WO2018049332A1 - Housing assembly for periodontal endoscopic probe - Google Patents
Housing assembly for periodontal endoscopic probe Download PDFInfo
- Publication number
- WO2018049332A1 WO2018049332A1 PCT/US2017/050971 US2017050971W WO2018049332A1 WO 2018049332 A1 WO2018049332 A1 WO 2018049332A1 US 2017050971 W US2017050971 W US 2017050971W WO 2018049332 A1 WO2018049332 A1 WO 2018049332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plug
- tubular conduit
- handle
- housing assembly
- holder
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C1/00—Dental machines for boring or cutting ; General features of dental machines or apparatus, e.g. hand-piece design
- A61C1/08—Machine parts specially adapted for dentistry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00066—Proximal part of endoscope body, e.g. handles
- A61B1/00068—Valve switch arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00119—Tubes or pipes in or with an endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00121—Connectors, fasteners and adapters, e.g. on the endoscope handle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00131—Accessories for endoscopes
- A61B1/00135—Oversleeves mounted on the endoscope prior to insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
- A61B1/0051—Flexible endoscopes with controlled bending of insertion part
- A61B1/0052—Constructional details of control elements, e.g. handles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/24—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/24—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
- A61B1/247—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth with means for viewing areas outside the direct line of sight, e.g. dentists' mirrors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C9/00—Impression cups, i.e. impression trays; Impression methods
- A61C9/004—Means or methods for taking digitized impressions
- A61C9/0046—Data acquisition means or methods
Definitions
- the present invention relates generally to the field of fiber optic endoscopes, and more specifically relates to a periodontal endoscopic probe.
- Endoscopes may be routinely employed in various minimally-invasive and noninvasive medical procedures to assist navigation of tools being used, and to provide instant assessment of the procedure being performed. As will be appreciated, guided navigation, as well as the instant assessment, may increase effectiveness and accuracy of a procedure being performed.
- a dental procedure for scaling and root planning may be more effective and less painful when performed using an endoscope, and may be referred to as "VISUAL-SRP" (V-SRP).
- Endoscopes may allow a practitioner to view the procedure in real time, and may also allow visually guided root planning down to about a maximum of 1 1 mm in depth.
- each of these procedures performed using endoscopes typically require multiple conduits and cables to be manipulated together for passage of materials (e.g., water), devices (e.g., camera), or energy (e.g., light).
- materials e.g., water
- devices e.g., camera
- energy e.g., light
- Various holders for managing and manipulating these multiple conduits and cables are available.
- conventional holders are difficult to use due to various challenges. For example, conventional holders may result in entangling of the cables and conduits with each other and the holder.
- the protective sheath and fiber optics may disengage, fully or partially, from the conventional holders.
- the practitioners may experience difficulty handling the conventional holder with gloved hands. These issues may also result in inadvertent damage to conduit and cables, which in turn may lead to cross-contamination.
- reuse of endoscopes may be a potential source of cross-contamination and undesirable infections in patients.
- the present invention provides a novel housing assembly for an endoscopic probe and a holder for the housing assembly along with a disposable sheath.
- an assembly for aiding field use of an endoscopic probe includes a housing assembly for an endoscopic probe and a compatible holder for the housing assembly.
- the housing assembly includes a tubular conduit for receiving the endoscopic probe and a plug coupled to the tubular conduit along a distal end of the tubular conduit.
- the tubular conduit has a flexible tubular portion, an enclosure at a distal end of the flexible tubular portion, and an optical window at a distal end of the enclosure.
- the tubular conduit(s) may be easily replaceable and disposable.
- the tubular conduit with the enclosure prevents cross contamination of the endoscopic probe, thereby extending the usable life of the endoscopic probe.
- the plug is adapted to couple with an inversely matching plug receiver in the compatible holder.
- the plug has a passage along a longitudinal axis via which the tubular conduit passes through, and, upon coupling with the inversely matching plug receiver, into the compatible holder.
- the compatible holder includes a handle for supporting at least a portion of the tubular conduit, a lockable sleeve, a pre-configured arm and an explorer coupled to a distal end of the pre-configured arm.
- the lockable sleeve is disposed coaxially at a proximal end of the handle, for securing the portion of the tubular conduit within the handle.
- the pre-configured arm is coupled at a distal end of the handle for facilitating the endoscopic probe assembly to explore a pre-determined quadrant of an oral cavity.
- the explorer includes the plug receiver and an end part coupled to a distal end of the plug receiver.
- the plug receiver is adapted to couple with the inversely matching plug of the housing assembly.
- the end part has an axial channel in continuation with an opening at a distal end of the plug receiver.
- the tubular conduit passes through the opening and into the axial channel of the end part.
- the present invention holds significant improvements and serves as a housing assembly for an endoscopic probe and a holder for the housing assembly.
- certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any one particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
- the features of the invention which are believed to be novel are particularly pointed out and distinctly claimed in the concluding portion of the specification.
- FIG. 1 is a perspective view of a housing assembly for an endoscopic probe including a connector, a tubular conduit, and a plug in accordance with some embodiments of the present invention.
- FIG. 2A is a cross-sectional view of the plug including a ring shaped compressible protuberance in accordance with some embodiments of the present invention.
- FIG. 2B is a perspective view of the plug wherein the compressible protuberance is a push button in accordance with alternate embodiments of the present invention.
- FIG. 3A is a cross-sectional view of a plug receiver including an inversely matching recess corresponding to the compressible protuberance of FIG. 2A in accordance with some embodiments of the present invention.
- FIG. 3B is a perspective view of the plug receiver having the inversely matching recess corresponding to the push button of FIG. 2B in accordance with alternate embodiments of the present invention.
- FIG. 4 is a cross-sectional view of the plug of FIG. 2A coupled with the plug receiver of FIG. 3A in accordance with some embodiments of the present invention.
- FIG. 4A is a cross-sectional view of an alternative plug and receiver of an embodiment of the present invention.
- FIG. 4B is a side view of an alternative plug and receiver of an embodiment of the present invention shown in FIG. 4A.
- FIG. 4C is a cross-sectional view of an alternative plug of an embodiment of the present invention shown in FIG. 4A.
- FIG. 5 is a perspective view of a housing assembly including an additional tubular conduit and a first additional passage in accordance with some embodiments of the present invention.
- FIGS. 6A and 6B are perspective views of a holder for a housing assembly for an endoscopic probe in accordance with some embodiments of the present invention.
- FIG. 7 is a perspective view of an assembly for aiding field use of an endoscopic probe including a housing assembly for the endoscopic probe and a holder for the housing assembly, in accordance with some embodiments of the present invention.
- FIG. 8A depicts the holder of FIGS. 6A and 6B with a lockable sleeve rotated with respect to the handle in an unlock position in accordance with some embodiments of the present invention.
- FIG. 8B depicts the holder of FIGS. 6A and 6B with the lockable sleeve rotated with respect to the handle in a lock position in accordance with some embodiments of the present invention.
- FIG. 9A through 9D depict various embodiments of a pre-configured arm of the holder of FIGS. 6A and 6B in accordance with some embodiments of the present invention.
- FIG. 10 depicts an explorer of the holder of FIGS. 6A and 6B, including a plug receiver, and an end part forming a tissue retractor, in accordance with some embodiments of the present invention.
- FIG. 11 is a flow chart illustrating a method of use of the assembly for aiding filed use of an endoscopic probe in accordance with embodiments of the present invention described in FIGS 1 - 10. DETAILED DESCRIPTION OF THE DRAWINGS
- inventions of the present invention relate to a housing assembly for an endoscopic probe and a compatible holder for the housing assembly.
- the exemplary endoscopic probe may include a fiber optic cable of about 1.2 mm diameter having about thirty thousand coherent and illumination fibers with a minimum bend radius of about 35mm. It should be noted that the minimum bend radius may vary based on flexibility of the fiber optic cable desired.
- the housing assembly may protect the endoscopic probe from exposure to infectious environment of a patient's body, thereby allowing safe reuse of the endoscopic probe.
- the housing assembly includes a plug, which interfaces and mates with an inversely matching plug receiver of the compatible holder.
- the plug and the plug receiver provide a convenient and secure mechanism for coupling and uncoupling the housing assembly from the compatible holder, thereby facilitating reuse of endoscopic probes.
- the compatible holder for the housing assembly may be fabricated from sterilizable material and designed for structural stability so as to last reuse of about two to about six times.
- the housing assembly may house other additional conduits such as a water and/or air channel required for performing an endoscopic procedure such as visual scaling and root planning (V-SRP) in separate tubular conduits that interface with the plug such that there is no comingling of the water, air, and optical fibers of the endoscopic probe.
- V-SRP visual scaling and root planning
- the compatible holder further includes an arm and a handle.
- the arm may be pre-configured according to quadrant of oral cavity to be explored.
- the handle supports and secures, with a lockable sleeve, a portion the tubular conduit allowing efficient manipulation of the endoscopic probe and other conduits.
- Housing assembly 100 includes a tubular conduit 1 10 having a connector 150 at a proximal end, and a plug 120 coupled to tubular conduit 1 10 along distal end of tubular conduit 1 10.
- Connector 150 couples tubular conduit 1 10 to an endoscopic instrument (not shown) to interface with a camera and a light source.
- endoscopic instrument not shown
- connector 150 may be a Y shaped Luer fitting.
- an inline micro-camera such as a CMOS, a CCD, or another microelectromechanical system (MEMS) hybrid camera that may be fed through tubular conduit may also be employed.
- MEMS microelectromechanical system
- plug 120 is adapted to couple with an inversely matching plug receiver, described in greater detail with reference to FIGS. 3A and 3B.
- Plug receiver is part of a compatible holder for the housing assembly, described in greater detail with reference to FIGS. 6 and 7.
- Compatible holder supports at least a portion of tubular conduit 1 10.
