WO2018036496A1 - 一种基于气液组合弹簧的阀门执行器 - Google Patents

一种基于气液组合弹簧的阀门执行器 Download PDF

Info

Publication number
WO2018036496A1
WO2018036496A1 PCT/CN2017/098571 CN2017098571W WO2018036496A1 WO 2018036496 A1 WO2018036496 A1 WO 2018036496A1 CN 2017098571 W CN2017098571 W CN 2017098571W WO 2018036496 A1 WO2018036496 A1 WO 2018036496A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
gas
cylinder
piston rod
piston
Prior art date
Application number
PCT/CN2017/098571
Other languages
English (en)
French (fr)
Inventor
王正权
Original Assignee
成都迈可森流体控制设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都迈可森流体控制设备有限公司 filed Critical 成都迈可森流体控制设备有限公司
Publication of WO2018036496A1 publication Critical patent/WO2018036496A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/124Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston servo actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given

Definitions

  • the invention relates to the field of valve actuators, and in particular to a valve actuator based on a gas-liquid combined spring.
  • the valve actuator is a drive mechanism for opening or closing the valve.
  • the structure generally includes a power actuator, an execution box, and a spring cylinder.
  • the single-acting actuator can automatically reset and drive the valve to a pre-designed fail-safe position, thereby minimizing the potential hazard of the entire device.
  • Single-acting actuators typically use energy stored in a compressed metal spring, UPS emergency power source, or accumulator tank, and other pre-stored energy such as a weight to act as actuator drive. Among them, the compressed metal spring is the most used actuator drive.
  • Actuator spring cylinders are mechanical components that work with the elasticity of a compression spring.
  • the spring is a part made of an elastic material, which is deformed by an external force, and is restored to its original state after the external force is removed.
  • Springs are generally made of spring steel.
  • Actuator spring cylinders that drive large-size valves have always been a problem: heavy weight, large size, space, and waste of resources.
  • the spring According to the working characteristics of the single-acting spring actuator, the spring is in a compressed state for a long time, which is easy to compress and deform, and spring fatigue occurs. The spring loses its original elasticity and reduces the reliability of the action in an emergency.
  • the force of the spring required by the actuator cannot be accurately quantified, and the time and speed at which the valve is driven cannot be finely controlled. Once the spring is shaped, the output force is determined, and the spring force cannot be adjusted, and it is less likely to increase.
  • the spring is easily deformed and produces abnormal noise, which causes an unsafe psychological burden; when the actuator spring breaks, Something happened.
  • the spring output must have a considerable amount of force to drive the valve. Therefore, the conventional metal spring cylinder needs special tooling compression assembly, assembly efficiency and assembly risk when assembled to the actuator.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a valve actuator based on a gas-liquid combined spring, which solves the problem that the conventional valve actuator adopts a traditional spring cylinder with heavy mass, large volume, space occupation, and fatigue failure. Installation troubles and other issues.
  • a valve actuator based on a gas-liquid combined spring comprising an actuator and a power cylinder, the power cylinder being mounted on one side of the actuator, and the other side of the actuator being provided with a gas-liquid combined spring cylinder, the gas
  • the liquid combination spring cylinder includes a spring cylinder, a spring piston and a spring piston rod, the spring piston rod is disposed in the spring cylinder, and the spring piston is fixedly disposed on the spring piston rod, and the spring cylinder is provided with gas and liquid a combined spring device
  • the gas-liquid combined spring device includes a pressure vessel can, the upper end of the pressure vessel can is provided with a gas inlet, and the upper and lower portions of the pressure vessel are respectively a compressed gas chamber and a hydraulic oil chamber,
  • the compressed gas chamber is filled with a compressed gas
  • the hydraulic oil chamber is filled with hydraulic oil
  • the lower end of the pressure vessel can be provided with a hydraulic oil outlet.
  • the power cylinder adopts a hydraulic cylinder or a pneumatic cylinder.
  • a spring is disposed on the spring piston rod at the rear end of the spring piston.
  • a spring piston that is linked with the spring piston rod is disposed at the front end of the spring in the spring cylinder, and a "gas-liquid combined spring device" is added to the spring cylinder, and a "gas-liquid combined spring” is added.
  • the device can greatly reduce the installation size of the original spring cylinder, and the original spring is used as the main elastic force, and by the improvement, the existing spring is only used as an auxiliary function.
  • the power cylinder includes a cylinder, a piston and a piston rod, and a cylinder of the power cylinder is mounted on a casing of the actuator, and a piston rod of the power cylinder is linked with a fork of the actuator, and the power is
  • the piston rod of the cylinder is coaxially connected with the spring piston rod of the gas-liquid combination spring cylinder.
  • the hydraulic oil outlet of the gas-liquid combined spring device communicates with the spring cylinder of the rear end of the spring piston through the oil pipe.
  • the piston of the power cylinder moves the piston rod forward, and the piston rod moves the fork to open the valve.
  • the gas-liquid combined spring device is compressed, and when the power cylinder is deflated, the piston pulls down the piston rod in cooperation with the gas-liquid combined spring device and the power cylinder, and the piston rod drives the fork to reversely close the valve.
  • the hydraulic oil outlet of the gas-liquid combined spring device passes through the oil pipe and the spring cylinder at the rear end of the spring piston
  • the piston of the power cylinder pushes the piston rod forward, and the piston rod pushes the fork to open the valve.
  • the gas-liquid combined spring device and the spring are compressed, and when the power cylinder is deflated, the piston is in gas.
  • the liquid combination spring device, the spring and the power cylinder act together to pull down the piston rod to retract, and the piston rod drives the fork to reversely move the valve to close.
  • the upper end of the pressure vessel can is also provided with a pressure gauge for monitoring the internal pressure thereof in real time.
