二个时隙分别对应的物理资源块PRB上的子载波以及用于数据传输的单载波频分多址SC-FDMA符号上;所述终端设备在所述第一个时隙和所述第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列;所述终端设备发送上行数据,所述上行数据包括所述用于数据传输的SC-FDMA符号和所述用于导频传输的SC-FDMA符号。
在本发明实施例的方案中,使用两个正交序列对上行调制数据进行扩频处理,所以可以使得相较于只使用一个正交序列进行扩频处理的情况,提高了用户的复用数,例如由现有技术中的复用用户数12提高到18,提高上行传输资源的利用率。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:
所述终端设备接收第一指示信息,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。通过该方法,可以实现动态分配上行传输资源的目的,比较灵活,便于使用。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:所述终端设备接收第二指示信息,所述第二指示信息用于指示所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。通过该方法,一方面是采用非跳频结构,使得导频序列的数量得以提高,另一方面,通过指示信息进行动态指示,达到动态配置的目的,比较灵活,便于使用。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述方法还包括:所述终端设备接收第三指示信息,所述第三指示信息用于指示:在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。通过该方法,一方面可以提高导频序列的数量,另一方面通过指示信息进行动态指示,达到动态配置的目的,比较灵活,便于使用。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式中的任意一种,在第一方面的第四种可能的实现方式中,在所述终端设备将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的物理资源块PRB上之前,所述方法还包括:所述终端设备接收资源索引
Figure PCTCN2017102206-appb-000001
所述终端设备根据如下公式确定所述第一个时隙和所述第二个时隙分别对应的PRB:
Figure PCTCN2017102206-appb-000002
其中,
Figure PCTCN2017102206-appb-000003
Figure PCTCN2017102206-appb-000004
为一个PRB包含的子载波数,ns为时隙序号,
Figure PCTCN2017102206-appb-000005
表示向下取整,nPRB为所述第一个时隙和所述第二个时隙分别对应的PRB编号;
Figure PCTCN2017102206-appb-000006
为天 线编号或用户编号;a为0时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同,a为1时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全不相同。通过该方法,可以兼容跳频与非跳频两种结构,使得新终端设备和现有的终端设备均可以正常工作。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,在所述终端设备使用两个正交序列对所述上行调制数据进行扩频处理之前,所述方法还包括:所述终端设备接收资源索引
Figure PCTCN2017102206-appb-000007
所述终端设备根据所述资源索引
Figure PCTCN2017102206-appb-000008
确定第一正交序列
Figure PCTCN2017102206-appb-000009
所述终端设备根据所述资源索引
Figure PCTCN2017102206-appb-000010
确定第二正交序列
Figure PCTCN2017102206-appb-000011
其中;
Figure PCTCN2017102206-appb-000012
为天线编号或用户编号,
Figure PCTCN2017102206-appb-000013
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述终端设备使用两个正交序列对所述上行调制数据进行扩频处理,包括:所述终端设备根据如下公式对所述上行调制数据进行扩频处理:
Figure PCTCN2017102206-appb-000014
其中,b为1,
Figure PCTCN2017102206-appb-000015
为所述扩频数据,
Figure PCTCN2017102206-appb-000016
为物理上行控制信道PUCCH序列长度;d(n)为所述上行调制数据,n=0,1,...,9。通过该方法,可以兼容新的扩频处理方式与现有的扩频处理方式,使得新终端设备和现有的终端设备均可以正常工作。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,在所述终端设备在所述第一个时隙和所述第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列之前,所述方法还包括:所述终端设备根据所述资源索引
Figure PCTCN2017102206-appb-000017
确定第一正交序列
Figure PCTCN2017102206-appb-000018
所述终端设备通过以下公式确定所述导频序列:
Figure PCTCN2017102206-appb-000019
其中,
Figure PCTCN2017102206-appb-000020
为所述导频序列,
Figure PCTCN2017102206-appb-000021
Figure PCTCN2017102206-appb-000022
为一个时隙内用于导频传输的SC-FDMA符号个数,
Figure PCTCN2017102206-appb-000023
m'为时隙序号,
Figure PCTCN2017102206-appb-000024
等于
Figure PCTCN2017102206-appb-000025
Figure PCTCN2017102206-appb-000026
为[1,1]或者[1,-1],在所述用于导频传输的 SC-FDMA符号上携带的ACK或NACK信息时,z(e)为所述ACK或NACK信息,若未携带所述ACK或NACK信息,则z(e)为1。
第二方面,本发明实施例还提供一种上行控制信号的传输方法,包括:
网络侧设备确定终端设备发送上行数据的上行传输资源的两个物理资源块PRB;其中,所述两个PRB所在的时隙不同;所述网络侧设备在所述两个PRB上接收所述上行数据以及导频序列;其中,所述上行数据为通过两个正交序列进行扩频的扩频数据;不同终端设备的导频序列相互正交;所述网络侧设备根据所述终端设备发送的导频序列解调所述终端设备发送的上行数据。
结合第二方面,在第二方面的第一种可能的实现方式中,在所述网络侧设备在所述两个PRB上接收所述上行数据以及导频序列之前,所述方法还包括:所述网络侧设备发送第一指示信息给所述终端设备,其中,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述方法还包括:所述网络侧设备发送第二指示信息给所述终端设备,其中,所述第二指示信息用于指示所述两个PRB包含的子载波完全相同。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述方法还包括:所述网络侧设备发送第三指示信息给所述终端设备,其中,所述第三指示信息用于指示在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第三种可能的实现方式种的任意一种,在第二方面的第四种可能的实现方式中,所述方法还包括:所述网络侧设备发送资源索引
Figure PCTCN2017102206-appb-000027
和资源索引
Figure PCTCN2017102206-appb-000028
给所述终端设备,其中,所述资源索引
Figure PCTCN2017102206-appb-000029
用于确定所述两个PRB的位置、所述两个正交序列中的一个正交序列以及所述导频序列,所述资源索引
Figure PCTCN2017102206-appb-000030
用于确定所述两个正交序列中的另一个正交序列;
Figure PCTCN2017102206-appb-000031
为天线编号或用户编号。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述网络侧设备确定所述两个PRB,包括:所述网络侧设备根据如下公式确定所述两个PRB:
Figure PCTCN2017102206-appb-000032
其中,
Figure PCTCN2017102206-appb-000033
Figure PCTCN2017102206-appb-000034
为一个PRB包含的子载波数,ns为时隙序号,
Figure PCTCN2017102206-appb-000035
表示向下取整,nPRB为所述两个PRB包含的不同时隙分别对应的PRB编号;a为0时,表征所述两个PRB包含的子载波完全相同,a为1时,表征所述两个PRB包含的子载波完全不相同。
在前述一些可能的实现方式中,所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。
在前述一些可能的实现方式中,在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
第三方面,本发明实施例提供一种终端设备,可以执行包含第一方面以及第一方面各种可能实现方式所述的方法。
作为一个例子,终端设备包括处理器、发送器和接收器。其中,处理器可以用于执行获取、调制、编码、确定、映射等处理动作。接收器可用于执行接收动作。发送器用于执行发送动作。
第四方面,本发明实施例提供一种网络侧设备,可以执行包含第二方面以及第二方面各种可能实现方式所述的方法。
作为一个例子,网络侧设备包括处理器、发送器和接收器。其中,处理器可以用于执行获取、确定、解调等处理动作。接收器可用于执行接收动作。发送器用于执行发送动作。
在前述的一些可能的实现方式中,两个PRB包含的子载波完全相同。
在前述的一些可能的实现方式中,在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
第五方面,本发明实施例提供一种上行控制信号的传输装置,所述传输装置包括用于实现第一方面所述的方法的功能模块。
第六方面,本发明实施例还提供一种上行控制信号的传输装置,所述传输装置包括用于实现第二方面所述的方法的功能模块。