- Plug 120 includes a passage 160 along a longitudinal axis, through which a distal portion of tubular conduit 1 10 passes through. Further, when plug 120 couples with inversely matching plug receiver, tubular conduit 1 10 passes through passage 160 into compatible holder, as shown in FIG. 4.
- plug 120 is tapered towards distal end of tubular conduit and is, for example, conical or pyramidal in shape. While tapering of plug 120 facilitates reception and coupling of plug 120 with plug receiver, various regular and irregular shapes such as cuboid, trapezium, etc., which allow coupling of plug 120 with plug receiver, are well within the scope of the present invention.
- Tubular conduit 1 10 includes a flexible tubular portion 170, an enclosure 130 at a distal end of flexible tubular portion 170, and an optical window 140 at a distal end of enclosure 130.
- Flexible tubular portion 170 may be fabricated from various extruded polymeric plastics generally known in the art for use in medical equipment. The length of tubular portion 170 may vary from about a few inches to about 10 feet based on a length, or as necessary, of endoscopic probe and a portion of length of endoscopic probe, required to be housed, within tubular conduit 1 10.
- Enclosure 130 may be a rigid tubular enclosure, fabricated using for example, a suitable metal (e.g., inert metal), and hermetically sealed to flexible tubular portion 170.
- Optical window 140 may be a sapphire window, a metalized sapphire window, a molded plastic window, or a window fabricated from other suitable material, and hermetically sealed to enclosure 130 so as to cap a fiber optic line.
- the hermetic sealing prevents leakage of body fluids and other contaminants into interior of housing assembly 100 (i.e., into the interior of tubular conduit 1 10 housing endoscopic probe). Further, the hermetic sealing provides a stable arrangement which lasts through at least a completion of an endoscopic procedure, for example, of about 5-6 hours.
- Optical window 140 may be translucent or transparent, and provides, for the endoscopic visual probe, a clear bidirectional transmission of light for image formation, while protecting the endoscopic probe, housed within, from cross-contamination.
- housing assembly 100 protects endoscopic probe from contamination and is exposed to infectious environment
- entire housing assembly may be fabricated from a sterilizable material, or may be fabricated from standard materials.
- entire housing assembly 100 including tubular conduit 1 10 (or at least a part of tubular conduit 1 10) and plug 120 may be fabricated from a low temperature or gamma radiation sterilization compatible material such as ethylene oxide, or other suitable material.
- Plug 120 may further include a compressible protuberance on its outer surface.
- Compressible protuberance is adapted to securely fit, upon application of an external pressure, into an inversely matching recess within inversely matching plug receiver.
- FIGS. 2A and 3 A a cross-sectional view of plug 120 and inversely matching plug receiver 300 are illustrated in accordance with some embodiments of the present invention.
- outer surface of plug 120 includes ring shaped compressible protuberance 210.
- Ring shaped compressible protuberance 210 is adapted to securely fit, upon application of external pressure into inversely matching ring shaped recess 3 10 (i.e., shape matching external contour of ring shaped protuberance 210) within inversely matching plug receiver 300 shown in FIG. 3A.
- FIGS. 2B and 3B a perspective view of alternative plug 121 and inversely matching alternative plug receiver 301 are illustrated in accordance with alternative embodiments of the present invention.
- outer surface of alternative plug 121 includes compressible protuberance 220 in form of multiple push buttons.
- push buttons 220 may protrude more from outer surface at proximal part of alternative plug 121 than at distal part.
- Such unequal protuberance may reduce external pressure required to securely fit push buttons into inversely matching recess (i.e., shape matching external contour of push buttons) within inversely matching alternative plug receiver 301 shown in FIG. 3B.
- recess may simply be an opening 320 for push buttons (i.e., having a shape matching that of circumferential contour of push buttons).
- inversely matching plug receivers 300 and 301 may also include opening 330 at a distal end through which tubular conduit 1 10 may pass through and into compatible holder, upon coupling of plug 120 and plug receiver 300.
- FIG. 4 a cross-sectional view of plug 120 of FIG. 2A coupled with plug receiver 300 of FIG. 3A is illustrated in accordance with some embodiments of the present invention.
- Plug 120 may interface with compatible holder via plug receiver 300 in a repeatable and easy to use method.
- Ring shaped flexible protuberance 210 effectively seals the interface between plug 120 and plug receiver 300 by securely fitting into inversely matching ring shaped recess 310.
- FIG. 4 shows plug 120 of FIG. 2A having a ring shaped compressible protuberance 210 coupled to plug receiver 300 of FIG. 3 A having inversely matching ring shaped recess 310
- alternative plug 121 of FIG. 2B may also couple with alternative plug receiver 301 of FIG. 3B having a recess or an opening 320 that inversely matches with the shape of push buttons 220 in a similar fashion.
- tubular conduit 1 10 that passes through passage 160 of plug 120 may pass through opening 330 of plug receiver 300 into compatible holder. Compressible protuberance 220 is shown on plug 120.
- tapering plug 120 (or alternative plug 121 ) along with its compressible protuberance 210 (or alternatively 220) and inversely matching plug receiver 300 (or alternative receiver 301 ) along with its inversely matching recess or opening 3 10 (or alternatively 320) allow engaging housing assembly 100 with compatible holder by application of light manual pressure by the medical practitioner without a need for any additional fastening mechanism.
- the intentional disengagement of the housing assembly 100 from the compatible holder may be achieved by applying manual tension by the medical practitioner in the opposite manner as above.
- Tubular portion 170 (such as for fiber optic scope) and first additional tubular portion 170A (such as for water source) are provided above and into plug 120.
- First additional tubular portion 170A terminate to water flow cavity 172 which begins to the side of enclosure 130 within channel 171 within plug 120.
- Water flow cavity 172 surrounds lower end 171 A of channel 171 to allow water to flow into plug 120 and around channel 171 housing enclosure 130 holding the fiber optic cable for camera.
- Plug 120 fits into opening 330 of plug receiver 300.
- Plug 120 may include bulging portion 173 to allow for space and structural stability of plug having bi-lumen tubing (i.e.
- Plug fits into opening 330 of plug receiver 300.
- Plug receiver extends into end part 690 and opens to one side through tissue retractor 692.
- Enclosure 130 terminates with window 140 which may rest along receiver opening 6 1 along end part 690.
- enclosure holding optical fiber may terminate within plug and a final optic portion endoscopic shield 142, such as a metallic tube, coupled to or apart from enclosure 130 in tubular portion 170 to continue protection of fiber optic cables at proximal joint 141.
- Compressible protuberance 220 is shown on plug 120.
- Housing assembly 100 may include a first additional tubular conduit 1 10A, and a first additional passage 160A in plug 120 for the passage of first additional tubular conduit 1 1 OA through plug 120.
- First additional tubular conduit 1 1 OA may deliver water during the endoscopic procedure.
- First additional tubular conduit 1 1 OA includes a first additional tubular portion 170A and a first oneway check valve (not shown) at a distal end of first additional tubular portion 170A to prevent a backflow of water.
- First additional tubular conduit 1 10A also includes a first connector 150A at a proximal end of first additional tubular portion 170A, which couples first additional tubular conduit 1 1 OA to a water supply.
- first additional tubular conduit 1 1 OA that passes through first additional passage 160A may pass through opening 330 of plug receiver 300 into compatible holder.
- housing assembly 100 may further include a second additional tubular conduit (not shown) and a second additional passage in plug 120 (not shown) for the passage of second additional tubular conduit through plug 120.
- second additional tubular conduit may deliver air during the endoscopic procedure.
- second additional tubular conduit may include a second additional tubular portion and a second one-way check valve at a distal end of second additional tubular portion to prevent a backflow of air.
- Second additional tubular conduit also includes a second connector at a proximal end of second additional tubular portion, which couples second additional tubular conduit to an air supply.
- second additional tubular conduit that passes through second additional passage may pass through opening 330 of plug receiver 300 into compatible holder.
- two separate connectors may be used (not shown).
- a third conduit is required, i.e. camera, water and air conduit, it shows water and endoscope conduit, a Y-shaped connector 150 may be used.
- plug 120 may allow delivery of water and/or air from proximal end to distal end of housing assembly 100 without comingling with endoscopic probe.
- plug 120 has additional passages for each of the additional tubular conduits, plug 120 is designed to have ample material surrounding additional passages for mechanical strength and stability.
- plug 120 may not have first additional passage 160 A, and first additional tubular conduit 1 1 OA may pass through plug 120 via primary passage 160.
- FIGS. 6A and 6B perspective views of a compatible holder 600 for housing assembly 100 for an endoscopic probe is illustrated in accordance with some embodiments of the present invention.
- Holder 600 includes a handle 620, a lockable sleeve 640, a pre-configured arm 670, and an explorer 680.
- Handle 620 includes a first axial channel 610 along at least a portion of handle 620, and a first slit 630 running axially along first channel 610 so as to provide an access to first channel 610.
- Handle 620 is adapted to receive a portion of tubular conduit of the endoscopic probe assembly (i.e., housing assembly 100 with endoscopic probe) within first channel 610 through first slit 630.
- first slit 630 has at least one bend at a pre-determined angle. Further, in some embodiments, at least one bend is at about 45 degrees, and is towards distal end of handle 620.
- the first slit has two bends 685 and 686, each at about 45 degrees, towards distal end of handle 620. As will be appreciated, bends 685 and 686 may prevent tubular conduit from accidently slipping out of first channel 610 during use. Tubular conduit may exit first channel 610 after second bend 686. It should be noted that, in some embodiments, first channel 610 may have a ramp 687 for smooth exit of tubular conduit.
- Lockable sleeve 640 is disposed coaxial ly at a proximal end of handle 620, and is adapted to further secure the portion of tubular conduit within handle 620.
- lockable sleeve 640 may operate to secure the portion of tubular conduit within handle 620 such that it does not accidentally disengage from handle 620 during use.
- lockable sleeve 640 includes a second axial channel 650 along lockable sleeve 640, and a second slit 660 running axially along second channel 650. Further, as shown in FIGS.