  • an oil filtering device is disposed at the hydraulic oil outlet in the pressure vessel tank for filtering impurities in the hydraulic oil.
  • the oil pipe is provided with a flow regulating valve, and the flow rate regulating valve adjusts the flow rate of the hydraulic oil, thereby controlling the speed of the pressure release, and ensuring that the movement process and the moving speed of the soft spring are precisely controllable.
  • oil pipe is further provided with a shut-off valve for closing or opening the gas-liquid combined spring device at any time.
  • the present invention has the following advantages and beneficial effects:
  • the high-pressure gas has the advantages of small volume, light weight, easy compression, fatigue, reusability, rapid response, and convenient charging.
  • the device is used as an output control device instead of a spring, which can reduce the use of a series of metal materials such as spring steel.
  • the gas-liquid combined spring device adopts hydraulic oil as the transmission medium, which has large rigidity, small elasticity, is not easy to be compressed, and has smooth transmission, can realize stepless speed regulation, self-lubricating and no rust.
  • a spring piston connected with the spring piston rod is arranged at the front end of the spring inside the spring cylinder, and a "gas-liquid combined spring device" is added on the spring cylinder, by adding "gas liquid”
  • the combined spring device can greatly reduce the installation size of the original spring cylinder, and the original spring is used as the main elastic force, and by the improvement, the existing spring is only used as an auxiliary function.
  • Figure 1 is a schematic structural view of a conventional valve actuator
  • FIG. 2 is a schematic structural view of a valve actuator using a pneumatic cylinder according to the present invention
  • FIG. 3 is a schematic structural view of a valve actuator with a pneumatic cylinder with a spring according to the present invention
  • FIG. 4 is a schematic structural view of a valve actuator using a hydraulic cylinder according to the present invention.
  • Figure 5 is a schematic view showing the structure of a valve actuator using a hydraulic cylinder with a spring
  • the actuator 1 of the gas-liquid combination spring cylinder 3 is disposed in the front direction of the gas-liquid combination spring cylinder 3, in the direction of the rear of the gas-liquid combination spring cylinder 3;
  • the actuator 1 of the cylinder 2 is disposed in the front direction of the power cylinder 2 in the direction of the rear of the power cylinder 2.
  • a valve actuator based on a gas-liquid combined spring comprising an actuator 1 and a power cylinder 2
  • the power cylinder 2 adopts a pneumatic cylinder
  • the pneumatic cylinder is mounted on the side of the actuator 1
  • the pneumatic cylinder and the actuator
  • the installation and connection method of the first embodiment is the same as that of the prior art, and the structure of the actuator 1 also adopts the existing structure.
  • the other side of the actuator 1 is provided with a gas-liquid combination spring cylinder 3, and the gas-liquid combination spring cylinder 3 includes a spring cylinder body 4,
  • the spring piston 5 and the spring piston rod 6 are disposed in the spring cylinder 4, and the spring piston 5 is fixedly disposed on the spring piston rod 6.
  • the spring cylinder 4 is provided with a gas-liquid combined spring device 7, a gas-liquid combination
  • the spring device 7 includes a pressure vessel tank 8.
  • the upper end of the pressure vessel tank 8 is provided with a gas inlet port 9.
  • the upper and lower portions of the pressure vessel tank 8 are respectively a compressed gas chamber 10 and a hydraulic oil chamber 11, and the compressed gas chamber 10 is filled with compressed gas.
  • the hydraulic oil chamber 11 is filled with hydraulic oil, and the lower end of the pressure vessel tank 8 is provided with a hydraulic oil outlet 12.
  • the pneumatic cylinder comprises a cylinder 14, a piston 15 and a piston rod 16.
  • the pneumatic cylinder is also of the prior art.
  • the cylinder 14 of the pneumatic cylinder is mounted on the casing 16 of the actuator 1, the piston rod 15 of the pneumatic cylinder and the actuator 1
  • the fork 17 is interlocked, and the piston rod 16 of the pneumatic cylinder is coaxially connected with the spring piston rod 6 of the gas-liquid combination spring cylinder 3.
  • the hydraulic oil outlet 12 of the gas-liquid combined spring device 7 communicates with the spring cylinder 4 at the rear end of the spring piston 5 through the oil pipe 19.
  • the piston 15 of the pneumatic cylinder pushes the piston rod 16 forward, and the piston rod 16 pushes the dial.
  • the fork 17 opens the valve, and at the same time, the gas-liquid combined spring device 7 is compressed, and when the pneumatic cylinder is deflated, the piston 15 is in the gas-liquid combined spring device. 7 and the pneumatic cylinder cooperate to pull down the piston rod 16 to retract, and the piston rod 16 drives the shift fork 17 to reversely move the valve.
  • the upper end of the pressure vessel tank 8 is also provided with a pressure gauge 18 for real-time monitoring of the internal pressure thereof.
  • the pressure gauge 18 can conveniently indicate the magnitude of the gas pressure and accurately display the value of the soft spring to accurately control the required force.
  • pressure transmitters or pressure sensors can also be used to achieve the same quantitative pressure.
  • An oil filtering device 20 is provided at the hydraulic oil outlet 12 in the pressure vessel tank 8 for filtering impurities in the hydraulic oil.
  • the oil pipe 19 is provided with a flow regulating valve 21 for controlling the elastic strength of the gas-liquid combined spring device 7.
  • the oil pipe 19 is also provided with a shut-off valve 22 for closing or opening the gas-liquid combined spring device 7 at any time.
  • the structural principle of the gas-liquid combined spring device 7 is that the oil-gas spring is filled with compressed gas and oil in a closed container, and the device that uses the compressibility of the gas to realize the spring is called a gas spring.
  • the oil and gas spring uses inert gas (nitrogen) as the elastic medium and oil as the force transmitting medium, which is generally composed of a gas spring and a hydraulic cylinder equivalent to a hydraulic damper.
  • the oil and gas spring is divided into a single air chamber, a double air chamber and a two-stage pressure type.
  • Single-chamber oil and gas springs are divided into two types: oil-gas separation and oil-gas separation.
  • the invention adopts oil and gas non-separating type.
