WO2018056656A1 - 폴리프로필렌계 수지 조성물 - Google Patents

폴리프로필렌계 수지 조성물 Download PDF

Info

Publication number
WO2018056656A1
WO2018056656A1 PCT/KR2017/010161 KR2017010161W WO2018056656A1 WO 2018056656 A1 WO2018056656 A1 WO 2018056656A1 KR 2017010161 W KR2017010161 W KR 2017010161W WO 2018056656 A1 WO2018056656 A1 WO 2018056656A1
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
olefin
resin composition
peak
polypropylene
Prior art date
Application number
PCT/KR2017/010161
Other languages
English (en)
French (fr)
Inventor
김슬기
이은정
이충훈
한기원
장재권
한효정
박인성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17853370.9A priority Critical patent/EP3456775B1/en
Priority to CN201780041689.4A priority patent/CN109563323B/zh
Priority to US16/305,668 priority patent/US10954366B2/en
Priority to ES17853370T priority patent/ES2909129T3/es
Publication of WO2018056656A1 publication Critical patent/WO2018056656A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/05Cp or analog where at least one of the carbon atoms of the coordinating ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/10Short chain branches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention exhibits mechanical properties such as excellent strength, and relates to a polypropylene resin composition and a molded article including the same having improved layer strength.
  • Polypropylene-based resin compositions containing polypropylene-based resin as a main component and containing various additives are generally applied to various fields and applications, such as compositions for automobile interior and exterior parts.
  • olefin-based copolymers such as ethylene-alpha-olefin copolymers and olefin-based elastomers are mainly applied as layer reinforcing materials.
  • conventional olefinic elastomers which consist of such conventional olefinic copolymers or predominantly ethylene-alpha-olefin random copolymers basically have a single crystal structure, and thus have compatibility with other resins, processability, strength and It is known that it is not easy to achieve required physical properties such as layer strength at the same time.
  • compounding existing olefin copolymers or olefin elastomers with polypropylene resins provides excellent impact strength and mechanical properties.
  • the present invention is to provide a polypropylene-based resin composition and a molded article including the same, which exhibits excellent mechanical properties such as excellent strength and more improved impact strength.
  • the present invention is a polypropylene resin; And an olefin copolymer comprising an ethylene repeat unit and an alpha-olefin repeat unit,
  • a polypropylene resin composition comprising a third fraction defined as a third peak appearing at a temperature higher than the second elution temperature Te2, for example, a third elution temperature Te3 of 85 ° C to 130 ° C.
  • the olefin copolymer included in such a resin composition has a fraction ratio of 7 to 25% of the second fraction defined from the integral area of the second peak, or the second fraction of the olefin copolymer has a branched chain per 1000 carbon atoms ( The number of short chain branching (SCB) may be 50 or more.
  • the present invention also provides a molded article comprising the polypropylene resin composition.
  • the polypropylene resin composition and the like according to the embodiment of the present invention will be described in more detail.
  • this is presented as an example of the invention, whereby the scope of the invention is not limited, it is apparent to those skilled in the art that various modifications to the embodiments are possible within the scope of the invention.
  • short chain branching of the "(polymer) fraction” refers to branched bonds in the longest main chain in the olefinic copolymer or the respective polymer chains included in the fraction. It may refer to a short chain.
  • the number of such branched short chains can be calculated by analyzing the "olefinic copolymer” or its “fraction” by cross fractionation chromatography (CFC), and the "olefinic copolymer” or the respective polymer chains. It may be proportional to the content of ⁇ -olefin monomer included.
  • polypropylene resin and an olefin copolymer including an ethylene repeating unit and an alpha-olefinic repeating unit, and when the olefin copolymer is analyzed by cross-fractionation chromatography (CFC),
  • the first fraction defined as the crab 1 peak, which appears at a crab 1 elution temperature (Te1) between -20 ° C and 50 ° C,
  • a second fraction defined as 2 peaks, appearing at a second elution temperature (Te2) from 50 ° C. to 85 ° C.
  • Polypropylene-based resin composition comprising a third fraction defined as a third peak at a temperature higher than the second elution temperature Te2, for example, a third elution temperature Te3 of 85 ° C to 130 ° C This is provided.
  • the olefin copolymer included in such a resin composition has a fraction ratio of 7 to 25% of the second fraction defined from the integral area of the second peak, or the second fraction of the olefin copolymer has a branched chain per 1000 carbon atoms ( The number of short chain branching (SCB) may be 50 or more.
  • Polypropylene-based resin composition of one embodiment of the polypropylene-based resin The layered reinforcement includes an olefinic copolymer having novel crystal properties and structure.
  • the present inventors have prepared olefinic copolymers using specific catalyst compositions described below, and as a result, existing olefinic copolymers have become known as olefinic copolymers, for example, ethylene-alpha-olefin random copolymers. It was confirmed that the leupin-based elastomer exhibits a novel crystal structure and properties. In addition, by using such a novel olepin-based copolymer as a layer reinforcing material of the polypropylene resin composition, it is possible to provide a resin composition and a molded article exhibiting improved layer strength while maintaining excellent mechanical properties unique to the polypropylene resin. It confirmed that it exists and completed invention.
  • the novel crystalline properties and structure of such olefin copolymers were confirmed by analyzing the olefin copolymers according to cross fractionation chromatography. According to the analysis result, the olefin copolymer may exhibit first to third peaks at three different specific temperature ranges. This may define novel crystal structures and properties that distinguish the existing ethylene-alpha-olefin random copolymers from the same analytical results in showing only one peak in general.
  • the first to the third peak is a fraction of the polymer chains showing different crystallinity in the olefin copolymer, more specifically, the first fraction showing the lowest crystallinity, the highest crystallinity 3 fractions, and a second fraction showing crystallinity between the first and third fractions.
  • the olefin copolymer including the resin composition of one embodiment shows excellent compatibility with the polypropylene resin, and the poly When compounded with a propylene resin, impact strength can be improved simultaneously without deteriorating mechanical properties such as its excellent strength. This is presumably because the olepin-based copolymer contains polymer chains showing various crystallinities simultaneously.
  • the olefin-based copolymer may include a second fraction showing a moderate level of crystallinity in a specific fraction ratio (fraction), wherein the polymer chains included in the second fraction are derived from alpha-olefin comonomers.
  • a specific fraction ratio fraction
  • the polymer chains included in the second fraction are derived from alpha-olefin comonomers.
  • One alpha-olefin repeat It was found that the units contained a higher content. For reference, this can be confirmed from an analysis result in which the number of short chain branching (SCB) per 1000 carbon atoms included in the second fraction is 50 or more.
  • SCB short chain branching
  • the olefin copolymer was able to further improve the layer strength while maintaining excellent mechanical properties when the main monomer was compounded with a polypropylene resin made of propylene, which is a kind of alpha-olefin.
  • the polypropylene resin composition containing such an olefin copolymer it becomes possible to provide a molded article that exhibits better overall physical properties, particularly excellent mechanical properties and laminar strength.
  • the above-described olefin copolymer and its manufacturing method will be described in more detail, and other components of the polypropylene resin composition including the same will be described in detail.
  • the analysis by cross fractionation chromatography may be carried out using CFC equipment of Polymer Char, which is well known to those skilled in the art, and the initial temperature of a solution in which the olefinic copolymer is dissolved in 0-dichlorobenzene or the like. After lowering to -20 ° C, it can be carried out by analyzing with the above equipment while raising the temperature up to 13 C C at a constant heating rate.
  • first to third peaks are identified, which refer to the first to third fractions, wherein the first peak has a central peak temperature of ⁇ 15 ° C. to 15 ° C. and black to ⁇ 10. ° C to 10 ° C, the second peak may have a center peak temperature of 50 ° C to 85 ° C, or 70 ° C to 80 ° C, the third peak has a center peak temperature of 85 ° C to 100 ° C, black may be from 87 ° C to 93 ° C.
  • the central peak temperature may refer to the degree of silver that circumscribes the vertex of each peak in the first to third peaks identified in each temperature range.
  • the fraction ratio in the total olefin copolymers of the first to third fractions of the polymer chains showing different crystallinity may be determined by the respective integration areas and ratios of the first to the roughly I 3 peaks. Areas are the first to third peaks, for example, each peak according to a constant temperature region as shown in FIG. After dividing by region, the lower area may be obtained, and the fraction ratio of each fraction to the respective peaks may be determined as a ratio of the integral area of each peak to the total area of each peak.
  • the olefin copolymer When analyzed in this manner, the olefin copolymer may have a fraction ratio of 7-25%, or 10-23%, or 13-20%, of the second fraction defined from the integral area of the second peak. have.
  • the second fraction of the polymer chains exhibiting a moderate level of crystallinity is included in a specific fraction, and the alpha-olefin-based repeat units are contained in a higher content in the polymer chain of the second fraction.
  • the olefin copolymer When the olefin copolymer is compounded with the polypropylene resin, it may exhibit more improved strength and layer strength.
  • the olefin copolymer may have a fraction ratio of the Crab 1 fraction defined from the integral area of the first peak of 50 to 75%, 55 to 70%, and black to 60 to 70%, wherein the third peak
  • the fraction ratio of the third fraction, defined from the integral area of may be 5 to 25%, black to 10 to 23%, or 15 to 22%.
  • the above-described olefin copolymer may have various physical properties required for the olefin elastomer, eg
  • the polypropylene resin can maintain or improve the compatibility with other resins, workability, strength and layer strength when compounded with other resins at the same time.
  • the above-described olefin copolymer may have a melting point of 100 ° C to 140 ° C, or 1 10 ° C to 130 ° C, or 1 15 ° C to 128 ° C measured by DSC, accordingly It can exhibit excellent heat resistance.
  • the second fraction of the olefin copolymer may have a characteristic of having 50 or more, or 50 to 70, number of short chain branching (SCB) per 1000 carbon atoms.
  • the number of short chain branching (SCB) per 1000 carbon atoms can be calculated by analyzing the olefin copolymer by CFC.
  • the number of branched chains of the second fraction of such olefinic copolymers means that they have a greater number of branched chains than conventional polyolefins having the same elution temperature.