第七方面,本发明实施例还提供一种计算机存储介质,所述计算机存储介质上存储有程序代码,所述程序代码包括用于实现所述第一方面、第二方面的方法的任意可能的实现方式的指令。
附图说明
图1为本发明实施例提供的一个上行时隙Tslot的资源的示意图;
图2为本发明实施例提供的一种两个PRB为跳频结构的示意图;
图3为本发明实施例提供的一种通信系统的结构图;
图4为本发明实施例提供的一种装置的结构图;
图5为本发明实施例提供的一种上行控制信号的传输方法的流程图;
图6为本发明实施例提供的一种两个PRB为非跳频结构的示意图;
图7为本发明实施例提供的一种上行控制信号的传输装置的功能框图。
具体实施方式
本发明实施例提供一种上行控制信号的传输方法、网络侧设备及终端设备,用以解决现有技术中资源利用率较低的技术问题。
为了能够更加清楚地理解本发明实施例的技术方案,本发明实施例以LTE系统中PUCCH Format2/2a/2b的传输控制信令的传输方式为例进行说明。
LTE系统采用正交频分复用(英文:Orthogonal Frequency Division Multiplexing,简称:OFDM)技术将“频率”和“时间”资源细分为:“子载波”和“SC-FDMA符号”。以LTE的20MHz为例,频率上18MHz可用带宽分为100个PRB,表示为
Figure PCTCN2017102206-appb-000036
每个PRB包含连续的12个子载波,表示为
Figure PCTCN2017102206-appb-000037
每个子载波之间的频率间隔为15KHz,时间上每1ms分为2个时隙(slot,表示为Tslot=0.5ms)。每个时隙包含7个SC-FDMA符号,表示为
Figure PCTCN2017102206-appb-000038
Figure PCTCN2017102206-appb-000039
即为一个PRB。如图1所示,为一个上行时隙Tslot的资源的示意图,其中,一个子载波k和一个符号t对应一个资源元素(英文:Resource Element,简称:RE)。
在LTE系统中,PUCCH的具体资源分配是以2个PRB为粒度的,在频域上,两个PRB的频率资源位于有用带宽的最两边,将中间的整块频谱资源用来传送上行数据,既能有效的利用频谱资源又能保持上行传输的单载波特性。在一个子帧(1ms)中,时隙0,上行控制信号被映射到系统频带边缘的某一个PRB上,在时隙1,上行控制信号就会被映射到系统频带另一边缘的对应PRB上。如图2所示,p=0的2个PRB组成1个PUCCH域(也称为PUCCH资源)。类似的,p=1的2个PRB组成1个PUCCH域;p=2的2个PRB组成1个PUCCH域;p=3的2个PRB组成1个PUCCH域。其中,p可以称为PUCCH的资源编号。
通常,网络侧设备,例如基站(例如,eNB或eNodeB)会指示用户在哪些子帧、在子帧的哪些PRB上传输上行控制信号,例如CQI,ACK/NACK。在LTE系统中,基站会发送Format2/2a/2b的PUCCH资源索引
Figure PCTCN2017102206-appb-000040
用户在发送上行控制信号的时机到来时,会通过公式(1)和公式(2)来计算自己所使用的PRB。
Figure PCTCN2017102206-appb-000041
Figure PCTCN2017102206-appb-000042
其中,ns为时隙序号,
Figure PCTCN2017102206-appb-000043
表示向下取整。
举例来说,通过公式(1)和公式(2)计算得到在时隙0时,用户使用的PRB为PRB0,在时隙1时,用户使用的PRB为PRB99。因此,两个PRB是跳频设计。
在一个时隙中,7个符号包含2个导频符号和5个数据符号,两个时隙共包含14个符号,4个导频符号,10个数据符号,如前文所述,每个符号内包含12个子载波。
在确定用于发送上行控制信号的PUCCH资源后,接下来用户需要将上行控制信号映射到确定的PRB上。具体来说,根据LTE系统对CQI的编码设计,每个用户的上行控制信号,例如CQI在4-11bits之间,经过信道编码得到20bits的编码数据,再经过四相相移键控(英文:Quadrature Phase Shift Keying,简称:QPSK)调制为10个调制数据,PUCCH Format2的作用就是在10个数据符号上发送这10个调制数据d(0),...,d(9)。导频符号通常用来发送导频信号的,导频信号例如为解调参考信号(英文:Demodulation Reference Signal,简称:DMRS)。
在LTE系统中,在PUCCH Format2上采用正交的码分复用序列区分不同的用户。具体的,先选择一个长度为12的基序列,例如Zadoff-Chu序列。然后对基序列进行循环移位,得到12个正交的循环移位序列,也称为码道,每个用户使用1个码道。然后将10个调制数据d(0),...,d(9)调制为120个扩频数据,即每一个调制数据经过长度为12的序列进行扩频。其中扩频调制公式请参考公式(3)。
Figure PCTCN2017102206-appb-000044
其中,d(n)为前述的调制数据,
Figure PCTCN2017102206-appb-000045
Figure PCTCN2017102206-appb-000046
Figure PCTCN2017102206-appb-000047
为长度为12的基序列,不同α(0≤α<12)将生成正交的序列
Figure PCTCN2017102206-appb-000048
Figure PCTCN2017102206-appb-000049
为天线编号或用户编号,其中,
Figure PCTCN2017102206-appb-000050
为一个导频符号包含的子载波个数,
Figure PCTCN2017102206-appb-000051
为PUCCH序列长度,
Figure PCTCN2017102206-appb-000052
α通过以下公式(4)确定。
Figure PCTCN2017102206-appb-000053
其中,
Figure PCTCN2017102206-appb-000054
以及如果ns mod2=0,则
Figure PCTCN2017102206-appb-000055
如果ns mod2=1,则
Figure PCTCN2017102206-appb-000056
其中,
Figure PCTCN2017102206-appb-000057
表示一个小区级的循环移位,具体的取值和时隙以及时隙内的符号有关,l表示时隙内的符号索引,
Figure PCTCN2017102206-appb-000058
表示用于混合Format1和Format2的码字数量,可以为一个固定的高层参数,其中,Format1用于反馈ACK或NACK的。
Figure PCTCN2017102206-appb-000059
表示Format2/2a/2b反馈的PRB的数量。
由上面公式(4)可知,正交序列的生成与资源索引
Figure PCTCN2017102206-appb-000060
相关。本部分内容为本领域技术人员所熟知的内容(可以参考3GPP协议TS36.211中第5章),所以在此不再详述。
接下来UE将通过公式(3)得到的自身的10个扩频数据映射到PRB0和PRB99的RE上。如果同时有12个用户复用同一PUCCH资源时,这两个PRB将承载120个扩频数据。
如果需要同时反馈CQI以及ACK/NACK时,PUCCH资源的每个时隙内的第二个导频符号被用来承载ACK/NACK的数据,ACK/NACK的数据可以称为数据d(10)。不过如此一来,一个PUCCH资源中,每个时隙只有一个导频符号可以用来承载导频信号,而且因为两个时隙之间是跳频设计,信道特征相差较多,所以要采用各自时隙内的12个正交导频进行信道估计,所以一个PUCCH资源上正交导频的数量最大为12。
由于一个PUCCH资源上最多可以允许12个用户的码分复用,所以在现有的LTE系统中,一个PUCCH资源上最多支持12个用户进行上行控制信号的传输。因此,资源利用率较低。
以下将详细描述本发明实施例中方案的实施过程、目的。
本发明实施例提供的一种上行控制信号的传输方法,该方法可以应用于通信网络系统中。请参考图3所示,为本发明实施例提供的一种可能的通信网络系统结构图。如图3所示的结构,该通信网络系统包括网络侧设备和多个终端设备。网络侧设备为终端设备的服务网络侧设备,服务侧网络设备是指该通过无线空口协议为终端设备提供RRC连接、非接入层(英文:non-access stratum,简称:NAS)移动性管理和安全性输入等服务的网络侧设备。网络侧设备和终端设备可以通过空口协议进行通信。
应理解,图3所示的通信系统中仅示出了四个终端设备(孤立终端)和一个网络侧设备的情形,但本发明并不限于此。网络侧设备的覆盖范围内还可以包括其它数量的终端设备。进一步可选的,图3中网络侧设备和终端设备所在的通信系统还可以包括网络控制器和/或移动管理实体等其它网络实体,本发明实施例不做限定。
本文中提到的网络侧设备,可以是全球移动通讯(英文:Global System of Mobile communication;简称:GSM)或码分多址(英文:Code Division Multiple Access;简称:CDMA)中的基站(英文:Base Transceiver Station;简称:BTS)中,也可以是宽带码分多址(英文:Wideband Code Division Multiple Access;简称:WCDMA)中的基站(英文:NodeB;简称NB),还可以是长期演进(英文:Long Term Evolution;简称:LTE)中的演进型基站(英文:Evolutional Node B;简称:eNB或eNodeB),或者中继站或接入点,或 者未来5G网络中的基站等,本文中并不限定。
本文中提到的终端设备,可以是无线终端设备也可以是有线终端设备,无线终端设备可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(英文:Radio Access Network;简称:RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(英文:Personal Communication Service;简称:PCS)电话、无绳电话、会话发起协议(英文:Session Initiation Protocol;简称:SIP)话机、无线本地环路(英文:Wireless Local Loop;简称:WLL)站、个人数字助理(英文:Personal Digital Assistant;简称:PDA)等设备。无线终端设备也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment)。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本文中的一些英文简称为以LTE系统为例对本发明实施例进行的描述,其可能随着网络的演进发生变化,具体演进可以参考相应标准中的描述。