  • the utility model relates to a working principle and an action relationship of a valve actuator based on a gas-liquid combined spring.
  • the pressure vessel tank 8 is a main energy storage device and is a main body for compressing gas storage; the bottom end hydraulic oil is a closed insulating medium for high pressure gas, The transmission medium for the release of power gas energy during operation and energy conversion; the working power of the system energy is derived from the high-pressure compressible gas in the head space of the hydraulic oil in the closed container.
  • the storage (pre-inflated) is used as the power in the high-pressure sealed compressed gas of the pressure vessel tank 8, and the pressure vessel tank 8 and the hydraulic oil at the lower end are used as the isolation, and the liquid oil is used as the transmission medium to smoothly and safely convert the energy stored in the high-pressure compressed gas. Released for energy.
  • the closed gas pressure is automatically pressurized to store energy for reuse.
  • the output energy can be easily adjusted by the pressure of the high-pressure gas filling.
  • the filling valve can easily realize the charging and discharging of the high-pressure compressed gas in the closed space, and adjust the gas pressure to adjust the strength of the soft spring.
  • the output stroke and output thrust can be conveniently adjusted by comprehensively adjusting the pressure or volume of the compressed gas and the amount of hydraulic oil.
  • the output force direction is unrestricted and the output actuators are usually piston type and can be connected to the output actuator via a high pressure hose.
  • valve actuator based on gas-liquid combined spring combines the advantages of gas and liquid, fully utilizes the characteristics of compressed gas and transmission medium liquid, and uses gas compressed high pressure gas as elastic element according to gas compressibility characteristics. Work on external expansion. Using the hydraulic system liquid isobaric transfer principle, the pressure of the compressed gas source is passed through the liquid as a transmission The equal-pressure output of the moving medium is transmitted to the actuator.
  • the compressed gas volume of the gas-liquid soft spring tank can be controlled and pressure (remote/in-place) can be monitored and read.
  • the high pressure compressed gas has a constant pressure, high repeatability, and is not prone to failure and accidents. Therefore, the output torque of the actuator can be kept constant for a long time, and the purpose of accurately controlling the output thrust (torque) and the action time required by the actuator can be achieved.
  • the hydraulic system speed control valve can be used to adjust the size, output flow and speed.
  • vibration and pulsation can be effectively absorbed, the turbulence of the valve movement process can be avoided, and the action of the actuator-driven valve can be achieved smoothly. This is evident in the high torque valve actuators required for high-grade, large-diameter valves.
  • the high-pressure gas has the advantages of small volume, light weight, easy compression, fatigue, reusability, rapid response, and convenient charging by using a controllable compressed gas instead of a conventional metal spring.
  • a controllable compressed gas instead of a conventional metal spring.
  • the device In the oil and gas storage and transportation, oil and gas, chemical, metallurgical and other widely used single-acting actuator valves and other industrial fields, the device is used as an output control device instead of a spring, which can reduce the use of a series of metal materials such as spring steel.
  • a gas-liquid combined spring-based valve actuator is provided with a spring 13 on the spring piston rod 6 at the rear end of the spring piston 5 on the basis of the first embodiment.
  • the piston 15 of the pneumatic cylinder pushes the piston rod 16 forward, and the piston rod 16 pushes the shift fork 17 to open the valve.
  • the gas-liquid combined spring device 7 and the spring 13 are compressed, and when the pneumatic cylinder is deflated, The piston 15 retracts the piston rod 16 in cooperation with the gas-liquid combined spring device 7, the spring 13 and the pneumatic cylinder, and the piston rod 16 drives the shift fork 17 to reversely move the valve.
  • a spring piston that is linked with the spring piston rod is disposed at the front end of the spring in the spring cylinder, and a "gas-liquid combined spring device" is added to the spring cylinder, and a "gas-liquid combined spring” is added.
  • the device can greatly reduce the installation size of the original spring cylinder, and the original spring is used as the main elastic force, and by the improvement, the existing spring is only used as an auxiliary function.
  • a gas-liquid combined spring-based valve actuator based on the first embodiment, the power cylinder 2 uses a hydraulic cylinder.
  • the piston 15 of the hydraulic cylinder pushes the piston rod 16 forward. Movement, the piston rod 16 pushes the shift fork 17 to open the valve, and at the same time, the gas-liquid combined spring device 7 and the spring 13 are compressed, and when the hydraulic cylinder is drained, the piston 15 is in common with the gas-liquid combined spring device 7, the spring 13 and the hydraulic cylinder
  • the piston rod 16 is pulled down by the action, and the piston rod 16 drives the shift fork 17 to reversely move the valve.
  • a valve actuator based on a gas-liquid combined spring on the basis of the first embodiment, the power cylinder 2 employs a hydraulic cylinder, and the spring piston rod 6 at the rear end of the spring piston 5 is provided with a spring 13.
  • the hydraulic cylinder When the hydraulic cylinder is oiled, the piston 15 of the hydraulic cylinder pushes the piston rod 16 forward, and the piston rod 16 pushes the fork 17 to open the valve.
  • the gas-liquid combined spring device 7 and the spring 13 are compressed, and the hydraulic cylinder is drained.
  • the piston 15 is pulled back by the gas-liquid combined spring device 7, the spring 13 and the hydraulic cylinder to pull down the piston rod 16, and the piston rod 16 drives the shift fork 17 to reversely move the valve.
  • a spring piston that is linked with the spring piston rod is disposed at the front end of the spring in the spring cylinder, and a "gas-liquid combined spring device" is added to the spring cylinder, and a "gas-liquid combined spring” is added.
  • the device can greatly reduce the installation size of the original spring cylinder, and the original spring is used as the main elastic force, and by the improvement, the existing spring is only used as an auxiliary function.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