  • the second fraction of the olefinic copolymer having more such branched chain numbers may reflect that the second fraction contains a higher content of alpha-olefinic repeat units.
  • the olefin copolymer may have a density of 0.85 g / cc to 0.91 g / cc, or 0.86 g / cc to 0.89 g / cc, and a melt index under 190 ° C. and 2.16 kg load may be 0.5 to 3 g / g. 10 min, or 0.7 to 2 g / 10 min. As the density and melt index ranges are satisfied, the olefin-based copolymer and the resin composition of one embodiment including the same may exhibit appropriate mechanical properties and processability.
  • the aforementioned olefin copolymer may have a weight average molecular weight of about 30,000 to 200,000, black to about 50,000 to 180,000, and a molecular weight distribution of 2.0 or more, or 2.0 to 4.0, or 2.1 to 3.0.
  • an olefin copolymer has such a molecular weight and molecular weight distribution, it can exhibit appropriate properties as an olefin elastomer, for example, excellent mechanical properties and processability.
  • the above-described eulre pingye copolymers of ethylene repeating units and the alpha of the residual quantity of 50 to 90 weight 0/0 may include an olefin-based repeating unit.
  • the olefin copolymer may be a copolymer including an ethylene repeating unit and an alpha-olefin repeating unit.
  • the alpha-olefinic repeat unit is 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene
  • It may be a repeating unit derived from alpha -olefins such as 1, tetradecene, or 1-nuxadecene, and considering the excellent impact strength of the olefin-based copolymer, the repeating unit derived from 1-butene is appropriate.
  • the repeating unit derived from 1-butene is appropriate.
  • the above-mentioned olefin copolymer not only exhibits excellent physical properties required for olefin elastomers and the like, but also shows excellent compatibility when compounded with a polypropylene resin, and can exhibit improved strength and layer strength. .
  • the above-described olefinic copolymer can be prepared by the production method using a specific catalyst system described below. More specifically, the olefinic copolymer is a first metallocene containing a compound of Formula 1 In the presence of a catalyst composition comprising a catalyst and a second metallocene catalyst comprising a compound of Formula 2, may be prepared by a process comprising the step of copolymerizing ethylene and alpha-olefin:
  • R 1 and R 2 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, silyl, alkenyl having 1 to 20 carbon atoms, alkylaryl having 7 to 25 carbon atoms, arylalkyl having 7 to 25 carbon atoms, or A metalloid radical of a Group 14 metal substituted with hydrocarbyl;
  • R 1 and R 2 may be connected to each other by an alkylidine radical including alkyl having 1 to 20 carbon atoms or aryl having 6 to 20 carbon atoms to form a ring;
  • R3 is each independently hydrogen, halogen, alkyl having 1 to 20 carbon atoms,
  • R3 in said R3 may be connected to each other to form an aliphatic or aromatic ring;
  • CY1 is a substituted or unsubstituted aliphatic or aromatic ring
  • M is a Group 4 transition metal
  • Q1 and Q2 are each independently halogen, alkyl having 1 to 20 carbon atoms, aryl amido having 6 to 20 carbon atoms, alkyl having 1 to 20 carbon atoms, alkenyl having 1 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, and having 7 to 7 carbon atoms. 25 alkylaryl, carbon number
  • R 4 and R 5 are each independently substituted or unsubstituted alkyl of 1 to 20 carbon atoms, cycloalkyl of 5 to 60 carbon atoms, aryl of 6 to 60 carbon atoms, cyclodiene groups of 5 to 60 carbon atoms, 2 to Alkenyl of 20, alkylaryl of 7 to 60 carbon atoms and arylalkyl of 7 to 60 carbon atoms;
  • Q 4 to Q 6 are each independently hydrogen or deuterium
  • CY2 is a C5-20 aliphatic ring containing nitrogen and unsubstituted or substituted with C1-5 alkyl;
  • M is a Group 3 to 12 metal or a lanthanide series metal
  • ⁇ to X 3 are the same as or different from each other, and are each independently a halogen radical, an alkylamido having 1 to 20 carbon atoms, an arylamido having 6 to 60 carbon atoms, an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms, It is selected from the group consisting of aryl having 6 to 60 carbon atoms, alkylaryl having 7 to 60 carbon atoms, arylalkyl having 7 to 60 carbon atoms and alkylidene radical having 1 to 20 carbon atoms.
  • the catalysts of Chemical Formulas 1 and 2 are the first synthetically filed by the applicant of the present invention, and are disclosed in Korean Patent Nos. 0820542 and 1310239, respectively. However, the use of the catalysts of the formulas (1) and (2) together with the above-described olefin copolymer having the novel crystal properties and structure has not been previously disclosed at all.
  • the catalyst composition is diethyl zinc, di (i- butyl) zinc, di (n-nuclear) zinc, triethyl aluminum, trioctyl aluminum, triethyl gallium, ⁇ - butyl aluminum bis (dimethyl (t-butyl) siloxane), i-butylaluminum bis (di (trimethylsilyl) amide), n-octylaluminum di (pyridine-2-methoxide), bis (n-octadecyl) i-butyl aluminum, i- Butyl aluminum bis (di (n-pentyl) amide), n-octyl aluminum bis (2,6-di-t-butylphenoxide), n-octyl aluminum di (ethyl (1-naphthyl) amide), ethyl aluminum bis (t- butyldimethylsiloxy oxide), ethyla
  • chain exchange agent chain exchange agent
  • chain exchange between the polymer chains and branched chains in the polymerization process can occur more easily, and as a result, an olepin-based copolymer having the above-described crystalline properties and the like can be more easily produced.
  • the amount of the chain exchange agent added may be included in a molar ratio of about 1: 10 to 1: 1000 with respect to the main catalyst compounds of the first and second metallocene catalysts, for example, about 1: 10 to 1: 500 Or in a molar ratio of about 1:20 to 1: 200. That is, in order to express the effect of a certain level or more by the chain exchange agent, the content of the chain exchange agent may be a molar ratio of 1: 10 or more with respect to the main catalyst compound, to control the appropriate physical properties of the olefin copolymer prepared And In consideration of the excellent activity of the main catalyst compound, the chain exchange agent may be included in a molar ratio of 1: 1000 or less with respect to the main catalyst compound.
  • the first and the crab 2 metallocene catalyst as the catalyst belonging to the formula (1) and 2, or each known catalyst in Korean Patent Nos. 0820542 and 1310239 without particular limitation All can be used.
  • the compounds of the formulas (1a) and (2a) may be preferably used as the first and second metallocene catalysts, respectively.
  • the catalyst composition used in the production method may further include at least one cocatalyst compound selected from the group consisting of compounds represented by the following formulas (3) to (5). have:
  • J is aluminum or boron
  • R 4 ' are each independently Halogen or a substituted or unsubstituted hydrocarbyl radical of 1 to 20 carbon atoms
  • L is a neutral or cationic Lewis acid
  • H is hydrogen
  • Z is a Group 13 element
  • A is each independently At least one hydrogen atom is halogen, C1-C20 hydrocarbyl, C1-C20 alkoxy group or C6-C20 aryl or C1-C20 alkyl substituted with phenoxy group;
  • R 5' is a halogen or a hydrocarbyl having 1 to 20 carbon atoms unsubstituted or substituted with halogen; a is an integer of 2 or more.
  • the compound represented by Formula 3 is not particularly limited as long as it is an alkyl metal compound; for example, trimethylaluminum, triethylaluminum triisobutylaluminum, tripropylaluminum, tributylaluminum dimethylchloroaluminum, triisopropylaluminum, Tri-S-butylaluminum tricyclopentylaluminum, tripentylaluminum, triisopentylaluminum trinuclear silaluminum, trioctylaluminum, ethyldimethylaluminum, methyldiethylaluminum triphenylaluminum, tri-P-ryll aluminum, dimethylaluminum mesoxide Dimethylaluminum hydroxide, trimethyl boron, triethyl boron, triisobutyl boron tripropyl boron, tributyl boron and the like.
  • the compound represented by the formula (4) is triethyl ammonium tetra (phenyl) boron, tributyl ammonium tetra (phenyl) boron, trimethyl ammonium tetra (phenyl) boron, tripropyl ammonium tetra (phenyl) boron, trimethyl Ammonium Tetra (P-lryl) boron, Trimethylammonium Tetra ( ⁇ , ⁇ -dimethylphenyl) boron, Tributylammonium Tetra ( ⁇ -trifluoromethylphenyl) boron, Trimethylammonium Tetra ( ⁇ -trifluoromethylphenyl )
  • Trityltetra (pentafluorophenyl) borone Trityltetra (pentafluorophenyl) borone
  • the compound represented by Chemical Formula 5 is not particularly limited as long as it is alkylaluminoxane;
  • it may be methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, or butyl aluminoxane.
  • the addition amount of the above-mentioned promoter compound is the first and second metallocene Based on the catalyst, it may be included in a molar ratio of about 1: 1 to 1:20.
  • the content of the cocatalyst compound may be included in a molar ratio of 1: 1 or more relative to the main catalyst compounds of the first and second metallocene catalysts.
  • the cocatalyst compound may be included in a molar ratio of 1:20 or less with respect to the main catalyst compound for proper physical property control and effective activation of the main catalyst compound.
  • the olefin copolymer in the presence of the catalyst composition described above, may be prepared by a method comprising the step of copolymerizing ethylene and a monomer comprising an alpha-olefin.
  • the usable alpha-olefin monomers include 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene 1-heptene, 1-octene, 1-decene, 1-undecene and 1-dodecene , 1-tetradecene, 1-nuxadecene, and the like, and more preferably 1-butene.
  • the copolymerization step may be carried out at a temperature of 120 ° C or more, or 120 to 180 ° C, or 120 to 160 ° C, 50 bar or more, black is 50 to 120 bar, or under a pressure of 70 to 100 bar You can proceed.
  • Previously known metallocene-based or post-metallocene-based catalysts have been known to dramatically decrease activity at high temperatures.
  • the main catalyst compounds of the first and second metallocene catalysts included in the catalyst composition described above can maintain excellent catalytic activity even at high pressures of 120 ° C. or higher and 50 bar or more. Accordingly, the copolymerization process may be performed under such high temperature and high pressure conditions to obtain an olefinic copolymer having excellent physical properties with higher efficiency.
  • the copolymerization may be performed in a solution process using the catalyst composition described above, or may be performed in a slurry process or a gas phase process using the catalyst composition together with an inorganic carrier such as silica.
  • an inorganic carrier such as silica
  • the scavenger may be added at 0.4 to 5 times the total moisture content in the reaction vessel.
  • a scavenger serves to remove impurities such as water or air, which may be included in the reaction product, and may be introduced before copolymerization of the reaction product occurs.
  • the scavenger and reaction product The mixture may be mixed with the scavenger and the counter agitator in a separate reaction vessel other than the polymerization reactor, and the scavenger and the reaction mixture may be mixed for a sufficient time in a supply line to which the reaction product is fed to the polymerization reactor. have.
  • Trialkylaluminum of TiBAI triisobutylaluminum
  • TOA trioctylaluminum
  • the copolymerization step may be carried out by the introduction of the above-described catalyst composition, monomer and scavenger in the reaction.
  • the catalyst composition is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for the olefin polymerization process, for example, pentane, nucleic acid, heptane, nonane, decane, or an isomer thereof; Aromatic hydrocarbon solvents such as toluene, or benzene; Black may be injected by dissolving or diluting in dichloromethane or a hydrocarbon solvent substituted with a chlorine atom such as chlorobenzene.
  • Aromatic hydrocarbon solvents such as toluene, or benzene
  • Black may be injected by dissolving or diluting in dichloromethane or a hydrocarbon solvent substituted with a chlorine atom such as chlorobenzene.