接下来请参考图4,图4为本发明实施例提供的通信设备的可能的结构图。该通信设备例如为上述网络侧设备、终端设备。如图4所示,该通信设备包括:处理器10、发送器20、接收器30、存储器40和天线50。存储器40、发送器20和接收器30和处理器10可以通过总线进行连接。当然,在实际运用中,存储器40、发送器20和接收器30和处理器10之间可以不是总线结构,而可以是其它结构,例如星型结构,本申请不作具体限定。
可选的,处理器10具体可以是通用的中央处理器或特定应用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是使用现场可编程门阵列(英文:Field Programmable Gate Array,简称:FPGA)开发的硬件电路,可以是基带处理器。
可选的,处理器10可以包括至少一个处理核心。
可选的,存储器40可以包括只读存储器(英文:Read Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)和磁盘存储器中的一种或多种。存储器40用于存储处理器10运行时所需的数据和/或指令。存储器40的数量可以为一个或多个。
可选的,发送器20和接收器30在物理上可以相互独立也可以集成在一起。发送器20可以通过天线50进行数据发送。接收器30可以通过天线50进行数据接收。
接下来请参考如图5所示,为本发明实施例中上行控制信号的传输方法的流程图。如图5所示,该方法包括:
步骤101:终端设备将上行控制信号进行编码以及调制,获得上行调制数据;
步骤102:终端设备使用两个正交序列对所述上行调制数据进行扩频处理,获得扩频数据;其中,所述两个正交序列为基于相同的基序列进行循环移位得到的正交序列;
步骤103:终端设备将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的物理资源块PRB上的子载波以及用于数据传输的单载波频分多址SC-FDMA符号上;
步骤104:终端设备在第一个时隙和第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列;
步骤105:终端设备发送上行数据,所述上行数据包括所述用于数据传输的SC-FDMA符号和所述用于导频传输的SC-FDMA符号。
其中,在步骤101中,终端设备获取的待发送的上行控制信号例如为CQI,CQI通过PUCCH format2传输。待发送的上行控制信号例如为CQI以及1bit的ACK/NACK,该CQI和ACK/NACK通过PUCCH format2a传输。待发送的上行控制信号还可以是CQI以及2bits的ACK/NACK,该CQI和ACK/NACK通过PUCCH format2b传输。
可选的,对上行控制信号进行编码可以是进行信道编码,通常来讲,CQI在4-11bits之间,通过信道编码得到20bits的编码数据。
可选的,步骤101中的调制可以QPSK调制,所以20bits的编码数据经过QPSK调制之后,得到10个调制数据d(n),n=0,1,...,9。当然,该部分内容以现有的LTE系统为例进行举例说明的,在实际运用中,上行控制信号可以是随着系统演进出现的上行控制信号,编码方法和调制方法也可以是随着系统演进出现的新的编码方法或调制方法,所以得到的调制数据的数量也可以是其它取值,即n还可以是大于或等于10的整数。
接下来,终端设备执行步骤102,即使用两个正交序列对所述上行调制数据进行扩频处理,获得扩频数据;其中,所述两个正交序列为基于相同的基序列进行循环移位得到的正交序列。可选的,所述两个正交序列为基于相同的基序列根据相同的循环移位规则进行循环移位得到的正交序列。
需要说明的是,终端设备执行步骤102可以是协议约定的,也可以是根据指示执行步骤102。在后者的情况下,终端设备还接收第一指示信息,第一指示信息用于指示终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。只有在接收到第一指示信息时,才会执行步骤102。若终端设备没有接收到第一指示信息,或者接收到用于指示终端设备只使用一个正交序列对调制数据进行扩频处理时,终端设备可以按照前述描述的现有技术中只使用一个正交序列的方法进行扩频,例如通过前述公式(3)进行扩频处理。
另外,对于前述协议约定的情况,适用于通信系统中的所有终端设备均支持使用两个正交序列进行扩频的情况。而需要指示的情况,用以兼容现有的无法支持使用两个正交序列进行扩频的终端设备。
可选的,终端设备接收网络侧设备,例如服务基站发送的第一指示信息。
其中,两个正交序列可以是预设的正交序列,也可以是终端设备根据预定规则计算得到的,不管是哪种方式,两个正交序列为基于相同的基序列进行循环移位得到的正交序列。以下将详细描述终端设备如何根据预定规则计算得到两个正交序列。
可选的,在步骤102之前,终端设备还接收资源索引
Figure PCTCN2017102206-appb-000061
和资源索引
Figure PCTCN2017102206-appb-000062
终端设备根据资源索引
Figure PCTCN2017102206-appb-000063
确定第一正交序列
Figure PCTCN2017102206-appb-000064
终端设备根据资源索引
Figure PCTCN2017102206-appb-000065
确定第二正交序列
Figure PCTCN2017102206-appb-000066
其中,确定第一正交序列
Figure PCTCN2017102206-appb-000067
和第二正交序列的方式相同;
Figure PCTCN2017102206-appb-000068
为天线编号或用户编号,
Figure PCTCN2017102206-appb-000069
可选的,终端设备是接收网络侧设备,例如服务基站发送的资源索引
Figure PCTCN2017102206-appb-000070
和资源索引
Figure PCTCN2017102206-appb-000071
需要说明的是,资源索引
Figure PCTCN2017102206-appb-000072
和资源索引
Figure PCTCN2017102206-appb-000073
之间相差不超过12,例如资源索引
Figure PCTCN2017102206-appb-000074
和资源索引
Figure PCTCN2017102206-appb-000075
均为0-11之内的任意两个不同的数值。再例如,资源索引
Figure PCTCN2017102206-appb-000076
和资源索引
Figure PCTCN2017102206-appb-000077
均为12-23之内的任意两个不同的数值。当然,这里是以每个PRB包含12个子载波为例进行说明的,若随着通信技术发展,在未来每个PRB包含的子载波数发生变化时,资源索引
Figure PCTCN2017102206-appb-000078
和资源索引
Figure PCTCN2017102206-appb-000079
之间的数值关系也会发生变化。例如子载波数为24,则资源索引
Figure PCTCN2017102206-appb-000080
和资源索引
Figure PCTCN2017102206-appb-000081
之间相差不超过24。因此,资源索引
Figure PCTCN2017102206-appb-000082
和资源索引
Figure PCTCN2017102206-appb-000083
之间相差不超过每个PRB包含的子载波数。
以资源索引
Figure PCTCN2017102206-appb-000084
和资源索引
Figure PCTCN2017102206-appb-000085
之间相差不超过12为例,对于每一个用户而言,使用0-11中的任意两个资源索引值,即每个用户使用两个码道,理论上能够区分
Figure PCTCN2017102206-appb-000086
个用户,所以理论上本实施例中的扩频方法支持66个用户的复用。相较于现有技术中只能支持12个用户的复用,大大提高了复用的用户数。
可选的,
Figure PCTCN2017102206-appb-000087
Figure PCTCN2017102206-appb-000088
Figure PCTCN2017102206-appb-000089
为长度为12的基序列,α通过以下公式(5)确定。
Figure PCTCN2017102206-appb-000090
其中,j=0时,对应的是确定第一正交序列,j=1时,对应的是确定第二正交序列。
其中,
Figure PCTCN2017102206-appb-000091
以及如果ns mod2=0, 则
Figure PCTCN2017102206-appb-000092
如果ns mod2=1,则
Figure PCTCN2017102206-appb-000093
由以上描述可以看出,确定第一正交序列的方式和确定第二正交序列的方式相同,只是采用的资源索引不同。而且,上述确定方式为本领域技术人员所熟知的内容,不同的是,在本实施例中,有两个不同的资源索引,计算得到两个正交序列,而现有技术中只有一个资源索引,所以只会得到一个正交序列。
当然,在实际运用中,第一正交序列和第二正交序列可以是通过不同的方法确定出的,本发明不作具体限定。
在确定了第一正交序列和第二正交序列之后,接下来执行步骤102,即终端设备使用两个正交序列对所述上行调制数据进行扩频处理。
可选的,终端设备根据公式(6)对所述上行调制数据进行扩频处理。
Figure PCTCN2017102206-appb-000094
其中,b为1,b即为前述第一指示信息。
Figure PCTCN2017102206-appb-000095
为所述扩频数据,
Figure PCTCN2017102206-appb-000096
为物理上行控制信道PUCCH序列长度;d(n)为所述上行调制数据,n=0,1,...,9。
在公式(6)中,是通过第一正交序列
Figure PCTCN2017102206-appb-000097
和第二正交序列
Figure PCTCN2017102206-appb-000098
的和来进行扩频处理的。
在实际运用中,终端设备还可以接收另一指示信息,例如b为0的指示信息,在该种情况下,终端设备进行扩频处理的方式与现有技术相同,请参考公式(3)。换言之,公式(6)的扩频处理方式可以兼容现有技术中的扩频处理以及本发明实施例中的扩频处理方式。当然,若不需要兼容现有技术中的扩频处理方式,即不需要指示信息,协议约定终端设备直接执行步骤102,那么公式(6)中可以直接去掉b这个系数即可。
接下来终端设备执行步骤103,即终端设备将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的PRB上。其中,第一个时隙和第二个时隙对应的PRB可以是协议约定好的,也可以是通过预设规则确定出的。不管是哪种方式,第一个时隙对应的PRB包含的子载波和第二个时隙对应的PRB包含的子载波完全相同,即非跳频结构,换言之,第一个时隙对应的PRB包含的12个子载波与第二个时隙对应的PRB包含的12个子载波完全相同。该情况适用于PUCCH format2/2a/2b。非跳频结构请参考图6所示,例如两个时隙对应的资源编号p=1的PRB为相同的PRB。
