WO2018043037A1 - Runnerless injection molding device - Google Patents

Runnerless injection molding device Download PDF

Info

Publication number
WO2018043037A1
WO2018043037A1 PCT/JP2017/028515 JP2017028515W WO2018043037A1 WO 2018043037 A1 WO2018043037 A1 WO 2018043037A1 JP 2017028515 W JP2017028515 W JP 2017028515W WO 2018043037 A1 WO2018043037 A1 WO 2018043037A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
gate
resin
cooling
injection molding
Prior art date
Application number
PCT/JP2017/028515
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 今泉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018537071A priority Critical patent/JP6624477B2/en
Priority to CN201780053660.8A priority patent/CN109641378B/en
Publication of WO2018043037A1 publication Critical patent/WO2018043037A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould

Definitions

  • the present invention relates to a runnerless injection molding apparatus.
  • a heating unit that heats the cavity portion is disposed in the vicinity of the cavity portion formed on the parting surface, and communicates with the cavity portion.
  • cooling means for cooling the resin passage portion is provided in the vicinity of the resin passage portion.
  • a device in which a heat insulating means is interposed between a cavity portion heated by a heating means and a resin passage portion cooled by a cooling means is known (for example, Patent Document 1). reference).
  • This runnerless injection molding apparatus does not cure the resin since the resin passage is cooled by the cooling action of the cooling means during molding.
  • the resin filled in the cavity is cured by the heating action of the heating means.
  • cures in a cavity part is to the position where a heat insulation means exists. For this reason, when the mold is opened after molding, only the molded product on the cavity portion side is taken out from the position of the heat insulating means, and runnerless molding can be performed.
  • the conventional open gate type runnerless injection molding apparatus has a problem in that the gate cut position is not always constant and the position varies. Due to such variations, the waste of the resin member is increased or the molded product is chipped. For this reason, in recent years, in order to stabilize the position of the gate cut, a technique in which a gate block whose temperature is not adjusted is interposed between the cavity portion and the resin passage portion has been studied. However, even if the gate block is simply interposed between the cavity portion and the resin passage portion, the gate block is thermally expanded by the heat from the cavity portion. When the gate block thermally expands, the contact state between the gate block and the resin passage portion changes, and the heat transfer state between the two changes greatly. Thereby, there is a possibility that the resin may be cured in the resin passage portion, which is a cause of dispersion of resin filling in the cavity portion.
  • an object of the present invention is to provide a runnerless injection molding apparatus that not only suppresses the curing of the resin in the flow path portion but also stabilizes the fluidity of the resin and suppresses variations in resin filling.
  • a runnerless injection molding apparatus is a runnerless injection molding apparatus for injection molding a thermosetting resin, and is a sprue that is a flow path of a thermosetting resin.
  • a cooling block that is disposed around a part of the sprue and formed with a cooling flow path through which a coolant flows, and a heating block having a heat source for curing the thermosetting resin,
  • the gate block is disposed between the cooling block and the heating block and is not temperature-controlled.
  • the gate block includes a gate, and a gap communicating with the gate is provided between the gate block and the cooling block. It is formed around.
  • a runnerless injection molding apparatus that can stabilize resin flowability and suppress variation in resin filling by suppressing the curing of the resin in the flow path portion.
  • FIG. 1 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a cooling block according to the embodiment.
  • FIG. 3 is a top view schematically showing the overall shape of the cooling flow path according to the embodiment.
  • FIG. 4 is a cross-sectional view of a runnerless injection molding apparatus showing one step of a method for producing a resin molded product.
  • FIG. 5 is a cross-sectional view of a runnerless injection molding apparatus showing one step of a method for producing a resin molded product.
  • FIG. 6 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus according to Modification 1.
  • FIG. 7 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus according to Modification 2.
  • FIG. 1 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus 10 according to the embodiment.
  • the runnerless injection molding apparatus 10 is an apparatus for injection molding a thermosetting resin.
  • the thermosetting resin is a resin that is cured by heating.
  • the thermosetting resin also includes a thermosetting elastomer.
  • the thermosetting here includes vulcanization and crosslinking.
  • the runnerless injection molding apparatus 10 includes a mold 20 for molding a thermosetting resin (hereinafter referred to as a resin 11; see FIG. 4), a mold 20 and a resin communication path that communicate with each other.
  • a control unit (computer: not shown) for controlling these operations.
  • the control unit includes, for example, a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, and a processor that executes the program.
  • the mold 20 includes a cooling block 30, a gate block 40, a fixed side heating block 50, and a movable side heating block 60.
  • liquidity is supplied with respect to the metal mold
  • the resin injection part injects the BMC to the mold 20 in a state where the temperature of the BMC is adjusted to 70 ° C. or more and 80 ° C. or less where the viscosity is lowest.
  • a cooling block 30, a gate block 40, a fixed side heating block 50, and a movable side heating block 60 are arranged in order from the upstream in the flow direction of the resin 11.
  • the upstream side in the flow direction of the resin 11 is “upper” and the downstream side is “lower”.
  • FIG. 2 is a cross-sectional view showing the cooling block 30 according to the embodiment.
  • the cooling block 30 includes a second sprue 31 that forms part of a sprue that is a flow path of the resin 11, and a cooling flow path 32 that cools the resin 11 in the second sprue 31. Is formed.
  • the cooling block 30 is formed of a metal material such as stainless steel, for example.
  • the second sprue 31 is a flow path that guides the resin 11 injected from the resin injection portion to the gate block 40.
  • the second sprue 31 is a cylindrical space that tapers toward the downstream side.
  • the extending direction of the second sprue 31 is the same as the flow direction of the resin 11 and is the vertical direction in the present embodiment. Moreover, in this Embodiment, let the direction orthogonal to the extending direction be the width direction.
  • the cooling flow path 32 is disposed around the second sprue 31 and is a flow path through which the coolant 33 flows.
  • the coolant 33 include refrigerants such as water and oil.
  • a cooling source (not shown) is connected to the cooling channel 32, and the cooling source circulates the coolant 33 in the cooling channel 32.
  • the cooling source adjusts the coolant 33 to a predetermined temperature.
  • the predetermined temperature is a temperature at which the fluidity of the resin 11 can be stabilized in a high state (a state where the viscosity is low).
  • the resin 11 is BMC, a temperature between 70 ° C. and 80 ° C. is set as the predetermined temperature.
  • FIG. 3 is a top view schematically showing the overall shape of the cooling flow path 32 according to the embodiment.
  • FIG. 2 is a cross-sectional view of the cut surface including the II-II line in FIG.
  • the cooling flow path 32 is a single flow path in the cooling block 30.
  • the cooling flow path 32 includes a supply unit 321 to which the coolant 33 is supplied from a cooling source, a discharge unit 322 that discharges the coolant 33 to the cooling source, and an intermediate unit 323 between the supply unit 321 and the discharge unit 322. It has.
  • the supply unit 321 and the discharge unit 322 are arranged above the cooling block 30 and above the intermediate unit 323.
  • the cooling flow path 32 forms a closed space in the cooling block 30 except for the supply unit 321 and the discharge unit 322. Thereby, the leakage of the coolant 33 from the cooling block 30 is prevented.
  • the intermediate part 323 of the cooling flow path 32 is a part that contributes to temperature adjustment for the resin 11 in the second sprue 31.
  • the intermediate portion 323 includes a first spiral portion 324 that causes the coolant 33 to flow from upstream to downstream in the flow direction of the resin 11 and a second spiral portion that causes the coolant 33 to flow from downstream to upstream in the flow direction of the resin 11. 325.
  • the lower end portion of the first spiral portion 324 and the lower end portion of the second spiral portion 325 communicate with each other.
  • the 1st spiral part 324 and the 2nd spiral part 325 become the shape wound by the same winding diameter.
  • the first spiral portion 324 is indicated by a broken line
  • the second spiral portion 325 is indicated by a two-dot chain line.
  • a portion on the near side of the cut surface including the II-II line is illustrated by a black line
  • a portion on the far side is illustrated by a gray line.
  • the gate block 40 is disposed between the cooling block 30 and the fixed-side heating block 50.
  • the gate block 40 is formed by a metal material such as stainless steel or a material having low thermal conductivity (for example, ceramics) so that the temperature is not adjusted.
  • the gate block 40 is formed with a gate block side gate (gate) 42 forming a part of a sprue that is a flow path of the resin 11.
  • the gate block side gate 42 is a flow path for guiding the resin 11 supplied from the second sprue 31 of the cooling block 30 to the fixed side heating block 50.
  • the gate block side gate 42 extends in the vertical direction as a whole.
  • the upper end portion of the gate block side gate 42 is a throttle portion 41 whose inner diameter is narrower than that of the second sprue 31.
  • the throttle part 41 is a cylindrical space.
  • the downstream side of the throttle part 41 in the gate block side gate 42 is an enlarged diameter part 43 having an inner diameter wider than that of the throttle part 41.
  • the enlarged diameter portion 43 is a tapered space whose upper end portion has the smallest inner diameter and whose lower end portion has the largest inner diameter.
  • the upper surface of the gate block 40 is a flat surface, and a gap 45 is formed between the gate block 40 and the cooling block 30 when the resin molded product is manufactured.
  • the gap 45 is always maintained by another mold (not shown) when the resin molded product is manufactured.
  • the gap 45 communicates with the gate block side gate 42.
  • the thickness T of the gap 45 is not less than 0.01 mm and not more than 0.15 mm.
  • the thickness T of the gap 45 is set to a value at which the resin 11 flowing through the second sprue 31 and the gate block side gate 42 does not leak into the gap 45.
  • the gate block 40 is thermally expanded.
  • the thickness T of the gap 45 is determined to a value that does not close the gap 45 even during this thermal expansion.
  • the thickness T of the gap 45 may be 0.1 mm or less.
  • the thickness T of the gap 45 even after expansion. Is 0.1 mm or less. That is, before the gate block 40 is thermally expanded, the thickness T of the gap 45 is 0.15 mm or less.
  • the maximum thermal expansion amount may be 0.01 mm or less, and in the case of a resin other than phenol, the resin may leak through a gap 45 of about 0.01 mm. Therefore, the gap 45 is set to 0.01 mm or more.
  • the fixed side heating block 50 is disposed between the gate block 40 and the movable side heating block 60.
  • the fixed-side heating block 50 is made of a metal material such as stainless steel.
  • the fixed-side heating block 50 is formed with a heating block-side gate 53 that forms a part of a sprue that is a flow path for the resin 11 and a cavity 54.
  • the heating block side gate 53 is a flow path that guides the resin 11 supplied from the gate block side gate 42 of the gate block 40 to the cavity 54.
  • the heating block side gate 53 extends in the up-down direction as a whole, and is a tapered space with an upper end portion having the smallest inner diameter and a lower end portion having the largest inner diameter.
  • the cavity 54 is a recess for forming a resin molded product, and the lower part is opened.
  • the cavity 54 becomes a closed space by overlapping the movable heating block 60 when the mold is closed.
  • a resin molded product is formed by filling and curing the resin 11 in the space closed when the mold is closed. This space is formed in a shape corresponding to the shape of the resin molded product.
  • the fixed-side heating block 50 has a heat source 51 for curing the resin 11 in the heating block-side gate 53 and the cavity 54.
  • the heat source 51 is, for example, a heating wire, and is disposed around the heating block side gate 53 and the cavity 54 in the fixed side heating block 50.
  • the resin 11 is cured and becomes a resin molded product.
  • a portion corresponding to the cavity 54 is a product portion
  • a portion corresponding to the heating block side gate 53 is a non-product portion.
  • the heat source 51 adjusts the temperature to a temperature at which the resin 11 in the heating block side gate 53 and the cavity 54 is cured. For example, when the resin 11 is BMC, it is heated to 140 ° C. or higher.
  • the movable side heating block 60 is a mold that moves up and down to move toward and away from the fixed side heating block 50.
  • the movable side heating block 60 is made of a metal material such as stainless steel, for example.
  • the upper surface of the movable-side heating block 60 has a shape portion 61 that has a shape corresponding to a part of the cavity 54, and the movable-side heating block 60 overlaps the fixed-side heating block 50 and is in a mold-closed state The cavity 54 is closed.
  • the movable heating block 60 has a heat source 62 for curing the resin 11 in the cavity 54.
  • the heat source 62 is a heating wire, for example, and is disposed around the shape portion 61. When the heat from the heat source 62 is transmitted to the resin 11 in the cavity 54, the resin 11 is cured and becomes a resin molded product.
  • FIGS. 1, 4, and 5 are cross-sectional views of the runnerless injection molding apparatus 10 showing the steps of the manufacturing method.
  • the resin 11 is injected from the resin injection portion.
  • the resin 11 is supplied and filled into the cavity 54 via the second sprue 31, the gate block side gate 42 and the heating block side gate 53.
  • the gap 45 communicates with the gate block side gate 42.
  • the thickness T of the gap 45 is set to an appropriate value, the resin 11 does not leak into the gap 45. It has become. Even if the resin 11 leaks into the gap 45, since the portion corresponds to the non-product portion, the quality of the product portion is not affected.
  • the coolant 33 circulates in the cooling flow path 32 of the cooling block 30, and the temperature of the resin 11 in the second sprue 31 is adjusted.
  • the heat sources 51 and 62 generate heat, respectively, and the inside of the heating block side gate 53 and the cavity 54 is adjusted to a temperature at which the resin 11 is cured.
  • the resin 11 can be hardened stably in the fixed-side heating block 50.
  • the resin 11 in the gate block 40 is also cured because the heat is transmitted from the resin 11 in the fixed-side heating block 50.
  • the gap 45 is formed between the gate block 40 and the cooling block 30, the amount of heat transfer from the gate block 40 to the cooling block 30 can be suppressed by the gap 45. Therefore, it can suppress that resin 11 hardens
  • the movable side heating block 60 is lowered and separated from the fixed side heating block 50, and the mold is opened. Thereafter, the resin molded product 100 is taken out from the shape portion 61 of the movable heating block 60 by the molded product take-out device 80.
  • gate cutting is performed in the vicinity of the boundary between the gate block 40 and the cooling block 30 where the fluidity of the resin 11 is low.
  • the narrowed portion 41 having an inner diameter smaller than the large-diameter portion 43 in the gate block side gate 42 is disposed in the vicinity of the boundary, stress at the time of extraction can be concentrated on the narrowed portion 41. Therefore, the certainty of the gate cut performed near the boundary can be improved.
  • the runnerless injection molding apparatus 10 is a runnerless injection molding apparatus for injection molding a thermosetting resin (resin 11).
  • the runnerless injection molding apparatus 10 includes a part of the sprue (second sprue 31) that is a flow path of the resin 11, and a cooling flow path 32 that is disposed around the second sprue 31 and into which the coolant 33 flows.
  • the gate block 40 has a gate (gate block side gate 42).
  • a gap 45 communicating with the gate block side gate 42 is formed between the gate block 40 and the cooling block 30 around the gate block side gate 42.
  • the gap 45 communicating with the gate block side gate 42 is formed between the gate block 40 and the cooling block 30, the gap 45 leads from the gate block 40 to the cooling block 30. Heat transfer can be reduced. Therefore, it can suppress that resin 11 hardens
  • the thickness of the gap 45 is 0.01 mm or more and 0.15 mm or less.
  • the gap 45 has a thickness of 0.01 mm or more and 0.15 mm or less, the gap 45 can be maintained even if the gate block 40 is thermally expanded.
  • FIG. 6 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus 10A according to the first modification.
  • a concave portion 36 having a circular shape in plan view surrounding the periphery of the second sprue 31 is formed on the lower surface of the cooling block 30A.
  • the recess 36 is concentric with the second sprue 31 in a plan view.
  • the bottom surface of the recess 36 is a plane parallel to the bottom surface of the cooling block 30A.
  • the peripheral surface of the recess 36 is a tapered surface that expands downward.
  • the gate block 40A is formed in a truncated cone shape, and the upper portion thereof is a protrusion 46 that fits into the recess 36 of the cooling block 30A. That is, the recess 36 of the cooling block 30A and the protrusion 46 of the gate block 40A form an inlay structure.
  • the protrusion 46 is concentric with the gate block side gate 42 in plan view. That is, the gate block side gate 42 is arranged at the center of the protrusion 46. Further, the front end surface of the protrusion 46 is a plane parallel to the bottom surface of the recess 36. The peripheral surface of the protrusion 46 is a tapered surface that expands downward. The peripheral surface of the protrusion 46 is a contact surface that contacts the peripheral surface of the recess 36.
  • the height H of the protrusion 46 is set smaller than the depth D of the recess 36.
  • a gap 45a is formed between the gate block 40A and the cooling block 30A.
  • the thickness T of the gap 45 a is the difference between the depth D of the recess 36 and the height H of the protrusion 46.
  • the gate block 40A and the cooling block 30A are fitted by the inlay structure (projection 46, recess 36) via the gap 45a, the contact area between the projection 46 and the recess 36 is adjusted. Thus, the amount of heat transfer from the gate block 40A to the cooling block 30A can be controlled.
  • the gate block side gate 42 is disposed in the protrusion 46 and the second sprue 31 is disposed in the recess 36, the gate block side gate 42 is obtained by fitting the protrusion 46 and the recess 36. A positional shift with the second sprue 31 can be prevented.
  • the gate block 40A has the protrusion 46 and the cooling block 30A has the recess 36.
  • this relationship may be reversed. .
  • FIG. 7 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus 10B according to Modification 2.
  • a concave portion 57 having a circular shape in plan view surrounding the periphery of the heating block side gate 53 is formed on the upper surface of the fixed side heating block 50B.
  • the recess 57 is concentric with the heating block side gate 53 in plan view.
  • the bottom surface of the recess 57 is a plane parallel to the top surface of the fixed-side heating block 50B.
  • the peripheral surface of the recessed part 57 is a taper surface which spreads upwards.
  • a protrusion 47 having a circular shape in plan view that fits into the recess 57 of the fixed-side heating block 50B is formed on the lower surface of the gate block 40B. That is, the concave portion 57 of the fixed-side heating block 50B and the protrusion 47 of the gate block 40B form an inlay structure.
  • the protrusion 47 is concentric with the gate block side gate 42 in plan view. That is, the gate block side gate 42 is disposed in the center of the protrusion 47. Further, the front end surface of the protrusion 47 is a plane parallel to the bottom surface of the recess 57. The peripheral surface of the protrusion 47 is a tapered surface that spreads upward. The tip surface and the peripheral surface of the protrusion 47 are contact surfaces that contact the bottom surface and the peripheral surface of the recess 57.
  • the gate block 40B and the fixed-side heating block 50B are fitted by the inlay structure (protrusion 47, recess 57), the contact area between the gate block 40B and the fixed-side heating block 50B is increased. Can be bigger. Thereby, the amount of heat transfer from the fixed-side heating block 50B to the gate block 40B can be increased.
  • the gate block side gate 42 is disposed in the protrusion 47 and the heating block side gate 53 is disposed in the recess 57, the protrusion 47 and the recess 57 are fitted to each other so that the gate block side gate 42 and Therefore, it is possible to prevent the positional deviation from the heating block side gate 53.
  • the inlay structure may be provided on either or both of the cooling block 30A side and the fixed side heating block 50B side.