  • the molar ratio of ethylene to solvent needs to be a ratio suitable for dissolving the copolymer with the reactants and the resulting olefin.
  • the molar ratio of (ethylene / solvent) can be about 1 / 10,000 to 10, or about 1/100 to 5, or about 1/20 to 1.
  • the solvent may be introduced into the reactor at a temperature of about ⁇ 40 to 150 ° C. using a heater or a motive motor, and polymerization reaction may be initiated together with the monomer and the catalyst composition.
  • the high capacity pump raises the pressure above about 50 bar to supply the feeds (solvent, monomer, catalyst composition, etc.), thereby providing the feeds without additional pumping between the reaction vessel, pressure drop device and separator.
  • feeds solvent, monomer, catalyst composition, etc.
  • the olefin copolymer produced in the reaction vessel can be maintained at a concentration of less than about 20 mass 0 /.
  • a solvent In a solvent, and can be transferred to the primary solvent separation process for solvent removal after a short residence time. have.
  • Appropriate time for the olefin copolymer to remain in the reaction chamber is from about 1 minute to 10 hours, black to about 3 minutes 1 hour, or about 5 to 30 minutes. As a result, a decrease in productivity, loss of a catalyst, and the like can be suppressed, and the size of the reaction vessel can be optimized.
  • the solvent separation process may be further performed by changing the solution temperature and the pressure in order to remove the solvent existing with the olefin-based copolymer through the reaction system.
  • the copolymer solution transferred from the reactor maintains a molten state through a heater, vaporizes the unbanung raw material solvent in the separator, and the resulting copolymer may be granulated with an extruder or the like.
  • the polypropylene resin composition of one embodiment includes a polypropylene resin together with the above-described olefin copolymer.
  • polypropylene resin is not particularly limited, and includes various polypropylene resins such as polypropylene homopolymer, propylene-alpha-lepine copolymer, or propylene-ethylene-alpha-olefin copolymer, for example. can do.
  • an alpha-olefin having 4 or more carbon atoms different from the propylene for example, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, and 1-octene , 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, or 1-nuxadecene can be used without particular limitation.
  • the polypropylene-based resin may be polymerized and manufactured by a previously known method or may be obtained by using a commercially known resin.
  • the one embodiment polypropylene-based resin composition is 50 to 90 parts by weight 0 /.
  • black is 60 to 85 parts by weight 0 /.
  • And 10 to 50 parts by weight of the olefin-based copolymer 0/0, or 15 to 40 may include a weight 0/0. Accordingly, while maintaining mechanical properties such as excellent strength of the polypropylene resin, the impact strength can be further improved according to the addition of the olefin copolymer.
  • the polypropylene resin composition may further include additives such as antioxidants, heat stabilizers, ultraviolet stabilizers, or antistatic agents, if necessary, and a small amount of adhesive resins or polar groups may be used to improve paintability.
  • additives such as antioxidants, heat stabilizers, ultraviolet stabilizers, or antistatic agents, if necessary, and a small amount of adhesive resins or polar groups may be used to improve paintability.
  • it may further include an additive having within an appropriate content range.
  • the polypropylene resin composition of the above-described embodiment exhibits improved layer strength, together with mechanical properties such as excellent strength, such physical properties It can be applied to various applications / fields as required.
  • the polypropylene resin composition may be used for various purposes, such as automobiles, shoes, electric wires, toys, textiles, medical materials, etc. It can be usefully used for extrusion molding or injection molding.
  • the polypropylene resin composition and the molded article including the same exhibit excellent layer strength at room temperature and low temperature
  • the polypropylene resin composition and the molded article including the same may be preferably used as molded articles for interior and exterior parts of automobiles.
  • a polypropylene-based resin composition and a molded article including the same may be provided, which exhibit mechanical properties such as excellent strength and have improved layer strength.
  • FIGS. 1 to 3 are graphs showing the results of analyzing the olefin copolymers included in the polypropylene resin compositions of Examples 1 to 3 by cross-fraction chromatography (CFC).
  • Figure 4 is a graph showing the results of analyzing the olefin copolymer contained in the polypropylene resin composition of Comparative Example 1 by cross fractionation chromatography.
  • 5 is a cross-sectional chromatography (CFC) analysis of the olefin copolymer contained in the polypropylene resin composition according to one embodiment, the results of each peak of the fraction ratio of each fraction It is a graph showing the process of finding the integral area.
  • CFC cross-sectional chromatography
  • a second metallocene catalyst of Formula 2a was prepared in the following manner.
  • Example 1 Preparation of Ethylene- 1 -butene Copolymer and Polypropylene Resin Composition
  • the 1.5 L autoclave continuous process reactor was charged with nucleic acid solvent (6.03 kg / h) and 1-butene (0.70 kg / h), then the temperature at the top of the reactor was preheated to 145 ° C.
  • Triisobutylaluminum compound (0.03 mmol / min)
  • the first metallocene catalyst prepared in Preparation Example 1 (0.4iimol / min)
  • the second metallocene catalyst prepared in Preparation Example 2 (0.4 ⁇ / min) and dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst (2.4 ⁇ / min) were simultaneously introduced into the reactor.
  • ethylene (0.87 kg / h) was introduced into the autoclave reaction vessel and maintained at 120 ° C. for at least 30 minutes in a continuous process at a pressure of 89 bar, followed by copolymerization reaction to proceed as an olefin-based copolymer. -Butene copolymer was obtained. Next, the remaining ethylene gas was removed and the polymer solution was dried in a vacuum Aubon for at least 12 hours, and then physical properties were measured.
  • a polypropylene 80 parts by weight of the combined common 0 / (trade name LG Chemical, M1600).
  • a polypropylene resin composition was prepared. More specifically, first, the stomach composition was prepared by uniformly mixing the above ingredients using a Henschel mixer, pelletizing the composition using a co-rotating twin screw extruder and injecting the extruder. Using to prepare a test piece for measuring the physical properties.
  • Example 2 Preparation of Ethylene-1-butene Copolymer and Polypropylene Resin Composition
  • the 1.5 L autoclave continuous process reactor was filled with nucleic acid solvent (5.86 kg / h) and 1-butene (0.80 kg / h), and the temperature at the top of the reactor was preheated to 140 ° C.
  • Triisobutylaluminum compound (0.035 mmol / min)
  • the first metallocene catalyst prepared in Preparation Example 1 (0.35 ii mol / min)
  • the second metallocene catalyst prepared in Preparation Example 2 (0.35 ⁇ ⁇ / min)
  • dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst 2.1 ii mol / min
  • ethylene (0.87 kg / h) was introduced into the autoclave reaction vessel and maintained at 120 ° C. for at least 30 minutes in a continuous process at a pressure of 89 bar, followed by copolymerization reaction to proceed as an olefin-based copolymer. -Butene copolymer was obtained. Next, the remaining ethylene gas was removed and the polymer solution was dried in a vacuum oven for at least 12 hours, and then physical properties were measured.
  • the ethylene-1 - 20 parts by weight and 0/0 of the butene copolymer and polypropylene 80 parts by weight of the combined wave the 0 / a (trade name: LG Chemical, M1600) was prepared in a polypropylene-based resin composition. More specifically, first, the above composition was prepared by uniformly mixing the above ingredients using a Henschel mixer, pelletizing the composition using a co-rotating twin screw extruder, and injecting the extruder. Using to prepare a test piece for measuring the physical properties.
  • Example 3 Preparation of Ethylene-1-butene Copolymer and Polypropylene Resin Composition
  • ethylene (0.87 kg / h) was introduced into the autoclave reaction vessel and maintained at 120 ° C. for 30 minutes or more in a continuous process at a pressure of 89 bar, followed by a copolymerization reaction to produce ethylene-1 as an olefin copolymer. -Butene copolymer was obtained. Next, the remaining ethylene gas was removed and the polymer solution was dried in a vacuum oven for at least 12 hours, and then physical properties were measured.
  • the ethylene-1 - 20 parts by weight and 0/0 of the notary butene copolymer, polypropylene: polypropylene-based resin composition were combined common 80 wt 0 / (trade name LG Chemical, M1600) was prepared. More specifically, first, the stomach composition was prepared by uniformly mixing the above ingredients using a Henschel mixer, and the composition was pelletized using a co-rotating twin screw extruder and an injection machine. Using to prepare a test piece for measuring the physical properties. Comparative Example 1: Preparation of Polypropylene Resin Composition
  • LG Chem's olefin elastomer (trade name: LC175; ethylene-1-butene random copolymer) A polypropylene resin composition in the same manner as in Example 1, except that a commercial item was used instead of the ethylene-1-butene copolymer. was prepared. Method for measuring the physical properties of olefin copolymers
  • the peak area was obtained for each peak as shown in FIG. 5, the area under each peak was calculated, and the integrated area and fraction ratio of each peak were calculated.
  • wt% (interpolated) represents the cumulative content of the polymer and the elution temperature contained in each fraction
  • dW / dT represents the content (concentration) of the polymer eluted for each elution temperature
  • log (Mw) represents the Log value of the molecular weight of the polymer eluted for each elution temperature
  • CH3 / 1000C represents the Log value of the molecular weight of the polymer eluted for each elution temperature
  • Melt index (Melt index, Ml) of the copolymers of Examples 1 to 3 and Comparative Example 1 was measured by ASTM D-1238 (condition E, 190 ° C., 2.16 kg load) using Dynisco's D4002HV equipment.
  • the silver was held at 30 ° C. for 1 minute, then warmed up to 200 ° C. at a rate of 20 ° C. per minute and then held at that temperature for 2 minutes. The temperature was then lowered to -10 C C at a rate of 10 ° C. per minute and then maintained at that temperature for 1 minute. The temperature was further raised to 200 ° C at a rate of 10 ° C per minute, and the top of the DSC (Differential Scanning Calorimeter, TA company Q100) curve was taken as the melting point. The melting point was used as a result measured in the section where the second temperature rises. 6) Weight average molecular weight and molecular weight distribution (Polydispersity index: PDI)
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) were measured by gel permeation chromatography (GPC: Gel Permeation Chromatography), and then the weight average molecular weight was divided by the number average molecular weight to calculate the molecular weight distribution.
  • GPC Gel Permeation Chromatography
  • Izod Cold Strength (IZOD, @ -20 ° C): Measured under the conditions of ASTM D256, 1/4 ", -20 ⁇ 5 ° C.
  • Example 3 exhibits improved lattice strength and tensile strength while having other physical properties than the equivalent level of the specimen of Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 우수한 강도 등 기계적 물성을 나타내며, 보다 향상된 충격 강도를 갖는 폴리프로필렌계 수지 조성물 및 이를 포함한 성형품에 관한 것이다. 상기 폴리프로필렌계 수지 조성물은 폴리프로필렌계 수지; 및 올레핀계 공중합체를 포함하고, 상기 올레핀계 공중합체를 크로스 분별 크로마토그래피 (Cross-Fractionation Chromatography; CFC)로 분석하였을 때, 소정의 온도에서 서로 다른 3개의 피크로 정의되는 고분자 분획들을 포함하는 것이다.

