WO2018031215A1 - Device and method for hearing threshold-adapted acoustic stimulation - Google Patents

Device and method for hearing threshold-adapted acoustic stimulation Download PDF

Info

Publication number
WO2018031215A1
WO2018031215A1 PCT/US2017/043151 US2017043151W WO2018031215A1 WO 2018031215 A1 WO2018031215 A1 WO 2018031215A1 US 2017043151 W US2017043151 W US 2017043151W WO 2018031215 A1 WO2018031215 A1 WO 2018031215A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
bandwidth
acoustic
therapy signal
acoustic therapy
Prior art date
Application number
PCT/US2017/043151
Other languages
French (fr)
Inventor
Gerald R. Popelka
Peter Alexander Tass
Original Assignee
The Board Of Trustees Of The Leland Stanford Junior University
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Board Of Trustees Of The Leland Stanford Junior University, Forschungszentrum Jülich GmbH filed Critical The Board Of Trustees Of The Leland Stanford Junior University
Priority to EP17839995.2A priority Critical patent/EP3496807A4/en
Priority to US16/324,113 priority patent/US10933213B2/en
Publication of WO2018031215A1 publication Critical patent/WO2018031215A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • A61B5/128Audiometering evaluating tinnitus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/75Electric tinnitus maskers providing an auditory perception
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • A61B5/121Audiometering evaluating hearing capacity
    • A61B5/125Audiometering evaluating hearing capacity objective methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F11/00Methods or devices for treatment of the ears or hearing sense; Non-electric hearing aids; Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense; Protective devices for the ears, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0027Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the hearing sense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3317Electromagnetic, inductive or dielectric measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/08Other bio-electrical signals
    • A61M2230/10Electroencephalographic signals