公开了一种基于气液组合弹簧的阀门执行器,包括执行器(1)和动力缸(2),所述动力缸(2)安装在执行器(1)一侧上,所述执行器(1)另一侧上设置有气液组合弹簧缸(3),所述气液组合弹簧缸(3)包括弹簧缸体(4)、弹簧活塞(5)和弹簧活塞杆(6),所述弹簧活塞杆(6)设置在弹簧缸体(4)内,所述弹簧活塞(5)固定设置在弹簧活塞杆(6)上,所述弹簧缸体(4)上设置有气液组合弹簧装置(7),所述气液组合弹簧装置(7)包括压力容器罐(8),所述压力容器罐(8)上端设置有气体输入口(9),所述压力容器罐(8)内的上部和下部分别为压缩气体腔(10)和液压油腔(11),所述压缩气体腔(10)内填充压缩气体,所述液压油腔(11)内填充有液压油,所述压力容器罐(8)下端设有液压油出口(12)。

Description

一种基于气液组合弹簧的阀门执行器 技术领域
本发明涉及一种阀门执行器领域,具体涉及一种基于气液组合弹簧的阀门执行器。
背景技术
阀门执行器是实现阀门开启或者关闭的驱动机构,其结构一般包括动力执行件、执行箱体,和弹簧缸体,一般在紧急情况下的工况使用工艺和管道应用系统中,在出现紧急情况的时候,同时控制系统又失去电源、或者气源时,单作用执行机构能自动复位,驱动阀门到预先设计的故障安全位置,从而把整个装置潜在危险降到最低。单作用执行器通常是用压缩的金属弹簧储存的能量、UPS应急电源、或者储能器罐、还有重锤等其他预先储存的能量来作为执行器驱动的动力。其中压缩的金属弹簧是使用最多的一种执行器驱动方式。
执行器弹簧缸是一种利用压缩弹簧的弹性来工作的机械组件。弹簧是用弹性材料制成的零件,在外力作用下发生形变,除去外力后又恢复原状。弹簧一般用弹簧钢制成。随着系统整体安全等级的提高和执行器整体安全水平的不断提升,用作阀门执行器的弹簧要求也必须有足够的机械寿命、疲劳强度和重复使用寿命,更不能够发生弹簧断裂的严重事故。
然而在实际应用中的情况是,管线阀门愈来愈多使用大口径、高磅级大扭矩,在异常情况下打开或者关闭这些紧急切断阀,我们采用传统弹簧作为配套需要的阀门执行器越来越不适应:重量重、体积大、占用空间、弹簧长期处于受压状态,刚度减小、弹力降低、容易疲劳失效、弹簧变形、运动异响、甚至发生弹簧折断的严重事故。现场更换困难、制造过程中消耗能源。
采用传统弹簧缸作为配套需要的阀门执行器(如图1所示)主要存在以下缺陷:
1.驱动大尺寸阀门的执行器弹簧缸一直是一个难题:质量重、体积大、占用空间、浪费资源。
2.根据单作用弹簧执行器的工作特点,弹簧长期处于压缩状态,容易压缩变形,出现弹簧疲劳,弹簧失去原有的弹性,降低紧急情况下动作的可靠性。
3.正常使用过程中随着使用时间推移和动作频度的增加,簧会疲劳失效,推力逐步减小或者降低。执行器动作可靠性和富裕安全系数在不断降低。
4.执行器需要的弹簧的力量无法进行精确量化处理,驱动阀门的时间和速度不可以精细控制。弹簧一旦成形输出力就确定了,弹簧力不可能调整,更不可能增加。
5.弹簧容易变形和产生异响,给人造成不安全的心理负担;执行器弹簧断裂也是时 有发生。
6.由于单作用执行器的工作特点,弹簧输出到底时还必须有相当量的力驱动阀门,因此传统金属弹簧缸装配到执行器上面的时候需要专用工装压缩装配、装配效率、装配风险大。
7.弹簧缸组件一旦需要在现场进行更换和维修就变得十分的不可能或者非常难。
发明内容
本发明的目的即在于克服现有技术的不足,提供一种基于气液组合弹簧的阀门执行器,解决现有阀门执行器的采用传统弹簧缸质量重、体积大、占用空间、容易疲劳失效、安装麻烦等问题。
本发明的通过下述技术方案实现:
一种基于气液组合弹簧的阀门执行器,包括执行器和动力缸,所述动力缸安装在执行器一侧上,所述执行器另一侧上设置有气液组合弹簧缸,所述气液组合弹簧缸包括弹簧缸体、弹簧活塞和弹簧活塞杆,所述弹簧活塞杆设置在弹簧缸体内,所述弹簧活塞固定设置在弹簧活塞杆上,所述弹簧缸体上设置有气液组合弹簧装置,所述气液组合弹簧装置包括压力容器罐,所述压力容器罐上端设置有气体输入口,所述压力容器罐内的上部和下部分别为压缩气体腔和液压油腔,所述压缩气体腔内填充压缩气体,所述液压油腔内填充有液压油,所述压力容器罐下端设有液压油出口。
进一步的,所述动力缸采用液压油缸或气动缸。
进一步的,所述弹簧活塞后端的弹簧活塞杆上设置有弹簧。在原有弹簧缸的基础上,将弹簧缸内的弹簧前端设置一个与弹簧活塞杆联动的弹簧活塞,同时,在弹簧缸上加设“气液组合弹簧装置”,通过加设“气液组合弹簧装置”可以大大减小原有弹簧缸的安装尺寸,原有设置的弹簧起主要弹力,而通过改进,现有设置的弹簧只是起到辅助作用。
进一步的,所述动力缸包括缸体、活塞和活塞杆,所述动力缸的缸体安装在执行器的箱体上,所述动力缸的活塞杆与执行器的拨叉联动,所述动力缸的活塞杆与气液组合弹簧缸的弹簧活塞杆同轴连接。
进一步的所述气液组合弹簧装置的液压油出口通过油管与弹簧活塞后端的弹簧缸体连通,动力缸进气时,动力缸的活塞动活塞杆向前运动,活塞杆动拨叉打开阀门,同时,所述气液组合弹簧装置被压缩,动力缸泄气时,活塞在气液组合弹簧装置和动力缸共同作用下拉动活塞杆回缩,活塞杆带动拨叉反向活动关闭阀门。