Description

【명세서】
【발명의 명칭】
폴리프로필렌계 수지 조성물
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 9월 23일자 한국 특허 출원 게 10-2016-0122447호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 우수한 강도 등 기계적 물성을 나타내며, 보다 향상된 층격 강도를 갖는 폴리프로필렌계 수지 조성물 및 이를 포함한 성형품에 관한 것이다.
【배경기술】
폴리프로필렌계 수지를 주성분으로 하고 다양한 첨가제를 포함하는 폴리프로필렌계 수지 조성물은 일반적으로 자동차 내외장재 부품용 조성물 등 다양한 분야 및 용도에 적용되고 있다.
그런데, 이러한 폴리프로필렌계 수지 조성물에는 통상 폴리프로필렌계 수지의 충격 강도를 보강하기 위해, 층격 보강재를 포함시키는 경우가 많다. 메탈로센 촉매를 적용하여 중합한 에틸렌-알파-올레핀 공중합체를 개발하기 이전인 1990년대 중반까지는, 폴리프로필렌계 수지 조성물에 EPR(Ethylene Propylene Rubber)이 나 EPDM(ethylene propylene diene rubber) 등의 고무계 소재가 층격 보강재로서 주로 사용되었다.
그러나, 메탈로센 촉매에 의해 제조된 에틸렌-알파-올레핀 공중합체가 등장한 이후로는 층격 보강재로서 에틸렌-알파-올레핀 공중합체와 같은 올레핀계 공중합체나 올레핀계 엘라스토머가 주로 적용되고 있다.
그러나, 이러한 기존의 올레핀계 공중합체 또는 주로 에틸렌-알파- 올레핀 랜덤 공중합체로 되는 기존의 올레핀계 엘라스토머는 기본적으로 단일한 결정 구조를 갖게 되며, 이 때문에 다른 수지와의 상용성, 가공성, 강도 및 층격 강도 등의 요구 물성을 동시에 달성하기가 용이치 않음이 알려져 있다. 예를 들어, 기존의 올레핀계 공중합체나 올레핀계 엘라스토머를 폴리프로필렌계 수지와 컴파운딩하여 우수한 충격 강도 및 기계적 물성을 나타내는 성형품을 얻고자 하는 경우, 성형품의 층격 강도를 향상시키기 위해서는 상대적으로 낮은 밀도의 올레핀계 엘라스토머를 사용할 필요가 있게 되지만, 이러한 저밀도 올레핀계 엘라스토머는 상대적으로 낮은 강도를 나타냄에 따라 폴리프로필렌계 수지 조성물 또는 그 성형품의 우수한 강도를 달성하기 어렵게 되는 등의 단점이 발생하였다.
이에 따라, 보다 향상된 층격 강도와 함께, 우수한 기계적 물성올 나타내는 폴리프로필렌계 수지의 개발이 계속적으로 요구되고 있다.
【발명의 상세한 설명】
【기술적 과제】
이에 본 발명은 우수한 강도 등 기계적 물성을 나타내며, 보다 향상된 충격 강도를 갖는 폴리프로필렌계 수지 조성물 및 이를 포함한 성형품을 제공하는 것이다.
【기술적 해결 방법】
본 발명은 폴리프로필렌계 수지; 및 에틸렌 반복 단위와, 알파-올레핀계 반복 단위를 포함한 올레핀계 공중합체를 포함하며,
상기 올레핀계 공중합체를 크로스 분별 크로마토그래피 (Cross- Fractionation Chromatography; CFC) ≤. 분석하였을 때,
-20 °C 내지 50 °C의 제 1 용리 온도 (Te1 )에서 나타나는 제 1 피크로 정의되는 제 1 분획,
50 °C 내지 85 °C의 제 2 용리 온도 (Te2)에서 나타나는 제 2 피크로 정의되는 제 2 분획, 및
상기 제 2 용리 온도 (Te2)보다 높은 온도, 예를 들어, 85 °C 내지 130 °C의 제 3 용리 온도 (Te3)에서 나타나는 제 3 피크로 정의되는 제 3 분획을 포함하는 폴리프로필렌계 수지 조성물을 제공한다. 이러한 수지 조성물에 포함되는 올레핀계 공중합체는 상기 제 2 피크의 적분 면적으로부터 정의되는 상기 제 2 분획의 분획비가 7 내지 25%이거나, 상기 올레핀계 공중합체의 제 2 분획은 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수가 50개 이상일 수 있다.
본 발명은 또한, 상기 폴리프로필렌계 수지 조성물을 포함하는 성형품을 제공한다. 이하, 발명의 구현예에 따른 폴리프로필렌계 수지 조성물 등에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
본 명세서 전체에서, 상기 "올레핀계 공중합체" 또는 이에 포함되는
"(고분자) 분획"의 "분지쇄 (short chain branching; SCB)"라고 함은 올레핀계 공중합체 또는 그 분획에 포함되는 각각의 고분자 사슬들에서, 가장 긴 주쇄에 가지와 같은 형태로 분지 결합된 짧은 사슬 (short chain)을 지칭할 수 있다. 이러한 분지 결합된 짧은 사슬의 개수는 상기 "올레핀계 공중합체" 또는 그 "분획 "을 크로스 분별 크로마토그래피 (CFC)로 분석함으로서 산출될 수 있으며, 상기 "을레핀계 공중합체"나 각 고분자 사슬들에 포함된 α -올레핀 단량체의 함량에 비례할 수 있다. 한편, 발명의 일 구현예에 따르면, 폴리프로필렌계 수지; 및 에틸렌 반복 단위와, 알파-을레핀계 반복 단위를 포함한 올레핀계 공중합체를 포함하며, 상기 올레핀계 공중합체를 크로스 분별 크로마토그래피 (Cross- Fractionation Chromatography; CFC)으로 분석하였을 때,
-20 °C 내지 50 °C의 게 1 용리 온도 (Te1 )에서 나타나는 게 1 피크로 정의되는 제 1 분획,
50 °C 내지 85 °C의 제 2 용리 온도 (Te2)에서 나타나는 게 2 피크로 정의되는 제 2 분획, 및
상기 제 2 용리 온도 (Te2)보다 높은 온도, 예를 들어, 85°C 내지 130 °C의 제 3 용리 온도 (Te3)에서 나타나는 제 3 피크로 정의되는 제 3 분획을 포함하는 폴리프로필렌계 수지 조성물이 제공된다. 이러한 수지 조성물에 포함되는 올레핀계 공중합체는 상기 제 2 피크의 적분 면적으로부터 정의되는 상기 제 2 분획의 분획비가 7 내지 25%이거나, 상기 올레핀계 공중합체의 제 2 분획은 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수가 50개 이상일 수 있다.
일 구현예의 폴리프로필렌계 수지 조성물은 폴리프로필렌계 수지의 층격 보강재로서 신규한 결정 특성 및 구조를 갖는 을레핀계 공중합체를 포함하는 것이다.
본 발명자들은 후술하는 특정한 촉매 조성물을 사용하여 올레핀계 공중합체를 제조한 결과, 이러한 올레핀계 공중합체가 이전에 알려진 올레핀계 공중합체, 예를 들어, 에틸렌-알파-올레핀 랜덤 공중합체로 되는 기존의 을레핀계 엘라스토머와는 신규한 결정 구조 및 특성을 나타냄을 확인하였다. 또, 이러한 신규한 을레핀계 공중합체를 폴리프로필렌계 수지 조성물의 층격 보강재로 사용함에 따라, 폴리프로필렌계 수지 특유의 우수한 기계적 물성을 유지하면서도, 보다 향상된 층격 강도를 나타내는 수지 조성물 및 성형품을 제공할 수 있음을 확인하고 발명을 완성하였다.
이러한 올레핀계 공중합체의 신규한 결정 특성 및 구조는 크로스 분별 크로마토그래피법에 따라 상기 올레핀계 공중합체를 분석한 결과 확인되었다. 이러한 분석 결과에 따르면, 상기 올레핀계 공중합체는 서로 다른 3 가지 특정 온도 범위에서 제 1 내지 제 3 피크를 나타낼 수 있다. 이는 기존의 에틸렌- 알파-올레핀 랜덤 공중합체가 동일한 분석 결과에서 대체로 하나의 피크만을 나타내는 것과 구별되는 신규한 결정 구조 및 특성을 정의할수 있다.
보다 구체적으로, 상기 제 1 내지 제 3 피크는 상기 올레핀계 공중합체에 서로 다른 결정성을 나타내는 고분자 사슬들의 분획, 보다 구체적으로, 가장 낮은 결정성을 나타내는 제 1 분획, 가장 높은 결정성을 나타내는 게 3 분획, 그리고, 제 1 및 제 3 분획 사이의 결정성을 나타내는 제 2 분획이 포함됨을 의미한다. 이와 같이 서로 다른 결정성을 갖는 고분자 사슬들의 제 1 내지 제 3 분획이 동시에 포함됨에 따라, 일 구현예의 수지 조성물을 포함된 올레핀계 공중합체는 폴리프로필렌계 수지와의 우수한 상용성을 나타내며, 상기 폴리프로필렌계 수지와 컴파운딩되었을 때, 그 우수한 강도 등 기계적 물성을 저하시키지 않으면서도, 충격 강도를 동시에 향상시킬 수 있다. 이는 상기 을레핀계 공중합체가 다양한 결정성을 나타내는 고분자 사슬들을 동시에 포함하고 있기 때문으로 추정된다.
특히, 상기 올레핀계 공중합체는 중간 수준의 결정성을 나타내는 제 2 분획을 특정한 분획비 (분율)로 포함할 수 있는데, 이러한 제 2 분획에 포함된 고분자 사슬들에는 알파-올레핀계 공단량체에서 유래한 알파-올레핀계 반복 단위들이 보다 높은 함량으로 포함되어 있음이 확인되었다. 참고로, 이러한 점은 제 2 분획에 포함된 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수가 50개 이상인 분석 결과로부터 확인될 수 있다.
그 결과, 상기 올레핀계 공중합체는 주된 단량체가 알파-올레핀의 일종인 프로필렌으로 되는 폴리프로필렌계 수지와 컴파운딩되었을 때, 우수한 기계적 물성을 유지하면서도, 층격 강도를 보다 향상시킬 수 있음이 확인되었다.
따라서, 이러한 올레핀계 공중합체를 포함하는 폴리프로필렌계 수지 조성물을 사용하여, 보다 우수한 제반 물성, 특히, 뛰어난 기계적 물성 및 층격 강도를 함께 나타내는 성형품의 제공이 가능해 진다. 이하, 상술한 올레핀계 공중합체 및 그 제조 방법에 관하여 보다 구체적으로 설명하고, 이를 포함하는 폴리프로필렌계 수지 조성물의 다른 성분 등에 대해 구체적으로 설명하기로 한다.
상기 올레핀계 공중합체에서, 상기 크로스 분별 크로마토그래피를 통한 분석은 당업자에게 잘 알려진 Polymer Char 사의 CFC 장비를 사용하여 수행될 수 있으며, 상기 을레핀계 공중합체를 0-디클로로벤젠 등에 용해시킨 용액의 초기 온도 -20°C까지 낮춘 후, 일정한 승온 속도로 13C C까지 승온시키면서 위 장비로 분석하여 수행될 수 있다.
이러한 분석 결과, 상술한 온도 범위에서, 제 1 내지 제 3 분획에 대웅하는 제 1 내지 제 3 피크가 확인되는데, 제 1 피크는 중심 피크 온도가 - 15°C 내지 15°C , 흑은 -10°C 내지 10 °C로 될 수 있고, 제 2 피크는 중심 피크 온도가 50°C 내지 85°C , 혹은 70 °C 내지 80°C로 될 수 있으며, 제 3 피크는 중심 피크 온도가 85°C 내지 100°C , 흑은 87°C 내지 93°C로 될 수 있다. 이때, 중심 피크 온도라 함은 각 온도 범위에서 확인되는 제 1 내지 제 3 피크에서, 각 피크의 꼭지점에 대웅하는 은도를 지칭할 수 있다.
또한, 제 1 내지 거 I 3 피크의 각 적분 면적 및 이들의 비율에 의해, 서로 다른 결정성을 나타내는 고분자 사슬들의 제 1 내지 제 3 분획의 전체 올레핀 공중합체 중 분획비가 결정될 수 있는데, 이러한 각 적분 면적은 제 1 내지 제 3 피크를, 예를 들어, 도 5와 같이 일정 온도 영역에 따라 각 피크 영역별로 나눈 후, 그 하부 면적을 구함으로서 도출될 수 있으며, 각 피크의 전체 면적 대비 각 피크의 적분 면적의 비율로 각 피크에 대웅하는 각 분획의 분획비가 결정될 수 있다.
이와 같은 방법으로 분석되었을 때, 상기 올레핀계 공중합체는 상기 제 2 피크의 적분 면적으로부터 정의되는 상기 제 2 분획의 분획비가 7 내지 25%, 혹은 10 내지 23%, 혹은 13 내지 20%로 될 수 있다. 이와 같이 중간 수준의 결정성을 나타내는 고분자 사슬들의 제 2 분획을 특정한 분율로 포함하고, 이러한 제 2 분획의 고분자 사슬 내에 알파-올레핀계 반복 단위들이 보다 높은 함량으로 포함된다. 이러한 올레핀계 공중합체는 폴리프로필렌계 수지와 컴파운딩되었을 때, 보다 향상된 강도 및 층격 강도를 나타낼 수 있다. 또한, 상기 올레핀계 공중합체는 상기 제 1 피크의 적분 면적으로부터 정의되는 상기 게 1 분획의 분획비가 50 내지 75%, 55 내지 70%, 흑은 60 내지 70%로 될 수 있고, 상기 제 3 피크의 적분 면적으로부터 정의되는 상기 제 3 분획의 분획비가 5 내지 25%, 흑은 10 내지 23%, 혹은 15 내지 22%로 될 수 있다.
이와 같이, 저결정성 고분자 사슬들을 포함한 제 1 분획과, 고결정성 고분자 사슬들을 포함한 제 3 분획을 소정의 분획비로 포함함에 따라, 상술한 올레핀계 공중합체는 올레핀계 엘라스토머에 요구되는 제반 물성, 예를 들어, 폴리프로필렌계 수지 둥 다른 수지와의 상용성, 가공성, 다른 수지와 컴파운딩되었을 때의 강도 및 층격 강도 등을 동시에 우수하게 유지하거나 향상시킬 수 있다.
한편, 상술한 올레핀계 공중합체는 DSC에 의해 측정된 융점이 100 °C 내지 140 °C , 혹은 1 10 °C 내지 130 °C , 혹은 1 15 °C 내지 128 °C로 될 수 있고, 이에 따라, 우수한 내열성을 나타낼 수 있다.