Definitions

  • the present disclosure relates to a device and a method for hearing threshold ⁇ adapted acoustic stimulation.
  • Subjective tinnitus is the perception of a sound or noise without a physical sound and/or noise source. Subjective tinnitus occurs in the patient's brain and can be perceived just by the patient. A distinction is made between tonal tinnitus, namely perception of a tone, in comparison with atonal tinnitus, namely perception of a sound.
  • nerve cell ensembles in specific regions of the brain are pathologically active, e.g., excessively synchronously active.
  • a large number of neurons are forming action potentials synchronously.
  • the neurons involved fire excessively synchronously.
  • the neurons in these regions of the brain will fire in a qualitatively different manner, for example, in an uncorrelated manner.
  • the acoustic "coordinated reset" (CR) stimulation has been developed, counteracting pathologically synchronous neural activity in a targeted manner.
  • the dominant frequency f T used for this purpose namely the level of the tone or the pitch of the tinnitus tone perceived by the patient, is determined audiologically, in particular by balancing of tone levels, namely pitch matching (cf. documents D13 and D22 cited in the bibliography at the end of the specification).
  • All patients are stimulated with four CR tones in the same fixed pattern relative to the tinnitus frequency f T . All four CR tones with the frequencies f CR1 , f CR2 , f CR3 and f CR4 have a fixed frequency ratio in all patients in comparison with the tinnitus frequency f T and they cover
  • the CR tones are administered with a loudness just barely above the hearing threshold, typically up to 5 dB above the hearing threshold.
  • the sole patient ⁇ specific parameter in this treatment is the tinnitus frequency f T , which is measured audiologically.
  • the width of audiological filters measured on the frequency axis increases with an increase in hearing impairment (cf. document D18).
  • This filter width corresponds to the range in the primary auditory cortex, for example, which is activated, e.g., stimulated, by a tone.
  • the hearing threshold ⁇ dependent change in the auditory filters should also be taken into account in determining the CR therapy tones. If this is not done, then the acoustic stimulation with CR tones using fixed frequency ratios in comparison with f T can lead to suboptimal effects or may even be completely ineffective.
  • CR stimulation typically involves stimulation of neural subpopulations that are sufficiently separate but are not too far apart. Accordingly, the frequency differences, namely the pitch intervals between the individual CR therapy tones, can be neither too large nor too small, and the optimum intervals between the respective therapy tones depend on the respective hearing thresholds.
  • Some embodiments of this disclosure are based on the object of providing a device and a method for acoustic stimulation, with which patients suffering from tinnitus or some other disease characterized by pathological synchronous neural activity can be treated in comparison with traditional devices and methods.
  • Figure 1 shows a flow chart to illustrate a comparative acoustic CR therapy for treatment of a patient with tinnitus
  • Figure 2 shows a diagram to illustrate the bandwidth of an auditory filter as a function of the frequency for patients with and without a hearing impairment
  • Figure 3 shows a schematic diagram of a stimulated neural population in the primary auditory cortex of a patient with normal hearing ability
  • Figure 4 shows a schematic diagram of a stimulated neural population in the primary auditory cortex of a patient with a hearing impairment
  • Figure 5 shows a schematic diagram of the stimulated neural population from Figure 3 with an enlarged frequency interval between neighboring therapy tones
  • Figure 6 shows a schematic diagram of the stimulated neural population from Figure 4 with an enlarged frequency interval between neighboring therapy tones
  • Figure 7 shows a diagram to illustrate the ERB bandwidths of standard therapy tones as a function of the tinnitus frequency for normal hearing ability
  • Figure 8 shows a diagram to illustrate the ERB bandwidths of standard therapy tones as a function of the tinnitus frequency for a hearing impairment of 25 dB HL;
  • Figure 9 shows a diagram to illustrate the ERB bandwidths of standard therapy tones as a function of the tinnitus frequency for a hearing impairment of 50 dB HL;
  • Figure 10 shows a diagram to illustrate the ERB bandwidths of standard therapy tones as a function of the tinnitus frequency for a frequency ⁇ dependent hearing impairment
  • Figure 11 shows a diagram to illustrate the ERB overlap as a function of frequency
  • Figure 12 shows a schematic diagram of a device for stimulation of a patient with acoustic stimulation signals and for desynchronization of neurons with a pathological synchronous and oscillatory activity according to one embodiment
  • Figure 13 shows a flow chart to illustrate the procedure in determining the optimum arrangement of a predetermined number of therapy tones on the frequency axis
  • Figure 14 shows the diagram from Figure 11 with points of intersection of the graph with optimum values for the relative ERB overlap to determine the frequencies of the therapy tones;
  • Figure 15 shows a diagram to illustrate the ERB bandwidths of therapy tones determined from Figure 14 as a function of the tinnitus frequency
  • Figure 16 shows a diagram to illustrate the personalized hearing threshold ⁇ adapted frequencies from the therapy tones determined from Figure 14 as a function of the tinnitus frequency
  • Figure 17 and Figure 18 show flow charts to illustrate the procedure in determining the optimum number of therapy tones and their optimum arrangement on the frequency axis according to a first variant
  • Figure 19 and Figure 20 show flow charts to illustrate the procedure in determining the optimum number of therapy tones and their optimum arrangement on the frequency axis according to a second variant
  • Figure 21 shows a diagram to illustrate the ERB bandwidths for the personalized tinnitus ERB ⁇ centered hearing threshold ⁇ adapted and balanced arrangement of the therapy tones as a function of the tinnitus frequency;
  • Figure 22 shows a diagram to illustrate the personalized tinnitus ERB ⁇ centered hearing threshold ⁇ adapted and balanced frequencies of the therapy tones as a function of the tinnitus frequency;
  • Figure 23 shows a schematic diagram of an acoustic CR stimulation
  • Figure 24 shows a first schematic diagram of a device for stimulation of a patient with acoustic stimulation signals according to another embodiment
  • Figure 25 shows a schematic diagram of a device for stimulation of a patient with acoustic stimulation signals according to yet another embodiment
  • Figure 26 shows a schematic diagram of a complex acoustic stimulation signal
  • Figure 27 shows notations of band edges and center frequencies of ERBs and each of the four CR tones as an example
  • Figure 28 shows the ERB at normal hearing (thin line) as well as the hearing threshold adapted ERB (solid line). Symbols indicate frequencies at which the
  • Figure 29 provides the ERBs of the standard CR tones together with the tinnitus ERB for a normal hearing case (left plot) as well as an example for hearing threshold adapted ERBs (upper right plot) and the corresponding hearing threshold (lower right plot). ERBs are illustrated by plotting ERB edges divided by tinnitus frequency;
  • Figure 30 illustrates the calculation of relative ERB overlap
  • Figure 31 displays the distributions of the number of super responders, e.g., the subjects with VAS for loudness (VAS ⁇ L) changes > 15 (y ⁇ axis) in relation to ⁇ , ⁇ ⁇ for all four CR tones ⁇ ,... , ⁇ (rows 1,...,4) after 12 weeks (column 1) and after 24 weeks (column 2) and the corresponding distributions obtained by a standard smoothing procedure (column 3);
  • VAS ⁇ L the subjects with VAS for loudness
  • Figure 32 shows the subgroup analysis for the two different groups (patients with/without relative optimal ERB overlaps for all 4 CR tones);
  • Figure 33 shows results of a subgroup analysis of responder rates
  • Figure 34 displays results of a subgroup analysis of hearing thresholds at CR tones ⁇ ⁇ ,... , ⁇ and at the tinnitus frequency ⁇ ;
  • Figure 35 shows ERBs of standard CR tones together with the tinnitus ERB (left panel, same as right panel in Figure 29) for a patient with typical hearing loss (lower right panel).
  • the right panel shows the hearing threshold adapted ERBs in the same patient (with hearing loss as in the lower right panel) and optimal ERB overlaps (as determined from a re ⁇ analysis of clinical data);
  • Figure 36 displays an example of an ERB arrangement for tinnitus ERB stretching factor ⁇ ⁇ 1.5 (upper panel) for a patient with typical hearing loss (lower panel). The results are obtained with the procedure described in the text. Detailed Description
  • Chronic subjective tinnitus occurs in approx. 10% to 15% of the average population (cf. document D8). The quality of life of approx. 2% of the average population is greatly reduced because of their tinnitus. Therefore, this portion of the population will seek professional help (cf. documents D5 and D15). Subjective tinnitus is characterized by pathological synchronous neural activity. Chronic subjective tinnitus is associated with
  • EEG electroencephalography
  • MEG magneticencephalography
  • Tinnitus as well as other neurologic or psychiatric diseases may be caused by a disturbance in the bioelectric communication of neural ensembles that are formed in specific circuits.
  • a neural population in the brain and/or spinal cord of a patient here constantly generates pathological neural activity and might even create an associated pathological connectivity (network structure). In doing so, a large number of neurons form synchronous action potentials, namely the neurons involved fire excessively in synchronization.
  • the pathological neural population has an oscillatory neural activity, namely the neurons also fire rhythmically.
  • the average frequency of the pathological rhythmic activity of the neuron ensembles thereby affected is approximately in the range of 1 to 30 Hz but may also be outside this range.
  • neurons fire in a qualitatively different manner, e.g., in an uncorrelated manner.
  • Acoustic "coordinated reset" (CR) stimulation is a treatment using acoustic stimulation signals for treating subjective tinnitus (cf. document D22). Acoustic CR stimulation counteracts the pathological synchronous neural activity associated with tinnitus by desynchronization. The success of this treatment can be verified by way of EEG measurements (cf. document D3, D4, D20 and D22). A feasibility study (“proof of concept trial”) has yielded statistically and clinically significant therapeutic effects of acoustic CR therapy (cf. documents D1, D2 and D22). The observations on which the study is based were then repeated in a large ⁇ scale study with 200 patients at 23 clinic sites (cf. document D12) and one observation study with 66 patients (cf. document D27).
  • acoustic CR stimulation therapy tones that are played for the patient are converted to nerve pulses in the inner ear and sent via the auditory nerve to the auditory cortex. Due to the tonotopic arrangement of the auditory cortex, a certain portion of the auditory cortex is activated by acoustic stimulation of the inner ear at a certain frequency. Therefore, certain regions of the auditory cortex can be stimulated in a targeted manner by a suitable choice of the frequencies of the therapy tones.
  • the therapy tones played for the patient in acoustic CR stimulation are designed so that the offset (or phase ⁇ shifted) stimulation induces desynchronization of the pathological synchronous and oscillatory activity of the neural population by way of at least two stimulation channels.
  • a reduction in the rate of coincidence of the neurons caused by this stimulation can result in a reduction in the synaptic weights and can thus lead to learning of the tendency to production of pathological synchronous activity.
  • the therapy tones perceived by the patient via at least one ear cause a so ⁇ called reset in the neural population of the phase of neural activity of the stimulated neurons.
  • This reset causes the phase of the stimulated neurons to be set at one or almost one certain phase value, e.g., 0°, regardless of the prevailing phase value (in practice it is difficult to accurately set a certain phase value, but this is not necessary for successful CR stimulation).
  • the phase of neural activity of the pathological neural population is controlled by way of targeted stimulation.
  • the pathological neuron population is stimulated at different locations by way of multiple stimulation channels, so the phases of neural activity of the subpopulations of pathological neuron population stimulated by the different stimulation channels can be reset at different points in time by applying the therapy tones with a time lag.
  • the pathological neuron population whose neurons were previously in synchronization and were active with the same frequency and phase, is split into multiple subpopulations with different phases.
  • the neurons are still in synchronization even after the reset and they continue to fire at the same pathological frequency, but with respect to its neural activity, each subpopulation has the phase forced on it by the stimulus generated by the respective stimulation channel. This means that, even after their phases have been reset, the neural activities of the individual subpopulations still have an approximately sinusoidal curve with the same pathological frequency but different phases.
  • the condition created by the stimulation with at least two subpopulations is unstable, and the entire neural population rapidly approaches a condition of complete desynchronization, in which the neurons fire in an uncontrolled manner.
  • the desired condition namely complete desynchronization, usually does not exist immediately after the time ⁇ offset (or phase shifted) application of the therapy tones with a time lag (or a phase shift) but instead is
  • the frequency f T i.e., the pitch of the dominant tinnitus tone
  • the amplitude, namely the loudness, of the four CR therapy tones to be reproduced for the patient is matched.
  • the frequencies of the four CR therapy tones f CR1 , f CR2 , f CR3 and f CR4 which were used in the feasibility study (cf. document D22) and the following studies and are also used in clinical practice today, are as follows:
  • the frequency ratios c 1 , c 2 , c 3 and c 4 are fixed and are identical for all patients, regardless of their hearing thresholds.
  • All therapy tones are typically just above the hearing threshold of the respective patient but are comfortably audible. The loudness of the therapy tones is adjusted so that
  • the flow chart in Figure 1 illustrates schematically a comparative (traditional) acoustic CR therapy for treatment of tinnitus.
  • the dominant or most pronounced tinnitus frequency or that perceived as the most annoying for the patient is determined.
  • the therapy tones are then calculated on the basis of the fixed frequency ratios c 1 , c 2 , c 3 and c 4 , which are the same for all patients.
  • a loudness comparison is then performed in order to adjust the loudness of the four therapy tones with respect to one another.
  • Figure 1 shows measurements performed on patients in boxes outlined with dotted lines, while data analysis, signal processing and sound production are shown in boxes outlined with solid lines.
  • CR stimulation supplies optimum desynchronization results if the stimuli are administered at different locations in the brain so that different subpopulations are stimulated (cf. documents D16 and D21).
  • the overlap between the stimulated subpopulations should not be too great.
  • the subpopulations should interact with one another adequately, namely the subpopulations should not be separated too much from one another spatially.
  • direct electrical brain stimulation e.g., deep brain stimulation
  • the dependence of the propagation of the stimulation current on the voltage or current has been investigated (cf. document D7). Accordingly, well ⁇ defined predictions have been made for the optimum stimulation amplitudes (cf. document D23) and verified (cf. documents D23 and D26).
  • the relationship between the stimulus and the activated neural population is more complicated. Cortical receptive regions as well as subcortical portions of the central auditory pathway are determined by the tonotopic organization of the auditory system and the auditory filter theory.
  • the auditory filter theory is based on the concept of a center frequency and a bandwidth around the center frequency.
  • the bandwidth of the auditory filters can be described based on the corresponding rectangular bandwidth, which is referred in the technical literature as ERB (equivalent rectangular bandwidth) (cf. documents D11 and D17).
  • ERB equivalent rectangular bandwidth
  • the low and high cut ⁇ off frequencies determine the frequency bandwidth (fH ⁇ fL) that corresponds to the functional bandwidth of any auditory filter.
  • w is the frequency in kHz, namely where f and ERBN are given in Hz.
  • the model according to equation (10) can be interpolated and extrapolated.
  • an audiogram with a predetermined number of frequencies may be used for calculation of the term c(h) and may be interpolated and extrapolated accordingly.
  • a Békésy audiogram using a continuous course may also be used.
  • Figure 2 shows the frequency dependence of the ERB without hearing loss (ERB N (f)) and the ERB with hearing loss (ERB(f, h)).
  • the values for the hearing thresholds to create Figure 2 hearing threshold were recorded on a patient.
  • the ERB bandwidths can also be measured on each patient individually at the tinnitus frequency, and the frequency of each frequency tone as
  • a variety of acoustic signals may be used to determine these individual ERB bandwidths, in particular tones, for example, sinusoidal frequency ⁇ modulated or amplitude ⁇ modulated tones or beeps, clicking sounds or noises such as white noise or bandpass ⁇ filtered noise with spectral or temporal gaps.
  • the measurements comprise behavior responses which use a variety of psychoacoustic masking paradigms or physiological responses which in turn use a variety of evoked electric potentials or otoacoustic emissions.
  • Each of the individualized ERB bandwidths includes the individual hearing threshold as well as above ⁇ threshold changes associated with the individual hearing loss.
  • Figures 3 through 6 illustrate the organization of the primary auditory cortex along the frequency axis.
  • at least one neural population 1 has a pathological synchronous and oscillatory neural activity, which thus causes the tinnitus, as described above.
  • the neural population 1 should be desynchronized by targeted stimulation within the context of the CR therapy. Due to the four different therapy tones presented to the patient at the same loudness, four subpopulations 2, 3, 4 and 5 in the patient's brain are activated. The size of some populations 2 through 5 is determined by the ERB associated with the respective therapy tone.
  • Figure 3 illustrates the case for a patient with normal hearing ability. For reasons of simplicity, all four subpopulations 2 to 5 here are the same size and neighboring subpopulations do not overlap with one another.
  • Figure 6 shows that the increased interval of the neighboring therapy tones in the case of a patient with hearing loss results in subpopulations 2 through 5 no longer overlapping but being close enough together due to the increase in interval caused by the hearing loss that the subpopulations interact with one another to a sufficient extent to ensure the desired therapeutic success.
  • Figures 3 to 6 show that the interval between the therapy tones, which leads to good therapeutic results for a patient with normal hearing ability (cf. Figure 3), may be unfavorable in a patient with a hearing loss, namely the therapy tones are too close together for the patient with hearing loss (cf. Figure 4). Accordingly, therapy tones that are too far apart from one another for a patient with normal hearing ability (cf. Figure 5) will lead to the desired therapeutic result in a patient with hearing loss (cf. Figure 6).
  • the ERB bandwidth is determined at a tinnitus frequency f T , which was determined for a patient by a standard method, and the ERB bandwidths for the standard therapy tones f CR1 , f CR2 , f CR3 and f CR4 are considered according to equations (1) through (4).
  • the therapy tones f CR1 , f CR2 , f CR3 and f CR4 of the standard therapy consequently cover half of an octave on each side of the tinnitus frequency f T .
  • the coefficients c 1 , c 2 , c 3 and c 4 of the standard therapy do not depend on the tinnitus frequency f T or on the hearing threshold.
  • Figure 7 the hearing loss amounts to 0 dB HL over the entire frequency axis, namely the patient has a normal hearing ability and the respective audiogram has a flat horizontal curve.
  • Figure 7 shows the following ERB bandwidths from top to bottom in the order given:
  • ERB for the therapy tones f CR4 1.4f T with ERB edges at c 4 ⁇ 0.5 ERB (f CR4 , 0 dB HL) represented by solid lines,
  • ERB for the therapy tones f CR3 1.1f T with ERB edges at c 3 ⁇ 0.5 ERB (f CR3 , 0 dB HL) represented by dotted lines,
  • ERB for the therapy tone f CR2 0.9f T with ERB edges at c 2 ⁇ 0.5 ERB (f CR2 , 0 dB HL) represented by dash ⁇ dot lines and
  • ERB for the therapy tone f CR1 0.766f T with ERB edges at c 1 ⁇ 0.5 ERB (f CR1 , 0 dB HL) represented by solid lines.
  • ERB for the therapy tones f CR4 1.4f T with ERB edges at c 4 ⁇ 0.5 ERB (f CR4 , 25 dB HL) represented by solid lines,
  • ERB for the therapy tones f CR3 1.1f T with ERB edges at c 3 ⁇ 0.5 ERB (f CR3 , 25 dB HL) represented by dotted lines,
  • ERB for the therapy tone f CR2 0.9f T with ERB edges at c 2 ⁇ 0.5 ERB (f CR2 , 25 dB HL) represented by dash ⁇ dot lines and
  • ERB for the therapy tone f CR1 0.766f T with ERB edges at c 1 ⁇ 0.5 ERB (f CR1 , 25 dB HL) represented by solid lines.
  • Figure 9 shows the hearing loss of 50 dB HL over the entire frequency axis, namely the respective audiogram is a flat horizontal line.
  • ERB bandwidths are illustrated in the order given here from top to bottom:
  • ERB for the therapy tones f CR4 1.4f T with ERB edges at c 4 ⁇ 0.5 ERB (f CR4 , 50 dB HL) represented by solid lines,
  • ERB for the therapy tones f CR3 1.1f T with ERB edges at c 3 ⁇ 0.5 ERB (f CR3 , 50 dB HL) represented by dotted lines,
  • ERB for the therapy tone f CR2 0.9f T with ERB edges at c 2 ⁇ 0.5 ERB (f CR2 , 50 dB HL) represented by dash ⁇ dot lines and
  • ERB for the therapy tone f CR1 0.766f T with ERB edges at c 1 ⁇ 0.5 ERB (f CR1 , 50 dB HL) represented by solid lines.
  • Figures 7 to 9 show that the overlap, namely the gap (and/or interval) between the ERB bands of two neighboring therapy tones and the overlap and/or gap between the ERB bandwidth at the tinnitus frequency f T and the ERB bandwidths of the therapy tones depend to a great extent on the tinnitus frequency f T and are not symmetrical or balanced at all relative to the tinnitus frequency f T .
  • the interval between the ERB of the therapy tone f CR4 and the ERB of the therapy tone f CR3 is much larger than the gap between the ERB of the therapy tone f CR2 and the ERB of the therapy tone f CR1 for a hearing loss of 0 dB HL (cf. Figure 7).
  • the ERBs of the therapy tones f CR1 and the f CR2 overlap because of the broadening of the ERB caused by the hearing loss (cf. Figure 8), whereas there is still a gap between the ERBs of the therapy tones f CR3 and f CR4 for a tinnitus frequency f T greater than approx. 2000 Hz.
  • the ERB of the tinnitus frequency f T and the ERBs of the therapy tones f CR2 and f CR3 are each slightly greater than approx. 2000 Hz for a hearing loss of 0 dB HL and a tinnitus frequency f T (cf. Figure 7).
  • the overlap between the ERB of the tinnitus frequency f T and the ERB of the therapy tones f CR2 and/or f CR3 for a hearing loss of 50 dB HL and a tinnitus frequency f T greater than approx. 2000 Hz is much greater (cf. Figure
  • Figures 7 through 9 show that the ERBs of the standard therapy tones f CR1 , f CR2 , f CR3 and f CR4 are not balanced with respect to one another or with respect to the tinnitus frequency f T .
  • Figure 10 illustrates one such case with a hearing threshold h, which becomes worse with an increase in frequency, namely the pitch.
  • Figure 10 is based on the audiogram for the patient in Figure 2.
  • Figure 10 shows the ERB edges bordering the respective ERB, divided by the tinnitus frequency f T (cf. y axis) for the four therapy tones f CR1 , f CR2 , f CR3 and f CR4 as well as for the tinnitus frequency f T , each plotted as a function of the tinnitus frequency f T (cf. x axis).
  • the tinnitus frequency f T perceived by the patient is 2950 Hz.
  • Figure 10 shows the following ERB bandwidths in the order indicated from top to bottom:
  • ERB for the therapy tones f CR4 1.4f T with ERB edges at c 4 ⁇ 0.5 ERB (f CR4 , h) represented by solid lines,
  • ERB for the therapy tones f CR3 1.1f T with ERB edges at c 3 ⁇ 0.5 ERB (f CR3 , h) represented by dotted lines,
  • ERB for the therapy tone f CR2 0.9f T with ERB edges at c 2 ⁇ 0.5 ERB (f CR2 , h) represented by dash ⁇ dot lines and
  • ERB for the therapy tone f CR1 0.766f T with ERB edges at c 1 ⁇ 0.5 ERB (f CR1 , h) represented by solid lines.
  • Figure 10 shows that the gap between the ERBs of the therapy tones f CR3 and f CR4 depends greatly on the tinnitus frequency f T , with a maximum occurring both in the lower frequency range and also in the higher frequency range.
  • a tinnitus frequency f T in the range of 416 Hz to 1.6 kHz, there is no overlap between the ERBs of the therapy tones f CR2 and f CR3 .
  • Figure 10 shows that for a realistic auditory profile, not only are the intervals between the ERBs of the standard therapy tones unbalanced with respect to one another and with respect to the tinnitus frequency f T , but also the mutual spacings of the ERBs depend to a significant extent on the tinnitus frequency f T . Since the tinnitus frequency
  • f T typically changes as a result of treatment, in most case the tinnitus frequency f T drops when the arrangement of ERBs during treatment will also change. Consequently, the efficacy of the treatment also does not remain constant over the course of the treatment.
  • the overlap of the ERBs is determined in order to be able to evaluate the arrangement of ERBs of the therapy tones and the tinnitus tone.
  • two frequencies f j and f k shall be considered, wherein f j ⁇ f k ; h j and h k are the respective hearing thresholds in dB HL at the frequencies f j and/or f k ; h j and h k are determined either directly with the help of an audiologic hearing threshold measurement or by way of a linear interpolation of the hearing thresholds, for example, around the frequencies f j and/or f k .
  • ERB bandwidth ERB(f j , h j ) and the frequency f j and the ERB bandwidth ERB(f k , h k ) of the frequency f k based on the smaller ERB bandwidth can be calculated as follows:
  • a k and b k are the lower and/or upper edges, respectively, of the ERB of the frequency f k , ERB(f k , h k ), and min ⁇ x, y ⁇ is the minimum of x and y.
  • the relative overlap ⁇ (f j , f k ) and/or ⁇ (f j , f k ) may thus assume both positive values and negative values (as well as the value zero). In the case of positive values, this is a true overlap, whereas negative values for the relative overlap ⁇ (f j , f k ) and/or ⁇ (f j , f k ) indicate a gap (and/or a hole and/or a space) between the two ERBs.
  • the hearing threshold is either determined directly with the help of an audiologic hearing threshold measurement or by way of a linear interpolation of the hearing thresholds around the frequency f T , for example.
  • the data on the patient from Figure 2 was used for the hearing threshold, wherein the tinnitus frequency is at 2950 Hz.
  • a and b are the lower and upper edges, respectively, of ERB(f, h), and a T and b T are the lower and upper edges, respectively, of ERB(f T , h T ).
  • Figure 12 illustrates schematically a device 10 for stimulation of a patient by using acoustic stimulation signals.
  • the device 10 may be used for treatment of diseases characterized by neural populations with a pathological synchronous and oscillatory neural activity.
  • the device 10 can also be used for treatment of the following diseases: depression, epilepsy, compulsive disorders, dementia diseases, Alzheimer's disease, autism, dysfunctions after a stroke, sleep disorders, schizophrenia, irritable bowel syndrome, addictive diseases, borderline personality disorder, attention deficit disorder, attention deficit hyperactivity disorder, gambling addiction, neuroses, bulimia, anorexia, eating disorders, burnout syndrome, migraines, cluster headaches, general headaches as well as other diseases characterized by pathologically enhanced synchronization of neurons.
  • diseases depression, epilepsy, compulsive disorders, dementia diseases, Alzheimer's disease, autism, dysfunctions after a stroke, sleep disorders, schizophrenia, irritable bowel syndrome, addictive diseases, borderline personality disorder, attention deficit disorder, attention deficit hyperactivity disorder, gambling addiction, neuroses, bulimia, anorexia, eating disorders, burnout syndrome, migraines, cluster headaches, general headaches as well as other diseases characterized by pathologically enhanced synchronization of neurons.
  • the device 10 comprises of a control unit 11 and a stimulation unit 12, which generates acoustic stimulation signals and stimulates neurons in the patient's brain (from the brain stem to the cortex) and/or the patient's spinal cord by way of a plurality of
  • Each stimulation channel permits stimulation of another target region in the patient's brain and/or spinal cord.
  • the control unit 11 carries out control of the stimulation unit 12. To do so, the control unit 11 generates control signals, which are received by the stimulation unit 12.
  • control unit 11 and the stimulation unit 12 are noninvasive units, namely they are outside of the patient's body during operation of the device 10 and are not implanted surgically in the patient's body.
  • the device 10 may optionally also comprise an evaluation unit 13 for evaluating the success of a treatment and an input/output unit 14, with which the control unit 11 and/or the evaluation unit 13 can make information and/or data available.
  • control unit 11 the stimulation unit 12, the evaluation unit 13 and/or the input/output unit 14 may be separated from one another structurally.
  • the device 10 may therefore also be regarded as a system.
  • control unit 11 and/or the evaluation unit 13 may include a processor, for example, a microcontroller.
  • the stimulation methods described here may be stored as software code in a memory associated with the control unit 11 and/or to the evaluation unit 13.
  • the optimum arrangement of one or more acoustic therapy signals on the frequency axis is determined with the help of the device 10.
  • the number of acoustic therapy signals is usually predetermined.
  • the control unit 11 is designed or configured so that it determines a bandwidth of an auditory filter with a frequency of a predetermined pitch as a center frequency, wherein this bandwidth represents a reference bandwidth.
  • the control unit 11 also determines the frequency of a first acoustic therapy signal, such that a measure of overlap between the reference bandwidth around the frequency of the predetermined tone and a first bandwidth of an auditory filter with the frequency of the first acoustic therapy signal as the center frequency assumes a predetermined first value.
  • the first acoustic therapy signal is played for the patient by the simulation unit 12.
  • the first acoustic therapy signal as well as all additional acoustic therapy signals described in the present disclosure may be either a tone, such as a pure sinusoidal vibration, or a mixed tone, such as a sound comprised of different tones of any frequencies.
  • a mixed tone such as a sound comprised of different tones of any frequencies.
  • the concept of a mixed tone also comprises noise and sounds. For reasons of simplicity, the
  • therapy tones is used in some embodiments but this could also be mean mixed therapy tones.
  • the measure of coverage may be an overlap or a gap. In some embodiments, it is referred to as an overlap for reasons of simplicity. If the overlap has a negative value, it is a gap.
  • the first embodiment is described below on the basis of an example embodiment (cf. Figures 13 to 16).
  • a patient suffering from tinnitus is treated with the help of the device 10.
  • the frequency of the predetermined tone in this case is the tinnitus frequency f T of the dominant tinnitus tone perceived by the patient.
  • the ERB bandwidth around the tinnitus frequency f T is used here as the reference bandwidth and/or the ERB bandwidths around the frequencies of the four therapy tones as the first, second, third and/or fourth bandwidths are used.
  • the relative ERB overlap is used to determine the optimum arrangement of a predetermined number of therapy tones on the frequency axis, wherein the predetermined number here is four.
  • the procedure for determining the individualized hearing threshold ⁇ adapted therapy tones according to the first embodiment is diagramed in the flow chart in Figure 13.
  • the dominant or most pronounced tinnitus frequency f T or the frequency perceived by the patient as the most annoying is determined by tone matching, for example.
