WO2018059264A1 - 一种无线通信系统中调度传输的方法及设备 - Google Patents

一种无线通信系统中调度传输的方法及设备 Download PDF

Info

Publication number
WO2018059264A1
WO2018059264A1 PCT/CN2017/102118 CN2017102118W WO2018059264A1 WO 2018059264 A1 WO2018059264 A1 WO 2018059264A1 CN 2017102118 W CN2017102118 W CN 2017102118W WO 2018059264 A1 WO2018059264 A1 WO 2018059264A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
time interval
transmission time
cell
user equipment
Prior art date
Application number
PCT/CN2017/102118
Other languages
English (en)
French (fr)
Inventor
孙伟
郭志恒
谢信乾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854714.7A priority Critical patent/EP3512279A4/en
Publication of WO2018059264A1 publication Critical patent/WO2018059264A1/zh
Priority to US16/366,105 priority patent/US10986630B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and device for scheduling transmission in a wireless communication system.
  • the Long Term Evolution (LTE)/Long Term Evolution Advanced (LTE-A) communication system can be divided into Frequency Division Duplex (FDD) mode and time division according to the duplex mode.
  • Frequency Division Duplex (FDD) mode Frequency Division Duplex (FDD) mode and time division according to the duplex mode.
  • Time Division Duplex (TDD) mode For a wireless communication system operating in TDD mode, the entire frequency band can only be used for downlink transmission for a period of time, or can only be used for uplink transmission, and for the area covered by the same frequency band, all cells in the area are synchronized, that is, At the same time, it must be the same as the downlink transmission, or the same as the uplink transmission.
  • the spectrum is used in pairs, that is, one uplink frequency band is used for transmitting uplink traffic and uplink signaling, and one downlink frequency band is used for transmitting downlink traffic and downlink signaling, and the uplink frequency band can only be used for uplink frequency bands.
  • the downlink frequency band can only be used for downlink transmission.
  • the communication services of different user equipments are also quite different.
  • the downlink and the uplink traffic of the cells covered by the same frequency band are different at the same time.
  • the same uplink and downlink transmission configuration cannot meet the service requirements of different cells.
  • the same cell will have a relatively large change in downlink traffic and uplink traffic at different times. Therefore, in order to improve the utilization of transmission resources in the system, flexible duplex technology can be adopted to separately configure the transmission direction of each cell.
  • the ratio of the uplink and downlink transmissions of the cell may be determined according to the proportion of the uplink and downlink services of the current cell.
  • TTI Transmission Time Interval
  • neighboring cells may perform downlink transmission, at this time, due to downlink transmission.
  • the signal transmitting end is a base station, and the transmitting power is relatively large, so that the uplink transmission of the cell performing the uplink transmission is interfered by the relatively large downlink transmission, and there is currently no solution to this.
  • the embodiments of the present invention provide a method and a device for scheduling transmission in a wireless communication system, which are used to solve the technical problem that uplink transmission of a cell that performs uplink transmission may be interfered by downlink transmission.
  • a method for scheduling transmission in a wireless communication system includes: determining, by the network device, each transmission time interval in the transmission time interval set as a priority of the first direction transmission, where the first direction is a downlink direction from the network device to the user equipment or an uplink direction from the user equipment to the network device. .
  • the network device selects at least one transmission time interval from the set of transmission time intervals for the first cell according to the priority.
  • the network device transmits in the first direction with the user equipment in the first cell using the selected at least one transmission time interval.
  • the transmission time interval set may be preset, and when the network device schedules the transmission time interval, The transmission time interval may be scheduled for the user equipment from the set of transmission time intervals. If multiple network devices preferentially schedule transmission time intervals for the user equipment from the transmission time interval set, different network devices have time to select the transmission time interval. Almost the same choice, so the time of uplink transmission by different network devices may be the same, and the possibility that the uplink transmission is interfered by the downlink transmission of other cells is minimized, and the transmission quality is improved.
  • the network device selects at least one transmission time interval from the set of transmission time intervals according to the priority, which may be implemented by: the network device according to the priority The high to low order selects at least one transmission time interval from the transmission time interval set, or the network device selects at least one transmission time interval from the transmission time interval set in descending order of priority.
  • the network devices in the entire network or the cell group can adopt the same transmission time interval set, and all the scheduling time intervals are scheduled in the transmission time interval set according to the same scheduling rule, so that the entire network or the cell can be made.
  • the uplink and downlink transmission time intervals in the group are as similar as possible, which can greatly reduce the anomalous interference in the whole network or the cell group.
  • the sequence may be in the order of priority from high to low, or may be in descending order of priority. limit.
  • the network device may further determine whether the abnormal cell transmission time is included in the transmission period of the first cell
  • the network device sends the indication information to the user equipment according to the result of determining whether the time interval of the outbound interference transmission is included, where the indication information is used to indicate the power control parameter used by the user equipment for uplink transmission.
  • the inter-transmission time interval is configured to be uplink in the first cell and configured as a downlink transmission time interval in the second cell.
  • the uplink traffic load of each cell is different. Even if the same transmission time interval set and the same scheduling rule are used, the uplink and downlink ratio of each cell may be different.
  • the transmission time interval set and scheduling rules can minimize the out-of-direction interference. However, due to the different uplink traffic load, the number of uplink transmission time intervals of each cell is different, and there may still be anisotropic interference.
  • the base station may be configured with multiple sets of power control parameters, and the user equipment may calculate the uplink transmit power by using the power control parameter, and the second cell includes an outbound interference transmission time interval and a non-disturb interference transmission time interval.
  • the user equipment may select different power control parameters, so that different uplink transmit powers are obtained by using the power control parameters.
  • the calculated uplink transmit power may be smaller.
  • the calculated uplink transmission power can be large, and the influence of the anomaly interference can be minimized.
  • the network device determines whether the inter-distance interference transmission time interval is included in the transmission period of the first cell, including but not limited to The network device obtains the transmission time interval scheduling information of the second cell, and determines whether the transmission interval of the first cell includes the time interval of the abnormal interference transmission according to the scheduling information of the transmission time interval; or the network device receives the second cell a transmission time interval scheduling information of the second cell sent by the corresponding another network device, and determining, according to the transmission time interval scheduling information, whether the transmission interval of the first cell includes an abnormal interference transmission time interval; or the network device is in the at least one transmission
  • the second cell is monitored during the period, and whether the interference interval of the first cell is included in the transmission period of the first cell is determined according to whether the interference is higher than the preset threshold.
  • Several network devices are provided to determine whether a time interval of an outbound interference transmission is included in a transmission period of the first cell, and the network device may determine by itself or by using transmission time interval scheduling information sent by another network device, in specific implementation. In the process, different determination methods can be selected according to different situations, which is more flexible.
  • the transmission time interval scheduling information is used to indicate a transmission direction of each transmission time interval in the second cell, or to indicate a transmission time interval configured to be uplink transmission in the second cell, or to indicate that the second cell is configured as The transmission time interval of the downlink transmission, or the number of transmission time intervals used to indicate the uplink transmission in the second cell, or the number of transmission time intervals configured to be configured for the downlink transmission in the second cell.
  • the transmission time interval scheduling information of the second cell may indicate different content, and the transmission time interval scheduling information that may be acquired is different according to different network conditions or different factors according to system settings, but the transmission time interval scheduling information can indicate each The circumstances are all within the scope of protection of the embodiments of the present invention.
  • the transmission time interval scheduling information is used to indicate a transmission time interval configured for uplink transmission in the second cell
  • the quantity, or the number of transmission time intervals configured to be configured to be transmitted in the downlink direction in the second cell is determined according to the scheduling information of the transmission time interval, whether the time interval of the interfering interference transmission is included in the transmission period of the first cell, and the following may be adopted.
  • the method is implemented by: the network device scheduling information according to the priority and the transmission time interval, and determining a transmission time interval configured in the second cell and a transmission time interval in the downlink direction in the second cell during the transmission period.
  • the network device determines whether the heterogeneous interference transmission time interval is included in the transmission period of the first cell according to the transmission time interval configured in the uplink direction and/or the transmission time interval in the downlink direction in the second cell in the transmission period.
  • the transmission time interval scheduling information is used to indicate the number of transmission time intervals configured to be transmitted in the uplink direction in the second cell, or to indicate the number of transmission time intervals configured to be transmitted in the downlink direction in the second cell, the indirect direction cannot be directly indicated.
  • the network device also needs to determine the time interval of the outbound interference transmission. The network device directly determines, according to the priority of each transmission time interval in the transmission time interval set, and the transmission time interval scheduling information, whether the time interval of the abnormal interference transmission is included in the transmission period of the first cell, and the manner is relatively simple and easy to implement.
  • the network device can determine whether the transmission period of the first cell is within the transmission period of the first cell according to the transmission time interval scheduling information and other auxiliary information (eg, priority).
  • the time interval of the outbound interference transmission is not included, and the time interval of the outbound interference transmission cannot be determined because the scheduling information of the transmission time interval cannot directly indicate the time interval of the outbound interference transmission.
  • the indication information is carried in the downlink control In the information, the downlink control information is used to indicate an uplink data transmission resource.
  • the network device can carry the indication information by using a known message, and the indication information can be sent to the user equipment in time, or the indication information can be sent without adding a new message, thereby saving transmission resources.
  • the network device determines whether to include The first indication information is sent to the user equipment, and the first indication information is used to indicate, when the network device determines that the heterogeneous interference transmission time interval is included, the first indication information is sent to the user equipment.
  • the method further includes: the network device sends the second indication information to the user equipment, where the second indication information is used to indicate the second power control parameter.
  • the second power control parameter is a default power control parameter, or a power control parameter used for uplink transmission at least in a non-off-distance interference transmission time interval, and the non-off-distance interference transmission time interval is an off-distance interference transmission time.
  • the transmission time interval outside the interval.
  • the network device may send different indication information to the user equipment. If the first cell includes an outbound interference transmission time interval, the network device sends the user equipment to the user equipment Sending the first indication information, where the first indication information is used to indicate the first power control parameter, if the first cell does not include the time interval of the outbound interference transmission, the network device sends the second indication information to the user equipment, where the second indication information is used to indicate Second power control parameter.
  • the user equipment may select different power control parameters to calculate the uplink transmit power according to different indication information, and the network device may consider the time interval of the abnormal interference transmission when configuring different power control parameters, for example, according to
  • the uplink transmit power calculated by the first power control parameter may be greater than the uplink transmit power calculated according to the second power control parameter, so that when the first cell has no interfering interference transmission time interval, the data is sent by using a smaller uplink transmit power.
  • the power consumption can be reduced.
  • the first cell has an outbound interference transmission time interval
  • the data is transmitted using a larger uplink transmission power, which can minimize the impact of the outbound interference and improve the data transmission quality.
  • a method for scheduling transmission in a wireless communication system which can be implemented by a user equipment.
  • the method includes: receiving, by the user equipment, downlink control information sent by the network device, where the downlink control information is used to indicate an uplink data transmission resource.
  • the user equipment transmits in the first direction with the network device in the first cell by using at least one transmission time interval indicated by the downlink control information.
  • the at least one transmission time interval is used by the network device as the priority of the first direction transmission according to each transmission time interval in the transmission time interval set, and is selected by the first cell from the transmission time interval set.
  • the first direction of transmission is the downlink direction from the network to the user equipment or the uplink direction from the user equipment to the network equipment.
  • the transmission time interval set may be set in advance, and the network device may schedule the transmission time interval for the user equipment from the transmission time interval set when the transmission time interval is scheduled, if multiple network devices preferentially receive the transmission time interval from the transmission time interval.
  • the transmission time interval is scheduled for the user equipment, and different network devices have almost the same choice when selecting the transmission time interval, so the time for the uplink transmission of different network devices may be the same, and the transmission time of the user equipment through the selection.
  • the interval is transmitted with the network device, and the possibility that the uplink transmission is interfered by the downlink transmission of other cells is minimized, and the transmission quality is improved.
  • the user equipment may obtain the indication information carried in the downlink control information, and the user equipment determines, according to the indication information, a power control parameter used for uplink transmission.
  • the network device may send the indication information to the user equipment according to whether the first cell has an abnormal interference transmission time interval, and the user equipment may select the corresponding power control parameter according to the indication information, and then the user equipment selects
  • the power control parameter can be considered as a power control parameter considering the abnormal interference condition, and the uplink transmission power can be calculated by the power control parameter thus selected, thereby improving the data transmission quality.
  • the user equipment acquiring the indication information carried in the downlink control information may be implemented by: The device obtains the first indication information that is carried in the downlink control information, where the first indication information is used to indicate the first power control parameter used by the user equipment to perform uplink transmission on the outbound interference transmission time interval, and the interval between the transmissions in the opposite direction interference is
  • the first cell is configured as an uplink, and is configured to be a downlink transmission time interval in the second cell; or the user equipment acquires the second indication information carried in the downlink control information, where the second indication information is used to indicate the second
  • the power control parameter, the second power control parameter is a default power control parameter, or a power control parameter used for uplink transmission at least in a non-off-distance interference transmission time interval, and the non-off-distance interference transmission time interval is an exclusive-distance interference The transmission time interval outside the transmission time interval.
  • the network device configures different power control parameters for the user equipment according to whether there is any factor of the outbound interference, and the user equipment may select different power control parameters to calculate the uplink transmit power according to different indication information, for example, according to the first power.
  • the uplink transmit power calculated by the control parameter may be greater than the uplink transmit power calculated according to the second power control parameter, so that when the first cell has no interfering interference transmission time interval, a smaller uplink is used.
  • the transmit power can transmit data, which can reduce power consumption.
  • the first cell has an out-of-interference transmission time interval
  • the data is transmitted using a larger uplink transmit power, which can minimize the impact of the out-of-direction interference and improve the data transmission. quality.
  • the user equipment further receives at least two sets of power control parameters sent by the network device, where the power control parameter is used to calculate the uplink transmission power.
  • the at least two sets of power control parameters include a first power control parameter and a second power control parameter.
  • the configured power control parameter is sent to the user equipment, so that the user equipment can directly select the corresponding power configuration parameter according to the indication information, and does not need to use the power control parameter.
  • a network device comprising a processor.
  • the processor is configured to determine that each transmission time interval in the transmission time interval set is used as a priority of the first direction transmission, and select, according to the priority, at least one transmission time interval from the transmission time interval set of the first cell, and then use the selected At least one transmission time interval is transmitted in the first direction with the user equipment in the first cell.
  • the first direction is the downlink direction from the network device to the user equipment or the uplink direction from the user equipment to the network device.
  • the processor selects, by the first cell, the at least one transmission time interval from the set of transmission time intervals, which may be implemented by: prioritizing The order of the levels from high to low selects at least one transmission time interval from the set of transmission time intervals.
  • the network device further includes a transmitter.
  • the processor is further configured to: determine whether the time interval of the outbound interference transmission is included in the transmission period of the first cell, and send the indication information to the user equipment by using the transmitter according to the result of determining whether the time interval of the abnormal interference transmission is determined by the determining unit .
  • the indication information is used to indicate a power control parameter used by the user equipment for uplink transmission, and the interval between transmissions in the opposite channel is configured to be uplink in the first cell, and is configured as a downlink transmission time interval in the second cell.
  • the network device further includes a receiver.
  • the determining, by the processor, whether the time interval of the outbound interference transmission is included in the transmission period of the first cell may be implemented by: acquiring the scheduling information of the transmission time interval of the second cell, and determining the information of the first cell according to the scheduling information of the transmission time interval.
  • the receiver receives the transmission time interval scheduling information of the second cell sent by another network device corresponding to the second cell, and determines the first cell according to the transmission time interval scheduling information Whether the heterogeneous interference transmission time interval is included in the transmission period; or, the second cell is intercepted in at least one transmission period, and determining whether the first cell transmission period includes the anisotropic interference according to whether the interference is higher than a preset threshold Transmission time interval.
  • the transmission time interval scheduling information is used to indicate a transmission direction of each transmission time interval in the second cell, or used for Indicates a transmission time interval configured in the second cell to be transmitted in the uplink direction, or a transmission time interval configured to indicate downlink transmission in the second cell, or used to indicate that the second cell is configured to transmit in the uplink direction
  • the processor determines, according to the transmission time interval scheduling information, whether the transmission interval of the first cell includes the time interval of the abnormal interference transmission, and may pass The following manner is implemented: scheduling information according to priority and transmission time interval, and determining that the second cell is allocated in the transmission period
  • the transmission time interval for transmitting in the uplink direction and/or the transmission time interval for transmitting in the downlink direction are determined according to the transmission time interval configured to transmit in the uplink direction and/or the transmission time interval for transmission in the downlink direction in the second cell in the transmission period. Whether the heterogeneous interference transmission time interval is included in the transmission period of the first cell.
  • the indication information is carried in the downlink control In the information, the downlink control information is used to indicate an uplink data transmission resource.
  • the processor determines whether to include As a result of the time interval of the transmission of the interfering interference, the sending of the indication information to the user equipment by the transmitter may be implemented by: sending the first indication information to the user equipment by using the transmitter, when determining that the time interval of the transmission of the outbound interference is determined, the first The indication information is used to indicate a first power control parameter used by the user equipment to perform uplink transmission on the outbound interference transmission time interval.
  • the processor is further configured to: send, by using a transmitter, second indication information to the user equipment, where the second indication information is used to indicate the second power control parameter.
  • the second power control parameter is a default power control parameter, or a power control parameter used for uplink transmission at least in a non-off-distance interference transmission time interval, and the non-off-distance interference transmission time interval is a time interval of the off-distance interference transmission. Outer transmission time interval.
  • a user equipment comprising a receiver and a processor.
  • the receiver is configured to receive downlink control information sent by the network device, where the downlink control information is used to indicate an uplink data transmission resource.
  • the processor is configured to transmit in the first direction with the network device in the first cell by using at least one transmission time interval indicated by the downlink control information.
  • the at least one transmission time interval is used by the network device as the priority of the first direction transmission according to each transmission time interval in the transmission time interval set, and is selected by the first cell from the transmission time interval set.
  • the first direction of transmission is the downlink direction from the network to the user equipment or the uplink direction from the user equipment to the network equipment.
  • the processor is further configured to: obtain indication information carried in the downlink control information, and determine, according to the indication information, a power control parameter used for performing uplink transmission.
  • the acquiring, by the processor, the indication information carried in the downlink control information may be implemented in the following manner: acquiring downlink control information
  • the first indication information carried by the first indication information is used to indicate a first power control parameter used by the user equipment to perform uplink transmission on the time interval of the interfering interference transmission, and the interval between the transmissions in the opposite direction is Configured as the uplink, and configured to be the downlink transmission time interval in the second cell; or obtain the second indication information carried in the downlink control information, where the second indication information is used to indicate the second power control parameter, and the second power control