进一步的,所述气液组合弹簧装置的液压油出口通过油管与弹簧活塞后端的弹簧缸 体连通,动力缸进气时,动力缸的活塞推动活塞杆向前运动,活塞杆推动拨叉打开阀门,同时,所述气液组合弹簧装置和弹簧被压缩,动力缸泄气时,活塞在气液组合弹簧装置、弹簧和动力缸共同作用下拉动活塞杆回缩,活塞杆带动拨叉反向活动关闭阀门。
进一步的,所述压力容器罐上端还设置有实时监测其内部压力的压力表。
进一步的,所述压力容器罐内的液压油出口处设置有油液过滤装置,用于过滤液压油内的杂质。
进一步的,所述油管上设置有流量调节阀,通过流量调节阀调节液压油的流量,从而控制压力释放的速度,确保软弹簧的运动过程和动作速度精确可控。
进一步的,所述油管上还设置有关断阀用于随时关闭或开启气液组合弹簧装置。
本发明与现有技术相比,具有如下的优点和有益效果:
1、将同样功能的“气液组合弹簧装置”来替代传统单作用阀门执行器用的金属弹簧或者金属弹簧缸。“气液组合弹簧装置”无论是结构设计、制造工艺、制造成本、安装工作难度、执行器驱动阀门应用效率、现场更换和故障维修都得到极大的改善。
利用气液组合弹簧装置与替代传统的金属弹簧普通的金属弹簧比较,高压气体具有体积小、重量轻、容易压缩、不易疲劳、可重复使用、响应迅速、充压方便。
无论现场在工厂安装还是现场替换更换过程中,都无任何意外,安全性比传统弹簧更加可靠、使用安全、安装方便、更换容易。
节能环保、无污染、无干扰、无噪音等诸多无可比拟的优点。在油气储运、石油天然气、化工、冶金等广泛采用单作用执行器的阀门和其它工业领域,该装置用来替代弹簧作为输出控制装置使用,可以减少弹簧钢等系列金属材料的使用。
气液组合弹簧装置采用液压油作为传动介质具有刚性大、弹性小、不易压缩、传动平缓、可实现无极调速、自带润滑、无锈蚀。
2、在原有弹簧缸的基础上,将弹簧缸内的弹簧前端设置一个与弹簧活塞杆联动的弹簧活塞,同时,在弹簧缸上加设“气液组合弹簧装置”,通过加设“气液组合弹簧装置”可以大大减小原有弹簧缸的安装尺寸,原有设置的弹簧起主要弹力,而通过改进,现有设置的弹簧只是起到辅助作用。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为现有阀门执行器的结构示意图;
图2为本发明采用气动缸的阀门执行器结构示意图;
图3为本发明带有弹簧采用气动缸的阀门执行器结构示意图;
图4为本发明采用液动油缸的阀门执行器结构示意图;
图5为本发明带有弹簧采用液动油缸的阀门执行器结构示意图;
附图中标记及相应的零部件名称:
1-执行器,2-动力缸,3-气液组合弹簧缸,4-弹簧缸体,5-弹簧活塞,6-弹簧活塞杆,7-气液组合弹簧装置,8-压力容器罐,9-气体输入口,10-压缩气体腔,11-液压油腔,12-液压油出口,13-弹簧,14-缸体,15-活塞,16-活塞杆,17-拨叉,18-压力表,19-油管,20-油液过滤装置,21-流量调节阀,22-关断阀。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定,需说明的是在本申请描述中,气液组合弹簧缸3的执行器1设置的方向为气液组合弹簧缸3前方,方向,为气液组合弹簧缸3后方;动力缸2的执行器1设置的方向为动力缸2前方,方向,为动力缸2后方。
实施例1
如图2所示,一种基于气液组合弹簧的阀门执行器,包括执行器1和动力缸2,动力缸2采用气动缸,气动缸安装在执行器1一侧上,气动缸与执行器1的安装连接方式和现有技术相同,执行器1的结构也采用现有结构,执行器1另一侧上设置有气液组合弹簧缸3,气液组合弹簧缸3包括弹簧缸体4、弹簧活塞5和弹簧活塞杆6,弹簧活塞杆6设置在弹簧缸体4内,弹簧活塞5固定设置在弹簧活塞杆6上,弹簧缸体4上设置有气液组合弹簧装置7,气液组合弹簧装置7包括压力容器罐8,压力容器罐8上端设置有气体输入口9,压力容器罐8内的上部和下部分别为压缩气体腔10和液压油腔11,压缩气体腔10内填充压缩气体,液压油腔11内填充有液压油,压力容器罐8下端设有液压油出口12。
气动缸包括缸体14、活塞15和活塞杆16,气动缸也是采用现有结构,气动缸的缸体14安装在执行器1的箱体16上,气动缸的活塞杆15与执行器1的拨叉17联动,气动缸的活塞杆16与气液组合弹簧缸3的弹簧活塞杆6同轴连接。
气液组合弹簧装置7的液压油出口12通过油管19与弹簧活塞5后端的弹簧缸体4连通,气动缸进气时,气动缸的活塞15推动活塞杆16向前运动,活塞杆16推动拨叉17打开阀门,同时,气液组合弹簧装置7被压缩,气动缸泄气时,活塞15在气液组合弹簧装置 7和气动缸共同作用下拉动活塞杆16回缩,活塞杆16带动拨叉17反向活动关闭阀门。