또, 상기 올레핀 공중합체의 제 2 분획은 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수가 50개 이상, 혹은 50 내지 70개인 특성을 층족할 수 있다. 이러한 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수는 상기 올레핀계 공중합체를 CFC로 분석하여 산출할 수 있다. 이러한 올레핀계 공중합체의 제 2 분획의 분지쇄 개수는 동일한 용리 온도를 갖는 기존의 폴리올레핀에 비해, 보다 많은 개수의 분지쇄 개수를 가짐을 의미한다. 이러한 올레핀계 공중합체의 제 2 분획이 이와 같은 보다 많은 분지쇄 개수를 가짐은 이러한 제 2 분획이 알파-올레핀계 반복 단위들을 보다 높은 함량으로 포함함을 반영할 수 있다.
그리고, 상기 올레핀계 공중합체는 0.85g/cc 내지 0.91g/cc, 혹은 0.86g/cc 내지 0.89g/cc의 밀도를 나타낼 수 있으며, 190 °C , 2.16kg 하중 하의 용융 지수가 0.5 내지 3g/10min, 혹은 0.7 내지 2g/10min로 될 수 있다. 이러한 밀도 및 용융 지수 범위를 층족함에 따라, 상기 올레핀계 공중합체 및 이를 포함하는 일 구현예의 수지 조성물은 적절한 기계적 물성 및 가공성을 함께 나타낼 수 있다.
또한, 상술한 올레핀계 공중합체는 중량 평균 분자량이 약 30,000 내지 200,000, 흑은 약 50,000 내지 180,000일 수 있으며, 분자량 분포가 2.0 이상, 혹은 2.0 내지 4.0, 혹은 2.1 내지 3.0으로 될 수 있다. 이러한 올레핀계 공중합체가 이러한 분자량 및 분자량 분포 등을 가짐에 따라, 올레핀계 엘라스토머로서의 적절한 특성, 예를 들어, 우수한 기계적 물성 및 가공성 등을 나타낼 수 있다.
한편, 상술한 을레핀계 공중합체는 50 내지 90 중량0 /0의 에틸렌 반복 단위와, 잔량의 알파-올레핀계 반복 단위를 포함할 수 있다.
그리고, 상기 올레핀계 공중합체는 에틸렌계 반복 단위와, 알파- 올레핀계 반복 단위를 포함하는 공중합체로 될 수 있다. 이때, 알파-을레핀계 반복 단위는 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1 - 운데센, 1-도데센, 1-테트라데센, 또는 1 -핵사데센 등의 알파 -올레핀에서 유래한 반복 단위로 될 수 있으며, 올레핀계 공중합체의 우수한 충격 강도 둥을 고려하여, 적절하게는 1-부텐에서 유래한 반복 단위로 될 수 았다.
상술한 올레핀계 공중합체는 단독으로도 올레핀계 엘라스토머 등에 요구되는 우수한 제반 물성을 나타낼 뿐 아니라, 폴리프로필렌계 수지와 컴파운딩되었을 때, 우수한 상용성을 나타내며, 보다 향상된 강도 및 층격 강도를 나타낼 수 있다.
한편, 상술한 을레핀계 공중합체는 후술하는 특정한 촉매 시스템을 이용한 제조 방법에 의해 제조될 수 있음이 확인되었다. 보다 구체적으로, 상기 을레핀계 공중합체는 하기 화학식 1의 화합물을 포함하는 제 1 메탈로센 촉매와, 하기 화학식 2의 화합물을 포함하는 제 2 메탈로센 촉매를 포함하는 촉매 조성물의 존재 하에, 에틸렌 및 알파-올레핀을 공중합하는 단계를 포함하는 제조 방법에 의해 제조될 수 있다:
[화학식
Figure imgf000010_0001
상기 화학식 1에서,
R1 및 R2 는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴, 실릴, 탄소수 1 내지 20의 알케닐, 탄소수 7 내지 25의 알킬아릴, 탄소수 7 내지 25의 아릴알킬, 또는 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이며; 상기 R1 및 R2 가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴을 포함하는 알킬리딘 라디칼에 의해 서로 연결되어 고리를 형성할 수 있으며;
R3 는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수
6 내지 20의 아릴, 알콕시, 탄소수 6 내지 20의 아릴옥시, 또는 아미도 라디칼이며; 상기 R3 중에서 2개 이상의 R3 는 서로 연결되어 지방족 또는 방향족 고리를 형성할수 있으며;
CY1은 치환 또는 치환되지 않은 지방족 또는 방향족 고리이며,
M은 4족 전이금속이고;
Q1 및 Q2 는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴 아미도, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 25의 알킬아릴, 탄소수
7 내지 25의 아릴알킬, 또는 탄소수 1 내지 20의 알킬리덴 라디칼이고,
[화학식 2]
Figure imgf000011_0001
상기 화학식 2에서,
R4 및 R5는 각각 독립적으로 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬, 탄소수 5 내지 60의 시클로알킬, 탄소수 6 내지 60의 아릴, 탄소수 5 내지 60의 시클로디엔기, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 60의 알킬아릴 및 탄소수 7 내지 60의 아릴알킬로 이루어진 군에서 선택되고;
Q4 내지 Q6은 각각 독립적으로 수소 또는 중수소이며;
CY2는 질소를 포함하고, 탄소수 1 내지 5의 알킬로 치환 또는 비치환된 탄소수 5 내지 20의 지방족 고리이고;
M은 3족 내지 12족의 금속 또는 란타나이드 계열 금속이며;
Χι 내지 X3는 서로 같거나 상이하고, 각각 독립적으로 할로겐 라디칼, 탄소수 1 내지 20의 알킬아미도, 탄소수 6 내지 60의 아릴아미도, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 60의 아릴, 탄소수 7 내지 60의 알킬아릴, 탄소수 7 내지 60의 아릴알킬 및 탄소수 1 내지 20의 알킬리덴 라디칼로 이루어진 군에서 선택된다.
상기 화학식 1 및 2의 촉매는 본 발명의 출원인이 최초로 합성하여 출원한 것으로서, 한국 등록 특허 제 0820542 호 및 제 1310239 호에 각각 개시되어 있다. 다만, 상기 화학식 1 및 2의 촉매를 함께 사용하여 이미 상술한 신규한 결정 특성 및 구조를 갖는 올레핀계 공중합체가 제조될 수 있음은 이전에 전혀 밝혀진 바 없다.
본 발명자들의 계속적인 실험 결과에 따르면, 위 2 가지 촉매를 함께 사용함에 따라, 상술한 신규 결정 특성 및 구조를 층족하는 올레핀계 중합체가 제조될 수 있음이 최초로 확인되었다. 이는 상기 화학식 1의 게 1 메탈로센 촉매가 제 1 분획에 대웅하는 저결정성 고분자 사슬들을 주로 중합할 수 있으며, 상기 화학식 2의 제 2 메탈로센 촉매가 제 3 분획에 대웅하는 고결정성 고분자사슬들을 주로 중합할 수 있기 때문으로 추정된다. 또한, 이러한 2 가지 촉매를 사용한 중합 과정에서, 고분자 사슬들 간의 사슬 교환 및 알파-올레핀계 공단량체에서 유래한 분지쇄들의 교환이 일어남에 따라, 제 2 분획에 대웅하는 중간 수준의 결정성을 갖는 고분자 사슬들이 일정한 분획비로 중합될 수 있는 것으로 보이며, 그 결과, 상술한 결정 특성 등을 갖는 올레핀계 공중합체가 제조될 수 있는 것으로 보인다.
한편, 상기 제조 방법에서, 상기 촉매 조성물은 디에틸아연, 디 (i- 부틸)아연, 디 (n-핵실)아연, 트리에틸알루미늄, 트리옥틸알루미늄, 트리에틸갈륨, ί-부틸알루미늄 비스 (디메틸 (t-부틸) 실록산), i-부틸알루미늄 비스 (디 (트리메틸실릴)아미드), n-옥틸알루미늄 디 (피리딘 -2-메록시드), 비스 (n- 옥타데실) i-부틸 알루미늄, i-부틸알루미늄 비스 (디 (n-펜틸)아미드), n- 옥틸알루미늄 비스 (2,6-디 -t-부틸페녹시드), n-옥틸알루미늄 디 (에틸 (1 - 나프틸)아미드), 에틸알루미늄 비스 (t-부틸디메틸실록시드), 에틸알루미늄 디 (비스 (트리메틸실릴)아미드), 에틸알루미늄 비스 (2,3,6,7-디벤조 -1- 아자시클로헵탄아미드), n_옥틸알루미늄 비스 (2,3,6,7-디벤조 -1- 아자시클로헵탄아미드), n-옥틸알루미늄 비스 (디메틸 (t-부틸) 실록시드), 에틸아연 (2,6-디페닐페녹시드) 및 에틸아연 (t-부록시드)로 이루어진 군에서 선택된 1종 이상의 사슬 교환제를 더 포함할 수 있다. 이러한 사슬 교환제를 추가 사용함에 따라, 상기 중합 과정에서의 고분자 사슬들 간의 사슬 교환 및 분지쇄들의 교환이 보다 잘 일어날 수 있고, 그 결과 상술한 결정 특성 등을 갖는 을레핀계 공중합체가보다 쉽게 제조될 수 있다.
이러한 사슬 교환제의 첨가량은 상기 제 1 및 제 2 메탈로센 촉매의 주촉매 화합물에 대하여 약 1 :10 내지 1 :1000의 몰비로 포함될 수 있고, 예를 들어, 약 1 :10 내지 1 :500, 혹은 약 1 :20 내지 1 :200의 몰비로 포함될 수 있다. 즉, 상기 사슬 교환제에 의한 일정 수준 이상의 효과를 발현시키기 위하여, 상기 사슬 교환제의 함량은 상기 주촉매 화합물에 대하여 몰비 1 :10 이상으로 될 수 있고, 제조되는 올레핀계 공중합체의 적절한 물성 조절 및 주촉매 화합물의 우수한 활성을 고려하여, 상기 사슬 교환제는 주촉매 화합물에 대하여 몰비 1 :1000 이하로 포함될 수 있다.
한편, 상기 촉매 조성물에서, 상기 제 1 및 게 2 메탈로센 촉매로는 상기 화학식 1 및 2의 범주에 속하는 촉매, 혹은 한국 등록 특허 제 0820542 호 및 제 1310239 호에 각 공지된 촉매를 별다른 제한 없이 모두 사용할 수 있다. 다만, 이미 상술한 결정 특성 및 구조를 보다 효과적으로 달성할 수 있도록 하기 위해, 하기 화학식 1 a 및 2a의 화합물을 각각 제 1 및 제 2 메탈로센 촉매로서 바람직하게 사용할 수 있다.
[화학식 1 a]
Figure imgf000013_0001
[화학식 2a]
Figure imgf000013_0002
상기 화학식 1 및 2로 표시되는 제 1 및 제 2 메탈로센 촉매의 보다 구체적인 사항과, 이의 제조 방법 등에 대해서는, 한국 등록 특허 제 0820542 호 및 제 1310239 호 등을 통해 당업자에게 자명하게 알려져 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
추가로, 상기 제조 방법에서 사용되는 촉매 조성물 중에는, 상술한 2종의 메탈로센 촉매 외에, 하기 화학식 3 내지 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매 화합물을 더 포함할 수 있다:
[화학식 3]
J(R4 )3
상기 화학식 3에서, J는 알루미늄 또는 보론이고, R4'는 각각 독립적으로 할로겐, 또는 할로겐으로 치환 또는 비치환된 탄소수 1~20의 하이드로카르빌 라디칼이고;
[화학식 4]
[L-H]+[ZA4]"또는 [L]+[ZA4]- 상기 화학식 4에서, L은 중성 또는 양이온성 루이스 산이고; H는 수소이며; Z는 13족 원소이고; A는 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 ~20의 하이드로카르빌, 탄소수 1 ~20의 알콕시기 또는 페녹시기로 치환된 탄소수 6~20의 아릴 또는 탄소수 1 ~20의 알킬이고;
[화학식 5]
-[AI(R5')-0]a- 상기 화학식 5에서, R5'는 할로겐, 또는 할로겐으로 치환 또는 비치환된 탄소수 1 ~20의 하이드로카빌이고; a는 2 이상의 정수이다.
여기서, 상기 화학식 3으로 표시되는 화합물은 알킬 금속 화합물이면 특별히 한정되지 않으나; 예를 들어, 트리메틸알루미늄, 트리에틸알루미늄 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -S-부틸알루미늄 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄 트리페닐알루미늄, 트리 -P-를릴알루미늄, 디메틸알루미늄메특시드 디메틸알루미늄에록시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론 트리프로필보론, 또는 트리부틸보론 등으로 될 수 있다.
또한, 상기 화학식 4로 표시되는 화합물은 트리에틸암모니움테트라 (페닐)보론, 트리부틸암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (페닐)보론, 트리프로필암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (P-를릴)보론, 트리메틸암모니움테트라 (Ο,ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론,
트리부틸암모니움테트라 (펜타플루오로페닐)보론, Ν,Ν- 디에틸아닐리니움테트라 (페닐)보론, Ν,Ν- 디에틸아닐리니움테트라 (펜타플루오로페닐)보론, 디에틸암모니움테트라 (펜타플루오로페닐)보론,
트리메틸포스포늄테트라 (페닐)보론, 트리에틸암모니움테트라 (페닐)알루미늄, 트리부틸암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (페닐)알루미늄, 트리프로필암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (P- 를릴)알루미늄, 트리프로필암모니움테트라 (P-틀릴)알루미늄, 트리에틸암모니움테트라 (ο,ρ-디메틸페닐)알루미늄, 트리부틸암모니움테트라 (Ρ- 트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라 (Ρ- 트리플루오로메틸페닐)알루미늄,