Abstract

A runnerless injection molding device (10) for injection molding a heat-curable resin (11). The runnerless injection molding device (10) comprises: a cooling block (30) that has formed therein a flow path for the heat-curable resin (11), the flow path being one part (31) of a sprue, and a cooling flow path (32) that is arranged around the one part (31) of the sprue and has a cooling material (33) flowing therethrough; a fixed-side heating block (50) that has a heat source (51) for curing the heat-curable resin (11); and a gate block (40) that is arranged between the cooling block (30) and the fixed-side heating block (50) and is not temperature controlled. The gate block (40) has a gate (42). A gap (45) that communicates with the gate (42) is formed around the gate (42) between the gate block (40) and the cooling block (30).

Description

ランナーレス射出成形装置Runnerless injection molding equipment
 本発明は、ランナーレス射出成形装置に関する。 The present invention relates to a runnerless injection molding apparatus.
 従来、熱硬化性樹脂を射出成形するランナーレス射出成形装置には、パーティング面に形成されたキャビティ部の近傍に、当該キャビティ部を加熱する加熱手段が配設されるとともに、キャビティ部に連通する樹脂通路部の近傍に、当該樹脂通路部を冷却する冷却手段が配設されているものがある。このようなランナーレス射出成形装置では、加熱手段によって加熱されたキャビティ部と、冷却手段によって冷却された樹脂通路部との間に断熱手段を介在させたものが知られている(例えば特許文献1参照)。 2. Description of the Related Art Conventionally, in a runnerless injection molding apparatus that performs injection molding of a thermosetting resin, a heating unit that heats the cavity portion is disposed in the vicinity of the cavity portion formed on the parting surface, and communicates with the cavity portion. In some cases, cooling means for cooling the resin passage portion is provided in the vicinity of the resin passage portion. In such a runnerless injection molding apparatus, a device in which a heat insulating means is interposed between a cavity portion heated by a heating means and a resin passage portion cooled by a cooling means is known (for example, Patent Document 1). reference).
 このランナーレス射出成形装置は、成形時において、樹脂通路部が冷却手段の冷却作用によって冷却されているため樹脂の硬化はない。一方、キャビティ部に充填された樹脂は、加熱手段の加熱作用によって硬化する。この場合、キャビティ部内において硬化する部分は、断熱手段の存在する位置までである。このため成形後型開きした際には断熱手段の位置からキャビティ部側の成形品のみが取り出され、ランナーレス成形を行うことができる。 This runnerless injection molding apparatus does not cure the resin since the resin passage is cooled by the cooling action of the cooling means during molding. On the other hand, the resin filled in the cavity is cured by the heating action of the heating means. In this case, the part which hardens | cures in a cavity part is to the position where a heat insulation means exists. For this reason, when the mold is opened after molding, only the molded product on the cavity portion side is taken out from the position of the heat insulating means, and runnerless molding can be performed.
特開昭62-16114号公報JP-A 62-16114
 ところで、従来のオープンゲート方式のランナーレス射出成形装置では、ゲートカットされる位置が常に一定ではなく、その位置がばらつくという問題があった。このようなばらつきによって、樹脂部材の無駄が多くなってしまったり、成形品に欠けが生じたりした。このため、近年においては、ゲートカットの位置を安定化するべく、キャビティ部と、樹脂通路部との間に、温度調節されないゲートブロックを介在させる技術も検討されている。しかし、キャビティ部と樹脂通路部との間に単にゲートブロックを介在させたとしても、キャビティ部からの熱によってゲートブロックが熱膨張してしまう。ゲートブロックが熱膨張すると、ゲートブロックと樹脂通路部との接触状態が変動して、両者間の熱伝達状態も大きく変動する。これにより、樹脂通路部内で樹脂が硬化するおそれがあり、キャビティ部内への樹脂充填をばらつかせる一因となっていた。 By the way, the conventional open gate type runnerless injection molding apparatus has a problem in that the gate cut position is not always constant and the position varies. Due to such variations, the waste of the resin member is increased or the molded product is chipped. For this reason, in recent years, in order to stabilize the position of the gate cut, a technique in which a gate block whose temperature is not adjusted is interposed between the cavity portion and the resin passage portion has been studied. However, even if the gate block is simply interposed between the cavity portion and the resin passage portion, the gate block is thermally expanded by the heat from the cavity portion. When the gate block thermally expands, the contact state between the gate block and the resin passage portion changes, and the heat transfer state between the two changes greatly. Thereby, there is a possibility that the resin may be cured in the resin passage portion, which is a cause of dispersion of resin filling in the cavity portion.
 そこで、本発明は、流路部内での樹脂の硬化を抑制するだけでなく、樹脂の流動性を安定化させ、樹脂充填のばらつきを抑えることのできるランナーレス射出成形装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a runnerless injection molding apparatus that not only suppresses the curing of the resin in the flow path portion but also stabilizes the fluidity of the resin and suppresses variations in resin filling. And
 上記目的を達成するため、本発明の一態様に係るランナーレス射出成形装置は、熱硬化性樹脂を射出成形するためのランナーレス射出成形装置であって、熱硬化性樹脂の流路であるスプルーの一部と、スプルーの一部の周囲に配置され、内部に冷却材が流される冷却流路とが形成された冷却ブロックと、熱硬化性樹脂を硬化させるための熱源を有する加熱ブロックと、冷却ブロックと加熱ブロックとの間に配置され、温度調節されないゲートブロックとを備え、ゲートブロックはゲートを有し、ゲートブロックと、冷却ブロックとの間には、ゲートと連通する隙間が当該ゲートの周囲に形成されている。 In order to achieve the above object, a runnerless injection molding apparatus according to an aspect of the present invention is a runnerless injection molding apparatus for injection molding a thermosetting resin, and is a sprue that is a flow path of a thermosetting resin. A cooling block that is disposed around a part of the sprue and formed with a cooling flow path through which a coolant flows, and a heating block having a heat source for curing the thermosetting resin, The gate block is disposed between the cooling block and the heating block and is not temperature-controlled. The gate block includes a gate, and a gap communicating with the gate is provided between the gate block and the cooling block. It is formed around.
 本発明によれば、流路部内での樹脂の硬化を抑制することで、樹脂の流動性を安定化させ、樹脂充填のばらつきを抑えることのできるランナーレス射出成形装置を提供することができる。 According to the present invention, it is possible to provide a runnerless injection molding apparatus that can stabilize resin flowability and suppress variation in resin filling by suppressing the curing of the resin in the flow path portion.
図1は、実施の形態に係るランナーレス射出成形装置の要部構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus according to an embodiment. 図2は、実施の形態に係る冷却ブロックを示す断面図である。FIG. 2 is a cross-sectional view showing a cooling block according to the embodiment. 図3は、実施の形態に係る冷却流路の全体形状を模式的に示す上面図である。FIG. 3 is a top view schematically showing the overall shape of the cooling flow path according to the embodiment. 図4は、樹脂成型品の製造方法の一工程を示すランナーレス射出成形装置の断面図である。FIG. 4 is a cross-sectional view of a runnerless injection molding apparatus showing one step of a method for producing a resin molded product. 図5は、樹脂成型品の製造方法の一工程を示すランナーレス射出成形装置の断面図である。FIG. 5 is a cross-sectional view of a runnerless injection molding apparatus showing one step of a method for producing a resin molded product. 図6は、変形例1に係るランナーレス射出成形装置の要部構成を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus according to Modification 1. 図7は、変形例2に係るランナーレス射出成形装置の要部構成を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus according to Modification 2.
 以下では、本発明の実施の形態に係るランナーレス射出成形装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、工程、工程の順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a runnerless injection molding apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, constituent elements, arrangement and connection forms of constituent elements, processes, order of processes, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 (実施の形態)
 [ランナーレス射出成形装置]
 図1は、実施の形態に係るランナーレス射出成形装置10の要部構成を模式的に示す断面図である。ランナーレス射出成形装置10は、熱硬化性樹脂を射出成形するための装置である。ここで、熱硬化性樹脂とは、加熱により硬化する樹脂のことであり、例えばフェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、ケイ素樹脂、不飽和ポリエステル樹脂(BMC:Bulk Molding Compound、SMC:Seat Molding Compound)などが挙げられる。また、熱硬化性樹脂には、熱硬化性エラストマーも含まれる。なお、ここで言う熱硬化には、加硫、架橋も含まれる。
(Embodiment)
[Runnerless injection molding equipment]
FIG. 1 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus 10 according to the embodiment. The runnerless injection molding apparatus 10 is an apparatus for injection molding a thermosetting resin. Here, the thermosetting resin is a resin that is cured by heating. For example, phenol resin, urea resin, melamine resin, epoxy resin, silicon resin, unsaturated polyester resin (BMC: Bulk Molding Compound, SMC: Seat) Molding Compound). The thermosetting resin also includes a thermosetting elastomer. The thermosetting here includes vulcanization and crosslinking.