压力容器罐8上端还设置有实时监测其内部压力的压力表18,压力表18可以方便的指示气体压力的大小、把软弹簧的数值准确地进行数字化显示,从而精确地控制所需要力量的大小,当然也可以用压力变送器或者压力传感器来达到同样的量化压力。压力容器罐8内的液压油出口12处设置有油液过滤装置20,用于过滤液压油内的杂质。油管19上设置有流量调节阀21控制气液组合弹簧装置7的弹性强度。油管19上还设置有关断阀22用于随时关闭或开启气液组合弹簧装置7。
气液组合弹簧装置7的结构原理:油气弹簧在密闭的容器中充入压缩气体和油液,利用气体的可压缩性实现弹簧作用的装置称油气弹簧。油气弹簧以惰性气体(氮气)作为弹性介质,用油液作为传力介质,一般是由气体弹簧和相当于液力减振器的液压缸所组成的。
特点:由于氮气等压缩气体贮存在密闭的球形气室内,其压力随外载荷的大小而变化,故油气弹簧具有变刚度的特性,同时又起液力减振器的作用。
类型:根据结构的不同,油气弹簧分为单气室、双气室以及两级压力式。单气室油气弹簧又分为油气分隔式和油气不分隔式两种。本发明采用的是油气不分隔式。
本发明一种基于气液组合弹簧的阀门执行器工作原理及动作关系,压力容器罐8是主要的储能装置,是压缩气体储存的主体;底端液压油既是高压气体的密闭隔绝介质、也是工作期间动力气体能量释放、实现能量转换的传动介质;系统能量的工作动力源自于密闭容器内液压油顶端空间的高压可压缩气体。
利用储存(预先充气)在压力容器罐8的高压密闭压缩气体作为动力,利用压力容器罐8和下端的液压油作为隔离,利用液体油作为传动介质把高压压缩气体储存的能量平稳、安全的转化为能量释放出来。当液压油沿返回压力罐时,密闭气体压力又自动增压储能,以备再次使用。
输出能量的大小可通过高压充入气体的压力方便的调节,通过充气阀门可轻松的实现密闭空间高压压缩气体的充放,调节气体压力的大小,从而调节软弹簧的力量。
可通过综合调整压缩气体的压力或者体积、以及液压油的多少来方便的调节输出行程及输出推力。输出力方向不受限制,输出执行元件通常是活塞类,可以通过高压软管和输出执行元件相连。
本发明一种基于气液组合弹簧的阀门执行器,结合气体与液体的优势,充分利用压缩气体和传动介质液体的特点,根据气体的可压缩性特点,把气体压缩后的高压气体作为弹性元件对外膨胀做功。利用液压系统液体等压传递原理,把压缩气源的压力通过液体作为传 动介质等压输出传递到执行元件。
气液软弹簧罐的压缩气体体积可控制、压力(远程/就地)可监测、读取。高压压缩气体压力恒定、重复性高、不易失效和意外发生。从而执行器输出扭矩可以长时间持续恒定、达到精确控制执行器需要的输出推力(扭矩)、动作时间的目的。
利用液压系统调速阀调节大小、输出流量和动作速度可控制。气动液压软弹簧传动过程中,可以有效吸收震动和脉动,避免阀门运动过程的窜动、实现执行器驱动阀门动作的平缓。在高磅级、大口径阀门所需要的大扭矩阀门执行器中体现更加明显。
根据上述原理,利用可控压缩气体与替代传统的金属弹簧普通的金属弹簧比较,高压气体具有体积小、重量轻、容易压缩、不易疲劳、可重复使用、响应迅速、充压方便。无论现场在工厂安装还是现场替换更换过程中,都无任何意外,安全性比传统弹簧更加可靠、使用安全、安装方便、更换容易。节能环保、无污染、无干扰、无噪音、性能稳定、输出速度和力量调节方便等诸多无可比拟的优点。在油气储运、石油天然气、化工、冶金等广泛采用单作用执行器的阀门和其它工业领域,该装置用来替代弹簧作为输出控制装置使用,可以减少弹簧钢等系列金属材料的使用。
实施例2
如图3所示,一种基于气液组合弹簧的阀门执行器,在实施例1的基础上,弹簧活塞5后端的弹簧活塞杆6上设置有弹簧13。气动缸进气时,气动缸的活塞15推动活塞杆16向前运动,活塞杆16推动拨叉17打开阀门,同时,所述气液组合弹簧装置7和弹簧13被压缩,气动缸泄气时,活塞15在气液组合弹簧装置7、弹簧13和气动缸共同作用下拉动活塞杆16回缩,活塞杆16带动拨叉17反向活动关闭阀门。
在原有弹簧缸的基础上,将弹簧缸内的弹簧前端设置一个与弹簧活塞杆联动的弹簧活塞,同时,在弹簧缸上加设“气液组合弹簧装置”,通过加设“气液组合弹簧装置”可以大大减小原有弹簧缸的安装尺寸,原有设置的弹簧起主要弹力,而通过改进,现有设置的弹簧只是起到辅助作用。
实施例3
如图4所示,一种基于气液组合弹簧的阀门执行器,在实施例1的基础上,动力缸2采用液压油缸,液压油缸进油时,液压油缸的活塞15推动活塞杆16向前运动,活塞杆16推动拨叉17打开阀门,同时,所述气液组合弹簧装置7和弹簧13被压缩,液压油缸泄油时,活塞15在气液组合弹簧装置7、弹簧13和液压油缸共同作用下拉动活塞杆16回缩,活塞杆16带动拨叉17反向活动关闭阀门。
实施例4
如图5所示,一种基于气液组合弹簧的阀门执行器,在实施例1的基础上,动力缸2采用液压油缸,并且弹簧活塞5后端的弹簧活塞杆6上设置有弹簧13。液压油缸进油时,液压油缸的活塞15推动活塞杆16向前运动,活塞杆16推动拨叉17打开阀门,同时,所述气液组合弹簧装置7和弹簧13被压缩,液压油缸泄油时,活塞15在气液组合弹簧装置7、弹簧13和液压油缸共同作用下拉动活塞杆16回缩,活塞杆16带动拨叉17反向活动关闭阀门。
