WO2018043500A1 - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
WO2018043500A1
WO2018043500A1 PCT/JP2017/030996 JP2017030996W WO2018043500A1 WO 2018043500 A1 WO2018043500 A1 WO 2018043500A1 JP 2017030996 W JP2017030996 W JP 2017030996W WO 2018043500 A1 WO2018043500 A1 WO 2018043500A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
band
transmittance
wavelength
light region
Prior art date
Application number
PCT/JP2017/030996
Other languages
French (fr)
Japanese (ja)
Inventor
大西 学
秀史 齊藤
祐貴 藤井
佑一 加茂
正垣 達也
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to US16/327,859 priority Critical patent/US20190250316A1/en
Priority to CN201780052645.1A priority patent/CN109983374A/en
Priority to JP2018537302A priority patent/JPWO2018043500A1/en
Publication of WO2018043500A1 publication Critical patent/WO2018043500A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light

Definitions

  • the present invention relates to an optical filter provided in an imaging device.
  • an optical filter having transmission characteristics in two wavelength bands of a visible light region and a near infrared light region is known. According to such an optical filter, it is possible to perform photographing not only in daylight when natural light enters but also under night vision such as at night.
  • Patent Document 1 discloses an infrared absorption substrate (infrared absorber) having a characteristic of absorbing light in the near infrared region, and a dielectric multilayer film formed on the infrared absorption substrate.
  • An optical filter is described.
  • an infrared absorbing substrate it is described that an infrared absorbing resin in which a transparent resin contains a compound that absorbs infrared rays is used.
  • the optical filter described in Patent Literature 1 includes a first band (light blocking band Za) provided in the near infrared light region and a third band (light blocking band) provided on the longer wavelength side than the first band.
  • Zc) has a cutoff characteristic and also has a transmission characteristic in a second band (light transmission band Zb) provided between the first band and the third band.
  • the cutoff characteristic of the first band is sufficiently ensured in the near-infrared light region. There is a possibility that the color reproducibility of an image picked up by the device is lowered.
  • the present invention has been made in view of such points, and an object thereof is to provide an optical filter capable of sufficiently suppressing transmission of a red component.
  • the present invention is an optical filter having transmission characteristics in two wavelength bands of a visible light region and a near-infrared light region, and a dielectric multilayer film is formed on one surface of a first filter made of an infrared absorber.
  • a second filter is formed, a third filter made of a dielectric multilayer film is formed on the other surface of the first filter, and the first filter is provided from the long wavelength side of the visible light region to the near infrared light region. It has a cutoff characteristic in the band and the third band provided on the longer wavelength side than the first band, and has a transmission characteristic in the second band provided between the first band and the third band.
  • the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm.
  • the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm, a wider bandwidth of the cutoff band is ensured than in the past. Therefore, it is possible to sufficiently secure the cutoff characteristic of the first band. Thereby, the transmission of the red component can be sufficiently suppressed, and the occurrence of color mixing due to the transmission of the red component can be suppressed. As a result, it is possible to suppress a decrease in color reproducibility of an image captured by the imaging device.
  • the wavelength at which the transmittance is 50% in the visible light region is a wavelength in the range of 640 nm to 660 nm, and the absorption maximum is in the range of 650 nm to 800 nm.
  • the wavelength at which the transmittance is 50% is a wavelength in the range of 685 nm to 710 nm, and the cutoff band at which the transmittance is 5% or less is near infrared light.
  • the region may be provided over a range of at least 100 nm.
  • the second filter may be configured by combining a plurality of filters.
  • the infrared absorber having the above characteristics as the first filter it is possible to reduce the incident angle dependency in the visible light region, and in the image captured by the imaging device, Generation of flare can also be suppressed.
  • the wavelength at which the transmittance of the second filter is 50% may be longer than the wavelength at which the transmittance is 50% in the visible light region of the first filter.
  • the half-value wavelength of the second filter (the wavelength at which the transmittance is 50%) is on the longer wavelength side than the half-value wavelength in the visible light region of the first filter. Due to the absorption, the amount of light reflected by the second filter is suppressed. Thereby, generation
  • the first band may be formed by the first filter and the second filter, and the third band may be formed by the third filter.
  • the cutoff characteristic on the short wavelength side of the first band is formed by the first filter
  • the transmission characteristic on the short wavelength side of the second band is formed by the second filter
  • the length of the second band is The transmission characteristic on the wavelength side may be formed by the third filter.
  • the bandwidth of the transmission band where the transmittance is 50% or more can be set to 35 nm to 200 nm. Further, it is possible to set the transmission band in which the transmittance of the second band is 50% in the range of 800 nm to 1000 nm.
  • the first filter may have a configuration in which an infrared absorbing dye is applied to a transparent substrate, and the third filter may be configured by an antireflection film.
  • the third filter may be configured by an antireflection film.
  • the first band may be formed by the first filter and the second filter, and the third band may be formed by the second filter.
  • the cutoff characteristic on the short wavelength side of the first band is formed only by the first filter or by the first filter and the second filter, and the transmission characteristic on the short wavelength side of the second band, and The transmission characteristics on the long wavelength side of the second band may be formed by the second filter.
  • the second filter capable of forming the transmission characteristics of the second band with a single filter can be formed on the surface opposite to the surface on which the infrared absorbing dye is formed. Damage to the infrared absorbing dye (particularly damage due to heat) can be suppressed.
  • the bandwidth of the wavelength at which the transmittance of the first band is 50%, the bandwidth of the wavelength at which the transmittance of the first filter is 50%, and the transmittance of the second filter are It may be larger than the bandwidth of the wavelength that is 50%.
  • the first and second filters can set the transmission band (second band) in a desired range in the near-infrared light region, and reduce the incident angle dependency in the visible light region. Therefore, it is possible to suppress the occurrence of ghost and flare in the image captured by the imaging device.
  • the second filter has a configuration in which a plurality of high refractive index films and a plurality of low refractive index films having a refractive index smaller than that of the high refractive index film are alternately stacked.
  • the average value of the optical film thickness of the low refractive index film is smaller than the average value of the optical film thickness of the high refractive index film, and the average optical film thickness of the low refractive index film
  • the film thickness ratio between the value and the average optical film thickness of the high refractive index film may be 0.50 to 0.85.
  • the bandwidth of the cutoff band having the cutoff characteristic of the second filter can be narrowed, and the transmission band (second band) is in a desired range in the near-infrared light region separated from the visible light region. Can be set.
  • the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm. Therefore, it is possible to sufficiently secure the cutoff characteristic of the first band. Thereby, the transmission of the red component can be sufficiently suppressed, and the occurrence of color mixing due to the transmission of the red component can be suppressed. As a result, it is possible to suppress a decrease in color reproducibility of an image captured by the imaging device.
  • the optical filter according to the present embodiment is an optical filter provided in an imaging device, and has transmission characteristics in two wavelength bands of a visible light region and a near infrared light region.
  • the wavelength band having the transmission characteristic in the visible light region and the wavelength band having the transmission characteristic in the near infrared light region are provided apart from each other.
  • the visible light region refers to a region where the wavelength of light is about 400 nm to about 700 nm
  • the near infrared light region refers to a region where the wavelength of light is about 700 nm to about 1100 nm.
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging device using the optical filter 10.
  • FIG. 2 is a diagram schematically showing a schematic configuration of the optical filter 10.
  • FIG. 3 is a diagram illustrating an example of the filter characteristics of the optical filter 10.
  • the optical filter 10 transmits light of two wavelengths in the visible light region and the near infrared light region with respect to the light collected by the lens 80, It is an optical filter that makes light incident on an image sensor 90 such as a CMOS.
  • FIG. 1 illustrates a case where light is incident on the lens 80 from a vertical direction and a case where light is incident on the lens 80 from an oblique direction with an incident angle ⁇ .
  • the optical filter 10 includes a first filter 20 made of an infrared absorber, a second filter 30 made of a dielectric multilayer film coated on one surface of the first filter 20, and a first filter. 20 and a third filter 40 made of a dielectric multilayer film coated on the other surface.
  • the optical filter 10 exhibits filter characteristics (transmittance waveform) as shown in FIG.
  • each configuration of the optical filter 10 will be described.
  • the 1st filter 20 is comprised by the infrared rays absorption board
  • substrate infrared absorber
  • an infrared absorbing resin in which a transparent resin contains a compound (pigment) that absorbs infrared rays is used.
  • dye it is possible to use a well-known substance as shown, for example in patent 5888953.
  • the first filter 20 has an absorption maximum near the boundary between the visible light region and the near-infrared light region, and the transmittance of the first filter 20 is minimized.
  • FIG. 4 shows the filter characteristics of the first filter 20 when the light incident angle ⁇ (see FIG. 1) is 0 ° (in the case of vertical incidence).
  • the first filter 20 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm), and gently transmits on the long wavelength side (longer wavelength side than 600 nm) of the visible light region. It has a transmission characteristic with a decreasing rate.
  • the range in which the transmittance of the first filter 20 is 50% or more is a wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 650 nm.
  • the range where the transmittance of the first filter 20 is 80% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 615 nm.
  • the range in which the transmittance of the first filter 20 is 90% or more is a wavelength band of approximately 440 nm to approximately 590 nm.
  • the range in which the transmittance of the first filter 20 is 95% or more is a wavelength band of about 458 nm to about 570 nm.
  • the first filter 20 has a transmission characteristic in substantially the entire region of the near infrared light region (700 nm to 1100 nm), and the transmittance on the short wavelength side (shorter wavelength side than 750 nm) of the near infrared light region. Has increased transmission characteristics.
  • the range in which the transmittance of the first filter 20 is 50% or more is a wavelength band from approximately 750 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the range in which the transmittance of the first filter 20 is 80% or more is the wavelength band from approximately 760 nm to the long wavelength end (1100 nm) in the near infrared light region.
  • the range in which the transmittance of the first filter 20 is 90% or more is the wavelength band from approximately 770 nm to the long wavelength end (1100 nm) in the near infrared light region.
  • the range in which the transmittance of the first filter 20 is 95% or more is the wavelength band from approximately 776 nm to the long wavelength end (1100 nm) in the near infrared light region.
  • the change rate (increase rate) of the transmittance of the first filter 20 is larger than the change rate (decrease rate) on the long wavelength side in the visible light region.
  • the absorption characteristics of the first filter 20 in the vicinity of the boundary between the visible light region and the near infrared light region are as follows.
  • the range in which the transmittance of the first filter 20 is 20% or less is a wavelength band of approximately 680 nm to approximately 740 nm.
  • the range in which the transmittance of the first filter 20 is 10% or less is a wavelength band of about 686 nm to about 728 nm.
  • the range in which the transmittance of the first filter 20 is 5% or less is a wavelength band of approximately 690 nm to approximately 716 nm.
  • the transmittance of the first filter 20 is the minimum value (approximately 1.9%) at a wavelength of approximately 704 nm (absorption maximum).
  • the absorption maximum of the first filter 20 exists at a wavelength of approximately 704 nm.
  • the absorption maximum of the first filter 20 is within a range of 650 nm to 800 nm.
  • the first filter 20 as shown by a broken line in FIG. 4, it may have an absorption maximum at a wavelength of about 760 nm.
  • the second filter 30 is configured by a dielectric multilayer film formed on one surface 20 ⁇ / b> A of the first filter 20.
  • the second filter 30, and TiO 2 is a high-refractive-index film 30H, has a structure in which the SiO 2 which is a low refractive index film 30L are stacked alternately .
  • the high refractive index film 30 ⁇ / b> H and the low refractive index film 30 ⁇ / b> L are each formed in 15 layers, and a total of 30 layers are formed.
  • the odd-numbered layers counted from the first filter 20 side are high-refractive-index films 30H, and the even-numbered layers are low-refractive-index films 30L.
  • the first layer (lowermost layer) closest to the first filter 20 is the high refractive index film 30H
  • the 30th layer (uppermost layer) closest to the atmosphere is the low refractive index film 30L.
  • the order in which the high refractive index film 30H and the low refractive index film 30L are stacked is not limited to this example.
  • the odd-numbered layers counted from the first filter 20 side are the low-refractive index films 30L, and the even-numbered layers are high.
  • the refractive index film 30H may be used.
  • the number of layers of the high refractive index film 30H and the low refractive index film 30L may be different by one.
  • the number of layers of the low refractive index film 30L is set to the high refractive index similarly to the third filter 40 described later.
  • One more than the number of layers of the film 30H is also possible.
  • the high refractive index film 30H is made of TiO 2 , but is not limited thereto, and may be a material such as ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , for example. That is, the material of the high refractive index film 30H is preferably a material having a refractive index larger than 2.0.
  • the low refractive index film 30L is not limited to SiO 2 but may be a material such as MgF 2 . That is, the material of the low refractive index film 30L is preferably a material having a refractive index smaller than that of the high refractive index film 30H, and more preferably a material having a refractive index smaller than 1.5.
  • Each layer (the low refractive index film 30L and the high refractive index film 30H) of the second filter 30 is alternately vacuum deposited by a known vacuum deposition apparatus.
  • the center wavelength (720 nm) in FIG. 5 is the center wavelength when designing the film thickness.
  • the second filter 30 includes a total of 30 layers of a high refractive index film 30H and a low refractive index film 30L, and the total film thickness (physical film thickness) at that time is about 3.1 ⁇ m. It has become.
  • the number of layers of the second filter 30 is preferably 20 to 60 layers, and the total film thickness at that time is preferably 2.0 ⁇ m to 6.0 ⁇ m.
  • the optical film thickness of the low refractive index film 30L of the second filter 30 is 0.10 to 2.58, and the average value of the optical film thickness is 0.93.
  • the optical film thickness of the high refractive index film 30H of the second filter 30 is 0.18 to 1.78, and the average value of the optical film thickness is 1.21.
  • the average value of the optical film thickness of the low refractive index film 30L is smaller than the average value of the optical film thickness of the high refractive index film 30H, and the optical value of the low refractive index film 30L.
  • Thickness ratio between the average value of the film thickness and the average value of the optical film thickness of the high refractive index film 30H [average value of the optical film thickness of the low refractive index film 30L / average value of the optical film thickness of the high refractive index film 30H ] Is 0.77.
  • the film thickness ratio between the average value of the optical film thickness of the low refractive index film 30L and the average value of the optical film thickness of the high refractive index film 30H is preferably 0.50 to 0.85.
  • the second filter 30 has a transmission characteristic in substantially the entire visible light region (400 nm to 700 nm) and a transmission characteristic in a part of the near infrared light region (700 nm to 1100 nm).
  • FIG. 6 shows the filter characteristics of the second filter 30 with a solid line when the incident angle ⁇ of light (see FIG. 1) is 0 ° (in the case of vertical incidence).
  • a broken line (thin line) in FIG. 6 indicates a filter characteristic obtained by combining the filter characteristic of the first filter 20 (see FIG. 4) and the filter characteristic of the second filter 30 described above.
  • the second filter 30 has a transmission characteristic in substantially the entire visible light region (400 nm to 700 nm), and rapidly transmits on the long wavelength side (longer wavelength side than 680 nm) of the visible light region. It has a transmission characteristic with a decreasing rate.
  • the range where the transmittance of the second filter 30 is 50% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 694 nm.
  • the range where the transmittance of the second filter 30 is 80% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to about 690 nm.
  • the range in which the transmittance of the second filter 30 is 90% or more is a wavelength band of approximately 408 nm to approximately 688 nm.
  • a range where the transmittance of the second filter 30 is 95% or more is a wavelength band of about 410 nm to about 686 nm.
  • the second filter 30 has transmission characteristics in a part of the near infrared light region (700 nm to 1100 nm).
  • the wavelength band having the transmission characteristics in the near-infrared light region of the second filter 30 is provided apart from the wavelength band having the transmission characteristics in the visible light region.
  • the second filter 30 has a transmission characteristic in a part of the wavelength band of 800 nm to 950 nm, and the transmittance rapidly increases on the longer wavelength side than 800 nm in the near infrared light region. It has a transmission characteristic in which the transmittance sharply decreases on the shorter wavelength side than 950 nm.
  • the range in which the transmittance of the second filter 30 is 50% or more is a wavelength band of approximately 830 nm to approximately 916 nm.
  • the range in which the transmittance of the second filter 30 is 80% or more is a wavelength band of about 836 nm to about 908 nm.
  • the range in which the transmittance of the second filter 30 is 90% or more is a wavelength band of approximately 838 nm to approximately 904 nm.
  • the range in which the transmittance of the second filter 30 is 95% or more is a wavelength band of approximately 840 nm to approximately 902 nm.
  • the cutoff characteristic of the second filter 30 in the vicinity of the boundary between the visible light region and the near-infrared light region is as follows.
  • the range in which the transmittance of the second filter 30 is 20% or less is a wavelength band of about 700 nm to about 824 nm.
  • the range in which the transmittance of the second filter 30 is 10% or less is a wavelength band of about 706 nm to about 818 nm.
  • the range where the transmittance of the second filter 30 is 5% or less is the wavelength band of approximately 712 nm to approximately 812 nm.
  • the third filter 40 is composed of a dielectric multilayer film formed on the other surface 20 ⁇ / b> B of the first filter 20.
  • the TiO 2 is a high-refractive-index film 40H, has a structure in which the SiO 2 which is a low refractive index film 40L are stacked alternately .
  • the high refractive index film 40H is formed of 12 layers, and the low refractive index film 40L is formed of 13 layers, for a total of 25 layers.
  • the odd-numbered layers counted from the first filter 20 side are the low-refractive index films 40L, and the even-numbered layers are the high-refractive index films 40H.
  • the first layer (lowermost layer) on the first filter 20 side is the low refractive index film 40L
  • the 25th layer (uppermost layer) on the most atmospheric side is also the low refractive index film 40L.
  • the order in which the high refractive index film 40H and the low refractive index film 40L are stacked is not limited to this example.
  • the odd-numbered layers counted from the first filter 20 side are the high-refractive index films 40H, and the even-numbered layers are low.
  • the refractive index film 40L may be used.
  • the number of layers of the high refractive index film 40H and the low refractive index film 40L may be the same.
  • the high refractive index film 40H is made of TiO 2 , but is not limited thereto, and may be a material such as ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , for example. That is, as the material for the high refractive index film 40H, a material having a refractive index larger than 2.0 is preferable.
  • the low refractive index film 40L is not limited to SiO 2 but may be a material such as MgF 2 . That is, the material of the low refractive index film 40L is preferably a material having a refractive index smaller than that of the high refractive index film 40H, and more preferably a material having a refractive index smaller than 1.5.
  • Each layer of the third filter 40 (low refractive index film 40L and high refractive index film 40H) is alternately vacuum-deposited by a known vacuum deposition apparatus.
  • the vapor deposition film thickness is designed based on the optical film thickness that is the product of the refractive index and the physical film thickness, and the optical film thickness of the third filter 40 is designed, for example, as shown in FIG.
  • the center wavelength (720 nm) in FIG. 7 is the center wavelength when designing the film thickness.
  • the third filter 40 As shown in FIG. 7, in the third filter 40, a total of 25 layers of a high refractive index film 40H and a low refractive index film 40L are laminated, and the total film thickness (physical film thickness) at that time is about 3.0 ⁇ m. It has become.
  • the number of layers of the second filter 30 is preferably 20 to 60 layers, and the total film thickness at that time is preferably 2.4 ⁇ m to 7.2 ⁇ m.
  • the third filter 40 has transmission characteristics in a substantially entire visible light region (400 nm to 700 nm) and a short wavelength side region of the near infrared light region (700 nm to 1100 nm).
  • FIG. 8 shows the filter characteristics of the third filter 40 when the light incident angle ⁇ (see FIG. 1) is 0 ° (in the case of vertical incidence).
  • the third filter 40 has transmission characteristics from the short wavelength end (400 nm) of the visible light region to the near infrared light region, and in the near infrared light region (shorter wavelength side than 900 nm). And has a transmission characteristic in which the transmittance decreases rapidly. In substantially the entire visible light region, the transmittance of the third filter 40 is 95% or more. Further, in the near infrared light region, the third filter 40 has a transmittance of 95% or more from the short wavelength end (700 nm) of the near infrared light region to the shorter wavelength side than 900 nm. In this case, the transmittance of the third filter 40 is 95% at a wavelength of approximately 862 nm.
  • the transmittance of the third filter 40 is 90% at a wavelength of about 866 nm
  • the transmittance of the third filter 40 is 80% at a wavelength of about 870 nm
  • the transmission of the third filter 40 is at a wavelength of about 876 nm.
  • the rate is 50%.
  • the cutoff characteristic of the third filter 40 in the near-infrared light region is as follows.
  • the range in which the transmittance of the third filter 40 is 20% or less is a wavelength band from approximately 886 nm to the long wavelength end (1100 nm) in the near infrared light region.
  • the range in which the transmittance of the third filter 40 is 10% or less is a wavelength band from approximately 892 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the range in which the transmittance of the third filter 40 is 5% or less is a wavelength band from approximately 900 nm to the long wavelength end (1100 nm) in the near infrared light region.
  • the filter characteristics of the first to third filters 20, 30, and 40 of the present embodiment are as shown in FIGS. 4, 6, and 8, respectively.
  • the filter characteristics of the entire optical filter 10 are obtained by integrating the filter characteristics of the first filter 20, the filter characteristics of the second filter 30, and the filter characteristics of the third filter 40 (see FIG. 3). That is, the transmittance waveform of the first filter 20 (see FIG. 4), the transmittance waveform of the second filter 30 (see FIG. 6), and the transmittance waveform of the third filter 40 (see FIG. 8) overlap.
  • a transmittance waveform of the optical filter 10 shown in FIG. 3 is obtained. That is, according to the optical filter 10 of the present embodiment, as shown in FIG.
  • filter characteristics having transmission characteristics in two wavelength bands of the visible light region and the near infrared light region can be obtained.
  • the wavelength band having transmission characteristics in the near-infrared light region of the optical filter 10 is provided apart from the wavelength band having transmission properties in the visible light region.
  • the optical filter 10 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm), and has a longer wavelength side (wavelength longer than 600 nm) in the visible light region. Side), the transmittance gradually decreases.
  • Such characteristics of the optical filter 10 in the visible light region are mainly obtained by the first filter 20.
  • the waveform in which the transmittance of the optical filter 10 decreases on the long wavelength side (longer wavelength side than 600 nm) in the visible light region is substantially similar to the waveform in which the transmittance of the first filter 20 decreases. That is, in the region on the long wavelength side of the visible light region, the transmittance of the second filter 30 and the third filter 40 is approximately 100% (95% or more).
  • the filter characteristics of the filter 20 are reflected almost as they are.
  • the range in which the transmittance of the optical filter 10 is 50% or more in the visible light region is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 646 nm.
  • the range in which the transmittance of the optical filter 10 is 80% or more is a wavelength band of about 420 nm to about 610 nm.
  • a range where the transmittance of the optical filter 10 is 90% or more is a wavelength band of about 450 nm to about 580 nm.
  • a range where the transmittance of the optical filter 10 is 95% or more is a wavelength band of about 470 nm to about 540 nm.
  • the optical filter 10 has transmission characteristics in a part of the near-infrared light region. That is, the optical filter 10 is cut off in the first band A1 provided from the long wavelength side of the visible light region to the near infrared light region and the third band A3 provided on the longer wavelength side than the first band A1.
  • the second band A2 provided between the first band A1 and the third band A3 has a transmission characteristic.
  • the first band A1 is provided from a longer wavelength side than 640 nm to a longer wavelength side than 800 nm, and a cutoff band having a transmittance of 5% or less is provided in the first band A1.
  • the third band A3 is provided from the shorter wavelength side than 900 nm to the long wavelength end (1100 nm) in the near-infrared light region, and the third band A3 has a cutoff band in which the transmittance is 5% or less. Is provided.
  • the transmission band of the second band A2 is formed by the cutoff band of the first band A1 and the cutoff band of the third band A3.
  • the transmittance of the optical filter 10 is 50% at a wavelength longer than 800 nm (approximately 830 nm) and a wavelength shorter than 900 nm (approximately 876 nm).
  • the wavelength band in which the transmittance of the first band A1 is 50% is a wavelength band of about 646 nm to about 830 nm.
  • the wavelength band in which the transmittance of the second band A2 is 50% is a wavelength band of approximately 830 nm to approximately 876 nm.
  • the wavelength band in which the transmittance of the third band A3 is 50% is a wavelength band from approximately 876 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the cutoff characteristics in the first band A1 of the optical filter 10 are as follows.
  • the range in which the transmittance of the optical filter 10 is 20% or less is a wavelength band of approximately 680 nm to approximately 824 nm.
  • the range in which the transmittance of the optical filter 10 is 10% or less is a wavelength band of about 686 nm to about 818 nm.
  • the range in which the transmittance of the optical filter 10 is 5% or less is a wavelength band of about 690 nm to about 812 nm.
  • the optical filter 10 has a characteristic that in the first band A1, the transmittance rapidly increases on the longer wavelength side than 800 nm in the near-infrared light region.
  • the cutoff characteristic in the third band A3 of the optical filter 10 is as follows.
  • the range in which the transmittance of the optical filter 10 is 20% or less is a wavelength band from approximately 884 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the range in which the transmittance of the optical filter 10 is 10% or less is a wavelength band from approximately 892 nm to the long wavelength end (1100 nm) in the near infrared light region.
  • the range in which the transmittance of the optical filter 10 is 5% or less is a wavelength band from approximately 900 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the optical filter 10 has a characteristic that in the third band A3, the transmittance sharply decreases on the shorter wavelength side than 900 nm in the near infrared light region.
  • the transmission characteristics of the optical filter 10 in the second band A2 are as follows.
  • the range in which the transmittance of the optical filter 10 is 50% or more is a wavelength band of approximately 830 nm to approximately 876 nm.
  • the range in which the transmittance of the optical filter 10 is 80% or more is a wavelength band of about 836 nm to about 870 nm.
  • a range where the transmittance of the optical filter 10 is 90% or more is a wavelength band of about 840 nm to about 866 nm.
  • the range in which the transmittance of the optical filter 10 is 95% or more is a wavelength band of approximately 842 nm to approximately 864 nm.
  • the optical filter 10 has a characteristic that the transmittance rapidly increases on the longer wavelength side than 800 nm in the near infrared light region, and from 900 nm in the near infrared light region. Also has a characteristic that the transmittance decreases rapidly on the short wavelength side.
  • the cutoff characteristic on the short wavelength side of the first band A1 of the optical filter 10 is formed by the first filter 20. Further, the cutoff characteristic on the long wavelength side of the first band A1 of the optical filter 10 and the transmission characteristic on the short wavelength side of the second band A2 are formed by the second filter 30. In addition, the transmission characteristics on the long wavelength side of the second band A2 of the optical filter 10 and the cutoff characteristics on the short wavelength side of the third band A3 are formed by the third filter 40.
  • the bandwidth of the cutoff band where the transmittance is 5% or less is at least 100 nm. This point will be described below.
  • the optical filter 10 in the first band A1, in the near-infrared light region, has a wavelength band from the short wavelength end (700 nm) of the near-infrared light region to the longer wavelength side than 800 nm.
  • a cut-off band in which the transmittance is 5% or less is provided. More specifically, the cutoff band of the first band A1 is continuously provided not only in the near-infrared light region but also on the long wavelength side of the visible light region, and specifically, approximately 690 nm to approximately 812 nm. It is provided in the range.
  • the cut-off band of the first band A1 of the optical filter 10 is formed by the first filter 20 and the second filter 30. Specifically, in the visible light region, in the wavelength band from the long wavelength side (approximately 690 nm) of the visible light region to the long wavelength end (700 nm) of the visible light region, the cutoff band of the first band A1 is the first
  • the filter 20 roughly follows the filter characteristics of the filter 20. That is, in the wavelength band from the long wavelength side (approximately 690 nm) of the visible light region to the long wavelength end (700 nm) of the visible light region, the transmittance of the first filter 20 is approximately 0% (5% or less). Therefore, the filter characteristic of the optical filter 10 reflects the filter characteristic of the first filter 20 almost as it is.
  • the cutoff band of the first band A1 is The filter characteristics of the first filter 20 and the filter characteristics of the second filter 30 are combined.
  • the cutoff band of the first band A1 is the filter characteristic of the second filter 30. It has been imitated.
  • the transmittance of the second filter 30 is approximately 0% (5% or less). Therefore, the filter characteristic of the optical filter 10 reflects the filter characteristic of the second filter 30 substantially as it is.
  • the cut-off band of the first band A1 of the optical filter 10 is formed by the first filter 20 and the second filter 30.
  • the bandwidth of the cut-off band where the transmittance is 5% or less in the near infrared light region is set to at least 100 nm, and in this example, is approximately 112 nm.
  • the bandwidth of the cutoff band in which the transmittance of the first band A1 of the optical filter 10 is 5% or less is in the visible light region. From the long wavelength side to the near infrared light region, it is approximately 122 nm.
  • the optical filter 10 has a filter characteristic in which the transmittance rapidly increases near the boundary between the first band A1 and the second band A2 on the longer wavelength side than 800 nm in the near-infrared light region. In the range of about 812 nm to about 842 nm, the transmittance of the optical filter 10 increases from 5% to 95%.
  • the cut-off characteristic on the long wavelength side of the first band A1 and the transmission characteristic on the short wavelength side of the second band A2 of the optical filter 10 substantially follow the filter characteristic of the second filter 30.
  • the transmittance of the first filter 20 and the third filter 40 is approximately 100% (95% or more) on the longer wavelength side (approximately 812 nm to approximately 842 nm) than 800 nm in the near infrared light region.
  • the filter characteristics of the optical filter 10 reflect the filter characteristics of the second filter 30 almost as they are.
  • the second filter 30 forms the cutoff characteristic on the long wavelength side of the first band A1 of the optical filter 10 and the transmission characteristic on the short wavelength side of the second band A2.
  • a transmission band of 95% or more is provided.
  • the transmission band of the second band A2 of the optical filter 10 is substantially similar to the filter characteristics of the second filter 30 and the third filter 40. That is, in the wavelength band of approximately 842 nm to approximately 864 nm, the transmittance of the first filter 20 and the third filter 40 is approximately 100% (95% or more), so that the filter characteristic of the optical filter 10 is the second filter.
  • the 30 filter characteristics are reflected as they are.
  • the transmission band of the second band A2 of the optical filter 10 is formed by the second filter 30.
  • the bandwidth of the transmission band where the transmittance is 95% or more is approximately 22 nm in this example.
  • the bandwidth of the transmission band where the transmittance is 50% or more is approximately 46 nm in this example.
  • the optical filter 10 has a filter characteristic in which the transmittance rapidly decreases near the boundary between the second band A2 and the third band A3 on the shorter wavelength side than 900 nm in the near-infrared light region. In the range from about 864 nm to about 900 nm, the transmittance of the optical filter 10 decreases from 95% to 5%.
  • the transmission characteristics on the long wavelength side of the second band A2 of the optical filter 10 and the cutoff characteristics on the short wavelength side of the third band A3 are substantially similar to the filter characteristics of the third filter 40.
  • the transmittance of the first filter 20 and the second filter 30 is approximately 100% (95% or more).
  • the filter characteristics of the third filter 40 are reflected almost as they are.
  • the transmission characteristics on the long wavelength side of the second band A2 of the optical filter 10 and the cutoff characteristics on the short wavelength side of the third band A3 are formed by the third filter 40.
  • a cutoff band is provided in which the transmittance of the optical filter 10 is 5% or less in the wavelength band from the shorter wavelength side than 900 nm to the long wavelength end (1100 nm) of the near infrared light region. It has been.
  • the cut-off band of the third band A3 of the optical filter 10 is substantially similar to the filter characteristics of the third filter 40. That is, in the wavelength band from the shorter wavelength side (approximately 900 nm) than 900 nm to the long wavelength end (1100 nm) in the near-infrared light region, the transmittance of the third filter 40 is approximately 0% (5% or less).
  • the filter characteristics of the optical filter 10 reflect the filter characteristics of the third filter 40 substantially as they are.
  • the third filter 40 forms the cutoff band of the third band A3 of the optical filter 10.
  • the bandwidth of the cut-off band where the transmittance is 5% or less is approximately 200 nm in this example.
  • the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm. Can be ensured widely, and the cutoff characteristic of the first band A1 can be sufficiently ensured. Thereby, the transmission of the red component can be sufficiently suppressed, and the occurrence of color mixing due to the transmission of the red component can be suppressed. As a result, it is possible to suppress a decrease in color reproducibility of an image captured by the imaging device.
  • the upper limit value of the bandwidth of the cutoff band of the first band A1 is not particularly limited, and may be, for example, 150 nm or 250 nm.
  • the second filter 30 since the half-value wavelength of the second filter 30 (the wavelength at which the transmittance is 50%) is on the longer wavelength side than the half-value wavelength of the first filter 20, the second filter 30 absorbs the light by the second absorption. The amount of light reflected by the filter 30 is suppressed. Thereby, generation