- lockable sleeve 640 is disposed at least over a portion of handle 620 at the proximal end 621 of handle 620.
- Second slit 660 may provide access to second axial channel 650 as well as to first axial channel 610 (on the portion of handle 620 where lockable sleeve 640 overlaps with handle 620) through first slit 630.
- the lockable sleeve 640 may be disposed within a portion of handle 620 (i.e., within a portion of the first channel 610) at the proximal end of handle 620.
- second slit 660 may provide access to second axial channel 650 only.
- lockable sleeve 640 may be fabricated from sterilizable materials, generally known in the art, such as autoclavable plastics, metals and ceramics. Lockable sleeve may also include some indicia or differentiating aspect (e.g. color code, material, shape, number, etc.) that will identify the particular orientation of the attached arm. This color-coding can make the correct DENTAL XPLORER easily recognizable by the clinician.
- sterilizable materials generally known in the art, such as autoclavable plastics, metals and ceramics.
- Lockable sleeve may also include some indicia or differentiating aspect (e.g. color code, material, shape, number, etc.) that will identify the particular orientation of the attached arm. This color-coding can make the correct DENTAL XPLORER easily recognizable by the clinician.
- Pre-configured arm 670 is coupled to handle 620 at distal end 622 of handle 620. It should be noted that, pre-configured arm 670 may be permanently coupled to distal end 622 of handle 620, or may be detachable from handle 620. Again, as will be described in greater detail with reference to FIGS 9A - 9D, in some embodiments, pre-configured arm 670 includes at least two rigid sub-arms joined by a ductile joint. Each of the at least two rigid sub- arms may be in a pre-defined direction, with respect to handle 620 and with respect to each other, so as to facilitate the practitioner to explore a pre-determined quadrant of an oral cavity with the endoscopic probe assembly.
- Explorer 680 is coupled to pre-configured arm 670 at distal end of pre- configured arm 670.
- Explorer 680 includes plug receiver 300, and an end part 690 at a distal end of plug receiver 300.
- plug receiver 300 may be adapted to receive and couple with an inversely matching plug, for example plug 120, of housing assembly 100.
- end part 690 includes a third axial channel 695 along a longitudinal axis and in continuation with opening 320 of plug receiver.
- the tubular conduit of housing assembly 100 passes through opening 320, and into third axial channel 695.
- the distal tip of end part 690 is further configured to form tissue retractor 692 that is adapted to about fit between a tooth and a surrounding gum.
- handle 620 may include at least one ergonomic feature or at least one grip enhancing feature.
- diameter of handle 620 is large enough to provide ergonomic comfort to the practitioner and prevent hand fatigue, cramping, and carpel tunnel issues from prolonged and continuous handling of the compatible holder 600.
- ergonomic feature may include one or more portions 626 on an underside of handle 620 for resting fingers while holding compatible holder 600. Portions 626 may be indentations for finger rests. In some embodiments the indentations may correspond along the longitudinal axis as the ramp 687 to further enhance the structural strength of the handle. Further, as shown in FIGS.
- grip enhancing feature may include knurled metal or molded grip pattern 698 disposed on an outer surface 625 of handle 620.
- molded grip pattern 698 may be formed from sterilizable and moldable materials, and disposed along entire outer surface or on select parts which are in contact with palm or fingertips of a medical practitioner's hand using holder 600.
- molded grip pattern 698 may be ribs along handle 620. It should be noted that ribbed molded grip pattern 698 is for illustrative purposes only, and any geometrical, non-geometrical, coarse or fine pattern may be well within the scope of the present invention.
- FIG. 7 a perspective view of an assembly for aiding field use of an endoscopic probe including a housing assembly 100 for the endoscopic probe and a holder 600 for housing assembly 100, is illustrated in accordance with some embodiments of the present invention.
- a part of tubular conduit 1 10 of the housing assembly 100 is housed within a continuous channel formed by second axial channel 650 and first axial channel 610 of holder 600.
- Tubular conduit 1 10 exits first axial channel 610 towards distal end of the handle 620.
- Housing assembly 100 further couples with compatible holder 600 along distal end of housing assembly 100 via plug 120 and plug receiver 300 so as to secure distal portion of tubular conduit 1 10.
- plug 120 of housing assembly 100 couples with inversely matching plug receiver 300 of compatible holder 600 such that distal end of tubular conduit 1 10 (including of enclosure 130 and optical window 140) passes through opening 320 of plug receiver 300 into third axial channel 695.
- Such placement of optical window 140 near the end of third axial channel 695 i.e., just above the portion where end part 690 is configured to form tissue retractor 692) allows, the practitioner performing the endoscopic procedure, an unobstructed view of the periodontal area.
- FIGS. 8A and 8B the operation of lockable sleeve 640 with respect to handle 620 so as secure and unsecure tubular conduit 1 10 is illustrated in accordance with some embodiments of the present invention.
- FIG. 8A depicts lockable sleeve 640 rotated with respect to handle 620 in an unlock position
- FIG. 8B depicts lockable sleeve 640 rotated with respect to handle 620 in a lock position.
- second slit 660 is aligned to first slit 630 so as to provide uninterrupted access to first channel 630.
- FIG. 8A in unlocked position
- second slit 660 is aligned to first slit 630 so as to provide uninterrupted access to first channel 630.
- a degree of rotation of lockable sleeve 640 with respect to handle 620 may be a predetermined degree and may, for example, be about 180 degrees or about 90 degrees depending on preference, comfort of practitioners, and other manufacturing considerations. Further, in some embodiments, upon rotation of lockable sleeve 640 to lock position, lockable sleeve 640 may latch with handle 620 for preventing inadvertent unlocking during manipulation of holder 600 by the practitioner.
- pre-configured arm 670 includes two rigid sub-arms 710A and 710B joined by a ductile joint 720.
- Each of two rigid sub-arms 71 OA and 71 OB may be in a pre-defined direction with respect to handle 620 and with respect to each other.
- the ductile joint may be fabricated from a sterilizable and ductile metal, for example, stainless steel, aluminum, and titanium, or alloys thereof.
- a sterilizable and ductile metal for example, stainless steel, aluminum, and titanium, or alloys thereof.
- the first direction refers to the direction pre-configured arm 670 (i.e., first sub- arm 71 OB and second sub-arm 71 OA) makes with respect to handle 620 from a second bend 721
- the second direction i.e., left or right
- FIG. 9A shows a side view and a top view of 'left-left' configuration of pre-configured arm 670, which, for example, may be used to explore a bottom left quadrant of the oral cavity.
- FIG. 9A shows a side view and a top view of 'left-left' configuration of pre-configured arm 670, which, for example, may be used to explore a bottom left quadrant of the oral cavity.
- FIG. 9B shows a side view and a top view of 'left-right' configuration of pre-configured arm 670, which, for example, may be used to explore a bottom right quadrant of the oral cavity.
- FIG. 9C shows a side view and a top view of 'right-left' configuration of pre-configured arm 670, which, for example, may be used to explore an upper left quadrant of the oral cavity.
- FIG. 9D shows a side view and a top view of 'right-right' configuration of pre-configured arm 670, which, for example, may be used to explore an upper right quadrant of the oral cavity.
- pre-configured arm 670 may be two additional and alternate embodiments (not shown) of pre-configured arm 670, wherein the arm does not include a directional bend, so that a 'left' configuration and a 'right' configuration, would correspond to direction of the opening of the cutout of the tissue retractor 692 in the needle portion / end part 690.
- ductile joint may enable the practitioner to add another bend in the pre-configured arm so as to further orient arm 670 towards a particularly difficult area to access in the oral cavity.
- a 'left-right-right' configuration and a 'right-left-right' configuration may allow exploration of extreme bottom right quadrant of the oral cavity and extreme upper left quadrant of the oral cavity respectively.
- the middle direction in the direction combination, refers to a direction ductile portion between first sub-arm 71 OB and second sub-arm 71 OA makes with respect to handle 620.
- the pre-configured arm 670 may include three rigid sub-arms to achieve the above stated purpose.
- explorer 680 includes plug receiver 300 and end part 690 such that plug receiver 300 opens into an axial channel 695 of end part 690. This allows distal end of tubular conduit to pass into end part 690 upon coupling of plug 120 with plug receiver 300.
- a distal tip of end part 690 is configured to form tissue retractor 692 adapted to about fit between a tooth and a surrounding gum. Tissue retractor 692 may be used by the medical practitioner performing the endoscopic procedure such as V-SRP to retract gingiva allowing visibility of the tooth root space through the endoscopic probe.
- the method of use 1 100 may include the steps of selecting a holder 600 with pre-configured arm 670 depending on quadrant of oral cavity to be explored at step 1 102, inserting endoscopic probe in housing assembly 100 at step 1 104, inserting housing assembly (with probe) 100 in selected holder 600 at step 1 106, locking selected holder 600 using lockable sleeve 640 at step 1 108, and coupling plug 120 with plug receiver 300 at step 1 1 10.
- housing assembly 100 may isolate endoscopic probe from exposure to infectious environment of body cavities, thereby allowing safe reuse.
- lockable sleeve 640 secures a substantial portion of housing assembly 100 within handle 620, thereby preventing entangling, pinching, breaching and breaking of optical fibers and other conduits used for the endoscopic procedure.
- simple rotation enabled locking and unlocking as well as simple pressure enabled coupling and uncoupling allow for easy assembly and disassembly of housing assembly 100 and holder 600 with gloved hands during endoscopic procedure.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Endoscopes (AREA)
Abstract
An assembly for aiding field use of an endoscopic, probe is disclosed. The assembly includes a housing assembly for an endoscopic probe and a compatible holder for the housing -assembly. The housing assembly includes a tabular conduit for receiving the endoscopic probe and a plug coupled along a distal end of the tubular conduit. The holder includes a pre-configured arm 'for facilitating an exploration of a pre-determined quadrant of an oral cavity. The explorer includes, a plug receiver. Upon coupling the plug receiver with the inversely matching plug, the tubular conduit passes through, the opening and into the third axial channel.