另一种情况为第一个时隙对应的PRB包含的子载波和第二个时隙对应的PRB包含的子载波完全不相同,即跳频结构,该情况适用于PUCCH format2。因为在PUCCH format2 中,每个时隙内的两个导频符号都可以用来传输导频序列,所以即使采用跳频结构,每个时隙也可以传输24个导频序列,可以供24个用户使用。而在PUCCH format2a/2b中,每个时隙的第二个导频符号被占用,不能够用来传输导频序列,所以需要采用非跳频结构,使得两个时隙的两个导频符号总共传输24个导频,可以供24个用户使用。
因为通过前述描述的扩频方法,可以支持66个用户的复用,而导频序列的数量也可以提到24,所以一个上行传输资源,最大支持的用户数量可以增加到24。
可选的,终端设备还接收第二指示信息,第二指示信息用于指示第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波相同或不相同。
接下来将描述一种确定两个时隙对应的PRB的方法。
具体的,终端设备接收资源索引
Figure PCTCN2017102206-appb-000099
该步骤和前述在确定两个正交序列时接收资源索引可以是同一个步骤。然后终端设备根据公式(7)确定两个时隙对应的PRB。
Figure PCTCN2017102206-appb-000100
其中,
Figure PCTCN2017102206-appb-000101
a为0即为前述第二指示信息,用于指示第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波相同。从公式(7)可以看出,当a为0时,PRB的位置和时隙无关,两个时隙下的PRB是一样的,所以两个时隙的PRB包含的子载波相同,例如均为子载波0至子载波11。而当a为1时,公式(7)和公式(2)相同,PRB的位置和时隙相关,不同时隙的PRB不相同,例如时隙0时,PRB为PRB0,而时隙1时,PRB为PRB99。
在实际运用中,如果不需要兼容现有技术中的跳频结构,那么可以直接通过协议约定a为0,或者直接约定使用a为0之后的公式。
接下来,终端设备将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的PRB上的子载波以及用于数据传输的SC-FDMA符号上。该部分内容为本领域技术人员所熟知的内容,所以在此不再赘述。
接下来,在步骤104中,终端设备在所述第一个时隙和所述第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列。需要说明的是,步骤104和步骤103的执行顺序不限定先后顺序。放置导频序列的内容为本领域技术人员所熟知的内容,所以在此不再详述,以下将介绍一种确定导频序列的方法。
具体的,终端设备根据资源索引
Figure PCTCN2017102206-appb-000102
确定第一正交序列
Figure PCTCN2017102206-appb-000103
终端设备根据公式(10)确定导频序列。
Figure PCTCN2017102206-appb-000104
其中,
Figure PCTCN2017102206-appb-000105
为所述导频序列,
Figure PCTCN2017102206-appb-000106
Figure PCTCN2017102206-appb-000107
为一个时隙内用于导频传输的SC-FDMA符号个数,
Figure PCTCN2017102206-appb-000108
m'为时隙序号,
Figure PCTCN2017102206-appb-000109
等于
Figure PCTCN2017102206-appb-000110
Figure PCTCN2017102206-appb-000111
为[1,1]或者[1,-1],在所述用于导频传输的SC-FDMA符号上携带的ACK或NACK信息时,z(e)为所述ACK或NACK信息,若未携带所述ACK或NACK信息,则z(e)为1。
详细来说,一个上行传输资源中有4个导频符号,共有4*12=48个子载波,公式(10)表示48个子载波对应的导频序列。其中,i为0-11,用于在一个符号上遍历12个子载波。m'为0和1,用于遍历两个时隙。e为0和1,用于遍历每个时隙内的2个导频符号。
详细来说,每个导频符号上导频序列长度是12,第一正交序列
Figure PCTCN2017102206-appb-000112
只有12个,可以记为P1,P2,P3,....,P12,其中,每个序列Pi的长度为12。
从单个导频符号来看,导频序列长度限制为12,所以只能有12个正交导频序列。本申请实施例中采用非跳频的方式,将两个时隙内的第一个导频符号看作整体,组成长度为24的序列,这样就可以有24个正交导频序列。
在具体实施过程中,如何造出24个正交导频序列,有多种方法,用[1,1]/[1,-1]是一种简单、标准改动很小的方法。
具体来说,序列P1和序列P2正交,可以表示为:P1*P2’=0。
前12个用户,在第一个时隙的第一个导频符号上的序列和第二个时隙的第二个导频符号上的序列依次用:[P1 P1],[P2 P2],[P3 P3],……,[P12 P12]。
后面的用户,在第一个时隙的第一个导频符号上的序列和第二个时隙的第二个导频符号上的序列依次:[P1 -P1],[P2 -P2],[P3 -P3],……[P12 –P12]。
那么用户1和用户2的导频序列正交:即[P1 P1]*[P2 P2]’=P1*P2’+P1*P2’=0。
用户1和用户13的导频序列正交:即[P1 P1]*[P1 -P1]’=P1*P1’-P1*P1’=0。以此类推,每两个用户的导频序列均是正交的。
因此,
Figure PCTCN2017102206-appb-000113
为[1,1]表示某个用户的导频序列在两个时隙的第一个导频符号上的导频序列是相同的。
Figure PCTCN2017102206-appb-000114
为[1,-1]表示某个用户的导频序列在两个时隙的第一个导频符号上的序列是相反的。
可选的,
Figure PCTCN2017102206-appb-000115
为[1,1]或者[1,-1]可以是协议约定的,也可以是通过指示信息来指示,例如终端设备接收第三指示信息,第三指示信息用于指示:用户的导频序列在第一个时隙 上的第一个导频符号上的序列和在第二个时隙上的第一个导频符号上的序列相反。
举例来说,如表一所示,为协议约定的表格,表示
Figure PCTCN2017102206-appb-000116
的取值。
序列索引Noc 正常循环前缀 扩展循环前缀
0 [1 1] -
1 [1 -1] -
表一
在表一中,序列索引Noc即为前述第三指示信息。
在步骤103和步骤104完成之后,接下来执行步骤105,即终端设备发送上行数据,所述上行数据包括所述用于数据传输的SC-FDMA符号和所述用于导频传输的SC-FDMA符号,例如通过物理天线发送上行数据。该部分内容为本领域技术人员所熟知的内容,所以在此不再赘述。
另外,可选的,前述第一指示信息、第二指示信息、第三指示信息可以是同一个指示域进行指示,例如通过方案参数K指示,若K=0,则表示a=1,b=0,Noc=0。正交序列由资源索引
Figure PCTCN2017102206-appb-000117
确定。此时表示终端设备工作在现有模式。若K=1,则表示a=0,b=0,Noc=0,同时表示使用一个正交序列进行扩频处理,该正交序列由资源索引
Figure PCTCN2017102206-appb-000118
确定。若K=2,则表示a=0,b=1,Noc=0,同时表示使用两个正交序列进行扩频处理,两个正交序列分别由资源索引
Figure PCTCN2017102206-appb-000119
和资源索引
Figure PCTCN2017102206-appb-000120
确定。若K=3,则表示a=0,b=1,Noc=1,同时表示使用两个正交序列进行扩频处理,两个正交序列分别由资源索引
Figure PCTCN2017102206-appb-000121
和资源索引
Figure PCTCN2017102206-appb-000122
确定。
在网络侧设备侧,网络侧设备确定终端设备发送上行数据的上行传输资源的两个物理资源块PRB;其中,所述两个PRB所在的时隙不同;网络侧设备在所述两个PRB上接收所述上行数据以及导频序列;其中,所述上行数据为通过两个正交序列进行扩频的扩频数据;不同终端设备的导频序列相互正交;网络侧设备根据所述终端设备发送的导频序列解调所述终端设备发送的上行数据。
网络侧设备确定终端设备发送上行数据的两个PRB的确定方法与前述终端设备侧确定的方式相同,例如也是通过公式(7)进行确定。
而网络侧设备在两个PRB上接收上行数据以及导频序列、以及根据导频序列解调所述上行数据为本领域技术人员所熟知的内容,例如根据导频序列进行信道估计,然后可以采用最大似然(ML)算法来解调上行数据,所以在此不再赘述。
可选的,网络侧设备还向终端设备发送前述第一指示信息至第三指示信息中的任意一个或任意组合。
可选的,网络侧设备还向终端设备发送资源索引
Figure PCTCN2017102206-appb-000123
和资源索引
Figure PCTCN2017102206-appb-000124
以下将举例进行说明,请参考表二所示。
Figure PCTCN2017102206-appb-000125
表二
在表二中,用户1-6分别使用1个码道,对应的资源索引
Figure PCTCN2017102206-appb-000126
分别为0、2、4、6、8、10。用户7-18分别使用2个码道,每个用户使用1、3、5、7、9、11中的任意两个码道,分别通过资源索引
Figure PCTCN2017102206-appb-000127
和资源索引
Figure PCTCN2017102206-appb-000128
指示。在理论上,每个用户使用1、3、5、7、9、11中的任意两个码道,那么就可以支持
Figure PCTCN2017102206-appb-000129
个用户复用,但是因为导频序列只有6个码道的2倍,即12,因为每个用户需要使用一个正交导频序列来区分,所以这里只支持12个用户复用,所以加上使用1个码道的6个用户,达到上行传输资源支持18个用户的复用的技术效果。
基于同一发明构思,本发明实施例还提供一种通信设备(如图4所示),该通信设备用于实现前述方法中的任意一种方法。