  • the parameter is the default power control parameter, or the power control parameter used for uplink transmission at least during the non-off-distance interference transmission time interval, and the non-off-distance interference transmission time interval is the transmission time except the abnormal interference transmission time interval. interval.
  • the receiver is further configured to: receive, by the network device, at least two sets of power control parameters, where the power control parameter is used Calculate the uplink transmit power.
  • the at least two sets of power control parameters include a first power control parameter and a second power control parameter.
  • a network device which may comprise a functional unit for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a user equipment comprising a functional unit for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the foregoing network device, including any possible implementation manner for performing the foregoing first aspect or the first aspect.
  • a program designed by network devices For A program designed by network devices.
  • an embodiment of the present invention provides a computer storage medium, configured to store computer software instructions for use by the user equipment, including any possible implementation manner of the second aspect or the second aspect.
  • the time for the uplink transmission of multiple network devices is the same as possible, and the possibility that the uplink transmission is interfered by the downlink transmission of other cells is minimized, and the transmission quality is improved.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • 2A is a flowchart of a method for scheduling transmission in a wireless communication system according to an embodiment of the present invention
  • 2B is a flowchart of a method for scheduling transmission in a wireless communication system according to an embodiment of the present invention
  • 3A-3D are schematic diagrams of several TTI sets according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the techniques described herein may be used in various communication systems, such as third generation mobile communication systems (3G), fourth generation mobile communication systems (4G), fifth generation mobile communication systems (5G), or next generation communication systems.
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA General Packet Radio Service
  • GPRS General Packet Radio Service
  • User equipment which is a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the user equipment can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the user equipment may include a UE, a wireless terminal device, a mobile terminal device, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile Station, a Remote Station, and a Pickup Station.
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal device
  • a portable, pocket, handheld, computer built-in or in-vehicle mobile device For example, Personal Communication Service (PCS) phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistants (PDAs), etc. .
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDAs Personal Digital Assistants
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more sectors.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the wireless terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include a Radio Network Controller (RNC) or a Base Station Controller (BSC), or may also include an evolved base station in an evolved LTE system (LTE-Advanced, LTE-A). (NodeB or eNB or e-NodeB, evolutional Node B), or may also include the next generation node B (NG-NB) in the 5G system, which is not limited in the embodiment of the present invention.
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • LTE-Advanced LTE
  • Anisotropic interference If the user equipment transmits the uplink data through the TTI in the serving cell of the user equipment, and the neighboring cell of the serving cell in which the user equipment is located transmits the downlink data through the TTI, the user equipment considers that the user equipment transmits the uplink data through the TTI.
  • There is an out-of-interference interference that is, interference caused by downlink transmission of a neighboring cell to uplink transmission of a cell that performs uplink transmission.
  • the transmission period is a period of time in which the duration is an integer multiple of TTI. If the TTI is a subframe, the TTI is 1 ms, and the transmission period may be 10 ms.
  • the transmission time interval set may be a partial transmission time interval within one transmission period, or may be a total transmission time interval within one transmission period.
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Cell and “Carrier” can be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is an application scenario of an embodiment of the present invention.
  • FIG. 1 includes two network devices and two user devices, wherein the network device takes a base station as an example, that is, base station 1 and base station 2.
  • the base station 1 serves the user equipment 1
  • the base station 2 serves the user equipment 2
  • the serving cell provided by the base station 1 for the user equipment 1 and the serving cell provided by the base station 2 for the user equipment 2 are mutually adjacent cells, and the base station 1 and the base station 2 are flexible. Duplex technology.
  • the base station 2 performs downlink transmission to the user equipment 2 through the TTI in the serving cell of the user equipment 2, then The downlink transmission in the serving cell of the user equipment 2 may cause an anomalous interference to the uplink transmission in the serving cell of the user equipment 1.
  • the TTI set may be preset in the embodiment of the present invention, and the network device located in the preset area preferentially schedules the TTI for the user equipment from the TTI set, wherein the network device located in the preset area may be understood as When the network device is in the same frequency band, the network device schedules the TTI from the TTI set to schedule the TTI for the user equipment.
  • Different network devices have almost the same choice when selecting the TTI, so different network devices
  • the time for performing uplink transmission may be the same, and the possibility that the uplink transmission is interfered by the downlink transmission of other cells is minimized, and the transmission quality is improved.
  • the first direction is the uplink direction
  • the base station 1 is from the TTI set.
  • the user equipment 1 schedules the first TTI for uplink transmission. If the base station 2 schedules the TTI for the user equipment 2 for uplink transmission, the base station 2 also preferentially schedules the first TTI for the user equipment 2. For uplink transmission, there is no out-of-interference on the first TTI. Or, even if the base station 2 does not schedule the uplink transmission for the user equipment 2, but schedules the downlink transmission for the user equipment 2, since the base station 2 preferentially schedules the uplink transmission from the TTI set, it is naturally possible to prioritize the downlink transmission when scheduling the downlink transmission. When scheduling in the TTI set, the probability that the TTI used for the uplink transmission is the same as the TTI used for the downlink transmission is relatively small, thus reducing the situation of the outbound interference.
  • the network device determines that each transmission time interval in the transmission time interval set is used as the priority of the first direction transmission, where the first direction is transmitted from the network device to the downlink direction of the user equipment or from the user equipment to the network device. Upward direction.
  • the network device selects at least one transmission time interval from the set of transmission time intervals for the first cell according to the priority.
  • the network device sends Downlink Control Information (DCI) to the user equipment.
  • DCI Downlink Control Information
  • the downlink control information is used to indicate the uplink data transmission resource. After receiving the DCI, the user equipment can pass at least one transmission time interval indicated by the DCI.
  • DCI Downlink Control Information
  • the intra-cell and the network device transmit in the first direction, that is, the network device can transmit in the first direction with the user equipment in the first cell by using the selected at least one transmission time interval.
  • the following two embodiments take the first direction as the uplink direction and the downlink direction as examples.
  • the remaining transmission time interval may be a transmission time interval fixed to the uplink or the downlink.
  • the transmission time interval used as the first direction transmission means that part or all of the symbols of the transmission time interval are used for the first direction transmission.
  • an embodiment of the present invention provides a method for scheduling transmission in a wireless communication system.
  • the embodiment of the present invention takes the data in the uplink direction and the user equipment as an example, that is, the first direction is an uplink direction. It can be considered that the embodiment of the present invention takes a TDD system as an example.
  • each TTI can be flexibly scheduled for uplink transmission or downlink transmission.
  • there may be anisotropic interference especially if If the uplink transmission of a cell is interfered by the downlink transmission of the neighboring cell, the outbound interference is more serious, which may cause the uplink transmission to fail.
  • the TTI set is pre-defined in the embodiment of the present invention.
  • the TTI set may include at least one TTI, and the network device preferentially schedules the TTI in the TTI set when scheduling the uplink TTI, that is, when there is an uplink.
  • the network device preferentially selects the TTI from the TTI set for uplink transmission, so as to minimize the interference.
  • the TTI included in the TTI set may be preferentially scheduled to be in the first direction, but not necessarily in the first direction.
  • the network device in the preset area preferentially schedules the TTI for the user equipment to perform uplink transmission from the TTI set, and the range of the preset area may be the coverage of the entire network, or may be the coverage of the divided cell group. If the cell group is divided, it can be divided according to the distance between the network devices, and the cells provided by the network devices that are closer to each other are divided into one cell group, so different cell groups can share one TTI set, or Different TTI sets are defined for different cell groups.
  • the cell group refers to a group of cells. In this group of cells, the power of mutual interference is relatively large, so the same TTI set and scheduling rules are adopted.
  • TTI structures For example, in a 5G system, four TTI structures may be defined:
  • DL-only transmission time interval that is, TTI for downlink transmission.
  • the UL-only transmission time interval that is, the TTI used for uplink transmission.
  • the mix transmission time interval that is, both the uplink transmission and the downlink transmission can be performed in the same TTI.
  • the mix transmission time interval is further divided into a DL-dominate transmission time interval and a UL-dominate transmission time interval.
  • the DL-dominate transmission time interval is mainly used for transmitting downlink data, but may also include transmission of uplink control information.
  • the UL-dominate transmission time interval is mainly used for transmitting uplink data, but may also include transmission of downlink control information.
  • the UL-dominate transmission time interval in the Ul-only transmission time interval and the mix transmission time interval may be used as the TTI added to the TTI set in the embodiment of the present invention.
  • the network device is a base station, and the network device may be the base station 1 or the base station 2 in FIG. 1. If the network device is the base station 1 in FIG. The user equipment in FIG. 1 is the user equipment 1 in FIG. 1. If the network equipment is the base station 2 in FIG. 1, the user equipment in the embodiment of the present invention is the user equipment 2 in FIG.
  • the base station determines that each TTI in the TTI set is used as a priority of uplink transmission.
  • the priority of the uplink transmission may be defined in advance for all the TTIs or the partial TTIs in the TTI set.
  • the priorities of the TTIs may be respectively defined for the TTIs, and the priorities of the different TTIs are different. Then, when determining the uplink transmission, the base station can determine that each TTI in the TTI set is used as the priority of the uplink transmission.
  • the TTIs are selected as the TTIs in the TTI set, and the TTIs in the TTIs are set to be prioritized by the protocol or the standard, or may be pre-defined by the operator. .
  • the TTI in the TTI set may be scheduled as a downlink transmission, or may not be scheduled. That is, the uplink priority of each TTI in the TTI set in the embodiment of the present invention is not 100%, but is preferential.
  • the scheduling is uplink, and it is not only scheduled to be uplink.
  • the base station selects at least one TTI from the TTI set for the first cell according to the priority.
  • the base station may perform scheduling according to the priority of the TTI, for example, scheduling in descending order of priority, or scheduling in descending order of priority.
  • the base station in the whole network or the cell group adopts the same TTI set and performs scheduling according to the same scheduling rule, so that the uplink and downlink TTIs in the whole network or the cell group are the same as possible, and the whole network or the cell can be reduced to a large extent.
  • the scheduling rule here can be understood as which TTI is scheduled first in the uplink direction, and which TTI is scheduled as the uplink direction.
  • setting the priority for each TTI to perform scheduling according to the priority is only a scheduling method, so that the network devices can be scheduled in the TTI set according to the same scheduling rule, so that the network devices can be made to be the same.
  • the manner in which the scheduling rules are scheduled in the TTI set is within the protection scope of the embodiments of the present invention.
  • FIG. 3A is an example of a TTI set in a transmission cycle.
  • the transmission cycle is exemplified by including 10 TTIs.
  • part of the TTIs of the 10 TTIs are divided into TTI sets, and the TTIs that are divided into TTI sets are the TTIs labeled with numbers in FIG. 3A, where the numbers indicated indicate the priority of the TTI, that is, the number 1 Indicates the first priority, the number 2 indicates the second priority, the number 3 indicates the third priority, and the number 4 indicates the fourth priority, where the first priority is the highest priority.
  • the base station When the base station schedules a TTI for uplink transmission from the TTI set in FIG. 3A, the base station performs scheduling in descending order of priority of four TTIs included in the TTI set, for example. For example, the base station determines the number of required uplink TTIs in one transmission period according to the uplink traffic load condition. If three are needed, the base station schedules the TTIs labeled as 1, 2, and 3 in FIG. 3A as uplink TTIs.
  • FIG. 3B is an example of a TTI set in a transmission period.
  • the transmission cycle is exemplified by including 10 TTIs.
  • all TTIs of the 10 TTIs are divided into TTI sets, and the TTIs divided into TTI sets are TTIs with numbers in FIG. 3B, where the numbers indicated indicate the priority of the TTI, ie, the number. 1 indicates the first priority, The number 2 indicates the second priority, and so on, with the first priority being the highest priority.
  • the base station when the base station schedules the TTI for uplink transmission from the TTI set in FIG. 3B, for example, the base station performs scheduling in descending order of priority of the four TTIs included in the TTI set. For example, the base station determines the number of required uplink TTIs in one transmission period according to the uplink traffic load condition. If four is required, the base station schedules the TTIs labeled as 1, 2, 3, and 4 in FIG. 3B as uplink TTIs. .
  • the TTI set may be for a transmission period, that is, there may be one TTI set for each transmission period. Then, for different transmission periods, the TTI set may be the same, or the TTI set may be different for different transmission periods, and may be pre-defined by a protocol or a standard, or pre-defined by the operator, and is not implemented in the embodiment of the present invention. limit.
  • the uplink traffic load of each cell is different. Even if the same TTI set and the same scheduling rule are used, the uplink and downlink ratios of each cell may be different.
  • the TTI set and scheduling rules can minimize the outbound interference, but Different traffic loads, the number of uplink TTIs in each cell is different, and there may still be anisotropic interference.
  • the base station can configure at least two sets of power control parameters, and the user equipment can calculate the uplink transmit power by using the power control parameter.
  • the at least two sets of power control parameters may include a first power control parameter that is a power control parameter with an out-of-interference TTI, and a second power control parameter that is a power that does not have an anisotropic interference TTI Controlling the parameter, or understanding that the user equipment may select the first power control parameter when performing uplink transmission on the outbound interference TTI, and the second power control parameter is the default power control parameter, or the user equipment is at least in the non-off-distance interference
  • the second power control parameter may be selected when the uplink transmission is performed on the TTI, and the base station may send at least two sets of power control parameters to the user equipment.
  • the user equipment can calculate the uplink transmit power according to the second power control parameter, that is, the user equipment performs uplink transmission on the non-off-distance interference TTI, using the first power control parameter, in the presence of the opposite direction.
  • the user equipment may calculate the uplink transmit power according to the first power control parameter, that is, the user equipment uses the first power control parameter for uplink transmission on the outbound interference TTI.
  • the uplink transmit power calculated according to the first power control parameter is generally greater than the uplink transmit power calculated according to the second power control parameter, that is, the uplink transmit power is increased to minimize the influence of the outbound interference.
  • the outbound interference TTI is configured as uplink in the first cell and configured as downlink TTI in the second cell
  • the non-antenna interference TTI is a TTI other than the outbound interference TTI.
  • the second cell may be a neighboring cell of the first cell, or a cell that is close to the distance between the first cell, and the cell that can generate the opposite interference to the first cell may be the second cell.
  • the first power control parameter refers to a set of power control parameters
  • the second power control parameter also refers to a set of power control parameters.
  • the first power control parameter and the second power control parameter are only given by the embodiment of the present invention for convenience of description. name.
  • the user equipment can select the power control parameter according to the situation of the interfering interference TTI.
  • the following describes how the user equipment knows the abnormal interference TTI.
  • the base station may be configured to learn the situation of the outbound interference TTI, that is, the base station may determine whether the outbound interference TTI is included in the transmission period of the first cell, and then, according to the result of determining whether to include the outbound interference TTI, to the user.
  • the device sends indication information, where the indication information is used to indicate a power control parameter used by the user equipment for uplink transmission.
  • the neighboring cell of the cell simultaneously transmits the downlink data through the TTI, and then it is determined that the uplink data through the TTI has an outbound interference, that is, the TTI is an anomalous interference TTI.
  • the base station in order to determine whether there is an out-of-interference TTI in a transmission period in a serving cell, it is necessary to know the scheduling of the TTI in the transmission period of the neighboring cell of the serving cell, that is, the base station can acquire the TTI scheduling information of the neighboring cell of the serving cell, and the TTI scheduling information may refer to The TTI scheduling situation in the neighboring cell is shown, and the base station can determine whether the heterogeneous interference TTI is included in the transmission period of the serving cell according to the TTI scheduling information of the neighboring cell of the serving cell.
  • the base station can obtain the TTI scheduling information of the neighboring cell in the at least one transmission period, and the embodiment of the present invention takes the TTI scheduling information of the neighboring cell in one transmission period as an example, that is, the base station determines the serving cell. Whether there is an outbound interference TTI in the transmission period, it is necessary to obtain TTI scheduling information in the transmission period of the neighboring cell.
  • the neighboring cell may be one or more, the base station may obtain the TTI scheduling information of one neighboring cell, and may obtain the TTI scheduling information of multiple neighboring cells, and the base station obtains all the information according to the obtained The TTI scheduling information is used to determine the situation of the opposite cell interference of the serving cell.
  • the serving cell is the first cell
  • the neighboring cell of the first cell is the second cell.
  • the TTI scheduling information of one transmission period may be obtained, for example, the TTI scheduling information of the next transmission period is obtained, when the base station acquires the TTI scheduling information of the second cell.
  • the base station may directly obtain the TTI scheduling information of the second cell, and if the first cell and the second cell are provided by different base stations, provide the first cell.
  • the base station obtains the TTI scheduling information of the second cell, and may have different manners.
  • the base station that provides the first cell interacts with the base station that provides the second cell, so as to receive the TTI scheduling information of the second cell that is sent by the base station that provides the second cell.
  • the TTI scheduling information is exchanged between the base stations, and may be backhauled by the wireless or the X2 interface.
  • the base station that provides the first cell can listen to the second cell in at least one transmission period, and determine interference generated by the second cell, if the interference generated by the second cell is greater than a preset threshold. And the base station that provides the first cell determines that the transmission period of the first cell includes the outbound interference TTI, and the base station that provides the first cell determines that the transmission period of the first cell does not include the outbound interference TTI.
  • the base station performing the steps of the embodiment shown in FIG. 2 is the base station providing the first cell.
  • the TTI scheduling information is used to indicate a transmission direction of each TTI in a transmission period in the second cell, or a TTI used to indicate that the second cell is configured to be transmitted in an uplink direction in a transmission period, or used for Determining, in the second cell, a TTI configured for downlink transmission in a transmission period, or indicating a number of TTIs configured for uplink transmission in a transmission period in a second cell, or for indicating transmission in a second cell The number of TTIs configured to transmit in the downstream direction during the period. That is, the TTI scheduling information can be used to indicate different content, and different TTI scheduling information can be configured according to actual conditions.
  • the TTI scheduling information of the second cell is used to indicate the transmission direction of each TTI in the second cell in the transmission period, or the TTI used to indicate the uplink transmission in the transmission period in the second cell, or The TTI is configured to indicate that the TTI is configured to be transmitted in the downlink direction in the second cell, and the base station can directly determine whether the interference cell TTI is included in the transmission period of the first cell according to the TTI scheduling information of the second cell, which is simple. And if the TTI scheduling information of the second cell is used to indicate the number of TTIs configured to be transmitted in the uplink direction in the second period in the second cell, or to indicate that the TTI is configured to be downlinked in the transmission period in the second cell.
  • the base station determines whether the inter-disturbing TTI is included in the transmission period of the first cell according to the TTI scheduling information of the second cell, and may be implemented by: the base station according to the TTI set. Determining the priority of the TTI and the TTI scheduling information of the second cell, determining a TTI configured in the second cell for uplink transmission in the transmission period and/or a TTI transmitted in the downlink direction, and the base station is configured according to the second cell in the transmission period.
  • the TTI configured in the uplink direction and/or the TTI transmitted in the downlink direction are configured to determine whether the asymmetric cell TTI is included in the transmission period of the first cell.
  • the base station sends the indication information to the user equipment according to the result of determining whether the time interval of the outbound interference transmission is included, where the indication information is used to indicate the power control parameter used by the user equipment for uplink transmission, and the user equipment receives the indication. Show information.
  • the base station may send the indication information to the user equipment according to the result of determining whether the inter-distance interference TTI is included, to indicate that the user equipment performs uplink transmission.
  • the power control parameters used For example, the base station determines that the transmission period of the first cell includes the out-of-interference TTI, and the base station sends the first indication information to the user equipment, where the first indication information is used to indicate that the user equipment uses the uplink transmission on the opposite-distance interference TTI.
  • a power control parameter and if the base station determines that the transmission period of the first cell does not include the out-of-interference TTI, the base station sends the second indication information to the user equipment, where the second indication information is used to indicate the second power control parameter.
  • the base station may carry the indication information in the DCI and send the information to the user equipment, where the DCI is used to indicate the uplink data transmission resource.
  • the base station sends a DCI to the user equipment, and the DCI may indicate that the uplink data is transmitted by the base station and the base station by using at least one TTI, where the at least one TTI is scheduled by the base station from the TTI set.
  • the indication information is carried in the DCI, for example, the indication information occupies 1 bit in the DCI, and the user equipment can determine, according to the indication information, whether there is an out-of-interference TTI in the transmission period of the first cell, and according to the indication information. Determine the power control parameters used.