  • the optical filter 10 is more visible than when the first filter 20 is formed of a dielectric multilayer film.
  • the incident angle dependency in the light region can be reduced, and the occurrence of ghosts and flares in the image captured by the imaging device can be suppressed.
  • FIG. 9 is a diagram illustrating a part of each filter characteristic when the light incident angle ⁇ (see FIG. 1) is 0 °, 10 °, 20 °, and 30 ° in the optical filter 10.
  • the filter characteristic when the light incident angle ⁇ is 0 ° is denoted by L1
  • the filter characteristic when the light incident angle ⁇ is 10 ° is denoted by L2
  • L3 indicates the filter characteristic when the light incident angle ⁇ is 30 °, and L4.
  • the waveform of the optical filter 10 shifts to the short wavelength side as the incident angle ⁇ of light increases.
  • the filter characteristics of the optical filter 10 are formed by the second and third filters 30 and 40 made of a dielectric multilayer film in the near-infrared light region.
  • the incident angle dependency of the filter 10 is increased. Therefore, in the near-infrared light region, when it is desired to detect only light of a specific wavelength by the image sensor, the detection efficiency may be deteriorated.
  • the shift amount of the waveform of the optical filter 10 to the short wavelength side is smaller than in the near-infrared light region.
  • the filter characteristics of the optical filter 10 are formed by the first filter 20 made of an infrared absorber (infrared absorbing resin) in the visible light region.
  • region of the optical filter 10 can be reduced, and it can suppress that a ghost and flare generate
  • the first filter 20 has almost no incident angle dependency, and even when the light incident angle ⁇ is 30 °, the shift amount to the short wavelength side is several nm. That is, the incident angle dependency in the visible light region shown in FIG. 9 is mainly due to the second filter 30, not the first filter 20.
  • the filter characteristics of the optical filter 10 are formed by the second and third filters 30 and 40 in the near-infrared light region. Specifically, the transmission characteristic on the short wavelength side of the second band A2 of the optical filter 10 is formed by the second filter 30, and the transmission characteristic on the long wavelength side of the second band A2 is formed by the third filter 40. Yes. Thereby, in the second band A2 of the optical filter 10, the bandwidth of the transmission band in which the transmittance is 50% or more can be easily changed, and various filter characteristics of the optical filter 10 with respect to the near infrared light region can be changed. Respond flexibly to requests.
  • the bandwidth of the transmission band where the transmittance is 50% or more is preferably set to 35 nm to 200 nm.
  • the wavelength band where the transmittance of the second band A2 is 50% is preferably set in the range of 800 nm to 1000 nm.
  • the third filter 40 having a filter characteristic that the transmittance rapidly decreases at a wavelength near 1000 nm may be used.
  • the average value of the optical film thickness / the average value of the optical film thickness of the high refractive index film 30H] is set to a value within the range of 0.50 to 0.85.
  • the bandwidth of the cutoff band having the cutoff characteristic of the second filter 30 can be narrowed, and the transmission band (second band A2) is set in a desired range in the near infrared light region separated from the visible light region. Can be set.
  • the bandwidth of the wavelength at which the transmittance of the first band A1 is 50%, the bandwidth of the wavelength at which the transmittance of the first filter 20 is 50%, and the transmittance of the second filter 30 are as follows. It is larger than the bandwidth of the wavelength of 50%. Accordingly, the first and second filters 20 and 30 can set the transmission band (second band A2) in a desired range in the near-infrared light region.
  • the optical filter 10 has transmission characteristics in substantially the entire visible light region.
  • the present invention is not limited to this, and the optical filter 10 has transmission properties only in a part of the visible light region. It is good also as a structure.
  • the first filter 20 of the above embodiment is an example, and the wavelength at which the transmittance is 50% in the visible light region is a wavelength in the range of 640 nm to 660 nm, and the absorption maximum is in the range of 650 nm to 800 nm.
  • the first filter 20 may have a configuration other than the above embodiment.
  • the infrared rays absorber which made the transparent resin contain the compound which absorbs infrared rays was used as the 1st filter 20, it is not restricted to this, As 1st filter 20, base materials, such as glass, are used. You may use the infrared absorber of the structure which apply
  • the second filter 30 of the above embodiment is an example, and the wavelength at which the transmittance is 50% is a wavelength in the range of 685 nm to 710 nm, and the cutoff band at which the transmittance is 5% or less is close. As long as it is provided over the range of at least 100 nm in the infrared light region, the second filter 30 may have a configuration other than the above embodiment.
  • the second filter 30 may be configured by combining a plurality of filters (dielectric multilayer films).
  • the third filter 40 may be configured by combining a plurality of filters (dielectric multilayer films).
  • the optical filter 100 shown in FIGS. 10 to 15 is an optical filter provided in the imaging device, and has transmission characteristics in two wavelength bands, a visible light region and a near infrared light region.
  • the wavelength band having the transmission characteristic in the visible light region and the wavelength band having the transmission characteristic in the near infrared light region are provided apart from each other.
  • the optical filter 100 includes a first filter 120 made of an infrared absorber, and a second filter 130 made of a dielectric multilayer film coated on one surface of the first filter 120.
  • a third filter 140 made of a dielectric multilayer film coated on the other surface of the first filter 120.
  • the optical filter 100 exhibits filter characteristics (transmittance waveform) as shown in FIG.
  • each configuration of the optical filter 100 will be described.
  • the 1st filter 120 which is an infrared rays absorber becomes the structure by which the infrared rays absorption ink (infrared absorption pigment
  • the transparent substrate 120a is a colorless and transparent glass substrate.
  • a glass substrate for example, D263Teco (manufactured by Schott), BK7, or the like can be used.
  • the infrared absorbing dye 120b for example, squarylium dye, phthalocyanine dye, cyanine dye, or the like can be used.
  • Such an infrared absorbing dye 120b is applied to the surface of the transparent substrate 120a in the state of a coating liquid prepared by mixing with a transparent resin, a solvent, or the like.
  • a glass substrate as the transparent base material 120a, the rigidity of the first filter 120 can be improved, and the first filter 120 of the second and third filters 130 and 140, which will be described later, is caused by stress during film formation. Distortion can be suppressed.
  • the transparent substrate 120a may be other than glass as long as it is a colorless and transparent substrate.
  • the transparent substrate 120a may be a transparent resin such as polyethylene terephthalate, polycarbonate, and cycloolefin polymer.
  • the manufacture of the first filter 120 having the above configuration is performed by the following procedure, for example.
  • the infrared absorbing dye 120b is mixed with a transparent resin, a solvent, and the like to prepare a coating liquid for the infrared absorbing dye 120b (coating liquid preparing step).
  • a cyanine infrared absorbing dye as the infrared absorbing dye 120b is added at a ratio of 0.1 to 1.0% by weight to prepare a coating liquid for the infrared absorbing dye 120b.
  • the transparent resin for example, acrylic, epoxy, polystyrene, polyester, cyclic olefin, or the like can be used.
  • the solvent for example, ketone (methyl ethyl ketone, etc.), hydrocarbon (toluene, etc.), ester (methyl acetate, etc.), ether (tetrahydrofuran, etc.), alcohol (ethanol, etc.) can be used. is there.
  • polymerization initiators such as a photoinitiator and a thermal polymerization initiator, as needed.
  • dye 120b for example, epoxy resin coating material
  • a coating liquid preparation process Can be omitted.
  • the infrared absorbing dye 120b coating liquid prepared in the coating liquid preparation process is uniformly applied to the surface of the transparent substrate 120a with a predetermined thickness (application process).
  • the coating liquid is applied using, for example, a spin coater, a die coater, a bar coater, or the like.
  • the transparent base material 120a coated with the coating liquid in the coating step is dried, the solvent contained in the coating liquid is volatilized, and the transparent resin contained in the coating liquid is cured (drying). Process).
  • the solvent is volatilized and the transparent resin is cured by heating at about 100 ° C. for about 5 minutes using an oven, a hot plate, or the like.
  • a photopolymerization initiator is added, the transparent resin is cured using photopolymerization.
  • the first filter 120 has an absorption maximum near the boundary between the visible light region and the near-infrared light region, and the transmittance of the first filter 120 is minimized.
  • FIG. 12 shows the filter characteristics of the first filter 120 when the incident angle ⁇ of light (see FIG. 1) is 0 ° (in the case of vertical incidence).
  • the first filter 120 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm), and gently transmits on the long wavelength side (longer wavelength side than 600 nm) of the visible light region. It has a transmission characteristic with a decreasing rate.
  • the range where the transmittance of the first filter 120 is 50% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 654 nm.
  • the range in which the transmittance of the first filter 120 is 80% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 606 nm.
  • the range in which the transmittance of the first filter 120 is 90% or more is a wavelength band of approximately 584 nm from the short wavelength end (400 nm) in the visible light region.
  • a range where the transmittance of the first filter 120 is 95% or more is a wavelength band of about 434 nm to about 564 nm.
  • the first filter 120 has a transmission characteristic in substantially the entire region of the near infrared light region (700 nm to 1100 nm), and the transmittance on the short wavelength side (shorter wavelength side than 750 nm) of the near infrared light region. Has increased transmission characteristics.
  • the range in which the transmittance of the first filter 120 is 50% or more is a wavelength band from approximately 796 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the range in which the transmittance of the first filter 120 is 80% or more is the wavelength band from approximately 814 nm to the long wavelength end (1100 nm) in the near infrared light region.
  • the range in which the transmittance of the first filter 120 is 90% or more is the wavelength band from approximately 826 nm to the long wavelength end (1100 nm) in the near infrared light region.
  • the range in which the transmittance of the first filter 120 is 95% or more is the wavelength band from approximately 838 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the change rate (increase rate) of the transmittance of the first filter 120 is larger than the change rate (decrease rate) on the long wavelength side in the visible light region.
  • the absorption characteristics of the first filter 120 near the boundary between the visible light region and the near-infrared light region are as follows.
  • the range in which the transmittance of the first filter 120 is 20% or less is a wavelength band of approximately 722 nm to approximately 778 nm.
  • the range in which the transmittance of the first filter 120 is 10% or less is a wavelength band of approximately 742 nm to approximately 762 nm.
  • the transmittance of the first filter 120 is a minimum value (approximately 8.6%) at a wavelength of approximately 752 nm (absorption maximum).
  • the absorption maximum of the first filter 120 exists at a wavelength of approximately 752 nm, but the absorption maximum of the first filter 120 is within the range of 650 nm to 800 nm. Good.
  • the second filter 130 is configured by a dielectric multilayer film formed on one surface 120 ⁇ / b> A of the first filter 120.
  • the second filter 130 is formed on the surface of the first filter 120 that is not provided with the infrared absorbing dye 120b described above. That is, the second filter 130 is provided on the surface of the transparent substrate 120 a of the first filter 120.
  • the second filter 130 a TiO 2 is a high-refractive-index film 130H, has a structure in which the SiO 2 which is a low refractive index film 130L are alternately stacked.
  • the second filter 130 has a configuration in which the second filter 30 and the third filter 40 of the optical filter 10 of the first embodiment described above are formed as one filter. That is, the second filter 130 is configured by combining a plurality of filters.
  • a dielectric multilayer film having substantially the same configuration as that of the second filter 30 (see FIG. 5) of the optical filter 10 of the first embodiment is formed on one surface 120A of the first filter 120.
  • a dielectric multilayer film having substantially the same configuration as that of the third filter 40 (see FIG. 7) of the optical filter 10 of the first embodiment is further formed on the multilayer film.
  • the second filter 130 27 layers of the high-refractive index film 130H are formed and 28 layers of the low-refractive index film 130L are formed, for a total of 55 layers.
  • the odd-numbered layers counted from the first filter 120 side are the low-refractive index films 130L, and the even-numbered layers are the high-refractive index films 130H.
  • the first layer (lowermost layer) on the first filter 120 side is the low refractive index film 130L, and the 55th layer (uppermost layer) on the most atmospheric side is also the low refractive index film 130L.
  • the stacking order of the high refractive index film 130H and the low refractive index film 130L is not limited to this example, and the odd-numbered layer counted from the first filter 120 side is the high-refractive index film 130H, and the even-numbered layer is low.
  • the refractive index film 130L may be used.
  • the number of layers of the high refractive index film 130H and the low refractive index film 130L may be the same.
  • the high refractive index film 130H is made of TiO 2 , but is not limited thereto, and may be a material such as ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , for example. That is, the material of the high refractive index film 130H is preferably a material having a refractive index larger than 2.0.
  • the low refractive index film 130L is not limited to SiO 2 but may be a material such as MgF 2 . That is, the material of the low refractive index film 130L is preferably a material having a refractive index smaller than that of the high refractive index film 130H, and more preferably a material having a refractive index smaller than 1.5.
  • Each layer (the low refractive index film 130L and the high refractive index film 130H) of the second filter 130 is a surface of the both surfaces of the first filter 120 on which the infrared absorbing dye 120b is not provided by a known vacuum deposition apparatus. Alternately vacuum deposition.
  • the vapor deposition film thickness is designed based on the optical film thickness that is the product of the refractive index and the physical film thickness. Since the configuration of each layer of the second filter 130 is substantially the same as the configuration of each layer of the second and third filters 30 and 40 of the optical filter 10 of the first embodiment (see FIGS. 5 and 7), it will be described here. Is omitted.
  • the average optical film thickness of the low refractive index film 130L is smaller than the average optical film thickness of the high refractive index film 130H.
  • the average value of the optical film thickness of the film 130H] is preferably 0.50 to 0.85.
  • the second filter 130 has a transmission characteristic in substantially the entire visible light region (400 nm to 700 nm) and a transmission characteristic in a part of the near infrared light region (700 nm to 1100 nm).
  • FIG. 13 shows the filter characteristics of the second filter 130 when the light incident angle ⁇ (see FIG. 1) is 0 ° (in the case of vertical incidence).
  • the second filter 130 has a transmission characteristic in substantially the entire visible light region (400 nm to 700 nm), and rapidly transmits on the long wavelength side (longer wavelength side than 680 nm) of the visible light region. It has a transmission characteristic with a decreasing rate.
  • the range in which the transmittance of the second filter 130 is 50% or more is a wavelength band from approximately 406 nm to approximately 694 nm.
  • the range in which the transmittance of the second filter 130 is 80% or more is a wavelength band from approximately 408 nm to approximately 690 nm.
  • the range in which the transmittance of the second filter 130 is 90% or more is a wavelength band of about 408 nm to about 688 nm.
  • the range where the transmittance of the second filter 130 is 95% or more is the wavelength band of about 410 nm to about 686 nm.
  • the second filter 130 has transmission characteristics in a part of the near infrared light region (700 nm to 1100 nm).
  • the wavelength band having the transmission characteristics in the near-infrared light region of the second filter 130 is provided apart from the wavelength band having the transmission characteristics in the visible light region.
  • the second filter 130 has a transmission characteristic in a part of the wavelength band of 800 nm to 950 nm, and the transmittance rapidly increases on the longer wavelength side than 800 nm in the near infrared light region. It has a transmission characteristic in which the transmittance sharply decreases on the shorter wavelength side than 950 nm.
  • the range in which the transmittance of the second filter 130 is 50% or more is a wavelength band of approximately 830 nm to approximately 876 nm.
  • a range where the transmittance of the second filter 130 is 80% or more is a wavelength band of about 836 nm to about 868 nm.
  • the range where the transmittance of the second filter 130 is 90% or more is the wavelength band of about 838 nm to about 866 nm.
  • the range in which the transmittance of the second filter 130 is 95% or more is a wavelength band of about 840 nm to about 862 nm.
  • the cutoff characteristic of the second filter 130 in the vicinity of the boundary between the visible light region and the near infrared light region is as follows.
  • the range in which the transmittance of the second filter 130 is 20% or less is a wavelength band of about 700 nm to about 824 nm.
  • a range where the transmittance of the second filter 130 is 10% or less is a wavelength band of about 706 nm to about 818 nm.
  • the range in which the transmittance of the second filter 130 is 5% or less is a wavelength band of approximately 712 nm to approximately 812 nm.
  • the third filter 140 is composed of a dielectric multilayer film formed on the other surface 120 ⁇ / b> B of the first filter 120.
  • the third filter 140 is formed on the surface of the first filter 120 on which the infrared absorbing dye 120b described above is provided. That is, the third filter 140 is provided on the surface of the infrared absorbing dye 120b of the first filter 120.
  • the third filter 140 is configured as an antireflection film having filter characteristics as shown in FIG.
  • the third filter 140 has a configuration in which TiO 2 that is the high refractive index film 140H and SiO 2 that is the low refractive index film 140L are alternately stacked. .
  • Four high refractive index films 140H are formed, and five low refractive index films 140L are formed, for a total of nine layers.
  • the odd-numbered layers counted from the first filter 120 side are the low-refractive index films 140L, and the even-numbered layers are the high-refractive index films 140H.
  • the first layer (lowermost layer) closest to the first filter 120 is the low refractive index film 140L
  • the ninth layer (uppermost layer) closest to the atmosphere is also the low refractive index film 140L.
  • the order in which the high refractive index film 140H and the low refractive index film 140L are stacked is not limited to this example, and the odd-numbered layer counted from the first filter 120 side is the high-refractive index film 140H, and the even-numbered layer is low.
  • the refractive index film 140L may be used.
  • the number of layers of the high refractive index film 140H and the low refractive index film 140L may be the same.
  • the high refractive index film 140H is made of TiO 2 , but is not limited thereto, and may be a material such as ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , for example. That is, the material of the high refractive index film 140H is preferably a material having a refractive index larger than 2.0.
  • the low refractive index film 140L is not limited to SiO 2 but may be a material such as MgF 2 . That is, the material of the low refractive index film 140L is preferably a material having a refractive index smaller than that of the high refractive index film 140H, and more preferably a material having a refractive index smaller than 1.5.
  • Each layer (the low refractive index film 140L and the high refractive index film 140H) of the third filter 140 is a surface on which the infrared absorbing dye 120b is provided among both surfaces of the first filter 120 by a known vacuum deposition apparatus. Alternately vacuum deposition.
  • the vapor deposition film thickness is designed based on the optical film thickness that is the product of the refractive index and the physical film thickness, and the optical film thickness of the third filter 140 is designed, for example, as shown in FIG.
  • the center wavelength (510 nm) in FIG. 14 is the center wavelength in the film thickness design.
  • the third filter 140 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm) and substantially the entire near infrared light region (700 nm to 1100 nm).
  • FIG. 15 shows the filter characteristics of the third filter 140 when the incident angle ⁇ of light (see FIG. 1) is 0 ° (in the case of vertical incidence).
  • the transmittance of the third filter 140 is 95% or more in substantially the entire visible light region.
  • the third filter 140 has a transmittance of 95% or more from the short wavelength end (700 nm) of the near-infrared light region to the shorter wavelength side than 900 nm.
  • the transmittance of the third filter 140 is 95% at a wavelength of approximately 1012 nm, and the transmittance of the third filter 140 is 90.4% at the long wavelength end (1100 nm) in the near-infrared light region. It has become.
  • the filter characteristics of the first to third filters 120, 130, and 140 of this embodiment are as shown in FIGS. 12, 13, and 15, respectively.
  • the filter characteristics of the entire optical filter 100 are obtained by integrating the filter characteristics of the first filter 120, the filter characteristics of the second filter 130, and the filter characteristics of the third filter 140 (see FIG. 11). That is, the transmittance waveform of the first filter 120 (see FIG. 12), the transmittance waveform of the second filter 130 (see FIG. 13), and the transmittance waveform of the third filter 140 (see FIG. 15) overlap.
  • a transmittance waveform of the optical filter 100 shown in FIG. 11 is obtained. That is, according to the optical filter 100 of the present embodiment, as shown in FIG.
  • filter characteristics having transmission characteristics in two wavelength bands of the visible light region and the near infrared light region can be obtained.
  • the wavelength band having transmission characteristics in the near-infrared light region of the optical filter 100 is provided apart from the wavelength band having transmission properties in the visible light region.
  • the optical filter 100 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm), and has a longer wavelength side (wavelength longer than 600 nm) in the visible light region. Side), the transmittance gradually decreases.
  • Such characteristics of the optical filter 100 in the visible light region are mainly obtained by the first filter 120.
  • the waveform in which the transmittance of the optical filter 100 decreases on the long wavelength side of the visible light region (longer wavelength side than 600 nm) is substantially similar to the waveform in which the transmittance of the first filter 120 decreases. That is, in the region on the long wavelength side of the visible light region, the transmittance of the second filter 130 and the third filter 140 is approximately 100% (95% or more).
  • the filter characteristics of the filter 120 are reflected as they are.
  • the range in which the transmittance of the optical filter 100 is 50% or more is a wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 650 nm.
  • a range where the transmittance of the optical filter 100 is 80% or more is a wavelength band of about 408 nm to about 602 nm.
  • a range where the transmittance of the optical filter 100 is 90% or more is a wavelength band of about 424 nm to about 576 nm.
  • a range where the transmittance of the optical filter 100 is 95% or more is a wavelength band of about 454 nm to about 540 nm.
  • the optical filter 100 has transmission characteristics in a part of the near-infrared light region. That is, the optical filter 100 is cut off in the first band A11 provided from the long wavelength side of the visible light region to the near infrared light region and the third band A13 provided on the longer wavelength side than the first band A11.
  • the second band A12 provided between the first band A11 and the third band A13 has a transmission characteristic.
  • the first band A11 is provided from a longer wavelength side than 640 nm to a longer wavelength side than 800 nm, and a cutoff band having a transmittance of 5% or less is provided in the first band A11.
  • the third band A13 is provided from the shorter wavelength side than 900 nm to the long wavelength end (1100 nm) in the near-infrared light region, and the third band A13 has a cutoff band in which the transmittance is 5% or less. Is provided.
  • the transmission band of the second band A12 is formed by the cutoff band of the first band A11 and the cutoff band of the third band A13.
  • the transmittance of the optical filter 100 is 50% at a wavelength longer than 800 nm (approximately 832 nm) and at a wavelength shorter than 900 nm (approximately 874 nm).
  • the wavelength band in which the transmittance of the first band A11 is 50% is a wavelength band of about 650 nm to about 832 nm.
  • the wavelength band where the transmittance of the second band A12 is 50% is a wavelength band of about 832 nm to about 874 nm.
  • the wavelength band in which the transmittance of the third band A13 is 50% is a wavelength band from approximately 874 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the cutoff characteristic in the first band A11 of the optical filter 100 is as follows.
  • a range where the transmittance of the optical filter 100 is 20% or less is a wavelength band of about 690 nm to about 824 nm.
  • the range in which the transmittance of the optical filter 100 is 10% or less is a wavelength band of approximately 696 nm to approximately 820 nm.
  • the range in which the transmittance of the optical filter 100 is 5% or less is a wavelength band of about 700 nm to about 814 nm.
  • the optical filter 100 has a characteristic that in the first band A11, the transmittance is rapidly increased on the longer wavelength side than 800 nm in the near-infrared light region.
  • the cutoff characteristic in the third band A13 of the optical filter 100 is as follows.
  • the range in which the transmittance of the optical filter 100 is 20% or less is a wavelength band from approximately 884 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the range in which the transmittance of the optical filter 100 is 10% or less is the wavelength band from approximately 890 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the range in which the transmittance of the optical filter 100 is 5% or less is the wavelength band from approximately 898 nm to the long wavelength end (1100 nm) of the near infrared light region.
  • the optical filter 100 has a characteristic that the transmittance is rapidly reduced in the third band A13 on the shorter wavelength side than 900 nm in the near-infrared light region.
  • the transmission characteristics in the second band A12 of the optical filter 100 are as follows.
  • a range where the transmittance of the optical filter 100 is 50% or more is a wavelength band of about 832 nm to about 874 nm.
  • a range where the transmittance of the optical filter 100 is 80% or more is a wavelength band of about 836 nm to about 868 nm.
  • the range in which the transmittance of the optical filter 100 is 90% or more is a wavelength band of approximately 840 nm to approximately 864 nm.
  • the optical filter 100 has a characteristic that the transmittance sharply increases on the longer wavelength side than 800 nm in the near infrared light region, and more than 900 nm in the near infrared light region. Also has a characteristic that the transmittance decreases rapidly on the short wavelength side.
  • the cutoff characteristic on the short wavelength side of the first band A11 of the optical filter 100 is formed by the first filter 120 and the second filter 130. Further, the cutoff characteristic on the long wavelength side of the first band A11 of the optical filter 100 and the transmission characteristic on the short wavelength side of the second band A12 are formed by the second filter 130. Further, the transmission characteristics on the long wavelength side of the second band A12 of the optical filter 100 and the cutoff characteristics on the short wavelength side of the third band A13 are formed by the second filter 130.
  • the bandwidth of the cutoff band where the transmittance is 5% or less is at least 100 nm. This point will be described below.
  • the optical filter 100 in the first band A11, in the near-infrared light region, the optical filter 100 has a wavelength band from the short wavelength end (700 nm) of the near-infrared light region to the longer wavelength side than 800 nm.
  • a cut-off band in which the transmittance is 5% or less is provided.
  • the cutoff band of the first band A11 is provided in a range of approximately 700 nm to approximately 814 nm.
  • the cut-off band of the first band A11 of the optical filter 100 is formed by the first filter 120 and the second filter 130. That is, in the near-infrared light region, in the wavelength band from the short wavelength end (700 nm) of the near-infrared light region to the short wavelength side (approximately 712 nm) of the near-infrared light region, the cutoff band of the first band A11 is The filter characteristics of the first filter 120 and the filter characteristics of the second filter 130 are combined.
  • the cutoff band of the first band A11 is the filter characteristic of the second filter 130. It has been imitated. That is, in the wavelength band from the short wavelength side (approximately 712 nm) in the near infrared light region to the longer wavelength side (approximately 814 nm) than 800 nm, the transmittance of the second filter 130 is approximately 0% (5% or less). Therefore, the filter characteristics of the optical filter 100 reflect the filter characteristics of the second filter 130 substantially as they are.
  • the cut-off band of the first band A11 of the optical filter 100 is formed by the first filter 120 and the second filter 130.
  • the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm, and in this example, is approximately 112 nm. .
  • the optical filter 100 has a filter characteristic in which the transmittance rapidly increases near the boundary between the first band A11 and the second band A12 on the longer wavelength side than 800 nm in the near-infrared light region. In the range of approximately 814 nm to approximately 840 nm, the transmittance of the optical filter 100 increases from 5% to 90%.
  • the cut-off characteristics on the long wavelength side of the first band A11 and the transmission characteristics on the short wavelength side of the second band A12 of the optical filter 100 are substantially similar to the filter characteristics of the second filter 130.
  • the transmittance of the first filter 120 and the third filter 140 is approximately 100% (95% or more) on the longer wavelength side (approximately 814 nm to approximately 840 nm) than 800 nm in the near infrared light region.
  • the filter characteristics of the optical filter 100 reflect the filter characteristics of the second filter 130 as they are. As described above, the second filter 130 forms the cutoff characteristic on the long wavelength side of the first band A11 of the optical filter 100 and the transmission characteristic on the short wavelength side of the second band A12.
  • a transmission band of 90% or more is provided.
  • the transmission band of the second band A12 of the optical filter 100 is substantially similar to the filter characteristics of the second filter 130. That is, in the wavelength band of approximately 840 nm to approximately 864 nm, the transmittance of the first filter 120 and the third filter 140 is approximately 100% (95% or more), so that the filter characteristics of the optical filter 100 are the second filter.
  • the filter characteristics of 130 are reflected as they are.
  • the transmission band of the second band A12 of the optical filter 100 is formed by the second filter 130.
  • the bandwidth of the transmission band where the transmittance is 90% or more is approximately 24 nm in this example.
  • the bandwidth of the transmission band where the transmittance is 50% or more is approximately 42 nm in this example.
  • the optical filter 100 has a filter characteristic in which the transmittance rapidly decreases near the boundary between the second band A12 and the third band A13 on the shorter wavelength side than 900 nm in the near-infrared light region. In the range from about 864 nm to about 898 nm, the transmittance of the optical filter 100 decreases from 90% to 5%.
  • the transmission characteristics on the long wavelength side of the second band A12 of the optical filter 100 and the cutoff characteristics on the short wavelength side of the third band A13 are substantially similar to the filter characteristics of the second filter 130.
  • the transmittance of the first filter 120 and the third filter 140 is approximately 100% (95% or more).
  • the filter characteristics of the second filter 130 are reflected almost as they are.
  • the second filter 130 forms the transmission characteristic on the long wavelength side of the second band A12 of the optical filter 100 and the cutoff characteristic on the short wavelength side of the third band A13.
  • a cutoff band is provided in which the transmittance of the optical filter 100 is 5% or less in the wavelength band from the shorter wavelength side than 900 nm to the long wavelength end (1100 nm) in the near infrared light region. It has been.
  • the cut-off band of the third band A13 of the optical filter 100 is substantially similar to the filter characteristics of the second filter 130. That is, in the wavelength band from the shorter wavelength side than 900 nm (approximately 898 nm) to the long wavelength end (1100 nm) of the near infrared light region, the transmittance of the second filter 130 is approximately 0% (5% or less).
  • the filter characteristics of the optical filter 100 reflect the filter characteristics of the second filter 130 almost as they are.
  • the cutoff band of the third band A13 of the optical filter 100 is formed by the second filter 130.
  • the bandwidth of the cut-off band where the transmittance is 5% or less is approximately 202 nm in this example.
  • the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm.
  • the bandwidth of the cut-off band can be ensured wider than before, and the cut-off characteristics of the first band A11 can be sufficiently secured.
  • the upper limit value of the bandwidth of the cutoff band of the first band A11 is not particularly limited, and may be, for example, 150 nm or 250 nm.
  • the second filter 130 since the half-value wavelength of the second filter 130 (the wavelength at which the transmittance is 50%) is on the longer wavelength side than the half-value wavelength of the first filter 120, the second filter 130 absorbs light by the second filter 130. The amount of light reflected by the filter 130 is suppressed. Thereby, generation
  • the first filter 120 is formed of an infrared absorber (transparent substrate and infrared absorbing dye), and therefore the first filter 120 is formed of a dielectric multilayer film.
  • the incident angle dependency in the visible light region of the optical filter 100 can be reduced (see FIG. 9), and the occurrence of ghosts and flares in the image captured by the imaging device is also suppressed. it can.
  • the filter characteristics of the optical filter 100 are formed by the second filter 130 in the near-infrared light region. Specifically, the transmission characteristics on the short wavelength side of the second band A12 of the optical filter 100 and the transmission characteristics on the long wavelength side of the second band A12 are formed by the second filter 130. Thereby, in the second band A12 of the optical filter 100, the bandwidth of the transmission band where the transmittance is 50% or more can be easily changed. Respond flexibly to requests. In the second band A12 of the optical filter 100, the bandwidth of the transmission band where the transmittance is 50% or more is preferably set to 35 nm to 200 nm.
  • the wavelength band where the transmittance of the second band A12 is 50% is preferably set in the range of 800 nm to 1000 nm.
  • the second filter 130 may be configured so that the transmittance is rapidly reduced at a wavelength near 1000 nm.
  • the second filter 130 capable of forming the transmission characteristics of the second band A12 with a single filter can be formed on the surface opposite to the surface on which the infrared absorbing dye 120b is formed, Damage to the infrared absorbing dye 120b (particularly damage due to heat) can be suppressed.
  • the film of the average value of the optical film thickness of the low refractive index film 130L of the second filter 130 and the average value of the optical film thickness of the high refractive index film 130H is set to a value in the range of 0.50 to 0.85.
  • the bandwidth of the cutoff band having the cutoff characteristic of the second filter 130 can be narrowed, and the transmission band (second band A12) is set in a desired range in the near infrared light region separated from the visible light region. Can be set.
  • the bandwidth of the wavelength at which the transmittance of the first band A11 is 50% is the bandwidth of the wavelength at which the transmittance of the first filter 120 is 50%.
  • the transmittance of the second filter 130 is larger than the bandwidth of the wavelength at which the transmittance is 50%.
  • the first and second filters 120 and 130 can set the transmission band (second band A12) in a desired range in the near-infrared light region.
  • the first filter 120 has a configuration in which the infrared absorbing dye 120b is applied to the transparent substrate 120a. Therefore, by adjusting the type, concentration, thickness, and the like of the infrared absorbing dye 120b, The desired infrared absorption characteristics can be easily obtained as compared with the case where an absorbing resin substrate is used.
  • the cutoff characteristic on the short wavelength side of the first band A11 is formed by the first filter 120 and the second filter 130, the cutoff characteristic on the short wavelength side of the first band A11 is not limited to this. You may form only by 120.
  • the second filter 130 is formed on the surface of the first filter 120 where the infrared absorbing dye 120b is not provided, and the second filter 130 is formed on the surface where the infrared absorbing dye 120b is provided.
  • Three filters 140 were formed.
  • the present invention is not limited to this.
  • the second filter 130 is formed on the surface on which the infrared absorbing dye 120 b is provided, and the surface on which the infrared absorbing dye 120 b is not provided.
  • the third filter 140 may be formed.
  • the present invention is an optical filter provided in an imaging device, and can be used for an optical filter having transmission characteristics in two wavelength bands of a visible light region and a near infrared light region.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)