Description
HOUSING ASSEMBLY FOR PERIODONTAL ENDOSCOPIC PROBE
DESCRIPTION
CROSS-REFERENCE TO RELATED APPLICATION
[0001 ] The present application is related to and claims priority from provisional patent application No. 62/393085, filed on October 14, 2016, and provisional patent application No. 62/393082, filed on September 1 1 , 2016, which are both incorporated herein by reference.
TECHNICAL FIELD
[0002] The present invention relates generally to the field of fiber optic endoscopes, and more specifically relates to a periodontal endoscopic probe.
Background
[0003] Endoscopes may be routinely employed in various minimally-invasive and noninvasive medical procedures to assist navigation of tools being used, and to provide instant assessment of the procedure being performed. As will be appreciated, guided navigation, as well as the instant assessment, may increase effectiveness and accuracy of a procedure being performed. For example, a dental procedure for scaling and root planning (SRP) may be more effective and less painful when performed using an endoscope, and may be referred to as "VISUAL-SRP" (V-SRP). Endoscopes may allow a practitioner to view the procedure in real time, and may also allow visually guided root planning down to about a maximum of 1 1 mm in depth.
[0004] However, each of these procedures performed using endoscopes typically require multiple conduits and cables to be manipulated together for passage of materials (e.g., water), devices (e.g., camera), or energy (e.g., light). Various holders for managing and
manipulating these multiple conduits and cables are available. However, conventional holders are difficult to use due to various challenges. For example, conventional holders may result in entangling of the cables and conduits with each other and the holder. Further, the protective sheath and fiber optics may disengage, fully or partially, from the conventional holders. Additionally, the practitioners may experience difficulty handling the conventional holder with gloved hands. These issues may also result in inadvertent damage to conduit and cables, which in turn may lead to cross-contamination. Moreover, reuse of endoscopes may be a potential source of cross-contamination and undesirable infections in patients.
[0005] Therefore, there is a need in the art for a technique to protect the endoscopic probe from exposure to infectious environments and to extend the usable life of the endoscopic probe. Additionally, there is a need for a technique to provide improved handling of endoscopic probes during the procedure.
SUMMARY OF THE INVENTION
[0006] In view of the foregoing disadvantages inherent in the existing endoscopic probe sheath and existing holder, the present invention provides a novel housing assembly for an endoscopic probe and a holder for the housing assembly along with a disposable sheath.
[0007] In some embodiments, an assembly for aiding field use of an endoscopic probe is disclosed. The assembly includes a housing assembly for an endoscopic probe and a compatible holder for the housing assembly.
[0008] In some embodiments, the housing assembly includes a tubular conduit for receiving the endoscopic probe and a plug coupled to the tubular conduit along a distal end of the tubular conduit. The tubular conduit has a flexible tubular portion, an enclosure at a distal end of the flexible tubular portion, and an optical window at a distal end of the enclosure. The tubular conduit(s) may be easily replaceable and disposable. The tubular conduit with the enclosure prevents cross contamination of the endoscopic probe, thereby extending the usable life of the endoscopic probe. The plug is adapted to couple with an inversely matching plug receiver in the compatible holder. The plug has a passage along a longitudinal axis via which the tubular conduit passes through, and, upon coupling with the inversely matching plug receiver, into the compatible holder.
[0009] In some embodiments, the compatible holder includes a handle for supporting at least a portion of the tubular conduit, a lockable sleeve, a pre-configured arm and an explorer coupled to a distal end of the pre-configured arm. The lockable sleeve is disposed coaxially at a proximal end of the handle, for securing the portion of the tubular conduit within the handle. The pre-configured arm is coupled at a distal end of the handle for facilitating the endoscopic probe assembly to explore a pre-determined quadrant of an oral cavity. The explorer includes the plug receiver and an end part coupled to a distal end of the plug receiver. As stated above, the plug receiver is adapted to couple with the inversely matching plug of the housing
assembly. The end part has an axial channel in continuation with an opening at a distal end of the plug receiver. Upon coupling the plug receiver with the inversely matching plug, the tubular conduit passes through the opening and into the axial channel of the end part.
[0010] The present invention holds significant improvements and serves as a housing assembly for an endoscopic probe and a holder for the housing assembly. For purposes of summarizing the invention, certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any one particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein. The features of the invention which are believed to be novel are particularly pointed out and distinctly claimed in the concluding portion of the specification. These and other features, aspects, and advantages of the present invention will become better understood with reference to the following drawings and detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
[001 1 ] The figures which accompany the written portion of this specification illustrate embodiments and method(s) of use of the present invention, a housing assembly for an endoscopic probe and a holder for the housing assembly, constructed and operative according to the teachings of the present invention.
[0012] FIG. 1 is a perspective view of a housing assembly for an endoscopic probe including a connector, a tubular conduit, and a plug in accordance with some embodiments of the present invention.
[0013] FIG. 2A is a cross-sectional view of the plug including a ring shaped compressible protuberance in accordance with some embodiments of the present invention.
[0014] FIG. 2B is a perspective view of the plug wherein the compressible protuberance is a push button in accordance with alternate embodiments of the present invention.
[0015] FIG. 3A is a cross-sectional view of a plug receiver including an inversely matching recess corresponding to the compressible protuberance of FIG. 2A in accordance with some embodiments of the present invention.
[0016] FIG. 3B is a perspective view of the plug receiver having the inversely matching recess corresponding to the push button of FIG. 2B in accordance with alternate embodiments of the present invention.
[0017] FIG. 4 is a cross-sectional view of the plug of FIG. 2A coupled with the plug receiver of FIG. 3A in accordance with some embodiments of the present invention.
[0018] FIG. 4A is a cross-sectional view of an alternative plug and receiver of an embodiment of the present invention.
[0019] FIG. 4B is a side view of an alternative plug and receiver of an embodiment of the present invention shown in FIG. 4A.
[0020] FIG. 4C is a cross-sectional view of an alternative plug of an embodiment of the present invention shown in FIG. 4A.
[0021 ] FIG. 5 is a perspective view of a housing assembly including an additional tubular conduit and a first additional passage in accordance with some embodiments of the present invention.
[0022] FIGS. 6A and 6B are perspective views of a holder for a housing assembly for an endoscopic probe in accordance with some embodiments of the present invention.
[0023] FIG. 7 is a perspective view of an assembly for aiding field use of an endoscopic probe including a housing assembly for the endoscopic probe and a holder for the housing assembly, in accordance with some embodiments of the present invention.
[0024] FIG. 8A depicts the holder of FIGS. 6A and 6B with a lockable sleeve rotated with respect to the handle in an unlock position in accordance with some embodiments of the present invention.
[0025] FIG. 8B depicts the holder of FIGS. 6A and 6B with the lockable sleeve rotated with respect to the handle in a lock position in accordance with some embodiments of the present invention.
[0026] FIG. 9A through 9D depict various embodiments of a pre-configured arm of the holder of FIGS. 6A and 6B in accordance with some embodiments of the present invention.
[0027] FIG. 10 depicts an explorer of the holder of FIGS. 6A and 6B, including a plug receiver, and an end part forming a tissue retractor, in accordance with some embodiments of the present invention.
[0028] FIG. 11 is a flow chart illustrating a method of use of the assembly for aiding filed use of an endoscopic probe in accordance with embodiments of the present invention described in FIGS 1 - 10.
DETAILED DESCRIPTION OF THE DRAWINGS
[0029] Exemplary embodiments are described with reference to the accompanying drawings. Wherever convenient, the same reference numbers are used throughout the drawings to refer to the same or like parts. While examples and features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible without departing from the spirit and scope of the disclosed embodiments. It is intended that the following detailed description be considered as exemplary only, with the true scope and spirit being indicated by the following claims.
[0030] As discussed above, embodiments of the present invention relate to a housing assembly for an endoscopic probe and a compatible holder for the housing assembly. The exemplary endoscopic probe may include a fiber optic cable of about 1.2 mm diameter having about thirty thousand coherent and illumination fibers with a minimum bend radius of about 35mm. It should be noted that the minimum bend radius may vary based on flexibility of the fiber optic cable desired.
[0031 ] The housing assembly may protect the endoscopic probe from exposure to infectious environment of a patient's body, thereby allowing safe reuse of the endoscopic probe. Further, the housing assembly includes a plug, which interfaces and mates with an inversely matching plug receiver of the compatible holder. The plug and the plug receiver provide a convenient and secure mechanism for coupling and uncoupling the housing assembly from the compatible holder, thereby facilitating reuse of endoscopic probes. Also, the compatible holder for the housing assembly may be fabricated from sterilizable material and designed for structural stability so as to last reuse of about two to about six times.
[0032] Furthermore, the housing assembly may house other additional conduits such as a water and/or air channel required for performing an endoscopic procedure such as visual
scaling and root planning (V-SRP) in separate tubular conduits that interface with the plug such that there is no comingling of the water, air, and optical fibers of the endoscopic probe.
[0033] The compatible holder further includes an arm and a handle. The arm may be pre-configured according to quadrant of oral cavity to be explored. The handle supports and secures, with a lockable sleeve, a portion the tubular conduit allowing efficient manipulation of the endoscopic probe and other conduits.
[0034] Referring now to FIG. I , a perspective view of a housing assembly 100 for an endoscopic probe is illustrated in accordance with some embodiments of the present invention. Housing assembly 100 includes a tubular conduit 1 10 having a connector 150 at a proximal end, and a plug 120 coupled to tubular conduit 1 10 along distal end of tubular conduit 1 10. Connector 150 couples tubular conduit 1 10 to an endoscopic instrument (not shown) to interface with a camera and a light source. In some embodiments, connector 150 may be a Y shaped Luer fitting. Additionally, in some embodiments, an inline micro-camera such as a CMOS, a CCD, or another microelectromechanical system (MEMS) hybrid camera that may be fed through tubular conduit may also be employed.