  • S123 and S124 are optional steps, so the box for indicating S123 and the arrow indicating S124 are drawn as dashed lines in FIG. 2A to distinguish them from the mandatory steps.
  • the base station may also instruct the user equipment to perform uplink transmission through the DCI.
  • the user equipment transmits in the uplink direction with the network base station in the first cell by using at least one TTI indicated by the received DCI.
  • the user equipment After receiving the DCI, the user equipment determines at least one TTI for performing uplink transmission. Moreover, if the DCI carries the indication information, the user equipment may determine, according to the indication information, which set of power control parameters are used, and then calculate the uplink transmit power according to the selected power control parameter.
  • the following formula is used to calculate the uplink transmit power:
  • P PUSCH,c (i) represents the calculated uplink transmit power
  • P CMAX,c (i) represents the maximum transmit power of the user equipment on the carrier
  • i represents the sequence number of the TTI, which can also be understood as Indicates the time of the current uplink transmission. For example, if the TTI is a subframe, then i is the subframe number.
  • the value of j can be 0, 1, or 2, and different values can be taken depending on the usage scenario.
  • M PUSCH,c (i) is the number of resource blocks (RBs) used by the Physical Uplink Shared Channel (PUSCH)
  • PL c is the path loss
  • the mode (MCS) is related, f c (i) is related to the power control command (TPC command), and the power control command is generally sent in the DCI.
  • P O_PUSCH,c (j) P O_UE_PUSCH,c (j)+P O_NOMINAL_PUSCH,c (j)
  • P O_UE_PUSCH,c (j) represents a user equipment level parameter
  • P O_NOMINAL_PUSCH,c (j) represents a cell level parameter
  • ⁇ c (j) represents road loss compensation.
  • the so-called set of power control parameters includes P O_UE_PUSCH, c (j), P O_NOMINAL_PUSCH, c (j) and ⁇ c (j). That is, by adjusting the power control parameters, the uplink transmit power calculated by the user equipment may be different.
  • f c (i) is also included in the formula (1).
  • f c (i) is divided into two types, cumulative and non-cumulative. Which one is used, the base station notifies the user equipment by signaling.
  • Non-cumulative: f c (i) ⁇ PUSCH,c (iK PUSCH ), where ⁇ PUSCH,c is a power control command, and i is a sequence number of the TTI, which can also be understood as a time indicating the current uplink transmission, K PUSCH
  • ⁇ PUSCH,c is a power control command
  • i is a sequence number of the TTI, which can also be understood as a time indicating the current uplink transmission
  • K PUSCH The difference between the time of the current uplink transmission and the transmission time of the DCI carrying the power control command, that is, the power control command used for the uplink transmission performed at time i is notified at the time of the iK PUSCH .
  • f c (i) f c (i-1)+ ⁇ PUSCH,c (iK PUSCH ), where ⁇ PUSCH,c ,i , and K PUSCH are the same as defined in the non-cumulative formula, and are performed at time i
  • the f c (i) used for the uplink transmission is related to f c (i-1) used for uplink transmission at time i-1 and the power control command notified at the time of iK PUSCH .
  • the power control commands notified by the base station may be different, and the two power control commands cannot be accumulated, so for the first power control parameter and the second power control parameter , f c (i) is accumulated separately.
  • the indication information sent by the base station to the user equipment is represented by 1 bit. If the value of the bit is "0", it indicates that the at least one TTI scheduled by the DCI is the TTI of the first type, that is, there is no abnormal interference TTI in the transmission period of the first cell, and the indication information at this time is The second indication information, the user equipment may determine to use the second power control parameter to calculate the uplink transmit power, and f c (i) adopts the accumulated value of the first type of TTI; if the bit takes a value of “1”, the DCI is indicated.
  • the at least one TTI that is scheduled is the second type of TTI, that is, the inter-directional interference TTI exists in the transmission period of the first cell, and the indication information at this time is the first indication information, and the user equipment may determine to adopt the first power control.
  • the parameters are used to calculate the uplink transmit power, and f c (i) is the cumulative value of the second type of TTI.
  • the user equipment may first receive at least two sets of power control parameters sent by the base station, where the first power control parameter and the second power control parameter are included.
  • the base station schedules the TTI for the uplink transmission.
  • one mode is: the base station preferentially belongs to the TTI that does not belong to the TTI set. Schedule. If the TTIs that do not belong to the TTI set have been exhausted, or all TTIs in a transmission period belong to the TTI set, the base station may also schedule the TTI from the TTI set for downlink transmission. When the base station schedules the TTI for downlink transmission from the TTI set, the base station may perform scheduling according to a scheduling rule opposite to the TTI for scheduling the uplink transmission.
  • the base station when the base station schedules the uplink transmission, the base station follows the priority of each TTI in the TTI set from the highest to the highest. If the scheduling is performed in a low order, the base station can schedule the downlinks according to the priority of each TTI in the TTI set from low to high, so as to avoid collision between uplink and downlink and minimize the occurrence of abnormal interference. .
  • the embodiments of the present invention can minimize the interference between cells by predefining the TTI set, the priority of the TTI in the TTI set, and the scheduling rule.
  • the base station dynamically informs the uplink TTI which power control parameter is used by the DCI to improve the uplink received signal to interference plus noise ratio (SINR).
  • SINR signal to interference plus noise ratio
  • the embodiment shown in FIG. 2A is mainly for the case of a TDD system.
  • FIG. 2B another embodiment is provided to introduce a method for scheduling transmission in a wireless communication system.
  • the embodiment of the present invention needs to be in the downlink direction and the user.
  • the device transmits data as an example, that is, the first direction is the downlink direction. It can be considered that the embodiment of the present invention takes an FDD system as an example.
  • the FDD downlink (DL) band and the FDD uplink (UL) band are used.
  • the FDD DL band is used for downlink transmission
  • the FDD UL band is used for uplink transmission.
  • some TTIs in the uplink frequency band of FDD can be used for downlink transmission after adopting flexible duplex technology. In this case, if the different cell scheduling is different for the downlink TTI, then there will be more serious outbound interference, especially if the uplink transmission of a certain serving cell is interfered by the downlink transmission of the neighboring cell, and may be The uplink transmission failed.
  • the TTI set is pre-defined in the FDD UL frequency band, and the TTI set includes at least one TTI in the FDD UL frequency band, and the network device preferentially schedules the TTI set when scheduling the downlink TTI.
  • the TTI in the middle that is, when there is downlink service, the network device preferentially selects the TTI from the TTI set for downlink transmission, so as to minimize the out-of-band interference.
  • the network devices in the preset area are preferentially selected from the TTI set.
  • the user equipment schedules the TTI for downlink transmission.
  • the range of the preset area may be the coverage of the entire network, or may be the coverage of the divided cell group. If the cell group is divided, the distance between the network devices may generally be The division, the cells provided by the network devices that are closer to each other are divided into one cell group, then different cell groups can share one TTI set, or different cell groups can define different TTI sets.
  • the four types of TTIs in the 5G system are as follows.
  • the DL-only transmission time interval and the DL-dominate transmission time interval in the mix transmission time interval can be added to the TTI set in the embodiment of the present invention.
  • TTI TTI.
  • the network device is a base station, and the network device may be the base station 1 or the base station 2 in FIG. 1. If the network device is the base station 1 in FIG. The user equipment in FIG. 1 is the user equipment 1 in FIG. 1. If the network equipment is the base station 2 in FIG. 1, the user equipment in the embodiment of the present invention is the user equipment 2 in FIG.
  • the base station determines that each TTI in the TTI set is used as a priority for downlink transmission.
  • the priority of the downlink transmission may be predefined for all TTIs or partial TTIs in the TTI set.
  • the priorities of the TTIs may be defined for the TTIs, and the priorities of the different TTIs are different. Then, when determining the downlink transmission, the base station can determine that each TTI in the TTI set is used as the priority of the downlink transmission.
  • the TTIs are selected as the TTIs in the TTI set, and the TTIs in the TTIs are set to be prioritized by the protocol or the standard, or may be pre-defined by the operator. .
  • the TTI in the TTI set may be scheduled as an uplink transmission, or may not be scheduled, that is, the downlink priority of each TTI in the TTI set is not 100%, but the priority scheduling is downlink, and It is not only scheduled to go down.
  • the base station selects at least one TTI from the TTI set for the first cell according to the priority.
  • the base station may perform scheduling according to the priority of the TTI, for example, scheduling in descending order of priority, or scheduling in descending order of priority.
  • the base station in the whole network or the cell group adopts the same TTI set and performs scheduling according to the same scheduling rule, so that the uplink and downlink TTIs in the whole network or the cell group are the same as possible, and the whole network or the cell can be reduced to a large extent.
  • the scheduling rule here can be understood as which TTI is scheduled first in the downlink direction, and which TTI is scheduled to be in the downlink direction.
  • setting the priority for each TTI to perform scheduling according to the priority is only a scheduling method, so that the network devices can be scheduled in the TTI set according to the same scheduling rule, so that the network devices can be made to be the same.
  • the manner in which the scheduling rules are scheduled in the TTI set is within the protection scope of the embodiments of the present invention.
  • FIG. 3C is an example of a TTI set in a transmission cycle.
  • the transmission period is exemplified by including 10 TTIs.
  • a part of the TTIs in the 10 TTIs are divided into TTIs, and the TTIs in the TTIs are TTIs labeled with numbers in FIG. 3C.
  • the number indicates the priority of the TTI, that is, the number 1 indicates the first priority, the number 2 indicates the second priority, the number 3 indicates the third priority, and the number 4 indicates the fourth priority, where the first priority is the highest priority .
  • the base station schedules a TTI for downlink transmission from the TTI set in FIG. 3C, for example, scheduling is performed in descending order of priority of four TTIs included in the TTI set. For example, the base station determines the number of required downlink TTIs in one transmission period according to the downlink traffic load condition. If three are needed, the base station schedules the TTIs labeled as 1, 2, and 3 in FIG. 3C as downlink TTIs.
  • the transmission period is comprised of 10 TTIs.
  • all TTIs of the 10 TTIs are divided into TTI sets, and the TTIs divided into TTI sets are TTIs with numbers in FIG. 3D, where the labeled numbers indicate the priority of the TTI. That is, the number 1 indicates the first priority, the number 2 indicates the second priority, and so on, wherein the first priority is the highest priority.
  • the base station when the base station schedules a TTI for downlink transmission from the TTI set in FIG. 3D, for example, the base station performs scheduling according to the priority of the four TTIs included in the TTI set from high to low. For example, the base station determines the number of required downlink TTIs in one transmission period according to the downlink traffic load condition. If four are required, the base station schedules the TTIs labeled as 1, 2, 3, and 4 in FIG. 3D as uplink TTIs. .
  • the TTI set may be for a transmission period, that is, there may be one TTI set for each transmission period. Then, for different transmission periods, the TTI set may be the same, or the TTI set may be different for different transmission periods, and may be pre-defined by a protocol or a standard, or pre-defined by the operator, and is not implemented in the embodiment of the present invention. limit.
  • the downlink traffic load of each cell is different. Even if the same TTI set and the same scheduling rule are used, the uplink and downlink ratios of each cell may be different.
  • the TTI set and scheduling rules can reduce the outbound interference as much as possible, but Different traffic loads, the number of downlink TTIs in each cell is different, and there may still be anisotropic interference.
  • the base station can still configure at least two sets of power control parameters, and the user equipment can calculate the uplink transmit power by using the power control parameter.
  • the at least two sets of power control parameters may include a first power control parameter and a second power control parameter, and the user equipment may select the first power control parameter when performing uplink transmission on the outbound interference TTI, and the second power control parameter is a default The power control parameter, or the user equipment may select the second power control parameter when performing uplink transmission on the non-off-distance interference TTI, and the base station may send at least two sets of power control parameters to the user equipment. Then, when there is no abnormal interference TTI, the user equipment may calculate the uplink transmit power according to the second power control parameter, and when there is an outbound interference TTI, the user equipment may calculate the uplink transmit power according to the first power control parameter.
  • the uplink transmit power calculated according to the first power control parameter is generally greater than the uplink transmit power calculated according to the second power control parameter, that is, the uplink transmit power is increased to minimize the influence of the outbound interference.
  • the user equipment can select the power control parameter according to the situation of the out-of-band interference, and the method also relates to the case where the user equipment learns the TTI.
  • the base station can also learn the abnormal interference TTI.
  • the base station determines whether the inter-transmission TTI is included in the transmission period of the first cell, and then sends the indication information to the user equipment according to the result of determining whether the hetero-interference TTI is included, where the indication information is used to indicate that the user equipment performs uplink transmission.
  • the power control parameters used For a description of this part, refer to the related description in the previous embodiment, and no further description is provided.
  • the base station sends the indication information to the user equipment according to the result of determining whether the time interval of the outbound interference transmission is included.
  • the indication information is used to indicate the power control parameter used by the user equipment for uplink transmission, and the user equipment receives the indication information.
  • the base station carries the indication information in the DCI and sends the information to the user equipment, where the DCI is used to indicate the downlink data transmission resource.
  • the base station sends a DCI to the user equipment, and the DCI may indicate that the downlink data is transmitted by the base station and the base station by using at least one TTI, where the at least one TTI is scheduled by the base station from the TTI set.
  • the indication information is carried in the DCI, for example, the indication information occupies 1 bit in the DCI, and the user equipment can determine, according to the indication information, whether there is an out-of-interference TTI in the transmission period of the first cell, and determine, according to the indication information, that the used information is used. Power control parameters.
  • the indication information at this time is the second indication information, and the user equipment can determine to use the second power control parameter to calculate the uplink transmission power, and f c (i) adopts the first The cumulative value of a type of TTI; if the value of the bit is "1", it means that in the transmission period of the first cell, except for the at least one TTI, other TTIs scheduled for uplink transmission are the second type of TTI.
  • the user equipment may determine to use the first power control parameter to calculate the uplink transmit power, and f c (i) The cumulative value of the second type of TTI is employed. Certainly, before selecting the power control parameter, the user equipment may first receive at least two sets of power control parameters sent by the base station, where the first power control parameter and the second power control parameter are included.
  • S223 and S224 are optional steps, so the box for indicating S223 and the arrow indicating S224 are drawn as dashed lines in Fig. 2B to distinguish them from the mandatory steps.
  • the base station may also instruct the user equipment to perform uplink transmission through the DCI.
  • the user equipment transmits in the downlink direction with the base station in the first cell by using at least one TTI indicated by the received DCI.
  • the user equipment After receiving the DCI, the user equipment determines at least one TTI that performs downlink transmission in the transmission period, and then may transmit in the downlink direction with the base station in the first cell according to the at least one TTI. In addition, the user equipment determines at least one TTI for downlink transmission during the transmission period, and may also determine a TTI for uplink transmission during the transmission period. Moreover, if the DCI carries the indication information, the user equipment may determine, according to the indication information, which set of power control parameters are used for the uplink transmission, and then calculate the uplink transmit power according to the selected power control parameter. For the calculation of the uplink transmit power, refer to the introduction in the embodiment shown in FIG. 2A, and no further details are provided.
  • the base station schedules the TTI for downlink transmission.
  • one mode is: the base station preferentially belongs to the TTI that does not belong to the TTI set. Schedule. If the TTIs that do not belong to the TTI set have been exhausted, or all TTIs in a transmission period belong to the TTI set, the base station may also schedule the TTI from the TTI set for uplink transmission. When the base station schedules the TTI for the uplink transmission from the TTI set, the base station may perform scheduling according to the scheduling rule opposite to the TTI for scheduling the downlink transmission.
  • the base station when the base station schedules the downlink transmission, the base station follows the priority of each TTI in the TTI set from the highest to the highest. If the scheduling is performed in a low order, the base station can schedule the uplinks according to the priority of each TTI in the TTI set from low to high, so as to avoid collision between uplink and downlink, and minimize the occurrence of abnormal interference. .
  • the embodiments of the present invention can minimize the interference between cells by predefining the TTI set in the FDD UL band, the priority of the TTI in the TTI set, and the scheduling rule.
  • the base station dynamically informs the uplink TTI which power control parameter is adopted by the DCI, and can improve the uplink received SINR.
  • an embodiment of the present invention provides a network device, which may include a processor 401.
  • the processor 401 may include a central processing unit (CPU) or an application specific integrated circuit (ASIC), and may include one or more integrated circuits for controlling program execution, and may include using a field programmable gate array.
  • a hardware circuit developed by a Field Programmable Gate Array (FPGA) may include a baseband chip.
  • the network device may further include a memory 402, which is shown together in FIG. 4, because the memory 402 is not a mandatory device, and thus is drawn in the form of a dashed box in FIG. Make a distinction.
  • the number of memories 402 can be one or more.
  • the memory 402 can include a read only memory (Read Only Memory, ROM), random access memory (RAM) and disk storage, and so on.
  • the memory 402 can be used to store program code required by the processor 401 to perform tasks, and can also be used to store data.
  • the network device may further include a transmitter 403, which is shown together in FIG. 4, because the transmitter 403 is not a mandatory device, and therefore is drawn in the form of a dashed box in FIG. Select the device to distinguish.
  • the transmitter 403 may belong to a radio frequency system for performing network communication with an external device, for example, may communicate with an external device through a network such as an Ethernet, a radio access network, or a wireless local area network.
  • the memory 402 and the transmitter 403 may be connected to the processor 401 via the bus 400 (as shown in FIG. 4 as an example), or may be connected to the processor 402 through a dedicated connection line.
  • the code corresponding to the method shown above is solidified into the chip, thereby enabling the chip to perform the method shown in the previous embodiment while it is running. How to design and program the processor 402 is well known to those skilled in the art, and details are not described herein.
  • the network device can be used to perform the embodiment shown in FIG. 2 above and the method provided in detail for the subsequent two embodiments of the embodiment shown in FIG. 2, such as the network device as described above. Therefore, for the functions and the like implemented by the units in the network device, reference may be made to the description of the previous method part, and details are not described herein.
  • an embodiment of the present invention provides a user equipment, which may include a receiver 501 and a processor 502.
  • the receiver 501 can belong to the radio frequency system and is used for network communication with an external device, for example, can communicate with an external device through a network such as an Ethernet, a radio access network, or a wireless local area network.
  • the processor 502 can include a CPU or ASIC, can include one or more integrated circuits for controlling program execution, can include hardware circuits developed using an FPGA, and can include a baseband chip.
  • the user equipment may further include a memory 503, which is shown together in FIG. 5, because the memory 503 is not a mandatory device, and is therefore shown in the form of a dashed box in FIG. Make a distinction.
  • the number of memories 503 can be one or more.
  • the memory 503 may include a ROM, a RAM, and a disk storage, and the like.
  • the memory 503 can be used to store program code required by the processor 502 to perform tasks, and can also be used to store data.
  • the memory 503 and the receiver 501 may be connected to the processor 502 via the bus 500 (as exemplified in FIG. 5), or may be connected to the processor 502 through a dedicated connection line.
  • the code corresponding to the method shown above is solidified into the chip, thereby enabling the chip to perform the method shown in the previous embodiment while it is running.
  • How to design and program the processor 502 is a technique well known to those skilled in the art, and details are not described herein.
  • the user equipment can be used to perform the embodiment shown in FIG. 2 above and the method provided in detail for the subsequent two embodiments of the embodiment shown in FIG. 2, such as the user equipment as described above. Therefore, for the functions and the like implemented by the units in the user equipment, reference may be made to the description of the previous method part, and details are not described herein.
  • an embodiment of the present invention provides a network device, where the network device may include a determining unit 601, a selecting unit 602, and a processing unit 603.
  • the network device may further include a sending unit 604, which is shown together in FIG. 6, because the sending unit 604 is not a mandatory device, and therefore is drawn in the form of a dashed box in FIG. Select the device to distinguish.
  • the physical device corresponding to the determining unit 601, the selecting unit 602, and the processing unit 603 may be the processor 401 in FIG. 4, and the physical device corresponding to the sending unit 604 may be the transmitter 403 in FIG.
  • the network device can be used to perform the embodiment shown in FIG. 2 above and the method provided in detail for the subsequent two embodiments of the embodiment shown in FIG. 2, such as the network device as described above. Therefore, for the network device
  • the functions implemented by each unit refer to the description of the previous method section, and no further description is provided.
  • an embodiment of the present invention provides a user equipment, where the network device may include a receiving unit 701 and a processing unit 702.
  • the physical device corresponding to the receiving unit 701 may be the receiver 501 in FIG. 5, and the physical device corresponding to the processing unit 702 may be the processor 502 in FIG.
  • the user equipment can be used to perform the embodiment shown in FIG. 2 above and the method provided in detail for the subsequent two embodiments of the embodiment shown in FIG. 2, such as the user equipment as described above. Therefore, for the functions and the like implemented by the units in the user equipment, reference may be made to the description of the previous method part, and details are not described herein.
  • the transmission time interval set may be set in advance, and the network device may schedule the transmission time interval for the user equipment from the transmission time interval set when the transmission time interval is scheduled, if multiple network devices preferentially receive the transmission time interval from the transmission time interval.
  • the transmission time interval is scheduled for the user equipment, and different network devices have almost the same choice when selecting the transmission time interval, so the time for the uplink transmission of different network devices may be the same, and the uplink transmission is minimized by other
  • the possibility of interference of the downlink transmission of the cell improves the transmission quality.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program includes some or all of the steps of any one of the ranging methods described in the foregoing method embodiments.
  • the functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may also be an independent physical module.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • all or part of the technical solution of the present invention may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device, such as a personal computer. , a server, or a network device or the like, or a processor performs all or part of the steps of the method of the various embodiments of the present invention.
  • the foregoing storage medium includes: a universal serial bus flash drive, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.

