WO2018054285A1 - 压缩机 - Google Patents

压缩机 Download PDF

Info

Publication number
WO2018054285A1
WO2018054285A1 PCT/CN2017/102257 CN2017102257W WO2018054285A1 WO 2018054285 A1 WO2018054285 A1 WO 2018054285A1 CN 2017102257 W CN2017102257 W CN 2017102257W WO 2018054285 A1 WO2018054285 A1 WO 2018054285A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
compressor according
resolver
crankshaft
casing
Prior art date
Application number
PCT/CN2017/102257
Other languages
English (en)
French (fr)
Inventor
陈雪峰
杨应葵
易夏辉
任光远
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018054285A1 publication Critical patent/WO2018054285A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F04C18/0223Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/047Cooling of electronic devices installed inside the pump housing, e.g. inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/34Toothed gearings for conveying rotary motion with gears having orbital motion involving gears essentially having intermeshing elements other than involute or cycloidal teeth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5202Sealing means between parts of housing or between housing part and a wall, e.g. sealing rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/327Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear

Definitions

  • the present disclosure relates to the field of automotive air conditioning, and in particular to a compressor.
  • hybrid vehicles With the development of the new energy automobile industry, the application of hybrid vehicles is more and more widespread. In the use of hybrid vehicles, the battery power is consumed in the pure electric driving mode. When the vehicle is feeding, the remaining power cannot be provided. Electric air conditioning compressors, air conditioning systems can not work properly, the interior environment comfort is worse. In addition, the lubricating effect of the conventional fuel compressor is poor, and the lubricating oil circuit can only rely on a little refrigerating oil carried by the refrigerant to return to the compressor in the form of gas-liquid two-phase, and the durability of the operating mechanism is not good.
  • the present disclosure provides a compressor including a housing assembly, a crankshaft located within the housing assembly, and a clutch assembly coupled to the crankshaft, the crankshaft including a coaxially coupled front axle And a rear axle, wherein a speed increasing portion is disposed between the front axle and the rear axle such that a rotational speed of the rear axle is greater than a rotational speed of the front axle.
  • the speed increasing portion is a planetary gear mechanism.
  • the speed increasing portion includes a sun gear disposed at a front end of the rear axle and rotating with the rear axle, a planetary gear disposed at a rear end of the front axle and rotating with the front axle
  • the teeth of the planetary gear cooperate with the teeth of the sun gear, and the planetary gear rotates around the sun gear, and the outer side of the planetary gear is further provided with a fixed wheel, the teeth of the fixed wheel and the planet The teeth of the wheel cooperate, and the fixed wheel is fixed to the inner wall of the casing assembly.
  • the sun gear, the planet gears, and the fixed wheels are all helical gears.
  • the rear end of the front axle is formed with a planet carrier that is evenly spaced circumferentially spaced with an eccentric pin on which the planet gears are mounted.
  • the eccentric pins are three.
  • the planet carrier includes a center disk, and a mounting disk that projects outwardly and circumferentially along a radial direction of the center disk, the eccentric pin being disposed on the mounting plate.
  • an outer contour of the center disk between adjacent ones of the mounting disks is formed as a concave arc, and an outer contour of each of the mounting disks is formed as a convex arc.
  • the planet carrier is provided with a through hole corresponding to the eccentric pin, and the eccentric pin is interference fit into the through hole.
  • the eccentric pin is integrally formed with the planet carrier.
  • the front end of the rear axle is formed as a stepped shaft having a reduced shaft diameter
  • the sun gear is sleeved at the front end of the rear axle
  • the rear end of the sun gear is abutted at the step The shoulder of the shaft.
  • the interior of the casing assembly is partitioned into a main cavity and an auxiliary cavity distributed in the axial direction by a barrier wall sleeved on the crankshaft, the auxiliary cavity being defined in the total casing
  • the front axle is located in the clutch assembly
  • the speed increasing portion is located in the auxiliary cavity
  • the rear axle is located in the main cavity.
  • a shaft seal is disposed between the barrier wall and the crankshaft.
  • a retaining spring is also disposed between the barrier wall and the crankshaft.
  • the compressor is a dual drive compressor, the compressor further comprising a scroll assembly, a motor assembly located inside the housing assembly, mounted external to the housing assembly
  • the electronic control assembly is provided with a resolver on the crankshaft, and the resolver is electrically connected to the electronic control assembly.
  • the resolver is mounted on the rear axle.
  • the resolver includes a resolver stator, a resolver rotor rotatable with the crankshaft, and a tortuous wire harness coupled to the resolver stator, the resolver harness and the electronically controlled The assembly is electrically connected.
  • the housing assembly is provided with a resolver wire hole for connecting the resolver wire harness to the electronic control assembly.
  • the resolver rotor is sleeved on the crankshaft
  • the resolver stator is formed on an outer circumference of the resolver rotor
  • the casing assembly is disposed on the crankshaft.
  • the support disk has an inner peripheral surface of the support disk formed with a stepped surface to position the resolver stator.
  • the stepped surface is formed on a front end face of the support disk, and an outer circumference of the rotary stator is provided with a flange to abut against the stepped surface.
  • the electronic control assembly is detachably mounted to the outside of the housing assembly, and the electrical control assembly and the motor assembly are electrically connected by a pluggable electrical connector. connection.
  • the electronic control assembly includes an electrically controlled housing and a control element housed in the electrically controlled housing, the electrically controlled housing being positively coupled to the outside of the housing assembly.
  • the electrical connector of the electronic control assembly includes a three-phase connector, and the electrical connector of the motor assembly A three-phase terminal is included, the three-phase terminal being pluggably connected to the three-phase connector.
  • control element includes an electronically controlled printed circuit board (PCB) board that is coupled to the electronically controlled PCB board and extends outwardly through the electronically controlled housing.
  • PCB printed circuit board
  • the casing assembly is provided with a motor wiring hole extending from the motor wiring hole, and the three-phase terminal is electrically connected to the motor assembly.
  • the electrical control assembly and the resolver are electrically connected by a pluggable electrical connector.
  • control element includes an electrically controlled PCB circuit board having a spin-on connector on the electronically controlled PCB that passes through the electronically controlled housing.
  • the casing assembly is provided with a rotating terminal, the rotating terminal is electrically connected to the rotating wire harness, and the rotating terminal and the rotating connector are Plug and connect.
  • the outer side of the electronically controlled housing is spaced apart from fasteners to secure the housing assembly and the electronically controlled assembly.
  • the electronic control housing includes a first base and a first cover, a first sealing gasket is disposed between the first base and the first cover, and the electronic control housing is further disposed Low voltage wiring and high voltage wiring.
  • the location of the first base that is in contact with the housing assembly is covered with a layer of thermally conductive material.
  • the electronic control assembly includes a second base, a second cover and an intelligent power module (IPM), and a bottom of the second base is recessed inwardly to form a cooling chamber, and an outer side of the cooling chamber is provided There is a pressure plate, the mounting surface of the IPM is disposed to fit the bottom surface of the cooling chamber, and the refrigerant flows through the cooling chamber to cool the IPM.
  • IPM intelligent power module
  • a baffle perpendicular to a bottom surface of the cooling chamber is disposed in a circularly folded manner in the cooling chamber, and one end of the baffle is connected to a sidewall of the cooling chamber. The other end leaves a gap with the opposite side wall of the side wall.
  • a refrigerant inlet and a refrigerant outlet are opened on the pressure plate.
  • the second base is provided with a sealing groove around the cooling chamber, and a sealing ring is disposed in the sealing groove, and the sealing ring is disposed between the pressure plate and the second base.
  • the pressure plate is provided with a heat dissipation plate.
  • the crankshaft of the compressor is set to have a split design of the front axle and the rear axle, and a speed increasing section is designed between the front axle and the rear axle, because the front axle rotates synchronously with the pulley of the clutch, at the pulley speed Under the constant condition, the rotation speed of the rear axle is increased, thereby improving the working efficiency of the compressor.
  • FIG. 1 is a front elevational view of a dual drive compressor in accordance with an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view of the dual drive compressor of Figure 1 taken along line A-A;
  • FIG. 3 is a schematic structural view of a dual drive compressor according to another embodiment of the present disclosure.
  • Figure 4 is a partial enlarged view of the portion T of Figure 3, wherein the view is rotated by 90 degrees;
  • Figure 5 is a cross-sectional view of the portion of Figure 4 taken along line B-B;
  • FIG. 6 is a schematic structural view of a front axle according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural view of a planet carrier according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural view of a resolver according to an embodiment of the present disclosure.
  • Figure 9 is a cross-sectional view of the cyclone of Figure 8 taken along line C-C;
  • FIG. 10 is a schematic structural view of a cabinet assembly according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic view showing the assembly of a support disk and a crankshaft according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural view of an electronic control assembly according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic view showing the connection of an electronic control assembly and a casing assembly according to an embodiment of the present disclosure
  • Figure 14 is a partial enlarged view of a portion P in Figure 13;
  • 15 is a schematic view showing the connection of an electric control assembly and a casing assembly according to another embodiment of the present disclosure
  • Figure 16a is a partial enlarged view of the portion Q of Figure 15;
  • 16b is an exploded view of a resolver plug in accordance with an embodiment of the present disclosure.
  • 17 is a front elevational view of an electronic control assembly in accordance with another embodiment of the present disclosure.
  • Figure 18 is a left side elevational view of the electronic control assembly of Figure 17;
  • Figure 19 is a right side cross-sectional view of the electronic control assembly of Figure 17;
  • Figure 20 is a rear elevational view of the electronic control assembly of Figure 17, showing the internal structure of the cooling chamber;
  • Figure 21 is a left side elevational view of the electronic control assembly of Figure 17, with the cover, refrigerant inlet and refrigerant outlet not shown.
  • orientation words used such as “front and rear” are defined by the public according to a specific structure, for example, in the axial direction of the crankshaft, for the convenience of description.
  • the end connected to the clutch assembly is the front, and the opposite end is the rear; the "inside and outside” are generally directed to the contour of the corresponding component. Words.
  • the present disclosure provides a compressor, and more particularly a dual drive compressor.
  • the basic structure and operation of the dual drive compressor are first described below in conjunction with FIGS. 1 and 2.
  • the dual drive compressor includes a casing assembly 1000, a crankshaft 2000 located inside the casing assembly 1000, a scroll assembly 3000, and a motor assembly 5000, mounted on the casing.
  • the external electronic control assembly 6000 is 1000
  • the clutch assembly 4000 is connected to the crankshaft 2000.
  • the internal portion of the crankshaft 2000 located in the casing assembly 1000 means that the main portion of the crankshaft 2000 is located inside the casing assembly 1000, and the crankshaft 2000 extends out of the casing assembly 1000. Partially coupled to the clutch assembly 4000.
  • the dual drive compressor in the present disclosure is exemplified by a scroll compressor.
  • the scroll assembly 3000 includes a stationary plate 3100 and a moving plate 3200.
  • the rotation of the crankshaft 2000 drives the movable disc 3200 to perform eccentric motion.
  • the moving disc type line and the static disc type line form a crescent cavity with a gradually decreasing volume (ie, a compression chamber of the scroll compressor).
  • the refrigerant entering the compression chamber from the air inlet is continuously compressed in the process, and the finally formed high-temperature and high-pressure gas is discharged from the exhaust port, thereby completing the compression of the refrigerant.
  • crankshaft 2000 can be driven by the motor assembly 5000, that is, the electric drive mode, or the clutch assembly 4000 can transmit the drive force, that is, the mechanical drive mode.
  • the motor assembly 5000 that is, the electric drive mode
  • the clutch assembly 4000 can transmit the drive force, that is, the mechanical drive mode.
  • the clutch assembly 4000 primarily includes a pulley 4300, a coil 4100, and a drive plate 4200.
  • the pulley 4300 is rotatably mounted on the front end cover 1400 of the cabinet assembly 1000 by bearings.
  • the drive plate 4200 is rotatably coupled to the crankshaft 2000.