Abstract

[Problem] To provide an optical filter that can sufficiently suppress transmission of red components. [Solution] An optical filter 10 has a second filter 30 formed on one surface 20A of a first filter 20 and has a third filter 40 formed on the other surface 20B of the first filter 20. Along with having blocking characteristics in a first band A1 provided from the long wavelength side of the visible light region to the near-infrared light region and a third band A3 provided on the longer wavelength side than the first band, the optical filter has transmission characteristics in a second band A2 provided between the first band A1 and the third band A3. In the first band A1, the bandwidth for the blocked band with transmittance of 5% or less is set to at least 100 nm.

Description

光学フィルタOptical filter
 本発明は、撮像デバイスに設けられる光学フィルタに関する。 The present invention relates to an optical filter provided in an imaging device.
 撮像デバイスに設けられる光学フィルタとして、可視光領域と近赤外光領域の2つの波長帯域において透過特性を有する光学フィルタが知られている。このような光学フィルタによれば、自然光が入る昼間だけでなく、夜間などの暗視下であっても撮影を行うことが可能となる。 As an optical filter provided in an imaging device, an optical filter having transmission characteristics in two wavelength bands of a visible light region and a near infrared light region is known. According to such an optical filter, it is possible to perform photographing not only in daylight when natural light enters but also under night vision such as at night.
 上述のような光学フィルタとして、例えば特許文献1には、近赤外光領域の光を吸収する特性を有する赤外線吸収基板(赤外線吸収体)と、この赤外線吸収基板に形成された誘電体多層膜とを備えた光学フィルタが記載されている。また、赤外線吸収基板として、透明樹脂に赤外線を吸収する化合物を含有させた赤外線吸収樹脂を用いることが記載されている。 As an optical filter as described above, for example, Patent Document 1 discloses an infrared absorption substrate (infrared absorber) having a characteristic of absorbing light in the near infrared region, and a dielectric multilayer film formed on the infrared absorption substrate. An optical filter is described. In addition, as an infrared absorbing substrate, it is described that an infrared absorbing resin in which a transparent resin contains a compound that absorbs infrared rays is used.
特許第5884953号公報Japanese Patent No. 5888953
 上記特許文献1に記載の光学フィルタは、近赤外光領域に設けられた第1帯域(光線阻止帯域Za)及び当該第1帯域よりも長波長側に設けられた第3帯域(光線阻止帯域Zc)において遮断特性を有するとともに、第1帯域及び第3帯域の間に設けられた第2帯域(光線透過帯域Zb)において透過特性を有する。しかし、特許文献1に記載の光学フィルタでは、近赤外光領域において、上記第1帯域の遮断特性が十分に確保されているとは言えないため、赤色成分の透過に起因する混色によって、撮像デバイスで撮像される画像の色再現性が低下する可能性がある。 The optical filter described in Patent Literature 1 includes a first band (light blocking band Za) provided in the near infrared light region and a third band (light blocking band) provided on the longer wavelength side than the first band. Zc) has a cutoff characteristic and also has a transmission characteristic in a second band (light transmission band Zb) provided between the first band and the third band. However, in the optical filter described in Patent Document 1, it cannot be said that the cutoff characteristic of the first band is sufficiently ensured in the near-infrared light region. There is a possibility that the color reproducibility of an image picked up by the device is lowered.
 本発明は、かかる点に鑑みてなされたものであり、赤色成分の透過を十分に抑制することが可能な光学フィルタを提供することを目的とする。 The present invention has been made in view of such points, and an object thereof is to provide an optical filter capable of sufficiently suppressing transmission of a red component.
 本発明は、上述の課題を解決するための手段を以下のように構成している。すなわち、本発明は、可視光領域と近赤外光領域の2つの波長帯域において透過特性を有する光学フィルタであって、赤外線吸収体からなる第1フィルタの一方の面に、誘電体多層膜からなる第2フィルタが形成され、前記第1フィルタの他方の面に、誘電体多層膜からなる第3フィルタが形成され、可視光領域の長波長側から近赤外光領域にかけて設けられた第1帯域、及び当該第1帯域よりも長波長側に設けられた第3帯域において遮断特性を有するとともに、前記第1帯域及び前記第3帯域の間に設けられた第2帯域において透過特性を有し、前記第1帯域では、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmに設定されていることを特徴とする。 In the present invention, means for solving the above-described problems are configured as follows. That is, the present invention is an optical filter having transmission characteristics in two wavelength bands of a visible light region and a near-infrared light region, and a dielectric multilayer film is formed on one surface of a first filter made of an infrared absorber. A second filter is formed, a third filter made of a dielectric multilayer film is formed on the other surface of the first filter, and the first filter is provided from the long wavelength side of the visible light region to the near infrared light region. It has a cutoff characteristic in the band and the third band provided on the longer wavelength side than the first band, and has a transmission characteristic in the second band provided between the first band and the third band. In the first band, the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm.
 上記構成によれば、光学フィルタの第1帯域では、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmに設定されているので、従来に比べて遮断帯域の帯域幅を広く確保することができ、第1帯域の遮断特性を十分に確保することができる。これにより、赤色成分の透過を十分に抑制することができ、赤色成分の透過に起因する混色の発生を抑制することができる。その結果、撮像デバイスで撮像される画像の色再現性の低下を抑制することができる。 According to the above configuration, in the first band of the optical filter, since the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm, a wider bandwidth of the cutoff band is ensured than in the past. Therefore, it is possible to sufficiently secure the cutoff characteristic of the first band. Thereby, the transmission of the red component can be sufficiently suppressed, and the occurrence of color mixing due to the transmission of the red component can be suppressed. As a result, it is possible to suppress a decrease in color reproducibility of an image captured by the imaging device.
 上記構成の光学フィルタにおいて、前記第1フィルタでは、可視光領域で透過率が50%となる波長が、640nm~660nmの範囲内の波長であり、且つ、650nm~800nmの範囲内に吸収極大を有しており、前記第2フィルタでは、透過率が50%となる波長が、685nm~710nmの範囲内の波長であり、且つ、透過率が5%以下となる遮断帯域が、近赤外光領域において少なくとも100nmの範囲にわたって設けられていてもよい。なお、前記第2フィルタは、複数のフィルタを組み合わせた構成であってもよい。 In the optical filter configured as described above, in the first filter, the wavelength at which the transmittance is 50% in the visible light region is a wavelength in the range of 640 nm to 660 nm, and the absorption maximum is in the range of 650 nm to 800 nm. In the second filter, the wavelength at which the transmittance is 50% is a wavelength in the range of 685 nm to 710 nm, and the cutoff band at which the transmittance is 5% or less is near infrared light. The region may be provided over a range of at least 100 nm. The second filter may be configured by combining a plurality of filters.
 上記構成によれば、第1フィルタとして、上記の特性を有する赤外線吸収体を用いることによって、可視光領域における入射角依存性を低減することができるとともに、撮像デバイスで撮像される画像にゴーストやフレアが発生することも抑制できる。 According to the above configuration, by using the infrared absorber having the above characteristics as the first filter, it is possible to reduce the incident angle dependency in the visible light region, and in the image captured by the imaging device, Generation of flare can also be suppressed.
 上記構成の光学フィルタにおいて、前記第2フィルタの透過率が50%となる波長が、前記第1フィルタの可視光領域で透過率が50%となる波長よりも、長波長側にあってもよい。 In the optical filter having the above configuration, the wavelength at which the transmittance of the second filter is 50% may be longer than the wavelength at which the transmittance is 50% in the visible light region of the first filter. .
 上記構成によれば、第2フィルタの半値波長(透過率が50%となる波長)が、第1フィルタの可視光領域での半値波長よりも長波長側にあるので、第1フィルタによる光の吸収により、第2フィルタによって反射される光の量が抑制される。これにより、第2フィルタによる光の反射に起因するゴーストの発生を抑制することができる。 According to the above configuration, the half-value wavelength of the second filter (the wavelength at which the transmittance is 50%) is on the longer wavelength side than the half-value wavelength in the visible light region of the first filter. Due to the absorption, the amount of light reflected by the second filter is suppressed. Thereby, generation | occurrence | production of the ghost resulting from reflection of the light by a 2nd filter can be suppressed.
 上記構成の光学フィルタにおいて、前記第1帯域が、前記第1フィルタ及び前記第2フィルタによって形成され、前記第3帯域が、前記第3フィルタによって形成されていてもよい。あるいは、前記第1帯域の短波長側の遮断特性が、前記第1フィルタによって形成され、前記第2帯域の短波長側の透過特性が、前記第2フィルタによって形成され、前記第2帯域の長波長側の透過特性が、前記第3フィルタによって形成されていてもよい。 In the optical filter configured as described above, the first band may be formed by the first filter and the second filter, and the third band may be formed by the third filter. Alternatively, the cutoff characteristic on the short wavelength side of the first band is formed by the first filter, and the transmission characteristic on the short wavelength side of the second band is formed by the second filter, and the length of the second band is The transmission characteristic on the wavelength side may be formed by the third filter.
 上記構成によれば、第2帯域において、透過率が50%以上となる透過帯域の帯域幅を容易に変更することができ、光学フィルタの近赤外光領域のフィルタ特性に対するさまざまな要求に柔軟に対応することができる。なお、第2帯域の透過率が50%となる透過帯域の帯域幅を、35nm~200nmに設定することが可能である。また、第2帯域の透過率が50%となる透過帯域を、800nm~1000nmの範囲に設定することが可能である。 According to the above configuration, in the second band, it is possible to easily change the bandwidth of the transmission band where the transmittance is 50% or more, and flexibly meet various requirements for the filter characteristics in the near-infrared light region of the optical filter. It can correspond to. Note that the bandwidth of the transmission band where the transmittance of the second band is 50% can be set to 35 nm to 200 nm. Further, it is possible to set the transmission band in which the transmittance of the second band is 50% in the range of 800 nm to 1000 nm.
 上記構成の光学フィルタにおいて、前記第1フィルタは、透明基板に赤外線吸収色素が塗布された構成になっており、前記第3フィルタは、反射防止膜によって構成されていてもよい。この構成によれば、赤外線吸収色素の種類や濃度、厚み等を調整することによって、赤外線吸収樹脂基板を用いた場合に比べて、所望の赤外吸収特性を容易に得ることができる。 In the optical filter having the above-described configuration, the first filter may have a configuration in which an infrared absorbing dye is applied to a transparent substrate, and the third filter may be configured by an antireflection film. According to this configuration, by adjusting the type, concentration, thickness, and the like of the infrared absorbing dye, desired infrared absorption characteristics can be easily obtained as compared with the case where the infrared absorbing resin substrate is used.
 上記構成の光学フィルタにおいて、前記第1帯域が、前記第1フィルタ及び前記第2フィルタによって形成され、前記第3帯域が、前記第2フィルタによって形成されていてもよい。あるいは、前記第1帯域の短波長側の遮断特性が、前記第1フィルタのみによって、または、前記第1フィルタ及び前記第2フィルタによって形成され、前記第2帯域の短波長側の透過特性、及び前記第2帯域の長波長側の透過特性が、前記第2フィルタによって形成されていてもよい。これらの構成によれば、第2帯域の透過特性を単独のフィルタで形成可能な第2フィルタを、赤外線吸収色素が形成された面とは反対側の面に成膜できるので、成膜時の赤外線吸収色素へのダメージ(特に、熱によるダメージ)を抑制することができる。 In the optical filter configured as described above, the first band may be formed by the first filter and the second filter, and the third band may be formed by the second filter. Alternatively, the cutoff characteristic on the short wavelength side of the first band is formed only by the first filter or by the first filter and the second filter, and the transmission characteristic on the short wavelength side of the second band, and The transmission characteristics on the long wavelength side of the second band may be formed by the second filter. According to these configurations, the second filter capable of forming the transmission characteristics of the second band with a single filter can be formed on the surface opposite to the surface on which the infrared absorbing dye is formed. Damage to the infrared absorbing dye (particularly damage due to heat) can be suppressed.
 上記構成の光学フィルタにおいて、前記第1帯域の透過率が50%となる波長の帯域幅が、前記第1フィルタの透過率が50%となる波長の帯域幅及び前記第2フィルタの透過率が50%となる波長の帯域幅よりも大きくてもよい。 In the optical filter configured as described above, the bandwidth of the wavelength at which the transmittance of the first band is 50%, the bandwidth of the wavelength at which the transmittance of the first filter is 50%, and the transmittance of the second filter are It may be larger than the bandwidth of the wavelength that is 50%.
 上記構成によれば、第1、第2フィルタによって、近赤外光領域の所望の範囲に透過帯域(第2帯域)を設定することができるとともに、可視光領域における入射角依存性を低減することができ、撮像デバイスで撮像される画像にゴーストやフレアが発生することを抑制できる。 According to the above configuration, the first and second filters can set the transmission band (second band) in a desired range in the near-infrared light region, and reduce the incident angle dependency in the visible light region. Therefore, it is possible to suppress the occurrence of ghost and flare in the image captured by the imaging device.
 上記構成の光学フィルタにおいて、前記第2フィルタは、複数の高屈折率膜と、前記高屈折率膜よりも小さい屈折率を有する複数の低屈折率膜とが、交互に積層された構成になっており、前記第2フィルタにおいて、前記低屈折率膜の光学膜厚の平均値が、前記高屈折率膜の光学膜厚の平均値よりも小さく、前記低屈折率膜の光学膜厚の平均値と、前記高屈折率膜の光学膜厚の平均値との膜厚比が、0.50~0.85になっていてもよい。 In the optical filter having the above configuration, the second filter has a configuration in which a plurality of high refractive index films and a plurality of low refractive index films having a refractive index smaller than that of the high refractive index film are alternately stacked. In the second filter, the average value of the optical film thickness of the low refractive index film is smaller than the average value of the optical film thickness of the high refractive index film, and the average optical film thickness of the low refractive index film The film thickness ratio between the value and the average optical film thickness of the high refractive index film may be 0.50 to 0.85.
 上記構成によれば、第2フィルタの遮断特性を有する遮断帯域の帯域幅を狭くすることができ、可視光領域とは離間した近赤外光領域の所望の範囲に透過帯域(第2帯域)を設定することができる。 According to the above configuration, the bandwidth of the cutoff band having the cutoff characteristic of the second filter can be narrowed, and the transmission band (second band) is in a desired range in the near-infrared light region separated from the visible light region. Can be set.
 本発明の光学フィルタによれば、第1帯域では、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmに設定されているので、従来に比べて遮断帯域の帯域幅を広く確保することができ、第1帯域の遮断特性を十分に確保することができる。これにより、赤色成分の透過を十分に抑制することができ、赤色成分の透過に起因する混色の発生を抑制することができる。その結果、撮像デバイスで撮像される画像の色再現性の低下を抑制することができる。 According to the optical filter of the present invention, in the first band, the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm. Therefore, it is possible to sufficiently secure the cutoff characteristic of the first band. Thereby, the transmission of the red component can be sufficiently suppressed, and the occurrence of color mixing due to the transmission of the red component can be suppressed. As a result, it is possible to suppress a decrease in color reproducibility of an image captured by the imaging device.
本発明に係る光学フィルタを用いた撮像デバイスの概略構成を示す図である。It is a figure which shows schematic structure of the imaging device using the optical filter which concerns on this invention. 本発明に係る光学フィルタの概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of the optical filter which concerns on this invention. 図2の光学フィルタのフィルタ特性の一例を示す図である。It is a figure which shows an example of the filter characteristic of the optical filter of FIG. 図2の光学フィルタの第1フィルタのフィルタ特性の一例を示す図である。It is a figure which shows an example of the filter characteristic of the 1st filter of the optical filter of FIG. 図2の光学フィルタの第2フィルタの各層の構成の一例を示す表である。It is a table | surface which shows an example of a structure of each layer of the 2nd filter of the optical filter of FIG. 図5の第2フィルタのフィルタ特性の一例を示す図である。It is a figure which shows an example of the filter characteristic of the 2nd filter of FIG. 図2の光学フィルタの第3フィルタの各層の構成の一例を示す表である。It is a table | surface which shows an example of a structure of each layer of the 3rd filter of the optical filter of FIG. 図7の第3フィルタのフィルタ特性の一例を示す図である。It is a figure which shows an example of the filter characteristic of the 3rd filter of FIG. 図2の光学フィルタにおいて、光の入射角が、0°、10°、20°、及び30°のときのそれぞれのフィルタ特性の一部を示す図である。In the optical filter of FIG. 2, it is a figure which shows a part of each filter characteristic when the incident angles of light are 0 degree, 10 degrees, 20 degrees, and 30 degrees. 本発明の他の実施形態に係る光学フィルタの概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of the optical filter which concerns on other embodiment of this invention. 図10の光学フィルタのフィルタ特性の一例を示す図である。It is a figure which shows an example of the filter characteristic of the optical filter of FIG. 図10の光学フィルタの第1フィルタのフィルタ特性の一例を示す図である。It is a figure which shows an example of the filter characteristic of the 1st filter of the optical filter of FIG. 図10の光学フィルタの第2フィルタのフィルタ特性の一例を示す図である。It is a figure which shows an example of the filter characteristic of the 2nd filter of the optical filter of FIG. 図10の光学フィルタの第3フィルタの各層の構成の一例を示す表である。It is a table | surface which shows an example of a structure of each layer of the 3rd filter of the optical filter of FIG. 図14の第3フィルタのフィルタ特性の一例を示す図である。It is a figure which shows an example of the filter characteristic of the 3rd filter of FIG.
 以下、本発明に係る光学フィルタの実施形態(第1実施形態)について、図面を参照しながら説明する。本実施形態に係る光学フィルタは、撮像デバイスに設けられる光学フィルタであって、可視光領域と近赤外光領域の2つの波長帯域において透過特性を有する。可視光領域の透過特性を有する波長帯域と、近赤外光領域の透過特性を有する波長帯域とは離間して設けられる。なお、本実施形態において、可視光領域とは、光の波長が約400nm~約700nmの領域を言い、近赤外光領域とは、光の波長が約700nm~約1100nmまでの領域を言う。 Hereinafter, an embodiment (first embodiment) of an optical filter according to the present invention will be described with reference to the drawings. The optical filter according to the present embodiment is an optical filter provided in an imaging device, and has transmission characteristics in two wavelength bands of a visible light region and a near infrared light region. The wavelength band having the transmission characteristic in the visible light region and the wavelength band having the transmission characteristic in the near infrared light region are provided apart from each other. In the present embodiment, the visible light region refers to a region where the wavelength of light is about 400 nm to about 700 nm, and the near infrared light region refers to a region where the wavelength of light is about 700 nm to about 1100 nm.
 図1は、光学フィルタ10を用いた撮像デバイスの概略構成を示す図である。図2は、光学フィルタ10の概略構成を模式的に示す図である。図3は、光学フィルタ10のフィルタ特性の一例を示す図である。 FIG. 1 is a diagram illustrating a schematic configuration of an imaging device using the optical filter 10. FIG. 2 is a diagram schematically showing a schematic configuration of the optical filter 10. FIG. 3 is a diagram illustrating an example of the filter characteristics of the optical filter 10.
 図1に示すように、撮像デバイスにおいて、光学フィルタ10は、レンズ80によって集光された光について、可視光領域と近赤外光領域の2つの波長帯域の波長の光を透過させ、CCDやCMOS等の撮像素子90に光を入射させる光学フィルタである。図1では、光がレンズ80に対して垂直方向から入射した場合と、光がレンズ80に対して入射角αの斜め方向から入射した場合とを図示している。 As shown in FIG. 1, in the imaging device, the optical filter 10 transmits light of two wavelengths in the visible light region and the near infrared light region with respect to the light collected by the lens 80, It is an optical filter that makes light incident on an image sensor 90 such as a CMOS. FIG. 1 illustrates a case where light is incident on the lens 80 from a vertical direction and a case where light is incident on the lens 80 from an oblique direction with an incident angle α.
 光学フィルタ10は、図2に示すように、赤外線吸収体からなる第1フィルタ20と、第1フィルタ20の一方の面にコーティングされた誘電体多層膜からなる第2フィルタ30と、第1フィルタ20の他方の面にコーティングされた誘電体多層膜からなる第3フィルタ40とを備えている。光学フィルタ10は、図3に示すようなフィルタ特性(透過率波形)を示す。以下、光学フィルタ10の各構成について説明する。 As shown in FIG. 2, the optical filter 10 includes a first filter 20 made of an infrared absorber, a second filter 30 made of a dielectric multilayer film coated on one surface of the first filter 20, and a first filter. 20 and a third filter 40 made of a dielectric multilayer film coated on the other surface. The optical filter 10 exhibits filter characteristics (transmittance waveform) as shown in FIG. Hereinafter, each configuration of the optical filter 10 will be described.
 -第1フィルタ-
 第1フィルタ20は、近赤外光領域の光を吸収する特性を有する赤外線吸収基板(赤外線吸収体)によって構成されている。本実施形態では、第1フィルタ20を構成する赤外線吸収体として、透明樹脂に赤外線を吸収する化合物(色素)を含有させた赤外線吸収樹脂が用いられている。透明樹脂及び色素としては、例えば特許第5884953号公報に示されるような公知の物質を用いることが可能である。
-First filter-
The 1st filter 20 is comprised by the infrared rays absorption board | substrate (infrared absorber) which has the characteristic which absorbs the light of a near-infrared-light area | region. In the present embodiment, as the infrared absorber constituting the first filter 20, an infrared absorbing resin in which a transparent resin contains a compound (pigment) that absorbs infrared rays is used. As a transparent resin and a pigment | dye, it is possible to use a well-known substance as shown, for example in patent 5888953.
 第1フィルタ20は、図4に示すように、可視光領域と近赤外光領域の境界付近で吸収極大を有しており、第1フィルタ20の透過率が最小になっている。図4は、光の入射角α(図1参照)が、0°の場合(垂直入射の場合)の第1フィルタ20のフィルタ特性を示している。 As shown in FIG. 4, the first filter 20 has an absorption maximum near the boundary between the visible light region and the near-infrared light region, and the transmittance of the first filter 20 is minimized. FIG. 4 shows the filter characteristics of the first filter 20 when the light incident angle α (see FIG. 1) is 0 ° (in the case of vertical incidence).
 具体的には、第1フィルタ20は、可視光領域(400nm~700nm)の略全域において透過特性を有しており、可視光領域の長波長側(600nmよりも長波長側)でなだらかに透過率が減少する透過特性を有している。可視光領域においては、第1フィルタ20の透過率が50%以上となる範囲が、可視光領域の短波長端(400nm)から略650nmまでの波長帯域となっている。第1フィルタ20の透過率が80%以上となる範囲が、可視光領域の短波長端(400nm)から略615nmまでの波長帯域となっている。第1フィルタ20の透過率が90%以上となる範囲が、略440nm~略590nmの波長帯域となっている。第1フィルタ20の透過率が95%以上となる範囲が、略458nm~略570nmの波長帯域となっている。 Specifically, the first filter 20 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm), and gently transmits on the long wavelength side (longer wavelength side than 600 nm) of the visible light region. It has a transmission characteristic with a decreasing rate. In the visible light region, the range in which the transmittance of the first filter 20 is 50% or more is a wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 650 nm. The range where the transmittance of the first filter 20 is 80% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 615 nm. The range in which the transmittance of the first filter 20 is 90% or more is a wavelength band of approximately 440 nm to approximately 590 nm. The range in which the transmittance of the first filter 20 is 95% or more is a wavelength band of about 458 nm to about 570 nm.
 また、第1フィルタ20は、近赤外光領域(700nm~1100nm)の略全域において透過特性を有しており、近赤外光領域の短波長側(750nmよりも短波長側)で透過率が増加する透過特性を有している。近赤外光領域においては、第1フィルタ20の透過率が50%以上となる範囲が、略750nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。第1フィルタ20の透過率が80%以上となる範囲が、略760nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。第1フィルタ20の透過率が90%以上となる範囲が、略770nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。第1フィルタ20の透過率が95%以上となる範囲が、略776nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。近赤外光領域の短波長側では、第1フィルタ20の透過率の変化率(増加率)が、可視光領域の長波長側の変化率(減少率)よりも大きくなっている。 The first filter 20 has a transmission characteristic in substantially the entire region of the near infrared light region (700 nm to 1100 nm), and the transmittance on the short wavelength side (shorter wavelength side than 750 nm) of the near infrared light region. Has increased transmission characteristics. In the near infrared light region, the range in which the transmittance of the first filter 20 is 50% or more is a wavelength band from approximately 750 nm to the long wavelength end (1100 nm) of the near infrared light region. The range in which the transmittance of the first filter 20 is 80% or more is the wavelength band from approximately 760 nm to the long wavelength end (1100 nm) in the near infrared light region. The range in which the transmittance of the first filter 20 is 90% or more is the wavelength band from approximately 770 nm to the long wavelength end (1100 nm) in the near infrared light region. The range in which the transmittance of the first filter 20 is 95% or more is the wavelength band from approximately 776 nm to the long wavelength end (1100 nm) in the near infrared light region. On the short wavelength side in the near infrared light region, the change rate (increase rate) of the transmittance of the first filter 20 is larger than the change rate (decrease rate) on the long wavelength side in the visible light region.
 一方、可視光領域と近赤外光領域の境界付近における第1フィルタ20の吸収特性は、次のようになっている。第1フィルタ20の透過率が20%以下となる範囲が、略680nm~略740nmの波長帯域となっている。第1フィルタ20の透過率が10%以下となる範囲が、略686nm~略728nmの波長帯域となっている。第1フィルタ20の透過率が5%以下となる範囲が、略690nm~略716nmの波長帯域となっている。そして、略704nmの波長で、第1フィルタ20の透過率が最小値(略1.9%)となっている(吸収極大)。なお、本実施形態では、略704nmの波長に第1フィルタ20の吸収極大が存在しているが、第1フィルタ20の吸収極大は、650nm~800nmの範囲内に存在しているものであればよく、例えば、第1フィルタ20の他の例として、図4において破線で示すように、略760nmの波長に吸収極大を有するものであってもよい。  On the other hand, the absorption characteristics of the first filter 20 in the vicinity of the boundary between the visible light region and the near infrared light region are as follows. The range in which the transmittance of the first filter 20 is 20% or less is a wavelength band of approximately 680 nm to approximately 740 nm. The range in which the transmittance of the first filter 20 is 10% or less is a wavelength band of about 686 nm to about 728 nm. The range in which the transmittance of the first filter 20 is 5% or less is a wavelength band of approximately 690 nm to approximately 716 nm. The transmittance of the first filter 20 is the minimum value (approximately 1.9%) at a wavelength of approximately 704 nm (absorption maximum). In the present embodiment, the absorption maximum of the first filter 20 exists at a wavelength of approximately 704 nm. However, the absorption maximum of the first filter 20 is within a range of 650 nm to 800 nm. For example, as another example of the first filter 20, as shown by a broken line in FIG. 4, it may have an absorption maximum at a wavelength of about 760 nm.
 -第2フィルタ-
 第2フィルタ30は、図2に示すように、第1フィルタ20の一方の表面20A上に形成された誘電体多層膜によって構成されている。具体的には、図5に示すように、第2フィルタ30は、高屈折率膜30HであるTiOと、低屈折率膜30LであるSiOとが交互に積層された構成になっている。高屈折率膜30H及び低屈折率膜30Lは、それぞれ15層ずつ形成されており、合計で30層形成されている。第1フィルタ20側から数えて奇数番目の層が高屈折率膜30Hであり、偶数番目の層が低屈折率膜30Lになっている。最も第1フィルタ20側の1層目(最下層)が高屈折率膜30Hであり、最も大気側の30層目(最上層)が低屈折率膜30Lになっている。なお、高屈折率膜30H及び低屈折率膜30Lの積層順はこの例に限らず、第1フィルタ20側から数えて奇数番目の層が低屈折率膜30Lであり、偶数番目の層が高屈折率膜30Hであってもよい。また、高屈折率膜30H及び低屈折率膜30Lの層数が1つだけ異なっていてもよく、例えば、後述する第3フィルタ40と同様に、低屈折率膜30Lの層数を高屈折率膜30Hの層数よりも1つだけ多くすることも可能である。
-Second filter-
As shown in FIG. 2, the second filter 30 is configured by a dielectric multilayer film formed on one surface 20 </ b> A of the first filter 20. Specifically, as shown in FIG. 5, the second filter 30, and TiO 2 is a high-refractive-index film 30H, has a structure in which the SiO 2 which is a low refractive index film 30L are stacked alternately . The high refractive index film 30 </ b> H and the low refractive index film 30 </ b> L are each formed in 15 layers, and a total of 30 layers are formed. The odd-numbered layers counted from the first filter 20 side are high-refractive-index films 30H, and the even-numbered layers are low-refractive-index films 30L. The first layer (lowermost layer) closest to the first filter 20 is the high refractive index film 30H, and the 30th layer (uppermost layer) closest to the atmosphere is the low refractive index film 30L. The order in which the high refractive index film 30H and the low refractive index film 30L are stacked is not limited to this example. The odd-numbered layers counted from the first filter 20 side are the low-refractive index films 30L, and the even-numbered layers are high. The refractive index film 30H may be used. Further, the number of layers of the high refractive index film 30H and the low refractive index film 30L may be different by one. For example, the number of layers of the low refractive index film 30L is set to the high refractive index similarly to the third filter 40 described later. One more than the number of layers of the film 30H is also possible.
 本実施形態では高屈折率膜30Hは、TiOとしたがこれに限られず、例えば、ZrO、Nb、Taといった材料でもよい。つまり、高屈折率膜30Hの材料としては、屈折率が2.0より大きいものが好ましい。また、低屈折率膜30LについてもSiOに限られず、例えばMgFといった材料でもよい。つまり、低屈折率膜30Lの材料としては、高屈折率膜30Hよりも屈折率が小さいものが好ましく、さらに好ましくは屈折率が1.5より小さいものがよい。 In the present embodiment, the high refractive index film 30H is made of TiO 2 , but is not limited thereto, and may be a material such as ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , for example. That is, the material of the high refractive index film 30H is preferably a material having a refractive index larger than 2.0. Further, the low refractive index film 30L is not limited to SiO 2 but may be a material such as MgF 2 . That is, the material of the low refractive index film 30L is preferably a material having a refractive index smaller than that of the high refractive index film 30H, and more preferably a material having a refractive index smaller than 1.5.
 第2フィルタ30の各層(低屈折率膜30L及び高屈折率膜30H)は、周知の真空蒸着装置によって交互に真空蒸着される。蒸着膜厚は、屈折率Nと物理膜厚dとの積である光学膜厚Ndに基づいて設計されており、第2フィルタ30の光学膜厚は、例えば、図5に示すように設計されている。なお、光学膜厚Ndと中心波長λとの間には、[Nd=λ/4]という関係がある。図5中の中心波長(720nm)は膜厚設計の際の中心波長である。 Each layer (the low refractive index film 30L and the high refractive index film 30H) of the second filter 30 is alternately vacuum deposited by a known vacuum deposition apparatus. The vapor deposition film thickness is designed based on the optical film thickness Nd which is the product of the refractive index N and the physical film thickness d, and the optical film thickness of the second filter 30 is designed as shown in FIG. 5, for example. ing. Note that there is a relationship [Nd = λ / 4] between the optical film thickness Nd and the center wavelength λ. The center wavelength (720 nm) in FIG. 5 is the center wavelength when designing the film thickness.
 図5に示すように、第2フィルタ30は、高屈折率膜30Hと低屈折率膜30Lとが合計で30層積層され、そのときの総膜厚(物理膜厚)は約3.1μmになっている。第2フィルタ30の層数は、好ましくは、20層~60層とされ、そのときの総膜厚は、好ましくは、2.0μm~6.0μmとされる。 As shown in FIG. 5, the second filter 30 includes a total of 30 layers of a high refractive index film 30H and a low refractive index film 30L, and the total film thickness (physical film thickness) at that time is about 3.1 μm. It has become. The number of layers of the second filter 30 is preferably 20 to 60 layers, and the total film thickness at that time is preferably 2.0 μm to 6.0 μm.
 第2フィルタ30の低屈折率膜30Lの光学膜厚は、0.10~2.58になっており、光学膜厚の平均値が0.93になっている。第2フィルタ30の高屈折率膜30Hの光学膜厚は、0.18~1.78になっており、光学膜厚の平均値が1.21になっている。このように、第2フィルタ30では、低屈折率膜30Lの光学膜厚の平均値が、高屈折率膜30Hの光学膜厚の平均値よりも小さくなっており、低屈折率膜30Lの光学膜厚の平均値と、高屈折率膜30Hの光学膜厚の平均値との膜厚比[低屈折率膜30Lの光学膜厚の平均値/高屈折率膜30Hの光学膜厚の平均値]が、0.77になっている。なお、低屈折率膜30Lの光学膜厚の平均値と、高屈折率膜30Hの光学膜厚の平均値との膜厚比は、0.50~0.85であることが好ましい。 The optical film thickness of the low refractive index film 30L of the second filter 30 is 0.10 to 2.58, and the average value of the optical film thickness is 0.93. The optical film thickness of the high refractive index film 30H of the second filter 30 is 0.18 to 1.78, and the average value of the optical film thickness is 1.21. Thus, in the second filter 30, the average value of the optical film thickness of the low refractive index film 30L is smaller than the average value of the optical film thickness of the high refractive index film 30H, and the optical value of the low refractive index film 30L. Thickness ratio between the average value of the film thickness and the average value of the optical film thickness of the high refractive index film 30H [average value of the optical film thickness of the low refractive index film 30L / average value of the optical film thickness of the high refractive index film 30H ] Is 0.77. The film thickness ratio between the average value of the optical film thickness of the low refractive index film 30L and the average value of the optical film thickness of the high refractive index film 30H is preferably 0.50 to 0.85.
 第2フィルタ30は、図6に示すように、可視光領域(400nm~700nm)の略全域において透過特性を有するとともに、近赤外光領域(700nm~1100nm)の一部において透過特性を有する。図6は、光の入射角α(図1参照)が、0°の場合(垂直入射の場合)の第2フィルタ30のフィルタ特性を実線で示している。なお、図6の破線(細線)は、上述した第1フィルタ20のフィルタ特性(図4参照)と、第2フィルタ30のフィルタ特性とを組み合わせたフィルタ特性を示している。 As shown in FIG. 6, the second filter 30 has a transmission characteristic in substantially the entire visible light region (400 nm to 700 nm) and a transmission characteristic in a part of the near infrared light region (700 nm to 1100 nm). FIG. 6 shows the filter characteristics of the second filter 30 with a solid line when the incident angle α of light (see FIG. 1) is 0 ° (in the case of vertical incidence). A broken line (thin line) in FIG. 6 indicates a filter characteristic obtained by combining the filter characteristic of the first filter 20 (see FIG. 4) and the filter characteristic of the second filter 30 described above.
 具体的には、第2フィルタ30は、可視光領域(400nm~700nm)の略全域において透過特性を有しており、可視光領域の長波長側(680nmよりも長波長側)で急激に透過率が減少する透過特性を有している。可視光領域においては、第2フィルタ30の透過率が50%以上となる範囲が、可視光領域の短波長端(400nm)から略694nmまでの波長帯域となっている。第2フィルタ30の透過率が80%以上となる範囲が、可視光領域の短波長端(400nm)から略690nmまでの波長帯域となっている。第2フィルタ30の透過率が90%以上となる範囲が、略408nm~略688nmの波長帯域となっている。第2フィルタ30の透過率が95%以上となる範囲が、略410nm~略686nmの波長帯域となっている。 Specifically, the second filter 30 has a transmission characteristic in substantially the entire visible light region (400 nm to 700 nm), and rapidly transmits on the long wavelength side (longer wavelength side than 680 nm) of the visible light region. It has a transmission characteristic with a decreasing rate. In the visible light region, the range where the transmittance of the second filter 30 is 50% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 694 nm. The range where the transmittance of the second filter 30 is 80% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to about 690 nm. The range in which the transmittance of the second filter 30 is 90% or more is a wavelength band of approximately 408 nm to approximately 688 nm. A range where the transmittance of the second filter 30 is 95% or more is a wavelength band of about 410 nm to about 686 nm.