  • the highest priority here is typically given to the dominant tinnitus frequencies that are the highest and/or the most annoying.
  • the therapy tones are calculated with respect to the tinnitus frequency f T or the neighboring therapy tones based on the relative ERB overlap extracted from the patient's audiogram.
  • the broadening of the bandwidth of the auditory filters caused by hearing loss is taken into account by using the audiogram.
  • a loudness equalization is performed to adapt the loudness of the therapy tones mutually to one another.
  • Figure 13 shows measurements carried out on the patient in boxes outlined with dotted lines, while the signal broadening and sound production are shown in boxes outlined with solid lines.
  • the ERB bandwidth of the tinnitus frequency f T is used as a reference for all four therapy tones
  • the relative ERB overlaps for each ERB of the four therapy tones are calculated with the ERB of the tinnitus frequency f T .
  • the resulting relative ERB overlaps are referred to as ⁇ (f CR1hta , f T ), ⁇ (f CR2hta , f T ), ⁇ (f CR3hta , f T ) and ⁇ (f CR4hta , f T ) where "hta" stands for "hearing threshold adapted.”
  • the ERB overlap values given above can be used to determine the therapy tones with the optimal frequencies.
  • the tinnitus frequency f T which is perceived by the patient and can be determined, for example, by way of a traditional method for determining the pitch level of the tinnitus ("pitch matching") and the interpolated hearing threshold which can be determined from the patient's audiogram are involved.
  • the control unit 11 determines the frequencies of the first through fourth acoustic therapy signals f CR1hta through f C42hta in that the control unit 11 varies the frequency of the respective acoustic therapy signal until the control unit 11 ascertains that the extent of coverage between the reference bandwidth around the tinnitus frequency f T and the bandwidth of the auditory filter with the frequency of the respective acoustic therapy signal as the center frequency assumes the predetermined value ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ and/or ⁇ ⁇ .
  • the four data sets cited here are just three examples of the relative ERB overlaps with which optimum therapeutic success can be achieved.
  • the acoustic stimulation therapy may also be used successfully when the values for the relative ERB overlaps are varied within the ranges of ⁇ 10% or up to ⁇ 20%.
  • certain values for optimum relative ERB overlaps are provided, these values are provided by way of example, and other embodiments can be implemented with different values relative to the example values.
  • the following ERB bandwidths are represented in the order given, from top to bottom:
  • Figure 15 shows that the overlaps and/or gaps between the ERBs of the therapy tones and the overlaps and/or gaps between tinnitus ERB and the ERBs of the therapy tones are stable over the entire tinnitus frequency axis.
  • the overlaps and/or gaps can vary up to ⁇ 10% or up to ⁇ 20% within the tinnitus frequency axis.
  • Figure 16 shows the personalized hearing threshold ⁇ adapted frequencies of the four therapy tones divided by the tinnitus frequency f T .
  • the personalized frequencies can also be referred to as individualized frequencies.
  • Figure 16 shows from bottom to top f CR1hta /f T , f CR2hta /f T , f CR3hta /f T and f CR4hta /f T in the order given, represented by solid lines.
  • Figure 16 shows the relationship between the frequencies f CR1 , f CR2 , f CR3 and f CR4 of the fixed standard therapy tones and the frequencies f CR1hta , f CR2hta , f CR3hta and f CR4hta of the personalized hearing threshold ⁇ adapted therapy tones.
  • the intervals of the personalized hearing threshold ⁇ adapted therapy tones f CR1hta , f CR2hta , f CR3hta and f CR4hta vary along the tinnitus frequency axis and may be wider or narrower depending on the patient's hearing threshold in comparison with the intervals of the standard therapy tones f CR1 , f CR2 , f CR3 and f CR4 .
  • the ERB bandwidth of the tinnitus frequency f T is used solely as a reference for the therapy tone situated directly in proximity to the ERB of the tinnitus frequency f T , namely the two middle therapy tones in the case of four therapy tones, for example.
  • the relative ERB overlap with the next closest therapy tone on the frequency axis is used.
  • the ERB closest to the tinnitus frequency f T should be used as a reference for the normalization and in addition the terms ⁇ (f CR1hta , f CR2hta ), ⁇ (f CR2hta , f T ), ⁇ (f CR3hta , f T ) and ⁇ (f CR3hta , f CR4hta ) should be determined instead of the terms ⁇ (f CR1hta , f CR2hta ), ⁇ (f CR2hta , f T ), ⁇ (f CR3hta , f T ) and ⁇ (f CR3hta , f CR4hta ) to avoid suboptimum results.
  • the optimum number of several acoustic therapy signals and their best possible arrangement on the frequency axis are determined (cf. Figures 17 through 22).
  • the second embodiment not only the optimum intervals between the acoustic therapy signals are calibrated but also the location of the entire group of acoustic therapy signals on the frequency axis is calibrated. Since the second embodiment may involve a lower precision in determination of the tinnitus frequency f T perceived by the patient, the second embodiment may be used advantageously in the treatment of patients who have difficulties in audiological determination of the tinnitus frequency f T .
  • the control unit 11 is designed or configured in the second embodiment such that it determines the frequency of a first acoustic therapy signal and the frequency of a second acoustic therapy signal such that a measure of coverage between a first bandwidth of an auditory filter with the frequency of the first acoustic therapy signal as the center frequency and a second bandwidth of an auditory filter with the frequency of the second acoustic
  • the therapy signal as the center frequency assumes a predetermined first value.
  • the first acoustic therapy signal and the second acoustic therapy signal are played for the patient by the stimulation unit 12.
  • the first and second acoustic therapy signals as well as all other acoustic therapy signals may each be either a tone, such as a pure sinusoidal vibration, or a mixed tone, such as a sound comprised of tones of any frequency, in particular a noise or a sound.
  • a tone such as a pure sinusoidal vibration
  • a mixed tone such as a sound comprised of tones of any frequency, in particular a noise or a sound.
  • therapy tones is used in some embodiments, but this may also be understood to refer to mixed therapy tones.
  • the measure of overlap may be either an overlap or a gap.
  • overlap is used in some embodiments. If the overlap has a negative value, it is a gap.
  • the second embodiment is described below on the basis of one example embodiment (cf. Figures 17 through 22).
  • a patient suffering from tinnitus is treated with the help of the device 10.
  • the ERB bandwidths around the frequencies of the therapy tones are used as the first, second, third and/or fourth bandwidths.
  • the relative ERB overlap is used to determine the optimum number of therapy tones and their optimum arrangement on the frequency axis.
  • the procedure for determining the optimum number of therapy tones and their optimum arrangement on the frequency axis according to a first variant of the example embodiment is diagrammed in the flow chart in Figure 17.
  • the frequency axis in Figure 17 shows the tonotopic organization of the primary auditory cortex.
  • a neural population 1 in the primary auditory cortex which has a pathological synchronous and oscillatory neural activity, is to be desynchronized by way of a targeted acoustic stimulation, in particular an acoustic CR stimulation.
  • This stimulation is started with a first therapy tone and a second therapy tone in the vicinity of the frequency f T of the dominant tinnitus tone perceived by the patient.
  • the determination of the tinnitus frequency f T should be at least accurate enough so that the subpopulations 2 and 3, activated by the first and second therapy tones, are linked either within or in close proximity, for example, by connections over one or more synapses, for example, in the neural population 1 with the pathological synchronous and
  • Stimulation with just two therapy tones may not be adequate under some circumstances to achieve a complete desynchronization of neural population 1 and a complete disappearance of the tinnitus symptoms but typically initial therapeutic success can be achieved through such stimulation in the sense that the pathological synchronous and oscillatory neural activity and the tinnitus symptoms are both reduced.
  • successive additional therapy tones are added to the first and second therapy tones, a check being performed by the evaluation unit 13 each time a therapy tone is added to ascertain whether the result of the treatment has been improved by the added therapy tone.
  • the additional therapy tones may be added to the first and second therapy tones on both sides (with respect to the frequency axis).
  • a third therapy tone which stimulates subpopulation 4 is added to the first and second therapy tones.
  • the frequency of the third therapy tone is lower here than the frequencies of the first and second therapy tones.
  • N 3, namely stimulated over three stimulation channels.
  • the third therapy tone is retained and not discarded.
  • the subpopulation 4 stimulated by the third therapy tone is situated within or sufficiently close to the target neural population 1 or is at least connected directly to the target neural population 1 by way of nerve pathways.
  • the first, second and third therapy tones are selected for stimulation of the patient, and a suitable CR stimulation is performed with these therapy tones.
  • a matching method for determining the pitch of the tinnitus yields the dominant or most pronounced tinnitus frequency f T or the frequency perceived by the patient as the most annoying.
  • a pair of first and second therapy tones with the frequencies f CR2hta and f CR3hta which stimulate subpopulations 2 and 3 are then calculated with respect to the tinnitus frequency f T or with respect to neighboring therapy tones based on a predefined value for the relative ERB overlap, which has been extracted from the patient's audiogram, thereby taking into account the hearing threshold ⁇ induced spreading of the auditory filters.
  • the loudness levels of the first and second therapy tones are adapted to one another by way of a loudness matching. Furthermore, the success of the therapy is evaluated (e.g., by way of a clinical assessment "clinical scores"), in particular "visual analog scale scores" for loudness and/or annoyance (cf. document D1) or a tinnitus questionnaire (cf. document D2) and/or objectively such as an electrophysiological measurement, in particular an electroencephalographic (EEG) or electromyographic (EMG) or magnetoencephalographic (MEG) measurement.
  • EEG electroencephalographic
  • EMG electromyographic
  • MEG magnetoencephalographic
  • the neural activity of the neuron population 1 can be measured by way of noninvasive sensors, e.g., EEG, EMG or MEG sensors that are utilized chronically or intermittently.
  • the neural activity can also be determined by detection of characteristic motion patterns such as tremor, akinesis or epileptic seizures with the help of an accelerometer or gyroscope or indirectly by measuring the activation of the autonomous nervous system or by measuring the conductivity resistance of the skin.
  • the senor may also be implanted in the patient's body.
  • invasive sensors include epicortical electrodes, deep brain electrodes for
  • measuring local field potentials for example, subdural or epidural brain electrodes, subcutaneous EEG electrodes and subdural or epidural spinal cord electrodes.
  • the evaluation unit 13 may contain such sensors or it may receive information and/or data sent to the evaluation unit 13 via the input/output unit 14, where this information is used by the evaluation unit 13 to ascertain the success of the stimulation. For example, the evaluation unit 13 may detect a successful stimulation if the synchronicity of the neural population 1 has been reduced by at least a predefined value as a result of the stimulation.
  • additional therapy tones are added to the therapy tones already selected. If the therapeutic success is thereby increased by a certain value, for example, the synchronicity of the neural population 1 is reduced by at least a predefined value, then the therapy tones are retained and otherwise they are discarded.
  • the addition of another therapy tone is assessed as a success, for example, if the clinical assessments or the objective electrophysiological measurement show an improvement by at least 5% or 10% or 15%, etc., for example.
  • a predetermined value is used for the relative ERB overlap for all neighboring therapy tones.
  • one value may be selected from the values 0.35, 0.47, 0.58, 0.65 and 0.71 for the predetermined value for the ERB overlap ⁇ (f CRjhta , f CRj+1hta ) of neighboring therapy tones.
  • therapeutic success can be achieved if these values are varied within ranges of ⁇ 10% or even ⁇ 25%.
  • the frequencies of neighboring therapy tones are determined, for example, by having the control unit 11 vary the frequency of the neighboring therapy tones until the control unit 11 detects that the ERB overlap ⁇ (f CRjhta , f CRj+1hta ) of the neighboring therapy tones has assumed the selected value for the ERB overlap. It is advantageous if, in choosing the first two therapy tones, which stimulate subpopulations 2 and 3 in Figure 17, not only is their mutual relative ERB overlap determined, but in addition the criterion is that the relative ERB overlap of the two tones, respectively, is identical or as similar as possible to the tinnitus ERB (in relation to the tinnitus ERB). This boundary condition "anchors" the first pair of therapy tones in a balanced manner, e.g., on the tinnitus frequency f T , based on the extent of the tinnitus ERB.
  • the procedure for determining the individualized hearing threshold ⁇ adapted therapy tones with the calibration of both the number and frequency intervals of the therapy tones according to the first variant of the second embodiment is diagramed in the flow chart in Figure 18.
  • First the dominant or most pronounced tinnitus frequency f T or the frequency perceived by the patient as being the most annoying is determined by pitch matching, for example.
  • a first and a second therapy tones are then calculated with respect to the tinnitus frequency f T or neighboring therapy tones are calculated based on a predetermined value for the relative ERB overlap, wherein the ERB overlap is extracted from the patient's audiogram and the hearing threshold adapted spreading of the auditory filters is thereby taken into account.
  • the therapeutic success is evaluated by way of CR stimulation (using two stimulation channels) and additional therapy tones on the right and left sides of the frequency axis are added. If the therapeutic success is not further improved by adding a therapy tone on the right or left side of the frequency axis, then no further therapy tone is added on the respective side.
  • measurements and evaluations performed on the patient are shown in boxes outlined with dotted lines whereas data analysis, signal processing and sound generation are shown in boxes outlined with solid lines.
  • Figure 19 shows the procedure for determining the optimum number of therapy tones and their optimum arrangement on the frequency axis according to a second variant of the example embodiment of the second embodiment.
  • the relative ERB overlap ⁇ (f CRjhta , f CRj+1hta ) of neighboring therapy tones can be calibrated.
  • the relative ERB overlap ⁇ (f CR2ta , f CR3hta ) of the first and second therapy tones by way of which the subpopulations 2 and 3 are stimulated is calibrated.
  • the value for the relative ERB overlap ⁇ (f CR2ta , f CR3hta ) can be selected from the following values, for example: 0.35, 0.47, 0.58, 0.65 and 0.71.
  • the value for the relative ERB overlap at which the CR stimulation has shown the greatest therapeutic success is selected.
  • the relative ERB overlap ⁇ (f CR2ta , f CR3hta ) can also be varied continuously and/or incrementally, and the value range at which the best therapeutic results are obtained can be selected.
  • the relative ERB overlap can be varied until an adequate reduction, e.g., 10% or 7% or 5% of the synchronous EEG performance / power is observed. It is advantageous if, in the selection of the first two
  • a first therapy tone and a second therapy tone are then calculated with respect to the tinnitus frequency f T or neighboring therapy tones based on a predetermined value for the relative ERB overlap, wherein the ERB overlap is extracted from the patient's audiogram and the hearing threshold adapted broadening of the auditory filters is thereby taken into account.
  • a loudness matching is carried out to adapt the loudness of the two therapy tones to one another, and a therapeutic success is evaluated by means of CR stimulation using the two therapy tones.
  • the relative ERB overlap of the two therapy tones is calibrated. The resulting value determined for the optimum relative ERB overlap is then used for adding all other therapy tones.
  • Additional therapy tones are added on the right or left sides of the frequency axis and the respective stimulation result achieved is assessed with the help of CR stimulation. If the therapeutic success is not improved further by adding a therapy tone on the right or left side of the frequency axis, then no further therapy tone is added on the respective side.
  • measurements carried out on the patient and evaluations are shown in boxes outlined with dotted lines, while data analysis, signal processing and sound generation are shown in boxes outlined with solid lines.
  • the ERB arrangement shown in Figure 15 leads to improved treatment results, but the arrangement of the various therapy tones may still be unbalanced. For example, there is no overlap between the ERB of the therapy tone f CR4hta and the ERB of the therapy tone f CR3hta whereas the ERB of the therapy tone f CR2hta and the ERB of the therapy tone f CR1hta do overlap. It has surprisingly been discovered that a balanced tinnitus ERB ⁇ centered arrangement of the therapy tones is more advantageous for the therapeutic result and also with respect to the parameterization and therefore the calibration because just two parameters, the stretching factor of the tinnitus ERB and the number of therapy tones, are specified to be introduced into the target ERB.
  • the stretched tinnitus ERB is referred to as the target ERB.
  • the target ERB To obtain a personalized tinnitus ERB ⁇ centered, hearing threshold adapted and balanced arrangement of therapy tones, one should proceed as shown in Figure 13 and then continue as follows, for example.
  • the target ERB is specified by broadening the tinnitus ERB by way of a stretching factor.
  • the stretching factor prevents narrow intervals between the therapy tones in a manner that is not advantageous.
  • the following values for the stretching factor are advantageous in the case of four therapy tones, for example: 1.5, 2.0, 2.25 and 2.5. However, good results can still be obtained if the stretching factor is varied in a range of up to ⁇ 15%.
  • the goal here is to place the four therapy tones in the target ERB in such a way that the arrangement is balanced.
  • f CR1hb The frequencies of the four therapy tones to be determined are referred to below as f CR1hb , f CR2hb , f CR3hb and f CR4hb where "hb” stands for “hearing threshold adapted” or “hearing threshold adapted, balanced.”
  • the frequency of the lowest therapy tone namely the frequency f CR1hb , is higher than the lower edge of the tinnitus ERB.
  • the frequency of the highest therapy tone namely the frequency f CR4hb , is lower than the upper edge of the tinnitus ERB.
  • Figure 22 shows the personalized tinnitus ERB ⁇ centered hearing threshold ⁇ adapted and balanced frequency of the therapy tones divided by the tinnitus frequency f T .
  • FIG. 22 shows from bottom to top f CR1hb /f T ('d'), f CR2hb /f T ('c'), f CR3hb /f T ('b') and f CR4hb /f T ('a') in the order given, represented by solid lines.
  • the lower edge ('e') and the upper edge ('a') of the target ERB divided by the tinnitus frequency f T comprise the four frequencies of the therapy tones.
  • the frequencies f CR1hb , f CR2hb , f CR3hb and f CR4hb are within the target ERB, namely within the tinnitus ERB after being improved by a stretch factor of 1.5.
  • the larger ERB and/or the external ERB relative to the tinnitus frequency f T may be used as a reference.
  • an odd number of therapy tones may also be used, such that one therapy tone, usually the center therapy tone, is aimed directly at the tinnitus frequency f T .
  • Some embodiments permit rapid and effective calibration of the therapy tones. For example, four therapy tones can be inserted into a target ERB with a stretch factor of 1.5, for example, as described above.
  • the ERBs of neighboring therapy tones have an identical relative overlap.
  • additional therapy tones are added on the right and left sides with the same relative ERB overlap as that shown in Figures 17 and 18.
  • the added therapy tones are discarded if the therapeutic result is not improved by a minimum amount, for example, an additional 5% or 10% or 15% or 25%.
  • the device 10 is also suitable for treating other diseases characterized by pathologically ⁇ enhanced neural synchronization.
  • diseases include depression, epilepsy, compulsive disorders, dementia illnesses, Alzheimer's disease, autism, dysfunctions following a stroke, sleep disorders, schizophrenia, irritable bowel syndrome, addictive diseases, borderline personality disorder, attention deficit disorder, attention deficit hyperactivity syndrome, gambling addiction, neuroses, bulimia, anorexia, eating disorders, burnout syndrome, migraines, cluster headaches and general headaches.
  • a frequency is selected either randomly or by a physician or audiologist; this frequency is specified as the frequency of the predetermined tone, namely as the tinnitus frequency f T .
  • FIG. 23 shows as an example of a CR stimulation, in which sequences of therapy tones 31 to 34 are generated in four stimulation channels 21 to 24.
  • therapy tones 31 to 34 are generated at a certain frequency, namely each one of the therapy channels 21 to 24 stimulates a certain subpopulation in the target region in the patient's brain.
  • therapy tones 31 with the frequency f CR1hta or f CR1hb are generated, therapy channel 22 of the therapy tone 32 with the frequency f CR2hta or f CR2hb , therapy channel 23 of the therapy tone 33 with the frequency f CR3hta or f CR3hb and therapy channel 24 of the therapy tone 34 with the frequency f CR4hta or f CR4hb .
  • Figure 23 shows the therapy tones 31 to 34 generated in the stimulation channels 21 to 24 plotted as a function of time t.
  • the sequences are generated in a predetermined time grid comprised of successive cycles.
  • the individual cycles are differentiated from one another by dotted lines in Figure 23.
  • Each cycle has a length T stim .
  • CR stimulation may be carried out continuously, for example, where sequences of therapy tones 31 to 34 are always generated in successive cycles. Alternatively, however, pauses may also occur during CR stimulation, in particular during entire cycles, in which there is no stimulation with therapy tones 31 to 34.
  • Each of the four stimulation channels 21 to 24 stimulates a respective one of the subpopulations 2 to 5 of the pathological neural population 1 illustrated in Figures 3 to 6.
  • the respective therapy tone 31 to 34 is applied periodically with the period T stim in each of the stimulation channels 21 to 24.
  • Therapy tones 31 to 34 produce a phase reset of the neural activity of the respective stimulated subpopulation 2 to 5.
  • the time lag between therapy tones that are generated in different stimulation channels and follow one another directly in time within a sequence amounts to T stim /4, because four stimulation channels 21 to 24 are used for the CR stimulation in the present example embodiment.
  • the time lag between therapy tones generated in different stimulation channels within a sequence of directly chronologically successive therapy tones would amount to T stim /N (for example, there may be a deviation of up to ⁇ 5%, ⁇ 10% or ⁇ 20% from this value).
  • the time lag T stim /N may relate to the initial points in time of the therapy tones.
  • the therapy tones generated in different stimulation channels may be identical except for the different starting points and the frequencies.
  • the period T stim which indicates, first, the duration of a cycle and, second, the period, is repeated with the same sequences, and the therapy tones 31 to 34 generated in a respective stimulation channel 21 to 24 may be close to the middle period of the pathological oscillation of the neural population 1 with the pathological synchronous and oscillatory neural activity and/or may deviate from the middle period by up to ⁇ 5%, ⁇ 10% or ⁇ 20%.
  • the frequency f stim 1/T stim is typically in the range of 1 to 30 Hz.
  • the period of pathological oscillation of the neural population 1 to be stimulated can be measured by way of EEG, for example. However, it is also possible to use values from the literature or
  • the number N of stimulation channels may also be selected differently (with N > 2).
  • CR stimulation with three stimulation channels may be desirable in the embodiment according to Figure 13 or in the embodiments according to Figures 17 and 19, and it may be used to test the CR stimulation with three therapy tones which stimulate, for example, subpopulations 2, 3 and 4.
  • phase reset induced by the therapy tones can be verified as described above, and the therapy tones in CR stimulation produce a so ⁇ called reset of the phase of neural activity of the stimulated neurons.
  • a sensor for example, an EEG sensor or an MEG sensor
  • such a test can then be performed by the actual therapeutic CR neurostimulation.
  • a phase reset for example, the amplitude, or the loudness of the therapy tone, can be varied until a phase reset of the neurons stimulated by the therapy tone is detected on the basis of the methods described below.
  • a signal which adequately represents the activity of the subpopulation stimulated over the j th stimulation channel is measured by way of a sensor.
  • This signal is obtained either directly from the subpopulation by way of a noninvasive measurement, e.g.,
  • EEG or MEG electrodes by way of EEG or MEG electrodes or by way of an invasive measurement, for example, by way of implanted electrodes, as surface EEG or as local field potential by way of depth electrodes.
  • the signal can also be determined indirectly by measurement of a variable that correlates with the activity of the stimulated subpopulation.
  • EEG/MEG/LFP signals of the neural activity of a neural population closely associated with this population are suitable for this purpose.
  • a procedure that is streamlined for verifying a phase reset comprises of determining the average stimulus response.
  • a therapy tone with identical parameters is generated at the times ⁇ 1 , ⁇ 2 , ..., ⁇ l , the intervals between the individual therapy times ⁇ k+1 ⁇ ⁇ k should be large enough and should be randomized, namely not constant in order to avoid standardization processes (cf. document D29).
  • the distances ⁇ k+1 ⁇ ⁇ k should typically be in the range of at least a factor of 10, or even better a factor of 100 of the middle period of the pathological isolation.
  • the stimulus response average over all l is calculated according to the following equation:
  • control unit 11 can also be carried out by device 10, in particular the control unit 11 by taking into account the pre ⁇ stimulus distribution of x j ⁇ (t) or
  • phase ⁇ j (t) of x j (t) is determined. This is done by way of a Hilbert transformation from the signal determined by way of band ⁇ pass filtering and/or empirical mode decomposition representing the pathological oscillatory activity. This empirical mode decomposition permits a parameter ⁇ independent determination of physiologically relevant modes in various frequency ranges in comparison with band ⁇ pass filtering (cf. document D30). The combination of empirical mode decomposition with the subsequent Hilbert transformation is referred to as Hilbert ⁇ Huang transformation (cf. document D31).
  • the phase ⁇ j (t) can also be determined by way of wavelet analysis.
  • ⁇ j ( ⁇ k + t) ⁇ k 1,...,l
  • Those skilled in the art are familiar with those methods with which it is possible to detect that a distribution has an accumulation point (namely a peak).
  • One method is to determine the phase reset index ⁇ (t) by way of circular average:
  • a phase reset occurs when ⁇ (t) exceeds the maximum or the 99 th percentile of the pre ⁇ stimulus distribution of ⁇ (t) (at a point in time or within a small time window of 20 ms, for example).
  • Figure 24 shows schematically a device 40 for noninvasive acoustic stimulation of neurons with a pathological synchronous and oscillatory neural activity according to one embodiment of the invention.
  • the device 40 can be operated as an acoustic stimulator by itself or in combination with a hearing device, e.g., combined in one component.
  • the device 40 may also include an audiometer combined with it structurally or it may be equipped to receive data from an audiometer by wireless transmission, for example.
  • Acoustic stimulation signals are administered to the patient via an earbud or headphones 41 or a loudspeaker (or a hearing aid, a cochlear implant (which can deliver signals both acoustically and electrically), or another acoustic generator or transducer of a different design), wherein an earbud is a loudspeaker placed in the auditory channel.
  • the earbud or headphones 41 is/are connected by cable 43 to a control unit 42 placed behind the ear with a (rechargeable) battery.
  • a central control unit 44 with a (rechargeable) battery for operation by the patient may be connected to the components in and/or on the ear either by cable or by wireless connection.
  • Figure 25 shows schematically a device 45, which is a refinement of the device 40 from Figure 24.
  • the device 45 contains, in addition to the components described above, noninvasively secured EEG electrodes 46 which are connected by cable 47, 48 to the behind ⁇ the ⁇ ear control unit 42. EEG signals are amplified and applied in the control unit 42.
  • the devices 10, 40 and 45 may also contain a unit for producing an audiogram and/or a unit for recording sensor signals, in particular EEG signals or MEG signals and/or for detecting information about the patient’s condition, in particular VAS scales or tinnitus questionnaires, in addition to containing the device components already described above.
  • sensor signals in particular EEG signals or MEG signals
  • VAS scales or tinnitus questionnaires in addition to containing the device components already described above.
  • the audiogram, the sensor signals and/or the well ⁇ being information is/are detected by way of external devices and that the corresponding data is sent to the devices 10, 40 and 45 by way of an input/output unit.
  • the audiogram typically covers frequencies from 250 Hz to 8000 Hz or from 250 Hz to 16,000 Hz. It may be more advantageous to produce a high ⁇ pitch audiogram, e.g., up to 16,000 Hz if the dominant tinnitus frequency is at higher frequencies, in particular at more than 8000 Hz. In this case, the therapy tones will be higher than 8000 Hz and the choice of
  • an optimal interval between them can involve adaptation to the respective hearing threshold.
  • Embodiments of this disclosure are not restricted to pure tone stimuli, but may use many other types of sound stimuli including stimuli with frequency components within the auditory filter bandwidth, and the inverse case of broadband signals with removal of frequency components within the auditory filter bandwidth. For instance, in the case of delivering CR stimulation with four different narrowband noise sound stimuli, replacement can be made of the ERB corresponding to the sine tone, as used so far, by an integral ERB belonging to the narrowband signal as described in the following and illustrated in Figure 26.
  • nb 1 and nb 2 denote the lower and the upper frequency where the power of the narrowband signal is equal to half of its maximal value, namely 3 dB less power than at the peak as shown in Figure 26, with nb 2 ⁇ nb 1 specifying the band width at half maximum power.
  • 3 dB is arbitrary but is the most commonly used in engineering when specifying electronic filters. It also is the most commonly used in psychoacoustics because of the analogy to engineering filters, because this value is just over the just noticeable differences (jnd) for loudness that range from about 0.5 dB to 2.0 dB depending on frequency and because it is approximately the midpoint of the dB step size use for diagnostic threshold testing.
  • nb min is not necessarily equal to nb 1 ⁇ 0,5 ⁇ ERB(nb 1 ,h)
  • nb max is not necessarily equal to nb 2 + 0,5 ⁇ ERB(nb 2 , h).
  • the integral ERB of the narrow band signal is then given by nb max ⁇ nb min ⁇
  • the sound used for stimulation may contain additional spectral components that do not exceed the half maximum (P max /2) level. These frequency components generally are not relevant for measures of hearing sensitivity or pitch estimates under most circumstances and are also remote from the frequency region of interest. In that case one can determine the integral ERB in the same way as explained above. Instead of considering the spectral power of the narrow band sound signal one can also use the intensity and apply the same analysis.