  • the coil 4100 in the clutch assembly 4000 is energized to produce an electromagnetic attraction that engages the pulley 4300 and the drive plate 4200 such that the pulley 4300 can rotate the crankshaft 2000 to drive the compressor to operate.
  • the pulley 4300 generates a driving force by being coupled to the vehicle engine drive wheel, and the dual drive compressor in the mechanical drive mode is the same as the conventional mechanical compressor drive mode, the specific drive form of which is well known to those skilled in the art, Do not make a detailed description.
  • the crankshaft 2000 may include a front axle 2100 and a rear axle 2200 which are coaxially connected, and a front axle 2100 and a rear axle 2200 may be provided.
  • There is a speed increasing portion 2300 such that the rotational speed of the rear axle 2200 is greater than the rotational speed of the front axle 2100, so that the transmission ratio of the rear axle 2200 to the engine driving wheel can be increased.
  • the speed increasing portion 2300 can be realized in various forms.
  • the present invention uses a planetary gear mechanism for transmission, which is suitable for the shafting system, and the planetary gear mechanism has a compact structure, small volume, small mass, and large bearing capacity.
  • the transmission power range and transmission range are large, the running noise is small, the efficiency is high, and the service life is long.
  • the speed increasing portion 2300 includes a sun gear 2310 disposed at the front end of the rear axle 2200 and then rotating the shaft 2200, and a planetary gear 2320 disposed at the rear end of the front axle 2100 and rotating with the front axle 2100.
  • the teeth of the planet gear 2320 cooperate with the teeth of the sun gear 2310, and the planet gears 2320 rotate about the sun gear 2310.
  • a fixed wheel 2330 is further disposed on the outer side of the planetary gear 2320.
  • the teeth of the fixed wheel 2330 are engaged with the teeth of the planetary gear 2320, and the fixed wheel 2330 is fixed to the inner wall of the casing assembly 1000.
  • the fixed wheel 2330 is fixed, and the rotation speed of the sun gear 2310 is greater than the rotation speed of the planetary gear 2320 around the sun gear 2310, thereby achieving the purpose of speed increase. That is, when the compressor is driven by the clutch assembly 4000, the torque is first transmitted to the front axle 2100, and the front axle 2100 rotates and accelerates through the planetary gear train to transmit torque to the rear axle 2200, thereby driving the scroll assembly 3000.
  • the number of teeth of the planetary gear mechanism gear can be adjusted to obtain a plurality of gear ratios.
  • the sun gear 2310, the planet gears 2320 and the fixed wheels 2330 may all be helical gears, so that the transmission is more stable and the load carrying capacity of the gears can be improved.
  • FIG. 6 is a schematic structural view of a front axle 2100 in an embodiment of the present disclosure, in which a carrier 2110 is formed at a rear end of the front axle 2100, and the carrier 2110 is evenly disposed with an eccentric pin 2120 at intervals in the circumferential direction.
  • the eccentric pin 2120 faces the rear axle 2200 and the planet gear 2320 is mounted on the eccentric pin 2120.
  • the eccentric pin 2120 can be integrally formed with the carrier 2110 to maintain the compactness of the structure; a through hole corresponding to the eccentric pin 2120 can also be defined on the carrier 2110, and the eccentric pin 2120 is inserted into the through hole through an interference fit, so that The manufacturing difficulty of the carrier 2110 is lowered, and the replaceability of the parts is strong.
  • the eccentric pin 2120 can be three, and the force stability of the planetary gear mechanism can be ensured. Accordingly, the number of the planetary gears 2320 is also three.
  • the carrier 2110 may perform a weight reduction process. Specifically, as shown in FIGS. 5 and 7, the carrier 2110 may include a center disk 2111 and protrude radially outward along the center disk 2111. And along the circumferentially spaced mounting plate 2112, the eccentric pin 2120 is disposed on the mounting plate 2112.
  • the outer contour of the center disk 2111 between adjacent mounting disks 2112 may be a concave arc.
  • the outer contour of each mounting plate 2112 may be a convex arc. A rounded transition can be made between the concave arc and the convex arc to avoid stress concentration. In this way, not only can the planetary carrier 2110 achieve the purpose of weight reduction, but also its strength requirements can be met.
  • the front end of the rear axle 2200 may be a stepped shaft with a reduced shaft diameter, and the sun gear 2310 is sleeved at the front end of the rear axle 2200, that is, the small diameter section 2210 of the stepped shaft, and the sun gear 2310 The back end is at the top of the above
  • the shoulder of the stepped shaft 2201 is positioned to position the sun gear 2310.
  • the inside of the casing assembly 1000 is partitioned into a main cavity 1100 and an auxiliary cavity 1200 which are axially distributed by a partition wall 1300 which is sleeved on the rear axle 2200, wherein the barrier wall 1300 is formed in the casing.
  • the inner wall of the assembly 1000 has a stable structure.
  • the auxiliary cavity 1200 is defined between the front end cover 1400 of the cabinet assembly 1000 and the barrier wall 1300.
  • the front axle 2100 is located in the clutch assembly 4000, the speed increasing portion 2300 is located in the auxiliary chamber 1200, and the rear axle 2200 is located in the main chamber 1100.
  • the speed increasing portion 2300 is separately disposed in one space, that is, in the auxiliary cavity 1200, by the arrangement of the partition wall 1300, so that the parts of the speed increasing portion are smoothly driven, and are easy to be arranged without being adversely affected by other components. , such as interference in the arrangement space.
  • the main body portion of the front axle 2100 and the main body portion of the rear axle 2200 are mounted in a manner similar to the prior art integrated crankshaft mounting, where no longer Narration.
  • the carrier 2110, the sun gear 2310, the planet wheels 2320, and the fixed wheel 2330 are all disposed in the auxiliary cavity 1200, wherein the rear end of the speed increasing portion 2300 is limited by the above-described stepped shaft shoulder 2201, and the rear end of the fixed wheel 2330 Abutting against the partition wall 1300, the front end of the speed increasing portion 2300 is restrained by the carrier 2110 on the front end cover 1400, thereby maintaining the compactness of the speed increasing portion 2300 in the axial direction, which can be at the crankshaft 2000.
  • the gear ratio is effectively increased.
  • a first shaft seal 8001 is disposed between the barrier wall 1300 and the crankshaft 2000, and a gap between the barrier wall 1300 and the crankshaft 2000 is also provided.
  • the first circlip 8002 is axially positioned to the first shaft seal 8001.
  • the first shaft seal 8001 and the first snap spring 8002 are disposed between the barrier wall 1300 and the rear axle 2200.
  • the crankshaft 2000 is set as a split structure, and the speed increasing portion 2300 is added to improve the transmission efficiency, and the transmission ratio is effectively increased and the compressor row is reduced in the case where the axial dimension does not increase much. Quantity requirements.
  • the planetary gear mechanism is used as the speed increasing portion, the transmission is stable, and different gear ratios can be designed, which is reliable in operation and high in stability.
  • another driving mode of the dual drive compressor provided by the present disclosure is electrically driven by a motor assembly 5000 disposed in the casing assembly 1000, wherein the motor assembly 5000 includes a total positioning of the casing.
  • a stator assembly 5100 having an inner wall of 1000 and a rotor assembly 5200 mounted on the crankshaft 2000, wherein as shown in FIG. 3, the stator assembly 5100 can be positioned by a stepped surface 1001 formed on an inner wall of the casing assembly 1000, the rotor assembly The 5200 drives the crankshaft 1000 to rotate after being energized, thereby driving the scroll assembly 3000 to complete the compression of the refrigerant.
  • the electronic control assembly 6000 converts the direct current flowing from the high voltage harness into an alternating current into the stator assembly 5100, and the stator assembly A varying magnetic field is formed in the 5100, and the rotor assembly 5200 located inside the stator assembly 5100 drives the crankshaft 2000 to rotate together under the action of a magnetic field.
  • the motor assembly 5000 does not operate when the compressor is in the mechanical drive mode.
  • the aforementioned clutch assembly 4000 disconnects the drive line, the pulley stops providing the driving force to the crankshaft 2000, and the electronic control assembly 6000 receives the driving force switching information (specifically, may be from the entire vehicle
  • the controller's coil is powered off, and a start command is issued to the motor assembly 5000 to initiate the electric drive mode.
  • the motor assembly 5000 is stopped, and the information is transmitted to the vehicle controller by the electronic control assembly 6000, and the vehicle controller issues an instruction to enable the mechanical drive mode.
  • the dual drive compressor may include a resolver 7000 mounted on the crankshaft 2000,
  • the resolver 7000 is electrically connected to the electronic control assembly 6000 for transmitting the rotational speed signal of the crankshaft 2000 to the electronic control assembly 6000 or the vehicle controller when the driving mode is switched, so that the mode switching is smooth and the compressor works smoothly.
  • the resolver 7000 can be mounted on the rear axle 2200, the following resolver 7000 and the crankshaft.
  • the cooperation of 2000 means that the spinning 7000 is matched with the rear axle 2200.
  • the resolver 7000 includes a resolver stator 7100, a resolver rotor 7200 mounted on the crankshaft 2000 that is rotatable with the crankshaft 2000, and a connection to the resolver stator 7100.
  • the revolving wire harness 7300 and the revolving wire harness 7300 are electrically connected to the electric control assembly 6000 to realize signal interaction.
  • a through hole is formed in the casing assembly 1000, and the through hole connects the resolver 7000 and the electronic control assembly 6000, and connects the motor assembly 5000 and the electronic control assembly 6000.
  • a screw-type wiring hole 1002 and a motor wiring hole 1003 are formed in the casing assembly 1000.
  • the resolver 7000 is placed close to the motor assembly 5000 such that the resolver 7000 and the motor assembly 5000 are placed in an area within the casing assembly 1000 during wiring to facilitate the lead.
  • the resolver rotor 7200 is sleeved on the crankshaft 2000, and the resolver stator 7100 is formed on the outer circumference of the resolver rotor 7200.
  • the casing assembly 1000 is provided with a support plate 1500 sleeved on the crankshaft 2000.
  • a first stepped surface 1510 is formed on the inner peripheral surface of the disk 1500 to position the resolver stator 7100.
  • the first stepped surface 1510 may be formed on the front end surface of the support disk 1500, and the outer periphery of the rotary stator 7100 is provided with a first flange 7110 to be abutted on the first stepped surface 1510.
  • the pick-and-place from the end can facilitate the disassembly and assembly of the slewing assembly 7000, and quickly disassemble the slewing assembly 7000 without moving the support 1500, thereby improving work efficiency.
  • the support plate 1500 can be adapted to the specific structural design of the crankshaft 2000.
  • the rear end of the support plate 1500 is recessed to form a hollow region, and the movable plate 3200 and the crankshaft 2000 are The mating portion is disposed in the hollow region to save axial dimension.
  • the support plate 1500 can be mounted on the crankshaft 2000 through the first bearing 8003.
  • the rear end of the first bearing 8003 abuts against the second stepped surface 2001 on the crankshaft 2000 for rear positioning.
  • the first bearing 8003 The front end abuts against the inwardly projecting annular wall 1520 of the support disk 1500 for front positioning.
  • the annular wall 1520 extends radially to the crankshaft 2000, and a second oil seal 8004 is disposed between the annular wall 1520 and the crankshaft 2000 to prevent liquid leakage and is disposed between the annular wall 1520 and the crankshaft 2000.
  • a second retaining spring 8005 for axially positioning the second shaft seal 8004.
  • a circlip spring 8007 sleeved on the crankshaft 2000 may be disposed at the front end surface of the first bearing 8003. The circlip spring 8007 is engaged with the crankshaft 2000 to further limit the first bearing 8003.
  • the rear end of the support disk 1500 is formed with a second flange 1530, and the outer periphery of the second flange 1530 abuts against the inner wall of the casing assembly 1000, thereby vortexing
  • the disk assembly 3000 is isolated from the body portion of the crankshaft 2000 to define the aforementioned compression chamber region.
  • the second flange 1530 of the support disk 1500 can be secured to the static disk 3100 by a first bolt 8006 to increase the compactness of the device.
  • the dual-drive compressor When the dual-drive compressor is in the mechanical drive mode, its speed is determined by the engine speed, and the engine supplies power to the vehicle while working. After the power is sufficient, the electronic control assembly 6000 will receive a command to switch to the electric drive mode, and immediately send a request signal to the dual drive compressor, the coil 4100 is powered off, and the pulley 4300 and the drive plate 4200 are separated.
  • the crankshaft 2000 continues to operate due to inertia.
  • the motor assembly 5000 receives the start command, it needs to know the spatial phase angle of the rotor assembly 5200 and the stator assembly 5100 to correctly give the starting angle for the stator assembly. Power on the 5100.
  • the resolver 7000 can read the current rotational speed and spatial angle of the crankshaft 2000 in real time, and feed back to the electronic control assembly 6000.
  • the electronic control assembly 6000 gives the stator coil of the correct phase of the motor assembly 5000.
  • the power is turned on, the corresponding starting current and starting angle are input, and the mechanical driving mode to the electric driving mode is switched.
  • the dual drive compressor When the dual drive compressor is in the electric drive mode, its speed is determined by the electronic control assembly 6000.