Abstract

一种无线通信系统中调度传输的方法及设备,用于解决进行上行传输的小区的上行传输可能受到下行传输的干扰的技术问题。该方法包括:网络设备确定传输时间间隔集合中各传输时间间隔用作第一方向传输的优先级,所述第一方向传输为从所述网络设备到用户设备的下行方向或从所述用户设备到所述网络设备的上行方向;所述网络设备根据所述优先级,为第一小区从所述传输时间间隔集合中选择至少一个传输时间间隔;所述网络设备利用所述选择的至少一个传输时间间隔在所述第一小区内与所述用户设备在所述第一方向传输。

Description

一种无线通信系统中调度传输的方法及设备
本申请要求于2016年9月28日提交中国专利局、申请号为201610867136.1、申请名称为“一种无线通信系统中调度传输的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种无线通信系统中调度传输的方法及设备。
背景技术
长期演进(Long Term Evolution,LTE)/长期演进高级(Long Term Evolution Advanced,LTE-A)通信系统按照双工模式的不同,主要可以分为频分双工(Frequency Division Duplex,FDD)模式和时分双工(Time Division Duplex,TDD)模式。对于工作在TDD模式下的无线通信系统,在一段时间内,整个频段仅可用于下行传输,或仅可用于上行传输,并且对于同一频段覆盖的区域,该区域内的所有小区是同步的,即在同一个时刻必须同为下行传输,或同为上行传输。对于工作在FDD模式下的无线系统,频谱是成对使用的,即一个上行频段用于传输上行业务和上行信令,一个下行频段用于传输下行业务和下行信令,上行频段只能用于上行传输,下行频段只能用于下行传输。
考虑到系统中的用户设备分布不均匀,不同的用户设备的通信业务也大相庭径,处于同一频段覆盖下的小区在同一时刻的下行业务量和上行业务量差异较大,若所有的小区采用相同的上下行传输配置,无法满足不同小区的业务需求。同一个小区在不同的时间下行业务量和上行业务量也会发生比较大变化。因此,为了提升系统中传输资源的利用率,可以采用灵活双工技术,对每个小区的传输方向进行单独配置。例如,可以根据当前小区的上下行业务的比例来确定该小区上下行传输的配比。
此时,在同一个传输时间间隔(Transmission Time Interval,TTI)内,因为灵活双工的原因,当一个小区在进行上行传输时,可能相邻的小区在进行下行传输,这时由于下行传输的信号发射端是基站,发射功率比较大,那么就会导致进行上行传输的小区的上行传输受到比较大的下行传输的干扰,而目前对此尚无解决方法。
发明内容
本发明实施例提供一种无线通信系统中调度传输的方法及设备,用于解决进行上行传输的小区的上行传输可能受到下行传输的干扰的技术问题。
第一方面,提供一种无线通信系统中调度传输的方法,该方法可以通过网络设备实现。该方法包括:网络设备确定传输时间间隔集合中各传输时间间隔用作第一方向传输的优先级,第一方向传输为从网络设备到用户设备的下行方向或从用户设备到网络设备的上行方向。网络设备根据优先级,为第一小区从传输时间间隔集合中选择至少一个传输时间间隔。网络设备利用选择的至少一个传输时间间隔在第一小区内与用户设备在第一方向传输。
本发明实施例中,可以预先设置传输时间间隔集合,网络设备在调度传输时间间隔时, 可以从该传输时间间隔集合中为用户设备调度传输时间间隔,若多个网络设备均优先从该传输时间间隔集合中为用户设备调度传输时间间隔,则不同的网络设备在选择传输时间间隔时有几乎同样的选择,因此不同的网络设备进行上行传输的时刻可能是相同的,尽量减小了上行传输受到其他小区的下行传输的干扰的可能性,提高了传输质量。
结合第一方面,在第一方面的第一种可能的实现方式中,网络设备根据优先级,从传输时间间隔集合中选择至少一个传输时间间隔,可以通过以下方式实现:网络设备按照优先级从高到低的顺序从传输时间间隔集合中选择至少一个传输时间间隔,或者,网络设备按照优先级从低到高的顺序从传输时间间隔集合中选择至少一个传输时间间隔。
本发明实施例中,全网或小区组内的网络设备都可以采用相同的传输时间间隔集合,以及都按照相同的调度规则在传输时间间隔集合中调度传输时间间隔,从而可以使得全网或者小区组内的上下行传输时间间隔尽量相同,可以在很大程度上减少全网或小区组内的异向干扰情况。只要全网或小区组内的网络设备都采用相同的调度规则即可,那么可以是按照优先级从高到低的顺序,也可以是按照优先级从低到高的顺序,本发明实施例不作限制。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,网络设备还可以确定第一小区的传输周期内是否包含异向干扰传输时间间隔,网络设备根据确定是否包含异向干扰传输时间间隔的结果向用户设备发送指示信息,指示信息用于指示用户设备进行上行传输所使用的功率控制参数。其中,异向干扰时传输间间隔为在第一小区内被配置为上行,同时在第二小区内被配置为下行的传输时间间隔。
每个小区的上行业务负载是不同的,即使采用相同的传输时间间隔集合和相同的调度规则,每个小区的上下行配比也可能不同,传输时间间隔集合和调度规则可以尽量减少异向干扰,但是由于上行业务负载的不同,每个小区的上行传输时间间隔的数量不同,仍然可能会存在异向干扰。那么本发明实施例中,基站可以配置多套功率控制参数,用户设备通过功率控制参数可以计算上行发射功率,针对第一小区包含异向干扰传输时间间隔和不包含异向干扰传输时间间隔的两种情况,用户设备可以选择不同的功率控制参数,从而通过功率控制参数得到不同的上行发射功率,在第一小区不存在异向干扰传输时间间隔时,计算得到的上行发射功率可以较小,以节省能量,在第一小区存在异向干扰传输时间间隔时,计算得到的上行发射功率可以较大,可以尽量减小异向干扰所带来的影响。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,网络设备确定第一小区的传输周期内是否包含异向干扰传输时间间隔,包括但不限于以下几种方式:网络设备获取第二小区的传输时间间隔调度信息,并根据传输时间间隔调度信息确定第一小区的传输周期内是否包含异向干扰传输时间间隔;或者,网络设备接收第二小区对应的另一个网络设备发送的第二小区的传输时间间隔调度信息,并根据传输时间间隔调度信息确定第一小区的传输周期内是否包含异向干扰传输时间间隔;或者,网络设备在至少一个传输周期内对第二小区进行侦听,根据干扰是否高于预设门限确定第一小区的传输周期内是否包含异向干扰传输时间间隔。
提供了几种网络设备确定第一小区的传输周期内是否包含异向干扰传输时间间隔的方式,网络设备可以自行确定,或者通过另一网络设备发送的传输时间间隔调度信息来确定,在具体实施过程中可以根据不同的情况来选择不同的确定方式,较为灵活。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,传 输时间间隔调度信息用于指示第二小区中各传输时间间隔的传输方向、或用于指示第二小区中被配置为上行方向传输的传输时间间隔、或用于指示第二小区中被配置为下行方向传输的传输时间间隔,或用于指示第二小区中被配置为上行方向传输的传输时间间隔数量、或用于指示第二小区中被配置为下行方向传输的传输时间间隔数量。
第二小区的传输时间间隔调度信息可以指示不同的内容,根据网络情况不同或根据系统设定不同等因素,可能获取的传输时间间隔调度信息是不同的,但传输时间间隔调度信息能够指示的各种情况都在本发明实施例的保护范围之内。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,若传输时间间隔调度信息用于指示第二小区中被配置为上行方向传输的传输时间间隔数量,或用于指示第二小区中被配置为下行方向传输的传输时间间隔数量,那么,根据传输时间间隔调度信息确定第一小区的传输周期内是否包含异向干扰传输时间间隔,可以通过以下方式实现:网络设备根据优先级和传输时间间隔调度信息,确定在传输周期内第二小区中被配置为上行方向传输的传输时间间隔和/或下行方向传输的传输时间间隔。网络设备根据传输周期内第二小区中被配置为上行方向传输的传输时间间隔和/或下行方向传输的传输时间间隔,确定第一小区的传输周期内是否包含异向干扰传输时间间隔。
若传输时间间隔调度信息用于指示第二小区中被配置为上行方向传输的传输时间间隔数量,或用于指示第二小区中被配置为下行方向传输的传输时间间隔数量,不能直接指示异向干扰传输时间间隔的情况,那么网络设备还需要再确定异向干扰传输时间间隔的情况。网络设备直接根据传输时间间隔集合中各传输时间间隔的优先级,以及传输时间间隔调度信息,就可以确定第一小区的传输周期内是否包含异向干扰传输时间间隔,方式比较简单,易于实现。可见,即使传输时间间隔调度信息不能直接指示异向干扰传输时间间隔的情况,网络设备也可以根据传输时间间隔调度信息以及其他的辅助信息(例如优先级)来确定第一小区的传输周期内是否包含异向干扰传输时间间隔,不会因为传输时间间隔调度信息不能直接指示异向干扰传输时间间隔的情况就无法确定异向干扰传输时间间隔。
结合第一方面的第二种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,指示信息携带在下行控制信息中,下行控制信息用于指示上行数据传输资源。
也就是说,网络设备可以通过已知的消息来携带指示信息,指示信息既可以及时发送给用户设备,也可以无需额外增加新的消息来发送指示信息,节省传输资源。
结合第一方面的第二种可能的实现方式至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,网络设备根据确定是否包含异向干扰传输时间间隔的结果向用户设备发送指示信息,可以通过以下方式实现:当网络设备确定包含异向干扰传输时间间隔时,向用户设备发送第一指示信息,第一指示信息用于指示用户设备在异向干扰传输时间间隔上进行上行传输所使用的第一功率控制参数。另外,该方法还包括:网络设备向用户设备发送第二指示信息,第二指示信息用于指示第二功率控制参数。其中,第二功率控制参数为缺省的功率控制参数,或至少在非异向干扰传输时间间隔上进行上行传输所使用的功率控制参数,非异向干扰传输时间间隔为除异向干扰传输时间间隔之外的传输时间间隔。
也就是说,根据第一小区的异向干扰传输时间间隔的不同情况,网络设备可以向用户设备发送不同的指示信息。若第一小区包含异向干扰传输时间间隔,网络设备向用户设备 发送第一指示信息,第一指示信息用于指示第一功率控制参数,若第一小区不包含异向干扰传输时间间隔,网络设备向用户设备发送第二指示信息,第二指示信息用于指示第二功率控制参数。也就是说,用户设备可以根据不同的指示信息来选取不同的功率控制参数计算上行发射功率,而网络设备在配置不同的功率控制参数时可以考虑到异向干扰传输时间间隔的情况,例如,根据第一功率控制参数计算得到的上行发射功率可以大于根据第二功率控制参数计算得到的上行发射功率,这样,在第一小区没有异向干扰传输时间间隔时,使用较小的上行发射功率发送数据,可以减小功耗,在第一小区有异向干扰传输时间间隔时,使用较大的上行发射功率发送数据,可以尽量减小异向干扰所带来的影响,提高数据传输质量。
第二方面,提供一种无线通信系统中调度传输的方法,该方法可以通过用户设备实现。该方法包括:用户设备接收网络设备发送的下行控制信息,下行控制信息用于指示上行数据传输资源。用户设备通过下行控制信息指示的至少一个传输时间间隔在第一小区内与网络设备在第一方向传输。其中,至少一个传输时间间隔为网络设备根据传输时间间隔集合中各传输时间间隔用作第一方向传输的优先级,为第一小区从传输时间间隔集合中选择的。第一方向传输为从网络到用户设备的下行方向或从用户设备到网络设备的上行方向。
本发明实施例中可以预先设置传输时间间隔集合,网络设备在调度传输时间间隔时,可以从该传输时间间隔集合中为用户设备调度传输时间间隔,若多个网络设备均优先从该传输时间间隔集合中为用户设备调度传输时间间隔,则不同的网络设备在选择传输时间间隔时有几乎同样的选择,因此不同的网络设备进行上行传输的时刻可能是相同的,用户设备通过这样选择的传输时间间隔来与网络设备进行传输,可以尽量减小上行传输受到其他小区的下行传输的干扰的可能性,提高了传输质量。
结合第二方面,在第二方面的第一种可能的实现方式中,用户设备可以获取下行控制信息中携带的指示信息,用户设备根据指示信息确定进行上行传输所使用的功率控制参数。
根据如前的介绍可知,网络设备可以根据第一小区是否有异向干扰传输时间间隔的情况向用户设备发送指示信息,用户设备根据指示信息可以选取相应的功率控制参数,那么用户设备所选择的功率控制参数可以认为是考虑了异向干扰情况的功率控制参数,通过这样选取的功率控制参数计算上行发射功率,可以提高数据传输质量。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,用户设备获取下行控制信息中携带的指示信息,可以通过以下方式实现:用户设备获取下行控制信息中携带的第一指示信息,第一指示信息用于指示用户设备在异向干扰传输时间间隔上进行上行传输所使用的第一功率控制参数,异向干扰时传输间间隔为在第一小区内被配置为上行,同时在第二小区内被配置为下行的传输时间间隔;或,用户设备获取下行控制信息中携带的第二指示信息,第二指示信息用于指示第二功率控制参数,第二功率控制参数为缺省的功率控制参数,或至少在非异向干扰传输时间间隔上进行上行传输所使用的功率控制参数,非异向干扰传输时间间隔为除异向干扰传输时间间隔之外的传输时间间隔。
即,根据是否有异向干扰的因素,网络设备为用户设备配置了不同的功率控制参数,用户设备可以根据不同的指示信息来选取不同的功率控制参数计算上行发射功率,例如,根据第一功率控制参数计算得到的上行发射功率可以大于根据第二功率控制参数计算得到的上行发射功率,这样,在第一小区没有异向干扰传输时间间隔时,使用较小的上行发 射功率发送数据,可以减小功耗,在第一小区有异向干扰传输时间间隔时,使用较大的上行发射功率发送数据,可以尽量减小异向干扰所带来的影响,提高数据传输质量。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,用户设备还接收网络设备发送的至少两套功率控制参数,功率控制参数用于计算上行发射功率。其中,至少两套功率控制参数中包括第一功率控制参数和第二功率控制参数。
即,网络设备为用户设备配置功率控制参数后要将配置的功率控制参数发送给用户设备,这样用户设备根据指示信息就可以直接选取相应的功率配置参数进行计算,无需在使用功率控制参数时再向网络设备请求获取。
第三方面,提供一种网络设备,该设备包括处理器。其中,处理器用于确定传输时间间隔集合中各传输时间间隔用作第一方向传输的优先级,根据优先级,为第一小区从传输时间间隔集合中选择至少一个传输时间间隔,再利用选择的至少一个传输时间间隔在第一小区内与用户设备在第一方向传输。其中,第一方向传输为从网络设备到用户设备的下行方向或从用户设备到网络设备的上行方向
结合第三方面,在第三方面的第一种可能的实现方式中,处理器根据优先级,为第一小区从传输时间间隔集合中选择至少一个传输时间间隔,可以通过以下方式实现:按照优先级从高到低的顺序从传输时间间隔集合中选择至少一个传输时间间隔。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,该网络设备还包括发送器。其中,处理器还用于:确定第一小区的传输周期内是否包含异向干扰传输时间间隔,根据确定单元确定的是否包含异向干扰传输时间间隔的结果,通过发送器向用户设备发送指示信息。指示信息用于指示用户设备进行上行传输所使用的功率控制参数,异向干扰时传输间间隔为在第一小区内被配置为上行,同时在第二小区内被配置为下行的传输时间间隔。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,该网络设备还包括接收器。其中,处理器确定第一小区的传输周期内是否包含异向干扰传输时间间隔,可以通过以下方式实现:获取第二小区的传输时间间隔调度信息,并根据传输时间间隔调度信息确定第一小区的传输周期内是否包含异向干扰传输时间间隔;或者,通过接收器接收第二小区对应的另一个网络设备发送的第二小区的传输时间间隔调度信息,并根据传输时间间隔调度信息确定第一小区的传输周期内是否包含异向干扰传输时间间隔;或者,在至少一个传输周期内对第二小区进行侦听,根据干扰是否高于预设门限确定第一小区的传输周期内是否包含异向干扰传输时间间隔。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,传输时间间隔调度信息用于指示第二小区中各传输时间间隔的传输方向、或用于指示第二小区中被配置为上行方向传输的传输时间间隔、或用于指示第二小区中被配置为下行方向传输的传输时间间隔,或用于指示第二小区中被配置为上行方向传输的传输时间间隔数量、或用于指示第二小区中被配置为下行方向传输的传输时间间隔数量。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,若传输时间间隔调度信息用于指示第二小区中被配置为上行方向传输的传输时间间隔数量或用于指示第二小区中被配置为下行方向传输的传输时间间隔数量,则,处理器根据传输时间间隔调度信息确定第一小区的传输周期内是否包含异向干扰传输时间间隔,可以通过以下方式实现:根据优先级和传输时间间隔调度信息,确定在传输周期内第二小区中被配 置为上行方向传输的传输时间间隔和/或下行方向传输的传输时间间隔,根据传输周期内第二小区中被配置为上行方向传输的传输时间间隔和/或下行方向传输的传输时间间隔,确定第一小区的传输周期内是否包含异向干扰传输时间间隔。
结合第三方面的第二种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式,在第三方面的第六种可能的实现方式中,指示信息携带在下行控制信息中,下行控制信息用于指示上行数据传输资源。
结合第三方面的第二种可能的实现方式至第六种可能的实现方式中的任一种可能的实现方式,在第三方面的第七种可能的实现方式中,处理器根据确定是否包含异向干扰传输时间间隔的结果,通过发送器向用户设备发送指示信息,可以通过以下方式实现:当确定包含异向干扰传输时间间隔时,通过发送器向用户设备发送第一指示信息,第一指示信息用于指示用户设备在异向干扰传输时间间隔上进行上行传输所使用的第一功率控制参数。另外,处理器还用于:通过发送器向用户设备发送第二指示信息,第二指示信息用于指示第二功率控制参数。第二功率控制参数为缺省的功率控制参数,或至少在非异向干扰传输时间间隔上进行上行传输所使用的功率控制参数,非异向干扰传输时间间隔为除异向干扰传输时间间隔之外的传输时间间隔。
第四方面,提供一种用户设备,该用户设备包括接收器和处理器。其中,接收器用于接收网络设备发送的下行控制信息,下行控制信息用于指示上行数据传输资源。处理器用于通过下行控制信息指示的至少一个传输时间间隔在第一小区内与网络设备在第一方向传输。至少一个传输时间间隔为网络设备根据传输时间间隔集合中各传输时间间隔用作第一方向传输的优先级,为第一小区从传输时间间隔集合中选择的。第一方向传输为从网络到用户设备的下行方向或从用户设备到网络设备的上行方向。
结合第四方面,在第四方面的第一种可能的实现方式中,处理器还用于:获取下行控制信息中携带的指示信息,根据指示信息确定进行上行传输所使用的功率控制参数。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,处理器获取下行控制信息中携带的指示信息,可以通过以下方式实现:获取下行控制信息中携带的第一指示信息,第一指示信息用于指示用户设备在异向干扰传输时间间隔上进行上行传输所使用的第一功率控制参数,异向干扰时传输间间隔为在第一小区内被配置为上行,同时在第二小区内被配置为下行的传输时间间隔;或,获取下行控制信息中携带的第二指示信息,第二指示信息用于指示第二功率控制参数,第二功率控制参数为缺省的功率控制参数,或至少在非异向干扰传输时间间隔上进行上行传输所使用的功率控制参数,非异向干扰传输时间间隔为除异向干扰传输时间间隔之外的传输时间间隔。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,接收器还用于:接收网络设备发送的至少两套功率控制参数,功率控制参数用于计算上行发射功率。其中,至少两套功率控制参数中包括第一功率控制参数和第二功率控制参数。
第五方面,提供一种网络设备,该网络设备可以包括用于执行第一方面或第一方面的任一种可能的实现方式的方法的功能单元。
第六方面,提供一种用户设备,该用户设备可以包括用于执行第二方面或第二方面的任一种可能的实现方式的方法的功能单元。
第七方面,本发明实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述第一方面或第一方面的任一种可能的实现方式为 网络设备所设计的程序。
第八方面,本发明实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述第二方面或第二方面的任一种可能的实现方式为用户设备所设计的程序。