 ランナーレス射出成形装置10は、熱硬化性樹脂(以降、樹脂11と称す。:図4参照)を成形するための金型20と、金型20と樹脂連通路が連通し樹脂を供給する多点ゲート用のマニホールド(図示省略)及び第一スプルー(図示省略)から樹脂を射出する樹脂射出部(図示省略)と、金型20から樹脂成形品を取り出すための成形品取出装置80(図5参照)と、これらの動作を制御する制御部(コンピュータ:図示省略)とを備えている。制御部は、例えば、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。 The runnerless injection molding apparatus 10 includes a mold 20 for molding a thermosetting resin (hereinafter referred to as a resin 11; see FIG. 4), a mold 20 and a resin communication path that communicate with each other. A resin injection portion (not shown) for injecting resin from a point gate manifold (not shown) and a first sprue (not shown), and a molded product take-out device 80 for taking out a resin molded product from the mold 20 (FIG. 5). And a control unit (computer: not shown) for controlling these operations. The control unit includes, for example, a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, and a processor that executes the program.
 [金型]
 金型20は、冷却ブロック30と、ゲートブロック40と、固定側加熱ブロック50、可動側加熱ブロック60とを備えている。なお、金型20に対しては、図示しない樹脂射出部によって、流動性の高い樹脂11が供給される。例えば、樹脂11がBMCである場合には、樹脂射出部は、粘度が最も低くなる70℃以上80℃以下にBMCを温度調節した状態で金型20に射出している。金型20は、樹脂11の流れ方向の上流から順に、冷却ブロック30、ゲートブロック40、固定側加熱ブロック50、可動側加熱ブロック60が配置されている。なお、本実施形態では、樹脂11の流れ方向の上流側を「上」とし、下流側を「下」とする。
[Mold]
The mold 20 includes a cooling block 30, a gate block 40, a fixed side heating block 50, and a movable side heating block 60. In addition, the resin 11 with high fluidity | liquidity is supplied with respect to the metal mold | die 20 by the resin injection part which is not shown in figure. For example, when the resin 11 is BMC, the resin injection part injects the BMC to the mold 20 in a state where the temperature of the BMC is adjusted to 70 ° C. or more and 80 ° C. or less where the viscosity is lowest. In the mold 20, a cooling block 30, a gate block 40, a fixed side heating block 50, and a movable side heating block 60 are arranged in order from the upstream in the flow direction of the resin 11. In the present embodiment, the upstream side in the flow direction of the resin 11 is “upper” and the downstream side is “lower”.
 [冷却ブロック]
 図2は、実施の形態に係る冷却ブロック30を示す断面図である。図2に示すように、冷却ブロック30には、樹脂11の流路であるスプルーの一部をなす第二スプルー31と、第二スプルー31内の樹脂11を冷却するための冷却流路32とが形成されている。冷却ブロック30は、例えば、ステンレス鋼などの金属材料から形成されている。
[Cooling block]
FIG. 2 is a cross-sectional view showing the cooling block 30 according to the embodiment. As shown in FIG. 2, the cooling block 30 includes a second sprue 31 that forms part of a sprue that is a flow path of the resin 11, and a cooling flow path 32 that cools the resin 11 in the second sprue 31. Is formed. The cooling block 30 is formed of a metal material such as stainless steel, for example.
 第二スプルー31は、樹脂射出部から射出された樹脂11をゲートブロック40まで案内する流路である。第二スプルー31は、下流側にかけて先細る円柱状の空間である。第二スプルー31の延在方向は、樹脂11の流れ方向と同じであり、本実施の形態では上下方向となっている。また、本実施の形態では、延在方向に直交する方向を幅方向とする。 The second sprue 31 is a flow path that guides the resin 11 injected from the resin injection portion to the gate block 40. The second sprue 31 is a cylindrical space that tapers toward the downstream side. The extending direction of the second sprue 31 is the same as the flow direction of the resin 11 and is the vertical direction in the present embodiment. Moreover, in this Embodiment, let the direction orthogonal to the extending direction be the width direction.
 冷却流路32は、第二スプルー31の周囲に配置されており、内部に冷却材33が流される流路である。冷却材33としては、例えば水、油などの冷媒が挙げられる。この冷却流路32には、図示しない冷却源が接続されており、冷却源が冷却材33を冷却流路32内で循環させている。冷却源は、冷却材33を所定の温度に調節している。これにより、冷却材33は、冷却流路32を介して第二スプルー31内の樹脂11を温度調節する。ここで、所定の温度とは、樹脂11の流動性を高い状態(粘度が低い状態)で安定させることのできる温度である。例えば樹脂11がBMCの場合には、70℃以上80℃以下の温度を所定の温度とする。 The cooling flow path 32 is disposed around the second sprue 31 and is a flow path through which the coolant 33 flows. Examples of the coolant 33 include refrigerants such as water and oil. A cooling source (not shown) is connected to the cooling channel 32, and the cooling source circulates the coolant 33 in the cooling channel 32. The cooling source adjusts the coolant 33 to a predetermined temperature. As a result, the coolant 33 adjusts the temperature of the resin 11 in the second sprue 31 via the cooling flow path 32. Here, the predetermined temperature is a temperature at which the fluidity of the resin 11 can be stabilized in a high state (a state where the viscosity is low). For example, when the resin 11 is BMC, a temperature between 70 ° C. and 80 ° C. is set as the predetermined temperature.
 図3は、実施の形態に係る冷却流路32の全体形状を模式的に示す上面図である。なお、図3におけるII-II線を含む切断面を見た断面図が図2である。 FIG. 3 is a top view schematically showing the overall shape of the cooling flow path 32 according to the embodiment. FIG. 2 is a cross-sectional view of the cut surface including the II-II line in FIG.
 図2及び図3に示すように、冷却流路32は、冷却ブロック30内において一本の流路である。冷却流路32は、冷却材33が冷却源から供給される供給部321と、冷却源に冷却材33を排出する排出部322と、供給部321と排出部322との間の中間部323とを備えている。供給部321及び排出部322は、冷却ブロック30の上部であって、かつ中間部323よりも上方に配置されている。そして、冷却流路32は、供給部321及び排出部322を除いて冷却ブロック30内で閉塞空間を形成することになる。これにより、冷却ブロック30からの冷却材33の漏れが防止されている。 2 and 3, the cooling flow path 32 is a single flow path in the cooling block 30. The cooling flow path 32 includes a supply unit 321 to which the coolant 33 is supplied from a cooling source, a discharge unit 322 that discharges the coolant 33 to the cooling source, and an intermediate unit 323 between the supply unit 321 and the discharge unit 322. It has. The supply unit 321 and the discharge unit 322 are arranged above the cooling block 30 and above the intermediate unit 323. The cooling flow path 32 forms a closed space in the cooling block 30 except for the supply unit 321 and the discharge unit 322. Thereby, the leakage of the coolant 33 from the cooling block 30 is prevented.
 冷却流路32の中間部323は、第二スプルー31内の樹脂11に対する温度調節に寄与する部分である。中間部323は、樹脂11の流れ方向の上流から下流に向かって冷却材33を流す第一螺旋部324と、樹脂11の流れ方向の下流から上流に向かって冷却材33を流す第二螺旋部325とを備えている。第一螺旋部324の下端部と、第二螺旋部325の下端部とは連通している。また、第一螺旋部324と、第二螺旋部325とは同じ巻き径で巻かれた形状となっている。 The intermediate part 323 of the cooling flow path 32 is a part that contributes to temperature adjustment for the resin 11 in the second sprue 31. The intermediate portion 323 includes a first spiral portion 324 that causes the coolant 33 to flow from upstream to downstream in the flow direction of the resin 11 and a second spiral portion that causes the coolant 33 to flow from downstream to upstream in the flow direction of the resin 11. 325. The lower end portion of the first spiral portion 324 and the lower end portion of the second spiral portion 325 communicate with each other. Moreover, the 1st spiral part 324 and the 2nd spiral part 325 become the shape wound by the same winding diameter.
 なお、図2において、第一螺旋部324は破線で示し、第二螺旋部325は二点鎖線で示している。さらに図2及び図3では、中間部323のうち、II-II線を含む切断面よりも手前側にある部分を黒線で図示し、奥側にある部分を灰色線で図示している。 In FIG. 2, the first spiral portion 324 is indicated by a broken line, and the second spiral portion 325 is indicated by a two-dot chain line. Further, in FIGS. 2 and 3, in the intermediate portion 323, a portion on the near side of the cut surface including the II-II line is illustrated by a black line, and a portion on the far side is illustrated by a gray line.
 [ゲートブロック]
 図1に示すように、ゲートブロック40は、冷却ブロック30と固定側加熱ブロック50との間に配置されている。ゲートブロック40は、例えばステンレス鋼などの金属材料若しくは熱伝導率の低い材料(例えばセラミックス等)により、温度調節されないように形成されている。ゲートブロック40には、樹脂11の流路であるスプルーの一部をなすゲートブロック側ゲート(ゲート)42が形成されている。
[Gate block]
As shown in FIG. 1, the gate block 40 is disposed between the cooling block 30 and the fixed-side heating block 50. The gate block 40 is formed by a metal material such as stainless steel or a material having low thermal conductivity (for example, ceramics) so that the temperature is not adjusted. The gate block 40 is formed with a gate block side gate (gate) 42 forming a part of a sprue that is a flow path of the resin 11.