  • the electronic control assembly 6000 When the whole vehicle is feeding, the electronic control assembly 6000 will receive the command to switch to the mechanical drive mode, and immediately send a request signal to the dual drive compressor, the compressor disconnects the high voltage, and the cyclone 7000 reads the current crankshaft 2000. The speed is fed back to the electronic control assembly 6000.
  • the electronic control assembly 6000 reads the engine speed.
  • the engine speed is controlled by the vehicle controller to match the speed of the crankshaft 2000.
  • the coil of the compressor clutch assembly 4000 The 4100 is powered up to engage the pulley 4300 and the drive plate 4200 to complete the switching from the electric drive mode to the mechanical drive mode.
  • the two drive modes switch to each other, reducing The speed mismatch does not match the impact of the compressor, and the operation is more stable.
  • the electronic control assembly 6000 is an indispensable component, and the electronic control assembly 6000 is electrically connected to the vehicle controller, and the two drive modes are mutually switched by the signal interaction with the vehicle controller.
  • the electronic control assembly 6000 generally refers to the whole of all electronic components integrated into an electric control box, and also includes the electric control box itself.
  • the connection of the electronic control assembly 6000 mainly involves electrical connection and physical connection, wherein the physical connection is mainly Refers to the connection between the shells.
  • the electronic control assembly 6000 is detachably mounted outside the casing assembly 1000, and between the electronic control assembly 6000 and the motor assembly 5000. Electrical connection is made via pluggable electrical connectors. That is, in the present embodiment, in the physical connection portion, the electronic control assembly 6000 and the casing assembly 1000 can be disassembled by bolt fastening or the like. As shown in FIG. 12, the outer side of the electronically controlled housing 6100 may be provided with fasteners 8015 at intervals to secure the housing assembly 1000 and the electronic control assembly 6000. The electrical connection can be made via pluggable electrical connectors. In this way, the utility model has the advantages of high interchangeability and convenient disassembly and assembly.
  • the electronic control assembly 6000 fails, the electronic control housing 6100 only needs to be disassembled and repaired from the compressor, and the main body portion of the compressor is not affected; When the control assembly 6000 fails, it only needs to replace the 6000 part of the electronic control assembly, which saves the after-sales cost.
  • the electronic control assembly 6000 includes an electronically controlled housing 6100 and a control component housed in the electronically controlled housing 6100.
  • the electronically controlled housing 6100 is positively coupled to the outside of the housing assembly 1000, wherein the shape fit refers to The shape of the mating surface of the electronically controlled outer casing 6100 and the casing assembly 1000 correspond to each other, so that the overall structure of the compressor is compact.
  • the thickness of the two side walls of the electronically controlled casing 6100 in FIG. 2 is different, that is, to adapt to the casing.
  • the electronic control housing 6100 includes a first base 6110 and a first cover 6120.
  • a first sealing gasket is disposed between the first base 6110 and the first cover 6120, and the electronic control housing 6100 is further disposed.
  • the low voltage wiring port 6101 and the high voltage wiring port 6102, the low voltage wiring port 6101 is used for connecting with the vehicle controller, and the high voltage wiring port 6102 is for receiving high voltage power, and then supplying power to the motor assembly 5000.
  • the electrical connector of the electronic control assembly 6000 may include a three-phase connector 6001.
  • the electrical connector of the motor assembly 5000 may include a corresponding three-phase terminal 5001, a three-phase terminal 5001 and a three-phase connector 6001. Plug and play connection.
  • the control element comprises an electronically controlled printed circuit board (PCB).
  • the control circuit is formed on the electronic control PCB.
  • the three-phase connector 6001 is fixedly connected to the electronic control PCB and extends outward through the electronic control housing 6100. Out, for use with the three-phase terminal 5001.
  • a motor wiring hole 1003 is disposed on the casing assembly, and a three-phase terminal 5001 protrudes from the motor wiring hole 1003 for mating with the three-phase connector 6001, the three-phase connector 6001 and the three-phase Terminal After the 5001 is plugged in, it can be connected to the circuit on the PCB's electronic control board.
  • the three-phase terminal 5001 penetrates the outer wall of the casing assembly 1000, and the fixed form thereof can be realized by various embodiments.
  • the three-phase terminal 5001 includes a first mounting disk 5001a embedded in the motor wiring hole 1003, and three first pins 5001b inserted in the first mounting disk 5001a.
  • the stator assembly 5100 in the motor assembly 5000 is connected to the first pin 5001b by twisting.
  • the three-phase connector 6001 includes a first female terminal 6001a that can wrap the first pin 5001b in an interference fit, and the first female terminal 6001a can be soldered through the first pin 6001b.
  • the electronic control PCB On the electronic control PCB.
  • a third stepped surface 1003a is formed on the motor connecting hole 1003.
  • One end of the first mounting plate 5001a abuts on the third stepped surface 1003a, and the other end passes through a third circlip spring 8008 fixed on the casing assembly 1000.
  • the third retaining spring 8008 is disposed in an interference fit on the inner wall of the motor wiring hole 1003.
  • a first first mounting disc 5001a and the motor wiring hole 1003 may be disposed first. Seal 8009 to prevent leakage of liquid.
  • a second sealing ring 8010 is disposed between the electronically controlled housing 6100 and the housing assembly 1000 corresponding to the motor wiring hole 1003 to prevent external moisture from entering and affecting electrical performance.
  • a first sleeve disposed on the first pin 5001b is disposed between the first pin 5001b and the first mounting pad 5001a.
  • the insulator 5001c; a portion of the first lead 5001b protruding from the first mounting plate 5001a is sleeved with a second insulator 5001d; and a portion of the first pin 5001b inserted into the casing assembly 1000 is sleeved with a third insulator 5001e.
  • Each of the first insulator 5001c, the second insulator 5001d, and the third insulator 5001e may be made of a material such as glass, ceramic, or silica gel.
  • the outer side of the electronically controlled housing 6100 corresponds to the position of the low pressure chamber of the dual drive compressor covered with the layer of thermally conductive material 8011, that is, the position of the first base 6110 in contact with the cabinet assembly 1000. Covered with a layer of thermal conductive material 8011, the electronic control assembly 6000 is used for rapid heat dissipation, improving work efficiency and prolonging service life.
  • the working chamber of the compressor includes a compression chamber at the working portion of the scroll assembly 3000, a back pressure chamber in the direction of the air inlet, and a high pressure chamber in the direction of the air outlet. The low pressure chamber is different from the compression.
  • the cavity, the back pressure chamber and the high pressure chamber, the low pressure chamber is mainly formed in the main body region of the crankshaft 2000, which is the region where most of the components of the compressor are located, and the low temperature and low pressure refrigerant in the low pressure chamber flows through the casing assembly 1000, Allow the electronic control assembly 6000 to dissipate heat.
  • the electrical control assembly 6000 and the revolving 7000 are also electrically connected through a pluggable electrical connector in a form similar to the electronic control assembly 6000 and the motor assembly.
  • the connection of 5000 is provided on the electronic control PCB board with a revolving connector 6002, which passes through the electronically controlled housing 6100 to be rotated by the following revolving harness 7300.
  • the variable terminal 7001 is mated.
  • the casing assembly 1000 is provided A spinning terminal 1002 is disposed through which the spinning terminal 7001 passes to be inserted and removed with the above-described resolver connector 6002.
  • the revolving terminal 7001 extends through the outer wall of the casing assembly 1000, and its fixed form can be realized by various embodiments.
  • the revolving terminal 7001 includes an in-line revolving
  • the second mounting disk 7001a in the wiring hole 1002 is inserted into the second pin 7001b in the second mounting disk 7001a, and the second pin 7001b is electrically connected to the revolving wire harness 7300, and the spinning connector 6002 and the chassis are always connected.
  • the features are matched and angularly positioned.
  • the structure of the resolver connector 6002 is as shown in Fig.
  • the second female terminal 6002a is positioned by the grip on the sheath 6002d, and the end of the second female terminal 6002a is connected by riveting the second pin 6002b or by a twisted wire.
  • the electronic control PCB board is fixed by the sealing body 6002e, and is axially positioned by the back cover 6002f having the error-proof feature, wherein the second pin 6002b can be soldered to the electronic control PCB.
  • the front cover 6002c of the resolver connector 6002 has a circular feature, and the front cover 6002c covers and fixes the front portion of the second female terminal 6002a for guiding and fixing.
  • the second female terminal 6002a can wrap the second pin 7001b with an interference fit.
  • the spinning harness 7300 can be connected to the circuit of the electronic control PCB.
  • a mating connector is further disposed on the casing assembly 1000.
  • the mating connector and the revolving connector 6002 are substantially symmetrical with respect to the second mounting disc 7001a, and the mating connector and the revolving connector are matched.
  • the structure of the 6002 is the same, and the two ends of the second pin 7001b are respectively connected to the splicing connector 6002 and the mating connector.
  • the resolver harness 7300 is connected to the mating connector by means of a twisted wire.
  • a fourth stepped surface 1002a is formed on the slewing wiring hole 1002.
  • One end of the second mounting disk 7001a abuts on the fourth stepped surface 1002a, and the other end passes through a fourth card fixed on the casing assembly 1000.
  • the fourth catcher spring 8012 is disposed in an interference fit on the inner wall of the resolver wire hole 1002.
  • a third sealing ring 8013 may be disposed between the second mounting plate 7001a and the rotating wiring hole 1002 to prevent liquid leakage.
  • a fourth sealing ring 8014 is disposed between the electronically controlled housing 6100 and the housing assembly 1000 corresponding to the position of the rotating wiring hole 1002 to prevent external moisture from entering and affecting electrical performance.
  • the shoulder 6002g of the mating connector is abutted against the fifth stepped surface 1002b of the casing assembly 1000 to further position the mating connector and prevent the component from falling into the interior of the casing assembly 1000.
  • a fourth sleeve disposed on the second pin 7001b is disposed between the first pin 7001b and the second mounting pad 7001a.
  • the insulator 7001c and the fourth insulator 7001c may be made of a material such as glass, ceramic or silica gel.
  • the electronic control assembly 6000 includes a second base 6210, a second cover 6220, and smart power.
  • a second gasket 8017 is disposed between the module (IPM) 6400, the second base 6210 and the second cover 6220 to prevent moisture from entering outside the electronic control assembly 6000.
  • the electronic control assembly 6000 is also provided with a high voltage terminal 6201, a low voltage terminal 6202 and a three-phase plug.
  • the column 6203, the high voltage terminal 6201 is for receiving high voltage power
  • the low voltage terminal 6202 is for connecting with the vehicle controller
  • the three phase plug column 6203 is for connecting with the motor assembly 5000.
  • the second base 6210 When assembled, the second base 6210 is disposed in abutment with the casing assembly 1000. As shown in FIG. 19, the second base 6210 is recessed inwardly to form a cooling chamber 6300. The outer side of the cooling chamber 6300 is correspondingly provided with a pressure plate 6500. In order to form the cooling chamber 6300 into a closed chamber, the pressure plate 6500 is disposed to fit the bottom surface 6310 of the second base 6210. Further, as shown in FIG. 18, a refrigerant inlet 6510 and a refrigerant outlet 6520 are opened in the pressure plate 6500 to input and output refrigerant.
  • the mounting surface 6410 of the IPM 6400 is placed against the bottom surface 6310 of the cooling chamber 6300, and the refrigerant flows through the cooling chamber 6300 to cool the IPM 6400.
  • there is only one wall between the mounting surface 6410 and the refrigerant that is, only the wall of the cooling chamber 6300 adjacent to the inner side of the electronic control assembly 6000, which is separated from the prior art by two walls (ie, the second base 6210).
  • the wall and the wall of the casing assembly 1000) enhance the cooling effect.
  • the baffles 6320 perpendicular to the bottom surface 6310 of the cooling chamber 6300 may be disposed at intervals in a disk-folding manner, and one end of the baffle 6320 is connected to the side of the cooling chamber 6300.
  • the wall has a gap between the other end and the pair of side walls.
  • the end surface of the second base 6210 surrounding the cooling chamber 6300 is provided with a sealing groove 6211.
  • the sealing groove 6211 is provided with a fifth sealing ring 8016.
  • the fifth sealing ring 8016 is disposed on the pressing plate. Between the 6500 and the second base 6210 to prevent leakage of liquid.
  • a heat dissipation plate 6600 is disposed on the pressure plate 6500 to improve the heat dissipation effect, and the heat dissipation plate 6600 may be disposed between the pressure plate 6500 and the second base 6210.
  • the heat dissipation plate 6600 may be a finned heat dissipation plate to further improve the heat dissipation effect.
  • the fin structure refers to increasing the thermal conductivity of the metal sheet on the surface of the heat exchange device requiring heat transfer. The heat exchange surface area of the large heat exchange device.