  • diagnosis of primary tinnitus is an exclusionary diagnosis that is made after having ruled out diseases that may cause secondary tinnitus. No objective diagnosis of primary tinnitus is available. However, embodiments of this disclosure can be used for diagnostic purposes, too.
  • Abnormal neuronal synchrony is typically found in patients with primary tinnitus (see documents D3, D4, D9, D10, D20, D22, D23 and D25) and is reflected in abnormal spectral power of EEG signals and/or MEG signals and/or the corresponding brain source activity, e.g., determined with a BESA source montage approach (see document D34), and/or the corresponding current source density approach, e.g. calculated with sLORETA (see document D33).
  • Some embodiments can be used for diagnostic purposes even with the surprising finding that the amount of abnormal neuronal synchrony may not be characteristic for primary tinnitus. Rather, the response of the abnormal, synchronized neuronal activity in the auditory cortex to desynchronizing test sound stimulation, e.g., acoustic CR
  • neuromodulation delivered in a hearing threshold adapted manner by way of this disclosure, can be used as a diagnostic marker for primary tinnitus.
  • After ⁇ effects can be assessed unilaterally, e.g., for the auditory cortex of the same side, in case of unilateral tinnitus or bilaterally (by taking the mean of both sides) in patients with bilateral tinnitus.
  • reconstructed after ⁇ effects can also be determined by using EEG and/or MEG signals (without any inverse analysis techniques).
  • after ⁇ effect markers can be used in isolation or in combination (to increase their diagnostic specificity). If used in isolation the delta ⁇ band after ⁇ effect marker is most specific. The most robust pair of markers is the delta/gamma marker pair, since the alpha band activity may be altered due to non ⁇ disease related influences, e.g., relaxation etc.
  • Some embodiments can also be used for diagnostic purposes and/or to monitor therapeutic outcome in the course of a treatment. Both purposes can leverage that the amount of abnormal neuronal synchrony, in particular, in the delta frequency band (e.g., 1 ⁇ 4 Hz) may not be sufficient to separate healthy controls from patients with primary tinnitus on a patient ⁇ to ⁇ patient basis.
  • the delta frequency band e.g. 1 ⁇ 4 Hz
  • some embodiments can also be used to monitor therapeutic outcome in the course of a treatment.
  • the after ⁇ effect markers as explained above, especially the delta band marker are assessed at each visit. Positive therapeutic effect translates into a decrease of the duration of the test stimulation after ⁇ effects.
  • Auditory filter theory is based on the concept that the auditory system functions as a spectrum analyzer that is able to analyze the level, typically on a dB scale, of broad band acoustic signals such as speech, music and noise to provide information on the spectral content of the signal. It is based on the fundamental engineering concept of a band pass filter that can have a wide variety of
  • f L and f H are the lower and upper edges of the bandwidth, respectively.
  • Auditory filter theory can specify a particular filter that can be described both subjectively and mathematically and then represents the auditory system as a set of adjacent auditory filters.
  • the center frequency f C of an auditory filter initially is determined by the peripheral auditory system, specifically the external ear, middle ear, and most prominently, the cochlea.
  • the bandwidths BW and filter shapes are determined from a variety of psychoacoustic and physiologic measures with descriptions that can include detailed mathematical representations that specify level, frequency and phase effects.
  • the fundamental concept is that an acoustic signal is filtered in the spectral domain by the auditory filter to establish the spectral resolution of the resulting auditory percept that is associated with various locations in the auditory system beginning at the peripheral ear and extending to central nervous system locations up to the level of the auditory cortex.
  • Auditory filter theories are used to explain several abilities of the auditory system including frequency sensitivity and selectivity (e.g., frequency tuning curves), speech perception (e.g., vowel discrimination), music perception (e.g., timbre), source identification (e.g., male vs female speaker) and selective attention (e.g., enhanced ability to attend to a specific signal in the presence of non ⁇ specific noise).
  • frequency sensitivity and selectivity e.g., frequency tuning curves
  • speech perception e.g., vowel discrimination
  • music perception e.g., timbre
  • source identification e.g., male vs female speaker
  • selective attention e.g., enhanced ability to attend to a specific signal in the presence of non ⁇ specific noise
  • Auditory filter theories have employed a wide variety of mathematical representations.
  • the physical acoustic waveform in the environment can be described as the amount of time between specified oscillations in the waveform, period p in msec.
  • the number of oscillations per unit time, frequency f in Hz 1/p.
  • the values can be expressed on a linear scale or on a logarithmic scale, log(p) and log(f).
  • Auditory filter theories can employ a wide variety of perceptual phenomena that can be described mathematically as well.
  • Musical pitch can be specified as being
  • Auditory pitch also can be specified based on psychoacoustically derived division of frequency ranges into perceptually equal intervals or judgements of the frequency of a tone as half as high as a comparison tone (see document D6).
  • Auditory filter theory also can use the concept of critical bandwidth B c derived from either masking (see document D19) or loudness summation psychoacoustic measures (see document D28).
  • Masking involves simultaneously presenting a tonal signal S with a broadband noise N where selectively the frequencies of N that fall within a critical band contribute to masking of the signal. The larger the critical bandwidth, the lower the signal ⁇ to ⁇ noise ratio S/N and the more the signal is masked. Loudness summation involves measurement of loudness changes with increasing signal bandwidth.
  • Bark, B, scale is a psychoacoustically ⁇ derived frequency scale where equal frequency distances correspond with equal perceptual distances (see document D24 ).
  • a scale from 1 to 24 corresponds to the first 24 critical bands.
  • the critical band rate scale, z, (in bark) [26.81 I (1 + 1960 / f)] ⁇ 0.53, with f in Hz.
  • Critical bandwidth (in Hz), B c 52548 / (z 2 ⁇ 52.56 z + 690.39).
  • Auditory filter theories are useful for understanding a wide variety of auditory phenomena including sound localization ability, the physiology of the cochlea and central nervous system processing of auditory signals and tinnitus.
  • a tonal signal can be considered analogous to the center frequency of an auditory filter.
  • the auditory filter characteristics such as filter bandwidth, can be used to represent specific spatial representation in the auditory system. Because the spatial representation of these signals is systematically organized at the level of the cochlea and sequentially through the eighth cranial nerve, the auditory neural centers in the brainstem, and all the way to the auditor cortex in the temporal lobe, acoustic coordinated reset tinnitus intervention signals are tightly controlled and the effects are better understood.
  • the auditory filter models cited above refer to normal hearing.
  • An adjustment for hearing loss can take two forms. In the case of an auditory filter model that contains both hearing threshold and suprathreshold information, the hearing loss adjustment can be made from the normal hearing data.
  • the frequency tuning curve model e.g., where the hearing threshold can be specified as the minimum point of the frequency tuning curve and the frequency selectivity is specified for all suprathreshold levels of stimuli, an adjustment for hearing loss can be estimated by re ⁇ specifying the minimum point on the curve based on the magnitude of the hearing loss and no additional measures are involved other than the existing diagnostic audiogram.
  • the ERB model based on data measured in persons with sensorineural hearing loss
  • the ERB model, or the frequency tuning curve model e.g., the adjustment for sensorineural hearing loss
  • the hearing loss range can be set for the ERB analysis based on published actual averaged data from hearing loss subjects though this is not required, and ERB bandwidths can be specified for all levels of hearing loss.
  • the actual auditory filter can be measured in an individual patient with a variety of either psychoacoustic or physiologic methods.
  • some embodiments can also use actual measures of the auditory filters for a particular patient.
  • the disadvantage of measuring auditory filters individually is the time involved.
  • some embodiments can provide stimuli initially determined with a model ⁇ based auditory filter (e.g., ERB) calculated with the formulas presented above.
  • ERB model ⁇ based auditory filter
  • the auditory filters can be measured initially at the principal diagnostic frequencies, e.g., at 250 Hz, 500 Hz, 750 Hz, 1 kHz, 1.5 kHz, 2 kHz, 3 kHz, 4 kHz, 6 kHz, 8 kHz, 10 kHz, 12.5 kHz, 16 kHz or alternatively with more fine ⁇ grained measures around the tinnitus frequency f T to gradually replace the model ⁇ based estimates of the auditory filters with individually measured auditory filters visit by visit. Due to the extra time for these additional measures this hybrid procedure can be
  • the analysis is based on auditory filter theory where the relevant auditory processing for a single tone is a band width centered on the tone.
  • the corresponding rectangular band width (ERB) (D11; D17) was used for the tinnitus frequency and for each of the four tones.
  • ERB rectangular band width
  • determination is made of the spacing of their corresponding ERBs and adjustment is made of these ERBs further based on the hearing level at each frequency for each subject.
  • Figure 27 shows notations of band edges and center frequencies of ERBs and each of the four CR tones as an example.
  • the x ⁇ axis is the frequency (f) axis. denote the lower and upper edge of
  • the frequency range of validity is significantly greater than that of the 1 st approximation.
  • the 2 nd approximation appears to be superior in terms of a broader coverage of the admissible tinnitus frequency range combined with a streamlined mathematical model. Accordingly, the 2 nd ERB approximation is used for the following analysis.
  • D18 provides data for 2 kHz, 4kHz, and 6 kHz and absolute hearing threshold between 0 and 80 dB HL. Based on their data, in a first approximation, for the range between 0 and 50 dB HL the dependence of ERB on hearing loss h can be modeled by
  • ERB o denotes the ERB at normal hearing
  • Figure 28 shows the ERB at normal hearing (thin line) as well as the hearing threshold adapted ERB (solid line). Symbols indicate frequencies at which the audiogram was measured. Lower plot shows the corresponding audiogram (linearly interpolated on a logarithmic frequency axis).
  • the left panel in Figure 29 shows the tinnitus frequency ⁇ dependent ERB edges divided by the tinnitus frequency for the case of normal hearing (0 dB HL for all frequencies), respectively.
  • the upper and lower edge of the uppermost, light shaded area (belonging to the fourth CR tone, “CR4”) reads respectively.
  • ERBs of the different CR tones are not symmetrically aligned on the (relative) frequency axis.
  • ERBs as quantifying the tonotopic pathways to neuronal populations in the central auditory system, e.g., the auditory cortex, it is hypothesized that a non ⁇ symmetrical arrangement of ERBs of CR tones corresponds to a non ⁇ symmetric, (spatially) non ⁇ balanced stimulation of neuronal sub ⁇ populations in the auditory cortex by the different tones CR1,...,CR4.
  • a spatially symmetric arrangement of stimulated cortical sub ⁇ populations is optimal:
  • the spacing (in cortical coordinates) of the sub ⁇ populations (belonging to the entire population involved in the abnormal neuronal synchronization process) affected by the different subpopulations should be intermediate, as opposed to completely overlapping or completely separate.
  • Figure 29 shows the ERB arrangement for the case of standard CR tones f_1,...,f_4 with a typical hearing loss (upper right panel) with hearing threshold as displayed in the lower right panel.
  • the arrangement of the different CR ERBs e.g., ERBs belonging to the different CR tones
  • the overlaps and/or gaps between the different ERBs depend on the tinnitus frequency f T .
  • This aspect is relevant because for approximately 85% of the tinnitus patients the tinnitus frequency f T decreased during the course of the CR treatment, so the CR tones have to be re ⁇ adjusted (by tinnitus pitch matching) on a regular basis. Accordingly, during the course of the treatment in an individual patient, the spacing of the CR tone ERBs may change significantly. It is hypothesized that the efficacy of the CR treatment may vary accordingly.
  • the tinnitus ERB (e.g., the ERB belonging to the tinnitus frequency f T ) is used as a reference for calculating the relative overlap or relative separation (gap) of each of the CR therapy tone ERBs as illustrated in Figure 30.
  • ERBs Since the ERB is specified on a linear frequency axis (D11; D17), calculation is made of the relative ERB overlaps on a linear frequency axis. Calculating the relative ERB overlaps on
  • Figure 31 plots the distributions of the number of super responders, e.g., the subjects with VAS for loudness (VAS ⁇ L) changes > 15 (y ⁇ axis) in relation to for all four CR tones (rows 1,...,4) after 12 weeks (column 1) and after 24 weeks (column 2) and the corresponding distributions obtained by a standard smoothing procedure (column 3).
  • Super responders are patients who respond particularly well, e.g., have a decrease of their VAS ⁇ L score (e.g., score for VAS loudness) of at least 15.
  • VAS ⁇ A Very similar distributions are obtained for the distribution of super responders based on the VAS scores for annoyance
  • ERB ⁇ ⁇ the tinnitus ERB, is not used as reference for the normalization in the formula for the relative ERB overlap/gap one obtains significantly
  • the upper two panels show whisker plots of the VAS ⁇ L and VAS ⁇ A values at baseline (prior to treatment), after 12 weeks and after 24 weeks of treatment with acoustic CR neuromodulation for the two subgroups of the entire population: the subgroup of patients with optimal relative ERB overlaps and all other patients.
  • VAS ⁇ A At baseline both subgroups have similar VAS distributions, whereas after both 12 weeks and after 24 weeks the reduction of VAS ⁇ A scores is significantly stronger in the subgroup with optimal relative ERB overlaps/gaps.
  • VAS ⁇ L At baseline both subgroups have similar VAS distributions, whereas after 24 weeks the reduction of VAS ⁇ A scores is significantly stronger in the subgroup with optimal relative ERB overlaps/gaps.
  • the lower two plots show whisker plots of the VAS ⁇ L and VAS ⁇ A values at baseline (prior to treatment), after 12 weeks and after 24 weeks of treatment with acoustic CR neuromodulation for the two subgroups of the super responders: subgroup of super responders with optimal relative ERB overlaps and all other super responders.
  • VAS ⁇ A At baseline both subgroups of super responders have similar VAS distributions, whereas after 12 weeks the reduction of VAS ⁇ A scores is significantly greater in the subgroup of super responders with optimal relative ERB overlaps/gaps.
  • VAS ⁇ L There was no significant difference between the two subgroups of super responders.
  • whisker plots are shown of the distribution of the hearing thresholds t CR tones f x , ... , f 4 and at the tinnitus frequency f T for the subgroup of patients with ptimal relative ERB overlap/gap and for the subgroup of all other patients (left panel).
  • the ight panel shows the corresponding distributions for the VAS-A and VAS-L super esponders.
  • Figure 36 shows an example of a symmetric ERB arrangement for (upper panel) for the patient with the typical hearing loss (lower panel).
  • the stretching factor can be calibrated based on treatment outcome (even by the patient’s individual results) or (in a more sophisticated way) by way of EEG recordings e.g., assessing the CR ⁇ induced reduction of auditory delta power.
  • the dependence of EEG delta power suppression on the stretching factor can be assessed to establish a range of values suitable for clinical applications.
  • ⁇ lowest CR tone is greater than lower edge of stretched tinnitus ERB, ⁇ highest CR tone is smaller than higher edge of stretched tinnitus ERB.
  • D21 P.A. Tass A model of desynchronizing deep brain stimulation with a demand ⁇ controlled coordinated reset of neural subpopulations. Biol. Cybern., 89, 81 ⁇ 88 (2003)
  • Embodiment 1 A device (10) for stimulation of a patient with acoustic stimulation signals, comprising:
  • a stimulation unit (12) configured to generate acoustic stimulation signals
  • a control unit (11) connected to the stimulation unit (12) and configured to control the stimulation unit (12), wherein the control unit (11) is configured to
  • a frequency of a first acoustic therapy signal such that a measure of coverage between the reference bandwidth around the frequency of the predetermined tone and a first bandwidth of an auditory filter with the frequency of the first acoustic therapy signal as a center frequency assumes a predetermined first value
  • Embodiment 2 The device (10) according to Embodiment 1, wherein:
  • predetermined tone and the first bandwidth of the auditory filter about the first acoustic therapy signal each have an upper edge and a lower edge
  • the measure of coverage between the reference bandwidth and the first bandwidth is a function of a difference between the upper edge of the bandwidth of a lower acoustic signal of the predetermined tone and the first acoustic therapy signal and the lower edge of the bandwidth of the other acoustic signal.
  • Embodiment 3 The device (10) according to Embodiment 1 or 2, wherein the control unit (11) is configured to:
  • a frequency of a second acoustic therapy signal such that a measure of coverage between the reference bandwidth about the frequency of the predetermined tone and a second bandwidth of an auditory filter with the frequency of the second acoustic therapy signal as a center frequency assumes a predetermined second value
  • Embodiment 4 The device (10) according to Embodiment 3, wherein one of the first acoustic therapy signal and the second acoustic therapy signal has a lower frequency than the predetermined tone, and the other acoustic therapy signal has a higher frequency than the predetermined tone.
  • Embodiment 5 The device (10) according to Embodiment 3 or 4, wherein:
  • control unit (11) is configured to determine the frequency of the first acoustic therapy signal by varying the frequency of the first acoustic therapy signal until the measure of coverage between the reference bandwidth about the frequency of the predetermined tone and the first bandwidth of the auditory filter with the frequency of
  • the first acoustic therapy signal as the center frequency assumes the predetermined first value
  • control unit (11) is configured to determine the frequency of the second acoustic therapy signal by varying the frequency of the second acoustic therapy signal until the measure of coverage between the reference bandwidth about the frequency of the predetermined tone and the second bandwidth of the auditory filter with the frequency of the second acoustic therapy signal as the center frequency assumes the
  • Embodiment 6 The device (10) according to any one of Embodiments 3 to 5, wherein the control unit (11) is configured to:
  • a frequency of a third acoustic therapy signal such that a measure of coverage between the reference bandwidth about the frequency of the predetermined tone and a third bandwidth of an auditory filter with the frequency of the third acoustic therapy signal as a center frequency assumes a predetermined third value, and control the stimulation unit (12) such that the stimulation unit (12) generates the third acoustic therapy signal.
  • Embodiment 7 The device (10) according to any one of Embodiments 3 to 5, wherein the control unit (11) is configured to:
  • a measure of coverage between the first or second bandwidth of the auditory filter with the frequency of the first or second acoustic therapy signal as the center frequency and a third bandwidth of an auditory filter with the frequency of the third acoustic therapy signal as a center frequency assumes a predetermined third value
  • Embodiment 8 The device (10) according to any one of the preceding Embodiments 1 to 7, wherein at least one of the following applies:
  • the reference bandwidth depends on a hearing threshold of the patient at the frequency of the predetermined tone
  • the first bandwidth depends on the hearing threshold of the patient at the frequency of the first acoustic therapy signal
  • the second bandwidth depends on the hearing threshold of the patient at the frequency of the second acoustic therapy signal
  • the third bandwidth depends on the hearing threshold of the patient at the frequency of the third acoustic therapy signal.
  • Embodiment 9 The device (10) according to any one of the preceding Embodiments 1 to 8, wherein at least one of the following applies:
  • the reference bandwidth is an equivalent rectangular bandwidth of the auditory filter at the frequency of the predetermined tone
  • the first bandwidth is an equivalent rectangular bandwidth of the auditory filter at the frequency of the first acoustic therapy signal
  • the second bandwidth is an equivalent rectangular bandwidth of the auditory filter at the frequency of the second acoustic therapy signal
  • the third bandwidth is an equivalent rectangular bandwidth of the auditory filter at the frequency of the third acoustic therapy signal.
  • Embodiment 10 The device (10) according to any one of the preceding Embodiments 1 to 9, wherein the frequency of the predetermined tone is a frequency of the patient’s tinnitus tone estimated by pitch matching.
  • Embodiment 11 The device (10) according to any one of the preceding Embodiments 1 to 10, wherein at least one of the following applies:
  • the first acoustic therapy signal is a first therapy tone or a first therapy tone mixture
  • the second acoustic therapy signal is a second therapy tone or a second therapy tone mixture
  • the third acoustic therapy signal is a third therapy tone or a third therapy tone mixture.
  • Embodiment 12 The device (10) according to any one of the preceding Embodiments 1 to 11, wherein each measure of coverage is an overlap or a gap.
  • Embodiment 13 The device (10) according to Embodiment 6 or 7, wherein the control unit (11) is configured to control the stimulation unit (12), such that the stimulation unit (12) generates the first acoustic therapy signal, the second acoustic therapy signal and the third acoustic therapy signal with a time lag relative to one another, wherein amplitudes of the acoustic therapy signals are each adjusted, so that the acoustic therapy signals trigger a phase reset of a neural activity of respective stimulated neurons in the patient's brain.
  • Embodiment 14 A method for stimulation of a patient with acoustic stimulation signals, comprising:
  • determining a frequency of a first acoustic therapy signal such that a measure of coverage between the reference bandwidth about the frequency of the predetermined tone and a first bandwidth of an auditory filter with the frequency of the first acoustic therapy signal as a center frequency assumes a predetermined first value, and generating the first acoustic therapy signal.
  • Embodiment 15 A non ⁇ transitory computer ⁇ readable medium comprising computer code for execution in a data processing system to:
  • a frequency of a first acoustic therapy signal such that a measure of coverage between the reference bandwidth about the frequency of the predetermined tone and a first bandwidth of an auditory filter with the frequency of the first acoustic therapy signal as a center frequency assumes a predetermined first value
  • control signals for controlling a stimulation unit (12) to generate the first acoustic therapy signal.
  • Embodiment 16 A device (10) for stimulation of a patient with acoustic stimulation signals, comprising:
  • a stimulation unit (12) configured to generate acoustic stimulation signals
  • a control unit (11) connected to the stimulation unit (12) and configured to control the stimulation unit (12), wherein the control unit (11) is configured to
  • a frequency of a first acoustic therapy signal and a frequency of a second acoustic therapy signal such that a measure of coverage between a first bandwidth of an auditory filter with the frequency of the first acoustic therapy signal as a center frequency and a second bandwidth of an auditory filter with the frequency of the second acoustic therapy signal as a center frequency assumes a predetermined first value, and control the stimulation unit (12) such that the stimulation unit (12) generates the first acoustic therapy signal and the second acoustic therapy signal.
  • Embodiment 17 The device (10) according to Embodiment 16, wherein the device (10) comprises an evaluation unit (13) configured to evaluate a success of a treatment.
  • Embodiment 18 The device (10) according to Embodiment 17, wherein the control unit (11) is configured to:
  • a frequency of a third acoustic therapy signal such that a measure of coverage between the first bandwidth of the auditory filter with the frequency of the first acoustic therapy signal as the center frequency and a third bandwidth of an auditory filter with the frequency of the third acoustic therapy signal as a center frequency assumes a predetermined second value
  • Embodiment 19 The device (10) according to Embodiment 18, wherein the control unit (11) is configured to, if the evaluation unit (13) identifies a sufficient therapeutic success in stimulation with the first, second and third acoustic therapy signals:
  • a frequency of a fourth acoustic therapy signal such that a measure of overlap between the second bandwidth of the auditory filter with the frequency of the second acoustic therapy signal as the center frequency and a fourth bandwidth of an auditory filter with the frequency of the fourth acoustic therapy signal as a center frequency assumes a predetermined third value
  • Embodiment 20 The device (10) according to Embodiment 18, wherein the control unit (11) is configured to, if the evaluation unit (13) identifies a sufficient therapeutic success in stimulation with the first, second and third acoustic therapy signals:
  • third acoustic therapy signal as the center frequency and a fourth bandwidth of an auditory filter with the frequency of the fourth acoustic therapy signal as a center frequency assumes a predetermined third value
  • Embodiment 21 The device (10) according to any one of Embodiments 16 to 20, wherein the control unit (11) is configured to:
  • Embodiment 22 The device (10) according to any one of Embodiments 16 to 21, wherein a frequency of a tinnitus tone perceived by the patient is between the frequency of the first acoustic therapy signal and the frequency of the second acoustic therapy signal.
  • Embodiment 23 The device (10) according to any one of Embodiments 16 to 22, wherein at least one of the following applies:
  • the first bandwidth is a function of the patient's hearing threshold at the frequency of the first acoustic therapy signal
  • the second bandwidth is a function of the patient's hearing threshold at the frequency of the second acoustic therapy signal
  • the third bandwidth is a function of the patient's hearing threshold at the frequency of the third acoustic therapy signal
  • the fourth bandwidth is a function of the patient's hearing threshold at the frequency of the fourth acoustic therapy signal.
  • Embodiment 24 The device (10) according to any one of Embodiments 16 to 23, wherein at least one of the following applies:
  • the first bandwidth is an equivalent rectangular bandwidth of the auditory filter at the frequency of the first acoustic therapy signal
  • the second bandwidth is an equivalent rectangular bandwidth of the auditory filter at the frequency of the second acoustic therapy signal
  • the third bandwidth is an equivalent rectangular bandwidth of the auditory filter at the frequency of the third acoustic therapy signal
  • the fourth bandwidth is an equivalent rectangular bandwidth of the auditory filter at the frequency of the fourth acoustic therapy signal.
  • Embodiment 25 The device (10) according to any one of Embodiments 16 to 24, wherein at least one of the following applies:
  • the first acoustic therapy signal is a first therapy tone or a first therapy tone mixture
  • the second acoustic therapy signal is a second therapy tone or a second therapy tone mixture
  • the third acoustic therapy signal is a third therapy tone or a third therapy tone mixture
  • the fourth acoustic therapy signal is a fourth therapy tone or a fourth therapy tone mixture.
  • Embodiment 26 The device (10) according to any one of Embodiments 16 to 25, wherein each measure of coverage is an overlap or a gap.
  • Embodiment 27 The device (10) according to Embodiment 19 or 20, wherein the control unit (11) is configured to control the stimulation unit (12) such that the stimulation unit (12) generates the first acoustic therapy signal, the second acoustic therapy signal, the third acoustic therapy signal and the fourth acoustic therapy signal with a time lag between one another, wherein amplitudes of the acoustic therapy signals are each adjusted so that the acoustic therapy signals trigger a phase reset of a neural activity of respective neurons stimulated in the patient's brain.
  • Embodiment 28 A method for stimulation of a patient with acoustic stimulation signals, comprising:
  • auditory filter with the frequency of the first acoustic therapy signal as a center frequency and a second bandwidth of an auditory filter with the frequency of the second acoustic therapy signal as a center frequency assumes a predetermined first value, and generating the first acoustic therapy signal and the second acoustic therapy signal.
  • Embodiment 29 A non ⁇ transitory computer ⁇ readable medium comprising computer code for execution in a data processing system to:
  • a frequency of a first acoustic therapy signal and a frequency of a second acoustic therapy signal such that a measure of coverage between a first bandwidth of an auditory filter with the frequency of the first acoustic therapy signal as a center frequency and a second bandwidth of an auditory filter with the frequency of the second acoustic therapy signal as a center frequency assumes a predetermined first value, and generate control signals for controlling a stimulation unit (12) to generate the first acoustic therapy signal and the second acoustic therapy signal.
  • the terms “approximately,” “substantially” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation.
  • the terms when used in conjunction with a numerical value, can encompass a range of variation of less than or equal to ⁇ 10% of that numerical value, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • Some embodiments of this disclosure relate to a non ⁇ transitory computer ⁇ readable storage medium having computer code or instructions thereon for performing various computer ⁇ implemented operations.
  • the term “computer ⁇ readable storage medium” is used to include any medium that is capable of storing or encoding a sequence of instructions or computer code for performing the operations, methodologies, and techniques described herein.
  • the media and computer code may be those specially designed and constructed for the purposes of the embodiments of this disclosure, or may be of the kind available to those having skill in the computer software arts.
  • Examples of computer ⁇ readable storage media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD ⁇ ROMs and holographic devices; magneto ⁇ optical media such as optical disks; and hardware devices that are specially configured to store and execute program code, such as application ⁇ specific integrated circuits (ASICs), programmable logic devices (PLDs), and ready ⁇ only memory (ROM) and random ⁇ access memory (RAM) devices.
  • Examples of computer code include machine code, such as produced by a compiler, and files containing higher ⁇ level code that are executed by a processor using an interpreter or a compiler.
  • an embodiment of the disclosure may be implemented using Java, C++, or other object ⁇ oriented programming language and development tools.
  • an embodiment of the disclosure may be downloaded as a computer program product, which may be transferred from a remote computer (e.g., a server computing device) to a requesting computer (e.g., a client computing device or a different server computing device) via a transmission channel.
  • a remote computer e.g., a server computing device
  • a requesting computer e.g., a client computing device or a different server computing device
  • Another embodiment of the disclosure may be implemented in hardwired circuitry in place of, or in combination with, processor ⁇ executable software instructions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Acoustics & Sound (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Multimedia (AREA)
  • Psychology (AREA)
  • Neurosurgery (AREA)
  • Signal Processing (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Psychiatry (AREA)
  • Electrotherapy Devices (AREA)