当该通信设备为终端设备时,处理器10,用于将上行控制信号进行编码以及调制,获得上行调制数据;使用两个正交序列对所述上行调制数据进行扩频处理,获得扩频数据;其中,所述两个正交序列为基于相同的基序列进行循环移位得到的正交序列;将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的物理资源块PRB上的子载波以及用于数据传输的单载波频分多址SC-FDMA符号上;在所述第一个时隙和所述第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列;发送器20,用于发送上行数据,所述上行数据包括所述用于数据传输的SC-FDMA符号和所述用于导频传输的SC-FDMA符号。
可选的,接收器30,用于接收第一指示信息,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
可选的,所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。
可选的,接收器30,用于接收第二指示信息,所述第二指示信息用于指示所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。
可选的,在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
可选的,接收器30,用于接收第三指示信息,所述第三指示信息用于指示:在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
可选的,接收器30,所述接收器30用于接收资源索引
Figure PCTCN2017102206-appb-000130
处理器10用于根据如下公式确定所述第一个时隙和所述第二个时隙分别对应的PRB:
Figure PCTCN2017102206-appb-000131
其中,
Figure PCTCN2017102206-appb-000132
Figure PCTCN2017102206-appb-000133
为一个PRB包含的子载波数,ns为时隙序号,
Figure PCTCN2017102206-appb-000134
表示向下取整,nPRB为所述第一个时隙和所述第二个时隙分别对应的PRB编号;
Figure PCTCN2017102206-appb-000135
为天线编号或用户编号;a为0时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同,a为1时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全不相同。
可选的,接收器30还用于:接收资源索引
Figure PCTCN2017102206-appb-000136
处理器10还用于:根据所述资源 索引
Figure PCTCN2017102206-appb-000137
确定第一正交序列
Figure PCTCN2017102206-appb-000138
根据所述资源索引
Figure PCTCN2017102206-appb-000139
确定第二正交序列
Figure PCTCN2017102206-appb-000140
其中;
Figure PCTCN2017102206-appb-000141
为天线编号或用户编号,
Figure PCTCN2017102206-appb-000142
可选的,处理器10用于根据如下公式对所述上行调制数据进行扩频处理:
Figure PCTCN2017102206-appb-000143
其中,b为1,
Figure PCTCN2017102206-appb-000144
为所述扩频数据,
Figure PCTCN2017102206-appb-000145
为物理上行控制信道PUCCH序列长度;d(n)为所述上行调制数据,n=0,1,...,9。
可选的,处理器10还用于:根据所述资源索引
Figure PCTCN2017102206-appb-000146
确定第一正交序列
Figure PCTCN2017102206-appb-000147
通过以下公式确定所述导频序列:
Figure PCTCN2017102206-appb-000148
其中,
Figure PCTCN2017102206-appb-000149
为所述导频序列,
Figure PCTCN2017102206-appb-000150
Figure PCTCN2017102206-appb-000151
为一个时隙内用于导频传输的SC-FDMA符号个数,
Figure PCTCN2017102206-appb-000152
m'为时隙序号,
Figure PCTCN2017102206-appb-000153
等于
Figure PCTCN2017102206-appb-000154
Figure PCTCN2017102206-appb-000155
为[1,1]或者[1,-1],在所述用于导频传输的SC-FDMA符号上携带的ACK或NACK信息时,z(e)为所述ACK或NACK信息,若未携带所述ACK或NACK信息,则z(e)为1。
当该通信设备为网络侧设备时,处理器10,用于确定终端设备发送上行数据的上行传输资源的两个物理资源块PRB;其中,所述两个PRB所在的时隙不同;接收器30,用于在所述两个PRB上接收所述上行数据以及导频序列;其中,所述上行数据为通过两个正交序列进行扩频的扩频数据;不同终端设备的导频序列相互正交;所述处理器10还用于根据所述终端设备发送的导频序列解调所述终端设备发送的上行数据。
可选的,发送器20,用于发送第一指示信息给所述终端设备,其中,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
可选的,所述两个PRB包含的子载波完全相同。
可选的,发送器20,发送第二指示信息给所述终端设备,其中,所述第二指示信息用于指示所述两个PRB包含的子载波完全相同。
可选的,在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频 序列相反。
可选的,发送器20,用于发送第三指示信息给所述终端设备,其中,所述第三指示信息用于指示在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
可选的,发送器20,发送资源索引
Figure PCTCN2017102206-appb-000156
和资源索引
Figure PCTCN2017102206-appb-000157
给所述终端设备,其中,所述资源索引
Figure PCTCN2017102206-appb-000158
用于确定所述两个PRB的位置、所述两个正交序列中的一个正交序列以及所述导频序列,所述资源索引
Figure PCTCN2017102206-appb-000159
用于确定所述两个正交序列中的另一个正交序列。
可选的,处理器10用于根据如下公式确定所述两个PRB:
Figure PCTCN2017102206-appb-000160
其中,
Figure PCTCN2017102206-appb-000161
Figure PCTCN2017102206-appb-000162
为一个PRB包含的子载波数,ns为时隙序号,
Figure PCTCN2017102206-appb-000163
表示向下取整,nPRB为所述两个PRB包含的不同时隙分别对应的PRB编号;
Figure PCTCN2017102206-appb-000164
为天线编号或用户编号;a为0时,表征所述两个PRB包含的子载波完全相同,a为1时,表征所述两个PRB包含的子载波完全不相同。
基于同一发明构思,本发明实施例还提供一种上行控制信号的传输装置,该装置包括用于执行前述方法步骤的功能模块。该传输装置可以是前述终端设备,也可以是作为一个功能模块集成在终端设备中。该传输装置还可以是前述网络侧设备,也可以作为一个功能模块集成在网络侧设备中。作为一个例子,如图7所示,该装置包括:接收单元201、处理单元202和发送单元203。在实际运用中,还可以根据实际需求配置其它单元模块。
具体的,当该传输装置用于实现终端设备的功能时,处理单元202,用于将上行控制信号进行编码以及调制,获得上行调制数据;使用两个正交序列对所述上行调制数据进行扩频处理,获得扩频数据;其中,所述两个正交序列为基于相同的基序列进行循环移位得到的正交序列;将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的物理资源块PRB上的子载波以及用于数据传输的单载波频分多址SC-FDMA符号上;在所述第一个时隙和所述第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列;发送单元203,用于发送上行数据,所述上行数据包括所述用于数据传输的SC-FDMA符号和所述用于导频传输的SC-FDMA符号。
可选的,接收单元201,用于接收第一指示信息,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
可选的,所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含 的子载波完全相同。
可选的,接收单元201,用于接收第二指示信息,所述第二指示信息用于指示所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。
可选的,在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
可选的,接收单元201,用于接收第三指示信息,所述第三指示信息用于指示:在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
可选的,接收单元201,所述接收单元201用于接收资源索引
Figure PCTCN2017102206-appb-000165
处理单元202用于根据如下公式确定所述第一个时隙和所述第二个时隙分别对应的PRB:
Figure PCTCN2017102206-appb-000166
其中,
Figure PCTCN2017102206-appb-000167
Figure PCTCN2017102206-appb-000168
为一个PRB包含的子载波数,ns为时隙序号,
Figure PCTCN2017102206-appb-000169
表示向下取整,nPRB为所述第一个时隙和所述第二个时隙分别对应的PRB编号;
Figure PCTCN2017102206-appb-000170
为天线编号或用户编号;a为0时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同,a为1时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全不相同。
可选的,接收单元201还用于:接收资源索引
Figure PCTCN2017102206-appb-000171
处理单元202还用于:根据所述资源索引
Figure PCTCN2017102206-appb-000172
确定第一正交序列
Figure PCTCN2017102206-appb-000173
根据所述资源索引