[0035] In some embodiments, plug 120 is adapted to couple with an inversely matching plug receiver, described in greater detail with reference to FIGS. 3A and 3B. Plug receiver is part of a compatible holder for the housing assembly, described in greater detail with reference to FIGS. 6 and 7. Compatible holder supports at least a portion of tubular conduit 1 10. Plug 120 includes a passage 160 along a longitudinal axis, through which a distal portion of tubular conduit 1 10 passes through. Further, when plug 120 couples with inversely matching plug receiver, tubular conduit 1 10 passes through passage 160 into compatible holder, as shown in FIG. 4. In some embodiments, plug 120 is tapered towards distal end of tubular conduit and is, for example, conical or pyramidal in shape. While tapering of plug 120 facilitates reception and coupling of plug 120 with plug receiver, various regular and irregular shapes such as
cuboid, trapezium, etc., which allow coupling of plug 120 with plug receiver, are well within the scope of the present invention.
[0036] Tubular conduit 1 10 includes a flexible tubular portion 170, an enclosure 130 at a distal end of flexible tubular portion 170, and an optical window 140 at a distal end of enclosure 130. Flexible tubular portion 170 may be fabricated from various extruded polymeric plastics generally known in the art for use in medical equipment. The length of tubular portion 170 may vary from about a few inches to about 10 feet based on a length, or as necessary, of endoscopic probe and a portion of length of endoscopic probe, required to be housed, within tubular conduit 1 10. Enclosure 130 may be a rigid tubular enclosure, fabricated using for example, a suitable metal (e.g., inert metal), and hermetically sealed to flexible tubular portion 170. Optical window 140 may be a sapphire window, a metalized sapphire window, a molded plastic window, or a window fabricated from other suitable material, and hermetically sealed to enclosure 130 so as to cap a fiber optic line. As will be appreciated, the hermetic sealing prevents leakage of body fluids and other contaminants into interior of housing assembly 100 (i.e., into the interior of tubular conduit 1 10 housing endoscopic probe). Further, the hermetic sealing provides a stable arrangement which lasts through at least a completion of an endoscopic procedure, for example, of about 5-6 hours. Optical window 140 may be translucent or transparent, and provides, for the endoscopic visual probe, a clear bidirectional transmission of light for image formation, while protecting the endoscopic probe, housed within, from cross-contamination.
[0037] Since housing assembly 100 protects endoscopic probe from contamination and is exposed to infectious environment, preferably entire housing assembly may be fabricated from a sterilizable material, or may be fabricated from standard materials. For example, entire housing assembly 100 including tubular conduit 1 10 (or at least a part of tubular conduit 1 10)
and plug 120 may be fabricated from a low temperature or gamma radiation sterilization compatible material such as ethylene oxide, or other suitable material.
[0038] Plug 120 may further include a compressible protuberance on its outer surface. Compressible protuberance is adapted to securely fit, upon application of an external pressure, into an inversely matching recess within inversely matching plug receiver. Referring now to FIGS. 2A and 3 A, a cross-sectional view of plug 120 and inversely matching plug receiver 300 are illustrated in accordance with some embodiments of the present invention. As shown in FIG. 2A, outer surface of plug 120 includes ring shaped compressible protuberance 210. Ring shaped compressible protuberance 210 is adapted to securely fit, upon application of external pressure into inversely matching ring shaped recess 3 10 (i.e., shape matching external contour of ring shaped protuberance 210) within inversely matching plug receiver 300 shown in FIG. 3A.
[0039] Referring now to FIGS. 2B and 3B, a perspective view of alternative plug 121 and inversely matching alternative plug receiver 301 are illustrated in accordance with alternative embodiments of the present invention. As shown in FIG. 2B, outer surface of alternative plug 121 includes compressible protuberance 220 in form of multiple push buttons. In some embodiments, push buttons 220 may protrude more from outer surface at proximal part of alternative plug 121 than at distal part. Such unequal protuberance may reduce external pressure required to securely fit push buttons into inversely matching recess (i.e., shape matching external contour of push buttons) within inversely matching alternative plug receiver 301 shown in FIG. 3B. It should be noted that, in some embodiments, recess may simply be an opening 320 for push buttons (i.e., having a shape matching that of circumferential contour of push buttons). Further, as shown in FIGS. 3A and 3B, inversely matching plug receivers 300 and 301 may also include opening 330 at a distal end through which tubular conduit 1 10 may pass through and into compatible holder, upon coupling of plug 120 and plug receiver 300.
[0040] Referring now to FIG. 4, a cross-sectional view of plug 120 of FIG. 2A coupled with plug receiver 300 of FIG. 3A is illustrated in accordance with some embodiments of the present invention. Plug 120 may interface with compatible holder via plug receiver 300 in a repeatable and easy to use method. Ring shaped flexible protuberance 210 effectively seals the interface between plug 120 and plug receiver 300 by securely fitting into inversely matching ring shaped recess 310. Though FIG. 4 shows plug 120 of FIG. 2A having a ring shaped compressible protuberance 210 coupled to plug receiver 300 of FIG. 3 A having inversely matching ring shaped recess 310, it should be noted that alternative plug 121 of FIG. 2B may also couple with alternative plug receiver 301 of FIG. 3B having a recess or an opening 320 that inversely matches with the shape of push buttons 220 in a similar fashion. Further, as shown in FIG. 4, upon coupling of plug 120 and plug receiver 300, tubular conduit 1 10 that passes through passage 160 of plug 120 may pass through opening 330 of plug receiver 300 into compatible holder. Compressible protuberance 220 is shown on plug 120.
[0041 ] As will be appreciated, tapering plug 120 (or alternative plug 121 ) along with its compressible protuberance 210 (or alternatively 220) and inversely matching plug receiver 300 (or alternative receiver 301 ) along with its inversely matching recess or opening 3 10 (or alternatively 320) allow engaging housing assembly 100 with compatible holder by application of light manual pressure by the medical practitioner without a need for any additional fastening mechanism. The intentional disengagement of the housing assembly 100 from the compatible holder may be achieved by applying manual tension by the medical practitioner in the opposite manner as above.
[0042] Referring to FIG. 4A, 4B and 4C, an alternative embodiment of the plug and receiver is shown. Tubular portion 170 (such as for fiber optic scope) and first additional tubular portion 170A (such as for water source) are provided above and into plug 120. First additional tubular portion 170A terminate to water flow cavity 172 which begins to the side of
enclosure 130 within channel 171 within plug 120. Water flow cavity 172 surrounds lower end 171 A of channel 171 to allow water to flow into plug 120 and around channel 171 housing enclosure 130 holding the fiber optic cable for camera. Plug 120 fits into opening 330 of plug receiver 300. Plug 120 may include bulging portion 173 to allow for space and structural stability of plug having bi-lumen tubing (i.e. tubing 170 and first additional tubular portion 170A). Plug fits into opening 330 of plug receiver 300. Plug receiver extends into end part 690 and opens to one side through tissue retractor 692. Enclosure 130 terminates with window 140 which may rest along receiver opening 6 1 along end part 690. As shown in FIG. 4C, enclosure holding optical fiber may terminate within plug and a final optic portion endoscopic shield 142, such as a metallic tube, coupled to or apart from enclosure 130 in tubular portion 170 to continue protection of fiber optic cables at proximal joint 141. Compressible protuberance 220 is shown on plug 120.
[0043] Referring now to FIG. 5, a perspective view of housing assembly 100 is illustrated in accordance with some embodiments of the present invention. Housing assembly 100 may include a first additional tubular conduit 1 10A, and a first additional passage 160A in plug 120 for the passage of first additional tubular conduit 1 1 OA through plug 120. First additional tubular conduit 1 1 OA may deliver water during the endoscopic procedure. First additional tubular conduit 1 1 OA includes a first additional tubular portion 170A and a first oneway check valve (not shown) at a distal end of first additional tubular portion 170A to prevent a backflow of water. First additional tubular conduit 1 10A also includes a first connector 150A at a proximal end of first additional tubular portion 170A, which couples first additional tubular conduit 1 1 OA to a water supply. Upon coupling of plug 120 with inversely matching plug receiver 300, first additional tubular conduit 1 1 OA that passes through first additional passage 160A may pass through opening 330 of plug receiver 300 into compatible holder.
[0044] Similarly, in some embodiments, housing assembly 100 may further include a second additional tubular conduit (not shown) and a second additional passage in plug 120 (not shown) for the passage of second additional tubular conduit through plug 120. For instance, second additional tubular conduit may deliver air during the endoscopic procedure. Similar to first additional tubular conduit 1 10A, second additional tubular conduit may include a second additional tubular portion and a second one-way check valve at a distal end of second additional tubular portion to prevent a backflow of air. Second additional tubular conduit also includes a second connector at a proximal end of second additional tubular portion, which couples second additional tubular conduit to an air supply. Upon coupling of plug 120 with inversely matching plug receiver 300, second additional tubular conduit that passes through second additional passage may pass through opening 330 of plug receiver 300 into compatible holder. In most instances, with dual tubular conduit, two separate connectors may be used (not shown). However, if a third conduit is required, i.e. camera, water and air conduit, it shows water and endoscope conduit, a Y-shaped connector 150 may be used.
[0045] As will be appreciated, additional conduits for water and/or air and additional passages in plug 120 for additional conduits, may allow delivery of water and/or air from proximal end to distal end of housing assembly 100 without comingling with endoscopic probe. Also, those skilled in the art will appreciate that while plug 120 has additional passages for each of the additional tubular conduits, plug 120 is designed to have ample material surrounding additional passages for mechanical strength and stability. However, it should be noted that, in some alternative embodiments, plug 120 may not have first additional passage 160 A, and first additional tubular conduit 1 1 OA may pass through plug 120 via primary passage 160. Similarly, it should be noted that, in some alternative embodiments, plug 120 may not have second additional passage, and second additional tubular conduit may pass through plug 120 either via primary passage 160 or via first additional passage 160A.