本发明实施例中,通过预先设置传输时间间隔集合,令多个网络设备进行上行传输的时刻尽可能相同,尽量减小了上行传输受到其他小区的下行传输的干扰的可能性,提高了传输质量。
附图说明
图1为本发明实施例的一种应用场景示意图;
图2A为本发明实施例提供的一种无线通信系统中调度传输的方法的流程图;
图2B为本发明实施例提供的一种无线通信系统中调度传输的方法的流程图;
图3A-图3D为本发明实施例提供的几种TTI集合的示意图;
图4为本发明实施例提供的网络设备的一种结构示意图;
图5为本发明实施例提供的用户设备的一种结构示意图;
图6为本发明实施例提供的网络设备的一种结构示意图;
图7为本发明实施例提供的用户设备的一种结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明实施例保护的范围。
本文中描述的技术可用于各种通信系统,例如第三代移动通信系统(3G)、第四代移动通信系统(4G)、第五代移动通信系统(5G)、或下一代通信系统。例如全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波频分多址接入(Single Carrier Frequency Division Multiple Access,SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,LTE系统,未来的5G系统,以及其他可能的通信系统。
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)用户设备,是指向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该用户设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该用户设备可以包括UE、无线终端设备、移动终端设备、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端设备(Remote Terminal)、接入终端设备(Access  Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括无线网络控制器(Radio Network Controller,RNC)或基站控制器(Base Station Controller,BSC),或者也可以包括演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G系统中的下一代节点B(next generation node B,NG-NB),本发明实施例并不限定。
3)异向干扰。若用户设备在该用户设备的服务小区中通过一个TTI传输上行数据时,该用户设备所在的服务小区的相邻小区同时通过该TTI传输下行数据,则认为该用户设备通过该TTI传输上行数据时存在异向干扰,也就是相邻小区的下行传输对进行上行传输的小区的上行传输所产生的干扰。
4)传输周期,是指持续时间为TTI的整数倍的一段时间,如TTI为子帧,则TTI为1ms,那么传输周期可以是10ms。
5)传输时间间隔集合,可以是一个传输周期内的部分传输时间间隔,或者可以是一个传输周期内的全部传输时间间隔。
6)本发明实施例中的术语“系统”和“网络”可被互换使用。“小区”和“载波”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
请参见图1,为本发明实施例的一种应用场景。图1中包括两个网络设备和两个用户设备,其中网络设备以基站为例,即基站1和基站2。基站1为用户设备1服务,基站2为用户设备2服务,基站1为用户设备1提供的服务小区和基站2为用户设备2提供的服务小区互为相邻小区,基站1和基站2使用灵活双工技术。在这种情况下,假如用户设备1在用户设备1的服务小区中通过一个TTI向基站1进行上行传输,基站2在用户设备2的服务小区中通过该TTI向用户设备2进行下行传输,那么用户设备2的服务小区中的下行传输对用户设备1的服务小区中的上行传输就会产生异向干扰。
鉴于此,本发明实施例中可以预先设置TTI集合,事先规定位于预设区域内的网络设备均优先从该TTI集合中为用户设备调度TTI,其中,位于预设区域内的网络设备可以理解为处于同一频段覆盖下的小区中的网络设备,那么网络设备在调度TTI时,从该TTI集合中为用户设备调度TTI,不同的网络设备在选择TTI时有几乎同样的选择,因此不同的网络设备进行上行传输的时刻可能是相同的,尽量减小了上行传输受到其他小区的下行传输的干扰的可能性,提高了传输质量。例如第一方向为上行方向,基站1从TTI集合中为 用户设备1调度第一TTI以进行上行传输,基站2若要为用户设备2调度TTI进行上行传输也是优先从该TTI集合中进行调度,因此基站2也很有可能为用户设备2调度第一TTI进行上行传输,则在第一TTI上就不存在异向干扰。或者,即使基站2不为用户设备2调度上行传输,而要为用户设备2调度下行传输,因为基站2是优先从该TTI集合中调度上行传输,因此在调度下行传输时自然可以优先不从该TTI集合中调度,则上行传输所使用的TTI和下行传输所使用的TTI相同的概率就比较小,因此减小了异向干扰的情况。
本发明实施例中,网络设备确定传输时间间隔集合中各传输时间间隔用作第一方向传输的优先级,第一方向传输为从网络设备到用户设备的下行方向或从用户设备到网络设备的上行方向。网络设备根据优先级,为第一小区从传输时间间隔集合中选择至少一个传输时间间隔。而网络设备会向用户设备发送下行控制信息(Downlink Control Information,DCI),下行控制信息用于指示上行数据传输资源,那么用户设备接收DCI后,就可以通过DCI指示的至少一个传输时间间隔在第一小区内与网络设备在第一方向上传输,也就是说,网络设备可以利用选择的至少一个传输时间间隔在第一小区内与用户设备在第一方向传输。为了更好地理解该技术方案,下面通过两个实施例来详细介绍。下面的两个实施例分别以第一方向是上行方向和下行方向为例。本发明实施例中,当传输时间间隔集合中包括一个传输周期的一部分传输时间间隔时,其余的传输时间间隔可以是固定为上行或下行的传输时间间隔。
需要说明的是,传输时间间隔用作第一方向传输是指该传输时间间隔部分或全部符号被用作第一方向传输。
请参见图2A,本发明一实施例提供一种无线通信系统中调度传输的方法。而本发明实施例以需在上行方向与用户设备传输数据为例,即第一方向为上行方向。可以认为,本发明实施例以TDD系统为例。
在TDD系统中,每个TTI都可以灵活调度为上行传输或者下行传输,那么在全网或小区组中,如果不同的小区调度为上行的TTI不同,就可能存在异向干扰,尤其是,若一个小区的上行传输受到相邻小区的下行传输的干扰,则异向干扰较为严重,可能导致上行传输失败。为了减少系统中的异向干扰,本发明实施例中预先定义TTI集合,TTI集合中可以包括至少一个TTI,网络设备在调度上行TTI时,优先调度该TTI集合中的TTI,即,当有上行业务时,网络设备优先从该TTI集合中选择TTI进行上行传输,这样可以尽量减少异向干扰。其中,TTI集合中包括的TTI可以优先调度为第一方向,但不是一定调度为第一方向。其中,位于预设区域内的网络设备均优先从该TTI集合中为用户设备调度TTI进行上行传输,预设区域的范围可以是全网的覆盖范围,或者也可以是划分的小区组覆盖的范围,若划分小区组,一般来说可以按照网络设备之间的距离来划分,将距离较近的网络设备提供的小区划分在一个小区组中,那么不同的小区组可以共用一个TTI集合,或者可以为不同的小区组定义不同的TTI集合。其中,小区组是指一组小区,在这一组小区中,互相干扰的功率比较大,所以采用相同的TTI集合和调度规则。
例如在5G系统中,可能会定义4种TTI结构:
1、DL-only传输时间间隔,即用于下行传输的TTI。
2、UL-only传输时间间隔,即用于上行传输的TTI。
3、mix传输时间间隔,即在同一TTI中既可以进行上行传输,又可以进行下行传输。其中mix传输时间间隔又分为DL-dominate传输时间间隔和UL-dominate传输时间间隔这两种, DL-dominate传输时间间隔主要用于传输下行数据,但同时也可以包含上行控制信息的传输,UL-dominate传输时间间隔主要用于传输上行数据,但同时也可以包含下行控制信息的传输。
其中,Ul-only传输时间间隔和mix传输时间间隔中的UL-dominate传输时间间隔都可以作为本发明实施例中添加到TTI集合中的TTI。
在下面的介绍过程中,以图1所示的应用场景为例。另外在下面的介绍过程中,以网络设备是基站为例,则该网络设备可以是图1中的基站1或基站2,若该网络设备是图1中的基站1,那么本发明实施例中的用户设备就是图1中的用户设备1,若该网络设备是图1中的基站2,那么本发明实施例中的用户设备就是图1中的用户设备2。
S121、基站确定TTI集合中各TTI用作上行方向传输的优先级。
本发明实施例中,可以为TTI集合中的全部TTI或者部分TTI预先定义用作上行方向传输的优先级,如可以为TTI集合包括的全部TTI分别定义优先级,不同的TTI的优先级不同。那么基站在确定进行上行传输时,可以确定TTI集合中各TTI用作上行方向传输的优先级。
其中,究竟将哪些TTI选为TTI集合中的TTI,以及究竟如何为TTI集合中的TTI设置优先级,可以由协议或标准预先定义,或者也可以由运营商预先规定,本发明实施例不作限制。
另外,在没有上行业务时,TTI集合中的TTI都可以调度为下行传输,或者也可以不进行调度,即本发明实施例中TTI集合中每个TTI的上行优先级并不是100%,只是优先调度为上行,并不是只能调度为上行。
S122、基站根据优先级,为第一小区从TTI集合中选择至少一个TTI。
基站在从TTI集合中调度TTI进行上行传输时,可以按照TTI的优先级来进行调度,例如按照优先级从高到低的顺序进行调度,或者按照优先级从低到高的顺序进行调度,这样,全网或者小区组内的基站都采用相同的TTI集合和按照相同的调度规则进行调度,可以使得全网或者小区组内的上下行TTI尽量相同,可以在很大程度上减少全网或小区组内的异向干扰情况。这里的调度规则,可以理解为先调度哪个TTI为上行方向,后调度哪个TTI为上行方向。当然,为每个TTI设置优先级从而按照优先级进行调度只是一种调度方式,目的是为了让网络设备都可以按照相同的调度规则在TTI集合中进行调度,那么只要能够使得网络设备按照相同的调度规则在TTI集合中进行调度的方式都在本发明实施例的保护范围之内。
请参见图3A,为一个传输周期内的一种TTI集合的示例。该传输周期以包括10个TTI为例。在该示例中,将这10个TTI中的部分TTI划分到TTI集合中,划分到TTI集合中的TTI为图3A中标注了数字的TTI,其中标注的数字表示TTI的优先级,即数字1表示第一优先级,数字2表示第二优先级,数字3表示第三优先级,数字4表示第四优先级,其中第一优先级为最高优先级。
基站在从图3A中的TTI集合中调度TTI进行上行传输时,例如按照TTI集合中包括的4个TTI的优先级从高到低的顺序进行调度。例如基站根据上行业务负载情况,判断一个传输周期内的需要的上行TTI的数量,如果需要三个,则基站会将图3A中标注数字为1、2、和3的TTI调度为上行TTI。
请参见图3B,为一个传输周期内的一种TTI集合的示例。该传输周期以包括10个TTI为例。在该示例中,将这10个TTI中的全部TTI都划分到TTI集合中,划分到TTI集合中的TTI为图3B中标注了数字的TTI,其中标注的数字表示TTI的优先级,即数字1表示第一优先级, 数字2表示第二优先级,以此类推,其中第一优先级为最高优先级。
同样的,基站在从图3B中的TTI集合中调度TTI进行上行传输时,例如也按照TTI集合中包括的4个TTI的优先级从高到低的顺序进行调度。例如基站根据上行业务负载情况,判断一个传输周期内的需要的上行TTI的数量,如果需要四个,则基站会将图3B中标注数字为1、2、3、和4的TTI调度为上行TTI。
从对图3A和图3B的介绍可以看出,本发明实施例中,TTI集合可以是针对传输周期的,也就是对于每个传输周期来说可以有一个TTI集合。那么对于不同的传输周期,TTI集合可以是相同的,或者对于不同的传输周期,TTI集合也可以是不同的,都可以由协议或标准预先定义,或者由运营商预先规定,本发明实施例不作限制。
S123、确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔。
每个小区的上行业务负载是不同的,即使采用相同的TTI集合和相同的调度规则,每个小区的上下行配比也可能不同,TTI集合和调度规则可以尽量减少异向干扰,但是由于上行业务负载的不同,每个小区的上行TTI的数量不同,仍然可能会存在异向干扰。那么本发明实施例中,基站可以配置至少两套功率控制参数,用户设备通过功率控制参数可以计算上行发射功率。至少两套功率控制参数可以包括第一功率控制参数和第二功率控制参数,第一功率控制参数是存在异向干扰TTI的功率控制参数,第二功率控制参数是不存在异向干扰TTI的功率控制参数,或者理解为,用户设备在异向干扰TTI上进行上行传输时可选择第一功率控制参数,而第二功率控制参数为缺省的功率控制参数,或用户设备至少在非异向干扰TTI上进行上行传输时可选择第二功率控制参数,基站可以将至少两套功率控制参数都发送给用户设备。那么,在不存在异向干扰TTI时,用户设备可以根据第二功率控制参数来计算上行发射功率,即用户设备在非异向干扰TTI上进行上行传输使用第一功率控制参数,在存在异向干扰TTI时,用户设备可以根据第一功率控制参数来计算上行发射功率,即用户设备在异向干扰TTI上进行上行传输使用第一功率控制参数。根据第一功率控制参数计算得到的上行发射功率一般来说大于根据第二功率控制参数计算得到的上行发射功率,即通过增加上行发射功率来尽量减小异向干扰的影响。其中,异向干扰TTI为在第一小区内被配置为上行,同时在第二小区内被配置为下行的TTI,非异向干扰TTI为除异向干扰TTI之外的TTI。第二小区可以是第一小区的相邻小区,或者是与第一小区之间的距离接近的小区,只要能够对第一小区产生异向干扰的小区均可以是第二小区。
其中,第一功率控制参数是指一套功率控制参数,第二功率控制参数也是指一套功率控制参数,第一功率控制参数和第二功率控制参数只是本发明实施例为了方便描述而给予的名称。
上面介绍了,用户设备可以根据异向干扰TTI的情况来选择功率控制参数,下面介绍用户设备如何获知异向干扰TTI的情况。本发明实施例中,可以由基站来获知异向干扰TTI的情况,即可以由基站确定第一小区的传输周期内是否包含异向干扰TTI,再根据确定是否包含异向干扰TTI的结果向用户设备发送指示信息,该指示信息用于指示用户设备进行上行传输所使用的功率控制参数。如果在一个小区中通过一个TTI传输上行数据时,该小区的相邻小区同时通过该TTI传输下行数据,那么就确定通过该TTI传输上行数据存在异向干扰,即该TTI为异向干扰TTI。因此对于一个基站来说,为了判断一个服务小区中的传输周期内是否存在异向干扰TTI,需要知道该服务小区的相邻小区的该传输周期内对于TTI的调度情况,即,基站可以获取该服务小区的相邻小区的TTI调度信息,TTI调度信息可以指 示该相邻小区中的TTI调度情况,基站根据该服务小区的相邻小区的TTI调度信息可以确定该服务小区的传输周期内是否包含异向干扰TTI。其中,基站可以获得相邻小区在至少一个传输周期内的TTI调度信息,本发明实施例就以获得相邻小区在一个传输周期内的TTI调度信息为例,即,基站要确定服务小区中的传输周期内是否存在异向干扰TTI,就要获得相邻小区的该传输周期内的TTI调度信息。当然对于一个服务小区来说,相邻小区可能是一个也可能是多个,则基站可以获得一个相邻小区的TTI调度信息也可以获得多个相邻小区的TTI调度信息,基站根据获得的所有TTI调度信息来判断服务小区的异向干扰的情况,本发明实施例以服务小区是第一小区、第一小区的相邻小区是第二小区为例进行介绍。本发明实施例中,可以以传输周期为单位,即基站每次在获取第二小区的TTI调度信息时,可以获得一个传输周期的TTI调度信息,例如获得下一个传输周期的TTI调度信息。
其中,如果第一小区和第二小区是同一个基站提供的,则基站可以直接获得第二小区的TTI调度信息,如果第一小区和第二小区是不同的基站提供的,那么提供第一小区的基站获得第二小区的TTI调度信息,可以有不同的方式。可能的实施方式中,提供第一小区的基站与提供第二小区的基站进行交互,从而接收提供第二小区的基站发送的第二小区的TTI调度信息。基站之间交互TTI调度信息,可以通过无线回传(backhaul)资源,也可以通过X2接口,本发明实施例不作限制。或者,可能的实施方式中,提供第一小区的基站可以在至少一个传输周期内对第二小区进行侦听,确定第二小区所产生的干扰,若第二小区产生的干扰大于预设门限值,则提供第一小区的基站确定第一小区的传输周期内包含异向干扰TTI,否则提供第一小区的基站确定第一小区的传输周期内不包含异向干扰TTI。其中,若第一小区和第二小区是不同的基站提供的,那么执行图2所示的实施例的各个步骤的基站为提供第一小区的基站。
本发明实施例中,TTI调度信息用于指示第二小区中在传输周期内各TTI的传输方向、或用于指示第二小区中在传输周期内被配置为上行方向传输的TTI、或用于指示第二小区中在传输周期内被配置为下行方向传输的TTI、或用于指示第二小区中在传输周期内被配置为上行方向传输的TTI数量、或用于指示第二小区中在传输周期内被配置为下行方向传输的TTI数量。即,TTI调度信息可以用于指示不同的内容,可根据实际情况配置不同的TTI调度信息。
其中,若第二小区的TTI调度信息用于指示在传输周期内第二小区中各TTI的传输方向、或用于指示第二小区中在传输周期内被配置为上行方向传输的TTI、或用于指示第二小区中在传输周期内被配置为下行方向传输的TTI,那么基站根据第二小区的TTI调度信息可以直接确定第一小区的传输周期内是否包含异向干扰TTI,方式较为简单。而若第二小区的TTI调度信息用于指示第二小区中在传输周期内被配置为上行方向传输的TTI数量、或用于指示第二小区中在传输周期内被配置为下行方向传输的TTI数量,不能直接指示异向干扰TTI的情况,那么基站根据第二小区的TTI调度信息确定第一小区的传输周期内是否包含异向干扰TTI,可以通过以下方式实现:基站根据TTI集合中包括的TTI的优先级以及第二小区的TTI调度信息,确定第二小区中在传输周期内被配置为上行方向传输的TTI和/或下行方向传输的TTI,基站根据第二小区中在传输周期内被配置为上行方向传输的TTI和/或下行方向传输的TTI,确定第一小区的传输周期内是否包含异向干扰TTI。
S124、基站根据确定是否包含异向干扰传输时间间隔的结果向用户设备发送指示信息,指示信息用于指示用户设备进行上行传输所使用的功率控制参数,那么用户设备接收该指 示信息。
在基站根据获得的TTI调度信息确定第一小区的传输周期内是否包含异向干扰TTI后,基站可以根据确定是否包含异向干扰TTI的结果向用户设备发送指示信息,以指示用户设备进行上行传输所使用的功率控制参数。例如,基站确定第一小区的传输周期内包含异向干扰TTI,那么基站向用户设备发送第一指示信息,第一指示信息用于指示用户设备在异向干扰TTI上进行上行传输所使用的第一功率控制参数,而若基站确定第一小区的传输周期内不包含异向干扰TTI,那么基站向用户设备发送第二指示信息,第二指示信息用于指示第二功率控制参数。
本发明实施例中,基站可以将指示信息携带在DCI中发送给用户设备,DCI用于指示上行数据传输资源。例如基站向用户设备发送DCI,该DCI可以指示通过至少一个TTI在第一小区与基站传输上行数据,这至少一个TTI是基站从TTI集合中调度的。另外在DCI中携带该指示信息,例如该指示信息在DCI中占用1比特(bit),用户设备根据该指示信息可以确定第一小区的传输周期内是否存在异向干扰TTI,且根据该指示信息确定所使用的功率控制参数。
其中,S123和S124是可选执行的步骤,因此在图2A中将用于表示S123的方框和表示S124的箭头画为虚线,以与必选步骤相区分。当然,若不执行S124,那么基站也可以通过DCI指示用户设备进行上行传输。
S125、用户设备通过接收的DCI指示的至少一个TTI在第一小区内与网基站在上行方向传输。
用户设备接收DCI后,确定进行上行传输的至少一个TTI。且,若DCI携带了指示信息,那么用户设备可以根据指示信息确定究竟使用哪套功率控制参数,再根据选择的功率控制参数计算上行发射功率。
下面简单介绍一下上行发射功率的计算方式,以明确用户设备究竟是如何计算的。
可能的实施方式中,采用如下公式来计算上行发射功率:
Figure PCTCN2017102118-appb-000001