Figure PCTCN2017102206-appb-000174
确定第二正交序列
Figure PCTCN2017102206-appb-000175
其中;
Figure PCTCN2017102206-appb-000176
为天线编号或用户编号,
Figure PCTCN2017102206-appb-000177
可选的,处理单元202用于根据如下公式对所述上行调制数据进行扩频处理:
Figure PCTCN2017102206-appb-000178
其中,b为1,
Figure PCTCN2017102206-appb-000179
为所述扩频数据,
Figure PCTCN2017102206-appb-000180
为物理上行控制信道PUCCH序列长度;d(n)为所述上行调制数据,n=0,1,...,9。
可选的,处理单元202还用于:根据所述资源索引
Figure PCTCN2017102206-appb-000181
确定第一正交序列
Figure PCTCN2017102206-appb-000182
通过以下公式确定所述导频序列:
Figure PCTCN2017102206-appb-000183
其中,
Figure PCTCN2017102206-appb-000184
为所述导频序列,
Figure PCTCN2017102206-appb-000185
Figure PCTCN2017102206-appb-000186
为一个时隙内用于导频传输的SC-FDMA符号个数,
Figure PCTCN2017102206-appb-000187
m'为时隙序号,
Figure PCTCN2017102206-appb-000188
等于
Figure PCTCN2017102206-appb-000189
Figure PCTCN2017102206-appb-000190
为[1,1]或者[1,-1],在所述用于导频传输的SC-FDMA符号上携带的ACK或NACK信息时,z(e)为所述ACK或NACK信息,若未携带所述ACK或NACK信息,则z(e)为1。
当该传输装置用于实现网络侧设备的功能时,处理单元202,用于确定终端设备发送上行数据的上行传输资源的两个物理资源块PRB;其中,所述两个PRB所在的时隙不同;接收单元201,用于在所述两个PRB上接收所述上行数据以及导频序列;其中,所述上行数据为通过两个正交序列进行扩频的扩频数据;不同终端设备的导频序列相互正交;所述处理单元202还用于根据所述终端设备发送的导频序列解调所述终端设备发送的上行数据。
可选的,发送单元203,用于发送第一指示信息给所述终端设备,其中,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
可选的,所述两个PRB包含的子载波完全相同。
可选的,发送单元203,发送第二指示信息给所述终端设备,其中,所述第二指示信息用于指示所述两个PRB包含的子载波完全相同。
可选的,在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
可选的,发送单元203,用于发送第三指示信息给所述终端设备,其中,所述第三指示信息用于指示在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
可选的,发送单元203,发送资源索引
Figure PCTCN2017102206-appb-000191
和资源索引
Figure PCTCN2017102206-appb-000192
给所述终端设备,其中,所述资源索引
Figure PCTCN2017102206-appb-000193
用于确定所述两个PRB的位置、所述两个正交序列中的一个正交序列以及所述导频序列,所述资源索引
Figure PCTCN2017102206-appb-000194
用于确定所述两个正交序列中的另一个正交序列。
可选的,处理单元202用于根据如下公式确定所述第一个时隙和所述第二个时隙分别对应的PRB:
Figure PCTCN2017102206-appb-000195
其中,
Figure PCTCN2017102206-appb-000196
Figure PCTCN2017102206-appb-000197
为一个PRB包含的子载波数,ns为时隙序号,
Figure PCTCN2017102206-appb-000198
表示向下取整,nPRB为所述两个PRB包含的不同时隙分别对应的PRB编号;
Figure PCTCN2017102206-appb-000199
为天线编号或用户编号;a为0时,表征所述两个PRB包含的子载波完全相同,a为1时,表征所述两个PRB包含的子载波完全不相同。
前述实施例中的上行控制信号的传输方法中的各种变化方式和具体实例同样适用于图7中的传输装置以及图4中的通信设备,通过前述对上行控制信号的传输方法的详细描述,本领域技术人员可以清楚的知道图7中传输装置以及图4中的通信设备的实施方法,所以为了说明书的简洁,在此不再详述。
本领域内的技术人员应明白,本发明的实施例可提供方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (36)

  1. 一种上行控制信号的传输方法,其特征在于,包括:
    终端设备将上行控制信号进行编码以及调制,获得上行调制数据;
    所述终端设备使用两个正交序列对所述上行调制数据进行扩频处理,获得扩频数据;其中,所述两个正交序列为基于相同的基序列进行循环移位得到的正交序列;
    所述终端设备将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的物理资源块PRB上的子载波以及用于数据传输的单载波频分多址SC-FDMA符号上;
    所述终端设备在所述第一个时隙和所述第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列;
    所述终端设备发送上行数据,所述上行数据包括所述用于数据传输的SC-FDMA符号和所述用于导频传输的SC-FDMA符号。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一指示信息,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二指示信息,所述第二指示信息用于指示所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。
  5. 如权利要求1或2所述的方法,其特征在于,在所述终端设备将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的物理资源块PRB上之前,所述方法还包括:
    所述终端设备接收资源索引
    Figure PCTCN2017102206-appb-100001
    所述终端设备根据如下公式确定所述第一个时隙和所述第二个时隙分别对应的PRB:
    Figure PCTCN2017102206-appb-100002
    其中,
    Figure PCTCN2017102206-appb-100003
    为一个PRB包含的子载波数,ns为时隙序号,
    Figure PCTCN2017102206-appb-100004
    表示向下取整,nPRB为所述第一个时隙和所述第二个时隙分别对应的PRB编号;
    Figure PCTCN2017102206-appb-100005
    为天线编号或用户编号;a为0时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同;a为1时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全不相同。
  6. 如权利要求5所述的方法,其特征在于,在所述终端设备使用两个正交序列对所述 上行调制数据进行扩频处理之前,所述方法还包括:
    所述终端设备接收资源索引
    Figure PCTCN2017102206-appb-100006
    所述终端设备根据所述资源索引
    Figure PCTCN2017102206-appb-100007
    确定第一正交序列
    Figure PCTCN2017102206-appb-100008
    所述终端设备根据所述资源索引
    Figure PCTCN2017102206-appb-100009
    确定第二正交序列
    Figure PCTCN2017102206-appb-100010
    其中;
    Figure PCTCN2017102206-appb-100011
    为天线编号或用户编号,
    Figure PCTCN2017102206-appb-100012
  7. 如权利要求6所述的方法,其特征在于,所述终端设备使用两个正交序列对所述上行调制数据进行扩频处理,包括:
    所述终端设备根据如下公式对所述上行调制数据进行扩频处理:
    Figure PCTCN2017102206-appb-100013
    其中,b为1,
    Figure PCTCN2017102206-appb-100014
    为所述扩频数据,
    Figure PCTCN2017102206-appb-100015
    为物理上行控制信道PUCCH序列长度;d(n)为所述上行调制数据,n=0,1,...,9。
  8. 如权利要求5所述的方法,其特征在于,在所述终端设备在所述第一个时隙和所述第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列之前,所述方法还包括:
    所述终端设备根据所述资源索引
    Figure PCTCN2017102206-appb-100016
    确定第一正交序列
    Figure PCTCN2017102206-appb-100017
    所述终端设备通过以下公式确定所述导频序列:
    Figure PCTCN2017102206-appb-100018
    其中,
    Figure PCTCN2017102206-appb-100019
    为所述导频序列,
    Figure PCTCN2017102206-appb-100020
    为一个时隙内用于导频传输的SC-FDMA符号个数,
    Figure PCTCN2017102206-appb-100021
    m'为时隙序号,m'=0,1,
    Figure PCTCN2017102206-appb-100022
    等于
    Figure PCTCN2017102206-appb-100023
    为[1,1]或者[1,-1],在所述用于导频传输的SC-FDMA符号上携带的ACK或NACK信息时,z(e)为所述ACK或NACK信息,若未携带所述ACK或NACK信息,则z(e)为1。