[0046] Referring now to FIGS. 6A and 6B, perspective views of a compatible holder 600 for housing assembly 100 for an endoscopic probe is illustrated in accordance with some embodiments of the present invention. Holder 600 includes a handle 620, a lockable sleeve 640, a pre-configured arm 670, and an explorer 680. Handle 620 includes a first axial channel 610 along at least a portion of handle 620, and a first slit 630 running axially along first channel 610 so as to provide an access to first channel 610. Handle 620 is adapted to receive a portion of tubular conduit of the endoscopic probe assembly (i.e., housing assembly 100 with endoscopic probe) within first channel 610 through first slit 630. In some embodiments, first slit 630 has at least one bend at a pre-determined angle. Further, in some embodiments, at least one bend is at about 45 degrees, and is towards distal end of handle 620. In the illustrated embodiment, the first slit has two bends 685 and 686, each at about 45 degrees, towards distal end of handle 620. As will be appreciated, bends 685 and 686 may prevent tubular conduit from accidently slipping out of first channel 610 during use. Tubular conduit may exit first channel 610 after second bend 686. It should be noted that, in some embodiments, first channel 610 may have a ramp 687 for smooth exit of tubular conduit.
[0047] Lockable sleeve 640 is disposed coaxial ly at a proximal end of handle 620, and is adapted to further secure the portion of tubular conduit within handle 620. For example, as will be described in greater detail with reference to FIGS. 8A and 8B, lockable sleeve 640 may operate to secure the portion of tubular conduit within handle 620 such that it does not accidentally disengage from handle 620 during use. In some embodiments, lockable sleeve 640 includes a second axial channel 650 along lockable sleeve 640, and a second slit 660 running axially along second channel 650. Further, as shown in FIGS. 6A and 6B, in some embodiments, lockable sleeve 640 is disposed at least over a portion of handle 620 at the proximal end 621 of handle 620. Second slit 660 may provide access to second axial channel 650 as well as to first axial channel 610 (on the portion of handle 620 where lockable sleeve
640 overlaps with handle 620) through first slit 630. In alternate embodiments, the lockable sleeve 640 may be disposed within a portion of handle 620 (i.e., within a portion of the first channel 610) at the proximal end of handle 620. In such embodiments, second slit 660 may provide access to second axial channel 650 only. As will be appreciated, lockable sleeve 640 may be fabricated from sterilizable materials, generally known in the art, such as autoclavable plastics, metals and ceramics. Lockable sleeve may also include some indicia or differentiating aspect (e.g. color code, material, shape, number, etc.) that will identify the particular orientation of the attached arm. This color-coding can make the correct DENTAL XPLORER easily recognizable by the clinician.
[0048] Pre-configured arm 670 is coupled to handle 620 at distal end 622 of handle 620. It should be noted that, pre-configured arm 670 may be permanently coupled to distal end 622 of handle 620, or may be detachable from handle 620. Again, as will be described in greater detail with reference to FIGS 9A - 9D, in some embodiments, pre-configured arm 670 includes at least two rigid sub-arms joined by a ductile joint. Each of the at least two rigid sub- arms may be in a pre-defined direction, with respect to handle 620 and with respect to each other, so as to facilitate the practitioner to explore a pre-determined quadrant of an oral cavity with the endoscopic probe assembly.
[0049] Explorer 680 is coupled to pre-configured arm 670 at distal end of pre- configured arm 670. Explorer 680 includes plug receiver 300, and an end part 690 at a distal end of plug receiver 300. As described above, plug receiver 300 may be adapted to receive and couple with an inversely matching plug, for example plug 120, of housing assembly 100. Further, as will be described in greater detail with reference to FIG 10, end part 690 includes a third axial channel 695 along a longitudinal axis and in continuation with opening 320 of plug receiver. When plug 120 is coupled with plug receiver 300, the tubular conduit of housing assembly 100 passes through opening 320, and into third axial channel 695. The distal tip of
end part 690 is further configured to form tissue retractor 692 that is adapted to about fit between a tooth and a surrounding gum.
[0050] Additionally, in some embodiments, handle 620 may include at least one ergonomic feature or at least one grip enhancing feature. In some embodiments, diameter of handle 620 is large enough to provide ergonomic comfort to the practitioner and prevent hand fatigue, cramping, and carpel tunnel issues from prolonged and continuous handling of the compatible holder 600. Additionally, as shown in FIG. 6B, in some embodiments, ergonomic feature may include one or more portions 626 on an underside of handle 620 for resting fingers while holding compatible holder 600. Portions 626 may be indentations for finger rests. In some embodiments the indentations may correspond along the longitudinal axis as the ramp 687 to further enhance the structural strength of the handle. Further, as shown in FIGS. 6A and 6B, in some embodiments, grip enhancing feature may include knurled metal or molded grip pattern 698 disposed on an outer surface 625 of handle 620. It should be noted that molded grip pattern 698 may be formed from sterilizable and moldable materials, and disposed along entire outer surface or on select parts which are in contact with palm or fingertips of a medical practitioner's hand using holder 600. As shown in FIGS. 6A and 6B, molded grip pattern 698 may be ribs along handle 620. It should be noted that ribbed molded grip pattern 698 is for illustrative purposes only, and any geometrical, non-geometrical, coarse or fine pattern may be well within the scope of the present invention.
[0051 ] Referring now to FIG. 7, a perspective view of an assembly for aiding field use of an endoscopic probe including a housing assembly 100 for the endoscopic probe and a holder 600 for housing assembly 100, is illustrated in accordance with some embodiments of the present invention. A part of tubular conduit 1 10 of the housing assembly 100 is housed within a continuous channel formed by second axial channel 650 and first axial channel 610 of holder 600. Tubular conduit 1 10 exits first axial channel 610 towards distal end of the handle
620. Housing assembly 100 further couples with compatible holder 600 along distal end of housing assembly 100 via plug 120 and plug receiver 300 so as to secure distal portion of tubular conduit 1 10. As described above, plug 120 of housing assembly 100 couples with inversely matching plug receiver 300 of compatible holder 600 such that distal end of tubular conduit 1 10 (including of enclosure 130 and optical window 140) passes through opening 320 of plug receiver 300 into third axial channel 695. Such placement of optical window 140 near the end of third axial channel 695 (i.e., just above the portion where end part 690 is configured to form tissue retractor 692) allows, the practitioner performing the endoscopic procedure, an unobstructed view of the periodontal area.
[0052] Referring now to FIGS. 8A and 8B, the operation of lockable sleeve 640 with respect to handle 620 so as secure and unsecure tubular conduit 1 10 is illustrated in accordance with some embodiments of the present invention. FIG. 8A depicts lockable sleeve 640 rotated with respect to handle 620 in an unlock position, while FIG. 8B depicts lockable sleeve 640 rotated with respect to handle 620 in a lock position. As shown in FIG. 8A, in unlocked position, second slit 660 is aligned to first slit 630 so as to provide uninterrupted access to first channel 630. Further, as shown in FIG. 8B, in locked position, second slit 660 is misaligned with respect to first slit 630 so as to block at least a portion of first channel 630. In some embodiments, a degree of rotation of lockable sleeve 640 with respect to handle 620 may be a predetermined degree and may, for example, be about 180 degrees or about 90 degrees depending on preference, comfort of practitioners, and other manufacturing considerations. Further, in some embodiments, upon rotation of lockable sleeve 640 to lock position, lockable sleeve 640 may latch with handle 620 for preventing inadvertent unlocking during manipulation of holder 600 by the practitioner.
[0053] Referring now to FIGS 9A - 9D, four alternate embodiments of pre-configured arm 670 for exploring four different quadrants of the oral cavity are illustrated in accordance
with aspects of the present invention. In the illustrated embodiments, pre-configured arm 670 includes two rigid sub-arms 710A and 710B joined by a ductile joint 720. Each of two rigid sub-arms 71 OA and 71 OB may be in a pre-defined direction with respect to handle 620 and with respect to each other. In some embodiments, the ductile joint may be fabricated from a sterilizable and ductile metal, for example, stainless steel, aluminum, and titanium, or alloys thereof. Various pre-determined directions, corresponding to various alternate embodiments, are described in detail below. It should be noted that, in below described configurations, the first direction (i.e., left or right) refers to the direction pre-configured arm 670 (i.e., first sub- arm 71 OB and second sub-arm 71 OA) makes with respect to handle 620 from a second bend 721 , while the second direction (i.e., left or right) refers to the direction with respect to handle 620 that opening 695 in end part 690 faces. For example, FIG. 9A shows a side view and a top view of 'left-left' configuration of pre-configured arm 670, which, for example, may be used to explore a bottom left quadrant of the oral cavity. Similarly, FIG. 9B shows a side view and a top view of 'left-right' configuration of pre-configured arm 670, which, for example, may be used to explore a bottom right quadrant of the oral cavity. Additionally, FIG. 9C shows a side view and a top view of 'right-left' configuration of pre-configured arm 670, which, for example, may be used to explore an upper left quadrant of the oral cavity. Further, FIG. 9D shows a side view and a top view of 'right-right' configuration of pre-configured arm 670, which, for example, may be used to explore an upper right quadrant of the oral cavity. Further, there may be two additional and alternate embodiments (not shown) of pre-configured arm 670, wherein the arm does not include a directional bend, so that a 'left' configuration and a 'right' configuration, would correspond to direction of the opening of the cutout of the tissue retractor 692 in the needle portion / end part 690.