公式(1)中,PPUSCH,c(i)表示计算得到的上行发射功率,PCMAX,c(i)表示用户设备在本载波上的最大发射功率,i表示TTI的序号,也可以理解为表示本次上行发送的时刻,例如TTI为子帧,则i为子帧号。j的取值可以为0、1、或2,根据使用场景不同可以取不同的值。MPUSCH,c(i)是物理上行共享信道(Physical Uplink Shared Channel,PUSCH)使用的资源块(RB)的数目,PLc为路损,ΔTF,c(i)与PUSCH时采用的调制编码方式(MCS)有关,fc(i)与功率控制命令(TPC command)有关,功率控制命令一般在DCI中发送。PO_PUSCH,c(j)=PO_UE_PUSCH,c(j)+PO_NOMINAL_PUSCH,c(j),PO_UE_PUSCH,c(j)表示用户设备级的参数,PO_NOMINAL_PUSCH,c(j)表示小区级的参数,αc(j)表示路损补偿。所谓的一套功率控制参数包括其中的PO_UE_PUSCH,c(j)、PO_NOMINAL_PUSCH,c(j)和αc(j)。即,通过调整功率控制参数,可以使得用户设备计算出的上行发射功率有所不同。
另外,公式(1)中还包括fc(i)这个参数。fc(i)分为两种,累积式和非累积式,具体使用哪种,由基站通过信令通知用户设备。
非累积式:fc(i)=δPUSCH,c(i-KPUSCH),其中,δPUSCH,c是功率控制命令,i表示TTI的序号, 也可以理解为表示本次上行发送的时刻,KPUSCH表示本次上行发送的时刻与携带功率控制命令的DCI的发送时刻之间的差值,即在i时刻进行的上行传输采用的功率控制命令是在i-KPUSCH时刻通知的。
累积式:fc(i)=fc(i-1)+δPUSCH,c(i-KPUSCH),其中δPUSCH,c、i、以及KPUSCH与非累积式中的定义相同,在i时刻进行的上行传输采用的fc(i)与在i-1时刻进行上行传输采用的fc(i-1)以及在i-KPUSCH时刻通知的功率控制命令有关。对于第一功率控制参数和第二功率控制参数来说,基站通知的功率控制命令可能是不同的,两种功率控制命令不能进行累积,所以对于第一功率控制参数和第二功率控制参数来说,fc(i)是分开累积的。
例如,基站发送给用户设备的指示信息用1比特来表示。若该比特取值为“0”,表示该DCI调度的至少一个TTI为第一类型的TTI,即第一小区的传输周期内不存在异向干扰TTI,可以理解为此时的指示信息为第二指示信息,则用户设备可以确定采用第二功率控制参数来计算上行发射功率,且fc(i)采用第一类型的TTI的累积值;若该比特取值为“1”,表示该DCI调度的至少一个TTI为第二类型的TTI,即第一小区的传输周期内存在异向干扰TTI,可以理解为此时的指示信息为第一指示信息,则用户设备可以确定采用第一功率控制参数来计算上行发射功率,且fc(i)采用第二类型的TTI的累积值。当然,在选择功率控制参数之前,用户设备可以先接收基站发送的至少两套功率控制参数,其中包括第一功率控制参数和第二功率控制参数。
前面介绍的都是基站调度TTI进行上行传输的情况,本发明实施例中,如果基站在一个传输周期内要调度TTI进行下行传输,那么一种方式为:基站优先从不属于TTI集合的TTI中进行调度。如果不属于TTI集合的TTI已经都用完,或者一个传输周期内的所有的TTI都属于TTI集合,那么基站也可以从TTI集合中调度TTI进行下行传输。在基站从TTI集合中调度TTI进行下行传输时,基站可以按照与调度上行传输的TTI相反的调度规则进行调度,例如基站在调度上行传输时是按照TTI集合中的各TTI的优先级从高到低的顺序进行调度,那么基站在调度下行传输时可以按照TTI集合中的各TTI的优先级从低到高的顺序进行调度,这样尽量避免上行和下行相冲突,尽量减少异向干扰的情况出现。
本发明实施例通过预定义TTI集合、TTI集合中的TTI的优先级以及调度规则,可以尽量减少小区间的异向干扰。基站通过DCI动态通知上行TTI采用哪套功率控制参数,可以提高上行的接收信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
图2A所示实施例介绍的主要是TDD系统的情况,下面请参见图2B,提供另一实施例,介绍一种无线通信系统中调度传输的方法,本发明实施例以需在下行方向与用户设备传输数据为例,即第一方向为下行方向。可以认为,本发明实施例以FDD系统为例。
在FDD系统中,分为FDD下行(Downlink,DL)频段和FDD上行(Uplink,UL)频段,FDD DL频段用于下行传输,FDD UL频段用于上行传输。考虑到一般来说下行业务会比较多,因此采用灵活双工技术后,FDD的上行频段中的部分TTI可以用于进行下行传输。在这种情况下,如果不同的小区调度为下行的TTI不同,那么就会存在比较严重的异向干扰,尤其是某个服务小区的上行传输如果受到相邻小区的下行传输的干扰,可能会导致上行传输失败。为了减少系统中的异向干扰,本发明实施例中在FDD UL频段中预先定义TTI集合,该TTI集合包括FDD UL频段中的至少一个TTI,网络设备在调度下行TTI时,优先调度该TTI集合中的TTI,即,当有下行业务时,网络设备优先从该TTI集合中选择TTI进行下行传输,这样可以尽量减少异向干扰。其中,位于预设区域内的网络设备均优先从该TTI集合中为 用户设备调度TTI进行下行传输,预设区域的范围可以是全网的覆盖范围,或者也可以是划分的小区组覆盖的范围,若划分小区组,一般来说可以按照网络设备之间的距离来划分,将距离较近的网络设备提供的小区划分在一个小区组中,那么不同的小区组可以共用一个TTI集合,或者不同的小区组可以定义不同的TTI集合。
以如前介绍的5G系统中的4种TTI结构为例,其中的DL-only传输时间间隔和mix传输时间间隔中的DL-dominate传输时间间隔都可以作为本发明实施例中添加到TTI集合中的TTI。
在下面的介绍过程中,以图1所示的应用场景为例。另外在下面的介绍过程中,以网络设备是基站为例,则该网络设备可以是图1中的基站1或基站2,若该网络设备是图1中的基站1,那么本发明实施例中的用户设备就是图1中的用户设备1,若该网络设备是图1中的基站2,那么本发明实施例中的用户设备就是图1中的用户设备2。
S221、基站确定TTI集合中各TTI用作下行方向传输的优先级。
本发明实施例中,可以为TTI集合中的全部TTI或者部分TTI预先定义用作下行方向传输的优先级,如可以为TTI集合包括的全部TTI分别定义优先级,不同的TTI的优先级不同。那么基站在确定进行下行传输时,可以确定TTI集合中各TTI用作下行方向传输的优先级。
其中,究竟将哪些TTI选为TTI集合中的TTI,以及究竟如何为TTI集合中的TTI设置优先级,可以由协议或标准预先定义,或者也可以由运营商预先规定,本发明实施例不作限制。
另外,在没有下行业务时,TTI集合中的TTI都可以调度为上行传输,或者也可以不进行调度,即TTI集合中每个TTI的下行优先级并不是100%,只是优先调度为下行,并不是只能调度为下行。
S222、基站根据优先级,为第一小区从TTI集合中选择至少一个TTI。
基站在从TTI集合中调度TTI进行下行传输时,可以按照TTI的优先级来进行调度,例如按照优先级从高到低的顺序进行调度,或者按照优先级从低到高的顺序进行调度,这样,全网或者小区组内的基站都采用相同的TTI集合和按照相同的调度规则进行调度,可以使得全网或者小区组内的上下行TTI尽量相同,可以在很大程度上减少全网或小区组内的异向干扰情况。这里的调度规则,可以理解为先调度哪个TTI为下行方向,后调度哪个TTI为下行方向。当然,为每个TTI设置优先级从而按照优先级进行调度只是一种调度方式,目的是为了让网络设备都可以按照相同的调度规则在TTI集合中进行调度,那么只要能够使得网络设备按照相同的调度规则在TTI集合中进行调度的方式都在本发明实施例的保护范围之内。
请参见图3C,为一个传输周期内的一种TTI集合的示例。该传输周期以包括10个TTI为例,在该示例中,将这10个TTI中的部分TTI划分到TTI集合中,划分到TTI集合中的TTI为图3C中标注了数字的TTI,其中标注的数字表示TTI的优先级,即数字1表示第一优先级,数字2表示第二优先级,数字3表示第三优先级,数字4表示第四优先级,其中第一优先级为最高优先级。
基站在从图3C中的TTI集合中调度TTI进行下行传输时,例如按照TTI集合中包括的4个TTI的优先级从高到低的顺序进行调度。例如基站根据下行业务负载情况,判断一个传输周期内的需要的下行TTI的数量,如果需要三个,则基站会将图3C中标注数字为1、2、和3的TTI调度为下行TTI。
请参见图3D,为一个传输周期内的一种TTI集合的示例。该传输周期以包括10个TTI为 例,在该示例中,将这10个TTI中的全部TTI都划分到TTI集合中,划分到TTI集合中的TTI为图3D中标注了数字的TTI,其中标注的数字表示TTI的优先级,即数字1表示第一优先级,数字2表示第二优先级,以此类推,其中第一优先级为最高优先级。
同样的,基站在从图3D中的TTI集合中调度TTI进行下行传输时,例如也按照TTI集合中包括的4个TTI的优先级从高到低的顺序进行调度。例如基站根据下行业务负载情况,判断一个传输周期内的需要的下行TTI的数量,如果需要四个,则基站会将图3D中标注数字为1、2、3、和4的TTI调度为上行TTI。
从对图3C和图3D的介绍可以看出,本发明实施例中,TTI集合可以是针对传输周期的,也就是对于每个传输周期来说可以有一个TTI集合。那么对于不同的传输周期,TTI集合可以是相同的,或者对于不同的传输周期,TTI集合也可以是不同的,都可以由协议或标准预先定义,或者由运营商预先规定,本发明实施例不作限制。
S223、确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔。
每个小区的下行业务负载是不同的,即使采用相同的TTI集合和相同的调度规则,每个小区的上下行配比也可能不同,TTI集合和调度规则可以尽量减少异向干扰,但是由于下行业务负载的不同,每个小区的下行TTI的数量不同,仍然可能会存在异向干扰。那么本发明实施例中,基站依然可以配置至少两套功率控制参数,用户设备通过功率控制参数可以计算上行发射功率。至少两套功率控制参数可以包括第一功率控制参数和第二功率控制参数,用户设备在异向干扰TTI上进行上行传输时可选择第一功率控制参数,而第二功率控制参数为缺省的功率控制参数,或用户设备至少在非异向干扰TTI上进行上行传输时可选择第二功率控制参数,基站可以将至少两套功率控制参数都发送给用户设备。那么,在不存在异向干扰TTI时,用户设备可以根据第二功率控制参数来计算上行发射功率,在存在异向干扰TTI时,用户设备可以根据第一功率控制参数来计算上行发射功率。根据第一功率控制参数计算得到的上行发射功率一般来说大于根据第二功率控制参数计算得到的上行发射功率,即通过增加上行发射功率来尽量减小异向干扰的影响。
上面介绍了,用户设备可以根据异向干扰的情况来选择功率控制参数,那么同样涉及用户设备如何获知异向干扰TTI的情况,本发明实施例中,同样可以由基站来获知异向干扰TTI的情况,即可以由基站确定第一小区的传输周期内是否包含异向干扰TTI,再根据确定是否包含异向干扰TTI的结果向用户设备发送指示信息,该指示信息用于指示用户设备进行上行传输所使用的功率控制参数。关于这部分内容的介绍可参考上一实施例中的相关描述,不多赘述。
S224、基站根据确定是否包含异向干扰传输时间间隔的结果向用户设备发送指示信息,指示信息用于指示用户设备进行上行传输所使用的功率控制参数,那么用户设备接收该指示信息。
在本发明实施例中,基站将指示信息携带在DCI中发送给用户设备,DCI用于指示下行数据传输资源。例如基站向用户设备发送DCI,该DCI可以指示通过至少一个TTI在第一小区与基站传输下行数据,这至少一个TTI是基站从TTI集合中调度的。另外在DCI中携带该指示信息,例如该指示信息在DCI中占用1比特,用户设备根据该指示信息可以确定第一小区的传输周期内是否存在异向干扰TTI,且根据该指示信息确定所使用的功率控制参数。例如,若该比特取值为“0”,表示在第一小区的传输周期内,除了该至少一个TTI之外,其他被调度为上行传输的TTI为第一类型的TTI,即在第一小区的传输周期内 不存在异向干扰TTI,可以理解为此时的指示信息为第二指示信息,则用户设备可以确定采用第二功率控制参数来计算上行发射功率,且fc(i)采用第一类型的TTI的累积值;若该比特取值为“1”,表示在第一小区的传输周期内,除了该至少一个TTI之外,其他被调度为上行传输的TTI为第二类型的TTI,即在第一小区的传输周期内存在异向干扰TTI,可以理解为此时的指示信息为第一指示信息,则用户设备可以确定采用第一功率控制参数来计算上行发射功率,且fc(i)采用第二类型的TTI的累积值。当然,在选择功率控制参数之前,用户设备可以先接收基站发送的至少两套功率控制参数,其中包括第一功率控制参数和第二功率控制参数。
其中,S223和S224是可选执行的步骤,因此在图2B中将用于表示S223的方框和表示S224的箭头画为虚线,以与必选步骤相区分。当然,若不执行S224,那么基站也可以通过DCI指示用户设备进行上行传输。
S225、用户设备通过接收的DCI指示的至少一个TTI在第一小区内与基站在下行方向传输。
用户设备接收DCI后,确定在传输周期内进行下行传输的至少一个TTI,那么可以根据至少一个TTI在第一小区内与基站在下行方向上传输。另外,用户设备确定了在传输周期内进行下行传输的至少一个TTI,也就可以确定在传输周期内进行上行传输的TTI。且,若DCI携带了指示信息,那么用户设备可以根据指示信息确定上行传输究竟使用哪套功率控制参数,再根据选择的功率控制参数计算上行发射功率。关于上行发射功率的计算方式可参考图2A所示的实施例中的介绍,不多赘述。
前面介绍的都是基站调度TTI进行下行传输的情况,本发明实施例中,如果基站在一个传输周期内要调度TTI进行上行传输,那么一种方式为:基站优先从不属于TTI集合的TTI中进行调度。如果不属于TTI集合的TTI已经都用完,或者一个传输周期内的所有的TTI都属于TTI集合,那么基站也可以从TTI集合中调度TTI进行上行传输。在基站从TTI集合中调度TTI进行上行传输时,基站可以按照与调度下行传输的TTI相反的调度规则进行调度,例如基站在调度下行传输时是按照TTI集合中的各TTI的优先级从高到低的顺序进行调度,那么基站在调度上行传输时可以按照TTI集合中的各TTI的优先级从低到高的顺序进行调度,这样尽量避免上行和下行相冲突,尽量减少异向干扰的情况出现。
本发明实施例通过在FDD UL频段预定义TTI集合、TTI集合中的TTI的优先级以及调度规则,可以尽量减少小区间的异向干扰。基站通过DCI动态通知上行TTI采用哪套功率控制参数,可以提高上行的接收SINR。
下面结合附图介绍本发明实施例提供的设备。
请参见图4,基于同一发明构思,本发明一实施例提供一种网络设备,该网络设备可以包括处理器401。
其中,处理器401可以包括中央处理器(CPU)或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以包括一个或多个用于控制程序执行的集成电路,可以包括使用现场可编程门阵列(Field Programmable Gate Array,FPGA)开发的硬件电路,可以包括基带芯片。
可能的实施方式中,该网络设备还可以包括存储器402,均在图4中一并示出,因为存储器402不是必选器件,因此在图4中画为虚线框的形式,以与必选器件进行区分。存储器402的数量可以是一个或多个。存储器402可以包括只读存储器(Read Only Memory, ROM)、随机存取存储器(Random Access Memory,RAM)和磁盘存储器,等等。存储器402可以用于存储处理器401执行任务所需的程序代码,还可以用于存储数据。
可能的实施方式中,该网络设备还可以包括发送器403,均在图4中一并示出,因为发送器403不是必选器件,因此在图4中画为虚线框的形式,以与必选器件进行区分。发送器403可以属于射频系统,用于与外部设备进行网络通信,例如可以通过以太网、无线接入网、无线局域网等网络与外部设备进行通信。
存储器402和发送器403可以通过总线400与处理器401相连接(图4以此为例),或者也可以通过专门的连接线与处理器402连接。
通过对处理器402进行设计编程,将前述所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述实施例中的所示的方法。如何对处理器402进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
该网络设备可以用于执行上述图2所示的实施例以及用于详细介绍图2所示的实施例的后续两个实施例所提供的方法,例如是如前所述的网络设备。因此,对于该网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图5,基于同一发明构思,本发明一实施例提供一种用户设备,该用户设备可以包括接收器501和处理器502。
其中,接收器501可以属于射频系统,用于与外部设备进行网络通信,例如可以通过以太网、无线接入网、无线局域网等网络与外部设备进行通信。
处理器502可以包括CPU或ASIC,可以包括一个或多个用于控制程序执行的集成电路,可以包括使用FPGA开发的硬件电路,可以包括基带芯片。
可能的实施方式中,该用户设备还可以包括存储器503,均在图5中一并示出,因为存储器503不是必选器件,因此在图5中画为虚线框的形式,以与必选器件进行区分。存储器503的数量可以是一个或多个。存储器503可以包括ROM、RAM和磁盘存储器,等等。存储器503可以用于存储处理器502执行任务所需的程序代码,还可以用于存储数据。
存储器503和接收器501可以通过总线500与处理器502相连接(图5以此为例),或者也可以通过专门的连接线与处理器502连接。
通过对处理器502进行设计编程,将前述所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述实施例中的所示的方法。如何对处理器502进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
该用户设备可以用于执行上述图2所示的实施例以及用于详细介绍图2所示的实施例的后续两个实施例所提供的方法,例如是如前所述的用户设备。因此,对于该用户设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图6,基于同一发明构思,本发明一实施例提供一种网络设备,该网络设备可以包括确定单元601、选择单元602和处理单元603。
可能的实施方式中,该网络设备还可以包括发送单元604,均在图6中一并示出,因为发送单元604不是必选器件,因此在图6中画为虚线框的形式,以与必选器件进行区分。
在实际应用中,确定单元601、选择单元602和处理单元603对应的实体设备可以是图4中的处理器401,发送单元604对应的实体设备可以是图4中的发送器403。
该网络设备可以用于执行上述图2所示的实施例以及用于详细介绍图2所示的实施例的后续两个实施例提供的方法,例如是如前所述的网络设备。因此,对于该网络设备中的 各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图7,基于同一发明构思,本发明一实施例提供一种用户设备,该网络设备可以包括接收单元701和处理单元702。
在实际应用中,接收单元701对应的实体设备可以是图5中的接收器501,处理单元702对应的实体设备可以是图5中的处理器502。
该用户设备可以用于执行上述图2所示的实施例以及用于详细介绍图2所示的实施例的后续两个实施例提供的方法,例如是如前所述的用户设备。因此,对于该用户设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
本发明实施例中可以预先设置传输时间间隔集合,网络设备在调度传输时间间隔时,可以从该传输时间间隔集合中为用户设备调度传输时间间隔,若多个网络设备均优先从该传输时间间隔集合中为用户设备调度传输时间间隔,则不同的网络设备在选择传输时间间隔时有几乎同样的选择,因此不同的网络设备进行上行传输的时刻可能是相同的,尽量减小了上行传输受到其他小区的下行传输的干扰的可能性,提高了传输质量。
在本发明中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种测距方法的部分或全部步骤。
在本发明实施例中的各功能单元可以集成在一个处理单元中,或者各个单元也可以均是独立的物理模块。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:通用串行总线闪存盘(Universal Serial Bus flash drive)、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以对本发明的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明实施例的方法,不应理解为对本发明实施例的限制。本技术领域的技术人员可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (24)