Abstract

A device for stimulation of a patient with acoustic stimulation signals includes a stimulation unit for generating acoustic stimulation signals and a control unit for controlling the stimulation unit. The control unit is configured so that it determines a bandwidth of an auditory filter with a frequency of a predetermined tone as a center frequency, wherein this bandwidth is a reference bandwidth. The control unit determines a frequency of a first acoustic therapy signal such that a measure of coverage between the reference bandwidth around the frequency of the predetermined tone and a first bandwidth of an auditory filter with the frequency of the first acoustic therapy signal as a center frequency assumes a predetermined first value, and controls the stimulation unit such that the stimulation unit generates the first acoustic therapy signal.

Description

Device and Method for Hearing Threshold‐Adapted Acoustic Stimulation 
 
Cross‐Reference to Related Application 
[0001] This application claims the benefit of German Patent Application No. 10 2016 009  874.0, filed August 12, 2016, the content of which is incorporated herein by reference in its  entirety.  Technical Field 
[0002] The  present  disclosure  relates  to  a  device  and  a method  for  hearing  threshold‐ adapted acoustic stimulation. Background 
[0003] Subjective tinnitus  is the perception of a sound or noise without a physical sound  and/or noise source. Subjective tinnitus occurs  in the patient's brain and can be perceived  just by  the patient. A distinction  is made between  tonal  tinnitus, namely perception of a  tone, in comparison with atonal tinnitus, namely perception of a sound.
[0004] In patients who suffer from tinnitus, nerve cell ensembles in specific regions of the  brain are pathologically active, e.g., excessively  synchronously active.  In  this  case, a  large  number of neurons are forming action potentials synchronously. The neurons  involved fire  excessively synchronously. In a healthy person, however, the neurons in these regions of the  brain will fire in a qualitatively different manner, for example, in an uncorrelated manner.
[0005] For  treatment of  tonal  tinnitus,  the acoustic "coordinated reset"  (CR) stimulation  has been developed, counteracting pathologically synchronous neural activity in a targeted  manner.  In the past, the dominant frequency  fT used  for this purpose, namely the  level of  the  tone  or  the  pitch  of  the  tinnitus  tone  perceived  by  the  patient,  is  determined  audiologically,  in  particular  by  balancing  of  tone  levels,  namely  pitch  matching  (cf.  documents  D13  and  D22  cited  in  the  bibliography  at  the  end  of  the  specification).  All  patients are stimulated with four CR tones in the same fixed pattern relative to the tinnitus  frequency  fT.  All  four  CR  tones with  the  frequencies  fCR1,  fCR2,  fCR3  and  fCR4  have  a  fixed  frequency ratio  in all patients  in comparison with the tinnitus  frequency  fT and they cover   
 
barely one octave, wherein fCR1 = 77% * fT and fCR4 = 140% * fT (cf. documents D9 and D22).  The  CR  tones  are  administered with  a  loudness  just  barely  above  the  hearing  threshold,  typically up to 5 dB above the hearing threshold. The sole patient‐specific parameter in this  treatment is the tinnitus frequency fT, which is measured audiologically.
[0006] The width of audiological filters measured on the frequency axis increases with an  increase  in  hearing  impairment  (cf.  document D18).  This  filter width  corresponds  to  the  range in the primary auditory cortex, for example, which is activated, e.g., stimulated, by a  tone. To stimulate specific regions of the central auditory system  in the most well‐defined  and  controlled possible manner,  the hearing  threshold‐dependent  change  in  the auditory  filters should also be taken  into account  in determining the CR therapy tones.  If this  is not  done,  then  the  acoustic  stimulation  with  CR  tones  using  fixed  frequency  ratios  in  comparison with fT can lead to suboptimal effects or may even be completely ineffective.
[0007] CR  stimulation  typically  involves  stimulation  of  neural  subpopulations  that  are  sufficiently  separate  but  are  not  too  far  apart.  Accordingly,  the  frequency  differences,  namely the pitch intervals between the individual CR therapy tones, can be neither too large  nor too small, and the optimum intervals between the respective therapy tones depend on  the respective hearing thresholds.
[0008] In the case of multiple dominant tinnitus tones, these can be treated successfully.  In this case, what was said above also applies here in the same way: in the treatment of all  dominant  tinnitus  tones,  the  CR  therapy  tones  are  each  to  be  adapted  to  the  hearing  threshold in order to achieve the best possible therapeutic effects. Summary 
[0009] In the past, four CR tones have been used according to a rigid frequency scheme.  Embodiments of  this disclosure make  it possible  (i)  to personalize  the  intervals of  the CR  tones  by  adapting  them  to  the  hearing  threshold  of  the  respective  patient,  and  (ii)  to  perform stimulation with the optimum number of CR tones.
[0010] Some embodiments of this disclosure are based on the object of providing a device  and a method for acoustic stimulation, with which patients suffering from tinnitus or some  other disease  characterized by pathological  synchronous neural activity  can be  treated  in  comparison with traditional devices and methods.  
 
[0011] The statement of object on which some embodiments of this disclosure are based  is  achieved  by  the  features  of  the  independent  claims.  Advantageous  refinements  and  embodiments of this disclosure are defined in the dependent claims. Brief Description of the Drawings 
[0012] Embodiments of  this disclosure are explained  in greater detail below  in example  embodiments with reference to the drawings, in which:
[0013] Figure  1  shows  a  flow  chart  to  illustrate  a  comparative  acoustic  CR  therapy  for  treatment of a patient with tinnitus;
[0014] Figure 2  shows  a  diagram  to  illustrate  the  bandwidth  of  an  auditory  filter  as  a  function of the frequency for patients with and without a hearing impairment;
[0015] Figure 3  shows  a  schematic  diagram  of  a  stimulated  neural  population  in  the  primary auditory cortex of a patient with normal hearing ability;
[0016] Figure 4  shows  a  schematic  diagram  of  a  stimulated  neural  population  in  the  primary auditory cortex of a patient with a hearing impairment;
[0017] Figure 5  shows  a  schematic  diagram  of  the  stimulated  neural  population  from  Figure 3 with an enlarged frequency interval between neighboring therapy tones;
[0018] Figure 6  shows  a  schematic  diagram  of  the  stimulated  neural  population  from  Figure 4 with an enlarged frequency interval between neighboring therapy tones;
[0019] Figure 7  shows  a  diagram  to  illustrate  the  ERB  bandwidths  of  standard  therapy  tones as a function of the tinnitus frequency for normal hearing ability;
[0020] Figure 8  shows  a  diagram  to  illustrate  the  ERB  bandwidths  of  standard  therapy  tones as a function of the tinnitus frequency for a hearing impairment of 25 dB HL;
[0021] Figure 9  shows  a  diagram  to  illustrate  the  ERB  bandwidths  of  standard  therapy  tones as a function of the tinnitus frequency for a hearing impairment of 50 dB HL;
[0022] Figure 10  shows a diagram  to  illustrate  the ERB bandwidths of  standard  therapy  tones  as  a  function  of  the  tinnitus  frequency  for  a  frequency‐dependent  hearing  impairment;
[0023] Figure 11 shows a diagram to illustrate the ERB overlap as a function of frequency;
[0024] Figure 12 shows a schematic diagram of a device for stimulation of a patient with  acoustic  stimulation  signals  and  for  desynchronization  of  neurons  with  a  pathological  synchronous and oscillatory activity according to one embodiment;  
 