 また、第2フィルタ30は、近赤外光領域(700nm~1100nm)の一部において透過特性を有している。第2フィルタ30の近赤外光領域における透過特性を有する波長帯域は、可視光領域における透過特性を有する波長帯域とは離間して設けられている。詳細には、第2フィルタ30は、800nm~950nmの波長帯域の一部において透過特性を有しており、近赤外光領域の800nmよりも長波長側で透過率が急激に増加するとともに、950nmよりも短波長側で透過率が急激に減少する透過特性を有している。そして、近赤外光領域においては第2フィルタ30の透過率が50%以上となる範囲が、略830nm~略916nmの波長帯域となっている。第2フィルタ30の透過率が80%以上となる範囲が、略836nm~略908nmの波長帯域となっている。第2フィルタ30の透過率が90%以上となる範囲が、略838nm~略904nmの波長帯域となっている。第2フィルタ30の透過率が95%以上となる範囲が、略840nm~略902nmの波長帯域となっている。 The second filter 30 has transmission characteristics in a part of the near infrared light region (700 nm to 1100 nm). The wavelength band having the transmission characteristics in the near-infrared light region of the second filter 30 is provided apart from the wavelength band having the transmission characteristics in the visible light region. Specifically, the second filter 30 has a transmission characteristic in a part of the wavelength band of 800 nm to 950 nm, and the transmittance rapidly increases on the longer wavelength side than 800 nm in the near infrared light region. It has a transmission characteristic in which the transmittance sharply decreases on the shorter wavelength side than 950 nm. In the near-infrared light region, the range in which the transmittance of the second filter 30 is 50% or more is a wavelength band of approximately 830 nm to approximately 916 nm. The range in which the transmittance of the second filter 30 is 80% or more is a wavelength band of about 836 nm to about 908 nm. The range in which the transmittance of the second filter 30 is 90% or more is a wavelength band of approximately 838 nm to approximately 904 nm. The range in which the transmittance of the second filter 30 is 95% or more is a wavelength band of approximately 840 nm to approximately 902 nm.
 一方、可視光領域と近赤外光領域の境界付近における第2フィルタ30の遮断特性は、次のようになっている。第2フィルタ30の透過率が20%以下となる範囲が、略700nm~略824nmの波長帯域となっている。第2フィルタ30の透過率が10%以下となる範囲が、略706nm~略818nmの波長帯域となっている。第2フィルタ30の透過率が5%以下となる範囲が、略712nm~略812nmの波長帯域となっている。 On the other hand, the cutoff characteristic of the second filter 30 in the vicinity of the boundary between the visible light region and the near-infrared light region is as follows. The range in which the transmittance of the second filter 30 is 20% or less is a wavelength band of about 700 nm to about 824 nm. The range in which the transmittance of the second filter 30 is 10% or less is a wavelength band of about 706 nm to about 818 nm. The range where the transmittance of the second filter 30 is 5% or less is the wavelength band of approximately 712 nm to approximately 812 nm.
 -第3フィルタ-
 第3フィルタ40は、図2に示すように、第1フィルタ20の他方の表面20B上に形成された誘電体多層膜によって構成されている。具体的には、図7に示すように、第3フィルタ40は、高屈折率膜40HであるTiOと、低屈折率膜40LであるSiOとが交互に積層された構成になっている。高屈折率膜40Hは12層形成され、低屈折率膜40Lは13層形成されており、合計で25層形成されている。第1フィルタ20側から数えて奇数番目の層が低屈折率膜40Lであり、偶数番目の層が高屈折率膜40Hになっている。最も第1フィルタ20側の1層目(最下層)が低屈折率膜40Lであり、最も大気側の25層目(最上層)も低屈折率膜40Lになっている。なお、高屈折率膜40H及び低屈折率膜40Lの積層順はこの例に限らず、第1フィルタ20側から数えて奇数番目の層が高屈折率膜40Hであり、偶数番目の層が低屈折率膜40Lであってもよい。また、例えば、上述した第2フィルタ30と同様に、高屈折率膜40H及び低屈折率膜40Lの層数が同じであってもよい。
-Third filter-
As shown in FIG. 2, the third filter 40 is composed of a dielectric multilayer film formed on the other surface 20 </ b> B of the first filter 20. Specifically, as shown in FIG. 7, the third filter 40, the TiO 2 is a high-refractive-index film 40H, has a structure in which the SiO 2 which is a low refractive index film 40L are stacked alternately . The high refractive index film 40H is formed of 12 layers, and the low refractive index film 40L is formed of 13 layers, for a total of 25 layers. The odd-numbered layers counted from the first filter 20 side are the low-refractive index films 40L, and the even-numbered layers are the high-refractive index films 40H. The first layer (lowermost layer) on the first filter 20 side is the low refractive index film 40L, and the 25th layer (uppermost layer) on the most atmospheric side is also the low refractive index film 40L. The order in which the high refractive index film 40H and the low refractive index film 40L are stacked is not limited to this example. The odd-numbered layers counted from the first filter 20 side are the high-refractive index films 40H, and the even-numbered layers are low. The refractive index film 40L may be used. For example, similarly to the second filter 30 described above, the number of layers of the high refractive index film 40H and the low refractive index film 40L may be the same.
 本実施形態では高屈折率膜40Hは、TiOとしたがこれに限られず、例えば、ZrO、Nb、Taといった材料でもよい。つまり、高屈折率膜40Hの材料としては、屈折率が2.0より大きいものが好ましい。また、低屈折率膜40LについてもSiOに限られず、例えばMgFといった材料でもよい。つまり、低屈折率膜40Lの材料としては、高屈折率膜40Hよりも屈折率が小さいものが好ましく、さらに好ましくは屈折率が1.5より小さいものがよい。 In the present embodiment, the high refractive index film 40H is made of TiO 2 , but is not limited thereto, and may be a material such as ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , for example. That is, as the material for the high refractive index film 40H, a material having a refractive index larger than 2.0 is preferable. Further, the low refractive index film 40L is not limited to SiO 2 but may be a material such as MgF 2 . That is, the material of the low refractive index film 40L is preferably a material having a refractive index smaller than that of the high refractive index film 40H, and more preferably a material having a refractive index smaller than 1.5.
 第3フィルタ40の各層(低屈折率膜40L及び高屈折率膜40H)は、周知の真空蒸着装置によって交互に真空蒸着される。蒸着膜厚は、屈折率と物理膜厚との積である光学膜厚に基づいて設計されており、第3フィルタ40の光学膜厚は、例えば、図7に示すように設計されている。図7中の中心波長(720nm)は膜厚設計の際の中心波長である。 Each layer of the third filter 40 (low refractive index film 40L and high refractive index film 40H) is alternately vacuum-deposited by a known vacuum deposition apparatus. The vapor deposition film thickness is designed based on the optical film thickness that is the product of the refractive index and the physical film thickness, and the optical film thickness of the third filter 40 is designed, for example, as shown in FIG. The center wavelength (720 nm) in FIG. 7 is the center wavelength when designing the film thickness.
 図7に示すように、第3フィルタ40は、高屈折率膜40Hと低屈折率膜40Lとが合計で25層積層され、そのときの総膜厚(物理膜厚)は約3.0μmになっている。第2フィルタ30の層数は、好ましくは、20層~60層とされ、そのときの総膜厚は、好ましくは、2.4μm~7.2μmとされる。 As shown in FIG. 7, in the third filter 40, a total of 25 layers of a high refractive index film 40H and a low refractive index film 40L are laminated, and the total film thickness (physical film thickness) at that time is about 3.0 μm. It has become. The number of layers of the second filter 30 is preferably 20 to 60 layers, and the total film thickness at that time is preferably 2.4 μm to 7.2 μm.
 第3フィルタ40は、図8に示すように、可視光領域(400nm~700nm)の略全域、及び、近赤外光領域(700nm~1100nm)の短波長側の領域において透過特性を有する。図8は、光の入射角α(図1参照)が、0°の場合(垂直入射の場合)の第3フィルタ40のフィルタ特性を示している。 As shown in FIG. 8, the third filter 40 has transmission characteristics in a substantially entire visible light region (400 nm to 700 nm) and a short wavelength side region of the near infrared light region (700 nm to 1100 nm). FIG. 8 shows the filter characteristics of the third filter 40 when the light incident angle α (see FIG. 1) is 0 ° (in the case of vertical incidence).
 具体的には、第3フィルタ40は、可視光領域の短波長端(400nm)から近赤外光領域にわたって透過特性を有しており、近赤外光領域において(900nmよりも短波長側)で急激に透過率が減少する透過特性を有している。可視光領域の略全域において、第3フィルタ40の透過率は、95%以上となっている。また、近赤外光領域において、第3フィルタ40は、近赤外光領域の短波長端(700nm)から、900nmよりも短波長側まで透過率が95%以上となっている。この場合、略862nmの波長で、第3フィルタ40の透過率が95%となっている。また、略866nmの波長で、第3フィルタ40の透過率が90%となり、略870nmの波長で、第3フィルタ40の透過率が80%となり、略876nmの波長で、第3フィルタ40の透過率が50%となっている。 Specifically, the third filter 40 has transmission characteristics from the short wavelength end (400 nm) of the visible light region to the near infrared light region, and in the near infrared light region (shorter wavelength side than 900 nm). And has a transmission characteristic in which the transmittance decreases rapidly. In substantially the entire visible light region, the transmittance of the third filter 40 is 95% or more. Further, in the near infrared light region, the third filter 40 has a transmittance of 95% or more from the short wavelength end (700 nm) of the near infrared light region to the shorter wavelength side than 900 nm. In this case, the transmittance of the third filter 40 is 95% at a wavelength of approximately 862 nm. Further, the transmittance of the third filter 40 is 90% at a wavelength of about 866 nm, the transmittance of the third filter 40 is 80% at a wavelength of about 870 nm, and the transmission of the third filter 40 is at a wavelength of about 876 nm. The rate is 50%.
 一方、近赤外光領域における第3フィルタ40の遮断特性は、次のようになっている。第3フィルタ40の透過率が20%以下となる範囲が、略886nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。第3フィルタ40の透過率が10%以下となる範囲が、略892nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。第3フィルタ40の透過率が5%以下となる範囲が、略900nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。 On the other hand, the cutoff characteristic of the third filter 40 in the near-infrared light region is as follows. The range in which the transmittance of the third filter 40 is 20% or less is a wavelength band from approximately 886 nm to the long wavelength end (1100 nm) in the near infrared light region. The range in which the transmittance of the third filter 40 is 10% or less is a wavelength band from approximately 892 nm to the long wavelength end (1100 nm) of the near infrared light region. The range in which the transmittance of the third filter 40 is 5% or less is a wavelength band from approximately 900 nm to the long wavelength end (1100 nm) in the near infrared light region.
 -光学フィルタの特性-
 本実施形態の第1~第3フィルタ20,30,40のフィルタ特性は、それぞれ図4、図6、図8に示すようになっている。そして、光学フィルタ10全体のフィルタ特性は、第1フィルタ20のフィルタ特性と、第2フィルタ30のフィルタ特性と、第3フィルタ40のフィルタ特性とを積算したものとなる(図3参照)。つまり、第1フィルタ20の透過率波形(図4参照)と、第2フィルタ30の透過率波形(図6参照)と、第3フィルタ40の透過率波形(図8参照)とが重なり合うことによって、図3に示す光学フィルタ10の透過率波形が得られるようになっている。すなわち、本実施形態の光学フィルタ10によれば、図3に示すように、可視光領域と近赤外光領域の2つの波長帯域において透過特性を有するフィルタ特性が得られる。光学フィルタ10の近赤外光領域における透過特性を有する波長帯域は、可視光領域における透過特性を有する波長帯域とは離間して設けられている。
-Optical filter characteristics-
The filter characteristics of the first to third filters 20, 30, and 40 of the present embodiment are as shown in FIGS. 4, 6, and 8, respectively. The filter characteristics of the entire optical filter 10 are obtained by integrating the filter characteristics of the first filter 20, the filter characteristics of the second filter 30, and the filter characteristics of the third filter 40 (see FIG. 3). That is, the transmittance waveform of the first filter 20 (see FIG. 4), the transmittance waveform of the second filter 30 (see FIG. 6), and the transmittance waveform of the third filter 40 (see FIG. 8) overlap. A transmittance waveform of the optical filter 10 shown in FIG. 3 is obtained. That is, according to the optical filter 10 of the present embodiment, as shown in FIG. 3, filter characteristics having transmission characteristics in two wavelength bands of the visible light region and the near infrared light region can be obtained. The wavelength band having transmission characteristics in the near-infrared light region of the optical filter 10 is provided apart from the wavelength band having transmission properties in the visible light region.
 具体的には、光学フィルタ10は、図3に示すように、可視光領域(400nm~700nm)の略全域において透過特性を有しており、可視光領域の長波長側(600nmよりも長波長側)でなだらかに透過率が減少する透過特性を有している。このような光学フィルタ10の可視光領域の特性は、主に第1フィルタ20によって得られる。可視光領域の長波長側(600nmよりも長波長側)における光学フィルタ10の透過率が減少する波形は、第1フィルタ20の透過率が減少する波形に略倣ったものとなっている。つまり、可視光領域の長波長側の領域では、第2フィルタ30及び第3フィルタ40の透過率が略100%(95%以上)になっているため、光学フィルタ10のフィルタ特性が、第1フィルタ20のフィルタ特性を略そのまま反映させたものとなっている。 Specifically, as shown in FIG. 3, the optical filter 10 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm), and has a longer wavelength side (wavelength longer than 600 nm) in the visible light region. Side), the transmittance gradually decreases. Such characteristics of the optical filter 10 in the visible light region are mainly obtained by the first filter 20. The waveform in which the transmittance of the optical filter 10 decreases on the long wavelength side (longer wavelength side than 600 nm) in the visible light region is substantially similar to the waveform in which the transmittance of the first filter 20 decreases. That is, in the region on the long wavelength side of the visible light region, the transmittance of the second filter 30 and the third filter 40 is approximately 100% (95% or more). The filter characteristics of the filter 20 are reflected almost as they are.
 より詳細には、可視光領域において、光学フィルタ10の透過率が50%以上となる範囲が、可視光領域の短波長端(400nm)から略646nmまでの波長帯域となっている。光学フィルタ10の透過率が80%以上となる範囲が、略420nm~略610nmの波長帯域となっている。光学フィルタ10の透過率が90%以上となる範囲が、略450nm~略580nmの波長帯域となっている。光学フィルタ10の透過率が95%以上となる範囲が、略470nm~略540nmの波長帯域となっている。 More specifically, the range in which the transmittance of the optical filter 10 is 50% or more in the visible light region is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 646 nm. The range in which the transmittance of the optical filter 10 is 80% or more is a wavelength band of about 420 nm to about 610 nm. A range where the transmittance of the optical filter 10 is 90% or more is a wavelength band of about 450 nm to about 580 nm. A range where the transmittance of the optical filter 10 is 95% or more is a wavelength band of about 470 nm to about 540 nm.
 また、光学フィルタ10は、図3に示すように、近赤外光領域の一部において透過特性を有している。すなわち、光学フィルタ10は、可視光領域の長波長側から近赤外光領域にかけて設けられた第1帯域A1、及び当該第1帯域A1よりも長波長側に設けられた第3帯域A3において遮断特性を有するとともに、第1帯域A1及び第3帯域A3の間に設けられた第2帯域A2において透過特性を有している。 Further, as shown in FIG. 3, the optical filter 10 has transmission characteristics in a part of the near-infrared light region. That is, the optical filter 10 is cut off in the first band A1 provided from the long wavelength side of the visible light region to the near infrared light region and the third band A3 provided on the longer wavelength side than the first band A1. In addition to having a characteristic, the second band A2 provided between the first band A1 and the third band A3 has a transmission characteristic.
 第1帯域A1は、640nmよりも長波長側から、800nmよりも長波長側まで設けられており、この第1帯域A1に透過率が5%以下となる遮断帯域が設けられている。また、第3帯域A3は、900nmよりも短波長側から、近赤外光領域の長波長端(1100nm)まで設けられており、この第3帯域A3に透過率が5%以下となる遮断帯域が設けられている。そして、第1帯域A1の遮断帯域、及び第3帯域A3の遮断帯域によって、第2帯域A2の透過帯域が形成されるようになっている。第2帯域A2では、800nmよりも長波長側の波長(略830nm)、及び、900nmよりも短波長側の波長(略876nm)で光学フィルタ10の透過率が50%となっている。 The first band A1 is provided from a longer wavelength side than 640 nm to a longer wavelength side than 800 nm, and a cutoff band having a transmittance of 5% or less is provided in the first band A1. The third band A3 is provided from the shorter wavelength side than 900 nm to the long wavelength end (1100 nm) in the near-infrared light region, and the third band A3 has a cutoff band in which the transmittance is 5% or less. Is provided. The transmission band of the second band A2 is formed by the cutoff band of the first band A1 and the cutoff band of the third band A3. In the second band A2, the transmittance of the optical filter 10 is 50% at a wavelength longer than 800 nm (approximately 830 nm) and a wavelength shorter than 900 nm (approximately 876 nm).
 具体的には、図3に示すように、第1帯域A1の透過率が50%となる波長帯域は、略646nm~略830nmの波長帯域となっている。第2帯域A2の透過率が50%となる波長帯域は、略830nm~略876nmの波長帯域となっている。第3帯域A3の透過率が50%となる波長帯域は、略876nmから、近赤外光領域の長波長端(1100nm)までの波長帯域となっている。 Specifically, as shown in FIG. 3, the wavelength band in which the transmittance of the first band A1 is 50% is a wavelength band of about 646 nm to about 830 nm. The wavelength band in which the transmittance of the second band A2 is 50% is a wavelength band of approximately 830 nm to approximately 876 nm. The wavelength band in which the transmittance of the third band A3 is 50% is a wavelength band from approximately 876 nm to the long wavelength end (1100 nm) of the near infrared light region.
 光学フィルタ10の第1帯域A1における遮断特性は、次のようになっている。光学フィルタ10の透過率が20%以下となる範囲が、略680nm~略824nmの波長帯域となっている。光学フィルタ10の透過率が10%以下となる範囲が、略686nm~略818nmの波長帯域となっている。光学フィルタ10の透過率が5%以下となる範囲が、略690nm~略812nmの波長帯域となっている。このように、光学フィルタ10は、第1帯域A1において、近赤外光領域の800nmよりも長波長側で透過率が急激に増加する特性を有している。 The cutoff characteristics in the first band A1 of the optical filter 10 are as follows. The range in which the transmittance of the optical filter 10 is 20% or less is a wavelength band of approximately 680 nm to approximately 824 nm. The range in which the transmittance of the optical filter 10 is 10% or less is a wavelength band of about 686 nm to about 818 nm. The range in which the transmittance of the optical filter 10 is 5% or less is a wavelength band of about 690 nm to about 812 nm. As described above, the optical filter 10 has a characteristic that in the first band A1, the transmittance rapidly increases on the longer wavelength side than 800 nm in the near-infrared light region.
 また、光学フィルタ10の第3帯域A3における遮断特性は、次のようになっている。光学フィルタ10の透過率が20%以下となる範囲が、略884nmから、近赤外光領域の長波長端(1100nm)までの波長帯域となっている。光学フィルタ10の透過率が10%以下となる範囲が、略892nmから、近赤外光領域の長波長端(1100nm)までの波長帯域となっている。光学フィルタ10の透過率が5%以下となる範囲が、略900nmから、近赤外光領域の長波長端(1100nm)までの波長帯域となっている。このように、光学フィルタ10は、第3帯域A3において、近赤外光領域の900nmよりも短波長側で透過率が急激に減少する特性を有している。 Further, the cutoff characteristic in the third band A3 of the optical filter 10 is as follows. The range in which the transmittance of the optical filter 10 is 20% or less is a wavelength band from approximately 884 nm to the long wavelength end (1100 nm) of the near infrared light region. The range in which the transmittance of the optical filter 10 is 10% or less is a wavelength band from approximately 892 nm to the long wavelength end (1100 nm) in the near infrared light region. The range in which the transmittance of the optical filter 10 is 5% or less is a wavelength band from approximately 900 nm to the long wavelength end (1100 nm) of the near infrared light region. As described above, the optical filter 10 has a characteristic that in the third band A3, the transmittance sharply decreases on the shorter wavelength side than 900 nm in the near infrared light region.
 一方、光学フィルタ10の第2帯域A2における透過特性は、次のようになっている。光学フィルタ10の透過率が50%以上となる範囲が、略830nm~略876nmの波長帯域となっている。光学フィルタ10の透過率が80%以上となる範囲が、略836nm~略870nmの波長帯域となっている。光学フィルタ10の透過率が90%以上となる範囲が、略840nm~略866nmの波長帯域となっている。光学フィルタ10の透過率が95%以上となる範囲が、略842nm~略864nmの波長帯域となっている。このように、光学フィルタ10は、第2帯域A2において、近赤外光領域の800nmよりも長波長側で透過率が急激に増加する特性を有し、また、近赤外光領域の900nmよりも短波長側で透過率が急激に減少する特性を有している。 On the other hand, the transmission characteristics of the optical filter 10 in the second band A2 are as follows. The range in which the transmittance of the optical filter 10 is 50% or more is a wavelength band of approximately 830 nm to approximately 876 nm. The range in which the transmittance of the optical filter 10 is 80% or more is a wavelength band of about 836 nm to about 870 nm. A range where the transmittance of the optical filter 10 is 90% or more is a wavelength band of about 840 nm to about 866 nm. The range in which the transmittance of the optical filter 10 is 95% or more is a wavelength band of approximately 842 nm to approximately 864 nm. Thus, in the second band A2, the optical filter 10 has a characteristic that the transmittance rapidly increases on the longer wavelength side than 800 nm in the near infrared light region, and from 900 nm in the near infrared light region. Also has a characteristic that the transmittance decreases rapidly on the short wavelength side.
 本実施形態では、光学フィルタ10の第1帯域A1の短波長側の遮断特性が、第1フィルタ20によって形成されている。また、光学フィルタ10の第1帯域A1の長波長側の遮断特性、及び第2帯域A2の短波長側の透過特性が、第2フィルタ30によって形成されている。また、光学フィルタ10の第2帯域A2の長波長側の透過特性、及び第3帯域A3の短波長側の遮断特性が、第3フィルタ40によって形成されている。そして、光学フィルタ10の第1帯域A1では、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmとなっている。この点について、以下説明する。 In the present embodiment, the cutoff characteristic on the short wavelength side of the first band A1 of the optical filter 10 is formed by the first filter 20. Further, the cutoff characteristic on the long wavelength side of the first band A1 of the optical filter 10 and the transmission characteristic on the short wavelength side of the second band A2 are formed by the second filter 30. In addition, the transmission characteristics on the long wavelength side of the second band A2 of the optical filter 10 and the cutoff characteristics on the short wavelength side of the third band A3 are formed by the third filter 40. In the first band A1 of the optical filter 10, the bandwidth of the cutoff band where the transmittance is 5% or less is at least 100 nm. This point will be described below.
 図3に示すように、第1帯域A1では、近赤外光領域において、近赤外光領域の短波長端(700nm)から、800nmよりも長波長側までの波長帯域で、光学フィルタ10の透過率が5%以下となる遮断帯域が設けられている。より詳細には、第1帯域A1の遮断帯域は、近赤外光領域だけでなく、可視光領域の長波長側にも連続して設けられており、具体的には、略690nm~略812nmの範囲に設けられている。 As shown in FIG. 3, in the first band A1, in the near-infrared light region, the optical filter 10 has a wavelength band from the short wavelength end (700 nm) of the near-infrared light region to the longer wavelength side than 800 nm. A cut-off band in which the transmittance is 5% or less is provided. More specifically, the cutoff band of the first band A1 is continuously provided not only in the near-infrared light region but also on the long wavelength side of the visible light region, and specifically, approximately 690 nm to approximately 812 nm. It is provided in the range.
 このような光学フィルタ10の第1帯域A1の遮断帯域は、第1フィルタ20及び第2フィルタ30によって形成されるようになっている。具体的に、可視光領域においては、可視光領域の長波長側(略690nm)から、可視光領域の長波長端(700nm)までの波長帯域では、第1帯域A1の遮断帯域は、第1フィルタ20のフィルタ特性に略倣ったものとなっている。つまり、可視光領域の長波長側(略690nm)から、可視光領域の長波長端(700nm)までの波長帯域では、第1フィルタ20の透過率が略0%(5%以下)になっているため、光学フィルタ10のフィルタ特性が、第1フィルタ20のフィルタ特性を略そのまま反映させたものとなっている。 The cut-off band of the first band A1 of the optical filter 10 is formed by the first filter 20 and the second filter 30. Specifically, in the visible light region, in the wavelength band from the long wavelength side (approximately 690 nm) of the visible light region to the long wavelength end (700 nm) of the visible light region, the cutoff band of the first band A1 is the first The filter 20 roughly follows the filter characteristics of the filter 20. That is, in the wavelength band from the long wavelength side (approximately 690 nm) of the visible light region to the long wavelength end (700 nm) of the visible light region, the transmittance of the first filter 20 is approximately 0% (5% or less). Therefore, the filter characteristic of the optical filter 10 reflects the filter characteristic of the first filter 20 almost as it is.
 近赤外光領域においては、近赤外光領域の短波長端(700nm)から、近赤外光領域の短波長側(略712nm)までの波長帯域では、第1帯域A1の遮断帯域は、第1フィルタ20のフィルタ特性及び第2フィルタ30のフィルタ特性を組み合わせたものとなっている。一方、近赤外光領域の短波長側(略712nm)から、800nmよりも長波長側(略812nm)までの波長帯域では、第1帯域A1の遮断帯域は、第2フィルタ30のフィルタ特性に略倣ったものとなっている。つまり、近赤外光領域の短波長側(略712nm)から、800nmよりも長波長側(略812nm)までの波長帯域では、第2フィルタ30の透過率が略0%(5%以下)になっているため、光学フィルタ10のフィルタ特性が、第2フィルタ30のフィルタ特性を略そのまま反映させたものとなっている。 In the near infrared light region, in the wavelength band from the short wavelength end (700 nm) of the near infrared light region to the short wavelength side (approximately 712 nm) of the near infrared light region, the cutoff band of the first band A1 is The filter characteristics of the first filter 20 and the filter characteristics of the second filter 30 are combined. On the other hand, in the wavelength band from the short wavelength side (approximately 712 nm) in the near-infrared light region to the longer wavelength side (approximately 812 nm) than 800 nm, the cutoff band of the first band A1 is the filter characteristic of the second filter 30. It has been imitated. That is, in the wavelength band from the short wavelength side (approximately 712 nm) in the near infrared light region to the longer wavelength side (approximately 812 nm) than 800 nm, the transmittance of the second filter 30 is approximately 0% (5% or less). Therefore, the filter characteristic of the optical filter 10 reflects the filter characteristic of the second filter 30 substantially as it is.
 このように、光学フィルタ10の第1帯域A1の遮断帯域が、第1フィルタ20及び第2フィルタ30によって形成されている。光学フィルタ10の第1帯域A1では、近赤外光領域において、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmに設定されており、この例では、略112nmとなっている。また、近赤外光領域だけでなく、可視光領域の長波長側も考慮すると、光学フィルタ10の第1帯域A1の透過率が5%以下となる遮断帯域の帯域幅が、可視光領域の長波長側から近赤外光領域にかけて、略122nmとなっている。 Thus, the cut-off band of the first band A1 of the optical filter 10 is formed by the first filter 20 and the second filter 30. In the first band A1 of the optical filter 10, the bandwidth of the cut-off band where the transmittance is 5% or less in the near infrared light region is set to at least 100 nm, and in this example, is approximately 112 nm. . Considering not only the near-infrared light region but also the long wavelength side of the visible light region, the bandwidth of the cutoff band in which the transmittance of the first band A1 of the optical filter 10 is 5% or less is in the visible light region. From the long wavelength side to the near infrared light region, it is approximately 122 nm.
 次に、光学フィルタ10は、第1帯域A1と第2帯域A2の境界付近において、近赤外光領域の800nmよりも長波長側で透過率が急激に増加するフィルタ特性を有している。略812nm~略842nmの範囲で、光学フィルタ10の透過率が、5%から95%まで増加している。このような光学フィルタ10の第1帯域A1の長波長側の遮断特性、及び第2帯域A2の短波長側の透過特性は、第2フィルタ30のフィルタ特性に略倣ったものとなっている。つまり、近赤外光領域の800nmよりも長波長側(略812nm~略842nm)では、第1フィルタ20及び第3フィルタ40の透過率が略100%(95%以上)になっているため、光学フィルタ10のフィルタ特性が、第2フィルタ30のフィルタ特性を略そのまま反映させたものとなっている。このように、光学フィルタ10の第1帯域A1の長波長側の遮断特性、及び第2帯域A2の短波長側の透過特性が、第2フィルタ30によって形成されている。 Next, the optical filter 10 has a filter characteristic in which the transmittance rapidly increases near the boundary between the first band A1 and the second band A2 on the longer wavelength side than 800 nm in the near-infrared light region. In the range of about 812 nm to about 842 nm, the transmittance of the optical filter 10 increases from 5% to 95%. The cut-off characteristic on the long wavelength side of the first band A1 and the transmission characteristic on the short wavelength side of the second band A2 of the optical filter 10 substantially follow the filter characteristic of the second filter 30. That is, the transmittance of the first filter 20 and the third filter 40 is approximately 100% (95% or more) on the longer wavelength side (approximately 812 nm to approximately 842 nm) than 800 nm in the near infrared light region. The filter characteristics of the optical filter 10 reflect the filter characteristics of the second filter 30 almost as they are. As described above, the second filter 30 forms the cutoff characteristic on the long wavelength side of the first band A1 of the optical filter 10 and the transmission characteristic on the short wavelength side of the second band A2.
 次に、第2帯域A2では、800nmよりも長波長側から、900nmよりも短波長側までの波長帯域、具体的には、略842nm~略864nmの波長帯域において、光学フィルタ10の透過率が95%以上となる透過帯域が設けられている。このような光学フィルタ10の第2帯域A2の透過帯域は、第2フィルタ30と第3フィルタ40とのフィルタ特性に略倣ったものとなっている。つまり、略842nm~略864nmの波長帯域では、第1フィルタ20及び第3フィルタ40の透過率が略100%(95%以上)になっているため、光学フィルタ10のフィルタ特性が、第2フィルタ30のフィルタ特性を略そのまま反映させたものとなっている。このように、光学フィルタ10の第2帯域A2の透過帯域が、第2フィルタ30によって形成されている。光学フィルタ10の第2帯域A2では、透過率が95%以上となる透過帯域の帯域幅が、この例では、略22nmとなっている。また、光学フィルタ10の第2帯域A2では、透過率が50%以上となる透過帯域の帯域幅が、この例では、略46nmとなっている。 Next, in the second band A2, the transmittance of the optical filter 10 in the wavelength band from the longer wavelength side than 800 nm to the shorter wavelength side than 900 nm, specifically, in the wavelength band of about 842 nm to about 864 nm. A transmission band of 95% or more is provided. The transmission band of the second band A2 of the optical filter 10 is substantially similar to the filter characteristics of the second filter 30 and the third filter 40. That is, in the wavelength band of approximately 842 nm to approximately 864 nm, the transmittance of the first filter 20 and the third filter 40 is approximately 100% (95% or more), so that the filter characteristic of the optical filter 10 is the second filter. The 30 filter characteristics are reflected as they are. Thus, the transmission band of the second band A2 of the optical filter 10 is formed by the second filter 30. In the second band A2 of the optical filter 10, the bandwidth of the transmission band where the transmittance is 95% or more is approximately 22 nm in this example. In the second band A2 of the optical filter 10, the bandwidth of the transmission band where the transmittance is 50% or more is approximately 46 nm in this example.
 次に、光学フィルタ10は、第2帯域A2と第3帯域A3の境界付近において、近赤外光領域の900nmよりも短波長側で透過率が急激に減少するフィルタ特性を有している。略864nm~略900nmの範囲で、光学フィルタ10の透過率が、95%から5%まで減少している。このような光学フィルタ10の第2帯域A2の長波長側の透過特性、及び第3帯域A3の短波長側の遮断特性が、第3フィルタ40のフィルタ特性に略倣ったものとなっている。つまり、900nmよりも短波長側(略864nm~略900nm)では、第1フィルタ20及び第2フィルタ30の透過率が略100%(95%以上)になっているため、光学フィルタ10のフィルタ特性が、第3フィルタ40のフィルタ特性を略そのまま反映させたものとなっている。このように、光学フィルタ10の第2帯域A2の長波長側の透過特性、及び第3帯域A3の短波長側の遮断特性が、第3フィルタ40によって形成されている。 Next, the optical filter 10 has a filter characteristic in which the transmittance rapidly decreases near the boundary between the second band A2 and the third band A3 on the shorter wavelength side than 900 nm in the near-infrared light region. In the range from about 864 nm to about 900 nm, the transmittance of the optical filter 10 decreases from 95% to 5%. The transmission characteristics on the long wavelength side of the second band A2 of the optical filter 10 and the cutoff characteristics on the short wavelength side of the third band A3 are substantially similar to the filter characteristics of the third filter 40. That is, on the shorter wavelength side (approximately 864 nm to approximately 900 nm) than 900 nm, the transmittance of the first filter 20 and the second filter 30 is approximately 100% (95% or more). However, the filter characteristics of the third filter 40 are reflected almost as they are. As described above, the transmission characteristics on the long wavelength side of the second band A2 of the optical filter 10 and the cutoff characteristics on the short wavelength side of the third band A3 are formed by the third filter 40.
 さらに、第3帯域A3では、900nmよりも短波長側から、近赤外光領域の長波長端(1100nm)までの波長帯域において、光学フィルタ10の透過率が5%以下となる遮断帯域が設けられている。このような光学フィルタ10の第3帯域A3の遮断帯域は、第3フィルタ40のフィルタ特性に略倣ったものとなっている。つまり、900nmよりも短波長側(略900nm)から、近赤外光領域の長波長端(1100nm)までの波長帯域では、第3フィルタ40の透過率が略0%(5%以下)になっているため、光学フィルタ10のフィルタ特性が、第3フィルタ40のフィルタ特性を略そのまま反映させたものとなっている。このように、光学フィルタ10の第3帯域A3の遮断帯域が、第3フィルタ40によって形成されている。光学フィルタ10の第3帯域A3では、透過率が5%以下となる遮断帯域の帯域幅が、この例では、略200nmとなっている。 Further, in the third band A3, a cutoff band is provided in which the transmittance of the optical filter 10 is 5% or less in the wavelength band from the shorter wavelength side than 900 nm to the long wavelength end (1100 nm) of the near infrared light region. It has been. The cut-off band of the third band A3 of the optical filter 10 is substantially similar to the filter characteristics of the third filter 40. That is, in the wavelength band from the shorter wavelength side (approximately 900 nm) than 900 nm to the long wavelength end (1100 nm) in the near-infrared light region, the transmittance of the third filter 40 is approximately 0% (5% or less). Therefore, the filter characteristics of the optical filter 10 reflect the filter characteristics of the third filter 40 substantially as they are. In this way, the third filter 40 forms the cutoff band of the third band A3 of the optical filter 10. In the third band A3 of the optical filter 10, the bandwidth of the cut-off band where the transmittance is 5% or less is approximately 200 nm in this example.
 本実施形態によれば、光学フィルタ10の第1帯域A1では、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmに設定されているので、従来に比べて遮断帯域の帯域幅を広く確保することができ、第1帯域A1の遮断特性を十分に確保することができる。これにより、赤色成分の透過を十分に抑制することができ、赤色成分の透過に起因する混色の発生を抑制することができる。その結果、撮像デバイスで撮像される画像の色再現性の低下を抑制することができる。なお、上記第1帯域A1の遮断帯域の帯域幅の上限値は特に限定されず、例えば、150nmであってもよく、あるいは、250nmであってもよい。 According to the present embodiment, in the first band A1 of the optical filter 10, the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm. Can be ensured widely, and the cutoff characteristic of the first band A1 can be sufficiently ensured. Thereby, the transmission of the red component can be sufficiently suppressed, and the occurrence of color mixing due to the transmission of the red component can be suppressed. As a result, it is possible to suppress a decrease in color reproducibility of an image captured by the imaging device. The upper limit value of the bandwidth of the cutoff band of the first band A1 is not particularly limited, and may be, for example, 150 nm or 250 nm.
 ここで、第2フィルタ30の半値波長(透過率が50%となる波長)が、第1フィルタ20の半値波長よりも長波長側にあるので、第1フィルタ20による光の吸収により、第2フィルタ30によって反射される光の量が抑制される。これにより、第2フィルタ30による光の反射に起因するゴーストの発生を抑制することができる。 Here, since the half-value wavelength of the second filter 30 (the wavelength at which the transmittance is 50%) is on the longer wavelength side than the half-value wavelength of the first filter 20, the second filter 30 absorbs the light by the second absorption. The amount of light reflected by the filter 30 is suppressed. Thereby, generation | occurrence | production of the ghost resulting from reflection of the light by the 2nd filter 30 can be suppressed.