Abstract

一种压缩机,具有机壳总成(1000),位于该机壳总成(1000)内的曲轴(2000),以及连接到曲轴(2000)的离合器总成(4000),曲轴(2000)包括同轴连接的前轴(2100)和后轴(2200),前轴(2100)和后轴(2200)之间设有增速部(2300),以使后轴(2200)的转速大于前轴(2100)的转速。由于前轴(2100)随离合器总成(4000)的皮带轮(4300)同步转动,在皮带轮(4300)转速不变的情况下,使得后轴(2200)的转速提升,从而提高压缩机的工作效率。

Description

压缩机 技术领域
本公开涉及汽车空调领域,具体地,涉及一种压缩机。
背景技术
随着新能源汽车产业的发展,混合动力车的应用越来越广泛,在混合动力车的使用中,汽车在纯电行驶模式下电池电量被消耗,当车辆馈电时,剩余电量无法提供给电动空调压缩机,空调系统无法正常工作,车内环境舒适性变差。此外,传统燃油压缩机的润滑效果差,润滑油路只能依靠冷媒携带的少许冷冻油,以气液两相形式回到压缩机,运转机构的耐久性能不好。
发明内容
本公开的目的是提供一种压缩机,该压缩机可以提高曲轴与发动机主动轮之间的传动比,提高压缩机的工作效率。
为了实现上述目的,本公开提供一种压缩机,包括机壳总成,位于该机壳总成内的曲轴,以及连接到所述曲轴的离合器总成,所述曲轴包括同轴连接的前轴和后轴,所述前轴和后轴之间设有增速部,以使所述后轴的转速大于前轴的转速。
在一些实施例中,所述增速部为行星轮机构。
在一些实施例中,所述增速部包括设置在所述后轴的前端且随所述后轴旋转的太阳轮,设置在所述前轴的后端且随所述前轴旋转的行星轮,所述行星轮的齿与所述太阳轮的齿配合,并且所述行星轮绕所述太阳轮旋转,所述行星轮的外侧还设有固定轮,所述固定轮的齿与所述行星轮的齿配合,所述固定轮固定在所述机壳总成的内壁。
在一些实施例中,所述太阳轮、行星轮和固定轮均为斜齿轮。
在一些实施例中,所述前轴的后端形成有行星架,所述行星架沿周向间隔地均匀布设有偏心销,所述行星轮安装在所述偏心销上。
在一些实施例中,所述偏心销为3个。
在一些实施例中,所述行星架包括中心盘,和沿所述中心盘的径向方向向外凸出且沿周向间隔的安装盘,所述偏心销设置在所述安装盘上。
在一些实施例中,所述中心盘的位于相邻所述安装盘之间的外轮廓形成为内凹的圆弧,每个所述安装盘的外轮廓形成为外凸的圆弧,所述内凹的圆弧和外凸的圆弧之间进行圆角过渡。
在一些实施例中,所述行星架上设有对应于所述偏心销的通孔,所述偏心销过盈装配到所述通孔中。
在一些实施例中,所述偏心销与所述行星架一体成型。
在一些实施例中,所述后轴的前端形成为轴径减小的阶梯轴,所述太阳轮套设在所述后轴的前端,并且所述太阳轮的后端抵顶在所述阶梯轴的轴肩。
在一些实施例中,所述机壳总成的内部通过套设在所述曲轴上的隔挡壁分隔为沿轴向分布的主腔和辅腔,所述辅腔限定在所述机壳总成的前端盖和所述隔挡壁之间,所述前轴位于所述离合器总成中,所述增速部位于所述辅腔中,所述后轴位于所述主腔中。
在一些实施例中,所述隔挡壁和曲轴之间设置有轴封。
在一些实施例中,所述隔挡壁和曲轴之间还设置有卡簧。
在一些实施例中,该压缩机为双驱动压缩机,所述压缩机还包括位于所述机壳总成内部的涡旋盘总成、电机总成,安装在所述机壳总成外部的电控总成,所述曲轴上安装有旋变,该旋变与所述电控总成电连接。
在一些实施例中,所述旋变安装在所述后轴上。
在一些实施例中,所述旋变包括旋变定子,可随所述曲轴转动的旋变转子,以及连接在所述旋变定子上的旋变线束,所述旋变线束与所述电控总成电连接。
在一些实施例中,所述机壳总成上开设有用于使所述旋变线束与电控总成连接的旋变接线孔。
在一些实施例中,所述旋变转子套设在所述曲轴上,所述旋变定子形成在所述旋变转子的外周,所述机壳总成中设置有套设在所述曲轴上的支撑盘,该支撑盘的内周面形成有台阶面,以定位所述旋变定子。
在一些实施例中,所述台阶面形成在所述支撑盘的前端面,所述旋变定子的外周设有凸缘以抵顶在所述台阶面上。
在一些实施例中,所述电控总成可拆卸地安装在所述机壳总成的外侧,并且所述电控总成与所述电机总成之间通过可插拔的电接头实现电连接。
在一些实施例中,所述电控总成包括电控外壳和容纳在所述电控外壳中的控制元件,所述电控外壳形状配合地连接在所述机壳总成的外侧。
在一些实施例中,所述电控总成的电接头包括三相插接件,所述电机总成的电接头 包括三相接线柱,所述三相接线柱与所述三相接插件可插拔地连接。
在一些实施例中,所述控制元件包括电控印刷电路板(PCB)板,所述三相插接件连接到所述电控PCB板上并穿过所述电控外壳向外伸出。
在一些实施例中,所述机壳总成上设置有电机接线孔,所述三相接线柱从该电机接线孔中伸出,所述三相接线柱与所述电机总成电连接。
在一些实施例中,所述电控总成与所述旋变之间通过可插拔的电接头实现电连接。
在一些实施例中,所述控制元件包括电控PCB电路板,所述电控PCB板上设有旋变插接件,该旋变插接件穿过所述电控外壳。
在一些实施例中,所述机壳总成上设置有旋变接线柱,所述旋变接线柱与所述旋变线束电连接,所述旋变接线柱与所述旋变插接件可插拔地连接。
在一些实施例中,所述电控外壳的外侧间隔地设有紧固件,以固定所述机壳总成和电控总成。
在一些实施例中,所述电控外壳包括第一底座和第一盖板,所述第一底座和第一盖板之间设有第一密封垫片,所述电控外壳上还设有低压接线口和高压接线口。
在一些实施例中,所述第一底座的与所述机壳总成接触的位置覆盖有导热材料层。
在一些实施例中,所述电控总成包括第二底座,第二盖板和智能功率模块(IPM),所述第二底座的底部向内凹陷形成有冷却室,该冷却室的外侧设有压板,所述IPM的安装面贴合所述冷却室的底面设置,冷媒流经所述冷却室以冷却所述IPM。
在一些实施例中,所述冷却室中,以盘折的方式间隔布设有垂直于所述冷却室的底面的导流板,所述导流板的一端连接在所述冷却室的侧壁,另一端与所述侧壁的对侧壁留有空隙。
在一些实施例中,所述压板上开设有冷媒入口和冷媒出口。
在一些实施例中,所述第二底座上环绕所述冷却室设置有密封槽,所述密封槽内设置有密封圈,所述密封圈设置在所述压板和第二底座之间。
在一些实施例中,所述压板上贴合设置有散热板。
通过上述技术方案,将压缩机的曲轴设置为具有前轴和后轴的分体设计,并在前轴和后轴之间设计增速部,由于前轴随离合器的皮带轮同步转动,在皮带轮转速不变的情况下,使得后轴的转速提升,从而提高压缩机的工作效率。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开的一个实施方式的双驱动压缩机的主视图;
图2是图1中双驱动压缩机沿A-A线剖切后的剖面视图;
图3是根据本公开的另一个实施方式的双驱动压缩机的结构示意图;
图4是图3中T部分的局部放大图,其中视图旋转90度;
图5是图4中部分沿B-B线剖切后的剖面视图;
图6是根据本公开的一个实施方式的前轴的结构示意图;
图7是根据本公开的一个实施方式的行星架的结构示意图;
图8是根据本公开的一个实施方式的旋变的结构示意图;
图9是图8中旋变沿C-C线剖切后的剖面图;
图10是根据本公开的一个实施方式的机壳总成的结构示意图;
图11是根据本公开的一个实施方式的支撑盘与曲轴的装配示意图;
图12是根据本公开的一个实施方式的电控总成的结构示意图;
图13是根据本公开的一个实施方式的电控总成与机壳总成的连接示意图;
图14是图13中P部分的局部放大图;
图15是根据本公开的另一个实施方式的电控总成与机壳总成的连接示意图;
图16a是图15中Q部分的局部放大图;
图16b是根据本公开的一个实施方式的旋变插接件的爆炸图;
图17是根据本公开的另一个实施方式的的电控总成的主视图;
图18是图17中的电控总成的左视图;
图19是图17中的电控总成的右侧剖视图;
图20是图17中的电控总成的后视图,其中示出冷却室的内部结构;
图21是图17中的电控总成的左视图,其中未示出盖板、冷媒入口和冷媒出口。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,为了描述的方便,使用的方位词如“前、后”是公开人根据特定的结构定义的,例如,就曲轴而言,在其轴向方向上,与离合器总成连接的一端为前,相反一端为后;“内、外”则一般是针对相应零部件的本身轮廓而 言的。
本公开提供一种压缩机,尤其是一种双驱动压缩机,下面结合图1和图2首先介绍双驱动压缩机的基本结构和工作原理。
如图1和图2所示,双驱动压缩机包括机壳总成1000,位于该机壳总成1000内部的曲轴2000、涡旋盘总成3000和电机总成5000,安装在该机壳总成1000外部的电控总成6000,以及连接到曲轴2000的离合器总成4000。这里需要说明的是,例如图2所示,曲轴2000位于机壳总成1000的内部指的是曲轴2000的主体部分位于机壳总成1000的内部,该曲轴2000伸出机壳总成1000的部分与离合器总成4000连接。
本公开中的双驱动压缩机是以涡旋式压缩机为例。在这种压缩机中,涡旋盘总成3000包括静盘3100和动盘3200。压缩机在工作中,曲轴2000旋转带动动盘3200做偏心运动,在偏心转动下,动盘型线和静盘型线形成容积逐渐减小的月牙腔(即涡旋式压缩机的压缩腔),从进气口进入到压缩腔的冷媒在这个过程中不断被压缩,最终形成的高温高压气体从排气口排出,从而完成对冷媒的压缩作用。
本公开提供的双驱动压缩机中,曲轴2000既可以由电机总成5000驱动,即电驱动模式,也可以由离合器总成4000传递驱动力,即机械驱动模式。下面首先对机械驱动模式的结构、原理及改进进行详细说明。
机械驱动模式
如图3所示,离合器总成4000主要包括皮带轮4300、线圈4100和驱动盘4200。皮带轮4300通过轴承可自由转动地安装在机壳总成1000的前端盖1400上。驱动盘4200可同步转动地连接到曲轴2000上。在工作时,离合器总成4000中的线圈4100通电产生电磁吸力,使皮带轮4300和驱动盘4200接合,从而皮带轮4300可以带动曲轴2000旋转,驱动压缩机工作。皮带轮4300通过与车辆发动机主动轮连接产生驱动力,在机械驱动模式下的双驱动压缩机,与传统的机械压缩机驱动模式相同,其具体的驱动形式为本领域普通技术人员所熟知,此处不做具体描述。
本公开提供的曲轴2000采用机械驱动模式时,为提高工作效率,如图3所示,曲轴2000可以包括同轴连接的前轴2100和后轴2200,前轴2100和后轴2200之间可以设有增速部2300,以使后轴2200的转速大于前轴2100的转速,这样,可以提高后轴2200与发动机主动轮的传动比。即相较于现有技术中的整体式曲轴,在发动机输出一定的扭矩时,用于驱动涡旋盘总成3000的后轴2200的转速提高,可以减小发动机对控制器电器元件的耐电压、耐电流能力要求,并且提高压缩机工作效率,发挥涡旋式压缩机高速 高效率的优点。