[0025] Figure  13  shows  a  flow  chart  to  illustrate  the  procedure  in  determining  the  optimum arrangement of a predetermined number of therapy tones on the frequency axis;
[0026] Figure  14  shows  the  diagram  from  Figure  11 with  points  of  intersection  of  the  graph with optimum values for the relative ERB overlap to determine the frequencies of the  therapy tones;
[0027] Figure  15  shows  a  diagram  to  illustrate  the  ERB  bandwidths  of  therapy  tones  determined from Figure 14 as a function of the tinnitus frequency;
[0028] Figure 16 shows a diagram to illustrate the personalized hearing threshold‐adapted  frequencies from the therapy tones determined from Figure 14 as a function of the tinnitus  frequency;
[0029] Figure 17 and Figure 18 show flow charts to illustrate the procedure in determining  the optimum number of  therapy  tones and  their optimum arrangement on  the  frequency  axis according to a first variant;
[0030] Figure 19 and Figure 20 show flow charts to illustrate the procedure in determining  the optimum number of  therapy  tones and  their optimum arrangement on  the  frequency  axis according to a second variant;
[0031] Figure 21 shows a diagram  to  illustrate  the ERB bandwidths  for  the personalized  tinnitus ERB‐centered hearing threshold‐adapted and balanced arrangement of the therapy  tones as a function of the tinnitus frequency;
[0032] Figure  22  shows  a  diagram  to  illustrate  the  personalized  tinnitus  ERB‐centered  hearing threshold‐adapted and balanced frequencies of the therapy tones as a function of  the tinnitus frequency;
[0033] Figure 23 shows a schematic diagram of an acoustic CR stimulation;
[0034] Figure 24 shows a first schematic diagram of a device for stimulation of a patient  with acoustic stimulation signals according to another embodiment;
[0035] Figure 25 shows a schematic diagram of a device for stimulation of a patient with  acoustic stimulation signals according to yet another embodiment;
[0036] Figure 26 shows a schematic diagram of a complex acoustic stimulation signal;
[0037] Figure 27 shows notations of band edges and center frequencies of ERBs and each  of the four CR tones as an example;
[0038] Figure 28  (upper plot) shows  the ERB at normal hearing  (thin  line) as well as  the  hearing  threshold  adapted  ERB  (solid  line).  Symbols  indicate  frequencies  at  which  the   
 
audiogram  was  measured.  Lower  plot  shows  the  corresponding  audiogram  (linearly  interpolated on a logarithmic frequency axis);
[0039] Figure 29 provides  the ERBs of  the  standard CR  tones  together with  the  tinnitus  ERB  for  a  normal  hearing  case  (left  plot)  as  well  as  an  example  for  hearing  threshold  adapted ERBs (upper right plot) and the corresponding hearing threshold (lower right plot).  ERBs are illustrated by plotting ERB edges divided by tinnitus frequency;
[0040] Figure 30 illustrates the calculation of relative ERB overlap;
[0041] Figure 31 displays  the distributions of  the number of  super  responders, e.g.,  the  subjects with VAS  for  loudness  (VAS‐L) changes > 15  (y‐axis)  in relation  to ^൫^் , ^^൯  for all  four CR tones  ^^,… , ସ^ (rows 1,…,4) after 12 weeks (column 1) and after 24 weeks (column  2)  and  the  corresponding  distributions  obtained  by  a  standard  smoothing  procedure  (column 3); 
[0042] Figure  32  shows  the  subgroup  analysis  for  the  two  different  groups  (patients  with/without relative optimal ERB overlaps for all 4 CR tones); 
[0043] Figure 33 shows results of a subgroup analysis of responder rates; 
[0044] Figure 34 displays results of a subgroup analysis of hearing thresholds at CR tones  ^^,… , ସ^ and at the tinnitus frequency ^் ;
[0045] Figure  35  shows  ERBs  of  standard CR  tones  together with  the  tinnitus  ERB  (left  panel, same as right panel  in Figure 29)  for a patient with typical hearing  loss  (lower right  panel).  In contrast, the right panel shows the hearing threshold adapted ERBs  in the same  patient  (with  hearing  loss  as  in  the  lower  right  panel)  and  optimal  ERB  overlaps  (as  determined from a re‐analysis of clinical data); and
[0046] Figure 36 displays an example of an ERB arrangement  for  tinnitus ERB stretching  factor ^ ൌ 1.5 (upper panel) for a patient with typical hearing loss (lower panel). The results  are obtained with the procedure described in the text.  Detailed Description 
[0047] Chronic subjective tinnitus occurs in approx. 10% to 15% of the average population  (cf. document D8).  The quality of  life of  approx.  2% of  the  average population  is  greatly  reduced  because  of  their  tinnitus.  Therefore,  this  portion  of  the  population  will  seek  professional  help  (cf.  documents  D5  and  D15).  Subjective  tinnitus  is  characterized  by  pathological  synchronous  neural  activity.  Chronic  subjective  tinnitus  is  associated  with   
 
altered  spectral  performance  of  EEG  (electroencephalography)  and  MEG  (magnetoencephalography)  signals  formed  by  a  large  network  of  regions  of  the  brain,  in  particular in the temporal cortex (cf. documents D3, D4, D9, D20, D22, D23 and D25).
[0048] Tinnitus  as well  as other neurologic or psychiatric diseases, which  are described  further below and can be treated with the help of the present disclosure, may be caused by  a  disturbance  in  the  bioelectric  communication  of  neural  ensembles  that  are  formed  in  specific  circuits.  A  neural  population  in  the  brain  and/or  spinal  cord  of  a  patient  here  constantly  generates  pathological  neural  activity  and  might  even  create  an  associated  pathological connectivity (network structure). In doing so, a  large number of neurons form  synchronous  action  potentials,  namely  the  neurons  involved  fire  excessively  in  synchronization. Furthermore, the pathological neural population has an oscillatory neural  activity, namely the neurons also  fire rhythmically.  In the case of neurologic or psychiatric  diseases,  the  average  frequency  of  the  pathological  rhythmic  activity  of  the  neuron  ensembles  thereby affected  is approximately  in  the  range of 1  to 30 Hz but may also be  outside  this  range.  In  healthy  people,  however,  neurons  fire  in  a  qualitatively  different  manner, e.g., in an uncorrelated manner.
[0049] Acoustic  "coordinated  reset"  (CR)  stimulation  is  a  treatment  using  acoustic  stimulation  signals  for  treating  subjective  tinnitus  (cf.  document  D22).  Acoustic  CR  stimulation  counteracts  the  pathological  synchronous  neural  activity  associated  with  tinnitus by desynchronization. The success of this treatment can be verified by way of EEG  measurements  (cf. document D3, D4, D20 and D22). A  feasibility study  ("proof of concept  trial")  has  yielded  statistically  and  clinically  significant  therapeutic  effects  of  acoustic  CR  therapy (cf. documents D1, D2 and D22). The observations on which the study is based were  then repeated  in a  large‐scale study with 200 patients at 23 clinic sites (cf. document D12)  and one observation study with 66 patients (cf. document D27).
[0050] In  acoustic  CR  stimulation,  therapy  tones  that  are  played  for  the  patient  are  converted to nerve pulses  in the  inner ear and sent via the auditory nerve to the auditory  cortex. Due  to  the  tonotopic arrangement of  the auditory cortex, a certain portion of  the  auditory cortex  is activated by acoustic stimulation of the  inner ear at a certain frequency.  Therefore, certain regions of the auditory cortex can be stimulated in a targeted manner by  a suitable choice of the frequencies of the therapy tones.  
 
[0051] The therapy tones played for the patient in acoustic CR stimulation are designed so  that the offset (or phase‐shifted) stimulation induces desynchronization of the pathological  synchronous  and  oscillatory  activity  of  the  neural  population  by  way  of  at  least  two  stimulation channels. A reduction  in the rate of coincidence of the neurons caused by this  stimulation can result in a reduction in the synaptic weights and can thus lead to learning of  the tendency to production of pathological synchronous activity.
[0052] The therapy tones perceived by the patient via at  least one ear cause a so‐called  reset in the neural population of the phase of neural activity of the stimulated neurons. This  reset  causes  the phase of  the  stimulated neurons  to be  set at one or almost one  certain  phase  value, e.g., 0°,  regardless of  the prevailing phase  value  (in practice  it  is difficult  to  accurately set a certain phase value, but this is not necessary for successful CR stimulation).  Thus, the phase of neural activity of the pathological neural population is controlled by way  of  targeted  stimulation.  The  pathological  neuron  population  is  stimulated  at  different  locations by way of multiple  stimulation  channels,  so  the phases of neural activity of  the  subpopulations of pathological neuron population  stimulated by  the different  stimulation  channels can be reset at different points in time by applying the therapy tones with a time  lag.  As  a  result,  the  pathological  neuron  population,  whose  neurons  were  previously  in  synchronization and were active with the same  frequency and phase,  is split  into multiple  subpopulations with different phases. Within each of the subpopulations, the neurons are  still  in  synchronization  even  after  the  reset  and  they  continue  to  fire  at  the  same  pathological  frequency, but with respect to  its neural activity, each subpopulation has the  phase  forced on  it by  the  stimulus  generated by  the  respective  stimulation  channel. This  means that, even after their phases have been reset, the neural activities of the  individual  subpopulations  still  have  an  approximately  sinusoidal  curve  with  the  same  pathological  frequency but different phases.
[0053] Due to the pathological interaction between the neurons, the condition created by  the  stimulation  with  at  least  two  subpopulations  is  unstable,  and  the  entire  neural  population  rapidly  approaches  a  condition  of  complete  desynchronization,  in  which  the  neurons  fire  in  an  uncontrolled  manner.  The  desired  condition,  namely  complete  desynchronization,  usually  does  not  exist  immediately  after  the  time‐offset  (or  phase  shifted)  application of  the  therapy  tones with a  time  lag  (or  a phase  shift) but  instead  is   
 
usually established within a  few periods or even  less  than one period of  the pathological  frequency.
[0054] One  theory  to  explain  the  success  of  stimulation  is  based  on  that  the  desynchronization,  which  is  ultimately  the  goal,  is  made  possible  at  all  due  to  the  pathologically  enhanced  interactions  among  the  neurons.  This  makes  use  of  a  self‐ organization process, which  is responsible  for the pathological synchronization. One effect  of this is that a division of an overall population into subpopulations with different phases is  followed  by  desynchronization.  In  contrast with  that, without  a  pathologically  enhanced  interaction of neurons, no desynchronization would be possible.
[0055] Furthermore,  through CR  stimulation, a  reorganization of  the connectivity of  the  disturbed  neural  networks  can  be  achieved,  so  that  long‐lasting  therapeutic  effects  are  made  possible.  The  synaptic  reconstruction  thereby  achieved  is  important  for  effective  treatment of neurologic or psychiatric disorders.
[0056] To counteract the pathological synchronous neural activity associated with tinnitus  in the central auditory system, namely the primary auditory cortex, the frequency fT, i.e., the  pitch of the dominant tinnitus tone, is determined first in traditional acoustic CR stimulation  according  to  the  audiological  characteristics  of  the  respective  patient,  and  then  the  amplitude,  namely  the  loudness,  of  the  four CR  therapy  tones  to  be  reproduced  for  the  patient  is matched.  The  frequencies  of  the  four  CR  therapy  tones  fCR1,  fCR2,  fCR3  and  fCR4,  which were used  in the  feasibility study  (cf. document D22) and the  following studies and  are also used in clinical practice today, are as follows:
Figure imgf000010_0001
The frequency ratios c1, c2, c3 and c4 are fixed and are identical for all patients, regardless of  their hearing thresholds. 
[0057] All  therapy  tones are  typically  just above  the hearing  threshold of  the  respective  patient but are comfortably audible. The  loudness of the therapy tones  is adjusted so that   
 
all four therapy tones are perceived at the same subjective  loudness  level which  is slightly  above the hearing threshold of the patient.
[0058] The  flow  chart  in  Figure  1  illustrates  schematically  a  comparative  (traditional)  acoustic  CR  therapy  for  treatment  of  tinnitus.  First,  the  dominant  or  most  pronounced  tinnitus frequency or that perceived as the most annoying for the patient is determined. The  therapy tones are then calculated on the basis of the fixed frequency ratios c1, c2, c3 and c4,  which are  the same  for all patients. A  loudness comparison  is  then performed  in order  to  adjust the  loudness of the four therapy tones with respect to one another. Figure 1 shows  measurements  performed  on  patients  in  boxes  outlined  with  dotted  lines,  while  data  analysis,  signal  processing  and  sound  production  are  shown  in  boxes  outlined with  solid  lines.
[0059] From  numeric  simulations,  CR  stimulation  supplies  optimum  desynchronization  results  if  the  stimuli are administered at different  locations  in  the brain  so  that different  subpopulations  are  stimulated  (cf.  documents  D16  and  D21).  The  overlap  between  the  stimulated subpopulations should not be too great. On the other hand, the subpopulations  should  interact with  one  another  adequately,  namely  the  subpopulations  should  not  be  separated  too  much  from  one  another  spatially.  In  the  area  of  direct  electrical  brain  stimulation,  e.g.,  deep  brain  stimulation,  the  dependence  of  the  propagation  of  the  stimulation  current  on  the  voltage  or  current  has  been  investigated  (cf.  document  D7).  Accordingly,  well‐defined  predictions  have  been  made  for  the  optimum  stimulation  amplitudes (cf. document D23) and verified (cf. documents D23 and D26).
[0060] For noninvasive  auditory  stimulation,  the  relationship between  the  stimulus  and  the activated neural population  is more complicated. Cortical  receptive  regions as well as  subcortical  portions  of  the  central  auditory  pathway  are  determined  by  the  tonotopic  organization of the auditory system and the auditory filter theory. The auditory filter theory  is  based  on  the  concept  of  a  center  frequency  and  a  bandwidth  around  the  center  frequency.  The  bandwidth  of  the  auditory  filters  can  be  described  based  on  the  corresponding  rectangular bandwidth, which  is  referred  in  the  technical  literature as ERB  (equivalent rectangular bandwidth) (cf. documents D11 and D17). For reasons of simplicity  and to allow quantitative comparisons across all auditory filter theories, the term equivalent  rectangular bandwidth, or ERB, will be used  to  specify  the  relevant characteristics of  any  auditory filter including a center frequency (fc), a low cut‐off frequency (fL) and a high cut‐  
 
off frequency fH. The low and high cut‐off frequencies determine the frequency bandwidth  (fH‐fL) that corresponds to the functional bandwidth of any auditory filter. 
[0061] In  patients  with  normal  hearing  ability,  namely  without  hearing  damage,  the  relationship between the ERB and the center frequency is described by approximations that  have been verified experimentally (cf. documents D11 and D17):
[0062] (i) According to the first approximation, the equation for the ERB of a patient with  normal hearing ability is as follows (cf. document D17):
Figure imgf000012_0001
where is  the  frequency  in  kHz,  namely  where  f  and  ERBN  are  given  in  Hz. 
Figure imgf000012_0005
Consequently, this yields: 
Figure imgf000012_0002
This approximation applies to frequencies f in the range of 100 Hz to 6.5 kHz. 
[0063] (ii) The second ERB approximation is as follows (cf. document D11):
Figure imgf000012_0003
  is the frequency  in kHz, namely where f and ERBN are given  in Hz. Therefore, 
Figure imgf000012_0006
Figure imgf000012_0007
this yields: 
Figure imgf000012_0004
where  η  =  107.939/1000.  This  approximation  is  valid  for moderate  sound  levels  and  for  frequencies f in the range of 100 Hz to 10 kHz. This frequency range is much larger than the  frequency  range of  the  first approximation. Therefore,  the  second approximation  shall be  used  hereinafter.  For  frequencies  greater  than  10  kHz,  equation  (8)  is  used  for  extrapolation.   
 
[0064] In addition, the effect of a patient's hearing loss on the ERB can also be taken into  account.  Document  D18  provides  data  for  2  kHz,  4  kHz  and  6  kHz  as  well  as  absolute  threshold values between 0 and 80 dB HL. Based on this data, the dependence of ERB on  hearing loss can be modeled according to the following equation in a first approximation for  the range of 0 and 50 dB HL within the scope of embodiments of the present disclosure:
Figure imgf000013_0001
where ERB (f, h) indicates the ERB influenced by the hearing loss h at the frequency f,  ERBN(f) indicates the ERB without hearing loss at the frequency f, and the term c(h) is  specified as follows: 
Figure imgf000013_0002
For frequency values that are different from 2 kHz, 4 kHz and 6 kHz, the model according to  equation  (10)  can  be  interpolated  and  extrapolated.  For  example,  an  audiogram  with  a  predetermined number of frequencies may be used for calculation of the term c(h) and may  be  interpolated  and  extrapolated  accordingly.  Alternatively,  a  Békésy  audiogram  using  a  continuous course may also be used. 
[0065] Figure  2  shows  the  frequency  dependence  of  the  ERB  without  hearing  loss  (ERBN(f)) and the ERB with hearing loss (ERB(f, h)). The values for the hearing thresholds to  create Figure 2 hearing threshold (namely the audiogram data) were recorded on a patient.  The  influence of the broadening of the ERB caused by a hearing threshold and defined by  the  term c(h) was  raised  in Figure 2 by entering  the values  for ERBN(f) as crosses and  for  ERB(f, h)  as diamonds  into  the diagram  for  the  standard  values  for  an  audiogram  at  the  frequencies 250 Hz, 500 Hz, 750 Hz, 1 kHz, 1.5 kHz, 2 kHz, 3 kHz, 4 kHz, 6 kHz, 8 kHz, 10 kHz,  12.5 kHz and 16 kHz. The hearing thresholds at these frequencies are 9, 10, 15, 20, 30, 35,  45, 50, 45, 44, 42, 43 and/or 45 dB HL.
[0066] Instead of the preceding model, the ERB bandwidths can also be measured on each  patient  individually at the tinnitus frequency, and the frequency of each frequency tone as   
 
well as at related interpolation points for the interpolation, for example, at the frequencies  at which the audiogram, can also be determined. A variety of acoustic signals may be used  to determine these  individual ERB bandwidths,  in particular tones,  for example, sinusoidal  frequency‐modulated  or  amplitude‐modulated  tones  or  beeps,  clicking  sounds  or  noises  such  as  white  noise  or  bandpass‐filtered  noise  with  spectral  or  temporal  gaps.  The  measurements comprise behavior responses which use a variety of psychoacoustic masking  paradigms  or  physiological  responses  which  in  turn  use  a  variety  of  evoked  electric  potentials or otoacoustic emissions. Each of the individualized ERB bandwidths includes the  individual  hearing  threshold  as  well  as  above‐threshold  changes  associated  with  the  individual hearing loss.
[0067] The  motivation  for  using  the  bandwidth  concept  and/or  the  ERB  concept  is  illustrated  schematically  in  Figures  3  through  6.  It  is  assumed  in  these  figures  that  the  broadening  of  the  ERB  caused  by  the  hearing  loss will  lead  to  an  increase  in  the  range  and/or volume  in the brain through which the respective therapy tones are activated. The  influence  of  the  broadening  of  the  ERB  caused  by  the  hearing  loss  and  the  associated  increase in the activated neural subpopulations on the therapy tones depend on the hearing  loss by the respective patient as well as the interval of the therapy tones.
[0068] Figures 3 through 6 illustrate the organization of the primary auditory cortex along  the frequency axis. In the patient's brain, at least one neural population 1 has a pathological  synchronous  and  oscillatory  neural  activity, which  thus  causes  the  tinnitus,  as  described  above. The neural population 1  should be desynchronized by  targeted  stimulation within  the  context of  the CR  therapy. Due  to  the  four different  therapy  tones presented  to  the  patient at  the same  loudness,  four subpopulations 2, 3, 4 and 5  in  the patient's brain are  activated. The  size of  some populations 2  through 5  is determined by  the ERB associated  with the respective therapy tone.
[0069] Figure 3 illustrates the case for a patient with normal hearing ability. For reasons of  simplicity,  all  four  subpopulations  2  to  5  here  are  the  same  size  and  neighboring  subpopulations do not overlap with one another.
[0070] In Figure 4, the same therapy tones as in Figure 3 are reproduced for the patient,  but  the  ERBs  for  the  three  higher  therapy  tones  have  been  broadened  because  of  the  hearing  loss of one patient. This  results  in a significant overlap of  the ERBs and  therefore  also  the  subpopulations. The overlap  is especially pronounced between  subpopulations 3   
 