 また、本実施形態では、第1フィルタ20が赤外線吸収体(赤外線吸収樹脂)によって形成されているので、第1フィルタ20が誘電体多層膜によって形成される場合に比べて、光学フィルタ10の可視光領域における入射角依存性を低減することができるとともに、撮像デバイスで撮像される画像にゴーストやフレアが発生することも抑制できる。この点について、図9を参照して説明する。図9は、光学フィルタ10において、光の入射角α(図1参照)が、0°、10°、20°、及び30°のときのそれぞれのフィルタ特性の一部を示す図である。光の入射角αが0°のときのフィルタ特性をL1で示し、光の入射角αが10°のときのフィルタ特性をL2で示し、光の入射角αが20°のときのフィルタ特性をL3で示し、光の入射角αが30°のときのフィルタ特性をL4で示している。 In the present embodiment, since the first filter 20 is formed of an infrared absorber (infrared absorbing resin), the optical filter 10 is more visible than when the first filter 20 is formed of a dielectric multilayer film. The incident angle dependency in the light region can be reduced, and the occurrence of ghosts and flares in the image captured by the imaging device can be suppressed. This point will be described with reference to FIG. FIG. 9 is a diagram illustrating a part of each filter characteristic when the light incident angle α (see FIG. 1) is 0 °, 10 °, 20 °, and 30 ° in the optical filter 10. The filter characteristic when the light incident angle α is 0 ° is denoted by L1, the filter characteristic when the light incident angle α is 10 ° is denoted by L2, and the filter property when the light incident angle α is 20 °. L3 indicates the filter characteristic when the light incident angle α is 30 °, and L4.
 図9に示すように、近赤外光領域では、光の入射角αが大きくなるほど、光学フィルタ10の波形が短波長側にシフトしている。この理由は、近赤外光領域では、光学フィルタ10のフィルタ特性が、誘電体多層膜からなる第2、第3フィルタ30,40によって形成されるためであり、近赤外光領域では、光学フィルタ10の入射角依存性が大きくなっている。したがって、近赤外光領域では、撮像素子によって特定の波長の光のみを検出したい場合には、検出効率が悪化する可能性がある。 As shown in FIG. 9, in the near-infrared light region, the waveform of the optical filter 10 shifts to the short wavelength side as the incident angle α of light increases. This is because the filter characteristics of the optical filter 10 are formed by the second and third filters 30 and 40 made of a dielectric multilayer film in the near-infrared light region. The incident angle dependency of the filter 10 is increased. Therefore, in the near-infrared light region, when it is desired to detect only light of a specific wavelength by the image sensor, the detection efficiency may be deteriorated.
 一方、可視光領域では、近赤外光領域の場合に比べて、光学フィルタ10の波形の短波長側へのシフト量が小さくなっている。この理由は、可視光領域では、光学フィルタ10のフィルタ特性が、赤外線吸収体(赤外線吸収樹脂)からなる第1フィルタ20によって形成されるためである。このように、本実施形態では、光学フィルタ10の可視光領域における入射角依存性を低減することができ、撮像デバイスで撮像される画像にゴーストやフレアが発生することを抑制できる。なお、第1フィルタ20単体による入射角依存性はほとんどなく、光の入射角αが30°の場合であっても、短波長側へのシフト量は数nmとなっている。つまり、図9に現れる可視光領域における入射角依存性は、第1フィルタ20によるものではなく、主として第2フィルタ30によるものとなっている。 On the other hand, in the visible light region, the shift amount of the waveform of the optical filter 10 to the short wavelength side is smaller than in the near-infrared light region. This is because the filter characteristics of the optical filter 10 are formed by the first filter 20 made of an infrared absorber (infrared absorbing resin) in the visible light region. Thus, in this embodiment, the incident angle dependence in the visible light area | region of the optical filter 10 can be reduced, and it can suppress that a ghost and flare generate | occur | produce in the image imaged with an imaging device. The first filter 20 has almost no incident angle dependency, and even when the light incident angle α is 30 °, the shift amount to the short wavelength side is several nm. That is, the incident angle dependency in the visible light region shown in FIG. 9 is mainly due to the second filter 30, not the first filter 20.
 また、本実施形態では、近赤外光領域では、光学フィルタ10のフィルタ特性が第2、第3フィルタ30,40によって形成されている。詳細には、光学フィルタ10の第2帯域A2の短波長側の透過特性が、第2フィルタ30によって形成され、第2帯域A2の長波長側の透過特性が、第3フィルタ40によって形成されている。これにより、光学フィルタ10の第2帯域A2において、透過率が50%以上となる透過帯域の帯域幅を容易に変更することができ、光学フィルタ10の近赤外光領域のフィルタ特性に対するさまざまな要求に柔軟に対応することができる。なお、光学フィルタ10の第2帯域A2において、透過率が50%以上となる透過帯域の帯域幅は、35nm~200nmに設定されることが好ましい。この場合、第2帯域A2の透過率が50%となる波長帯域は、800nm~1000nmの範囲に設定されることが好ましい。例えば、上記第2帯域A2の透過帯域の帯域幅を、200nmに設定する場合、1000nm付近の波長で急激に透過率が減少するようなフィルタ特性を有する第3フィルタ40を用いればよい。 In this embodiment, the filter characteristics of the optical filter 10 are formed by the second and third filters 30 and 40 in the near-infrared light region. Specifically, the transmission characteristic on the short wavelength side of the second band A2 of the optical filter 10 is formed by the second filter 30, and the transmission characteristic on the long wavelength side of the second band A2 is formed by the third filter 40. Yes. Thereby, in the second band A2 of the optical filter 10, the bandwidth of the transmission band in which the transmittance is 50% or more can be easily changed, and various filter characteristics of the optical filter 10 with respect to the near infrared light region can be changed. Respond flexibly to requests. In the second band A2 of the optical filter 10, the bandwidth of the transmission band where the transmittance is 50% or more is preferably set to 35 nm to 200 nm. In this case, the wavelength band where the transmittance of the second band A2 is 50% is preferably set in the range of 800 nm to 1000 nm. For example, when the bandwidth of the transmission band of the second band A2 is set to 200 nm, the third filter 40 having a filter characteristic that the transmittance rapidly decreases at a wavelength near 1000 nm may be used.
 また、本実施形態では、第2フィルタ30の低屈折率膜30Lの光学膜厚の平均値と、高屈折率膜30Hの光学膜厚の平均値との膜厚比[低屈折率膜30Lの光学膜厚の平均値/高屈折率膜30Hの光学膜厚の平均値]が、0.50~0.85の範囲内の値に設定されている。これにより、第2フィルタ30の遮断特性を有する遮断帯域の帯域幅を狭くすることができ、可視光領域とは離間した近赤外光領域の所望の範囲に透過帯域(第2帯域A2)を設定することができる。 In the present embodiment, the film thickness ratio between the average value of the optical film thickness of the low refractive index film 30L of the second filter 30 and the average value of the optical film thickness of the high refractive index film 30H [of the low refractive index film 30L The average value of the optical film thickness / the average value of the optical film thickness of the high refractive index film 30H] is set to a value within the range of 0.50 to 0.85. Thereby, the bandwidth of the cutoff band having the cutoff characteristic of the second filter 30 can be narrowed, and the transmission band (second band A2) is set in a desired range in the near infrared light region separated from the visible light region. Can be set.
 また、本実施形態では、第1帯域A1の透過率が50%となる波長の帯域幅が、第1フィルタ20の透過率が50%となる波長の帯域幅及び第2フィルタ30の透過率が50%となる波長の帯域幅よりも大きくなっている。これにより、第1、第2フィルタ20,30によって、近赤外光領域の所望の範囲に透過帯域(第2帯域A2)を設定することができる。 In the present embodiment, the bandwidth of the wavelength at which the transmittance of the first band A1 is 50%, the bandwidth of the wavelength at which the transmittance of the first filter 20 is 50%, and the transmittance of the second filter 30 are as follows. It is larger than the bandwidth of the wavelength of 50%. Accordingly, the first and second filters 20 and 30 can set the transmission band (second band A2) in a desired range in the near-infrared light region.
 今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 The embodiment disclosed herein is illustrative in all respects and does not serve as a basis for limited interpretation. The technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. Further, the technical scope of the present invention includes all modifications within the meaning and scope equivalent to the scope of the claims.
 上記実施形態では、光学フィルタ10が、可視光領域の略全域において透過特性を有していたが、これに限らず、光学フィルタ10を、可視光領域の一部の領域のみに透過特性を有する構成としてもよい。 In the above-described embodiment, the optical filter 10 has transmission characteristics in substantially the entire visible light region. However, the present invention is not limited to this, and the optical filter 10 has transmission properties only in a part of the visible light region. It is good also as a structure.
 上記実施形態の第1フィルタ20は一例であって、可視光領域で透過率が50%となる波長が、640nm~660nmの範囲内の波長であり、且つ、650nm~800nmの範囲内に吸収極大を有するものであれば、第1フィルタ20は上記実施形態以外の構成であってもよい。例えば、上記実施形態では、第1フィルタ20として、透明樹脂に赤外線を吸収する化合物を含有させた赤外線吸収体を用いたが、これに限らず、第1フィルタ20として、ガラス等の基材の表面に赤外線を吸収する化合物(赤外線吸収インク)を塗布した構成の赤外線吸収体を用いてもよい。 The first filter 20 of the above embodiment is an example, and the wavelength at which the transmittance is 50% in the visible light region is a wavelength in the range of 640 nm to 660 nm, and the absorption maximum is in the range of 650 nm to 800 nm. The first filter 20 may have a configuration other than the above embodiment. For example, in the said embodiment, although the infrared rays absorber which made the transparent resin contain the compound which absorbs infrared rays was used as the 1st filter 20, it is not restricted to this, As 1st filter 20, base materials, such as glass, are used. You may use the infrared absorber of the structure which apply | coated the compound (infrared absorbing ink) which absorbs infrared rays on the surface.
 上記実施形態の第2フィルタ30は一例であって、透過率が50%となる波長が、685nm~710nmの範囲内の波長であり、且つ、透過率が5%以下となる遮断帯域が、近赤外光領域において少なくとも100nmの範囲にわたって設けられているものであれば、第2フィルタ30は上記実施形態以外の構成であってもよい。例えば、第2フィルタ30を、複数のフィルタ(誘電体多層膜)を組み合わせた構成としてもよい。同様に、第3フィルタ40についても、複数のフィルタ(誘電体多層膜)を組み合わせた構成としてもよい。 The second filter 30 of the above embodiment is an example, and the wavelength at which the transmittance is 50% is a wavelength in the range of 685 nm to 710 nm, and the cutoff band at which the transmittance is 5% or less is close. As long as it is provided over the range of at least 100 nm in the infrared light region, the second filter 30 may have a configuration other than the above embodiment. For example, the second filter 30 may be configured by combining a plurality of filters (dielectric multilayer films). Similarly, the third filter 40 may be configured by combining a plurality of filters (dielectric multilayer films).
 ここで、本発明の光学フィルタの他の実施形態(第2実施形態)について、図10~図15を参照して説明する。 Here, another embodiment (second embodiment) of the optical filter of the present invention will be described with reference to FIGS.
 図10~図15に示す光学フィルタ100は、撮像デバイスに設けられる光学フィルタであって、可視光領域と近赤外光領域の2つの波長帯域において透過特性を有する。可視光領域の透過特性を有する波長帯域と、近赤外光領域の透過特性を有する波長帯域とは離間して設けられる。具体的に、光学フィルタ100は、図10に示すように、赤外線吸収体からなる第1フィルタ120と、第1フィルタ120の一方の面にコーティングされた誘電体多層膜からなる第2フィルタ130と、第1フィルタ120の他方の面にコーティングされた誘電体多層膜からなる第3フィルタ140とを備えている。光学フィルタ100は、図11に示すようなフィルタ特性(透過率波形)を示す。以下、光学フィルタ100の各構成について説明する。 The optical filter 100 shown in FIGS. 10 to 15 is an optical filter provided in the imaging device, and has transmission characteristics in two wavelength bands, a visible light region and a near infrared light region. The wavelength band having the transmission characteristic in the visible light region and the wavelength band having the transmission characteristic in the near infrared light region are provided apart from each other. Specifically, as shown in FIG. 10, the optical filter 100 includes a first filter 120 made of an infrared absorber, and a second filter 130 made of a dielectric multilayer film coated on one surface of the first filter 120. And a third filter 140 made of a dielectric multilayer film coated on the other surface of the first filter 120. The optical filter 100 exhibits filter characteristics (transmittance waveform) as shown in FIG. Hereinafter, each configuration of the optical filter 100 will be described.
 -第1フィルタ-
 本実施形態では、赤外線吸収体である第1フィルタ120が、透明基材(透明基板)120aの一方の面に赤外線を吸収する赤外線吸収インク(赤外線吸収色素)120bが塗布された構成になっている。透明基材120aは、無色透明のガラス基板であり、このようなガラス基板としては、例えば、D263Teco(ショット社製)、BK7等を用いることが可能である。赤外線吸収色素120bとしては、例えば、スクアリリウム系色素、フタロシアニン系色素、シアニン系色素等を用いることが可能である。このような赤外線吸収色素120bは、透明樹脂、溶媒等と混合することによって作製された塗工液の状態で、透明基材120aの表面に塗布される。透明基材120aとしてガラス基板を用いることによって、第1フィルタ120の剛性を向上させることができ、後述する第2、第3フィルタ130,140の成膜時の応力に起因する第1フィルタ120の歪みを抑制することができる。ただし、透明基材120aは、無色透明の基材であれば、ガラス以外であってもよく、例えば、ポリエチレンテレフタレート、ポリカーボネート、シクロオレフィンポリマー等のような透明樹脂であってもよい。
-First filter-
In this embodiment, the 1st filter 120 which is an infrared rays absorber becomes the structure by which the infrared rays absorption ink (infrared absorption pigment | dye) 120b which absorbs infrared rays was apply | coated to one side of the transparent base material (transparent substrate) 120a. Yes. The transparent substrate 120a is a colorless and transparent glass substrate. As such a glass substrate, for example, D263Teco (manufactured by Schott), BK7, or the like can be used. As the infrared absorbing dye 120b, for example, squarylium dye, phthalocyanine dye, cyanine dye, or the like can be used. Such an infrared absorbing dye 120b is applied to the surface of the transparent substrate 120a in the state of a coating liquid prepared by mixing with a transparent resin, a solvent, or the like. By using a glass substrate as the transparent base material 120a, the rigidity of the first filter 120 can be improved, and the first filter 120 of the second and third filters 130 and 140, which will be described later, is caused by stress during film formation. Distortion can be suppressed. However, the transparent substrate 120a may be other than glass as long as it is a colorless and transparent substrate. For example, the transparent substrate 120a may be a transparent resin such as polyethylene terephthalate, polycarbonate, and cycloolefin polymer.
 上記構成の第1フィルタ120の製造は、例えば次のような手順で行われる。 The manufacture of the first filter 120 having the above configuration is performed by the following procedure, for example.
 まず、赤外線吸収色素120bを、透明樹脂、溶媒等と混合することによって、赤外線吸収色素120bの塗工液を作製する(塗工液作製工程)。一例を挙げれば、透明樹脂であるメチルエチルケトンに対し、溶媒であるポリメタクリル酸メチルを5~15重量%に比率で混合し、ポリメタクリル酸メチルを溶解させた溶液を作製する。この溶液に対し、赤外線吸収色素120bであるシアニン系赤外吸収色素を0.1~1.0重量%の比率で添加し、赤外線吸収色素120bの塗工液を作製する。なお、透明樹脂としては、例えば、アクリル系、エポキシ系、ポリスチレン系、ポリエステル系、環状オレフィン系等の樹脂を用いることが可能である。溶媒としては、例えば、ケトン系(メチルエチルケトン等)、炭化水素系(トルエン等)、エステル系(酢酸メチル等)、エーテル系(テトラヒドロフラン等)、アルコール系(エタノール等)の溶剤を用いることが可能である。また、必要に応じて、光重合開始剤、熱重合開始剤等の重合開始剤を添加してもよい。なお、塗料の状態で市販されている赤外線吸収色素120b(例えば、エポキシ樹脂塗料)を購入し、その赤外線吸収色素120bを透明基材120aに塗布してもよく、この場合、塗工液作製工程を省略することが可能である。 First, the infrared absorbing dye 120b is mixed with a transparent resin, a solvent, and the like to prepare a coating liquid for the infrared absorbing dye 120b (coating liquid preparing step). As an example, a solution in which polymethyl methacrylate as a solvent is mixed in a ratio of 5 to 15% by weight with methyl ethyl ketone as a transparent resin to prepare a solution in which polymethyl methacrylate is dissolved. To this solution, a cyanine infrared absorbing dye as the infrared absorbing dye 120b is added at a ratio of 0.1 to 1.0% by weight to prepare a coating liquid for the infrared absorbing dye 120b. As the transparent resin, for example, acrylic, epoxy, polystyrene, polyester, cyclic olefin, or the like can be used. As the solvent, for example, ketone (methyl ethyl ketone, etc.), hydrocarbon (toluene, etc.), ester (methyl acetate, etc.), ether (tetrahydrofuran, etc.), alcohol (ethanol, etc.) can be used. is there. Moreover, you may add polymerization initiators, such as a photoinitiator and a thermal polymerization initiator, as needed. In addition, you may purchase the infrared rays absorption pigment | dye 120b (for example, epoxy resin coating material) marketed in the state of a paint, and may apply | coat the infrared rays absorption pigment | dye 120b to the transparent base material 120a. In this case, a coating liquid preparation process Can be omitted.
 次に、塗工液作製工程で作製された赤外線吸収色素120bの塗工液を、透明基材120aの表面に所定の厚みで均一に塗布する(塗布工程)。この塗布工程では、例えば、スピンコーター、ダイコーター、バーコーター等を用いて、塗工液の塗布が行われる。 Next, the infrared absorbing dye 120b coating liquid prepared in the coating liquid preparation process is uniformly applied to the surface of the transparent substrate 120a with a predetermined thickness (application process). In this coating step, the coating liquid is applied using, for example, a spin coater, a die coater, a bar coater, or the like.
 次に、塗布工程で塗工液が塗布された透明基材120aを乾燥して、塗工液に含まれている溶媒を揮発させ、塗工液に含まれている透明樹脂を硬化させる(乾燥工程)。この乾燥工程では、例えば、オーブン、ホットプレート等を用いて、略100℃で5分間程度、加熱することによって、溶媒の揮発及び透明樹脂の硬化を行う。なお、光重合開始剤が添加されている場合、光重合を利用して透明樹脂を硬化させる。 Next, the transparent base material 120a coated with the coating liquid in the coating step is dried, the solvent contained in the coating liquid is volatilized, and the transparent resin contained in the coating liquid is cured (drying). Process). In this drying step, for example, the solvent is volatilized and the transparent resin is cured by heating at about 100 ° C. for about 5 minutes using an oven, a hot plate, or the like. When a photopolymerization initiator is added, the transparent resin is cured using photopolymerization.
 第1フィルタ120は、図12に示すように、可視光領域と近赤外光領域の境界付近で吸収極大を有しており、第1フィルタ120の透過率が最小になっている。図12は、光の入射角α(図1参照)が、0°の場合(垂直入射の場合)の第1フィルタ120のフィルタ特性を示している。 As shown in FIG. 12, the first filter 120 has an absorption maximum near the boundary between the visible light region and the near-infrared light region, and the transmittance of the first filter 120 is minimized. FIG. 12 shows the filter characteristics of the first filter 120 when the incident angle α of light (see FIG. 1) is 0 ° (in the case of vertical incidence).
 具体的には、第1フィルタ120は、可視光領域(400nm~700nm)の略全域において透過特性を有しており、可視光領域の長波長側(600nmよりも長波長側)でなだらかに透過率が減少する透過特性を有している。可視光領域においては、第1フィルタ120の透過率が50%以上となる範囲が、可視光領域の短波長端(400nm)から略654nmまでの波長帯域となっている。第1フィルタ120の透過率が80%以上となる範囲が、可視光領域の短波長端(400nm)から略606nmまでの波長帯域となっている。第1フィルタ120の透過率が90%以上となる範囲が、可視光領域の短波長端(400nm)から略584nmの波長帯域となっている。第1フィルタ120の透過率が95%以上となる範囲が、略434nm~略564nmの波長帯域となっている。 Specifically, the first filter 120 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm), and gently transmits on the long wavelength side (longer wavelength side than 600 nm) of the visible light region. It has a transmission characteristic with a decreasing rate. In the visible light region, the range where the transmittance of the first filter 120 is 50% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 654 nm. The range in which the transmittance of the first filter 120 is 80% or more is the wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 606 nm. The range in which the transmittance of the first filter 120 is 90% or more is a wavelength band of approximately 584 nm from the short wavelength end (400 nm) in the visible light region. A range where the transmittance of the first filter 120 is 95% or more is a wavelength band of about 434 nm to about 564 nm.
 また、第1フィルタ120は、近赤外光領域(700nm~1100nm)の略全域において透過特性を有しており、近赤外光領域の短波長側(750nmよりも短波長側)で透過率が増加する透過特性を有している。近赤外光領域においては、第1フィルタ120の透過率が50%以上となる範囲が、略796nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。第1フィルタ120の透過率が80%以上となる範囲が、略814nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。第1フィルタ120の透過率が90%以上となる範囲が、略826nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。第1フィルタ120の透過率が95%以上となる範囲が、略838nmから近赤外光領域の長波長端(1100nm)までの波長帯域となっている。近赤外光領域の短波長側では、第1フィルタ120の透過率の変化率(増加率)が、可視光領域の長波長側の変化率(減少率)よりも大きくなっている。 The first filter 120 has a transmission characteristic in substantially the entire region of the near infrared light region (700 nm to 1100 nm), and the transmittance on the short wavelength side (shorter wavelength side than 750 nm) of the near infrared light region. Has increased transmission characteristics. In the near infrared light region, the range in which the transmittance of the first filter 120 is 50% or more is a wavelength band from approximately 796 nm to the long wavelength end (1100 nm) of the near infrared light region. The range in which the transmittance of the first filter 120 is 80% or more is the wavelength band from approximately 814 nm to the long wavelength end (1100 nm) in the near infrared light region. The range in which the transmittance of the first filter 120 is 90% or more is the wavelength band from approximately 826 nm to the long wavelength end (1100 nm) in the near infrared light region. The range in which the transmittance of the first filter 120 is 95% or more is the wavelength band from approximately 838 nm to the long wavelength end (1100 nm) of the near infrared light region. On the short wavelength side in the near-infrared light region, the change rate (increase rate) of the transmittance of the first filter 120 is larger than the change rate (decrease rate) on the long wavelength side in the visible light region.
 一方、可視光領域と近赤外光領域の境界付近における第1フィルタ120の吸収特性は、次のようになっている。第1フィルタ120の透過率が20%以下となる範囲が、略722nm~略778nmの波長帯域となっている。第1フィルタ120の透過率が10%以下となる範囲が、略742nm~略762nmの波長帯域となっている。そして、略752nmの波長で、第1フィルタ120の透過率が最小値(略8.6%)となっている(吸収極大)。なお、本実施形態では、略752nmの波長に第1フィルタ120の吸収極大が存在しているが、第1フィルタ120の吸収極大は、650nm~800nmの範囲内に存在しているものであればよい。 On the other hand, the absorption characteristics of the first filter 120 near the boundary between the visible light region and the near-infrared light region are as follows. The range in which the transmittance of the first filter 120 is 20% or less is a wavelength band of approximately 722 nm to approximately 778 nm. The range in which the transmittance of the first filter 120 is 10% or less is a wavelength band of approximately 742 nm to approximately 762 nm. The transmittance of the first filter 120 is a minimum value (approximately 8.6%) at a wavelength of approximately 752 nm (absorption maximum). In the present embodiment, the absorption maximum of the first filter 120 exists at a wavelength of approximately 752 nm, but the absorption maximum of the first filter 120 is within the range of 650 nm to 800 nm. Good.
 -第2フィルタ-
 第2フィルタ130は、図10に示すように、第1フィルタ120の一方の表面120A上に形成された誘電体多層膜によって構成されている。本実施形態では、第1フィルタ120の両表面のうち、上述した赤外線吸収色素120bが設けられていないほうの表面に、第2フィルタ130が形成されている。つまり、第1フィルタ120の透明基材120aの表面に第2フィルタ130が設けられている。
-Second filter-
As shown in FIG. 10, the second filter 130 is configured by a dielectric multilayer film formed on one surface 120 </ b> A of the first filter 120. In the present embodiment, the second filter 130 is formed on the surface of the first filter 120 that is not provided with the infrared absorbing dye 120b described above. That is, the second filter 130 is provided on the surface of the transparent substrate 120 a of the first filter 120.
 第2フィルタ130は、高屈折率膜130HであるTiOと、低屈折率膜130LであるSiOとが交互に積層された構成になっている。本実施形態では、第2フィルタ130は、上述した第1実施形態の光学フィルタ10の第2フィルタ30及び第3フィルタ40が1つのフィルタとして形成された構成になっている。つまり、第2フィルタ130は、複数のフィルタを組み合わせた構成になっている。詳細には、第1フィルタ120の一方の表面120A上に、第1実施形態の光学フィルタ10の第2フィルタ30(図5参照)と略同様の構成の誘電体多層膜が形成され、この誘電体多層膜の上にさらに、第1実施形態の光学フィルタ10の第3フィルタ40(図7参照)と略同様の構成の誘電体多層膜が形成されている。 The second filter 130, a TiO 2 is a high-refractive-index film 130H, has a structure in which the SiO 2 which is a low refractive index film 130L are alternately stacked. In the present embodiment, the second filter 130 has a configuration in which the second filter 30 and the third filter 40 of the optical filter 10 of the first embodiment described above are formed as one filter. That is, the second filter 130 is configured by combining a plurality of filters. Specifically, a dielectric multilayer film having substantially the same configuration as that of the second filter 30 (see FIG. 5) of the optical filter 10 of the first embodiment is formed on one surface 120A of the first filter 120. A dielectric multilayer film having substantially the same configuration as that of the third filter 40 (see FIG. 7) of the optical filter 10 of the first embodiment is further formed on the multilayer film.
 第2フィルタ130では、高屈折率膜130Hは27層形成され、低屈折率膜130Lは28層形成されており、合計で55層形成されている。第1フィルタ120側から数えて奇数番目の層が低屈折率膜130Lであり、偶数番目の層が高屈折率膜130Hになっている。最も第1フィルタ120側の1層目(最下層)が低屈折率膜130Lであり、最も大気側の55層目(最上層)も低屈折率膜130Lになっている。なお、高屈折率膜130H及び低屈折率膜130Lの積層順はこの例に限らず、第1フィルタ120側から数えて奇数番目の層が高屈折率膜130Hであり、偶数番目の層が低屈折率膜130Lであってもよい。また、高屈折率膜130H及び低屈折率膜130Lの層数が同じであってもよい。 In the second filter 130, 27 layers of the high-refractive index film 130H are formed and 28 layers of the low-refractive index film 130L are formed, for a total of 55 layers. The odd-numbered layers counted from the first filter 120 side are the low-refractive index films 130L, and the even-numbered layers are the high-refractive index films 130H. The first layer (lowermost layer) on the first filter 120 side is the low refractive index film 130L, and the 55th layer (uppermost layer) on the most atmospheric side is also the low refractive index film 130L. Note that the stacking order of the high refractive index film 130H and the low refractive index film 130L is not limited to this example, and the odd-numbered layer counted from the first filter 120 side is the high-refractive index film 130H, and the even-numbered layer is low. The refractive index film 130L may be used. The number of layers of the high refractive index film 130H and the low refractive index film 130L may be the same.
 本実施形態では高屈折率膜130Hは、TiOとしたがこれに限られず、例えば、ZrO、Nb、Taといった材料でもよい。つまり、高屈折率膜130Hの材料としては、屈折率が2.0より大きいものが好ましい。また、低屈折率膜130LについてもSiOに限られず、例えばMgFといった材料でもよい。つまり、低屈折率膜130Lの材料としては、高屈折率膜130Hよりも屈折率が小さいものが好ましく、さらに好ましくは屈折率が1.5より小さいものがよい。 In the present embodiment, the high refractive index film 130H is made of TiO 2 , but is not limited thereto, and may be a material such as ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , for example. That is, the material of the high refractive index film 130H is preferably a material having a refractive index larger than 2.0. Further, the low refractive index film 130L is not limited to SiO 2 but may be a material such as MgF 2 . That is, the material of the low refractive index film 130L is preferably a material having a refractive index smaller than that of the high refractive index film 130H, and more preferably a material having a refractive index smaller than 1.5.
 第2フィルタ130の各層(低屈折率膜130L及び高屈折率膜130H)は、周知の真空蒸着装置によって、第1フィルタ120の両表面のうち、赤外線吸収色素120bが設けられていないほうの表面に交互に真空蒸着される。蒸着膜厚は、屈折率と物理膜厚との積である光学膜厚に基づいて設計される。第2フィルタ130の各層の構成は、第1実施形態の光学フィルタ10の第2,第3フィルタ30,40の各層の構成(図5、図7参照)と略同様であるため、ここでは説明を省略する。なお、第2フィルタ130では、第1実施形態の光学フィルタ10と同様、低屈折率膜130Lの光学膜厚の平均値が、高屈折率膜130Hの光学膜厚の平均値よりも小さくなっており、低屈折率膜130Lの光学膜厚の平均値と、高屈折率膜130Hの光学膜厚の平均値との膜厚比[低屈折率膜130Lの光学膜厚の平均値/高屈折率膜130Hの光学膜厚の平均値]が、0.50~0.85であることが好ましい。 Each layer (the low refractive index film 130L and the high refractive index film 130H) of the second filter 130 is a surface of the both surfaces of the first filter 120 on which the infrared absorbing dye 120b is not provided by a known vacuum deposition apparatus. Alternately vacuum deposition. The vapor deposition film thickness is designed based on the optical film thickness that is the product of the refractive index and the physical film thickness. Since the configuration of each layer of the second filter 130 is substantially the same as the configuration of each layer of the second and third filters 30 and 40 of the optical filter 10 of the first embodiment (see FIGS. 5 and 7), it will be described here. Is omitted. In the second filter 130, as in the optical filter 10 of the first embodiment, the average optical film thickness of the low refractive index film 130L is smaller than the average optical film thickness of the high refractive index film 130H. The film thickness ratio between the average value of the optical thickness of the low refractive index film 130L and the average value of the optical thickness of the high refractive index film 130H [average value of optical thickness of the low refractive index film 130L / high refractive index The average value of the optical film thickness of the film 130H] is preferably 0.50 to 0.85.
 第2フィルタ130は、図13に示すように、可視光領域(400nm~700nm)の略全域において透過特性を有するとともに、近赤外光領域(700nm~1100nm)の一部において透過特性を有する。図13は、光の入射角α(図1参照)が、0°の場合(垂直入射の場合)の第2フィルタ130のフィルタ特性を示している。 As shown in FIG. 13, the second filter 130 has a transmission characteristic in substantially the entire visible light region (400 nm to 700 nm) and a transmission characteristic in a part of the near infrared light region (700 nm to 1100 nm). FIG. 13 shows the filter characteristics of the second filter 130 when the light incident angle α (see FIG. 1) is 0 ° (in the case of vertical incidence).
 具体的には、第2フィルタ130は、可視光領域(400nm~700nm)の略全域において透過特性を有しており、可視光領域の長波長側(680nmよりも長波長側)で急激に透過率が減少する透過特性を有している。可視光領域においては、第2フィルタ130の透過率が50%以上となる範囲が、略406nm~略694nmまでの波長帯域となっている。第2フィルタ130の透過率が80%以上となる範囲が、略408nm~略690nmまでの波長帯域となっている。第2フィルタ130の透過率が90%以上となる範囲が、略408nm~略688nmの波長帯域となっている。第2フィルタ130の透過率が95%以上となる範囲が、略410nm~略686nmの波長帯域となっている。 Specifically, the second filter 130 has a transmission characteristic in substantially the entire visible light region (400 nm to 700 nm), and rapidly transmits on the long wavelength side (longer wavelength side than 680 nm) of the visible light region. It has a transmission characteristic with a decreasing rate. In the visible light region, the range in which the transmittance of the second filter 130 is 50% or more is a wavelength band from approximately 406 nm to approximately 694 nm. The range in which the transmittance of the second filter 130 is 80% or more is a wavelength band from approximately 408 nm to approximately 690 nm. The range in which the transmittance of the second filter 130 is 90% or more is a wavelength band of about 408 nm to about 688 nm. The range where the transmittance of the second filter 130 is 95% or more is the wavelength band of about 410 nm to about 686 nm.
 また、第2フィルタ130は、近赤外光領域(700nm~1100nm)の一部において透過特性を有している。第2フィルタ130の近赤外光領域における透過特性を有する波長帯域は、可視光領域における透過特性を有する波長帯域とは離間して設けられている。詳細には、第2フィルタ130は、800nm~950nmの波長帯域の一部において透過特性を有しており、近赤外光領域の800nmよりも長波長側で透過率が急激に増加するとともに、950nmよりも短波長側で透過率が急激に減少する透過特性を有している。そして、近赤外光領域においては第2フィルタ130の透過率が50%以上となる範囲が、略830nm~略876nmの波長帯域となっている。第2フィルタ130の透過率が80%以上となる範囲が、略836nm~略868nmの波長帯域となっている。第2フィルタ130の透過率が90%以上となる範囲が、略838nm~略866nmの波長帯域となっている。第2フィルタ130の透過率が95%以上となる範囲が、略840nm~略862nmの波長帯域となっている。 The second filter 130 has transmission characteristics in a part of the near infrared light region (700 nm to 1100 nm). The wavelength band having the transmission characteristics in the near-infrared light region of the second filter 130 is provided apart from the wavelength band having the transmission characteristics in the visible light region. Specifically, the second filter 130 has a transmission characteristic in a part of the wavelength band of 800 nm to 950 nm, and the transmittance rapidly increases on the longer wavelength side than 800 nm in the near infrared light region. It has a transmission characteristic in which the transmittance sharply decreases on the shorter wavelength side than 950 nm. In the near-infrared light region, the range in which the transmittance of the second filter 130 is 50% or more is a wavelength band of approximately 830 nm to approximately 876 nm. A range where the transmittance of the second filter 130 is 80% or more is a wavelength band of about 836 nm to about 868 nm. The range where the transmittance of the second filter 130 is 90% or more is the wavelength band of about 838 nm to about 866 nm. The range in which the transmittance of the second filter 130 is 95% or more is a wavelength band of about 840 nm to about 862 nm.
 一方、可視光領域と近赤外光領域の境界付近における第2フィルタ130の遮断特性は、次のようになっている。第2フィルタ130の透過率が20%以下となる範囲が、略700nm~略824nmの波長帯域となっている。第2フィルタ130の透過率が10%以下となる範囲が、略706nm~略818nmの波長帯域となっている。第2フィルタ130の透過率が5%以下となる範囲が、略712nm~略812nmの波長帯域となっている。 On the other hand, the cutoff characteristic of the second filter 130 in the vicinity of the boundary between the visible light region and the near infrared light region is as follows. The range in which the transmittance of the second filter 130 is 20% or less is a wavelength band of about 700 nm to about 824 nm. A range where the transmittance of the second filter 130 is 10% or less is a wavelength band of about 706 nm to about 818 nm. The range in which the transmittance of the second filter 130 is 5% or less is a wavelength band of approximately 712 nm to approximately 812 nm.
 -第3フィルタ-
 第3フィルタ140は、図10に示すように、第1フィルタ120の他方の表面120B上に形成された誘電体多層膜によって構成されている。本実施形態では、第1フィルタ120の両表面のうち、上述した赤外線吸収色素120bが設けられているほうの表面に、第3フィルタ140が形成されている。つまり、第1フィルタ120の赤外線吸収色素120bの表面に第3フィルタ140が設けられている。
-Third filter-
As shown in FIG. 10, the third filter 140 is composed of a dielectric multilayer film formed on the other surface 120 </ b> B of the first filter 120. In the present embodiment, the third filter 140 is formed on the surface of the first filter 120 on which the infrared absorbing dye 120b described above is provided. That is, the third filter 140 is provided on the surface of the infrared absorbing dye 120b of the first filter 120.
 本実施形態では、第3フィルタ140は、図15に示すようなフィルタ特性を有する反射防止膜として構成されている。具体的には、図14に示すように、第3フィルタ140は、高屈折率膜140HであるTiOと、低屈折率膜140LであるSiOとが交互に積層された構成になっている。高屈折率膜140Hは4層形成され、低屈折率膜140Lは5層形成されており、合計で9層形成されている。第1フィルタ120側から数えて奇数番目の層が低屈折率膜140Lであり、偶数番目の層が高屈折率膜140Hになっている。最も第1フィルタ120側の1層目(最下層)が低屈折率膜140Lであり、最も大気側の9層目(最上層)も低屈折率膜140Lになっている。なお、高屈折率膜140H及び低屈折率膜140Lの積層順はこの例に限らず、第1フィルタ120側から数えて奇数番目の層が高屈折率膜140Hであり、偶数番目の層が低屈折率膜140Lであってもよい。また、高屈折率膜140H及び低屈折率膜140Lの層数が同じであってもよい。 In the present embodiment, the third filter 140 is configured as an antireflection film having filter characteristics as shown in FIG. Specifically, as shown in FIG. 14, the third filter 140 has a configuration in which TiO 2 that is the high refractive index film 140H and SiO 2 that is the low refractive index film 140L are alternately stacked. . Four high refractive index films 140H are formed, and five low refractive index films 140L are formed, for a total of nine layers. The odd-numbered layers counted from the first filter 120 side are the low-refractive index films 140L, and the even-numbered layers are the high-refractive index films 140H. The first layer (lowermost layer) closest to the first filter 120 is the low refractive index film 140L, and the ninth layer (uppermost layer) closest to the atmosphere is also the low refractive index film 140L. The order in which the high refractive index film 140H and the low refractive index film 140L are stacked is not limited to this example, and the odd-numbered layer counted from the first filter 120 side is the high-refractive index film 140H, and the even-numbered layer is low. The refractive index film 140L may be used. The number of layers of the high refractive index film 140H and the low refractive index film 140L may be the same.