 図1に示すように、ゲートブロック側ゲート42は、冷却ブロック30の第二スプルー31から供給された樹脂11を固定側加熱ブロック50まで案内する流路である。ゲートブロック側ゲート42は、全体として上下方向に延在している。ゲートブロック側ゲート42の上端部は、第二スプルー31よりも内径が絞られた絞り部41である。絞り部41は円柱状の空間である。また、ゲートブロック側ゲート42における絞り部41よりも下流側は、絞り部41よりも内径が広げられた拡径部43である。拡径部43は、上端部が最も内径が小さく、下端部が最も内径の大きいテーパ状の空間である。 As shown in FIG. 1, the gate block side gate 42 is a flow path for guiding the resin 11 supplied from the second sprue 31 of the cooling block 30 to the fixed side heating block 50. The gate block side gate 42 extends in the vertical direction as a whole. The upper end portion of the gate block side gate 42 is a throttle portion 41 whose inner diameter is narrower than that of the second sprue 31. The throttle part 41 is a cylindrical space. Further, the downstream side of the throttle part 41 in the gate block side gate 42 is an enlarged diameter part 43 having an inner diameter wider than that of the throttle part 41. The enlarged diameter portion 43 is a tapered space whose upper end portion has the smallest inner diameter and whose lower end portion has the largest inner diameter.
 また、ゲートブロック40の上面は平面であり、樹脂成形品の製造時においては冷却ブロック30との間に隙間45を形成する。この隙間45は、樹脂成形品の製造時には図示しない他の金型によって常に維持されている。この隙間45は、ゲートブロック側ゲート42と連通している。なお、図1などにおいては、隙間45の厚みTを強調して図示しているため、実際の大小関係とは異なっている。具体的には、隙間45の厚みTは、0.01mm以上0.15mm以下である。なお、隙間45の厚みTは、第二スプルー31及びゲートブロック側ゲート42を流れる樹脂11が隙間45に漏れ出ない値とする。また、固定側加熱ブロック50からゲートブロック40に熱が伝わると、ゲートブロック40は熱膨張することになる。この熱膨張時においても隙間45が閉塞されないような値に、隙間45の厚みTを決定する。 Further, the upper surface of the gate block 40 is a flat surface, and a gap 45 is formed between the gate block 40 and the cooling block 30 when the resin molded product is manufactured. The gap 45 is always maintained by another mold (not shown) when the resin molded product is manufactured. The gap 45 communicates with the gate block side gate 42. In addition, in FIG. 1 etc., since the thickness T of the gap 45 is emphasized, it is different from the actual magnitude relationship. Specifically, the thickness T of the gap 45 is not less than 0.01 mm and not more than 0.15 mm. The thickness T of the gap 45 is set to a value at which the resin 11 flowing through the second sprue 31 and the gate block side gate 42 does not leak into the gap 45. Further, when heat is transferred from the fixed side heating block 50 to the gate block 40, the gate block 40 is thermally expanded. The thickness T of the gap 45 is determined to a value that does not close the gap 45 even during this thermal expansion.
 以下、熱硬化性樹脂として一般的なフェノール樹脂を用いる場合を例示する。フェノール樹脂は、0.1mm以下の隙間であれば漏れ出ない特性を有している。このため、ゲートブロック40の熱膨張を考慮しないのであれば、隙間45の厚みTは0.1mm以下とすればよい。そして、最大熱膨張量が例えば0.05mmのゲートブロック40を想定すると、隙間45の厚みTの下限値及び上限値に最大熱膨張量を加えておけば、膨張後においても隙間45の厚みTは0.1mm以下となる。つまり、ゲートブロック40が熱膨張する前においては、隙間45の厚みTは、上述した0.15mm以下である。また、ゲートブロック40の大きさ及び設定温度によっては最大熱膨張量が0.01mm以下となる場合があり、フェノール以外の樹脂では0.01mm程度の隙間45で樹脂が漏れる場合がある。よって、隙間45は0.01mm以上とする。 Hereinafter, the case where a general phenol resin is used as the thermosetting resin will be exemplified. The phenol resin has a characteristic that it does not leak out if it is a gap of 0.1 mm or less. For this reason, if the thermal expansion of the gate block 40 is not considered, the thickness T of the gap 45 may be 0.1 mm or less. Assuming a gate block 40 having a maximum thermal expansion amount of, for example, 0.05 mm, if the maximum thermal expansion amount is added to the lower limit value and the upper limit value of the thickness T of the gap 45, the thickness T of the gap 45 even after expansion. Is 0.1 mm or less. That is, before the gate block 40 is thermally expanded, the thickness T of the gap 45 is 0.15 mm or less. Further, depending on the size of the gate block 40 and the set temperature, the maximum thermal expansion amount may be 0.01 mm or less, and in the case of a resin other than phenol, the resin may leak through a gap 45 of about 0.01 mm. Therefore, the gap 45 is set to 0.01 mm or more.
 なお、熱硬化性樹脂の種類、ゲートブロック40の材質及び形状などに応じて、種々の実験、シミュレーションを実行することにより、隙間45として適切な形状及び寸法を決定すればよい。 In addition, what is necessary is just to determine an appropriate shape and dimension as the gap | clearance 45 by performing various experiments and simulation according to the kind of thermosetting resin, the material of the gate block 40, and a shape.
 [加熱ブロック]
 固定側加熱ブロック50は、ゲートブロック40と、可動側加熱ブロック60との間に配置されている。固定側加熱ブロック50は、例えばステンレス鋼などの金属材料から形成されている。固定側加熱ブロック50には、樹脂11の流路であるスプルーの一部をなす加熱ブロック側ゲート53と、キャビティ54とが形成されている。
[Heating block]
The fixed side heating block 50 is disposed between the gate block 40 and the movable side heating block 60. The fixed-side heating block 50 is made of a metal material such as stainless steel. The fixed-side heating block 50 is formed with a heating block-side gate 53 that forms a part of a sprue that is a flow path for the resin 11 and a cavity 54.
 加熱ブロック側ゲート53は、ゲートブロック40のゲートブロック側ゲート42から供給された樹脂11をキャビティ54まで案内する流路である。加熱ブロック側ゲート53は、全体として上下方向に延在しており、上端部が最も内径が小さく、下端部が最も内径の大きいテーパ状の空間である。 The heating block side gate 53 is a flow path that guides the resin 11 supplied from the gate block side gate 42 of the gate block 40 to the cavity 54. The heating block side gate 53 extends in the up-down direction as a whole, and is a tapered space with an upper end portion having the smallest inner diameter and a lower end portion having the largest inner diameter.
 キャビティ54は、樹脂成形品を形成するための凹部であり、下方が開放されている。キャビティ54は、型閉じ時に可動側加熱ブロック60が重なることによって閉塞された空間となる。この型閉じ時に閉塞された空間内に樹脂11が充填されて硬化することで、樹脂成形品が形成される。この空間は、樹脂成形品の形状に対応した形状に形成されている。 The cavity 54 is a recess for forming a resin molded product, and the lower part is opened. The cavity 54 becomes a closed space by overlapping the movable heating block 60 when the mold is closed. A resin molded product is formed by filling and curing the resin 11 in the space closed when the mold is closed. This space is formed in a shape corresponding to the shape of the resin molded product.
 そして、固定側加熱ブロック50は、加熱ブロック側ゲート53及びキャビティ54内の樹脂11を硬化させるための熱源51を有している。具体的には、熱源51は、例えば電熱線であり、固定側加熱ブロック50における加熱ブロック側ゲート53及びキャビティ54の周囲に配設されている。加熱ブロック側ゲート53及びキャビティ54内の樹脂11に熱源51からの熱が伝わることにより、当該樹脂11が硬化して樹脂成形品となる。樹脂成形品のうち、キャビティ54に対応する部分が製品部となり、加熱ブロック側ゲート53に対応する部分が非製品部となる。 The fixed-side heating block 50 has a heat source 51 for curing the resin 11 in the heating block-side gate 53 and the cavity 54. Specifically, the heat source 51 is, for example, a heating wire, and is disposed around the heating block side gate 53 and the cavity 54 in the fixed side heating block 50. When the heat from the heat source 51 is transmitted to the heating block side gate 53 and the resin 11 in the cavity 54, the resin 11 is cured and becomes a resin molded product. Of the resin molded product, a portion corresponding to the cavity 54 is a product portion, and a portion corresponding to the heating block side gate 53 is a non-product portion.
 熱源51は、加熱ブロック側ゲート53及びキャビティ54内の樹脂11を硬化させる温度に温度調節する。例えば樹脂11がBMCの場合には、140℃以上に加熱する。 The heat source 51 adjusts the temperature to a temperature at which the resin 11 in the heating block side gate 53 and the cavity 54 is cured. For example, when the resin 11 is BMC, it is heated to 140 ° C. or higher.
 [可動側加熱ブロック]
 可動側加熱ブロック60は、上下動することにより固定側加熱ブロック50に対して近づいたり遠ざかったりする金型である。可動側加熱ブロック60は、例えば、ステンレス鋼などの金属材料から形成されている。可動側加熱ブロック60の上面は、キャビティ54の一部に対応した形状をなす形状部61を有しており、可動側加熱ブロック60が固定側加熱ブロック50に重なって型閉じ状態となった際にキャビティ54を閉塞する。
[Moving side heating block]
The movable side heating block 60 is a mold that moves up and down to move toward and away from the fixed side heating block 50. The movable side heating block 60 is made of a metal material such as stainless steel, for example. The upper surface of the movable-side heating block 60 has a shape portion 61 that has a shape corresponding to a part of the cavity 54, and the movable-side heating block 60 overlaps the fixed-side heating block 50 and is in a mold-closed state The cavity 54 is closed.
 そして、可動側加熱ブロック60は、キャビティ54内の樹脂11を硬化させるための熱源62を有している。具体的には、熱源62は、例えば電熱線であり、形状部61の周囲に配設されている。キャビティ54内の樹脂11に熱源62からの熱が伝わることにより、当該樹脂11が硬化して樹脂成形品となる。 The movable heating block 60 has a heat source 62 for curing the resin 11 in the cavity 54. Specifically, the heat source 62 is a heating wire, for example, and is disposed around the shape portion 61. When the heat from the heat source 62 is transmitted to the resin 11 in the cavity 54, the resin 11 is cured and becomes a resin molded product.
 [製造方法]
 次に、実施の形態に係る樹脂成形品の製造方法について図1、図4及び図5に基づいて説明する。なお、図4及び図5は、製造方法の各工程を示すランナーレス射出成形装置10の断面図である。
[Production method]