增速部2300可以通过多种形式实现,作为一种实施方式,本公开中使用行星轮机构进行传动,适于配合轴系,并且行星轮机构具有结构紧凑、体积小、质量小、承载能力大、传递功率范围及传动范围大、运行噪声小、效率高及寿命长等诸多优点。
如图3至图5所示,增速部2300包括设置在后轴2200的前端且随后轴2200旋转的太阳轮2310,设置在前轴2100的后端且随前轴2100旋转的行星轮2320。行星轮2320的齿与所述太阳轮2310的齿配合,并且行星轮2320绕所述太阳轮2310旋转。行星轮2320的外侧还设有固定轮2330,固定轮2330的齿与行星轮2320的齿配合,固定轮2330固定在机壳总成1000的内壁。在行星轮系相互配合传动时,固定轮2330固定,太阳轮2310自转的转速大于行星轮2320绕太阳轮2310的转速,从而达到增速的目的。即压缩机在通过离合器总成4000驱动时,首先将扭矩传递至前轴2100上,前轴2100旋转并通过行星轮系增速,将扭矩传递至后轴2200,从而驱动涡旋盘总成3000。这里,可以调整行星轮机构齿轮的齿数,以获得多种传动比。为减小冲击和负载变化的影响,太阳轮2310、行星轮2320和固定轮2330可以均为斜齿轮,使得传动更加平稳,能够提高齿轮的承载能力。
图6示出了本公开的一个实施方式中的前轴2100的结构示意图,其中在前轴2100的后端形成有行星架2110,该行星架2110沿周向间隔地均匀布设有偏心销2120,该偏心销2120朝向后轴2200,行星轮2320安装在偏心销2120上。偏心销2120可以与行星架2110一体成型,保持结构的紧凑性;也可以在行星架2110上限定对应于偏心销2120的通孔,偏心销2120过盈装配地插入到该通孔中,这样可以降低行星架2110的制造难度,零件的可替换性强。
如图5至图7所示,偏心销2120可以为3个,可以保证行星轮机构的受力稳定性,相应地,行星轮2320也为3个。为减轻质量,减小转动惯量,行星架2110可以做减重处理,具体地,如图5和图7所示,行星架2110可以包括中心盘2111和沿中心盘2111的径向向外凸出且沿周向间隔的安装盘2112,偏心销2120设置在安装盘2112上。中心盘2111的位于相邻安装盘2112之间的外轮廓可以为内凹的圆弧。每个安装盘2112的外轮廓可以为为外凸的圆弧。内凹的圆弧和外凸的圆弧之间可以进行圆角过渡,以避免应力集中。通过这种方式,不仅可以达到行星架2110减重的目的,而且可以满足其强度要求。
如图3和图4所示,后轴2200的前端可以为轴径减小的阶梯轴,太阳轮2310套设在后轴2200的前端,即上述阶梯轴的小径段2210,并且太阳轮2310的后端抵顶在上述 阶梯轴的轴肩2201处,以使太阳轮2310定位。
如图3所示,机壳总成1000的内部通过套设在后轴2200上的隔挡壁1300分隔为沿轴向分布的主腔1100和辅腔1200,其中隔挡壁1300形成于机壳总成1000的内壁,结构稳固。辅腔1200限定在机壳总成1000的前端盖1400和隔挡壁1300之间。前轴2100位于离合器总成4000中,增速部2300位于辅腔1200中,后轴2200位于主腔1100中。即本公开中,通过隔挡壁1300的设置将增速部2300单独布置在一个空间内,即辅腔1200中,使得增速部的零件传动平稳,便于布置,不受其他零部件的不利影响,如布置空间上的干涉。
在图3和图4示出的使用行星轮机构的实施方式中,前轴2100的主体部分以及后轴2200的主体部分的安装方式类似于现有技术中整体式曲轴的安装,此处不再赘述。行星架2110、太阳轮2310、行星轮2320以及固定轮2330均设置在辅腔1200中,其中增速部2300的后端由上述的阶梯轴的轴肩2201限位,并且固定轮2330的后端抵顶在隔挡壁1300上,增速部2300的前端通过行星架2110抵顶在前端盖1400上而限位,这样,保持了增速部2300在轴向的紧凑性,可以在曲轴2000的轴向尺寸增加不多的情况下,有效地提高传动比。
进一步地,为保证隔挡壁1300与曲轴2000之间的密封性,在隔挡壁1300和曲轴2000之间设置有第一轴封8001,并且在隔挡壁1300和曲轴2000之间还设置有第一卡簧8002,以对第一轴封8001进行轴向定位。在图3及图4示出的实施方式中,第一轴封8001及第一卡簧8002设置在隔挡壁1300和后轴2200之间。
综上,本公开中,将曲轴2000设置为分体式结构,并增加增速部2300,提高传动效率,在轴向尺寸增加不多的情况下,有效地提高传动比,减小对压缩机排量的要求。另外,在使用行星轮机构作为增速部时,传动稳定,可以设计不同的传动比,工作可靠,稳定性高。
电驱动模式
如图3所示,本公开提供的双驱动压缩机的另一种驱动模式是通过设置在机壳总成1000中的电机总成5000进行电力驱动,其中电机总成5000包括定位在机壳总成1000内壁的定子总成5100和安装在曲轴2000上的转子总成5200,其中如图3所示,定子总成5100可以通过形成在机壳总成1000内壁的台阶面1001定位,转子总成5200在通电后带动曲轴1000旋转,从而驱动涡旋盘总成3000,完成对冷媒的压缩作用。具体地,电控总成6000将从高压线束流入的直流电转变为交流电流入到定子总成5100,定子总成 5100中形成变化的磁场,位于定子总成5100内侧的转子总成5200在磁场的作用下驱动曲轴2000一同转动。
机械驱动模式和电驱动模式之间的模式切换
在压缩机处于机械驱动模式时,电机总成5000不工作。当由机械驱动模式切换至电驱动模式时,前述的离合器总成4000断开驱动线路,皮带轮停止向曲轴2000提供驱动力,电控总成6000接收到驱动力切换信息(具体可以为来自整车控制器的线圈断电的信息),向电机总成5000发出启动指令,从而启动电驱动模式。同样地,在由电驱动模式向机械驱动模式切换时,电机总成5000停止工作,并由电控总成6000将该信息传递至整车控制器,整车控制器发出指令启用机械驱动模式。
为了提高驱动力切换过程中曲轴2000的平稳转动,减小转速不匹配给电机和离合器总成带来的冲击,在本公开中,双驱动压缩机可以包括安装在曲轴2000上的旋变7000,该旋变7000与电控总成6000电连接,用于在驱动模式切换时将曲轴2000的转速信号发送给电控总成6000或者整车控制器,使模式切换顺畅,压缩机工作平稳。如图3所示,由于涡旋盘总成3000由后轴2200驱动,并且后轴2200形成为曲轴2000的主体,故旋变7000可以安装在后轴2200上,下述的旋变7000与曲轴2000的配合均是指旋变7000与后轴2200配合。
如图2、图3、图8和图9所示,旋变7000包括旋变定子7100,安装在曲轴2000上的可随曲轴2000转动的旋变转子7200,以及连接在旋变定子7100上的旋变线束7300,旋变线束7300与电控总成6000电连接,实现信号交互。
机壳总成1000上开设有通孔,通孔使旋变7000和电控总成6000连通,以及使电机总成5000和电控总成6000连通。为了避免导线互相干涉,如图10所示,在机壳总成1000上开设旋变接线孔1002和电机接线孔1003。此外,在安装旋变7000时,旋变7000靠近电机总成5000设置,这样使得旋变7000和电机总成5000在接线时线束布置在机壳总成1000内的一个区域内,方便引线。
如图2所示,旋变转子7200套设在曲轴2000上,旋变定子7100形成在旋变转子7200的外周,机壳总成1000中设置有套设在曲轴2000上支撑盘1500,该支撑盘1500的内周面形成有第一台阶面1510,以定位旋变定子7100。如图2、图9和图11所示,第一台阶面1510可以形成在支撑盘1500的前端面,旋变定子7100的外周设有第一凸缘7110以抵顶在第一台阶面1510上,从端部取放可以使得旋变总成7000的拆装方便,在不需要移动支撑盘1500的情况下快速地拆装旋变总成7000,提高工作效率。
这里,支撑盘1500可以适应于曲轴2000的具体结构设计,例如在图2和图3示出的实施方式中,支撑盘1500的后端采用凹陷设计,形成中空区域,动盘3200与曲轴2000的配合处设置在该中空区域中,节省轴向尺寸。
如图11所示,支撑盘1500可以通过第一轴承8003安装在曲轴2000上,第一轴承8003的后端抵顶在曲轴2000上的第二台阶面2001上以进行后定位,第一轴承8003的前端抵顶在支撑盘1500的向内凸出的环形壁1520上以进行前定位。
如图11所示,环形壁1520沿径向延伸至曲轴2000上,在环形壁1520和曲轴2000之间设置有第二油封8004以防止液体泄漏,并且在环形壁1520和曲轴2000之间还设置有用于对第二轴封8004沿轴向定位的第二卡簧8005。此外,在第一轴承8003的前端面处还可以设置有套设在曲轴2000上的卡簧8007,卡簧8007与曲轴2000卡接,以对第一轴承8003进一步限位。
此外,如图2、图3和图11所示,支撑盘1500的后端形成有第二凸缘1530,第二凸缘1530的外周抵顶在机壳总成1000的内壁,从而将涡旋盘总成3000与曲轴2000主体部分隔离,进而限定出前述的压缩腔区域。如图2、图3和图11所示,支撑盘1500的第二凸缘1530可以通过第一螺栓8006紧固在静盘3100上,提高装置的紧凑性。
下面结合图2简要描述旋变7000的工作原理。
当双驱动压缩机处于机械驱动模式时,其转速由发动机转速决定,发动机边工作边给整车供电。电量充足后,电控总成6000将收到切换至电驱动模式指令,并立即向双驱动压缩机发送请求信号,线圈4100断电,皮带轮4300和驱动盘4200分离。
在切换瞬间,曲轴2000由于惯性继续运转,电机总成5000在接收到启动指令时,需要知道转子总成5200和定子总成5100的空间相位角度,才能正确的给出启动角度,供定子总成5100上电。此时,旋变7000能实时读取曲轴2000的当前转速和空间角度,并反馈给电控总成6000,电控总成6000接受到该信息后,给电机总成5000的正确相位的定子线圈通电,输入对应的启动电流和启动角度,完成机械驱动模式到电驱动模式的切换。