트리부틸암모니움테트라 (펜타플루오로페닐)알루미늄, Ν,Ν- 디에틸아닐리니움테트라 (페닐)알루미늄, . Ν,Ν- 디에틸아닐리니움테트라 (페닐)알루미늄, Ν,Ν- 디에틸아닐리니움테트라 (펜타플루오로페닐)알루미늄,
디에틸암모니움테트라 (펜타플루오로페닐)알루미늄,
트리페닐포스포늄테트라 (페닐)알루미늄, 트리메틸포스포늄테트라 (페닐)알루미늄, 트리에틸암모니움테트라 (페닐)알루미늄, 트리부틸암모니움테트라 (페닐)알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)보론, 트리에틸암모니움테트라 (ο,ρ- 디메틸페닐)보론, 트리메틸암모니움테트라 (ο,ρ-디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론,
트리메틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론,
트리부틸암모니움테트라 (펜타플루오로페닐)보론, Ν,Ν- 디에틸아닐리니움테트라 (페닐)보론, 트리페닐포스포늄테트라 (페닐)보론, 트리페닐카보니움테트라 (Ρ-트리플루오로메틸페닐)보론,
트리페닐카보니움테트라 (펜타플루오로페닐)보론,
트리틸테트라 (펜타플루오로페닐)보론,
디메틸아닐리늄테트라키스 (펜타플루오로페닐)보레이트 또는 트리틸테트라키스 (펜타플루오로페닐)보레이트 등으로 될 수 있다.
또한, 상기 화학식 5로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않으나; 예를 들어, 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 또는 부틸알루미녹산등일 수 있다.
그리고, 상술한 조촉매 화합물의 첨가량은 상기 제 1 및 제 2 메탈로센 촉매를 기준으로, 약 1 :1 내지 1 :20의 몰 비로 포함될 수 있다. 상기 조촉매 화합물에 의한 효과를 일정 수준 이상 발현시키기 위하여, 상기 조촉매 화합물의 함량은 상기 제 1 및 제 2 메탈로센 촉매의 주촉매 화합물에 대하여 몰비 1 :1 이상으로 포함될 수 있다. 또한, 제조되는 을레핀계 공중합체의 적절한 물성 조절 및 주촉매 화합물의 효과적인 활성화를 위해, 조촉매 화합물은 상기 주촉매 화합물에 대하여 몰비 1 :20 이하로 포함될 수 있다.
한편, 상기 올레핀계 공중합체의 제조 방법에서는, 상술한 촉매 조성물의 존재 하에서, 에틸렌과, 알파-올레핀을 포함하는 단량체를 공중합시키는 단계를 포함하는 방법으로 올레핀계 공중합체를 제조할 수 있다. 이때, 사용 가능한 알파-올레핀 단량체로는 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 또는 1-핵사데센 등을 들 수 있고, 보다 바람직하게는 1-부텐을 들 수 있다.
또, 상기 공중합 단계는, 120 °C 이상, 혹은 120 내지 180°C , 혹은 120 내지 160 °C의 온도에서 진행할 수 있으며, 50 bar 이상, 흑은 50 내지 120 bar, 혹은 70 내지 100bar의 압력 하에 진행할 수 있다. 이전에 알려진 메탈로센계 또는 포스트 메탈로센계 촉매 등의 경우 높은 온도에서는 활성이 급격하게 감소하는 것으로 알려진 바 있다. 그러나, 상술한 촉매 조성물에 포함되는 제 1 및 제 2 메탈로센 촉매의 주촉매 화합물들은 120°C 이상 및 50 bar 이상의 높은 압력 하에서도,우수한 촉매 활성을 유지할 수 있다. 따라서, 이러한 고온 및 고압 조건 하에 공중합 공정을 진행하여, 우수한 물성을 갖는 을레핀계 공중합체를 보다 높은 효율로 얻을 수 있다.
그리고, 상기 공중합 단계는 상술한 촉매 조성물을 이용하여 용액 공정으로 수행할 수 있으며, 또는 상기 촉매 조성물을 실리카 등의 무기 담체와 함께 사용하여 슬러리 공정 또는 기상 공정으로 수행할 수도 있다. 이하에서 연속식 용액 중합공정 방법을 중심으로 공중합 단계의 보다 구체적인 진행 조건 및 방법을 설명한다.
상기 공중합 단계에서는, 스캐빈져 (scavenger)를 반웅기 내에 수분 총함량 대비 0.4 ~ 5배로 투입할 수 있다. 이러한 스캐빈져는 반웅물 내에 포함될 수 있는 수분 또는 공기 등과 같은 불순물을 제거하는 역할을 하며, 반웅물의 공중합이 일어나기 전에 투입될 수 있다. 상기 스캐빈져 및 반웅물의 흔합물은 중합 반응기 이외의 별도 반웅기 내에서 스캐빈져 및 반웅물이 흔합될 수 있고, 중합 반웅기로 반웅물이 공급되는 공급 라인 내에서 층분한 시간 동안 스캐빈져와 반웅물이 흔합될 수 있다. 스캐빈져의 바람직한 예로는
TiBAI (트리이소부틸알루미늄) 또는 TOA (트리옥틸알루미늄) 둥의 트리알킬알루미늄을 들 수 있으나, 이에 제한되지 않는다.
또, 공중합 단계는 반웅기 내에서 전술한 촉매 조성물, 단량체 및 스캐빈져의 도입에 의하여 진행될 수 있다.
이때, 촉매 조성물은 올레핀 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 또는 이들의 이성질체; 를루엔, 또는 벤젠과 같은 방향족 탄화수소 용매; 흑은 디클로메탄, 또는 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해시키거나 회석하여 주입할 수 있다.
그리고, 공중함 단계를 진행하는 일 실시예에서, 에틸렌 대 용매의 몰 비율은 반응물과, 생성된 올레핀께 공중합체를 용해하기에 적합한 비율이 될 필요가 있다. 예를 들어, (에틸렌 /용매)의 몰 비율은 약 1/10,000 ~ 10, 혹은 약 1/100 ~ 5, 혹은 약 1/20 ~ 1로 될 수 있다. 이러한 몰 비율을 적절히 설정함으로서, 공중합 단계를 효과적으로 진행할 수 있으면서도, 용매의 양이 적정화하여 용매의 정제 재순환에 따른 설비증가나, 에너지 비용 증가 등을 억제할 수 있다.
상기 용매는 히터 또는 넁동기를 사용하여 약 -40 - 150 °C의 온도로 반웅기에 투입될 수 있으며, 단량체 및 촉매 조성물과 함께 중합반웅이 개시될 수 있다.
또한, 고용량 펌프가 압력을 약 50 bar 이상으로 상승시켜 공급물들 (용매, 단량체, 촉매 조성물 등)을 공급함으로써, 상기 반웅기 배열, 압력 강하 장치 및 분리기 사이에 추가적인 펌핑 (pumping) 없이 상기 공급물들의 흔합물을 통과시킬 수 있다.
그리고, 반웅기 내에서 생성되는 올레핀계 공중합체는 용매 속에서 약 20 질량0 /。 미만의 농도로 유지될 수 있고, 짧은 체류시간이 지난 후 용매 제거를 위해 1차 용매 분리 공정으로 이송될 수 있다. 올레핀계 공중합체가 반웅기 내에 체류하는 적절한 시간은 약 1분 내지 10시간, 흑은 약 3분 내지 1시간, 혹은 약 5분 내지 30분으로 될 수 있다. 이에 따라, 생산성 저하나 촉매의 손실 등을 억제할 수 있고, 반웅기의 크기가 적정화될 수 있다.
상술한 공증합 단계를 진행한 후에는, 반웅기를 빠져 나은 올레핀계 공중합체와 함께 존재하고 있는 용매의 제거를 위하여 용액 온도와 압력을 변화시켜서 용매 분리 공정을 더 수행할 수 있다. 이때, 반응기로부터 이송된 공중합체 용액은 히터를 통하여 용융 상태를 유지하며, 분리기에서 미반웅 원료 용매를 기화시키고, 생성된 공중합체는 압출기 등으로 입자화될 수 있다. 한편, 일 구현예의 폴리프로필렌계 수지 조성물은 상술한 올레핀계 공중합체와 함께 폴리프로필렌계 수지를 포함한다. 이러한 폴리프로필렌계 수지의 종류는 특히 제한되지 않으며, 예를 들어, 폴리프로필렌 호모 중합체, 프로필렌-알파-을레핀 공중합체, 또는 프로필렌-에틸렌-알파-올레핀 공중합체 등의 다양한 폴리프로필렌계 수지를 포함할 수 있다.
이때, 상기 알파-올레핀으로는 상기 프로필렌과 상이한 탄소수 4 이상의 알파-올레핀, 예를 들어, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1 -옥텐, 1- 데센, 1 -운데센, 1 -도데센, 1-테트라데센, 또는 1 -핵사데센 등을 별다른 제한 없이 사용할수 있다.
또한, 상기 폴리프로필렌계 수지는 이전에 알려진 방법으로 중합 및 제조되거나, 상업적으로 알려진 수지를 입수하여 사용될 수 있다.
그리고, 상기 일 구현예의 폴리프로필렌계 수지 조성물은 상기 폴리프로필렌계 수지의 50 내지 90 중량0 /。, 흑은 60 내지 85 중량0 /。 및 상기 올레핀계 공중합체의 10 내지 50 중량0 /0, 혹은 15 내지 40 중량0 /0를 포함할 수 있다. 이에 따라, 폴리프로필렌계 수지가 갖는 우수한 강도 등 기계적 물성을 유지하면서도, 올레핀계 공중합체의 부가에 따라 더욱 향상된 충격 강도를 나타낼 수 있다.
추가로, 상기 폴리프로필렌계 수지 조성물은 필요에 따라 산화방지제, 열 안정게, 자외선 안정제, 또는 대전 방지제 등의 첨가제를 더 포함할 수 있으며, 도장성을 향상시키기 위해 소량의 접착성 수지나 극성기를 갖는 첨가제를 적정 함량 범위 내에서 더 포함할 수도 있음은 물론이다.
상술한 일 구현예의 폴리프로필렌계 수지 조성물은 우수한 강도 등 기계적 물성과 함께, 보다 향상된 층격 강도를 나타내므로, 이러한 물성이 요구되는 다양한 용도 /분야에 적용될 수 있다. 예를 들어, 상기 폴리프로필렌계 수지 조성물은 자동차용, 신발용, 전선용, 완구용, 섬유용, 의료용 등의 재료와 같은 각종 포장용, 건축용, 생활용품 둥의 여러 가지 분야 및 용도에 중공 성형용, 압출 성형용 또는 사출 성형용으로 유용하게 사용될 수 있다.
특히, 상기 폴리프로필렌계 수지 조성물 및 이를 포함하는 성형품이 상온 및 저온에서의 우수한 층격 강도를 나타냄에 따라, 자동차의 내, 외장 부품용 성형품 등으로서 바람직하게 사용될 수 있다.
【발명의 효과】
상술한 바와 같이 본 발명에 따르면, 우수한 강도 등 기계적 물성을 나타내며, 보다 향상된 층격 강도를 갖는 폴리프로필렌계 수지 조성물 및 이를 포함한 성형품이 제공될 수 있다.
[도면의 간단한 설명】
도 1 내지 3은 각각 실시예 1 내지 3의 폴리프로필렌계 수지 조성물에 포함된 올레핀계 공중합체를 크로스 분별 크로마토그래피 (Cross-Fractionation Chromatography; CFC)로 분석한 결과를 나타낸 그래프이다.
도 4는 비교예 1의 폴리프로필렌계 수지 조성물에 포함된 올레핀계 공중합체를 크로스 분별 크로마토그래피로 분석한 결과를 나타낸 그래프이다. 도 5는 일 구현예에 따른 폴리프로필렌계 수지 조성물에 포함되는 올레핀계 공중합체를 크로스 분별 크로마토그래피 (Cross-Fractionation Chromatography; CFC)으로 분석한 결과에서, 각 분획의 분획비에 대웅하는 각 피크의 적분 면적을 구하는 과정을 나타낸 그래프이다.
【발명의 실시를 위한 형태】
이하, 발명의 이해를 돕기 위하여 몇 가지 실시예를 제시하나, 하기 실시예는 발명을 예시하는 것일 뿐 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이하의 실시예에서, 유기 시약 및 용매는 알드리치 사와 머크 사에서 구입하여 표준 방법으로 정제하여 사용하였다. 합성의 모든 단계에서 공기와 수분의 접촉을 차단하여 실험의 재현성을 높였다. 또한, 이하의 실시예에서 "밤새 "는 대략 12 내지 16시간을 의미하며 "실온 "은 20 내지 25 °C의 은도를 일컫는다. 모든 전이금속화합물의 합성 및 실험의 준비는 건조상자 기술을 사용하거나 건조상태 유지 유리기구를 사용하여 건조 질소 분위기에서 수행되었다. 사용된 모든 용매는 HPLC 등급이며 사용 전에 건조되었다. 제조예 1 : 제 1 메탈로센 촉매의 제조
한국 등록 특허 제 0820542 호의 실시예 6 및 7의 방법에 따라, 하기 화학식 i a의 제 1 메탈로센 촉매를 제조하였다.
[화학식 1 a]
Figure imgf000020_0001
제조예 2: 제 2 메탈로센 촉매의 제조
하기와 같은 방법으로 하기 화학식 2a의 제 2 메탈로센 촉매 제조하였다.
[화학식 2a]
Figure imgf000020_0002
250ml schlenk flask에 2-메틸 -1 ,2,3,4-tetrahydroquinc»Nne (6.12 g, 41 .6 mm이) 및 핵산 (0.536M, 77.5ml)을 가하였다. -20 °C에서 n-BuLi (1 .1 당량, 18.3ml)을 첨가하고, 상온에서 하룻밤 동안 방치하였다. G4 frit filter하고, 진공 건조하여 리튬 염을 얻었다. 이러한 리튬염 (1.83g, 1 1 .9mm이), 디에틸에테르 (0.423M, 28.2ml)를 넣고, -78 °C에서 C02 bubbling을 1시간 동안 진행하였다. 천천히 승온하면서, 상온에서 하룻밤 동안 반웅을 진행시킨 후, -20 °C에서 THF (1 .1 당량, 1 .07ml), t-BuLi (1 .1 당량, 8.4ml)를 넣고, 2 시간 동안 유지시켰다. 동일 은도에서, cyclohexyl2PCI (0.85 당량, 2.36g), 디에틸에테르 (0.359M, 28.2ml)를 첨가하고, 같은 온도에서 1시간 동안 유지시켰다. 천천히 승온하면서, 상온에서 하룻밤동안 반웅시킨 후, 0°C에서 증류수 50ml를 첨가하고, 상온에서