  1. 一种无线通信系统中调度传输的方法,其特征在于,包括:
    网络设备确定传输时间间隔集合中各传输时间间隔用作第一方向传输的优先级,所述第一方向传输为从所述网络设备到用户设备的下行方向或从所述用户设备到所述网络设备的上行方向;
    所述网络设备根据所述优先级,为第一小区从所述传输时间间隔集合中选择至少一个传输时间间隔;
    所述网络设备利用所述选择的至少一个传输时间间隔在所述第一小区内与所述用户设备在所述第一方向传输。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备根据所述优先级,从所述传输时间间隔集合中选择至少一个传输时间间隔,包括:
    所述网络设备按照所述优先级从高到低的顺序从所述传输时间间隔集合中选择至少一个传输时间间隔。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔,所述异向干扰时传输间间隔为在所述第一小区内被配置为上行,同时在第二小区内被配置为下行的传输时间间隔;
    所述网络设备根据确定是否包含异向干扰传输时间间隔的结果向所述用户设备发送指示信息,所述指示信息用于指示所述用户设备进行上行传输所使用的功率控制参数。
  4. 如权利要求3所述的方法,其特征在于,所述网络设备确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔,包括:
    所述网络设备获取所述第二小区的传输时间间隔调度信息,并根据所述传输时间间隔调度信息确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔;或者
    所述网络设备接收所述第二小区对应的另一个网络设备发送的所述第二小区的传输时间间隔调度信息,并根据所述传输时间间隔调度信息确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔;或者
    所述网络设备在至少一个所述传输周期内对所述第二小区进行侦听,根据干扰是否高于预设门限确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔。
  5. 如权利要求4所述的方法,其特征在于,
    所述传输时间间隔调度信息用于指示所述第二小区中各传输时间间隔的传输方向、或用于指示所述第二小区中被配置为上行方向传输的传输时间间隔、或用于指示所述第二小区中被配置为下行方向传输的传输时间间隔,或用于指示所述第二小区中被配置为上行方向传输的传输时间间隔数量、或用于指示所述第二小区中被配置为下行方向传输的传输时间间隔数量。
  6. 如权利要求5所述的方法,其特征在于,所述传输时间间隔调度信息用于指示所述第二小区中被配置为上行方向传输的传输时间间隔数量或用于指示所述第二小区中被配置为下行方向传输的传输时间间隔数量;
    所述根据所述传输时间间隔调度信息确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔包括:
    所述网络设备根据所述优先级和所述传输时间间隔调度信息,确定在所述传输周期内 所述第二小区中被配置为上行方向传输的传输时间间隔和/或下行方向传输的传输时间间隔;
    所述网络设备根据所述传输周期内所述第二小区中被配置为上行方向传输的传输时间间隔和/或下行方向传输的传输时间间隔,确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔。
  7. 如权利要求3-6任一所述的方法,其特征在于,所述指示信息携带在下行控制信息中,所述下行控制信息用于指示上行数据传输资源。
  8. 如权利要求3-7任一所述的方法,其特征在于,所述网络设备根据确定是否包含异向干扰传输时间间隔的结果向所述用户设备发送指示信息包括:
    当所述网络设备确定包含异向干扰传输时间间隔时,向所述用户设备发送第一指示信息,所述第一指示信息用于指示所述用户设备在所述异向干扰传输时间间隔上进行上行传输所使用的第一功率控制参数;
    所述方法还包括:
    所述网络设备向所述用户设备发送第二指示信息,所述第二指示信息用于指示第二功率控制参数;所述第二功率控制参数为缺省的功率控制参数,或至少在非异向干扰传输时间间隔上进行上行传输所使用的功率控制参数,所述非异向干扰传输时间间隔为除所述异向干扰传输时间间隔之外的传输时间间隔。
  9. 一种无线通信系统中调度传输的方法,其特征在于,包括:
    用户设备接收网络设备发送的下行控制信息,所述下行控制信息用于指示上行数据传输资源;
    所述用户设备通过所述下行控制信息指示的至少一个传输时间间隔在第一小区内与所述网络设备在第一方向传输;其中,所述至少一个传输时间间隔为所述网络设备根据传输时间间隔集合中各传输时间间隔用作所述第一方向传输的优先级,为所述第一小区从所述传输时间间隔集合中选择的;所述第一方向传输为从所述网络到用户设备的下行方向或从所述用户设备到所述网络设备的上行方向。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述用户设备获取所述下行控制信息中携带的指示信息;
    所述用户设备根据所述指示信息确定进行上行传输所使用的功率控制参数。
  11. 如权利要求10所述的方法,其特征在于,所述用户设备获取所述下行控制信息中携带的指示信息,包括:
    所述用户设备获取所述下行控制信息中携带的第一指示信息,所述第一指示信息用于指示所述用户设备在异向干扰传输时间间隔上进行上行传输所使用的第一功率控制参数;所述异向干扰时传输间间隔为在所述第一小区内被配置为上行,同时在第二小区内被配置为下行的传输时间间隔;或
    所述用户设备获取所述下行控制信息中携带的第二指示信息,所述第二指示信息用于指示第二功率控制参数;所述第二功率控制参数为缺省的功率控制参数,或至少在非异向干扰传输时间间隔上进行上行传输所使用的功率控制参数,所述非异向干扰传输时间间隔为除所述异向干扰传输时间间隔之外的传输时间间隔。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述用户设备接收所述网络设备发送的至少两套功率控制参数,所述功率控制参数用 于计算上行发射功率;其中,所述至少两套功率控制参数中包括所述第一功率控制参数和所述第二功率控制参数。
  13. 一种网络设备,其特征在于,包括:
    确定单元,用于确定传输时间间隔集合中各传输时间间隔用作第一方向传输的优先级,所述第一方向传输为从所述网络设备到用户设备的下行方向或从所述用户设备到所述网络设备的上行方向;
    选择单元,用于根据所述优先级,为第一小区从所述传输时间间隔集合中选择至少一个传输时间间隔;
    处理单元,用于利用所述选择的至少一个传输时间间隔在所述第一小区内与所述用户设备在所述第一方向传输。
  14. 如权利要求13所述的网络设备,其特征在于,所述选择单元用于:
    按照所述优先级从高到低的顺序从所述传输时间间隔集合中选择至少一个传输时间间隔。
  15. 如权利要求13或14所述的网络设备,其特征在于,所述网络设备还包括发送单元;
    所述确定单元还用于:确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔,所述异向干扰时传输间间隔为在所述第一小区内被配置为上行,同时在第二小区内被配置为下行的传输时间间隔;
    所述处理单元还用于:根据确定是否包含异向干扰传输时间间隔的结果,通过所述发送单元向所述用户设备发送指示信息,所述指示信息用于指示所述用户设备进行上行传输所使用的功率控制参数。
  16. 如权利要求15所述的网络设备,其特征在于,所述确定单元还用于确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔,包括:
    获取所述第二小区的传输时间间隔调度信息,并根据所述传输时间间隔调度信息确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔;或者
    通过所述网络设备包括的接收单元接收所述第二小区对应的另一个网络设备发送的所述第二小区的传输时间间隔调度信息,并根据所述传输时间间隔调度信息确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔;或者
    在至少一个所述传输周期内对所述第二小区进行侦听,根据干扰是否高于预设门限确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔。
  17. 如权利要求16所述的网络设备,其特征在于,
    所述传输时间间隔调度信息用于指示所述第二小区中各传输时间间隔的传输方向、或用于指示所述第二小区中被配置为上行方向传输的传输时间间隔、或用于指示所述第二小区中被配置为下行方向传输的传输时间间隔,或用于指示所述第二小区中被配置为上行方向传输的传输时间间隔数量、或用于指示所述第二小区中被配置为下行方向传输的传输时间间隔数量。
  18. 如权利要求17所述的网络设备,其特征在于,所述传输时间间隔调度信息用于指示所述第二小区中被配置为上行方向传输的传输时间间隔数量或用于指示所述第二小区中被配置为下行方向传输的传输时间间隔数量;
    所述确定单元还用于根据所述传输时间间隔调度信息确定所述第一小区的传输周期 内是否包含异向干扰传输时间间隔,包括:
    根据所述优先级和所述传输时间间隔调度信息,确定在所述传输周期内所述第二小区中被配置为上行方向传输的传输时间间隔和/或下行方向传输的传输时间间隔;
    根据所述传输周期内所述第二小区中被配置为上行方向传输的传输时间间隔和/或下行方向传输的传输时间间隔,确定所述第一小区的传输周期内是否包含异向干扰传输时间间隔。
  19. 如权利要求15-18任一所述的网络设备,其特征在于,所述指示信息携带在下行控制信息中,所述下行控制信息用于指示上行数据传输资源。
  20. 如权利要求14-19任一所述的网络设备,其特征在于,所述处理单元还用于根据确定是否包含异向干扰传输时间间隔的结果,通过所述发送单元向所述用户设备发送指示信息,包括:
    当确定包含异向干扰传输时间间隔时,通过所述发送单元向所述用户设备发送第一指示信息,所述第一指示信息用于指示所述用户设备在所述异向干扰传输时间间隔上进行上行传输所使用的第一功率控制参数;
    所述处理单元还用于:
    通过所述发送单元向所述用户设备发送第二指示信息,所述第二指示信息用于指示第二功率控制参数;所述第二功率控制参数为缺省的功率控制参数,或至少在非异向干扰传输时间间隔上进行上行传输所使用的功率控制参数,所述非异向干扰传输时间间隔为除所述异向干扰传输时间间隔之外的传输时间间隔。
  21. 一种用户设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的下行控制信息,所述下行控制信息用于指示上行数据传输资源;
    处理单元,用于通过所述下行控制信息指示的至少一个传输时间间隔在第一小区内与所述网络设备在第一方向传输;其中,所述至少一个传输时间间隔为所述网络设备根据传输时间间隔集合中各传输时间间隔用作所述第一方向传输的优先级,为所述第一小区从所述传输时间间隔集合中选择的;所述第一方向传输为从所述网络到用户设备的下行方向或从所述用户设备到所述网络设备的上行方向。
  22. 如权利要求21所述的用户设备,其特征在于,所述处理单元还用于:
    获取所述下行控制信息中携带的指示信息;
    根据所述指示信息确定进行上行传输所使用的功率控制参数。
  23. 如权利要求22所述的用户设备,其特征在于,所述处理单元还用于获取所述下行控制信息中携带的指示信息,包括:
    获取所述下行控制信息中携带的第一指示信息,所述第一指示信息用于指示所述用户设备在异向干扰传输时间间隔上进行上行传输所使用的第一功率控制参数;所述异向干扰时传输间间隔为在所述第一小区内被配置为上行,同时在第二小区内被配置为下行的传输时间间隔;或
    获取所述下行控制信息中携带的第二指示信息,所述第二指示信息用于指示第二功率控制参数;所述第二功率控制参数为缺省的功率控制参数,或至少在非异向干扰传输时间间隔上进行上行传输所使用的功率控制参数,所述非异向干扰传输时间间隔为除所述异向干扰传输时间间隔之外的传输时间间隔。
  24. 如权利要求23所述的用户设备,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的至少两套功率控制参数,所述功率控制参数用于计算上行发射功率;其中,所述至少两套功率控制参数中包括所述第一功率控制参数和所述第二功率控制参数。
PCT/CN2017/102118 2016-09-28 2017-09-18 一种无线通信系统中调度传输的方法及设备 WO2018059264A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854714.7A EP3512279A4 (en) 2016-09-28 2017-09-18 METHOD AND DEVICE FOR TRANSMISSION PLANNING IN A WIRELESS COMMUNICATION SYSTEM
US16/366,105 US10986630B2 (en) 2016-09-28 2019-03-27 Method for scheduling transmission in wireless communications system, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610867136.1 2016-09-28
CN201610867136.1A CN107872890B (zh) 2016-09-28 2016-09-28 一种无线通信系统中调度传输的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/366,105 Continuation US10986630B2 (en) 2016-09-28 2019-03-27 Method for scheduling transmission in wireless communications system, and device