Next, a method for manufacturing a resin molded product according to the embodiment will be described with reference to FIGS. 1, 4, and 5. 4 and 5 are cross-sectional views of the runnerless injection molding apparatus 10 showing the steps of the manufacturing method.
 まず、図1に示すように、可動側加熱ブロック60が固定側加熱ブロック50に重なって型閉じ状態になると、樹脂射出部から樹脂11が射出される。これにより、図4に示すように、樹脂11が第二スプルー31、ゲートブロック側ゲート42及び加熱ブロック側ゲート53を介して、キャビティ54内に供給され、充填される。この供給時においては、隙間45がゲートブロック側ゲート42に連通しているが、隙間45の厚みTが適切な値に設定されているために、隙間45内に樹脂11が漏れ出ないようになっている。もし樹脂11が隙間45内に漏れ出たとしても、当該部分は非製品部に対応している部分であるので、製品部の品質には影響しない。 First, as shown in FIG. 1, when the movable side heating block 60 overlaps the fixed side heating block 50 and enters the mold closed state, the resin 11 is injected from the resin injection portion. As a result, as shown in FIG. 4, the resin 11 is supplied and filled into the cavity 54 via the second sprue 31, the gate block side gate 42 and the heating block side gate 53. During this supply, the gap 45 communicates with the gate block side gate 42. However, since the thickness T of the gap 45 is set to an appropriate value, the resin 11 does not leak into the gap 45. It has become. Even if the resin 11 leaks into the gap 45, since the portion corresponds to the non-product portion, the quality of the product portion is not affected.
 また、樹脂11の供給時においては、冷却ブロック30の冷却流路32には冷却材33が循環しており、第二スプルー31内の樹脂11に対して温度調節が行われている。一方、固定側加熱ブロック50及び可動側加熱ブロック60では、それぞれ熱源51、62が発熱しており、加熱ブロック側ゲート53及びキャビティ54内を、樹脂11が硬化する温度まで調節している。これにより、固定側加熱ブロック50では安定して樹脂11を硬化させることができる。ゲートブロック40内の樹脂11においても、固定側加熱ブロック50内の樹脂11から熱が伝わっているので硬化することになる。 In addition, when the resin 11 is supplied, the coolant 33 circulates in the cooling flow path 32 of the cooling block 30, and the temperature of the resin 11 in the second sprue 31 is adjusted. On the other hand, in the fixed side heating block 50 and the movable side heating block 60, the heat sources 51 and 62 generate heat, respectively, and the inside of the heating block side gate 53 and the cavity 54 is adjusted to a temperature at which the resin 11 is cured. Thereby, the resin 11 can be hardened stably in the fixed-side heating block 50. The resin 11 in the gate block 40 is also cured because the heat is transmitted from the resin 11 in the fixed-side heating block 50.
 ここで、ゲートブロック40と冷却ブロック30との間に隙間45が形成されているので、この隙間45によって、ゲートブロック40から冷却ブロック30への伝熱量を抑えることができる。したがって、冷却ブロック30内で樹脂11が硬化することを抑制でき、樹脂11の流動性を安定化させることができる。 Here, since the gap 45 is formed between the gate block 40 and the cooling block 30, the amount of heat transfer from the gate block 40 to the cooling block 30 can be suppressed by the gap 45. Therefore, it can suppress that resin 11 hardens | cures in the cooling block 30, and the fluidity | liquidity of the resin 11 can be stabilized.
 固定側加熱ブロック50内における樹脂11の硬化後においては、図5に示すように、可動側加熱ブロック60が下降して固定側加熱ブロック50から離れ、型開き状態となる。その後、可動側加熱ブロック60の形状部61から、成形品取出装置80によって樹脂成形品100の取り出しが行われる。この取り出し時には、樹脂11の流動性が低いゲートブロック40と冷却ブロック30との境界近傍でゲートカットが行われる。このとき、前記境界近傍に、ゲートブロック側ゲート42における拡径部43よりも内径の小さい絞り部41が配置されているので、当該絞り部41に取り出し時の応力を集中させることができる。したがって、前記境界近傍で行われるゲートカットの確実性を高めることができる。 After the curing of the resin 11 in the fixed side heating block 50, as shown in FIG. 5, the movable side heating block 60 is lowered and separated from the fixed side heating block 50, and the mold is opened. Thereafter, the resin molded product 100 is taken out from the shape portion 61 of the movable heating block 60 by the molded product take-out device 80. At the time of removal, gate cutting is performed in the vicinity of the boundary between the gate block 40 and the cooling block 30 where the fluidity of the resin 11 is low. At this time, since the narrowed portion 41 having an inner diameter smaller than the large-diameter portion 43 in the gate block side gate 42 is disposed in the vicinity of the boundary, stress at the time of extraction can be concentrated on the narrowed portion 41. Therefore, the certainty of the gate cut performed near the boundary can be improved.
 [効果など]
 以上のように、本実施の形態に係るランナーレス射出成形装置10は、熱硬化性樹脂(樹脂11)を射出成形するためのランナーレス射出成形装置である。ランナーレス射出成形装置10は、樹脂11の流路であるスプルーの一部(第二スプルー31)と、第二スプルー31の周囲に配置され、内部に冷却材33が流される冷却流路32とが形成された冷却ブロック30と、樹脂11を硬化させるための熱源51を有する固定側加熱ブロック50と、冷却ブロック30と固定側加熱ブロック50との間に配置され、温度調節されないゲートブロック40とを備える。ゲートブロック40はゲート(ゲートブロック側ゲート42)を有している。ゲートブロック40と、冷却ブロック30との間には、ゲートブロック側ゲート42と連通する隙間45が当該ゲートブロック側ゲート42の周囲に形成されている。
[Effects, etc.]
As described above, the runnerless injection molding apparatus 10 according to the present embodiment is a runnerless injection molding apparatus for injection molding a thermosetting resin (resin 11). The runnerless injection molding apparatus 10 includes a part of the sprue (second sprue 31) that is a flow path of the resin 11, and a cooling flow path 32 that is disposed around the second sprue 31 and into which the coolant 33 flows. A cooling block 30 with a heat source 51 for curing the resin 11, a gate block 40 that is arranged between the cooling block 30 and the fixed heating block 50 and is not temperature-controlled. Is provided. The gate block 40 has a gate (gate block side gate 42). A gap 45 communicating with the gate block side gate 42 is formed between the gate block 40 and the cooling block 30 around the gate block side gate 42.
 この構成によれば、ゲートブロック40と、冷却ブロック30との間に、ゲートブロック側ゲート42と連通する隙間45が形成されているので、この隙間45によって、ゲートブロック40から冷却ブロック30への伝熱量を抑えることができる。したがって、冷却ブロック30内で樹脂11が硬化することを抑制でき、樹脂11の流動性を安定化させることができる。したがって、樹脂充填のばらつきを抑制することができる。 According to this configuration, since the gap 45 communicating with the gate block side gate 42 is formed between the gate block 40 and the cooling block 30, the gap 45 leads from the gate block 40 to the cooling block 30. Heat transfer can be reduced. Therefore, it can suppress that resin 11 hardens | cures in the cooling block 30, and the fluidity | liquidity of the resin 11 can be stabilized. Therefore, variation in resin filling can be suppressed.
 特に、樹脂射出部から複数の金型20に対して樹脂を同時に充填する場合においては、樹脂11の流動性が安定化されているために、複数の金型20における樹脂充填のばらつきを抑制することが可能である。 In particular, in the case where the resin is simultaneously filled into the plurality of molds 20 from the resin injection portion, since the fluidity of the resin 11 is stabilized, variations in resin filling in the plurality of molds 20 are suppressed. It is possible.
 また、隙間45の厚みは0.01mm以上0.15mm以下である。 The thickness of the gap 45 is 0.01 mm or more and 0.15 mm or less.
 この構成によれば、隙間45の厚みが0.01mm以上0.15mm以下であるので、ゲートブロック40が熱膨張したとしても隙間45を維持することが可能である。 According to this configuration, since the gap 45 has a thickness of 0.01 mm or more and 0.15 mm or less, the gap 45 can be maintained even if the gate block 40 is thermally expanded.
 (変形例1)
 上記実施の形態では、ゲートブロック40の平面である上面と、冷却ブロック30の平面である下面とが隙間45を形成する場合を例示して説明した。この変形例1では、冷却ブロックに設けられた凹部によって隙間が形成されている場合について説明する。
(Modification 1)
In the above embodiment, the case where the upper surface, which is the plane of the gate block 40, and the lower surface, which is the plane of the cooling block 30, form the gap 45 has been described as an example. In the first modification, a case where a gap is formed by a recess provided in the cooling block will be described.
 なお、以降の説明においては、実施の形態に係るランナーレス射出成形装置10と同一の部分においては同一の符号を付してその説明を省略し、異なる部分についてのみ説明する。 In the following description, the same portions as those of the runnerless injection molding apparatus 10 according to the embodiment are denoted by the same reference numerals, the description thereof is omitted, and only different portions are described.
 図6は、変形例1に係るランナーレス射出成形装置10Aの要部構成を模式的に示す断面図である。 FIG. 6 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus 10A according to the first modification.
 図6に示すように、冷却ブロック30Aの下面には、第二スプルー31の周囲を囲む平面視円形状の凹部36が形成されている。凹部36は、第二スプルー31に対して平面視で同心円となっている。また、凹部36の底面は、冷却ブロック30Aの下面と平行な平面となっている。そして、凹部36の周面は、下方に向かって広がるテーパ面となっている。 As shown in FIG. 6, a concave portion 36 having a circular shape in plan view surrounding the periphery of the second sprue 31 is formed on the lower surface of the cooling block 30A. The recess 36 is concentric with the second sprue 31 in a plan view. The bottom surface of the recess 36 is a plane parallel to the bottom surface of the cooling block 30A. The peripheral surface of the recess 36 is a tapered surface that expands downward.