30분간 다시 교반하였다. 디에틸에테르 work-up 및 MgSO4로 건조를 진행한 다음, 컬럼 분리를 하여 황색 고체 생성물 (1.86g, 수율: 45.3%)을 얻었다.
100ml schlenk flask에, 위에서 제조된 화합물 (0.28g, 0.815mm이),
Zr(CH2Ph)4 (1.0 당량, 0.37g) 및 를루엔 (0.154M, 5.3ml)을 넣고, 25°C에서 하룻밤 동안 반웅을 진행시켰다. 반웅 완료 후, 를루엔을 제거하고, 펜탄으로 추출하여 황생 고체 생성물 (245mg, 수율: 42.5%)을 얻었다.
1H MR (aX Hz, Toluene-d8)
7.15 (ϋ' 0, 7,02 Cm, 9H)t 6.86 (t, 3H) , 6.67 (t. 3H), 4.15 (s, 1H) ; 2.73 01, D,2.62 (d, 2H), 2.56 (d,. 2H)t 2,42 2.17 (ύ, M), L82 (Λ, IH) , 1,62 (in, 10H),1.40 (a, 1H) , 1.14 (m, 6H), 0,99 (m, 6li)
실시예 1: 에틸렌 -1-부텐 공중합체 및 폴리프로필렌계 수지 조성물의 제조
1.5L 오토클레이브 연속 공정 반웅기에 핵산 용매 (6.03 kg/h)와 1- 부텐 (0.70 kg/h)을 채운 후, 반웅기 상단의 온도를 145°C로 예열하였다. 트리이소부틸알루미늄 화합물 (0.03 mmol/min), 상기 제조예 1에서 제조한 제 1 메탈로센 촉매 (0.4iimol/min), 및 상기 제조예 2에서 제조한 제 2 메탈로센 촉매 (0.4μηη /min), 그리고 디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 조촉매 (2.4 μηι /min)를 동시에 반웅기로 투입하였다. 이어서, 상기 오토클레이브 반웅기 속으로 에틸렌 (0.87 kg/h)을 투입하여 89 bar의 압력으로 연속 공정에서 120 °C로 30분 이상 유지시킨 후 공중합 반웅을 진행하여 올레핀계 공중합체로서 에틸렌 -1-부텐 공중합체를 얻었다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 진공 오본에서 12시간 이상 건조한 후 물성을 측정하였다.
또한, 상기 에틸렌 -1-부텐 공중합체의 20 중량0 /0와, 폴리프로필렌 (상품명: 엘지화학, M1600)의 80 중량 0/。를 흔합하여 폴리프로필렌계 수지 조성물을 제조하였다. 보다 구체적으로, 먼저, 헨셀 믹서를 사용하여 위 성분들을 균일하게 흔합하여 위 조성물을 제조하였고, 이러한 조성물을 2축 동방향 회전 압출기 (Co-rotating Twin Screw Extruder)를 이용하여 제립 (Pelletizing)하고 사출기를 사용하여 물성 측정용 시편을 제조하였다. 실시예 2: 에틸렌 -1 -부텐 공중합체 및 폴리프로필렌계 수지 조성물의 제조
1 .5L 오토클레이브 연속 공정 반웅기에 핵산 용매 (5.86 kg/h)와 1 - 부텐 (0.80 kg/h)을 채운 후, 반웅기 상단의 온도를 140 °C로 예열하였다. 트리이소부틸알루미늄 화합물 (0.035 mmol/min), 상기 제조예 1에서 제조한 제 1 메탈로센 촉매 (0.35 ii mol/min), 및 상기 제조예 2에서 제조한 제 2 메탈로센 촉매 (0.35 μ ηι /min), 그리고 디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 조촉매 (2.1 ii mol/min)를 동시에 반웅기로 투입하였다. 이어서, 상기 오토클레이브 반웅기 속으로 에틸렌 (0.87 kg/h)을 투입하여 89 bar의 압력으로 연속 공정에서 120 °C로 30분 이상 유지시킨 후 공중합 반웅을 진행하여 올레핀계 공중합체로서 에틸렌 -1 -부텐 공중합체를 얻었다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다.
또한, 상기 에틸렌 -1 -부텐 공중합체의 20 중량0 /0와, 폴리프로필렌 (상품명: 엘지화학, M1600)의 80 중량0 /。를 흔합하여 폴리프로필렌계 수지 조성물을 제조하였다. 보다 구체적으로, 먼저, 헨샐 믹서를 사용하여 위 성분들을 균일하게 흔합하여 위 조성물을 제조하였고, 이러한 조성물을 2축 동방향 회전 압출기 (Co-rotating Twin Screw Extruder)를 이용하여 제립 (Pelletizing)하고 사출기를 사용하여 물성 측정용 시편을 제조하였다. 실시예 3: 에틸렌 -1 -부텐 공중합체 및 폴리프로필렌계 수지 조성물의 제조
1 .5L 오토클레이브 연속 공정 반웅기에 핵산 용매 (5.86 kg/h)와 1 - 부텐 (0.80 kg/h)을 채운 후, 반응기 상단의 온도를 141 °C로 예열하였다. 트리이소부틸알루미늄 화합물 (0.03 mmol/min), 상기 제조예 1에서 제조한 제 1 메탈로센 촉매 (0.5 μ mol/min), 및 상기 제조예 2에서 제조한 게 2 메탈로센 촉매 (0.5 μ mol/min), 그리고 디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 조촉매 (1.5 μ mol/min)를 동시에 반웅기로 투입하였다. 이어서, 상기 오토클레이브 반웅기 속으로 에틸렌 (0.87 kg/h)을 투입하여 89 bar의 압력으로 연속 공정에서 120 °C로 30분 이상 유지시킨 후 공중합 반응을 진행하여 올레핀계 공증합체로서 에틸렌 -1-부텐 공중합체를 얻었다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 진공 오븐에서 12시간 이상 건조한후 물성을 측정하였다.
또한, 상기 에틸렌 -1 -부텐 공증합체의 20 중량0 /0와, 폴리프로필렌 (상품명: 엘지화학, M1600)의 80 중량 0/。를 흔합하여 폴리프로필렌계 수지 조성물을 제조하였다. 보다 구체적으로, 먼저, 헨셀 믹서를 사용하여 위 성분들을 균일하게 흔합하여 위 조성물을 제조하였고, 이러한 조성물을 2축 동방향 회전 압출기 (Co-rotating Twin Screw Extruder)를 이용하여 제립 (Pelletizing)하고 사출기를 사용하여 물성 측정용 시편을 제조하였다. 비교예 1 : 폴리프로필렌계 수지 조성물의 제조
엘지화학의 올레핀계 엘라스토머 (상품명: LC175; 에틸렌 -1-부텐 랜덤 공중합체) 상용품을 상기 에틸렌 -1 -부텐 공중합체 대신 사용한 것으로 제외하고는, 실시예 1과 동일한 방법으로 폴리프로필렌계 수지 조성물을 제조 하였다. 을레핀계 공중합체의 물성측정방법
상기 실시예 1 내지 3 및 비교예 1의 수지 조성물에 각각 포함된 을레핀계 공중합체의 각 물성을 다음의 방법으로 측정 및 평가하였다:
1 ) CFC 분석 및 각 피크 적분 면적의 산출 Polymer Char 사의 CFC(Cross-Fractionation Chromatography) 장비를 사용하였으며, 0-디클로로벤젠을 용매로 하여 -20°C 내지 13C C 범위에서 측정하였다. 상세하게는, 13C C에서 공중합체 샘플을 0-디클로로벤젠 용매에 대해 5.0%w/v의 농도로 용해시킨 용액을 0.50°C/min의 속도로 -20 °C까지 넁각시킨 후, -20°C에서 130 °C까지 rc/min의 승온 속도로 가열 및 승온하면서, 용매인 0-디클로로벤젠을 0.5 mL/분의 유속으로 컬럼에 흘리며 각 은도별로 용출되는 중합체의 농도를 측정하였다.
이러한 측정 및 분석을 통해, 실시예 1 내지 3 및 비교예 1에 대해 도
1 내지 4와 같은 분석 결과를 도출하였고, 각 피크의 중심 피크 온도를 측정하여 하기 표 1에 정리하여 나타내었다.
또한, 각 피크에 대해 도 5와 같이 피크 영역을 구하고, 각 피크의 하부 면적을 구하여, 각 피크의 적분 면적 및 분획비를 산출하였고, 그 결과를 표
1에 함께 정리하여 나타내었다.
2) 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수 분석 각 공중합체를 CFC로 분석하여 상기 고분자 쇄들의 분자량에 따른 탄소수 1000 개 당 분지쇄의 개수 값의 분포 곡선을 도출하였다. 참고로, 도 1 내지 4에도 도시되고, 하기 범례에서 정리된 바와 같이, 각 공중합체를 CFC 분석하면, 자동적으로 탄소수 1000개당 -CH3의 값이 분자량과 함께 산출될 수 있고, 이러한 탄소수 1000개당 -CH3의 값으로부터 탄소수 1000개당 분지쇄의 개수
Figure imgf000024_0001
상기 범례에서, "wt% (interpolated)"는 : 중합체 및 각 분획에 포함된 용리 온도별 중합체의 누적 함량을 나타내고, "dW/dT"는 각 용리 온도별로 용출되는 중합체의 함량 (농도)을 표시한 그래프를 나타내며 (일 구현예의 제 1 내지 제 3 피크 등을 확인 /도출하는 그래프), "Log (Mw)"는 각 용리 온도별로 용출되는 중합체의 분자량의 Log 값을 나타내고, "CH3/1000C"는 탄소수 1000개당— CH3의 값 (탄소수 1000개당 분지쇄의 개수 값)을 나타낸다.
이를 통해, 실시예 1 내지 3 및 비교예 1의 제 2 분획 (비교예 1의 경우, 단일 피크에 해당하는 분획)에 대해 탄소수 1000개당 분지쇄의 개수 값을 산출하였으며, 도출된 결과는 도 1 내지 4에 함께 도시하였으며, 각 공중합체에 대해 분지쇄의 평균 개수 값을 산출하여 표 1에 나타내었다.
3) 용융지수 (Ml)
실시예 1 내지 3 및 비교예 1의 공중합체의 용융지수 (Melt index, Ml)는 Dynisco사의 D4002HV 장비를 사용하여, ASTM D-1238(조건 E, 190 °C , 2.16kg 하중)로 측정하였다.
4) 밀도 (density)
실시예 1 내지 3 및 비교예 1의 공중합체에 대해, Mettler Toledo 사의 XS104 장비를 사용하고, ASTM D1505 기준에 따라 23°C의 온도에서 밀도를 측정하였다.
5) 융점 (Tm)
은도를 30 °C에서 1분간 유지시킨 후, 분당 20 °C의 속도로 200°C까지 승온시키고 나서, 2분 동안 그 온도를 유지하였다. 이어서, 분당 10°C의 속도로 -10C C까지 온도를 낮추고 나서, 그 온도를 1분 동안 유지하였다. 다시 분당 10°C의 속도로 200°C까지 승온시켜, DSC( Differential Scanning Calorimeter, TA사 제조 Q100) 곡선의 꼭대기를 융점으로 하였다. 융점은 두 번째 온도가 상승하는 구간에서 측정한 결과를 사용하였다. 6) 중량 평균 분자량 및 분자량 분포 (Polydispersity index: PDI)
겔 투과 크로마토그래피 (GPC: Gel Permeation Chromatography)를 이용하여 수평균분자량 (Mn), 중량평균분자량 (Mw)을 측정한 후, 중량평균분자량을 수평균분자량으로 나누어 분자량 분포를산출하였다. 위와 같은 방법을 측정된 실시예 1 내지 3 및 비교예 1의 공중합체 물성을 하기 표 1에 정리하여 나타내었다.
[표 1]
Figure imgf000026_0001
상기 표 1과, 도 1 내지 4를 참고하면, 실시예 1 내지 3에서 사용된 공중합체는 크로스 분별 크로마토그래피로 분석하였을 때, 소정의 온도에서 3개의 피크가 확인되며, 게 2 피크에 대웅하는 게 2 분획의 분획비가 7 내지 25% 범위 내에 있는 신규한 결정 구조 및 특성을 층족하는 것으로 확인되었다. 이에 비해, 비교예 1에서 사용된 기존의 공중합체의 경우, 단일 피크만이 확인되었다. 시험예
실시예 3 및 비교예 1에서 각각 제조된 폴리프로필렌계 수지 조성물 시편에 대해, 굴곡 강도 및 굴곡 탄성률, 인장 강도, 저온 및 상온 층격 강도와, 수축률을 각각 다음의 방법으로 측정하여 하기 표 2에 정리하여 나타내었다.
1 ) 굴곡 강도 및 굴곡 탄성률: INSTRON 3365 장비를 사용하여 ASTM D790의 기준에 따라측정하였다.
2) 인장 강도: INSTRON 4465 장비를 사용하여 ASTM D639의 기준에 따라 측정하였다.
3) 아이조드 상온 층격 강도 (Impact Strength, IZOD, @23°C ): ASTM
D256, 1/4", 23 ± 5°C의 조건 하에 측정하였다. 4) 아이조드 저온 층격 강도 (Impact Strength, IZOD, @-20°C ): ASTM D256, 1/4", -20 ± 5°C의 조건 하에 측정하였다.
5) 수축률: 길이 130mm의 금형을 통해 시편을 사출하여 제작한 후, 12시간 동안 상온에서 보관하였다. 12시간 후 시편의 길이를 측정하여 다음 식에 따라수축를을 계산하였다.
수축를 (%) = [(측정 길이 - 130)/13이*100
[표 2]
Sample 비교예 1 실시예 3 | 굴곡 강도
245 251
2
(kgf/cm ) 굴곡 탄성률 (Secant 1 %)
8103 8437
2
(kgf/cm ) 인장강도
185 188
2
(kgf/cm ) 저온 층격 강도 (-20°C)
7.13 8.00
(kgf m/m) 상온 층격 강도 (23°C)
61.88 64.51
(kgf m/m) 수축를 (1/1000) 13.4 13.9
상기 표 2를 참고하면, 실시예 3의 시편은 비교예 1의 시편에 비해 다른 물성이 동등 수준 이상이면서도, 보다 향상된 층격 강도 및 인장 강도를 나타냄이 확인되었다.