当双驱动压缩机处于电驱动模式时,其转速由电控总成6000决定。整车馈电时,电控总成6000将收到切换至机械驱动模式指令,并立即向双驱动压缩机发送请求信号,压缩机断开高压电,旋变7000读取到当前曲轴2000的转速并反馈给电控总成6000,电控总成6000读取发动机转速,由整车控制器控制发动机转速与曲轴2000的转速匹配,当达到同步转速时,压缩机离合器总成4000中的线圈4100上电,使皮带轮4300和驱动盘4200接合,从而完成电驱动模式到机械驱动模式的切换。两种驱动模式互相切换,减小 转速不匹配给压缩机带来的冲击,运转更平稳。
电控总成
在双驱动压缩机中,电控总成6000是必不可少的部件,电控总成6000与整车控制器电连接,通过与整车控制器的信号交互实现两种驱动模式的相互切换。电控总成6000通常是指集成到一个电控盒中的所有电子元器件的整体,也包括电控盒本身,电控总成6000的连接主要涉及电连接和物理连接,其中物理连接主要是指壳体之间的连接。
本公开的一个实施方式中,如图12和图13所示,电控总成6000可拆卸地安装在所述机壳总成1000的外侧,并且电控总成6000与电机总成5000之间通过可插拔的电接头实现电连接。即在本实施方式中,在物理连接部分,电控总成6000与机壳总成1000可以通过螺栓紧固等形式实现拆装。如图12所示,电控外壳6100的外侧可以间隔地设有紧固件8015,以固定机壳总成1000和电控总成6000。电连接可以通过插拔式的电接头实现。这样,可以具有互换性高、拆装方便的优点,当电控总成6000发生故障时,只需将电控外壳6100从压缩机上拆卸下来维修即可,不影响压缩机主体部分;当电控总成6000失效时,只需更换电控总成6000部分,节省了售后成本。
如图12所示,电控总成6000包括电控外壳6100和容纳在电控外壳6100中的控制元件,电控外壳6100形状配合地连接在机壳总成1000的外侧,其中形状配合是指电控外壳6100与机壳总成1000的配合面形状相互对应,使得压缩机整体的结构紧凑,例如图2中电控外壳6100在轴向的两侧壁的厚度不同,即是为了适应机壳总成1000的形状而做出的设计。
如图12所示,电控外壳6100包括第一底座6110和第一盖板6120,第一底座6110和第一盖板6120之间设有第一密封垫片,电控外壳6100上还设有低压接线口6101和高压接线口6102,低压接线口6101用于与整车控制器连接,高压接线口6102用于接收高压电,而后向电机总成5000供电。
电控总成6000的电接头可以包括三相插接件6001,结合图13,电机总成5000的电接头则可以包括对应的三相接线柱5001,三相接线柱5001与三相接插件6001可插拔地连接配合。
上述的控制元件包括电控印刷电路板(PCB),控制电路形成在该电控PCB板上,三相插接件6001固定连接到电控PCB板上,并穿过电控外壳6100向外伸出,以用于配合三相接线柱5001。相应地,机壳总成上设置有电机接线孔1003,三相接线柱5001从该电机接线孔1003中伸出,以用于配合三相插接件6001,三相插接件6001和三相接线柱 5001插接后可以连入PCB电控板上的电路。
需要说明的是,三相接线柱5001贯穿机壳总成1000的外壁,其固定形式可以通过多种实施方式实现。
在本公开中,如图13所示,三相接线柱5001包括内嵌在电机接线孔1003中的第一安装盘5001a,插接在该第一安装盘5001a中的三个第一引脚5001b,作为三相接线柱5001的主要电连接部件,电机总成5000中的定子总成5100通过甩线的方式连接到第一引脚5001b上。相应地,在电控总成6000一侧,三相插接件6001包括可过盈配合地包裹第一引脚5001b的第一母端子6001a,第一母端子6001a通过第一插针6001b可以焊接在电控PCB板上。
进一步地,电机连接孔1003上形成有第三台阶面1003a,第一安装盘5001a的一端抵顶在第三台阶面1003a上,另一端通过固定在机壳总成1000上的第三卡簧8008限位,如图13和图14所示,第三卡簧8008过盈配合地设置在电机接线孔1003的内壁,此外,第一安装盘5001a和电机接线孔1003之间还可以设置有第一密封圈8009,以防止液体外泄。在插接状态下,电控外壳6100和机壳总成1000之间对应于电机接线孔1003的位置设有第二密封圈8010,防止外部水分进入,影响电性能。
为防止第一引脚5001b上的电流流到机壳总成1000或其它零部件上,第一引脚5001b和第一安装盘5001a之间设置有套设在第一引脚5001b上的第一绝缘体5001c;第一引脚5001b伸出第一安装盘5001a的部分套设有第二绝缘体5001d;第一引脚5001b插入到机壳总成1000中的部分套设有第三绝缘体5001e。其中第一绝缘体5001c、第二绝缘体5001d以及第三绝缘体5001e的每一个可以为玻璃、陶瓷或硅胶等材质。
此外,如图12所示,所述电控外壳6100的外侧对应于双驱动压缩机的低压腔的位置覆盖有导热材料层8011,即在第一底座6110的与机壳总成1000接触的位置覆盖有导热材料层8011,用于使电控总成6000快速散热,提高工作效率,延长使用寿命。需要说明的是,压缩机在工作中的腔室包括涡旋盘总成3000工作处的压缩腔,进气口方向的背压腔和出气口方向的高压腔,上述的低压腔有别于压缩腔、背压腔以及高压腔,低压腔主要形成在曲轴2000的主体区域,是压缩机的大部分零部件所处的区域,低压腔中的低温低压的冷媒流经机壳总成1000,可以使电控总成6000散热。
此外,在双驱动压缩机中设置旋变7000后,电控总成6000与旋变7000之间也通过可插拔的电接头实现电连接,其形式类似于电控总成6000与电机总成5000的连接,如图12所示,在电控PCB板上设置旋变插接件6002,该旋变插接件6002穿过电控外壳6100以与下述的由旋变线束7300引出的旋变接线柱7001配合。相应地,机壳总成1000上设 置有旋变接线孔1002,旋变接线柱7001穿过该旋变接线孔1002以与上述的旋变插接件6002插拔连接。
旋变接线柱7001贯穿机壳总成1000的外壁,其固定形式可以通过多种实施方式实现,在本公开中,如图15和图16a所示,旋变接线柱7001包括内嵌在旋变接线孔1002中的第二安装盘7001a,插接在第二安装盘7001a中的第二引脚7001b,第二引脚7001b与旋变线束7300电连接,旋变插接件6002与机壳总成的特征配合并进行角向定位。旋变插接件6002的结构如图16b所示:第二母端子6002a通过护套6002d上的卡抓定位,第二母端子6002a的末端通过铆接第二插针6002b或通过甩线的形式连接在电控PCB板上,并通过封线体6002e固定,由具有防错特征的后盖6002f进行轴向定位,其中第二插针6002b可以与电控PCB板锡焊连接。旋变插接件6002的前盖6002c具有圆形特征,该前盖6002c包覆并固定第二母端子6002a前段,起到导向和固定作用。第二母端子6002a可过盈配合地包裹第二引脚7001b。这样,旋变接线柱7001和旋变插接件6002插接后,旋变线束7300可以连入电控PCB板的电路中。此外,在机壳总成1000上还设有配合插接件,配合插接件与旋变插接件6002相对于第二安装盘7001a大体上对称,且配合插接件与旋变插接件6002结构相同,第二引脚7001b的两端分别与旋变插接件6002以及配合插接件连接。旋变线束7300通过甩线的方式连接到该配合插接件上。
进一步地,在旋变接线孔1002上形成有第四台阶面1002a,第二安装盘7001a的一端抵顶在第四台阶面1002a上,另一端通过固定在机壳总成1000上的第四卡簧8012限位。如图15和图16a所示,第四卡簧8012过盈配合地设置在旋变接线孔1002的内壁。此外,第二安装盘7001a和旋变接线孔1002之间还可以设置有第三密封圈8013,以防止液体外泄。在插接状态下,电控外壳6100和机壳总成1000之间对应于旋变接线孔1002的位置设有第四密封圈8014,防止外部水分进入,影响电性能。配合插接件上的轴肩6002g抵顶到机壳总成1000的第五台阶面1002b上,进一步对配合插接件定位,并防止零件掉入机壳总成1000内部。
为防止第二引脚7001b上的电流流到机壳总成1000或其它零部件上,第一引脚7001b和第二安装盘7001a之间设置有套设在第二引脚7001b上的第四绝缘体7001c,第四绝缘体7001c可以为玻璃、陶瓷或硅胶等材质。
本公开的另一个实施方式中,沿用现有技术中分体式电控的连接方法,如图17和图18所示,电控总成6000包括第二底座6210,第二盖板6220和智能功率模块(IPM)6400,第二底座6210和第二盖板6220之间设置有第二密封垫片8017,以防止电控总成6000外部的水分进入。电控总成6000还设有高压接线柱6201、低压接线柱6202和三相插接 柱6203,高压接线柱6201用于接收高压电,低压接线柱6202用于与整车控制器连接,三相插接柱6203用于与电机总成5000连接。在装配时,第二底座6210与机壳总成1000贴合设置,如图19所示,第二底座6210向内凹陷形成有冷却室6300,该冷却室6300的外侧对应地设有压板6500,以将冷却室6300形成封闭的腔室,压板6500贴合第二底座6210的底面6310设置。进一步地,如图18所示,压板6500上开设有冷媒入口6510和冷媒出口6520,以输入和输出冷媒。IPM6400的安装面6410贴合冷却室6300的底面6310设置,冷媒流经冷却室6300从而冷却IPM6400。这样,安装面6410和冷媒之间只隔一个壁,即只相隔冷却室6300的靠近电控总成6000内部一侧的壁,相比于现有技术中相隔两个壁(即第二底座6210的壁加机壳总成1000的壁),增强了冷却效果。
如图19和图20所示,在冷却室6300中,可以以盘折的方式间隔布设垂直于冷却室6300的底面6310的导流板6320,导流板6320的一端连接在冷却室6300的侧壁,另一端与对侧壁留有空隙,这样,冷媒流经冷却室6300时,在导流板6320的作用下,缓慢地移动,可以提高冷却效果。
进一步地,如图19和图20所示,第二底座6210上环绕冷却室6300的端面设置有密封槽6211,密封槽6211内设置有第五密封圈8016,该第五密封圈8016设置在压板6500和第二底座6210之间,以防止液体外泄。
此外,如图21所示,压板6500上贴合设置有散热板6600,以提高散热效果,散热板6600可以设置在压板6500和第二底座6210之间。散热板6600可以为翅片式散热板,以进一步提高散热效果,其中需要说明的是,翅片式结构是指在需要进行热传递的换热装置表面通过增加导热性较强的金属片,增大换热装置的换热表面积。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (36)