 ゲートブロック40Aは円錐台状に形成されており、その上部が冷却ブロック30Aの凹部36に嵌合する突部46である。つまり、冷却ブロック30Aの凹部36と、ゲートブロック40Aの突部46とがインロー構造をなしている。 The gate block 40A is formed in a truncated cone shape, and the upper portion thereof is a protrusion 46 that fits into the recess 36 of the cooling block 30A. That is, the recess 36 of the cooling block 30A and the protrusion 46 of the gate block 40A form an inlay structure.
 突部46は、ゲートブロック側ゲート42に対して平面視で同心円となっている。つまり、突部46の中央に、ゲートブロック側ゲート42が配置されている。また、突部46の先端面は、凹部36の底面と平行な平面となっている。そして、突部46の周面は、下方に向かって広がるテーパ面となっている。この突部46の周面は、凹部36の周面に当接する当接面である。 The protrusion 46 is concentric with the gate block side gate 42 in plan view. That is, the gate block side gate 42 is arranged at the center of the protrusion 46. Further, the front end surface of the protrusion 46 is a plane parallel to the bottom surface of the recess 36. The peripheral surface of the protrusion 46 is a tapered surface that expands downward. The peripheral surface of the protrusion 46 is a contact surface that contacts the peripheral surface of the recess 36.
 そして、突部46の高さHは、凹部36の深さDよりも小さく設定されている。これにより、ゲートブロック40Aの上面に対して冷却ブロック30Aが重なって凹部36と突部46とが嵌合すると、ゲートブロック40Aと冷却ブロック30Aとの間に隙間45aが形成される。隙間45aの厚みTは、凹部36の深さDと突部46の高さHとの差分である。 The height H of the protrusion 46 is set smaller than the depth D of the recess 36. Thus, when the cooling block 30A overlaps the upper surface of the gate block 40A and the recess 36 and the protrusion 46 are fitted, a gap 45a is formed between the gate block 40A and the cooling block 30A. The thickness T of the gap 45 a is the difference between the depth D of the recess 36 and the height H of the protrusion 46.
 このように、ゲートブロック40Aと、冷却ブロック30Aとが、隙間45aを介したインロー構造(突部46、凹部36)によって嵌合しているので、突部46と凹部36との接触面積を調整することで、ゲートブロック40Aから冷却ブロック30Aへの伝熱量を制御することができる。 Thus, since the gate block 40A and the cooling block 30A are fitted by the inlay structure (projection 46, recess 36) via the gap 45a, the contact area between the projection 46 and the recess 36 is adjusted. Thus, the amount of heat transfer from the gate block 40A to the cooling block 30A can be controlled.
 また、突部46にゲートブロック側ゲート42が配置され、凹部36に第二スプルー31が配置されているので、突部46と凹部36とを嵌合させることで、ゲートブロック側ゲート42と、第二スプルー31との位置ズレを防止することができる。 In addition, since the gate block side gate 42 is disposed in the protrusion 46 and the second sprue 31 is disposed in the recess 36, the gate block side gate 42 is obtained by fitting the protrusion 46 and the recess 36. A positional shift with the second sprue 31 can be prevented.
 なお、本変形例1でのインロー構造では、ゲートブロック40Aが突部46を有し、冷却ブロック30Aが凹部36を有している場合を例示したが、この関係性が逆であってもよい。 In the inlay structure in the first modification, the gate block 40A has the protrusion 46 and the cooling block 30A has the recess 36. However, this relationship may be reversed. .
 (変形例2)
 次に、本実施の形態に係る変形例2について説明する。
(Modification 2)
Next, Modification 2 according to the present embodiment will be described.
 変形例1では、ゲートブロック40Aと冷却ブロック30Aとが隙間45aを介したインロー構造によって嵌合している場合を例示したが、ゲートブロックと固定側加熱ブロックとがインロー構造によって嵌合していてもよい。 In the first modification, the case where the gate block 40A and the cooling block 30A are fitted by the inlay structure through the gap 45a is illustrated, but the gate block and the fixed-side heating block are fitted by the inlay structure. Also good.
 なお、以降の説明においては、変形例1に係るランナーレス射出成形装置10Aと同一の部分においては同一の符号を付してその説明を省略し、異なる部分についてのみ説明する。 In the following description, the same parts as those of the runnerless injection molding apparatus 10A according to the modified example 1 are denoted by the same reference numerals, the description thereof is omitted, and only different parts are described.
 図7は、変形例2に係るランナーレス射出成形装置10Bの要部構成を模式的に示す断面図である。図7に示すように、固定側加熱ブロック50Bの上面には、加熱ブロック側ゲート53の周囲を囲む平面視円形状の凹部57が形成されている。凹部57は、加熱ブロック側ゲート53に対して平面視で同心円となっている。また、凹部57の底面は、固定側加熱ブロック50Bの上面と平行な平面となっている。そして、凹部57の周面は、上方に向かって広がるテーパ面となっている。 FIG. 7 is a cross-sectional view schematically showing a main configuration of a runnerless injection molding apparatus 10B according to Modification 2. As shown in FIG. 7, a concave portion 57 having a circular shape in plan view surrounding the periphery of the heating block side gate 53 is formed on the upper surface of the fixed side heating block 50B. The recess 57 is concentric with the heating block side gate 53 in plan view. The bottom surface of the recess 57 is a plane parallel to the top surface of the fixed-side heating block 50B. And the peripheral surface of the recessed part 57 is a taper surface which spreads upwards.
 ゲートブロック40Bの下面には、固定側加熱ブロック50Bの凹部57に嵌合する平面視円形状の突部47が形成されている。つまり、固定側加熱ブロック50Bの凹部57と、ゲートブロック40Bの突部47とがインロー構造をなしている。 A protrusion 47 having a circular shape in plan view that fits into the recess 57 of the fixed-side heating block 50B is formed on the lower surface of the gate block 40B. That is, the concave portion 57 of the fixed-side heating block 50B and the protrusion 47 of the gate block 40B form an inlay structure.
 突部47は、ゲートブロック側ゲート42に対して平面視で同心円となっている。つまり、突部47の中央に、ゲートブロック側ゲート42が配置されている。また、突部47の先端面は、凹部57の底面と平行な平面となっている。そして、突部47の周面は、上方に向かって広がるテーパ面となっている。突部47の先端面及び周面は、凹部57の底面及び周面に当接する当接面である。 The protrusion 47 is concentric with the gate block side gate 42 in plan view. That is, the gate block side gate 42 is disposed in the center of the protrusion 47. Further, the front end surface of the protrusion 47 is a plane parallel to the bottom surface of the recess 57. The peripheral surface of the protrusion 47 is a tapered surface that spreads upward. The tip surface and the peripheral surface of the protrusion 47 are contact surfaces that contact the bottom surface and the peripheral surface of the recess 57.
 このように、ゲートブロック40Bと、固定側加熱ブロック50Bとが、インロー構造(突部47、凹部57)によって嵌合しているので、ゲートブロック40Bと、固定側加熱ブロック50Bとの接触面積を大きくすることができる。これにより、固定側加熱ブロック50Bからゲートブロック40Bへの伝熱量を大きくすることができる。 Thus, since the gate block 40B and the fixed-side heating block 50B are fitted by the inlay structure (protrusion 47, recess 57), the contact area between the gate block 40B and the fixed-side heating block 50B is increased. Can be bigger. Thereby, the amount of heat transfer from the fixed-side heating block 50B to the gate block 40B can be increased.
 また、突部47にゲートブロック側ゲート42が配置され、凹部57に加熱ブロック側ゲート53が配置されているので、突部47と凹部57とを嵌合させることで、ゲートブロック側ゲート42と、加熱ブロック側ゲート53との位置ズレを防止することができる。 In addition, since the gate block side gate 42 is disposed in the protrusion 47 and the heating block side gate 53 is disposed in the recess 57, the protrusion 47 and the recess 57 are fitted to each other so that the gate block side gate 42 and Therefore, it is possible to prevent the positional deviation from the heating block side gate 53.
 なお、インロー構造は、冷却ブロック30A側、固定側加熱ブロック50B側のいずれか一方もしくは両方に設けられていればよい。 The inlay structure may be provided on either or both of the cooling block 30A side and the fixed side heating block 50B side.
 (その他)
 以上、本発明に係るランナーレス射出成形装置10、10A、10Bについて、実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
As mentioned above, although the runnerless injection molding apparatus 10, 10A, 10B which concerns on this invention was demonstrated based on embodiment, this invention is not limited to said embodiment.
 その他、上記実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で上記実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the form obtained by making various modifications conceived by those skilled in the art with respect to the above-described embodiments and modifications, and the components and functions in the above-described embodiments and modifications are arbitrarily set within the scope of the present invention. Forms realized by combining them are also included in the present invention.
10、10A、10B ランナーレス射出成形装置
11 樹脂(熱硬化性樹脂)
20 金型
30、30A 冷却ブロック
31 第二スプルー(スプルーの一部)
32 冷却流路
33 冷却材
36、57 凹部(インロー構造)
40、40A、40B ゲートブロック
42 ゲートブロック側ゲート(ゲート)
45、45a 隙間
46、47 突部(インロー構造)
50、50B 固定側加熱ブロック(加熱ブロック)
51、62 熱源
10, 10A, 10B Runnerless injection molding equipment 11 Resin (thermosetting resin)
20 Mold 30, 30A Cooling block 31 Second sprue (part of sprue)
32 Cooling channel 33 Coolant 36, 57 Recess (Inlay structure)
40, 40A, 40B Gate block 42 Gate block side gate (gate)
45, 45a Clearance 46, 47 Projection (Inlay structure)
50, 50B Fixed heating block (heating block)
51, 62 Heat source