and  4  as  well  as  subpopulations  4  and  5.  Whereas  good  stimulation  results  could  be  achieved with  the selected  four  therapy  tones  in  the case of  the stimulation  illustrated  in  Figure 3  in a patient with normal hearing ability,  the overlap  in subpopulations caused by  the  hearing  loss  is  too  great  in  Figure  4  to  allow  a  sufficient  therapeutic  success  to  be  achieved.
[0071] In  Figures  5  and  6,  the  interval  of  the  neighboring  therapy  tones  has  been  increased.  In  the case of a normal hearing ability, subpopulations 2  through 5 are  too  far  apart from one another, as shown in Figure 5, so that the interaction between neighboring  subpopulations and thus also the desynchronizing effect are reduced.
[0072] However,  Figure 6  shows  that  the  increased  interval of  the neighboring  therapy  tones  in  the  case of a patient with hearing  loss  results  in  subpopulations 2  through 5 no  longer overlapping but being close enough together due to the  increase  in  interval caused  by the hearing loss that the subpopulations interact with one another to a sufficient extent  to ensure the desired therapeutic success.
[0073] Figures 3  to 6 show  that  the  interval between  the  therapy  tones, which  leads  to  good  therapeutic  results  for  a  patient with  normal  hearing  ability  (cf.  Figure  3), may  be  unfavorable  in  a  patient  with  a  hearing  loss,  namely  the  therapy  tones  are  too  close  together for the patient with hearing loss (cf. Figure 4). Accordingly, therapy tones that are  too  far apart  from one another  for a patient with normal hearing ability  (cf. Figure 5) will  lead to the desired therapeutic result in a patient with hearing loss (cf. Figure 6).
[0074] It will be demonstrated below how  the  frequencies of  the  therapy  tones  can be  selected, so that the neural subpopulations activated by the therapy tones overlap in such a  way that the desired therapeutic success can be achieved.
[0075] In a  first step, the ERB bandwidth  is determined at a tinnitus  frequency  fT, which  was  determined  for  a  patient  by  a  standard  method,  and  the  ERB  bandwidths  for  the  standard  therapy  tones  fCR1,  fCR2,  fCR3  and  fCR4  are  considered  according  to  equations  (1)  through (4). The coefficients c1, c2, c3 and c4 are given by c1 = 0.776, c2 = 0.9, c3 = 1.1 and c4 =  1.4. The therapy tones fCR1, fCR2, fCR3 and fCR4 of the standard therapy consequently cover half  of an octave on each side of the tinnitus frequency fT. The coefficients c1, c2, c3 and c4 of the  standard therapy do not depend on the tinnitus frequency fT or on the hearing threshold.
[0076] Assuming the patient's hearing loss is homogenous over the entire frequency axis,  this then corresponds to a completely horizontal line in the audiogram. Figures 7 to 9 show   
 
how the ERB bandwidths belonging to the therapy tones  fCR1,  fCR2,  fCR3 and  fCR4 depend on  the tinnitus frequency fT in the case of a normal hearing ability (cf. Figure 7), a hearing loss  of 25 dB HL (cf. Figure 8) and a hearing loss of 50 dB HL (cf. Figure 9). Therefore, in Figures 7  through 9, the ERB edges bordering the respective ERB are divided by the tinnitus frequency  fT  (cf.  y  axis)  for  the  four  therapy  tones  fCR1,  fCR2,  fCR3  and  fCR4  as well  as  for  the  tinnitus  frequency fT, each plotted as a function of the tinnitus frequency fT (cf. x axis).
[0077] In Figure 7,  the hearing  loss amounts  to 0 dB HL over  the entire  frequency axis,  namely  the patient has  a normal hearing  ability  and  the  respective  audiogram has  a  flat  horizontal curve. Figure 7 shows the  following ERB bandwidths  from top to bottom  in the  order given:
– ERB  for the therapy tones  fCR4 = 1.4fT with ERB edges at c± 0.5 ERB  (fCR4, 0 dB HL)  represented by solid lines, 
– ERB  for the therapy tones  fCR3 = 1.1fT with ERB edges at c± 0.5 ERB  (fCR3, 0 dB HL)  represented by dotted lines, 
– ERB  for  the  tinnitus  frequency  fT  with  ERB  edges  at  1 ± 0.5  ERB  (fT,  0  dB  HL)  represented by solid lines, 
– ERB  for  the  therapy  tone  fCR2 = 0.9fT with ERB edges at c± 0.5 ERB  (fCR2, 0 dB HL)  represented by dash‐dot lines and 
– ERB for the therapy tone fCR1 = 0.766fT with ERB edges at c± 0.5 ERB (fCR1, 0 dB HL)  represented by solid lines. 
[0078] In Figure 8  the hearing  loss amounts  to 25 dB HL over  the entire  frequency axis,  namely the respective audiogram is a flat horizontal line. The following ERB bandwidths are  represented in Figure 8 from top to bottom in the order given:
– ERB for the therapy tones fCR4 = 1.4fT with ERB edges at c± 0.5 ERB (fCR4, 25 dB HL)  represented by solid lines, 
– ERB for the therapy tones fCR3 = 1.1fT with ERB edges at c± 0.5 ERB (fCR3, 25 dB HL)  represented by dotted lines, 
– ERB  for  the  tinnitus  frequency  fT  with  ERB  edges  at  1 ± 0.5  ERB  (fT,  25  dB  HL)  represented by solid lines, 
– ERB for the therapy tone fCR2 = 0.9fT with ERB edges at c± 0.5 ERB (fCR2, 25 dB HL)  represented by dash‐dot lines and   
 
– ERB for the therapy tone fCR1 = 0.766fT with ERB edges at c± 0.5 ERB (fCR1, 25 dB HL)  represented by solid lines. 
[0079] Figure 9 shows the hearing loss of 50 dB HL over the entire frequency axis, namely  the respective audiogram is a flat horizontal line. In Figure 9 the following ERB bandwidths  are illustrated in the order given here from top to bottom:
– ERB for the therapy tones fCR4 = 1.4fT with ERB edges at c± 0.5 ERB (fCR4, 50 dB HL)  represented by solid lines, 
– ERB for the therapy tones fCR3 = 1.1fT with ERB edges at c± 0.5 ERB (fCR3, 50 dB HL)  represented by dotted lines, 
– ERB  for  the  tinnitus  frequency  fT  with  ERB  edges  at  1 ± 0.5  ERB  (fT,  50  dB  HL)  represented by solid lines, 
– ERB for the therapy tone fCR2 = 0.9fT with ERB edges at c± 0.5 ERB (fCR2, 50 dB HL)  represented by dash‐dot lines and 
– ERB for the therapy tone fCR1 = 0.766fT with ERB edges at c± 0.5 ERB (fCR1, 50 dB HL)  represented by solid lines. 
[0080] Figures 7 to 9 show that the overlap, namely the gap (and/or interval) between the  ERB bands of two neighboring therapy tones and the overlap and/or gap between the ERB  bandwidth at the tinnitus frequency fT and the ERB bandwidths of the therapy tones depend  to a great extent on  the  tinnitus  frequency  fT and are not  symmetrical or balanced at all  relative to the tinnitus frequency fT.
[0081] For example, the interval between the ERB of the therapy tone fCR4 and the ERB of  the therapy tone fCR3 is much larger than the gap between the ERB of the therapy tone fCR2  and the ERB of the therapy tone fCR1 for a hearing loss of 0 dB HL (cf. Figure 7). For a hearing  loss of 25 dB HL,  the ERBs of  the  therapy  tones  fCR1  and  the  fCR2 overlap because of  the  broadening of the ERB caused by the hearing loss (cf. Figure 8), whereas there is still a gap  between the ERBs of the therapy tones fCR3 and fCR4 for a tinnitus frequency fT greater than  approx. 2000 Hz.
[0082] In addition, the ERB of the tinnitus frequency fT and the ERBs of the therapy tones  fCR2 and fCR3 are each slightly greater than approx. 2000 Hz for a hearing loss of 0 dB HL and a  tinnitus frequency fT (cf. Figure 7). In contrast with that, the overlap between the ERB of the  tinnitus frequency fT and the ERB of the therapy tones fCR2 and/or fCR3 for a hearing  loss of  50 dB HL and a tinnitus frequency fT greater than approx. 2000 Hz is much greater (cf. Figure   
 
9). Figures 7 through 9 show that the ERBs of the standard therapy tones fCR1, fCR2, fCR3 and  fCR4 are not balanced with respect to one another or with respect to the tinnitus frequency  fT.
[0083] This  situation  becomes  more  complex  when  a  hearing  loss  that  occurs  more  commonly  in  practice  is  considered,  namely when  the  hearing  threshold  becomes worse  with  an  increase  in  frequency.  In  such  a  case,  the  respective  audiogram  is  no  longer  a  horizontal  line but  instead has a  slope. Figure 10  illustrates one  such case with a hearing  threshold h, which becomes worse with an  increase  in frequency, namely the pitch. Figure  10 is based on the audiogram for the patient in Figure 2.
[0084] Figure  10  shows  the  ERB  edges  bordering  the  respective  ERB,  divided  by  the  tinnitus frequency fT (cf. y axis) for the four therapy tones fCR1, fCR2, fCR3 and fCR4 as well as for  the tinnitus frequency fT, each plotted as a function of the tinnitus frequency fT (cf. x axis).  The tinnitus frequency fT perceived by the patient is 2950 Hz. Figure 10 shows the following  ERB bandwidths in the order indicated from top to bottom:
– ERB  for  the  therapy  tones  fCR4  =  1.4fT  with  ERB  edges  at  c ±  0.5  ERB  (fCR4,  h)  represented by solid lines, 
– ERB  for  the  therapy  tones  fCR3  =  1.1fT  with  ERB  edges  at  c ±  0.5  ERB  (fCR3,  h)  represented by dotted lines, 
– ERB for the tinnitus frequency fT with ERB edges at 1 ± 0.5 ERB (fT, h) represented by  solid lines, 
– ERB  for  the  therapy  tone  fCR2  =  0.9fT  with  ERB  edges  at  c ±  0.5  ERB  (fCR2,  h)  represented by dash‐dot lines and 
– ERB  for  the  therapy  tone  fCR1  =  0.766fT  with  ERB  edges  at  c ±  0.5  ERB  (fCR1,  h)  represented by solid lines. 
[0085] Figure 10 shows that the gap between the ERBs of the therapy tones fCR3 and fCR4  depends greatly on the tinnitus frequency fT, with a maximum occurring both  in the  lower  frequency range and also  in the higher  frequency range. For a tinnitus  frequency  fT  in the  range of 416 Hz to 1.6 kHz, there is no overlap between the ERBs of the therapy tones fCR2  and  fCR3. As a  result, Figure 10 shows  that  for a  realistic auditory profile, not only are  the  intervals between the ERBs of the standard therapy tones unbalanced with respect to one  another and with respect to the tinnitus  frequency  fT, but also the mutual spacings of the  ERBs depend to a significant extent on the tinnitus frequency fT. Since the tinnitus frequency   
 
fT  typically changes as a  result of  treatment,  in most  case  the  tinnitus  frequency  fT drops  when  the  arrangement  of  ERBs  during  treatment  will  also  change.  Consequently,  the  efficacy of the treatment also does not remain constant over the course of the treatment.
[0086] The  overlap  of  the  ERBs  is  determined  in  order  to  be  able  to  evaluate  the  arrangement of ERBs of the therapy tones and the tinnitus tone. To do so, two frequencies fj  and fk shall be considered, wherein fj < fk; hj and hk are the respective hearing thresholds in  dB HL at the frequencies fj and/or fk; hj and hk are determined either directly with the help  of an audiologic hearing threshold measurement or by way of a  linear  interpolation of the  hearing  thresholds,  for example, around  the  frequencies  fj and/or  fk. The  relative overlap  between the ERB bandwidth ERB(fj, hj) and the frequency fj and the ERB bandwidth ERB(fk,  hk) of the frequency fk based on the smaller ERB bandwidth can be calculated as follows:
Figure imgf000019_0001
where aj and bj are the lower and/or upper, respectively, edges of the ERB of the frequency  fj,  and  ERB(fj,  hj)  =  bj ‐  aj.  Furthermore,  ak  and  bk  are  the  lower  and/or  upper  edges,  respectively, of the ERB of the  frequency  fk, ERB(fk, hk), and min{x, y}  is the minimum of x  and y. 
[0087] Alternatively,  a  predefined  reference  value may  be  used  in  the  denominator  of  equation (11) for normalization instead of the smaller ERB. In this case, the equation for the  relative overlap is as follows:
Figure imgf000019_0002
 
 
Figure imgf000020_0001
The  relative  overlap  ϕ(fj,  fk)  and/or  ρ(fj,  fk)  may  thus  assume  both  positive  values  and  negative  values  (as well  as  the  value  zero).  In  the  case  of  positive  values,  this  is  a  true  overlap, whereas negative values  for  the relative overlap ϕ(fj,  fk) and/or ρ(fj,  fk)  indicate a  gap (and/or a hole and/or a space) between the two ERBs. 
[0088] The relative overlap between the ERB bandwidth of each of the therapy tone and  the ERB bandwidth of  the  tinnitus  frequency  fT  can be determined  in  this way. Figure 11  shows  the  relative overlap ρ(fj,  fk) between an ERB of  the  frequency  f and  the ERB of  the  tinnitus frequency fT plotted as a function of the frequency f. For the tinnitus ERB,  it holds  that ERB(fT, hT), where  fT  is the dominant tinnitus  frequency, which can be determined by  way of "pitch matching," for example, and hT is the hearing threshold in units of dB HL at the  tinnitus frequency fT. The hearing threshold is either determined directly with the help of an  audiologic hearing threshold measurement or by way of a linear interpolation of the hearing  thresholds around the frequency fT, for example. The data on the patient from Figure 2 was  used for the hearing threshold, wherein the tinnitus frequency is at 2950 Hz. The maximum  relative overlap ρ(f, fT) is reached when f = fT. In this case, it holds that ρ(fT, fT) = 1.
[0089] The  possibility  of  calculating  the  upper  and  lower  edges  of  the  ERBs  shown  as  examples in Figures 7 to 9 is described below:
where a and b are the  lower and upper edges, respectively, of ERB(f, h), and aT and bT are  the lower and upper edges, respectively, of ERB(fT, hT). uCRj = upper edge of the ERB of the therapy tone #j (where j = 1, 2, 3, 4): 
 
Figure imgf000021_0001
[0090] This yields the following with respect to the tinnitus frequency fT:
Figure imgf000021_0002
[0091] In the case for a high tinnitus frequency fT, this yields:
Figure imgf000021_0003
lCRj = lower edge of the ERB of the therapy tone #j (where j = 1, 2, 3, 4): 
Figure imgf000021_0004
 
[0092] With respect to the tinnitus frequency fT, this yields:
Figure imgf000021_0005
 
 
[0093] In the case for a large tinnitus frequency fT, this yields:
Figure imgf000022_0001
are the upper and lower edges in Figures 7 through 9.  
[0094] To determine the upper and  lower edges for the tinnitus ERB, cj  is replaced by 1,  which yields:
Figure imgf000022_0002
 
 
for fT → ∞. 
[0095] One  option  for  calculating  the  relative  ERB  overlaps  shown  in  Figure  11  as  an  example is described below.
[0096] First, a more explicit formula is derived for γ(f, fT). The formula for the relative ERB  overlap is calculated as follows:
Figure imgf000023_0001
where a and b are the  lower and upper edges, respectively, of ERB(f, h), and aT and bT are  the lower and upper edges, respectively, of ERB(fT, hT). Using the equations given above, this  yields:   
 
Figure imgf000024_0001
 
[0097] Figure 12 illustrates schematically a device 10 for stimulation of a patient by using  acoustic  stimulation  signals.  The  device  10  may  be  used  for  treatment  of  diseases  characterized by neural populations with a pathological synchronous and oscillatory neural  activity.
[0098] In addition to the tinnitus therapy, the device 10 can also be used for treatment of  the  following  diseases:  depression,  epilepsy,  compulsive  disorders,  dementia  diseases,  Alzheimer's  disease,  autism,  dysfunctions  after  a  stroke,  sleep  disorders,  schizophrenia,  irritable  bowel  syndrome,  addictive  diseases,  borderline  personality  disorder,  attention  deficit  disorder,  attention  deficit  hyperactivity  disorder,  gambling  addiction,  neuroses,  bulimia,  anorexia,  eating  disorders,  burnout  syndrome,  migraines,  cluster  headaches,  general  headaches  as  well  as  other  diseases  characterized  by  pathologically  enhanced  synchronization of neurons.
[0099] The  device  10  comprises  of  a  control  unit  11  and  a  stimulation  unit  12, which  generates acoustic  stimulation  signals and  stimulates neurons  in  the patient's brain  (from  the  brain  stem  to  the  cortex)  and/or  the  patient's  spinal  cord  by  way  of  a  plurality  of   
 
stimulation channels. Each stimulation channel permits stimulation of another target region  in the patient's brain and/or spinal cord. During operation of the device 10, the control unit  11  carries out  control of  the  stimulation unit 12. To do  so,  the  control unit 11 generates  control signals, which are received by the stimulation unit 12. 
[00100] The control unit 11 and the stimulation unit 12 are noninvasive units, namely they  are outside of the patient's body during operation of the device 10 and are not  implanted  surgically in the patient's body.
[00101] The device 10 may optionally also comprise an evaluation unit 13  for evaluating  the  success  of  a  treatment  and  an  input/output  unit  14, with which  the  control  unit  11  and/or the evaluation unit 13 can make information and/or data available.
[00102] The  individual components of the device 10,  in particular the control unit 11, the  stimulation  unit  12,  the  evaluation  unit  13  and/or  the  input/output  unit  14  may  be  separated from one another structurally. The device 10 may therefore also be regarded as a  system. To  carry out  its  functions,  the  control unit 11 and/or  the evaluation unit 13 may  include  a  processor,  for  example,  a  microcontroller.  The  stimulation  methods  described  here may  be  stored  as  software  code  in  a memory  associated with  the  control  unit  11  and/or to the evaluation unit 13.
[00103] According  to  a  first  embodiment,  the  optimum  arrangement  of  one  or  more  acoustic therapy signals on the frequency axis is determined with the help of the device 10.  The number of acoustic therapy signals is usually predetermined.
[00104] In  the  first embodiment,  the  control unit 11  is designed or  configured  so  that  it  determines a bandwidth of an auditory filter with a frequency of a predetermined pitch as a  center  frequency, wherein  this bandwidth  represents a  reference bandwidth. The  control  unit 11 also determines the frequency of a first acoustic therapy signal, such that a measure  of overlap between  the  reference bandwidth around  the  frequency of  the predetermined  tone  and  a  first  bandwidth  of  an  auditory  filter with  the  frequency  of  the  first  acoustic  therapy signal as the center frequency assumes a predetermined first value. Next, the first  acoustic therapy signal is played for the patient by the simulation unit 12.
[00105] The  first acoustic  therapy  signal as well as all additional acoustic  therapy  signals  described in the present disclosure may be either a tone, such as a pure sinusoidal vibration,  or  a mixed  tone,  such  as  a  sound  comprised  of  different  tones  of  any  frequencies.  The  concept of  a mixed  tone  also  comprises noise  and  sounds.  For  reasons of  simplicity,  the   
 
term  "therapy  tones"  is  used  in  some  embodiments  but  this  could  also  be mean mixed  therapy tones.
[00106] The measure of coverage may be an overlap or a gap. In some embodiments, it is  referred to as an overlap for reasons of simplicity. If the overlap has a negative value, it is a  gap.
[00107] The first embodiment is described below on the basis of an example embodiment  (cf.  Figures  13  to  16).  In  this  example  embodiment,  a  patient  suffering  from  tinnitus  is  treated with the help of the device 10. The frequency of the predetermined tone in this case  is the tinnitus  frequency  fT of the dominant tinnitus tone perceived by the patient. As the  bandwidth around a center frequency, the ERB bandwidth around the tinnitus frequency fT  is used here as the reference bandwidth and/or the ERB bandwidths around the frequencies  of  the  four  therapy  tones  as  the  first,  second,  third  and/or  fourth  bandwidths  are  used.  Furthermore, the relative ERB overlap is used to determine the optimum arrangement of a  predetermined number of therapy tones on the frequency axis, wherein the predetermined  number here is four.
[00108] The  procedure  for  determining  the  individualized  hearing  threshold‐adapted  therapy tones according to the first embodiment is diagramed in the flow chart in Figure 13.  First, the dominant or most pronounced tinnitus frequency fT or the frequency perceived by  the patient as the most annoying is determined by tone matching, for example. In the case  of  multiple  dominant  tinnitus  frequencies,  they  are  treated  in  succession.  The  highest  priority  here  is  typically  given  to  the  dominant  tinnitus  frequencies  that  are  the  highest  and/or  the most  annoying.  The  therapy  tones  are  calculated with  respect  to  the  tinnitus  frequency fT or the neighboring therapy tones based on the relative ERB overlap extracted  from  the  patient's  audiogram.  The  broadening  of  the  bandwidth  of  the  auditory  filters  caused  by  hearing  loss  is  taken  into  account  by  using  the  audiogram.  A  loudness  equalization  is  performed  to  adapt  the  loudness  of  the  therapy  tones  mutually  to  one  another. Figure 13 shows measurements carried out on the patient  in boxes outlined with  dotted lines, while the signal broadening and sound production are shown in boxes outlined  with solid lines.
[00109] In  the  example  embodiment of  the  first  embodiment which  is described below,  four therapy tones are used. According to a  first variant of the example embodiment, the  ERB bandwidth of the tinnitus frequency fT is used as a reference for all four therapy tones,   
 