 本実施形態では高屈折率膜140Hは、TiOとしたがこれに限られず、例えば、ZrO、Nb、Taといった材料でもよい。つまり、高屈折率膜140Hの材料としては、屈折率が2.0より大きいものが好ましい。また、低屈折率膜140LについてもSiOに限られず、例えばMgFといった材料でもよい。つまり、低屈折率膜140Lの材料としては、高屈折率膜140Hよりも屈折率が小さいものが好ましく、さらに好ましくは屈折率が1.5より小さいものがよい。 In the present embodiment, the high refractive index film 140H is made of TiO 2 , but is not limited thereto, and may be a material such as ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , for example. That is, the material of the high refractive index film 140H is preferably a material having a refractive index larger than 2.0. Further, the low refractive index film 140L is not limited to SiO 2 but may be a material such as MgF 2 . That is, the material of the low refractive index film 140L is preferably a material having a refractive index smaller than that of the high refractive index film 140H, and more preferably a material having a refractive index smaller than 1.5.
 第3フィルタ140の各層(低屈折率膜140L及び高屈折率膜140H)は、周知の真空蒸着装置によって、第1フィルタ120の両表面のうち、赤外線吸収色素120bが設けられているほうの表面に交互に真空蒸着される。蒸着膜厚は、屈折率と物理膜厚との積である光学膜厚に基づいて設計されており、第3フィルタ140の光学膜厚は、例えば、図14に示すように設計されている。図14中の中心波長(510nm)は膜厚設計の際の中心波長である。 Each layer (the low refractive index film 140L and the high refractive index film 140H) of the third filter 140 is a surface on which the infrared absorbing dye 120b is provided among both surfaces of the first filter 120 by a known vacuum deposition apparatus. Alternately vacuum deposition. The vapor deposition film thickness is designed based on the optical film thickness that is the product of the refractive index and the physical film thickness, and the optical film thickness of the third filter 140 is designed, for example, as shown in FIG. The center wavelength (510 nm) in FIG. 14 is the center wavelength in the film thickness design.
 第3フィルタ140は、図15に示すように、可視光領域(400nm~700nm)の略全域、及び、近赤外光領域(700nm~1100nm)の略全域において透過特性を有する。図15は、光の入射角α(図1参照)が、0°の場合(垂直入射の場合)の第3フィルタ140のフィルタ特性を示している。具体的には、第3フィルタ140は、可視光領域の略全域において、第3フィルタ140の透過率は、95%以上となっている。また、近赤外光領域において、第3フィルタ140は、近赤外光領域の短波長端(700nm)から、900nmよりも短波長側まで透過率が95%以上となっている。この場合、略1012nmの波長で、第3フィルタ140の透過率が95%となっており、近赤外光領域の長波長端(1100nm)で、第3フィルタ140の透過率が90.4%となっている。 As shown in FIG. 15, the third filter 140 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm) and substantially the entire near infrared light region (700 nm to 1100 nm). FIG. 15 shows the filter characteristics of the third filter 140 when the incident angle α of light (see FIG. 1) is 0 ° (in the case of vertical incidence). Specifically, in the third filter 140, the transmittance of the third filter 140 is 95% or more in substantially the entire visible light region. In the near-infrared light region, the third filter 140 has a transmittance of 95% or more from the short wavelength end (700 nm) of the near-infrared light region to the shorter wavelength side than 900 nm. In this case, the transmittance of the third filter 140 is 95% at a wavelength of approximately 1012 nm, and the transmittance of the third filter 140 is 90.4% at the long wavelength end (1100 nm) in the near-infrared light region. It has become.
 -光学フィルタの特性-
 本実施形態の第1~第3フィルタ120,130,140のフィルタ特性は、それぞれ図12、図13、図15に示すようになっている。そして、光学フィルタ100全体のフィルタ特性は、第1フィルタ120のフィルタ特性と、第2フィルタ130のフィルタ特性と、第3フィルタ140のフィルタ特性とを積算したものとなる(図11参照)。つまり、第1フィルタ120の透過率波形(図12参照)と、第2フィルタ130の透過率波形(図13参照)と、第3フィルタ140の透過率波形(図15参照)とが重なり合うことによって、図11に示す光学フィルタ100の透過率波形が得られるようになっている。すなわち、本実施形態の光学フィルタ100によれば、図11に示すように、可視光領域と近赤外光領域の2つの波長帯域において透過特性を有するフィルタ特性が得られる。光学フィルタ100の近赤外光領域における透過特性を有する波長帯域は、可視光領域における透過特性を有する波長帯域とは離間して設けられている。
-Optical filter characteristics-
The filter characteristics of the first to third filters 120, 130, and 140 of this embodiment are as shown in FIGS. 12, 13, and 15, respectively. The filter characteristics of the entire optical filter 100 are obtained by integrating the filter characteristics of the first filter 120, the filter characteristics of the second filter 130, and the filter characteristics of the third filter 140 (see FIG. 11). That is, the transmittance waveform of the first filter 120 (see FIG. 12), the transmittance waveform of the second filter 130 (see FIG. 13), and the transmittance waveform of the third filter 140 (see FIG. 15) overlap. A transmittance waveform of the optical filter 100 shown in FIG. 11 is obtained. That is, according to the optical filter 100 of the present embodiment, as shown in FIG. 11, filter characteristics having transmission characteristics in two wavelength bands of the visible light region and the near infrared light region can be obtained. The wavelength band having transmission characteristics in the near-infrared light region of the optical filter 100 is provided apart from the wavelength band having transmission properties in the visible light region.
 具体的には、光学フィルタ100は、図11に示すように、可視光領域(400nm~700nm)の略全域において透過特性を有しており、可視光領域の長波長側(600nmよりも長波長側)でなだらかに透過率が減少する透過特性を有している。このような光学フィルタ100の可視光領域の特性は、主に第1フィルタ120によって得られる。可視光領域の長波長側(600nmよりも長波長側)における光学フィルタ100の透過率が減少する波形は、第1フィルタ120の透過率が減少する波形に略倣ったものとなっている。つまり、可視光領域の長波長側の領域では、第2フィルタ130及び第3フィルタ140の透過率が略100%(95%以上)になっているため、光学フィルタ100のフィルタ特性が、第1フィルタ120のフィルタ特性を略そのまま反映させたものとなっている。 Specifically, as shown in FIG. 11, the optical filter 100 has transmission characteristics in substantially the entire visible light region (400 nm to 700 nm), and has a longer wavelength side (wavelength longer than 600 nm) in the visible light region. Side), the transmittance gradually decreases. Such characteristics of the optical filter 100 in the visible light region are mainly obtained by the first filter 120. The waveform in which the transmittance of the optical filter 100 decreases on the long wavelength side of the visible light region (longer wavelength side than 600 nm) is substantially similar to the waveform in which the transmittance of the first filter 120 decreases. That is, in the region on the long wavelength side of the visible light region, the transmittance of the second filter 130 and the third filter 140 is approximately 100% (95% or more). The filter characteristics of the filter 120 are reflected as they are.
 より詳細には、可視光領域において、光学フィルタ100の透過率が50%以上となる範囲が、可視光領域の短波長端(400nm)から略650nmまでの波長帯域となっている。光学フィルタ100の透過率が80%以上となる範囲が、略408nm~略602nmの波長帯域となっている。光学フィルタ100の透過率が90%以上となる範囲が、略424nm~略576nmの波長帯域となっている。光学フィルタ100の透過率が95%以上となる範囲が、略454nm~略540nmの波長帯域となっている。 More specifically, in the visible light region, the range in which the transmittance of the optical filter 100 is 50% or more is a wavelength band from the short wavelength end (400 nm) of the visible light region to approximately 650 nm. A range where the transmittance of the optical filter 100 is 80% or more is a wavelength band of about 408 nm to about 602 nm. A range where the transmittance of the optical filter 100 is 90% or more is a wavelength band of about 424 nm to about 576 nm. A range where the transmittance of the optical filter 100 is 95% or more is a wavelength band of about 454 nm to about 540 nm.
 また、光学フィルタ100は、図11に示すように、近赤外光領域の一部において透過特性を有している。すなわち、光学フィルタ100は、可視光領域の長波長側から近赤外光領域にかけて設けられた第1帯域A11、及び当該第1帯域A11よりも長波長側に設けられた第3帯域A13において遮断特性を有するとともに、第1帯域A11及び第3帯域A13の間に設けられた第2帯域A12において透過特性を有している。 Further, as shown in FIG. 11, the optical filter 100 has transmission characteristics in a part of the near-infrared light region. That is, the optical filter 100 is cut off in the first band A11 provided from the long wavelength side of the visible light region to the near infrared light region and the third band A13 provided on the longer wavelength side than the first band A11. In addition to having a characteristic, the second band A12 provided between the first band A11 and the third band A13 has a transmission characteristic.
 第1帯域A11は、640nmよりも長波長側から、800nmよりも長波長側まで設けられており、この第1帯域A11に透過率が5%以下となる遮断帯域が設けられている。また、第3帯域A13は、900nmよりも短波長側から、近赤外光領域の長波長端(1100nm)まで設けられており、この第3帯域A13に透過率が5%以下となる遮断帯域が設けられている。そして、第1帯域A11の遮断帯域、及び第3帯域A13の遮断帯域によって、第2帯域A12の透過帯域が形成されるようになっている。第2帯域A12では、800nmよりも長波長側の波長(略832nm)、及び、900nmよりも短波長側の波長(略874nm)で光学フィルタ100の透過率が50%となっている。 The first band A11 is provided from a longer wavelength side than 640 nm to a longer wavelength side than 800 nm, and a cutoff band having a transmittance of 5% or less is provided in the first band A11. The third band A13 is provided from the shorter wavelength side than 900 nm to the long wavelength end (1100 nm) in the near-infrared light region, and the third band A13 has a cutoff band in which the transmittance is 5% or less. Is provided. The transmission band of the second band A12 is formed by the cutoff band of the first band A11 and the cutoff band of the third band A13. In the second band A12, the transmittance of the optical filter 100 is 50% at a wavelength longer than 800 nm (approximately 832 nm) and at a wavelength shorter than 900 nm (approximately 874 nm).
 具体的には、図11に示すように、第1帯域A11の透過率が50%となる波長帯域は、略650nm~略832nmの波長帯域となっている。第2帯域A12の透過率が50%となる波長帯域は、略832nm~略874nmの波長帯域となっている。第3帯域A13の透過率が50%となる波長帯域は、略874nmから、近赤外光領域の長波長端(1100nm)までの波長帯域となっている。 Specifically, as shown in FIG. 11, the wavelength band in which the transmittance of the first band A11 is 50% is a wavelength band of about 650 nm to about 832 nm. The wavelength band where the transmittance of the second band A12 is 50% is a wavelength band of about 832 nm to about 874 nm. The wavelength band in which the transmittance of the third band A13 is 50% is a wavelength band from approximately 874 nm to the long wavelength end (1100 nm) of the near infrared light region.
 光学フィルタ100の第1帯域A11における遮断特性は、次のようになっている。光学フィルタ100の透過率が20%以下となる範囲が、略690nm~略824nmの波長帯域となっている。光学フィルタ100の透過率が10%以下となる範囲が、略696nm~略820nmの波長帯域となっている。光学フィルタ100の透過率が5%以下となる範囲が、略700nm~略814nmの波長帯域となっている。このように、光学フィルタ100は、第1帯域A11において、近赤外光領域の800nmよりも長波長側で透過率が急激に増加する特性を有している。 The cutoff characteristic in the first band A11 of the optical filter 100 is as follows. A range where the transmittance of the optical filter 100 is 20% or less is a wavelength band of about 690 nm to about 824 nm. The range in which the transmittance of the optical filter 100 is 10% or less is a wavelength band of approximately 696 nm to approximately 820 nm. The range in which the transmittance of the optical filter 100 is 5% or less is a wavelength band of about 700 nm to about 814 nm. As described above, the optical filter 100 has a characteristic that in the first band A11, the transmittance is rapidly increased on the longer wavelength side than 800 nm in the near-infrared light region.
 また、光学フィルタ100の第3帯域A13における遮断特性は、次のようになっている。光学フィルタ100の透過率が20%以下となる範囲が、略884nmから、近赤外光領域の長波長端(1100nm)までの波長帯域となっている。光学フィルタ100の透過率が10%以下となる範囲が、略890nmから、近赤外光領域の長波長端(1100nm)までの波長帯域となっている。光学フィルタ100の透過率が5%以下となる範囲が、略898nmから、近赤外光領域の長波長端(1100nm)までの波長帯域となっている。このように、光学フィルタ100は、第3帯域A13において、近赤外光領域の900nmよりも短波長側で透過率が急激に減少する特性を有している。 Moreover, the cutoff characteristic in the third band A13 of the optical filter 100 is as follows. The range in which the transmittance of the optical filter 100 is 20% or less is a wavelength band from approximately 884 nm to the long wavelength end (1100 nm) of the near infrared light region. The range in which the transmittance of the optical filter 100 is 10% or less is the wavelength band from approximately 890 nm to the long wavelength end (1100 nm) of the near infrared light region. The range in which the transmittance of the optical filter 100 is 5% or less is the wavelength band from approximately 898 nm to the long wavelength end (1100 nm) of the near infrared light region. As described above, the optical filter 100 has a characteristic that the transmittance is rapidly reduced in the third band A13 on the shorter wavelength side than 900 nm in the near-infrared light region.
 一方、光学フィルタ100の第2帯域A12における透過特性は、次のようになっている。光学フィルタ100の透過率が50%以上となる範囲が、略832nm~略874nmの波長帯域となっている。光学フィルタ100の透過率が80%以上となる範囲が、略836nm~略868nmの波長帯域となっている。光学フィルタ100の透過率が90%以上となる範囲が、略840nm~略864nmの波長帯域となっている。このように、光学フィルタ100は、第2帯域A12において、近赤外光領域の800nmよりも長波長側で透過率が急激に増加する特性を有し、また、近赤外光領域の900nmよりも短波長側で透過率が急激に減少する特性を有している。 On the other hand, the transmission characteristics in the second band A12 of the optical filter 100 are as follows. A range where the transmittance of the optical filter 100 is 50% or more is a wavelength band of about 832 nm to about 874 nm. A range where the transmittance of the optical filter 100 is 80% or more is a wavelength band of about 836 nm to about 868 nm. The range in which the transmittance of the optical filter 100 is 90% or more is a wavelength band of approximately 840 nm to approximately 864 nm. Thus, in the second band A12, the optical filter 100 has a characteristic that the transmittance sharply increases on the longer wavelength side than 800 nm in the near infrared light region, and more than 900 nm in the near infrared light region. Also has a characteristic that the transmittance decreases rapidly on the short wavelength side.
 本実施形態では、光学フィルタ100の第1帯域A11の短波長側の遮断特性が、第1フィルタ120及び第2フィルタ130によって形成されている。また、光学フィルタ100の第1帯域A11の長波長側の遮断特性、及び第2帯域A12の短波長側の透過特性が、第2フィルタ130によって形成されている。また、光学フィルタ100の第2帯域A12の長波長側の透過特性、及び第3帯域A13の短波長側の遮断特性が、第2フィルタ130によって形成されている。そして、光学フィルタ100の第1帯域A11では、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmとなっている。この点について、以下説明する。 In the present embodiment, the cutoff characteristic on the short wavelength side of the first band A11 of the optical filter 100 is formed by the first filter 120 and the second filter 130. Further, the cutoff characteristic on the long wavelength side of the first band A11 of the optical filter 100 and the transmission characteristic on the short wavelength side of the second band A12 are formed by the second filter 130. Further, the transmission characteristics on the long wavelength side of the second band A12 of the optical filter 100 and the cutoff characteristics on the short wavelength side of the third band A13 are formed by the second filter 130. In the first band A11 of the optical filter 100, the bandwidth of the cutoff band where the transmittance is 5% or less is at least 100 nm. This point will be described below.
 図11に示すように、第1帯域A11では、近赤外光領域において、近赤外光領域の短波長端(700nm)から、800nmよりも長波長側までの波長帯域で、光学フィルタ100の透過率が5%以下となる遮断帯域が設けられている。第1帯域A11の遮断帯域は、略700nm~略814nmの範囲に設けられている。 As shown in FIG. 11, in the first band A11, in the near-infrared light region, the optical filter 100 has a wavelength band from the short wavelength end (700 nm) of the near-infrared light region to the longer wavelength side than 800 nm. A cut-off band in which the transmittance is 5% or less is provided. The cutoff band of the first band A11 is provided in a range of approximately 700 nm to approximately 814 nm.
 このような光学フィルタ100の第1帯域A11の遮断帯域は、第1フィルタ120及び第2フィルタ130によって形成されるようになっている。つまり、近赤外光領域において、近赤外光領域の短波長端(700nm)から、近赤外光領域の短波長側(略712nm)までの波長帯域では、第1帯域A11の遮断帯域は、第1フィルタ120のフィルタ特性及び第2フィルタ130のフィルタ特性を組み合わせたものとなっている。一方、近赤外光領域の短波長側(略712nm)から、800nmよりも長波長側(略814nm)までの波長帯域では、第1帯域A11の遮断帯域は、第2フィルタ130のフィルタ特性に略倣ったものとなっている。つまり、近赤外光領域の短波長側(略712nm)から、800nmよりも長波長側(略814nm)までの波長帯域では、第2フィルタ130の透過率が略0%(5%以下)になっているため、光学フィルタ100のフィルタ特性が、第2フィルタ130のフィルタ特性を略そのまま反映させたものとなっている。 The cut-off band of the first band A11 of the optical filter 100 is formed by the first filter 120 and the second filter 130. That is, in the near-infrared light region, in the wavelength band from the short wavelength end (700 nm) of the near-infrared light region to the short wavelength side (approximately 712 nm) of the near-infrared light region, the cutoff band of the first band A11 is The filter characteristics of the first filter 120 and the filter characteristics of the second filter 130 are combined. On the other hand, in the wavelength band from the short wavelength side (approximately 712 nm) in the near-infrared light region to the longer wavelength side (approximately 814 nm) than 800 nm, the cutoff band of the first band A11 is the filter characteristic of the second filter 130. It has been imitated. That is, in the wavelength band from the short wavelength side (approximately 712 nm) in the near infrared light region to the longer wavelength side (approximately 814 nm) than 800 nm, the transmittance of the second filter 130 is approximately 0% (5% or less). Therefore, the filter characteristics of the optical filter 100 reflect the filter characteristics of the second filter 130 substantially as they are.
 このように、光学フィルタ100の第1帯域A11の遮断帯域が、第1フィルタ120及び第2フィルタ130によって形成されている。光学フィルタ100の第1帯域A11では、近赤外光領域において、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmに設定されており、この例では、略112nmとなっている。 Thus, the cut-off band of the first band A11 of the optical filter 100 is formed by the first filter 120 and the second filter 130. In the first band A11 of the optical filter 100, in the near infrared light region, the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm, and in this example, is approximately 112 nm. .
 次に、光学フィルタ100は、第1帯域A11と第2帯域A12の境界付近において、近赤外光領域の800nmよりも長波長側で透過率が急激に増加するフィルタ特性を有している。略814nm~略840nmの範囲で、光学フィルタ100の透過率が、5%から90%まで増加している。このような光学フィルタ100の第1帯域A11の長波長側の遮断特性、及び第2帯域A12の短波長側の透過特性は、第2フィルタ130のフィルタ特性に略倣ったものとなっている。つまり、近赤外光領域の800nmよりも長波長側(略814nm~略840nm)では、第1フィルタ120及び第3フィルタ140の透過率が略100%(95%以上)になっているため、光学フィルタ100のフィルタ特性が、第2フィルタ130のフィルタ特性を略そのまま反映させたものとなっている。このように、光学フィルタ100の第1帯域A11の長波長側の遮断特性、及び第2帯域A12の短波長側の透過特性が、第2フィルタ130によって形成されている。 Next, the optical filter 100 has a filter characteristic in which the transmittance rapidly increases near the boundary between the first band A11 and the second band A12 on the longer wavelength side than 800 nm in the near-infrared light region. In the range of approximately 814 nm to approximately 840 nm, the transmittance of the optical filter 100 increases from 5% to 90%. The cut-off characteristics on the long wavelength side of the first band A11 and the transmission characteristics on the short wavelength side of the second band A12 of the optical filter 100 are substantially similar to the filter characteristics of the second filter 130. That is, the transmittance of the first filter 120 and the third filter 140 is approximately 100% (95% or more) on the longer wavelength side (approximately 814 nm to approximately 840 nm) than 800 nm in the near infrared light region. The filter characteristics of the optical filter 100 reflect the filter characteristics of the second filter 130 as they are. As described above, the second filter 130 forms the cutoff characteristic on the long wavelength side of the first band A11 of the optical filter 100 and the transmission characteristic on the short wavelength side of the second band A12.
 次に、第2帯域A12では、800nmよりも長波長側から、900nmよりも短波長側までの波長帯域、具体的には、略840nm~略864nmの波長帯域において、光学フィルタ100の透過率が90%以上となる透過帯域が設けられている。このような光学フィルタ100の第2帯域A12の透過帯域は、第2フィルタ130のフィルタ特性に略倣ったものとなっている。つまり、略840nm~略864nmの波長帯域では、第1フィルタ120及び第3フィルタ140の透過率が略100%(95%以上)になっているため、光学フィルタ100のフィルタ特性が、第2フィルタ130のフィルタ特性を略そのまま反映させたものとなっている。このように、光学フィルタ100の第2帯域A12の透過帯域が、第2フィルタ130によって形成されている。光学フィルタ100の第2帯域A12では、透過率が90%以上となる透過帯域の帯域幅が、この例では、略24nmとなっている。また、光学フィルタ100の第2帯域A12では、透過率が50%以上となる透過帯域の帯域幅が、この例では、略42nmとなっている。 Next, in the second band A12, the transmittance of the optical filter 100 in the wavelength band from the longer wavelength side than 800 nm to the shorter wavelength side than 900 nm, specifically, in the wavelength band of about 840 nm to about 864 nm. A transmission band of 90% or more is provided. The transmission band of the second band A12 of the optical filter 100 is substantially similar to the filter characteristics of the second filter 130. That is, in the wavelength band of approximately 840 nm to approximately 864 nm, the transmittance of the first filter 120 and the third filter 140 is approximately 100% (95% or more), so that the filter characteristics of the optical filter 100 are the second filter. The filter characteristics of 130 are reflected as they are. Thus, the transmission band of the second band A12 of the optical filter 100 is formed by the second filter 130. In the second band A12 of the optical filter 100, the bandwidth of the transmission band where the transmittance is 90% or more is approximately 24 nm in this example. In the second band A12 of the optical filter 100, the bandwidth of the transmission band where the transmittance is 50% or more is approximately 42 nm in this example.
 次に、光学フィルタ100は、第2帯域A12と第3帯域A13の境界付近において、近赤外光領域の900nmよりも短波長側で透過率が急激に減少するフィルタ特性を有している。略864nm~略898nmの範囲で、光学フィルタ100の透過率が、90%から5%まで減少している。このような光学フィルタ100の第2帯域A12の長波長側の透過特性、及び第3帯域A13の短波長側の遮断特性が、第2フィルタ130のフィルタ特性に略倣ったものとなっている。つまり、900nmよりも短波長側(略864nm~略898nm)では、第1フィルタ120及び第3フィルタ140の透過率が略100%(95%以上)になっているため、光学フィルタ100のフィルタ特性が、第2フィルタ130のフィルタ特性を略そのまま反映させたものとなっている。このように、光学フィルタ100の第2帯域A12の長波長側の透過特性、及び第3帯域A13の短波長側の遮断特性が、第2フィルタ130によって形成されている。 Next, the optical filter 100 has a filter characteristic in which the transmittance rapidly decreases near the boundary between the second band A12 and the third band A13 on the shorter wavelength side than 900 nm in the near-infrared light region. In the range from about 864 nm to about 898 nm, the transmittance of the optical filter 100 decreases from 90% to 5%. The transmission characteristics on the long wavelength side of the second band A12 of the optical filter 100 and the cutoff characteristics on the short wavelength side of the third band A13 are substantially similar to the filter characteristics of the second filter 130. That is, on the shorter wavelength side (approximately 864 nm to approximately 898 nm) than 900 nm, the transmittance of the first filter 120 and the third filter 140 is approximately 100% (95% or more). However, the filter characteristics of the second filter 130 are reflected almost as they are. As described above, the second filter 130 forms the transmission characteristic on the long wavelength side of the second band A12 of the optical filter 100 and the cutoff characteristic on the short wavelength side of the third band A13.
 さらに、第3帯域A13では、900nmよりも短波長側から、近赤外光領域の長波長端(1100nm)までの波長帯域において、光学フィルタ100の透過率が5%以下となる遮断帯域が設けられている。このような光学フィルタ100の第3帯域A13の遮断帯域は、第2フィルタ130のフィルタ特性に略倣ったものとなっている。つまり、900nmよりも短波長側(略898nm)から、近赤外光領域の長波長端(1100nm)までの波長帯域では、第2フィルタ130の透過率が略0%(5%以下)になっているため、光学フィルタ100のフィルタ特性が、第2フィルタ130のフィルタ特性を略そのまま反映させたものとなっている。このように、光学フィルタ100の第3帯域A13の遮断帯域が、第2フィルタ130によって形成されている。光学フィルタ100の第3帯域A13では、透過率が5%以下となる遮断帯域の帯域幅が、この例では、略202nmとなっている。 Further, in the third band A13, a cutoff band is provided in which the transmittance of the optical filter 100 is 5% or less in the wavelength band from the shorter wavelength side than 900 nm to the long wavelength end (1100 nm) in the near infrared light region. It has been. The cut-off band of the third band A13 of the optical filter 100 is substantially similar to the filter characteristics of the second filter 130. That is, in the wavelength band from the shorter wavelength side than 900 nm (approximately 898 nm) to the long wavelength end (1100 nm) of the near infrared light region, the transmittance of the second filter 130 is approximately 0% (5% or less). Therefore, the filter characteristics of the optical filter 100 reflect the filter characteristics of the second filter 130 almost as they are. Thus, the cutoff band of the third band A13 of the optical filter 100 is formed by the second filter 130. In the third band A13 of the optical filter 100, the bandwidth of the cut-off band where the transmittance is 5% or less is approximately 202 nm in this example.
 本実施形態によれば、上述した第1実施形態と同様、光学フィルタ100の第1帯域A11では、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmに設定されているので、従来に比べて遮断帯域の帯域幅を広く確保することができ、第1帯域A11の遮断特性を十分に確保することができる。これにより、赤色成分の透過を十分に抑制することができ、赤色成分の透過に起因する混色の発生を抑制することができる。その結果、撮像デバイスで撮像される画像の色再現性の低下を抑制することができる。なお、上記第1帯域A11の遮断帯域の帯域幅の上限値は特に限定されず、例えば、150nmであってもよく、あるいは、250nmであってもよい。 According to the present embodiment, as in the first embodiment described above, in the first band A11 of the optical filter 100, the bandwidth of the cutoff band where the transmittance is 5% or less is set to at least 100 nm. The bandwidth of the cut-off band can be ensured wider than before, and the cut-off characteristics of the first band A11 can be sufficiently secured. Thereby, the transmission of the red component can be sufficiently suppressed, and the occurrence of color mixing due to the transmission of the red component can be suppressed. As a result, it is possible to suppress a decrease in color reproducibility of an image captured by the imaging device. The upper limit value of the bandwidth of the cutoff band of the first band A11 is not particularly limited, and may be, for example, 150 nm or 250 nm.
 ここで、第2フィルタ130の半値波長(透過率が50%となる波長)が、第1フィルタ120の半値波長よりも長波長側にあるので、第1フィルタ120による光の吸収により、第2フィルタ130によって反射される光の量が抑制される。これにより、第2フィルタ130による光の反射に起因するゴーストの発生を抑制することができる。 Here, since the half-value wavelength of the second filter 130 (the wavelength at which the transmittance is 50%) is on the longer wavelength side than the half-value wavelength of the first filter 120, the second filter 130 absorbs light by the second filter 130. The amount of light reflected by the filter 130 is suppressed. Thereby, generation | occurrence | production of the ghost resulting from reflection of the light by the 2nd filter 130 can be suppressed.
 また、本実施形態では、上述した第1実施形態と同様、第1フィルタ120が赤外線吸収体(透明基材及び赤外線吸収色素)によって形成されているので、第1フィルタ120が誘電体多層膜によって形成される場合に比べて、光学フィルタ100の可視光領域における入射角依存性を低減することができるとともに(図9参照)、撮像デバイスで撮像される画像にゴーストやフレアが発生することも抑制できる。 In the present embodiment, as in the first embodiment described above, the first filter 120 is formed of an infrared absorber (transparent substrate and infrared absorbing dye), and therefore the first filter 120 is formed of a dielectric multilayer film. Compared to the case where the optical filter 100 is formed, the incident angle dependency in the visible light region of the optical filter 100 can be reduced (see FIG. 9), and the occurrence of ghosts and flares in the image captured by the imaging device is also suppressed. it can.
 これに加え、本実施形態では、近赤外光領域では、光学フィルタ100のフィルタ特性が第2フィルタ130によって形成されている。詳細には、光学フィルタ100の第2帯域A12の短波長側の透過特性、及び第2帯域A12の長波長側の透過特性が、第2フィルタ130によって形成されている。これにより、光学フィルタ100の第2帯域A12において、透過率が50%以上となる透過帯域の帯域幅を容易に変更することができ、光学フィルタ100の近赤外光領域のフィルタ特性に対するさまざまな要求に柔軟に対応することができる。なお、光学フィルタ100の第2帯域A12において、透過率が50%以上となる透過帯域の帯域幅は、35nm~200nmに設定されることが好ましい。この場合、第2帯域A12の透過率が50%となる波長帯域は、800nm~1000nmの範囲に設定されることが好ましい。例えば、上記第2帯域A12の透過帯域の帯域幅を、200nmに設定する場合、1000nm付近の波長で急激に透過率が減少するように、第2フィルタ130を構成すればよい。このように、第2帯域A12の透過特性を単独のフィルタで形成可能な第2フィルタ130を、赤外線吸収色素120bが形成された面とは反対側の面に成膜できるので、成膜時の赤外線吸収色素120bへのダメージ(特に、熱によるダメージ)を抑制することができる。 In addition, in this embodiment, the filter characteristics of the optical filter 100 are formed by the second filter 130 in the near-infrared light region. Specifically, the transmission characteristics on the short wavelength side of the second band A12 of the optical filter 100 and the transmission characteristics on the long wavelength side of the second band A12 are formed by the second filter 130. Thereby, in the second band A12 of the optical filter 100, the bandwidth of the transmission band where the transmittance is 50% or more can be easily changed. Respond flexibly to requests. In the second band A12 of the optical filter 100, the bandwidth of the transmission band where the transmittance is 50% or more is preferably set to 35 nm to 200 nm. In this case, the wavelength band where the transmittance of the second band A12 is 50% is preferably set in the range of 800 nm to 1000 nm. For example, when the bandwidth of the transmission band of the second band A12 is set to 200 nm, the second filter 130 may be configured so that the transmittance is rapidly reduced at a wavelength near 1000 nm. Thus, since the second filter 130 capable of forming the transmission characteristics of the second band A12 with a single filter can be formed on the surface opposite to the surface on which the infrared absorbing dye 120b is formed, Damage to the infrared absorbing dye 120b (particularly damage due to heat) can be suppressed.
 また、本実施形態では、上述した第1実施形態と同様、第2フィルタ130の低屈折率膜130Lの光学膜厚の平均値と、高屈折率膜130Hの光学膜厚の平均値との膜厚比[低屈折率膜130Lの光学膜厚の平均値/高屈折率膜130Hの光学膜厚の平均値]が、0.50~0.85の範囲内の値に設定されている。これにより、第2フィルタ130の遮断特性を有する遮断帯域の帯域幅を狭くすることができ、可視光領域とは離間した近赤外光領域の所望の範囲に透過帯域(第2帯域A12)を設定することができる。 Further, in the present embodiment, as in the first embodiment described above, the film of the average value of the optical film thickness of the low refractive index film 130L of the second filter 130 and the average value of the optical film thickness of the high refractive index film 130H. The thickness ratio [average optical film thickness of low refractive index film 130L / average optical film thickness of high refractive index film 130H] is set to a value in the range of 0.50 to 0.85. Thereby, the bandwidth of the cutoff band having the cutoff characteristic of the second filter 130 can be narrowed, and the transmission band (second band A12) is set in a desired range in the near infrared light region separated from the visible light region. Can be set.
 また、本実施形態では、上述した第1実施形態と同様、第1帯域A11の透過率が50%となる波長の帯域幅が、第1フィルタ120の透過率が50%となる波長の帯域幅及び第2フィルタ130の透過率が50%となる波長の帯域幅よりも大きくなっている。これにより、第1、第2フィルタ120,130によって、近赤外光領域の所望の範囲に透過帯域(第2帯域A12)を設定することができる。 Further, in the present embodiment, as in the first embodiment described above, the bandwidth of the wavelength at which the transmittance of the first band A11 is 50% is the bandwidth of the wavelength at which the transmittance of the first filter 120 is 50%. And the transmittance of the second filter 130 is larger than the bandwidth of the wavelength at which the transmittance is 50%. As a result, the first and second filters 120 and 130 can set the transmission band (second band A12) in a desired range in the near-infrared light region.
 また、本実施形態では、第1フィルタ120が、透明基板120aに赤外線吸収色素120bが塗布された構成になっているので、赤外線吸収色素120bの種類や濃度、厚み等を調整することによって、赤外線吸収樹脂基板を用いた場合に比べて、所望の赤外吸収特性を容易に得ることができる。 In the present embodiment, the first filter 120 has a configuration in which the infrared absorbing dye 120b is applied to the transparent substrate 120a. Therefore, by adjusting the type, concentration, thickness, and the like of the infrared absorbing dye 120b, The desired infrared absorption characteristics can be easily obtained as compared with the case where an absorbing resin substrate is used.
 なお、第1帯域A11の短波長側の遮断特性を、第1フィルタ120及び第2フィルタ130によって形成したが、これに限らず、第1帯域A11の短波長側の遮断特性を、第1フィルタ120のみによって形成してもよい。 Although the cutoff characteristic on the short wavelength side of the first band A11 is formed by the first filter 120 and the second filter 130, the cutoff characteristic on the short wavelength side of the first band A11 is not limited to this. You may form only by 120.
 また、以上では、第1フィルタ120の両表面のうち、赤外線吸収色素120bが設けられていないほうの表面に第2フィルタ130を形成し、赤外線吸収色素120bが設けられているほうの表面に第3フィルタ140を形成した。しかし、これに限らず、第1フィルタ120の両表面のうち、赤外線吸収色素120bが設けられているほうの表面に第2フィルタ130を形成し、赤外線吸収色素120bが設けられていないほうの表面に第3フィルタ140を形成してもよい。 In the above, the second filter 130 is formed on the surface of the first filter 120 where the infrared absorbing dye 120b is not provided, and the second filter 130 is formed on the surface where the infrared absorbing dye 120b is provided. Three filters 140 were formed. However, the present invention is not limited to this. Of the two surfaces of the first filter 120, the second filter 130 is formed on the surface on which the infrared absorbing dye 120 b is provided, and the surface on which the infrared absorbing dye 120 b is not provided. Alternatively, the third filter 140 may be formed.
 この出願は、2016年8月31日に日本で出願された特願2016-169785号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2016-169785 filed in Japan on August 31, 2016. By this reference, the entire contents thereof are incorporated into the present application.
 本発明は、撮像デバイスに設けられる光学フィルタであって、可視光領域と近赤外光領域の2つの波長帯域において透過特性を有する光学フィルタに利用可能である。 The present invention is an optical filter provided in an imaging device, and can be used for an optical filter having transmission characteristics in two wavelength bands of a visible light region and a near infrared light region.
 10,100  光学フィルタ
 20,120  第1フィルタ
 30,130  第2フィルタ
 40,140  第3フィルタ
 A1,A11  第1帯域
 A2,A12  第2帯域
 A3,A13  第3帯域
10,100 Optical filter 20,120 First filter 30,130 Second filter 40,140 Third filter A1, A11 First band A2, A12 Second band A3, A13 Third band