在原有弹簧缸的基础上,将弹簧缸内的弹簧前端设置一个与弹簧活塞杆联动的弹簧活塞,同时,在弹簧缸上加设“气液组合弹簧装置”,通过加设“气液组合弹簧装置”可以大大减小原有弹簧缸的安装尺寸,原有设置的弹簧起主要弹力,而通过改进,现有设置的弹簧只是起到辅助作用。
所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于气液组合弹簧的阀门执行器,包括执行器(1)和动力缸(2),所述动力缸(2)安装在执行器(1)一侧上,其特征在于:所述执行器(1)另一侧上设置有气液组合弹簧缸(3),所述气液组合弹簧缸(3)包括弹簧缸体(4)、弹簧活塞(5)和弹簧活塞杆(6),所述弹簧活塞杆(6)设置在弹簧缸体(4)内,所述弹簧活塞(5)固定设置在弹簧活塞杆(6)上,所述弹簧缸体(4)上设置有气液组合弹簧装置(7),所述气液组合弹簧装置(7)包括压力容器罐(8),所述压力容器罐(8)上端设置有气体输入口(9),所述压力容器罐(8)内的上部和下部分别为压缩气体腔(10)和液压油腔(11),所述压缩气体腔(10)内填充压缩气体,所述液压油腔(11)内填充有液压油,所述压力容器罐(8)下端设有液压油出口(12)。
  2. 根据权利要求1所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述动力缸(2)采用液压油缸或气动缸。
  3. 根据权利要求2所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述弹簧活塞(5)后端的弹簧活塞杆(6)上设置有弹簧(13)。
  4. 根据权利要求2或3所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述动力缸(2)包括缸体(14)、活塞(15)和活塞杆(16),所述动力缸(2)的缸体(14)安装在执行器(1)的箱体(16)上,所述动力缸(2)的活塞杆(15)与执行器(1)的拨叉(17)联动,所述动力缸(2)的活塞杆(16)与气液组合弹簧缸(3)的弹簧活塞杆(6)同轴连接。
  5. 根据权利要求4所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述气液组合弹簧装置(7)的液压油出口(12)通过油管(19)与弹簧活塞(5)后端的弹簧缸体(4)连通,动力缸(2)进气时,动力缸(2)的活塞(15)推动活塞杆(16)向前运动,活塞杆(16)推动拨叉(17)打开阀门,同时,所述气液组合弹簧装置(7)被压缩,动力缸(2)泄气时,活塞(15)在气液组合弹簧装置(7)和动力缸(2)共同作用下拉动活塞杆(16)回缩,活塞杆(16)带动拨叉(17)反向活动关闭阀门。
  6. 根据权利要求4所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述气液组合弹簧装置(7)的液压油出口(12)通过油管(19)与弹簧活塞(5)后端的弹簧缸体(4)连通,动力缸(2)进气时,动力缸(2)的活塞(15)推 动活塞杆(16)向前运动,活塞杆(16)推动拨叉(17)打开阀门,同时,所述气液组合弹簧装置(7)和弹簧(13)被压缩,动力缸(2)泄气时,活塞(15)在气液组合弹簧装置(7)、弹簧(13)和动力缸(2)共同作用下拉动活塞杆(16)回缩,活塞杆(16)带动拨叉(17)反向活动关闭阀门。
  7. 根据权利要求5或6所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述压力容器罐(8)上端还设置有实时监测其内部压力的压力表(18)。
  8. 根据权利要求7所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述压力容器罐(8)内的液压油出口(12)处设置有油液过滤装置(20)。
  9. 根据权利要求8所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述油管(19)上设置有流量调节阀(21),通过流量调节阀(21)调节液压油的流量,从而控制压力释放的速度,确保软弹簧的运动过程和动作速度精确可控。
  10. 根据权利要求8或9任一项所述的一种基于气液组合弹簧的阀门执行器,其特征在于:所述油管(19)上还设置有关断阀(22)用于随时关闭或开启气液组合弹簧装置(7)。
PCT/CN2017/098571 2016-08-25 2017-08-23 一种基于气液组合弹簧的阀门执行器 WO2018036496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610722012.4A CN106122567B (zh) 2016-08-25 2016-08-25 一种基于气液组合弹簧的阀门执行器
CN201610722012.4 2016-08-25