Claims

【청구의.범위】
【청구항 1】
폴리프로필렌계 수지; 및 에틸렌 반복 단위와, 알파-올레핀계 반복 단위를 포함한 올레핀계 공중합체를 포함하며,
상기 올레핀계 공중합체를 온도상승 크로스 분별 크로마토그래피
(Cross-Fractionation Chromatography; CFC)≤. 분석하였을 때,
-20 °C 내지 50 °C의 제 1 용리 온도 (Te1 )에서 나타나는 제 1 피크로 정의되는 제 1 분획,
50 °C 내지 85 °C의 제 2 용리 온도 (Te2)에서 나타나는 게 2 피크로 정의되는 제 2 분획, 및
85 °C 내지 130 °C의 제 3 용리 온도 (Te3)에서 나타나는 제 3 피크로 정의되는 제 3 분획을 포함하며,
상기 제 2 피크의 적분 면적으로부터 정의되는 상기 올레핀계 공중합체의 제 2 분획의 분획비는 7 내지 25%인 폴리프로필렌계 수지 조성물.
【청구항 2】
제 1 항에 있어서, 상기 올레핀계 공중합체의 거 I 2 피크의 중심 피크 온도는 50 °C 내지 85 °C인 폴리프로필렌계 수지 조성물.
【청구항 3】 '
제 1 항에 있어서, 상기 올레핀계 공중합체의 게 1 피크의 중심 피크 온도는 -15 °C 내지 15 °C이고, 상기 게 1 피크의 적분 면적으로부터 정의되는 상기 제 1 분획의 분획비는 50 내지 75%인 폴리프로필렌계 수지 조성물.
【청구항 4】
제 1 항에 있어서, 상기 올레핀계 공중합체의 제 3 피크의 중심 피크 온도는 85 °C 내지 100 °C이고, 상기 게 3 피크의 적분 면적으로부터 정의되는 상기 제 3 분획의 분획비는 5 내지 25%인 폴리프로필렌계 수지 조성물.
【청구항 5】 제 1 항에 있어서, 상기 올레핀계 공중합체의 제 3 분획은 제 2 분획보다 높은 결정성을 가지며, 상기 제 2 분획은 제 1 분획보다 높은 결정성을 갖는 폴리프로필렌계 수지 조성물.
【청구항 6】
제 1 항에 있어서, 상기 올레핀계 공중합체는 DSC에 의해 측정된 융점이 100°C 내지 14C C인 폴리프로필렌계 수지 조성물.
【청구항 7】
제 1 항에 있어서, 상기 을레핀계 공중합체의 제 2 분획은 탄소수
1000개당 분지쇄 (short chain branching; SCB) 개수가 50개 이상인 폴리프로필렌계 수지 조성물.
【청구항 8】
제 1 항에 있어서, 상기 올레핀계 공중합체는 밀도가 0.85g/cc 내지
0.91g/cc인 폴리프로필렌계 수지 조성물.
【청구항 9】
게 1 항에 있어서, 상기 올레핀계 공중합체는 190 °C , 2.16kg 하중 하의 용융 지수가 0.5 내지 3g/10min인 폴리프로필렌계 수지 조성물.
【청구항 101
제 1 항에 있어서, 상기 올레핀계 공중합체는 50 내지 90 중량0 /0의 에틸렌 반복 단위와, 잔량의 알파-올레핀계 반복 단위를 포함하는 폴리프로필렌계 수지 조성물.
【청구항 1 1】
제 1 항에 있어서, 상기 폴리프로필렌계 수지는 폴리프로필렌 호모 중합체, 프로필렌-알파-올레핀 공중합체, 또는 프로필렌-에틸렌-알파-올레핀 공중합체를 포함하는 폴리프로필렌계 수지 조성물.
【청구항 12】
제 1 항에 있어서, 상기 폴리프로필렌계 수지의 50 내지 90 중량0 /0 및 상기 올레핀계 공중합체의 10 내지 50 중량0 /。를 포함하는 폴리프로필렌계 수지 초성물.
【청구항 13】
제 1 항에 있어서, 상기 알파-올레핀계 반복 단위는 1 -부텐, 1 -펜텐, 1 - 핵센, 1 -헵텐, 1 -옥텐, 1 -데센, 1 -운데센, 1 -도데센, 1 -테트라데센 및 1 -핵사데센으로 이루어진 군에서 선택된 1종 이상의 알파 -올레핀에서 유래한 반복 단위인 올레핀계 공중합체.
【청구항 14】
폴리프로필렌계 수지; 및 에틸렌 반복 단위와, 알파-올레핀계 반복 단위를 포함한올레핀계 공중합체를 포함하며,
상기 올레핀계 공중합체를 온도상승 크로스 분별 크로마토그래피 (Cross-Fracti이 ation Chromatography; CFC)로 분석하였을 때,
-20 °C 내지 50 °C의 게 1 용리 온도 (Te1 )에서 나타나는 제 1 피크로 정의되는 제 1 분획,
50 °C 내지 85 °C의 제 2 용리 온도 (Te2)에서 나타나는 제 2 피크로 정의되는 제. 2 분획, 및
제 2 용리 온도 (Te2)보다 높은 제 3 용리 온도 (Te3)에서 나타나는 제 3 피크로 정의되는 제 3 분획을 포함하며,
상기 올레핀계 공중합체의 제 2 분획은 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수가 50개 이상인 폴리프로필렌계 수지 조성물.
【청구항 15]
제 1 항의 폴리프로필렌계 수지 조성물을 포함하는 성형품.
PCT/KR2017/010161 2016-09-23 2017-09-18 폴리프로필렌계 수지 조성물 WO2018056656A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17853370.9A EP3456775B1 (en) 2016-09-23 2017-09-18 Polypropylene-based resin composition
CN201780041689.4A CN109563323B (zh) 2016-09-23 2017-09-18 基于聚丙烯的树脂组合物
US16/305,668 US10954366B2 (en) 2016-09-23 2017-09-18 Polypropylene-based resin composition
ES17853370T ES2909129T3 (es) 2016-09-23 2017-09-18 Composición de resina a base de polipropileno

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0122447 2016-09-23
KR1020160122447A KR102086055B1 (ko) 2016-09-23 2016-09-23 폴리프로필렌계 수지 조성물

Publications (1)

Publication Number Publication Date
WO2018056656A1 true WO2018056656A1 (ko) 2018-03-29

Family

ID=61689987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010161 WO2018056656A1 (ko) 2016-09-23 2017-09-18 폴리프로필렌계 수지 조성물

Country Status (6)

Country Link
US (1) US10954366B2 (ko)
EP (1) EP3456775B1 (ko)
KR (1) KR102086055B1 (ko)
CN (1) CN109563323B (ko)
ES (1) ES2909129T3 (ko)
WO (1) WO2018056656A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083825A (ja) * 2020-11-25 2022-06-06 住友化学株式会社 プロピレン重合体組成物、および、フィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306973B1 (en) * 1999-02-04 2001-10-23 Grand Polymer Co. Ltd. Polypropylene block-copolymer resin and process for producing it
JP2002187245A (ja) * 2000-12-22 2002-07-02 Asahi Kasei Corp ポリオレフィン系樹脂熱収縮性多層フィルム
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
JP2009173029A (ja) * 2007-12-28 2009-08-06 Japan Polypropylene Corp 表面保護用フィルム
US20120046373A1 (en) * 2009-02-25 2012-02-23 Low Bee T Phylon Processes of Making Foam Articles Comprising Ethylene/alpha-Olefins Block Interpolymers
KR101310239B1 (ko) 2010-04-26 2013-09-23 주식회사 엘지화학 포스핀 그룹을 가지는 포스트 메탈로센형 전이금속 화합물 및 이를 이용한 올레핀 중합체의 제조방법
US20150315314A1 (en) * 2012-06-21 2015-11-05 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
EP0629492B1 (en) * 1993-06-17 1998-11-11 Sekisui Kagaku Kogyo Kabushiki Kaisha Film for first-aid sticking plaster
JP3690867B2 (ja) 1996-04-12 2005-08-31 新日本石油化学株式会社 押出ラミネート成形用樹脂組成物
US6469103B1 (en) 1997-09-19 2002-10-22 The Dow Chemical Company Narrow MWD, compositionally optimized ethylene interpolymer composition, process for making the same and article made therefrom
JP5121108B2 (ja) * 1999-12-21 2013-01-16 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 二軸延伸ポリプロピレンフィルム製造用の半結晶性プロピレンポリマー組成物
CA2492839C (en) 2002-08-12 2011-02-01 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
JP5438966B2 (ja) 2005-07-15 2014-03-12 エクソンモービル・ケミカル・パテンツ・インク エラストマ組成物
JP4813197B2 (ja) 2006-02-02 2011-11-09 日本ポリエチレン株式会社 ポリエチレン樹脂組成物及びそれを用いた積層体
KR101455425B1 (ko) 2006-12-21 2014-10-27 다우 글로벌 테크놀로지스 엘엘씨 폴리올레핀 조성물 및 그로부터 제조된 물품 및 그의 제조 방법
US8106127B2 (en) * 2008-12-15 2012-01-31 Exxonmobil Chemical Patents Inc. Heterogeneous in-reactor polymer blends
KR101288500B1 (ko) 2009-03-12 2013-07-26 주식회사 엘지화학 낙추 충격강도와 투명도가 우수한 필름용 폴리에틸렌 및 이의 제조방법
US8735312B2 (en) 2010-04-23 2014-05-27 Lg Chem, Ltd. Catalyst composition and process for preparing olefin polymer using the same
CA2798855C (en) 2012-06-21 2021-01-26 Nova Chemicals Corporation Ethylene copolymers having reverse comonomer incorporation
JP5767203B2 (ja) 2012-12-19 2015-08-19 旭化成ケミカルズ株式会社 エチレン重合体並びに延伸成形体、微多孔膜、及び電池用セパレーター
JP6459780B2 (ja) * 2014-07-31 2019-01-30 住友化学株式会社 熱可塑性エラストマー組成物及びその成形体
KR101800069B1 (ko) 2014-11-21 2017-11-21 주식회사 엘지화학 폴리프로필렌계 복합재
KR101847702B1 (ko) 2015-03-26 2018-04-10 주식회사 엘지화학 올레핀계 중합체
KR102086056B1 (ko) * 2016-09-23 2020-03-06 주식회사 엘지화학 폴리프로필렌계 수지 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306973B1 (en) * 1999-02-04 2001-10-23 Grand Polymer Co. Ltd. Polypropylene block-copolymer resin and process for producing it
JP2002187245A (ja) * 2000-12-22 2002-07-02 Asahi Kasei Corp ポリオレフィン系樹脂熱収縮性多層フィルム
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
JP2009173029A (ja) * 2007-12-28 2009-08-06 Japan Polypropylene Corp 表面保護用フィルム
US20120046373A1 (en) * 2009-02-25 2012-02-23 Low Bee T Phylon Processes of Making Foam Articles Comprising Ethylene/alpha-Olefins Block Interpolymers
KR101310239B1 (ko) 2010-04-26 2013-09-23 주식회사 엘지화학 포스핀 그룹을 가지는 포스트 메탈로센형 전이금속 화합물 및 이를 이용한 올레핀 중합체의 제조방법
US20150315314A1 (en) * 2012-06-21 2015-11-05 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3456775A4

Also Published As

Publication number Publication date
EP3456775A4 (en) 2019-07-03
US10954366B2 (en) 2021-03-23
US20200079941A1 (en) 2020-03-12
EP3456775A1 (en) 2019-03-20
CN109563323B (zh) 2021-12-03
ES2909129T3 (es) 2022-05-05
EP3456775B1 (en) 2022-02-23
KR20180033009A (ko) 2018-04-02
KR102086055B1 (ko) 2020-03-06
CN109563323A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
KR102083001B1 (ko) 올레핀계 공중합체 및 이의 제조 방법
ES2784518T3 (es) Composición de resina a base de propileno
KR101262308B1 (ko) 올레핀 블록 공중합체 및 이의 제조 방법
KR102086056B1 (ko) 폴리프로필렌계 수지 조성물
JP5890408B2 (ja) 弾性及び加工性に優れたエチレン共重合体
US9771448B2 (en) Olefin-based resin, method for producing same and propylene-based resin composition
CN113677723B (zh) 聚烯烃-聚苯乙烯多嵌段共聚物及其制备方法
KR101170492B1 (ko) 올레핀 블록 공중합체
WO2018056656A1 (ko) 폴리프로필렌계 수지 조성물
CN116134090A (zh) 热塑性树脂组合物
KR20220015354A (ko) 열가소성 수지 조성물
KR20220018942A (ko) 열가소성 수지 조성물
US20230340243A1 (en) Thermoplastic resin composition
TW202222957A (zh) 熱塑性樹脂組成物
CN116209719A (zh) 热塑性树脂组合物
WO2012099415A2 (ko) 올레핀 블록 공중합체 및 시트상 성형체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017853370

Country of ref document: EP

Effective date: 20181212

NENP Non-entry into the national phase

Ref country code: DE