Claims (4)

  1.  熱硬化性樹脂を射出成形するためのランナーレス射出成形装置であって、
     前記熱硬化性樹脂の流路であるスプルーの一部と、前記スプルーの一部の周囲に配置され、内部に冷却材が流される冷却流路とが形成された冷却ブロックと、
     前記熱硬化性樹脂を硬化させるための熱源を有する加熱ブロックと、
     前記冷却ブロックと前記加熱ブロックとの間に配置され、温度調節されないゲートブロックとを備え、
     前記ゲートブロックはゲートを有し、
     前記ゲートブロックと、前記冷却ブロックとの間には、前記ゲートと連通する隙間が当該ゲートの周囲に形成されている
     ランナーレス射出成形装置。
    A runnerless injection molding apparatus for injection molding a thermosetting resin,
    A cooling block in which a part of a sprue that is a flow path of the thermosetting resin and a cooling flow path that is disposed around a part of the sprue and in which a coolant flows is formed;
    A heating block having a heat source for curing the thermosetting resin;
    A gate block that is disposed between the cooling block and the heating block and is not temperature-controlled;
    The gate block has a gate;
    A runnerless injection molding apparatus in which a gap communicating with the gate is formed around the gate block between the gate block and the cooling block.
  2.  前記隙間の厚みは0.01mm以上0.15mm以下である
     請求項1に記載のランナーレス射出成形装置。
    The runnerless injection molding apparatus according to claim 1, wherein a thickness of the gap is 0.01 mm or more and 0.15 mm or less.
  3.  前記ゲートブロックと、前記冷却ブロックとは、前記隙間を介したインロー構造によって嵌合している
     請求項1または2に記載のランナーレス射出成形装置。
    The runnerless injection molding apparatus according to claim 1, wherein the gate block and the cooling block are fitted by an inlay structure through the gap.
  4.  前記ゲートブロックと、前記加熱ブロックとは、インロー構造によって嵌合している
     請求項1~3のいずれか一項に記載のランナーレス射出成形装置。
    The runnerless injection molding apparatus according to any one of claims 1 to 3, wherein the gate block and the heating block are fitted by an inlay structure.
PCT/JP2017/028515 2016-09-05 2017-08-07 Runnerless injection molding device WO2018043037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018537071A JP6624477B2 (en) 2016-09-05 2017-08-07 Runnerless injection molding equipment
CN201780053660.8A CN109641378B (en) 2016-09-05 2017-08-07 Injection molding device without runner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-173198 2016-09-05
JP2016173198 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018043037A1 true WO2018043037A1 (en) 2018-03-08