Publications (1)

Publication Number Publication Date
WO2018059264A1 true WO2018059264A1 (zh) 2018-04-05

Family

ID=61761167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102118 WO2018059264A1 (zh) 2016-09-28 2017-09-18 一种无线通信系统中调度传输的方法及设备

Country Status (4)

Country Link
US (1) US10986630B2 (zh)
EP (1) EP3512279A4 (zh)
CN (1) CN107872890B (zh)
WO (1) WO2018059264A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557768A (zh) * 2019-03-28 2021-10-26 瑞典爱立信有限公司 通过ue的可允许传输间隙辅助
US11206705B2 (en) 2018-07-23 2021-12-21 At&T Mobility Ii Llc Flexible carrier downlink and uplink pairing for advanced networks

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3503650B1 (en) * 2017-12-21 2020-07-22 ASUSTek Computer Inc. Method and apparatus for transmission and reception in backhaul link in a wireless communication system
CN110475328B (zh) * 2018-05-10 2022-04-12 维沃移动通信有限公司 控制方法、终端设备及网络设备
CN110839287B (zh) * 2018-08-17 2023-04-07 中国移动通信有限公司研究院 一种指示方法、用户设备及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077288A2 (en) * 2009-12-23 2011-06-30 Telefonaktiebolaget L M Ericsson (Publ) Flexible subframes
CN104938008A (zh) * 2013-01-23 2015-09-23 瑞典爱立信有限公司 无线通信网络中的资源分配
CN105432033A (zh) * 2013-08-09 2016-03-23 瑞典爱立信有限公司 用于在采用灵活子帧的通信网络中使用的方法和网络节点

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655676B (zh) * 2011-03-01 2014-12-31 华为技术有限公司 子帧配置方法、数据处理方法及基站、用户设备
EP2845422B1 (en) * 2012-05-03 2018-10-24 Telefonaktiebolaget LM Ericsson (publ) Radio network node, user equipment and methods therein
CN110300448B (zh) * 2012-10-08 2022-05-13 高通股份有限公司 针对lte tdd eimta的增强的上行链路和下行链路功率控制
CN105706481A (zh) * 2013-08-15 2016-06-22 瑞典爱立信有限公司 用于处置csi报告的方法和无线电节点
CN104969628B (zh) * 2013-09-27 2019-04-26 华为技术有限公司 一种控制发射功率的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077288A2 (en) * 2009-12-23 2011-06-30 Telefonaktiebolaget L M Ericsson (Publ) Flexible subframes
CN104938008A (zh) * 2013-01-23 2015-09-23 瑞典爱立信有限公司 无线通信网络中的资源分配
CN105432033A (zh) * 2013-08-09 2016-03-23 瑞典爱立信有限公司 用于在采用灵活子帧的通信网络中使用的方法和网络节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512279A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11206705B2 (en) 2018-07-23 2021-12-21 At&T Mobility Ii Llc Flexible carrier downlink and uplink pairing for advanced networks
CN113557768A (zh) * 2019-03-28 2021-10-26 瑞典爱立信有限公司 通过ue的可允许传输间隙辅助

Also Published As

Publication number Publication date
CN107872890B (zh) 2020-11-06
US20190223181A1 (en) 2019-07-18
CN107872890A (zh) 2018-04-03
US10986630B2 (en) 2021-04-20
EP3512279A1 (en) 2019-07-17
EP3512279A4 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
US11304216B2 (en) Signaling mechanisms for sub-band scheduling in sidelink
US11510217B2 (en) Method and apparatus for transmission/reception of signals between wireless devices
EP3497985B1 (en) Clear-to-send (cts) power control in sidelink
CN109644498B (zh) 针对频谱共享的新无线电先听后讲设计
CN105027648B (zh) 用于网络辅助d2d的物理信道设计
US10098129B2 (en) Handling of simultaneous network communication transmission and D2D communication reception or simultaneous network communication reception and D2D communication transmission
EP3989651B1 (en) Reporting power headroom for aggregated carriers
WO2018059264A1 (zh) 一种无线通信系统中调度传输的方法及设备
EP2944141B1 (en) Over-the-air signaling for coordination of time-division duplexing
EP3793271B1 (en) Power configuration method, user equipment, and computer-readable storage medium
EP2557831A1 (en) Wireless communication system, wireless base station, and communication control method
US10827464B2 (en) Method and apparatus for transmitting control data
WO2013166712A1 (en) Method for uplink-downlink interference mitigation in heterogeneous network
EP2865232B1 (en) Methods and nodes for soft cell uplink prioritization
JPWO2015190517A1 (ja) 基地局装置、端末装置、および通信方法
CN109155921B (zh) 用于设备到设备通信的方法和装置
WO2014114471A1 (en) Protecting ul control channels in dynamic/flexible tdd
CN115002887B (zh) 功率余量上报方法及其装置
US9414407B2 (en) Enhanced scheduling information transmission in a heterogeneous network
WO2017173621A1 (en) Mitigation of ue-ue interference in flexible duplex mode
EP3531603B1 (en) Data transmission method and device
WO2022083856A1 (en) Base station-controlled adjustment to radio transmitter requirement for user device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854714

Country of ref document: EP

Effective date: 20190408