Claims (13)

  1.  可視光領域と近赤外光領域の2つの波長帯域において透過特性を有する光学フィルタであって、
     赤外線吸収体からなる第1フィルタの一方の面に、誘電体多層膜からなる第2フィルタが形成され、前記第1フィルタの他方の面に、誘電体多層膜からなる第3フィルタが形成され、
     可視光領域の長波長側から近赤外光領域にかけて設けられた第1帯域、及び当該第1帯域よりも長波長側に設けられた第3帯域において遮断特性を有するとともに、前記第1帯域及び前記第3帯域の間に設けられた第2帯域において透過特性を有し、
     前記第1帯域では、透過率が5%以下となる遮断帯域の帯域幅が、少なくとも100nmに設定されていることを特徴とする光学フィルタ。
    An optical filter having transmission characteristics in two wavelength bands of a visible light region and a near infrared light region,
    A second filter made of a dielectric multilayer film is formed on one surface of the first filter made of an infrared absorber, and a third filter made of a dielectric multilayer film is formed on the other surface of the first filter;
    The first band provided from the long wavelength side of the visible light region to the near infrared light region, and the third band provided on the longer wavelength side than the first band have a cutoff characteristic, and the first band and Having a transmission characteristic in a second band provided between the third bands;
    In the first band, an optical filter is characterized in that a bandwidth of a cut-off band where a transmittance is 5% or less is set to at least 100 nm.
  2.  請求項1に記載の光学フィルタであって、
     前記第1フィルタでは、可視光領域で透過率が50%となる波長が、640nm~660nmの範囲内の波長であり、且つ、650nm~800nmの範囲内に吸収極大を有しており、
     前記第2フィルタでは、透過率が50%となる波長が、685nm~710nmの範囲内の波長であり、且つ、透過率が5%以下となる遮断帯域が、近赤外光領域において少なくとも100nmの範囲にわたって設けられていることを特徴とする光学フィルタ。
    The optical filter according to claim 1,
    In the first filter, the wavelength at which the transmittance is 50% in the visible light region is a wavelength in the range of 640 nm to 660 nm, and has an absorption maximum in the range of 650 nm to 800 nm.
    In the second filter, the wavelength at which the transmittance is 50% is a wavelength in the range of 685 nm to 710 nm, and the cutoff band where the transmittance is 5% or less is at least 100 nm in the near-infrared light region. An optical filter provided over a range.
  3.  請求項1または2に記載の光学フィルタであって、
     前記第2フィルタの透過率が50%となる波長が、前記第1フィルタの可視光領域で透過率が50%となる波長よりも、長波長側にあることを特徴とする光学フィルタ。
    The optical filter according to claim 1 or 2,
    An optical filter characterized in that the wavelength at which the transmittance of the second filter is 50% is longer than the wavelength at which the transmittance is 50% in the visible light region of the first filter.
  4.  請求項1~3のいずれか1つに記載の光学フィルタであって、
     前記第1帯域が、前記第1フィルタ及び前記第2フィルタによって形成され、
     前記第3帯域が、前記第3フィルタによって形成されていることを特徴とする光学フィルタ。
    The optical filter according to any one of claims 1 to 3,
    The first band is formed by the first filter and the second filter;
    The optical filter, wherein the third band is formed by the third filter.
  5.  請求項1~4のいずれか1つに記載の光学フィルタであって、
     前記第1帯域の短波長側の遮断特性が、前記第1フィルタによって形成され、
     前記第2帯域の短波長側の透過特性が、前記第2フィルタによって形成され、
     前記第2帯域の長波長側の透過特性が、前記第3フィルタによって形成されていることを特徴とする光学フィルタ。
    The optical filter according to any one of claims 1 to 4,
    The cutoff characteristic on the short wavelength side of the first band is formed by the first filter,
    Transmission characteristics on the short wavelength side of the second band are formed by the second filter,
    An optical filter characterized in that transmission characteristics on the long wavelength side of the second band are formed by the third filter.
  6.  請求項1~3のいずれか1つに記載の光学フィルタであって、
     前記第1フィルタは、透明基板に赤外線吸収色素が塗布された構成になっており、
     前記第3フィルタは、反射防止膜によって構成されていることを特徴とする光学フィルタ。
    The optical filter according to any one of claims 1 to 3,
    The first filter has a configuration in which an infrared absorbing dye is applied to a transparent substrate,
    The optical filter, wherein the third filter is formed of an antireflection film.
  7.  請求項6に記載の光学フィルタであって、
     前記第1帯域が、前記第1フィルタ及び前記第2フィルタによって形成され、
     前記第3帯域が、前記第2フィルタによって形成されていることを特徴とする光学フィルタ。
    The optical filter according to claim 6,
    The first band is formed by the first filter and the second filter;
    The optical filter, wherein the third band is formed by the second filter.
  8.  請求項6または7に記載の光学フィルタであって、
     前記第1帯域の短波長側の遮断特性が、前記第1フィルタのみによって、または、前記第1フィルタ及び前記第2フィルタによって形成され、
     前記第2帯域の短波長側の透過特性、及び前記第2帯域の長波長側の透過特性が、前記第2フィルタによって形成されていることを特徴とする光学フィルタ。
    The optical filter according to claim 6 or 7,
    The cutoff characteristic on the short wavelength side of the first band is formed only by the first filter or by the first filter and the second filter,
    The optical filter, wherein the transmission characteristics on the short wavelength side of the second band and the transmission characteristics on the long wavelength side of the second band are formed by the second filter.
  9.  請求項1~8のいずれか1つに記載の光学フィルタであって、
     前記第2帯域では、透過率が50%となる透過帯域の帯域幅が、35nm~200nmに設定されていることを特徴とする光学フィルタ。
    The optical filter according to any one of claims 1 to 8,
    In the second band, an optical filter characterized in that the bandwidth of the transmission band where the transmittance is 50% is set to 35 nm to 200 nm.
  10.  請求項9に記載の光学フィルタであって、
     前記第2帯域の透過率が50%となる透過帯域が、800nm~1000nmの範囲に設けられていることを特徴とする光学フィルタ。
    The optical filter according to claim 9,
    An optical filter, wherein a transmission band in which the transmittance of the second band is 50% is provided in a range of 800 nm to 1000 nm.
  11.  請求項1~10のいずれか1つに記載の光学フィルタであって、
     前記第1帯域の透過率が50%となる波長の帯域幅が、前記第1フィルタの透過率が50%となる波長の帯域幅及び前記第2フィルタの透過率が50%となる波長の帯域幅よりも大きいことを特徴とする光学フィルタ。
    The optical filter according to any one of claims 1 to 10,
    The wavelength bandwidth at which the transmittance of the first band is 50%, the bandwidth of the wavelength at which the transmittance of the first filter is 50%, and the wavelength band at which the transmittance of the second filter is 50%. An optical filter characterized by being larger than the width.
  12.  請求項1~11のいずれか1つに記載の光学フィルタであって、
     前記第2フィルタは、複数のフィルタを組み合わせた構成になっていることを特徴とする光学フィルタ。
    The optical filter according to any one of claims 1 to 11,
    The second filter has a configuration in which a plurality of filters are combined.
  13.  請求項1~12のいずれか1つに記載の光学フィルタであって、
     前記第2フィルタは、複数の高屈折率膜と、前記高屈折率膜よりも小さい屈折率を有する複数の低屈折率膜とが、交互に積層された構成になっており、
     前記第2フィルタにおいて、前記低屈折率膜の光学膜厚の平均値が、前記高屈折率膜の光学膜厚の平均値よりも小さく、前記低屈折率膜の光学膜厚の平均値と、前記高屈折率膜の光学膜厚の平均値との膜厚比が、0.50~0.85になっていることを特徴とする光学フィルタ。
     