Family

ID=61300597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028515 WO2018043037A1 (en) 2016-09-05 2017-08-07 Runnerless injection molding device

Country Status (3)

Country Link
JP (1) JP6624477B2 (en)
CN (1) CN109641378B (en)
WO (1) WO2018043037A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143019U (en) * 1984-08-11 1986-03-20 エヌオーケー株式会社 Molding equipment
JPS62278010A (en) * 1986-03-21 1987-12-02 インテリテク コ−ポレイシヨン Thermal gate for plastic molding process
JPH06106557A (en) * 1992-09-24 1994-04-19 Matsushita Electric Works Ltd Molding device for thermosetting resin molding material
JPH06339954A (en) * 1993-06-02 1994-12-13 Sumitomo Bakelite Co Ltd Runnerless mold
JP2000326361A (en) * 1999-05-20 2000-11-28 Matsushita Electric Ind Co Ltd Injection mold
JP2004058647A (en) * 2002-06-04 2004-02-26 Seiki Corp Thermosetting resin and runnerless molding method for rubber, etc

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198186A (en) * 1998-01-19 1999-07-27 Meiki Co Ltd Mold for optical disc molding
AU2002343946A1 (en) * 2002-06-04 2003-12-19 Seiki Corporation Device and method for runner-less molding of thermosetting resin and rubber
CN1795084A (en) * 2003-05-22 2006-06-28 住友重机械工业株式会社 Molding method, mold for molding, molded product, and molding machine
KR100761529B1 (en) * 2006-03-28 2007-10-04 김관표 Injection molding apparatus
CN102069559A (en) * 2009-11-25 2011-05-25 牟维军 Runner-free mold of thermosetting plastic point gate
CN103722693A (en) * 2013-12-19 2014-04-16 浙江大安模塑科技有限公司 Die for injection molding of thermosetting material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143019U (en) * 1984-08-11 1986-03-20 エヌオーケー株式会社 Molding equipment
JPS62278010A (en) * 1986-03-21 1987-12-02 インテリテク コ−ポレイシヨン Thermal gate for plastic molding process
JPH06106557A (en) * 1992-09-24 1994-04-19 Matsushita Electric Works Ltd Molding device for thermosetting resin molding material
JPH06339954A (en) * 1993-06-02 1994-12-13 Sumitomo Bakelite Co Ltd Runnerless mold
JP2000326361A (en) * 1999-05-20 2000-11-28 Matsushita Electric Ind Co Ltd Injection mold
JP2004058647A (en) * 2002-06-04 2004-02-26 Seiki Corp Thermosetting resin and runnerless molding method for rubber, etc

Also Published As

Publication number Publication date
JP6624477B2 (en) 2019-12-25
JPWO2018043037A1 (en) 2019-03-28
CN109641378A (en) 2019-04-16
CN109641378B (en) 2021-02-26

Similar Documents

Publication Publication Date Title
US20050230849A1 (en) Injection molding device with outside air inlet part
KR101558056B1 (en) Mold device for forming lens
JP5580666B2 (en) Hard liquid resin molding die and hard liquid resin molding method
JPH11129289A (en) Mold for injection molding of thermosetting resin
WO2018043037A1 (en) Runnerless injection molding device
JP5941946B2 (en) Injection mold and injection molding method
WO2018139664A1 (en) Injection moulding method and injection moulding device
JP2010094937A (en) Side valve gate type hot runner system
US20170282427A1 (en) Method of multi-cavity injection molding and mold
KR20090115105A (en) Injection molding die and injection molding method using bmc
WO2018043038A1 (en) Cooling block and runnerless injection molding device
US20200353535A1 (en) Mold
KR100787735B1 (en) Insert molding method and die for insert molding
JP2020116838A (en) Mold for in-mold coating and in-mold coating method
JP6304487B2 (en) Mold and injection molding method
US20220305705A1 (en) Injection molding die
KR102293720B1 (en) The injection mold structure for cold runner
KR20080107879A (en) Injection molding apparatus
JP4129840B2 (en) Injection mold
JP2017105001A (en) Method for manufacturing injection molding, system for manufacturing injection molding, and molding die
JP2017013262A (en) Synthetic resin foam molding tool, production method of synthetic resin foam molding using molding tool, and synthetic resin foam molding molded by production method
JP2002530222A (en) Mold temperature control method for injection molding
JP2012131178A (en) Mold for molding thermosetting resin
Košík et al. Reduction of Injection Moulded Plastic Part Warpage Using Advanced Gas Assisted Injection Moulding
JP6146910B2 (en) Injection molding method and injection molding apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846046

Country of ref document: EP

Kind code of ref document: A1