  9. 如权利要求1-8任一项所述的方法,其特征在于,在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个 用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第三指示信息,所述第三指示信息用于指示:在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
  11. 一种上行控制信号的传输方法,其特征在于,包括:
    网络侧设备确定终端设备发送上行数据的上行传输资源的两个物理资源块PRB;其中,所述两个PRB所在的时隙不同;
    所述网络侧设备在所述两个PRB上接收所述上行数据以及导频序列;其中,所述上行数据为通过两个正交序列进行扩频的扩频数据;不同终端设备的导频序列相互正交;
    所述网络侧设备根据所述终端设备发送的导频序列解调所述终端设备发送的上行数据。
  12. 如权利要求11所述的方法,其特征在于,在所述网络侧设备在所述两个PRB上接收所述上行数据以及导频序列之前,所述方法还包括:
    所述网络侧设备发送第一指示信息给所述终端设备,其中,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
  13. 如权利要求11或12所述的方法,其特征在于,所述两个PRB包含的子载波完全相同。
  14. 如权利要求11-13任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备发送第二指示信息给所述终端设备,其中,所述第二指示信息用于指示所述两个PRB包含的子载波完全相同。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备发送资源索引
    Figure PCTCN2017102206-appb-100024
    和资源索引
    Figure PCTCN2017102206-appb-100025
    给所述终端设备,其中,所述资源索引
    Figure PCTCN2017102206-appb-100026
    用于确定所述两个PRB的位置、所述两个正交序列中的一个正交序列以及所述导频序列,所述资源索引
    Figure PCTCN2017102206-appb-100027
    用于确定所述两个正交序列中的另一个正交序列;
    Figure PCTCN2017102206-appb-100028
    为天线编号或用户编号。
  16. 如权利要求15所述的方法,其特征在于,所述网络侧设备确定所述两个PRB,包括:
    所述网络侧设备根据如下公式确定所述两个PRB:
    Figure PCTCN2017102206-appb-100029
    其中,
    Figure PCTCN2017102206-appb-100030
    为一个PRB包含的子载波数,ns为时隙序号,
    Figure PCTCN2017102206-appb-100031
    表示向下取整,nPRB为所述两个PRB包含的不同时隙分别对应的PRB编号;a为0时,表征所述两个PRB包含的子载波完全相同,a为1时,表征所述两个PRB包含的子载波完全不相同。
  17. 如权利要求11-16任一项所述的方法,其特征在于,在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
  18. 如权利要求11-15任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备发送第三指示信息给所述终端设备,其中,所述第三指示信息用于指示在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
  19. 一种终端设备,其特征在于,包括:
    处理器,用于将上行控制信号进行编码以及调制,获得上行调制数据;使用两个正交序列对所述上行调制数据进行扩频处理,获得扩频数据;其中,所述两个正交序列为基于相同的基序列进行循环移位得到的正交序列;将所述扩频数据映射到上行传输资源的第一个时隙和第二个时隙分别对应的物理资源块PRB上的子载波以及用于数据传输的单载波频分多址SC-FDMA符号上;在所述第一个时隙和所述第二个时隙分别对应的PRB上的用于导频传输的SC-FDMA符号上放置导频序列;
    发送器,用于发送上行数据,所述上行数据包括所述用于数据传输的SC-FDMA符号和所述用于导频传输的SC-FDMA符号。
  20. 如权利要求19所述的终端设备,其特征在于,所述终端设备还包括接收器,用于接收第一指示信息,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
  21. 如权利要求19或20所述的终端设备,其特征在于,所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。
  22. 如权利要求19所述的终端设备,其特征在于,所述终端设备还包括接收器,用于接收第二指示信息,所述第二指示信息用于指示所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同。
  23. 如权利要求19所述的终端设备,其特征在于,所述终端设备还包括接收器,
    所述接收器用于接收资源索引
    Figure PCTCN2017102206-appb-100032
    所述处理器用于根据如下公式确定所述第一个时隙和所述第二个时隙分别对应的PRB:
    Figure PCTCN2017102206-appb-100033
    其中,
    Figure PCTCN2017102206-appb-100034
    为一个PRB包含的子载波数,ns为时隙序号,
    Figure PCTCN2017102206-appb-100035
    表示向下取整,nPRB为所述第一个时隙和所述第二个时隙分别对应的PRB编号;
    Figure PCTCN2017102206-appb-100036
    为天 线编号或用户编号;a为0时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全相同,a为1时,表征所述第一个时隙对应的PRB包含的子载波和所述第二个时隙对应的PRB包含的子载波完全不相同。
  24. 如权利要求23所述的终端设备,其特征在于,所述接收器还用于:接收资源索引
    Figure PCTCN2017102206-appb-100037
    所述处理器还用于:根据所述资源索引
    Figure PCTCN2017102206-appb-100038
    确定第一正交序列
    Figure PCTCN2017102206-appb-100039
    根据所述资源索引
    Figure PCTCN2017102206-appb-100040
    确定第二正交序列
    Figure PCTCN2017102206-appb-100041
    其中;
    Figure PCTCN2017102206-appb-100042
    为天线编号或用户编号,
    Figure PCTCN2017102206-appb-100043
  25. 如权利要求24所述的终端设备,其特征在于,所述处理器用于根据如下公式对所述上行调制数据进行扩频处理:
    Figure PCTCN2017102206-appb-100044
    其中,b为1,
    Figure PCTCN2017102206-appb-100045
    为所述扩频数据,
    Figure PCTCN2017102206-appb-100046
    为物理上行控制信道PUCCH序列长度;d(n)为所述上行调制数据,n=0,1,...,9。
  26. 如权利要求23所述的终端设备,其特征在于,所述处理器还用于:根据所述资源索引
    Figure PCTCN2017102206-appb-100047
    确定第一正交序列
    Figure PCTCN2017102206-appb-100048
    通过以下公式确定所述导频序列:
    Figure PCTCN2017102206-appb-100049
    其中,
    Figure PCTCN2017102206-appb-100050
    为所述导频序列,
    Figure PCTCN2017102206-appb-100051
    为一个时隙内用于导频传输的SC-FDMA符号个数,
    Figure PCTCN2017102206-appb-100052
    m'为时隙序号,m'=0,1,
    Figure PCTCN2017102206-appb-100053
    等于
    Figure PCTCN2017102206-appb-100054
    为[1,1]或者[1,-1],在所述用于导频传输的SC-FDMA符号上携带的ACK或NACK信息时,z(e)为所述ACK或NACK信息,若未携带所述ACK或NACK信息,则z(e)为1。
  27. 如权利要求19-25任一项所述的终端设备,其特征在于,在所述第一个时隙上的第 一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
  28. 如权利要求19所述的终端设备,其特征在于,所述终端设备还包括接收器,用于接收第三指示信息,所述第三指示信息用于指示:在所述第一个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列与在所述第二个时隙上的第一个用于导频传输的SC-FDMA符号上所述终端设备的导频序列相反。
  29. 一种网络侧设备,其特征在于,包括:
    处理器,用于确定终端设备发送上行数据的上行传输资源的两个物理资源块PRB;其中,所述两个PRB所在的时隙不同;
    接收器,用于在所述两个PRB上接收所述上行数据以及导频序列;其中,所述上行数据为通过两个正交序列进行扩频的扩频数据;不同终端设备的导频序列相互正交;
    所述处理器还用于根据所述终端设备发送的导频序列解调所述终端设备发送的上行数据。
  30. 如权利要求29所述的网络侧设备,其特征在于,所述网络侧设备还包括发送器,用于发送第一指示信息给所述终端设备,其中,所述第一指示信息用于指示所述终端设备需要使用两个正交序列对所述上行调制数据进行扩频处理。
  31. 如权利要求29或30所述的网络侧设备,其特征在于,所述两个PRB包含的子载波完全相同。
  32. 如权利要求29所述的网络侧设备,其特征在于,所述网络侧设备还包括发送器,发送第二指示信息给所述终端设备,其中,所述第二指示信息用于指示所述两个PRB包含的子载波完全相同。
  33. 如权利要求29所述的网络侧设备,其特征在于,所述网络侧设备还包括发送器,发送资源索引