  1. 一种压缩机,包括机壳总成(1000),位于该机壳总成(1000)内的曲轴(2000),以及连接到所述曲轴(2000)的离合器总成(4000),其特征在于,所述曲轴(2000)包括同轴连接的前轴(2100)和后轴(2200),所述前轴(2100)和后轴(2200)之间设有增速部(2300),以使所述后轴(2200)的转速大于前轴(2100)的转速。
  2. 根据权利要求1所述的压缩机,其特征在于,所述增速部(2300)为行星轮机构。
  3. 根据权利要求2所述的压缩机,其特征在于,所述增速部(2300)包括设置在所述后轴(2200)的前端且随所述后轴(2200)旋转的太阳轮(2310),设置在所述前轴(2100)的后端且随所述前轴(2100)旋转的行星轮(2320),所述行星轮(2320)的齿与所述太阳轮(2310)的齿配合,并且所述行星轮(2320)绕所述太阳轮(2310)旋转,所述行星轮(2320)的外侧还设有固定轮(2330),所述固定轮(2330)的齿与所述行星轮(2320)齿配合,所述固定轮(2330)固定在所述机壳总成(1000)的内壁。
  4. 根据权利要求3所述的压缩机,其特征在于,所述太阳轮(2310)、行星轮(2320)和固定轮(2330)均为斜齿轮。
  5. 根据权利要求3所述的压缩机,其特征在于,所述前轴(2100)的后端形成有行星架(2110),所述行星架(2110)沿周向间隔地均匀布设有偏心销(2120),所述行星轮(2320)安装在所述偏心销(2120)上。
  6. 根据权利要求5所述的压缩机,其特征在于,所述偏心销(2120)为3个。
  7. 根据权利要求5所述的压缩机,其特征在于,所述行星架(2110)包括中心盘(2111),和沿所述中心盘(2111)的径向方向向外凸出且沿周向间隔设置的安装盘(2112),所述偏心销(2120)设置在所述安装盘(2112)上。
  8. 根据权利要求7所述的压缩机,其特征在于,所述中心盘(2111)的位于相邻所述安装盘(2112)之间的外轮廓形成为内凹的圆弧,每个所述安装盘(2112)的外轮廓形成为外凸的圆弧,所述内凹的圆弧和外凸的圆弧之间进行圆角过渡。
  9. 根据权利要求5所述的压缩机,其特征在于,所述行星架(2110)上设有对应于所述偏心销(2120)的通孔,所述偏心销(2120)过盈装配到所述通孔中。
  10. 根据权利要求5所述的压缩机,其特征在于,所述偏心销(2120)与所述行星架(2110)一体成型。
  11. 根据权利要求3所述的压缩机,其特征在于,所述后轴(2200)的前端形成为轴径减小的阶梯轴,所述太阳轮(2310)套设在所述后轴(2200)的前端,并且所述太 阳轮(2310)的后端抵顶在所述阶梯轴的轴肩。
  12. 根据权利要求1所述的压缩机,其特征在于,所述机壳总成(1000)的内部通过套设在所述曲轴(2000)上的隔挡壁(1300)分隔为沿轴向分布的主腔(1100)和辅腔(1200),所述辅腔(1200)限定在所述机壳总成(1000)的前端盖(1400)和所述隔挡壁(1300)之间,所述前轴(2100)位于所述离合器总成(4000)中,所述增速部(2300)位于所述辅腔(1200)中,所述后轴(2200)位于所述主腔(1100)中。
  13. 根据权利要求12所述的压缩机,其特征在于,所述隔挡壁(1300)和曲轴(2000)之间设置有轴封(8001)。
  14. 根据权利要求13所述的压缩机,其特征在于,所述隔挡壁(1300)和曲轴(2000)之间还设置有卡簧(8002)。
  15. 根据权利要求1-14中任意一项所述的压缩机,其特征在于,该压缩机为双驱动压缩机,所述压缩机还包括位于所述机壳总成(1000)内部的涡旋盘总成(3000)、电机总成(5000),安装在所述机壳总成(1000)外部的电控总成(6000),所述曲轴(2000)上安装有旋变(7000),该旋变(7000)与所述电控总成(6000)电连接。
  16. 根据权利要求15所述的压缩机,其特征在于,所述旋变(7000)安装在所述后轴(2200)上。
  17. 根据权利要求15所述的压缩机,其特征在于,所述旋变(7000)包括旋变定子(7100),可随所述曲轴(2000)转动的旋变转子(7200),以及连接在所述旋变定子(7100)上的旋变线束(7300),所述旋变线束(7300)与所述电控总成(6000)电连接。
  18. 根据权利要求17所述的压缩机,其特征在于,所述机壳总成(1000)上开设有用于使所述旋变线束(7300)与电控总成(6000)连接的旋变接线孔(1002)。
  19. 根据权利要求18所述的压缩机,其特征在于,所述旋变转子(7200)套设在所述曲轴(2000)上,所述旋变定子(7100)形成在所述旋变转子(7200)的外周,所述机壳总成(1000)中设置有套设在所述曲轴(2000)上的支撑盘(1500),该支撑盘(1500)的内周面形成有台阶面(1510),以定位所述旋变定子(7100)。
  20. 根据权利要求19所述的压缩机,其特征在于,所述台阶面(1510)形成在所述支撑盘(1500)的前端面,所述旋变定子(7100)的外周设有凸缘(7110)以抵顶在所述台阶面(1510)上。
  21. 根据权利要求15所述的压缩机,其特征在于,所述电控总成(6000)可拆卸地安装在所述机壳总成(1000)的外侧,并且所述电控总成(6000)与所述电机总成(5000)之间通过可插拔的电接头实现电连接。
  22. 根据权利要求21所述的压缩机,其特征在于,所述电控总成(6000)包括电控外壳(6100)和容纳在所述电控外壳(6100)中的控制元件,所述电控外壳(6100)形状配合地连接在所述机壳总成(1000)的外侧。
  23. 根据权利要求22所述的压缩机,其特征在于,所述电控总成(6000)的电接头包括三相插接件(6001),所述电机总成(5000)的电接头包括三相接线柱(5001),所述三相接线柱(5001)与所述三相接插件(6001)可插拔地连接。
  24. 根据权利要求23所述的压缩机,其特征在于,所述控制元件包括电控印刷电路板(PCB)板,所述三相插接件(6001)连接到所述电控PCB板上并穿过所述电控外壳(6100)向外伸出。
  25. 根据权利要求24所述的压缩机,其特征在于,所述机壳总成(1000)上设置有电机接线孔(1003),所述三相接线柱(5001)从该电机接线孔(1003)中伸出,所述三相接线柱(5001)与所述电机总成(5000)电连接。
  26. 根据权利要求21所述的压缩机,其特征在于,所述电控总成(6000)与所述旋变(7000)之间通过可插拔的电接头实现电连接。
  27. 根据权利要求26所述的压缩机,其特征在于,所述控制元件包括电控PCB电路板,所述电控PCB板上设有旋变插接件(6002),该旋变插接件(6002)穿过所述电控外壳(6100)。
  28. 根据权利要求27所述的压缩机,其特征在于,所述机壳总成(1000)上设置有旋变接线柱(7001),所述旋变接线柱(7001)与所述旋变线束(7300)电连接,所述旋变接线柱(7001)与所述旋变插接件(6002)可插拔地连接。
  29. 根据权利要求22所述的压缩机,其特征在于,所述电控外壳(6100)的外侧间隔地设有紧固件(8015),以固定所述机壳总成(1000)和电控总成(6000)。
  30. 根据权利要求22所述的压缩机,其特征在于,所述电控外壳(6100)包括第一底座(6110)和第一盖板(6120),所述第一底座(6110)和第一盖板(6120)之间设有第一密封垫片,所述电控外壳(6100)上还设有低压接线口(6101)和高压接线口(6102)。
  31. 根据权利要求30所述的压缩机,其特征在于,所述第一底座(6110)的与所述机壳总成(1000)接触的位置覆盖有导热材料层(8011)。
  32. 根据权利要求15所述的压缩机,其特征在于,所述电控总成(6000)包括第二底座(6210),第二盖板(6220)和智能功率模块(IPM)(6400),所述第二底座(6210)的底部向内凹陷形成有冷却室(6300),该冷却室(6300)的外侧设有压板(6500),所述IPM(6400)的安装面(6410)贴合所述冷却室(6300)的底面(6310)设置,冷媒流 经所述冷却室(6300)以冷却所述IPM(6400)。
  33. 根据权利要求32所述的压缩机,其特征在于,所述冷却室(6300)中,以盘折的方式间隔布设有垂直于所述冷却室(6300)的底面(6310)的导流板(6320),所述导流板(6320)的一端连接在所述冷却室(6300)的侧壁,另一端与所述侧壁的对侧壁留有空隙。
  34. 根据权利要求32所述的压缩机,其特征在于,所述压板(6500)上开设有冷媒入口(6510)和冷媒出口(6520)。
  35. 根据权利要求32所述的压缩机,其特征在于,所述第二底座(6210)上环绕所述冷却室(6300)设置有密封槽(6211),所述密封槽(6211)内设置有密封圈(8016),所述密封圈(8016)设置在所述压板(6500)和第二底座(6210)之间。
  36. 根据权利要求32所述的压缩机,其特征在于,所述压板(6500)上贴合设置有散热板(6600)。
PCT/CN2017/102257 2016-09-21 2017-09-19 压缩机 WO2018054285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610840553.7 2016-09-21
CN201610840553.7A CN107842501A (zh) 2016-09-21 2016-09-21 压缩机