    The optical filter according to any one of claims 1 to 12,
    The second filter has a configuration in which a plurality of high refractive index films and a plurality of low refractive index films having a refractive index smaller than that of the high refractive index film are alternately stacked.
    In the second filter, the average value of the optical thickness of the low refractive index film is smaller than the average value of the optical thickness of the high refractive index film, and the average value of the optical thickness of the low refractive index film, An optical filter characterized in that a film thickness ratio of the high refractive index film to the average value of the optical film thickness is 0.50 to 0.85.
PCT/JP2017/030996 2016-08-31 2017-08-29 Optical filter WO2018043500A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/327,859 US20190250316A1 (en) 2016-08-31 2017-08-29 Optical filter
CN201780052645.1A CN109983374A (en) 2016-08-31 2017-08-29 Optical filter
JP2018537302A JPWO2018043500A1 (en) 2016-08-31 2017-08-29 Optical filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169785 2016-08-31
JP2016169785 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043500A1 true WO2018043500A1 (en) 2018-03-08

Family

ID=61309432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030996 WO2018043500A1 (en) 2016-08-31 2017-08-29 Optical filter

Country Status (5)

Country Link
US (1) US20190250316A1 (en)
JP (1) JPWO2018043500A1 (en)
CN (1) CN109983374A (en)
TW (1) TW201819963A (en)
WO (1) WO2018043500A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761614A (en) * 2018-08-06 2018-11-06 信阳舜宇光学有限公司 Optical filter and infrared image sensing system comprising the optical filter
CN109061785A (en) * 2018-08-06 2018-12-21 信阳舜宇光学有限公司 AR film layer and optical filter for near-infrared narrow band filter
JP2020534585A (en) * 2018-08-06 2020-11-26 信陽舜宇光学有限公司 Optical filter and infrared image sensing system including the optical filter
WO2023127670A1 (en) * 2021-12-27 2023-07-06 Agc株式会社 Optical filter
WO2023210476A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Optical filter
WO2023210474A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Optical filter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156753B2 (en) * 2017-12-18 2021-10-26 Viavi Solutions Inc. Optical filters
TWI705269B (en) 2019-03-27 2020-09-21 群光電子股份有限公司 Image captured device, optical filter film, and method for manufacturing optical thin film
CN111796352B (en) * 2019-04-08 2022-05-24 群光电子股份有限公司 Image acquisition device, light filter film and manufacturing method of light filter film
CN110456437A (en) * 2019-07-15 2019-11-15 杭州美迪凯光电科技股份有限公司 Infrared three wave crests coating process
CN114114495B (en) * 2021-01-28 2023-10-24 广州市佳禾光电科技有限公司 Tee bend light filter and biological identification system thereof
WO2023079180A2 (en) * 2021-11-08 2023-05-11 Meta Materials Inc. Narrow-band optical filters based on metamaterials and multi-layer coatings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526976A (en) * 2002-05-21 2005-09-08 スリーエム イノベイティブ プロパティズ カンパニー Photopic detector system and filter for it
JP2016142891A (en) * 2015-02-02 2016-08-08 Jsr株式会社 Optical filter and apparatus using optical filter
WO2017030174A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Optical filter and image pickup device
WO2017146210A1 (en) * 2016-02-24 2017-08-31 株式会社オプトラン Cover glass laminated structure, camera structure and imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749667B (en) * 2012-07-28 2014-09-17 杭州科汀光学技术有限公司 Optical filter for image chip
CN202693835U (en) * 2012-07-28 2013-01-23 杭州科汀光学技术有限公司 Optical filter for image chip
CN104412136B (en) * 2012-10-26 2017-07-25 京瓷株式会社 Optical filter part and the camera device for possessing the optical filter part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526976A (en) * 2002-05-21 2005-09-08 スリーエム イノベイティブ プロパティズ カンパニー Photopic detector system and filter for it
JP2016142891A (en) * 2015-02-02 2016-08-08 Jsr株式会社 Optical filter and apparatus using optical filter
WO2017030174A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Optical filter and image pickup device
WO2017146210A1 (en) * 2016-02-24 2017-08-31 株式会社オプトラン Cover glass laminated structure, camera structure and imaging device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761614A (en) * 2018-08-06 2018-11-06 信阳舜宇光学有限公司 Optical filter and infrared image sensing system comprising the optical filter
CN109061785A (en) * 2018-08-06 2018-12-21 信阳舜宇光学有限公司 AR film layer and optical filter for near-infrared narrow band filter
JP2020534585A (en) * 2018-08-06 2020-11-26 信陽舜宇光学有限公司 Optical filter and infrared image sensing system including the optical filter
EP3671294A4 (en) * 2018-08-06 2021-10-06 Xinyang Sunny Optics Co., Ltd. Optical filter and infrared image sensing system comprising same
US11828961B2 (en) 2018-08-06 2023-11-28 Xinyang Sunny Optics Co., Ltd. Optical filter and infrared image sensing system including the same
CN109061785B (en) * 2018-08-06 2024-07-16 信阳舜宇光学有限公司 AR film layer for near infrared narrowband filter and filter
WO2023127670A1 (en) * 2021-12-27 2023-07-06 Agc株式会社 Optical filter
WO2023210476A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Optical filter
WO2023210474A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Optical filter

Also Published As

Publication number Publication date
JPWO2018043500A1 (en) 2019-06-24
TW201819963A (en) 2018-06-01
CN109983374A (en) 2019-07-05
US20190250316A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2018043500A1 (en) Optical filter
JP6087464B1 (en) Infrared cut filter and imaging optical system
JP5617063B1 (en) Near-infrared cut filter
JP3206578U (en) Absorption near-infrared filter and image sensor
CN104583820B (en) Near infrared ray cut-off filter
TWI789043B (en) camera structure
CN105122095A (en) Infrared shielding filter, solid-state imaging element, and imaging/display device
JP5759717B2 (en) Imaging optical system for surveillance cameras
JP2012137649A (en) Optical filter
JP7099786B2 (en) Methods of Changing the First Reflection Band of Optical Laminates, Optical Systems, and Oriented Polymer Multilayer Optical Films
CN103608705A (en) Optical filter, solid-state imaging element, imaging device lens and imaging device
WO2019189039A1 (en) Optical filter
JP2012137645A (en) Optical filter
JP2006106570A (en) Light absorbing filter
CN106886068B (en) Optical filter, preparation method thereof and imaging device with optical filter
CN115079324B (en) Absorption near infrared filter
JP6136661B2 (en) Near-infrared cut filter
JP6595220B2 (en) Optical filter and camera equipped with optical filter
CN100529801C (en) Film layer structure of optical lens
JP3204966B2 (en) Manufacturing method of thin film optical element
JP6955343B2 (en) Infrared cut filter and imaging optical system
JPWO2018021496A1 (en) Optical filter and package for optical element
JP2017187729A (en) Optical element, optical system, imaging apparatus and lens device
JP2020064258A (en) Optical filter and imaging device
WO2022016524A1 (en) Infrared cut filter, infrared cut lens and camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846505

Country of ref document: EP

Kind code of ref document: A1