    Figure PCTCN2017102206-appb-100055
    和资源索引
    Figure PCTCN2017102206-appb-100056
    给所述终端设备,其中,所述资源索引
    Figure PCTCN2017102206-appb-100057
    用于确定所述两个PRB的位置、所述两个正交序列中的一个正交序列以及所述导频序列,所述资源索引
    Figure PCTCN2017102206-appb-100058
    用于确定所述两个正交序列中的另一个正交序列;
    Figure PCTCN2017102206-appb-100059
    为天线编号或用户编号。
  34. 如权利要求33所述的网络侧设备,其特征在于,所述处理器用于根据如下公式确定所述两个PRB:
    Figure PCTCN2017102206-appb-100060
    其中,
    Figure PCTCN2017102206-appb-100061
    为一个PRB包含的子载波数,ns为时隙序号,
    Figure PCTCN2017102206-appb-100062
    表示向下取整,nPRB为所述两个PRB包含的不同时隙分别对应的PRB编号;a为0时, 表征所述两个PRB包含的子载波完全相同,a为1时,表征所述两个PRB包含的子载波完全不相同。
  35. 如权利要求29-34任一项所述的网络侧设备,其特征在于,在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
  36. 如权利要求29所述的网络侧设备,其特征在于,所述网络侧设备还包括发送器,用于发送第三指示信息给所述终端设备,其中,所述第三指示信息用于指示在所述两个PRB所在的不同时隙上的第一导频符号上的所述终端设备的导频序列相反。
PCT/CN2017/102206 2016-09-28 2017-09-19 一种上行控制信号的传输方法、网络侧设备及终端设备 WO2018059270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610862048.2A CN107872304B (zh) 2016-09-28 2016-09-28 一种上行控制信号的传输方法、网络侧设备及终端设备
CN201610862048.2 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018059270A1 true WO2018059270A1 (zh) 2018-04-05

Family

ID=61762049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102206 WO2018059270A1 (zh) 2016-09-28 2017-09-19 一种上行控制信号的传输方法、网络侧设备及终端设备

Country Status (2)

Country Link
CN (1) CN107872304B (zh)
WO (1) WO2018059270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436124A (zh) * 2019-01-11 2020-07-21 中国信息通信研究院 一种用于多点发送的上行控制方法和信令

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535594B (zh) * 2018-10-22 2022-11-01 中兴通讯股份有限公司 导频序列配置方法、装置及电子设备、存储介质
CN110572346A (zh) * 2019-09-12 2019-12-13 海能达通信股份有限公司 导频信号发送方法及相关设备
WO2021087774A1 (zh) * 2019-11-05 2021-05-14 华为技术有限公司 通信方法及相关装置
CN113037429B (zh) * 2019-12-24 2022-08-19 维沃移动通信有限公司 上行控制信息传输方法、终端设备和网络侧设备
CN115868223A (zh) * 2020-08-18 2023-03-28 Oppo广东移动通信有限公司 控制信道的传输方法、终端、网络设备和存储介质
CN114979968B (zh) * 2021-02-26 2023-12-22 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064922A (zh) * 2011-01-07 2011-05-18 大唐移动通信设备有限公司 上行控制信息的传输方法和设备
US20140010179A1 (en) * 2012-07-05 2014-01-09 Lg Electronics Inc. Method and apparatus of providing a proximity-based service for public safety
CN105490781A (zh) * 2011-12-21 2016-04-13 华为技术有限公司 传输控制信息的方法、用户设备和基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916783B (zh) * 2011-08-02 2015-09-30 华为技术有限公司 信息发送和接收处理方法、基站和用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064922A (zh) * 2011-01-07 2011-05-18 大唐移动通信设备有限公司 上行控制信息的传输方法和设备
CN105490781A (zh) * 2011-12-21 2016-04-13 华为技术有限公司 传输控制信息的方法、用户设备和基站
US20140010179A1 (en) * 2012-07-05 2014-01-09 Lg Electronics Inc. Method and apparatus of providing a proximity-based service for public safety

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specifi- cation Group Radio Access Network; Evolved Universal Terrestrial Radio Acce- ss (E-UTRA); Physical channels and modulation(Release 13", 3GPP TS 36. 211 V13. 2. 0., 30 June 2016 (2016-06-30) - 1 July 2016 (2016-07-01), pages 1 - 168, XP051123204 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436124A (zh) * 2019-01-11 2020-07-21 中国信息通信研究院 一种用于多点发送的上行控制方法和信令
CN111436124B (zh) * 2019-01-11 2023-08-08 中国信息通信研究院 一种用于多点发送的上行控制方法和信令装置

Also Published As

Publication number Publication date
CN107872304A (zh) 2018-04-03
CN107872304B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2018059270A1 (zh) 一种上行控制信号的传输方法、网络侧设备及终端设备
RU2599730C2 (ru) Управление мощностью для одновременной передачи ack/nack и информации о состоянии канала в системах с объединением несущих
CN109156018B (zh) 传输数据的方法、终端设备和网络设备
JP6954408B2 (ja) ユーザ装置によって行われる方法、及び基地局によって行われる方法
EP2495905B1 (en) Wireless communication system, base station device, mobile station device, wireless communication method, and integrated circuit
JP6843220B2 (ja) 通信装置、通信方法及び集積回路
KR102473793B1 (ko) 통신 단말 및 송신 방법
CN112492693B (zh) 一种获取参考信号的方法、装置和计算机可读存储介质
WO2018018628A1 (zh) 参考信号序列的映射方法、配置方法、基站和用户设备
CN110603878A (zh) 用于无线通信的与参数集相关的物理上行链路控制信道结构
CA3030456C (en) Method and terminal device for transmitting data
WO2018027982A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
JP2010517381A (ja) 制御チャネル用のホッピング構造
CN110832802B (zh) 用于上行链路通信的波形的选择
JP2020502875A (ja) アップリンクデータを伝送するための方法、端末装置とネットワーク装置
TW201804836A (zh) 基於無線網絡的通信方法、終端設備和網絡設備
JP6714593B2 (ja) 端末および通信方法
CN107370585A (zh) 一种信道状态信息反馈方法和装置
WO2017045179A1 (zh) 数据传输的方法、终端设备和基站
KR102457905B1 (ko) 비면허 스펙트럼에서 상향링크 제어 정보 송수신 방법 및 장치
EP3713134B1 (en) Pucch transmission method, terminal, and network side device
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
CN110915159B (zh) 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质
CN118138208A (zh) 无线通信方法和终端设备
JP2020061778A (ja) 基地局、受信方法及び集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854720

Country of ref document: EP

Kind code of ref document: A1