Publications (1)

Publication Number Publication Date
WO2018054285A1 true WO2018054285A1 (zh) 2018-03-29

Family

ID=61656691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102257 WO2018054285A1 (zh) 2016-09-21 2017-09-19 压缩机

Country Status (2)

Country Link
CN (1) CN107842501A (zh)
WO (1) WO2018054285A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445352B (zh) * 2018-11-26 2020-08-21 江西滨凌科技有限公司 一体式涡旋压缩机的变频器功耗减少的方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018025A1 (en) * 1997-07-09 2001-08-30 Denso Corporation Hybrid type compressor driven by engine and electric motor
CN1459562A (zh) * 2001-12-26 2003-12-03 株式会社电装 混合式压缩机系统
US20040045307A1 (en) * 2002-06-14 2004-03-11 Kitaru Iwata Hybrid compressor system
CN1865706A (zh) * 2005-05-16 2006-11-22 科普兰公司 开放式驱动涡旋机
CN200978794Y (zh) * 2006-12-11 2007-11-21 上海三电贝洱汽车空调有限公司 电动压缩机用控制器
CN204163989U (zh) * 2014-09-01 2015-02-18 北方导航控制技术股份有限公司 一种航空制冷装置用涡旋压缩机
CN105756927A (zh) * 2014-12-15 2016-07-13 上海日立电器有限公司 控制器一体化卧式压缩机
CN206206161U (zh) * 2016-09-21 2017-05-31 比亚迪股份有限公司 双驱动压缩机
CN206206160U (zh) * 2016-09-21 2017-05-31 比亚迪股份有限公司 双驱动压缩机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301055A (ja) * 2003-03-31 2004-10-28 Toyota Industries Corp ハイブリッドコンプレッサ
CN2778598Y (zh) * 2005-01-31 2006-05-10 陈伯禄 一种汽车动力系统的改进装置
KR101241366B1 (ko) * 2011-06-27 2013-03-11 경원기계공업(주) 스크롤공기압축기의 냉각장치 및 냉각제어방법
JP5664878B2 (ja) * 2012-11-05 2015-02-04 三菱自動車工業株式会社 インバータの冷却構造
CN104196723A (zh) * 2014-09-18 2014-12-10 乔建设 倍率线体涡旋式压缩机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018025A1 (en) * 1997-07-09 2001-08-30 Denso Corporation Hybrid type compressor driven by engine and electric motor
CN1459562A (zh) * 2001-12-26 2003-12-03 株式会社电装 混合式压缩机系统
US20040045307A1 (en) * 2002-06-14 2004-03-11 Kitaru Iwata Hybrid compressor system
CN1865706A (zh) * 2005-05-16 2006-11-22 科普兰公司 开放式驱动涡旋机
CN200978794Y (zh) * 2006-12-11 2007-11-21 上海三电贝洱汽车空调有限公司 电动压缩机用控制器
CN204163989U (zh) * 2014-09-01 2015-02-18 北方导航控制技术股份有限公司 一种航空制冷装置用涡旋压缩机
CN105756927A (zh) * 2014-12-15 2016-07-13 上海日立电器有限公司 控制器一体化卧式压缩机
CN206206161U (zh) * 2016-09-21 2017-05-31 比亚迪股份有限公司 双驱动压缩机
CN206206160U (zh) * 2016-09-21 2017-05-31 比亚迪股份有限公司 双驱动压缩机

Also Published As

Publication number Publication date
CN107842501A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
US6848401B2 (en) Valve timing adjusting device
CN101463807B (zh) 电动压缩机
US20130017114A1 (en) Fluid Machine
JP2019502857A (ja) 圧縮機
CN206206160U (zh) 双驱动压缩机
CN104514718A (zh) 涡旋式流体机械
CN105793538A (zh) 用于机动车辆的内燃机的增压装置和用于生产所述增压装置的方法
US10396621B2 (en) Electric compressor
CN110091700A (zh) 减速器、驱动装置和电动汽车
CN206206161U (zh) 双驱动压缩机
WO2018054285A1 (zh) 压缩机
WO2018054284A1 (zh) 双驱动压缩机
CN101109383A (zh) 用于混合动力汽车的滚动活塞式空调压缩机
JP2000145824A (ja) 電磁クラッチ
WO2018054292A1 (zh) 双驱动压缩机
KR101959666B1 (ko) 전동 압축기
CN114050681A (zh) 一种同轴式电驱动桥的新能源电机
EP4112938A1 (en) Rotary heat pump, and air conditioner and automobile equipped with same
US20200392958A1 (en) Motor operated compressor
CN204984898U (zh) 全封闭立式单级内传动旋转压缩机
CN204984895U (zh) 卧式全封闭单级内传动旋转压缩机
CN100540910C (zh) 压缩机泵体联结方法
CN220440436U (zh) 电机的定子组件、电机及电驱传动系统
CN216069584U (zh) 一种电驱系统总成
CN209557276U (zh) 一种电动水泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852353

Country of ref document: EP

Kind code of ref document: A1