[0054] Further, as will be appreciated, ductile joint may enable the practitioner to add another bend in the pre-configured arm so as to further orient arm 670 towards a particularly
difficult area to access in the oral cavity. For example, a 'left-right-right' configuration and a 'right-left-right' configuration may allow exploration of extreme bottom right quadrant of the oral cavity and extreme upper left quadrant of the oral cavity respectively. It should be noted that the middle direction, in the direction combination, refers to a direction ductile portion between first sub-arm 71 OB and second sub-arm 71 OA makes with respect to handle 620. In another embodiment, the pre-configured arm 670 may include three rigid sub-arms to achieve the above stated purpose.
[0055] Referring now to FIG. 10, a perspective view of explorer 680 is illustrated in accordance with some embodiments of the present invention. As stated above, explorer 680 includes plug receiver 300 and end part 690 such that plug receiver 300 opens into an axial channel 695 of end part 690. This allows distal end of tubular conduit to pass into end part 690 upon coupling of plug 120 with plug receiver 300. Further, as stated above, a distal tip of end part 690 is configured to form tissue retractor 692 adapted to about fit between a tooth and a surrounding gum. Tissue retractor 692 may be used by the medical practitioner performing the endoscopic procedure such as V-SRP to retract gingiva allowing visibility of the tooth root space through the endoscopic probe.
[0056] Referring now to FIG. 1 1 , a method of use of the assembly for aiding filed use for an endoscopic probe is illustrated via a flowchart in accordance with embodiments of the present invention described in FIGS. 1 -10. As illustrated, the method of use 1 100 may include the steps of selecting a holder 600 with pre-configured arm 670 depending on quadrant of oral cavity to be explored at step 1 102, inserting endoscopic probe in housing assembly 100 at step 1 104, inserting housing assembly (with probe) 100 in selected holder 600 at step 1 106, locking selected holder 600 using lockable sleeve 640 at step 1 108, and coupling plug 120 with plug receiver 300 at step 1 1 10.
[0057] Advantageously, housing assembly 100 may isolate endoscopic probe from exposure to infectious environment of body cavities, thereby allowing safe reuse. Further, lockable sleeve 640 secures a substantial portion of housing assembly 100 within handle 620, thereby preventing entangling, pinching, breaching and breaking of optical fibers and other conduits used for the endoscopic procedure. Furthermore, simple rotation enabled locking and unlocking as well as simple pressure enabled coupling and uncoupling allow for easy assembly and disassembly of housing assembly 100 and holder 600 with gloved hands during endoscopic procedure.
[0058] The embodiments of the invention described herein are exemplary and numerous modifications, variations and rearrangements can be readily envisioned to achieve substantially equivalent results, all of which, are intended to be embraced within the spirit and scope of the invention.
Claims
1. A housing assembly for an endoscopic probe, the housing assembly comprising: a tubular conduit for receiving the endoscopic probe, the tubular conduit comprising:
a flexible tubular portion;
an enclosure at a distal end of the tubular portion; and
an optical window at a distal end of the enclosure; and
a plug coupled to the tubular conduit along the distal end of the tubular conduit, and adapted to couple with an inversely matching plug receiver in a holder for the housing assembly, the plug having a passage along a longitudinal axis via which the tubular conduit passes through and, upon coupling with the inversely matching plug receiver, into the housing assembly holder,
wherein the holder further comprises a handle for supporting at least a portion of the tubular conduit.
2. The housing assembly of claim 1 , wherein the plug is tapered towards the distal end of the tubular conduit.
3. The housing assembly of claim 1 , wherein at least one of the tubular conduit and the plug are fabricated from a low temperature sterilization compatible material.
4. The housing assembly of claim 1 , wherein the tubular conduit further comprises a connector at a proximal end of the flexible tubular portion, wherein the connector couples the tubular conduit to an endoscopic instrument.
5. The housing assembly of claim 4, wherein the connector is a Y shaped Luer fitting.
6. The housing assembly of claim 1 , further comprising a first additional tubular conduit for delivering water.
7. The housing assembly of claim 6, wherein the first additional tubular conduit further comprises a first one way check valve at a distal end of the first additional tubular conduit, and adapted to prevent a backflow of water.
8. The housing assembly of claim 6, wherein the first additional tubular conduit further comprises a first connector at a proximal end of the first additional tubular conduit, wherein the first connector couples the first additional tubular conduit to a water supply.
9. The housing assembly of claim 6, wherein the plug further comprises a first additional passage along the longitudinal axis through which the first additional tubular conduit passes through and, upon coupling with the inversely matching plug receiver, into the holder.
10. The housing assembly of claim 1 , further comprising a second additional tubular conduit for delivering air.
1 1. The housing assembly of claim 10, wherein the second additional tubular conduit further comprises a second one way check valve at a distal end of the second additional tubular conduit, and adapted to prevent a backflow of air.
12. The housing assembly of claim 10, wherein the second additional tubular conduit further comprises a second connector at a proximal end of the second additional tubular conduit, wherein the second connector couples the second additional tubular conduit to an air supply.
13. The housing assembly of claim 10, wherein the plug further comprises a second additional passage along the longitudinal axis through which the second additional tubular conduit passes through and, upon coupling with the inversely matching plug receiver, into the holder.
14. The housing assembly of claim 1 , wherein the enclosure is a rigid tubular enclosure hermetically sealed to the flexible tubular portion.
15. The housing assembly of claim 1 , wherein the optical window is comprised of a sapphire, metallic, or a molded plastic, said optical window hermetically sealed to the enclosure.
16. The housing assembly of claim 1 , wherein an outer surface of the plug comprises a compressible protuberance adapted to securely fit, upon application of an external pressure, into an inversely matching recess within the inversely matching plug receiver.
17. The housing assembly of claim 16, wherein the compressible protuberance is a compressible ring, or a plurality of push buttons.
18. A holder for an endoscopic probe assembly, the holder comprising:
a handle having a first axial channel along at least a portion of the handle, and a first slit running axially along the first channel and providing an access to the first channel, wherein the handle is adapted to receive a portion of a tubular conduit of the endoscopic probe assembly within the first channel through the first slit;
a lockable sleeve disposed coaxially at a proximal end of the handle, and adapted to secure the portion of the tubular conduit within the handle;
a pre-configured arm coupled to the handle at a distal end of the handle; and an explorer coupled to the pre-configured arm at a distal end of the pre- configured arm, the explorer comprising:
a plug receiver adapted to couple with an inversely matching plug of the endoscopic probe assembly, the plug receiver having an opening at a distal end; and
an end part at a distal end of the plug receiver, the end part having a third axial channel along a longitudinal axis and in continuation with the opening of the plug receiver, wherein, upon coupling with the inversely matching plug, the tubular conduit passes through the opening and into the third axial channel.
19. The holder of claim 18, wherein the lockable sleeve comprises:
a second axial channel along the lockable sleeve and disposed at least over a portion of the handle at the proximal end of the handle; and
a second slit running axially along the second channel, and adapted to provide an access to the first channel through the first slit.
20. The holder of claim 19, wherein the lockable sleeve is rotatable with respect to the handle between an unlock position and a lock position, wherein the second slit is aligned to the first slit in the unlock position, and wherein the second slit is misaligned with respect to the first slit in the lock position.
21. The holder of claim 20, wherein a degree of rotation of the lockable sleeve with respect to the handle is a predetermined degree.
22. The holder of claim 20, wherein upon rotation of the lockable sleeve to the lock position, the lockable sleeve latches with the handle.
23. The holder of claim 18, wherein an outer surface of the handle comprises at least one ergonomic feature or at least one grip enhancing feature.
24. The holder of claim 18, wherein the first slit have at least one bend at a predetermined angle.
25. The holder of claim 24, wherein the at least one bend is at about 45 degrees, and is towards the distal end of the handle.
26. The holder of claim 18, wherein the pre-configured arm is detachable from the handle.
27. The holder of claim 18, wherein the pre-configured arm comprises at least two rigid sub-arms joined by a ductile joint, and wherein each of the at least two rigid sub- arms is in a pre-defined direction with respect to the handle.
28. The holder of claim 27, wherein the at least two rigid sub-arms are in one of a left, a right, a left-left, a left-right, a right-left, and a right-right configuration for facilitating an exploration of a pre-determined quadrant of an oral cavity with the endoscope probe assembly.
29. The holder of claim 18, wherein a distal tip of the end part is configured to form a tissue retractor adapted to about fit between a tooth and a surrounding gum.
30. The holder of claim 18, wherein an inner surface of the plug receiver comprises a recess adapted to securely fit an inversely matching compressible protuberance on the inversely matching plug.
3 1. An arm for an endoscopic probe assembly, the arm comprising:
a first sub-arm adapted to couple with a handle at a proximal end of the first sub-arm, wherein the handle is configured to support a portion of a tubular conduit of the endoscopic probe assembly;
a second sub-arm coupled to the first arm by a ductile joint at a distal end of the first sub-arm; wherein the second sub-arm is in a pre-defined direction with respect to the first sub-arm and, upon coupling with the handle, with respect to the handle for
facilitating an exploration of a pre-determined quadrant of an oral cavity with the endoscope probe assembly;
an explorer coupled to the second sub-arm at a distal end of the second sub-arm, the explorer comprising:
a plug receiver adapted to couple with an inversely matching plug of the endoscopic probe assembly, the plug receiver having an opening at a distal end; and
an end part at a distal end of the plug receiver, the end part having a third axial channel along a longitudinal axis and in continuation with the opening of the plug receiver, wherein, upon coupling with the inversely matching plug, the tubular conduit passes through the opening and into the third axial channel.
32. The arm of claim 3 1 , wherein the first sub-arm and the second sub-arm are in one of a left-left, a left-right, a right-left, and a right-right configuration.
33. The arm of claim 3 1 , wherein a distal tip of the end part is configured to form a tissue retractor adapted to about fit between a tooth and a surrounding gum.
34. The arm of claim 31 , wherein an inner surface of the plug receiver comprises a recess adapted to securely fit an inversely matching compressible protuberance on the inversely matching plug.