Publications (1)

Publication Number Publication Date
WO2018036496A1 true WO2018036496A1 (zh) 2018-03-01

Family

ID=57274608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098571 WO2018036496A1 (zh) 2016-08-25 2017-08-23 一种基于气液组合弹簧的阀门执行器

Country Status (2)

Country Link
CN (1) CN106122567B (zh)
WO (1) WO2018036496A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109340443A (zh) * 2018-12-12 2019-02-15 成都迈可森流体控制设备有限公司 一种适用于大口径阀门、低气源的小型化气液联动执行器
CN110454606A (zh) * 2019-09-04 2019-11-15 江苏威尔德钻采设备有限公司 球阀拨叉执行器
CN112555492A (zh) * 2019-09-10 2021-03-26 山东奥博控制技术有限公司 一种弹簧复位的液压双作用执行机构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106122567B (zh) * 2016-08-25 2018-10-19 成都迈可森流体控制设备有限公司 一种基于气液组合弹簧的阀门执行器
CN106090402B (zh) * 2016-08-25 2018-12-04 成都迈可森流体控制设备有限公司 一种基于气液组合弹簧的驱动装置及阀门执行器
CN111609197B (zh) * 2020-04-27 2022-02-18 铜陵兴荣阀门管件有限公司 一种复合式排气阀
CN113202726B (zh) * 2021-06-11 2022-04-22 李建云 一种间歇性调节装置及阀门控制系统
CN113483143B (zh) * 2021-09-08 2021-11-26 成都迈可森流体控制设备有限公司 响应快速精准的分程式执行器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120478A (en) * 1975-12-08 1978-10-17 The Japan Steel Works, Ltd. Gas-hydraulic pressure type actuator for pipeline valve
IT1166945B (it) * 1982-09-06 1987-05-06 Kobe Steel Ltd Azionatore per valvole
DE4030107A1 (de) * 1990-09-22 1992-03-26 Steag Ag Hydraulischer stellantrieb fuer steuer- und regelarmaturen
CN203272969U (zh) * 2013-05-31 2013-11-06 浙江百得自动化仪表有限公司 大口径阀门用快关带缓冲气动执行器
CN203348695U (zh) * 2013-07-01 2013-12-18 浙江百得自动化仪表有限公司 快速切断阀执行器
CN203906975U (zh) * 2014-05-20 2014-10-29 无锡市捷诺自控设备有限公司 阀门气动执行器
KR20160050882A (ko) * 2014-10-31 2016-05-11 에이지밸브 주식회사 공압을 이용한 밸브 개폐용 액츄에이터
CN106122567A (zh) * 2016-08-25 2016-11-16 成都迈可森流体控制设备有限公司 一种基于气液组合弹簧的阀门执行器
CN205978743U (zh) * 2016-08-25 2017-02-22 成都迈可森流体控制设备有限公司 一种基于气液组合弹簧的阀门执行器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060304B4 (de) * 2004-12-15 2010-01-14 Stabilus Gmbh Kolbenzylindereinheit und Verfahren zum Herstellen einer Kolbenzylindereinheit
JP5307879B2 (ja) * 2011-12-19 2013-10-02 株式会社ティクスIks スコッチヨーク式操作装置
CN103807490B (zh) * 2014-01-15 2016-04-20 同济大学 一种气液联动快关阀门系统
CN203686316U (zh) * 2014-01-23 2014-07-02 特福隆集团有限公司 用于气液联动执行器的紧急液压手动操作模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120478A (en) * 1975-12-08 1978-10-17 The Japan Steel Works, Ltd. Gas-hydraulic pressure type actuator for pipeline valve
IT1166945B (it) * 1982-09-06 1987-05-06 Kobe Steel Ltd Azionatore per valvole
DE4030107A1 (de) * 1990-09-22 1992-03-26 Steag Ag Hydraulischer stellantrieb fuer steuer- und regelarmaturen
CN203272969U (zh) * 2013-05-31 2013-11-06 浙江百得自动化仪表有限公司 大口径阀门用快关带缓冲气动执行器
CN203348695U (zh) * 2013-07-01 2013-12-18 浙江百得自动化仪表有限公司 快速切断阀执行器
CN203906975U (zh) * 2014-05-20 2014-10-29 无锡市捷诺自控设备有限公司 阀门气动执行器
KR20160050882A (ko) * 2014-10-31 2016-05-11 에이지밸브 주식회사 공압을 이용한 밸브 개폐용 액츄에이터
CN106122567A (zh) * 2016-08-25 2016-11-16 成都迈可森流体控制设备有限公司 一种基于气液组合弹簧的阀门执行器
CN205978743U (zh) * 2016-08-25 2017-02-22 成都迈可森流体控制设备有限公司 一种基于气液组合弹簧的阀门执行器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109340443A (zh) * 2018-12-12 2019-02-15 成都迈可森流体控制设备有限公司 一种适用于大口径阀门、低气源的小型化气液联动执行器
CN109340443B (zh) * 2018-12-12 2023-11-10 成都迈可森流体控制设备有限公司 一种适用于大口径阀门、低气源的小型化气液联动执行器
CN110454606A (zh) * 2019-09-04 2019-11-15 江苏威尔德钻采设备有限公司 球阀拨叉执行器
CN112555492A (zh) * 2019-09-10 2021-03-26 山东奥博控制技术有限公司 一种弹簧复位的液压双作用执行机构

Also Published As

Publication number Publication date
CN106122567A (zh) 2016-11-16
CN106122567B (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
WO2018036496A1 (zh) 一种基于气液组合弹簧的阀门执行器
WO2018036497A1 (zh) 一种基于气液组合弹簧的驱动装置及阀门执行器
CN107504234B (zh) 一种天然气井口紧急切断装置
CN110469685B (zh) 一种气动轴流式紧急切断阀
CN201228792Y (zh) 气动空气减压阀
CN205978743U (zh) 一种基于气液组合弹簧的阀门执行器
CN209781788U (zh) 一种安全切断阀
CN207246497U (zh) 一种天然气井口紧急切断装置
CN205978747U (zh) 一种基于气液组合弹簧的驱动装置及阀门执行器
CN110725959A (zh) 汽轮机用多功能蝶阀
CN103968113B (zh) 一种低压大口径安全阀
CN203051916U (zh) 碟弹型单作用液动执行器
CN104696565A (zh) 一种基于先导结构的防爆阀
CN109306975A (zh) 一种新型缠绕式蓄能器
CN202203228U (zh) 可调式自动装卸装置
CN203463741U (zh) 一种低压大口径安全阀
CN102338140A (zh) 可调式自动装卸装置
CN215109796U (zh) 一种具有减速功能的新型液压缸
CN210949914U (zh) 汽轮机用多功能蝶阀
CN220891244U (zh) 新型碟簧气缸式执行机构
CN202047965U (zh) 气动薄膜卸荷器
CN211901760U (zh) 一种高压气动截止阀用双层高压气缸
CN213574892U (zh) 一种液控蝶阀油缸压力保护装置
CN216692331U (zh) 先导式减压器
CN219521992U (zh) 螺栓预紧器预紧安装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842918

Country of ref document: EP

Kind code of ref document: A1