35. An assembly for aiding field use of an endoscopic probe, the assembly comprising:
a housing assembly comprising:
a tubular conduit for receiving the endoscopic probe; and
a plug coupled to the tubular conduit along the distal end of the tubular conduit, the plug having a passage along a longitudinal axis via which the tubular conduit passes through; and
a holder for the housing assembly, the holder comprising:
a handle for supporting at least a portion of the tubular conduit;
a lockable sleeve, disposed coaxially at a proximal end of the handle, for securing the portion of the tubular conduit within the handle;
a pre-configured arm coupled to the handle at a distal end of the handle for facilitating an exploration of a pre-determined quadrant of an oral cavity with the endoscope probe assembly; and
an explorer coupled to the pre-configured arm at a distal end of the pre- configured arm, the explorer having a plug receiver and an end part at a distal end of the plug receiver, the plug receiver adapted to couple with the plug, the plug receiver having an opening along a longitudinal axis via which, upon coupling with the plug, the tubular conduit passes through and into an axial channel of the end part.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780047613.2A CN109688895A (en) | 2016-09-11 | 2017-09-11 | Housing unit for periodontal endoscope detector |
US16/623,236 US11712322B2 (en) | 2016-09-11 | 2017-09-11 | Housing assembly for periodontal endoscopic probe |
EP17849725.1A EP3509470A4 (en) | 2016-09-11 | 2017-09-11 | Housing assembly for periodontal endoscopic probe |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662393082P | 2016-09-11 | 2016-09-11 | |
US62/393,082 | 2016-09-11 | ||
US201662393085P | 2016-10-14 | 2016-10-14 | |
US62/393,085 | 2016-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018049332A1 true WO2018049332A1 (en) | 2018-03-15 |
Family
ID=61561641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/050971 WO2018049332A1 (en) | 2016-09-11 | 2017-09-11 | Housing assembly for periodontal endoscopic probe |
Country Status (4)
Country | Link |
---|---|
US (1) | US11712322B2 (en) |
EP (1) | EP3509470A4 (en) |
CN (1) | CN109688895A (en) |
WO (1) | WO2018049332A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108968896A (en) * | 2018-07-25 | 2018-12-11 | 陕西飞秒医疗设备有限公司 | Periodontal endoscope with disposable sleeve and three-dimensional reorientation |
CN108968895A (en) * | 2018-07-25 | 2018-12-11 | 陕西飞秒医疗设备有限公司 | The three-dimensional reorientation handle of periodontal endoscope |
US10902601B2 (en) | 2017-01-18 | 2021-01-26 | Dolby Laboratories Licensing Corporation | Segment-based reshaping for coding high dynamic range video |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019115147C5 (en) * | 2019-06-05 | 2024-09-05 | Schott Ag | Biocompatible composite element and method for producing a biocompatible composite element |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4561845A (en) * | 1983-01-30 | 1985-12-31 | Moshe Meller | Illumination for dental drills |
US5897509A (en) * | 1996-06-21 | 1999-04-27 | Aisin Seiki Kabushiki Kaisha | Probe for measuring periodontal pocket depth |
US5944520A (en) * | 1996-08-29 | 1999-08-31 | Ash; Albert | Dental hand piece with internal back flow prevention valve |
US20020147394A1 (en) * | 1999-09-09 | 2002-10-10 | Reinold Ellingsen | Fiber optic probe for temperature measurements in biological media |
US20060063973A1 (en) * | 2004-04-21 | 2006-03-23 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear, nose and throat |
US20070213647A1 (en) * | 2006-03-07 | 2007-09-13 | Incardona Frank A | Dental hygiene apparatus |
US20100254149A1 (en) * | 2009-04-02 | 2010-10-07 | Owen Gill | Curing light device |
JP2012239727A (en) * | 2011-05-23 | 2012-12-10 | Micron:Kk | Endoscope probe-equipped dental vibration type handpiece device |
JP2012239726A (en) * | 2011-05-23 | 2012-12-10 | Micron:Kk | Endoscope probe-equipped dental vibration type handpiece device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010025191A1 (en) * | 2008-08-29 | 2010-03-04 | Zimmer Dental, Inc. | Dental drill guide system |
EP2196162B1 (en) * | 2008-12-15 | 2016-10-12 | Straumann Holding AG | Drill guide |
JP5647780B2 (en) * | 2009-10-20 | 2015-01-07 | Hoya株式会社 | Treatment overtube and treatment system |
FR2962896B1 (en) * | 2010-07-26 | 2012-08-03 | Gerald Blouin | CLEANING ACCESSORY FOR VISION SYSTEM AND CORRESPONDING CLEANING ASSEMBLY |
US9788706B2 (en) * | 2011-08-31 | 2017-10-17 | Boston Scientific Scimed, Inc. | Extendible flexible sheath |
JP6262936B2 (en) * | 2012-08-31 | 2018-01-17 | 株式会社吉田製作所 | Camera built-in handpiece |
US9610137B1 (en) * | 2014-12-02 | 2017-04-04 | Promident LLC | Dental work site illumination system |
ES2797683T3 (en) * | 2015-01-22 | 2020-12-03 | Neocis Inc | Interactive Guidance and Tamper Detection Arrangements for a Surgical Robotic System |
US10743892B2 (en) * | 2016-01-27 | 2020-08-18 | Stryker European Holdings I, Llc | Surgical instruments and methods |
-
2017
- 2017-09-11 EP EP17849725.1A patent/EP3509470A4/en not_active Withdrawn
- 2017-09-11 CN CN201780047613.2A patent/CN109688895A/en active Pending
- 2017-09-11 WO PCT/US2017/050971 patent/WO2018049332A1/en active Application Filing
- 2017-09-11 US US16/623,236 patent/US11712322B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4561845A (en) * | 1983-01-30 | 1985-12-31 | Moshe Meller | Illumination for dental drills |
US5897509A (en) * | 1996-06-21 | 1999-04-27 | Aisin Seiki Kabushiki Kaisha | Probe for measuring periodontal pocket depth |
US5944520A (en) * | 1996-08-29 | 1999-08-31 | Ash; Albert | Dental hand piece with internal back flow prevention valve |
US20020147394A1 (en) * | 1999-09-09 | 2002-10-10 | Reinold Ellingsen | Fiber optic probe for temperature measurements in biological media |
US20060063973A1 (en) * | 2004-04-21 | 2006-03-23 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear, nose and throat |
US20070213647A1 (en) * | 2006-03-07 | 2007-09-13 | Incardona Frank A | Dental hygiene apparatus |
US20100254149A1 (en) * | 2009-04-02 | 2010-10-07 | Owen Gill | Curing light device |
JP2012239727A (en) * | 2011-05-23 | 2012-12-10 | Micron:Kk | Endoscope probe-equipped dental vibration type handpiece device |
JP2012239726A (en) * | 2011-05-23 | 2012-12-10 | Micron:Kk | Endoscope probe-equipped dental vibration type handpiece device |
Non-Patent Citations (1)
Title |
---|
See also references of EP3509470A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10902601B2 (en) | 2017-01-18 | 2021-01-26 | Dolby Laboratories Licensing Corporation | Segment-based reshaping for coding high dynamic range video |
CN108968896A (en) * | 2018-07-25 | 2018-12-11 | 陕西飞秒医疗设备有限公司 | Periodontal endoscope with disposable sleeve and three-dimensional reorientation |
CN108968895A (en) * | 2018-07-25 | 2018-12-11 | 陕西飞秒医疗设备有限公司 | The three-dimensional reorientation handle of periodontal endoscope |
CN108968895B (en) * | 2018-07-25 | 2020-11-20 | 陕西飞秒医疗设备有限公司 | Three-dimensional steering handle of periodontal endoscope |
CN108968896B (en) * | 2018-07-25 | 2020-11-24 | 陕西飞秒医疗设备有限公司 | Periodontal endoscope with disposable cannula and three-dimensional steering |
Also Published As
Publication number | Publication date |
---|---|
US11712322B2 (en) | 2023-08-01 |
US20200345211A1 (en) | 2020-11-05 |
EP3509470A4 (en) | 2020-07-22 |
EP3509470A1 (en) | 2019-07-17 |
CN109688895A (en) | 2019-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11712322B2 (en) | Housing assembly for periodontal endoscopic probe | |
US10524636B2 (en) | Handheld surgical endoscope | |
US6520908B1 (en) | Electronic endoscope | |
US8678999B2 (en) | System and method for a hysteroscope with integrated instruments | |
US11013396B2 (en) | Portable endoscope with disposable steerable cannula | |
US20170055813A1 (en) | Medical device introduction and imaging system, and associated method | |
US20050085692A1 (en) | Endoscope | |
EP1757217A1 (en) | Endoscope and curve control assist member for endoscope | |
JP2012518464A (en) | Disposable sheath for use in imaging systems | |
EP3035837B1 (en) | Endoscope tool position holder | |
US11826018B2 (en) | Rotatable medical device | |
JP7158950B2 (en) | Endoscope aids, endoscopes, endoscope aids and endoscopes | |
EP3106078B1 (en) | Over-tube device for endoscopes | |
WO2018139014A1 (en) | Endoscope with extremely small diameter | |
JP7561892B2 (en) | Ergonomic Catheter Handle | |
JP6236410B2 (en) | Lacrimal endoscope | |
EP3967210A1 (en) | Endoscope | |
CN211834582U (en) | Endoscope system, trepan assembly and protective sheath | |
JP2022180048A (en) | Distal end cap removal jig and endoscope | |
JP6810788B2 (en) | Maneuverable catheter handle | |
CN111035431A (en) | Endoscope system, trepan assembly and protective sheath | |
JP2019092911A (en) | Lacrimal duct endoscope | |
US20240156333A1 (en) | Disposable Introducer for Advancing an Elongate Member into a Tubular Structure | |
WO2021193692A1 (en) | Endoscope | |
JP5284917B2 (en) | Endoscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17849725 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017849725 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017849725 Country of ref document: EP Effective date: 20190411 |