and the relative ERB overlaps for each ERB of the four therapy tones are calculated with the  ERB  of  the  tinnitus  frequency  fT.  The  resulting  relative  ERB  overlaps  are  referred  to  as  ρ(fCR1hta,  fT),  ρ(fCR2hta,  fT),  ρ(fCR3hta,  fT)  and  ρ(fCR4hta,  fT)  where  "hta"  stands  for  "hearing  threshold adapted."
[00110] By analysis of data published in the document D27, it has been discovered that the  following  relative ERB overlaps produce optimum  therapeutic  results  for  the  four  therapy  tones:  ρ(fCR1hta,  fT) = ‐0.25,  ρ(fCR2hta,  fT) = 0.47,  ρ(fCR3hta,  fT) = 0.58 and  ρ(fCR4hta, fT)   = ‐0.65.  These  values  for  the  ERB  overlap  can  be  used  as  the  predetermined  first,  second,  third  and/or  fourth  values  for  the  measure  of  coverage.  Patients  stimulated  with  these  ERB  overlap values respond significantly more quickly to the acoustic CR neuromodulation than  even  those to a much greater extent  in comparison with an acoustic CR neuromodulation  using other ERB overlap values.
[00111] Accordingly,  the  ERB  overlap  values  given  above  can  be  used  to  determine  the  therapy  tones with  the  optimal  frequencies.  To  do  so  the  tinnitus  frequency  fT which  is  perceived  by  the  patient  and  can  be  determined,  for  example,  by  way  of  a  traditional  method  for  determining  the  pitch  level  of  the  tinnitus  ("pitch  matching")  and  the  interpolated hearing threshold which can be determined from the patient's audiogram are  involved.  With  this  data,  the  frequencies  of  the  four  therapy  tones  that  meet  the  predetermined conditions can be determined according to ρ(fCR1hta, fT) = ‐0.25, ρ(fCR2hta, fT) =  0.47, ρ(fCR3hta, fT) = 0.58 and ρ(fCR4hta, fT)  = ‐0.65.
[00112] The assignments ρ(fCRjhta,  fT) = ρ^  for  j = 1, …, 4 where ρ^^ = ‐0.25, ρ^ = 0.47, ρ^ =   0.58  and  ρ^  = ‐0.65  are  plotted  as  horizontal  lines  in  Figure  14. Otherwise  Figure  14  is  identical to Figure 11. The points of intersection of the four horizontal lines with the graphs  plotted  in Figure 14 and characterized by circles  indicate  the optimum  frequencies of  the  four therapy tones.
[00113] To determine the four frequencies, the following calculations can be carried out: (i) The calculation is begun at f = fT and the frequency f is reduced until ρ(f, fT) = ρ^ has been  reached on the graph in Figure 14. Then the respective frequency fCR2hta can be taken from  the  frequency axis  in Figure 14. Next the  frequency  f  is reduced  further until the graph  in  Figure 14 has reached ρ(f, fT) = ρ^^. The respective frequency is fCR1hta.
(ii)   The calculation begins again at f = fT and the frequency f  is  increased until ρ(f, fT) = ρ^  has been reached on the graph in Figure 14. The respective frequency fCR3hta can be derived   
 
from  the  frequency  axis  in  Figure  14. Next  the  frequency  f  is  increased  further until  the  graph in Figure 14 has reached ρ(f, fT) = ρ^. The respective frequency is fCR4hta.
[00114] In  general,  the  control  unit  11  determines  the  frequencies  of  the  first  through  fourth acoustic  therapy  signals  fCR1hta  through  fC42hta  in  that  the  control unit 11 varies  the  frequency of the respective acoustic therapy signal until the control unit 11 ascertains that  the extent of coverage between the reference bandwidth around the tinnitus frequency fT  and  the  bandwidth  of  the  auditory  filter  with  the  frequency  of  the  respective  acoustic  therapy signal as the center frequency assumes the predetermined value ρ^^, ρ^, ρ^ and/or  ρ^.
[00115] Within the scope of some embodiments of this disclosure, the two following data  records have been found for optimum relative ERB overlaps in addition to the data set given  above:
(i)   ρ(fCR1hta, fT), = 0.05, ρ(fCR2hta, fT) = 0.55, ρ(fCR3hta, fT) = 0.65 and ρ(fCR4hta, fT)  = ‐0.45 
(ii)  ρ(fCR1hta, fT), = 0.15, ρ(fCR2hta, fT) = 0.65, ρ(fCR3hta, fT) = 0.7 and ρ(fCR4hta, fT)  = ‐0.35 
[00116] It should be pointed out that the four data sets cited here are just three examples  of the relative ERB overlaps with which optimum therapeutic success can be achieved. For  example, the acoustic stimulation therapy may also be used successfully when the values for  the relative ERB overlaps are varied within the ranges of ±10% or up to ±20%. Also, although  certain values for optimum relative ERB overlaps are provided, these values are provided by  way of example, and other embodiments can be implemented with different values relative  to the example values.
[00117] It  has  been  found  that  the  tinnitus  ERB  should  be  used  as  a  reference  for  normalization and ρ(fCRjhta, fT) should be calculated for  j = 1, …, 4  instead of ϕ(fCRjhta, fT).  In  contrast with  ρ(fCRjhta,  fT), ϕ(fCRjhta,  fT)  typically  leads  to  suboptimum  results or even  to no  improvement at all for the patient.
[00118] Figure 15 shows the respective ERB edges divided by the tinnitus frequency fT (cf. y  axis)  for  the  optimum  relative  ERB  overlaps  ρ(fCR1hta,  fT)  = ‐0.25,  ρ(fCR2hta,  fT)  =  0.47,  ρ(fCR3hta, fT) = 0.58 and ρ(fCR4hta, fT)  = ‐0.65 as well as the hearing threshold h of the tinnitus  patient  from Figure 2 and a  tinnitus  frequency  fT of 2950 Hz plotted as a  function of  the  tinnitus frequency fT (cf. x axis). In Figure 15, the following ERB bandwidths are represented  in the order given, from top to bottom:  
 
– ERB  for  the  therapy  tones  fCR4hta with  ERB  edges  at  fCF4hta/f ±  0.5  ERB  (fCR4hta,  h)  represented by solid lines, 
– ERB  for  the  therapy  tones  fCR3hta with  ERB  edges  at  fCR3hta/f ±  0.5  ERB  (fCR3hta,  h)  represented by dotted lines, 
– ERB for the tinnitus frequency fT with ERB edges at 1 ± 0.5 ERB (fT, h) represented by  solid lines, 
– ERB  for  the  therapy  tone  fCR2hta  with  ERB  edges  at  fCR2hta/f ±  0.5  ERB  (fCR2hta,  h)  represented by dash‐dot lines and 
– ERB  for  the  therapy  tone  fCR1hta  with  ERB  edges  at  fCR1hta/f ±  0.5  ERB  (fCR1hta,  h)  represented by solid lines. 
[00119] Figure 15 shows  that  the overlaps and/or gaps between  the ERBs of  the  therapy  tones and the overlaps and/or gaps between tinnitus ERB and the ERBs of the therapy tones  are stable over the entire tinnitus frequency axis. For example, the overlaps and/or gaps can  vary up to ±10% or up to ±20% within the tinnitus frequency axis.
[00120] Figure  16  shows  the  personalized  hearing  threshold‐adapted  frequencies  of  the  four  therapy  tones divided by  the  tinnitus  frequency  fT. The personalized  frequencies can  also  be  referred  to  as  individualized  frequencies.  Figure  16  shows  from  bottom  to  top  fCR1hta/fT, fCR2hta/fT, fCR3hta/fT and fCR4hta/fT in the order given, represented by solid lines. Figure  16 uses the hearing threshold h of the patient from Figure 2 and the tinnitus frequency fT of  2950 Hz  plus  the  optimum  relative  ERB  overlaps  ρ(fCR1hta,  fT)  = ‐0.25,  ρ(fCR2hta,  fT)  =  0.47,  ρ(fCR3hta, fT) = 0.58 and ρ(fCR4hta, fT)   = ‐0.65. For comparison, Figure 16 also shows the ratios  between the  frequencies of the standard therapy tones and the tinnitus  frequency  fT,  i.e.,  fCR1/fT = 0.766,  fCR2/fT = 0.9,  fCR3/fT = 1.1 and  fCR4/fT = 1.4,  from bottom to top  in the order  given represented by dotted horizontal lines.
[00121] Figure 16 shows the relationship between the frequencies fCR1, fCR2, fCR3 and fCR4 of  the fixed standard therapy tones and the frequencies fCR1hta, fCR2hta, fCR3hta and fCR4hta of the  personalized  hearing  threshold‐adapted  therapy  tones.  The  intervals  of  the  personalized  hearing  threshold‐adapted  therapy  tones  fCR1hta,  fCR2hta,  fCR3hta  and  fCR4hta  vary  along  the  tinnitus  frequency axis and may be wider or narrower depending on  the patient's hearing  threshold  in comparison with the  intervals of the standard therapy tones fCR1, fCR2, fCR3 and  fCR4.  
 
[00122] According to a second variant of the example embodiment, the ERB bandwidth of  the tinnitus frequency fT is used solely as a reference for the therapy tone situated directly  in proximity to the ERB of the tinnitus frequency fT, namely the two middle therapy tones in  the case of four therapy tones, for example. For therapy tones  located farther toward the  outside of the frequency axis, the relative ERB overlap with the next closest therapy tone on  the frequency axis is used.
[00123] An  analysis  of  the  data  published  in  document  D27  has  revealed  the  following  optimum relative ERB overlaps for the four therapy tones: ρ(fCR1hta, fCR2hta) = 0.17, ρ(fCR2hta, fT)  =  0.47,  ρ(fCR3hta, fT) =  0.58  and  ρ(fCR3hta, fCR4hta)   = ‐0.13.  Patients  stimulated  with  these  relative  ERB  overlap  values  responded  significantly  more  quickly  to  the  acoustic  CR  neuromodulation as well as  to a much greater extent  in  comparison with an acoustic CR  neuromodulation using other ERB overlap values. This first variant and the second variant of  the  example  embodiment  yield  essentially  the  same  improvement  in  the  acoustic  CR  therapy.
[00124] It has been found that the ERB closest to the tinnitus frequency fT should be used  as a reference for the normalization and  in addition the terms ρ(fCR1hta, fCR2hta), ρ(fCR2hta, fT),  ρ(fCR3hta, fT) and ρ(fCR3hta, fCR4hta) should be determined  instead of the terms ϕ(fCR1hta, fCR2hta),  ϕ(fCR2hta, fT), ϕ(fCR3hta, fT) and ϕ(fCR3hta, fCR4hta) to avoid suboptimum results.
[00125] In a second embodiment, with the help of the device 10, the optimum number of  several acoustic therapy signals and their best possible arrangement on the frequency axis  are  determined  (cf.  Figures  17  through  22).  In  the  second  embodiment,  not  only  the  optimum intervals between the acoustic therapy signals are calibrated but also the location  of the entire group of acoustic therapy signals on the frequency axis is calibrated. Since the  second  embodiment  may  involve  a  lower  precision  in  determination  of  the  tinnitus  frequency fT perceived by the patient, the second embodiment may be used advantageously  in  the  treatment  of  patients  who  have  difficulties  in  audiological  determination  of  the  tinnitus frequency fT
[00126] The control unit 11 is designed or configured in the second embodiment such that  it determines the frequency of a first acoustic therapy signal and the frequency of a second  acoustic  therapy  signal such  that a measure of coverage between a  first bandwidth of an  auditory filter with the frequency of the first acoustic therapy signal as the center frequency  and  a  second  bandwidth  of  an  auditory  filter with  the  frequency  of  the  second  acoustic   
 
therapy signal as the center  frequency assumes a predetermined  first value. Next the  first  acoustic therapy signal and the second acoustic therapy signal are played for the patient by  the stimulation unit 12.
[00127] In the second embodiment, the first and second acoustic therapy signals as well as  all  other  acoustic  therapy  signals may  each  be  either  a  tone,  such  as  a  pure  sinusoidal  vibration,  or  a  mixed  tone,  such  as  a  sound  comprised  of  tones  of  any  frequency,  in  particular a noise or a sound. For  reasons of simplicity,  the  term  therapy  tones  is used  in  some embodiments, but this may also be understood to refer to mixed therapy tones.
[00128] The  measure  of  overlap  may  be  either  an  overlap  or  a  gap.  For  reasons  of  simplicity, the term “overlap”  is used  in some embodiments.  If the overlap has a negative  value, it is a gap.
[00129] The  second  embodiment  is  described  below  on  the  basis  of  one  example  embodiment  (cf.  Figures 17  through 22).  In  the example embodiment  a patient  suffering  from  tinnitus  is  treated  with  the  help  of  the  device  10.  As  bandwidths  around  center  frequencies, the ERB bandwidths around the frequencies of the therapy tones are used as  the first, second, third and/or fourth bandwidths. Furthermore, the relative ERB overlap  is  used to determine the optimum number of therapy tones and their optimum arrangement  on the frequency axis.
[00130] The procedure  for determining  the optimum number of  therapy  tones and  their  optimum  arrangement  on  the  frequency  axis  according  to  a  first  variant  of  the  example  embodiment  is diagrammed  in the flow chart  in Figure 17. The frequency axis  in Figure 17  shows the tonotopic organization of the primary auditory cortex. A neural population 1  in  the primary  auditory  cortex, which has  a pathological  synchronous  and oscillatory neural  activity,  is to be desynchronized by way of a targeted acoustic stimulation,  in particular an  acoustic CR stimulation.
[00131] This stimulation  is started with a  first therapy tone and a second therapy tone  in  the vicinity of the frequency fT of the dominant tinnitus tone perceived by the patient.
[00132] The determination of the tinnitus frequency fT should be at least accurate enough  so  that  the  subpopulations 2 and 3, activated by  the  first and  second  therapy  tones, are  linked either within or  in  close proximity,  for example, by  connections over one or more  synapses,  for example,  in  the neural population 1 with  the pathological  synchronous and   
 
oscillatory neural activity, or they are linked by nerve pathways directly to neural population  1.
[00133] Stimulation  with  just  two  therapy  tones  may  not  be  adequate  under  some  circumstances  to  achieve  a  complete  desynchronization  of  neural  population  1  and  a  complete disappearance of  the  tinnitus  symptoms but  typically  initial  therapeutic  success  can be achieved  through  such  stimulation  in  the  sense  that  the pathological  synchronous  and oscillatory neural activity and  the  tinnitus symptoms are both reduced.  In  the second  embodiment, successive additional therapy tones are added to the first and second therapy  tones, a check being performed by the evaluation unit 13 each time a therapy tone is added  to ascertain whether the result of the treatment has been  improved by the added therapy  tone. The additional therapy tones may be added to the first and second therapy tones on  both sides (with respect to the frequency axis).
[00134] In  the  example  embodiment  shown  in  Figure  17,  a  third  therapy  tone  which  stimulates subpopulation 4 is added to the first and second therapy tones. The frequency of  the  third  therapy  tone  is  lower here  than  the  frequencies of  the  first and second  therapy  tones. The patient  is then stimulated with a CR stimulation formed from the three therapy  tones  (cf.  the description of Figure 23 below where N = 3, namely  stimulated over  three  stimulation channels).  It  is then found by way of the evaluation unit 13 that by adding the  third therapy tone the desynchronization of the neural population 1 is further increased and  the tinnitus symptoms are further reduced. Accordingly, the third therapy tone  is retained  and  not  discarded.  Furthermore  it  can  be  concluded  from  this  that  the  subpopulation  4  stimulated by  the  third  therapy  tone  is  situated within or  sufficiently  close  to  the  target  neural population 1 or is at least connected directly to the target neural population 1 by way  of nerve pathways.
[00135] Next a fourth therapy tone which stimulates a subpopulation 5 and a fifth therapy  tone which stimulates a subpopulation 6 are also added to the first three therapy tones. In  CR stimulation with the corresponding sets of therapy tones (cf. the description of Figure 23  below,  where  N  =  4,  namely  stimulation  is  performed  over  four  stimulation  channels),  however,  it  is  found  that  the  stimulation  success  is  not  further  improved  in  either  case.  Consequently,  the  two  subpopulations 5 and 6 have  just a  slight overlap with  the neural  population 1. Therefore, the fourth and fifth therapy tones are discarded by the control unit  11.  
 
[00136] As a result the first, second and third therapy tones are selected for stimulation of  the patient, and a suitable CR stimulation is performed with these therapy tones.
[00137] It should be noted that the frequencies of the therapy tones mentioned above are  selected so that their ERB bandwidths have a predefined overlap with the ERB bandwidth of  the  respective  neighboring  therapy  tone.  To  emphasize  this  relationship,  subpopulations  adjacent in Figure 17 come in contact with one another, namely the subpopulations related  to the ERBs have the same spatial distance from the respective neighboring subpopulations.  However, the spatial distance illustrated in Figure 17 serves for illustrative purposes.
[00138] A matching method  for  determining  the  pitch  of  the  tinnitus  ("pitch matching")  yields the dominant or most pronounced tinnitus frequency fT or the frequency perceived by  the  patient  as  the  most  annoying.  A  pair  of  first  and  second  therapy  tones  with  the  frequencies  fCR2hta  and  fCR3hta which  stimulate  subpopulations 2  and 3 are  then  calculated  with respect to the tinnitus frequency fT or with respect to neighboring therapy tones based  on  a  predefined  value  for  the  relative  ERB  overlap, which  has  been  extracted  from  the  patient's audiogram,  thereby  taking  into account  the hearing  threshold‐induced spreading  of the auditory filters.
[00139] The  loudness  levels  of  the  first  and  second  therapy  tones  are  adapted  to  one  another  by  way  of  a  loudness  matching.  Furthermore,  the  success  of  the  therapy  is  evaluated (e.g., by way of a clinical assessment "clinical scores"), in particular "visual analog  scale scores" for  loudness and/or annoyance (cf. document D1) or a tinnitus questionnaire  (cf.  document  D2)  and/or  objectively  such  as  an  electrophysiological  measurement,  in  particular  an  electroencephalographic  (EEG)  or  electromyographic  (EMG)  or  magnetoencephalographic (MEG) measurement.
[00140] For example,  the neural activity of  the neuron population 1 can be measured by  way of noninvasive sensors, e.g., EEG, EMG or MEG sensors that are utilized chronically or  intermittently.  The  neural  activity  can  also  be  determined  by  detection  of  characteristic  motion  patterns  such  as  tremor,  akinesis  or  epileptic  seizures  with  the  help  of  an  accelerometer or gyroscope or  indirectly by measuring  the activation of  the autonomous  nervous system or by measuring the conductivity resistance of the skin.
[00141] Alternatively, the sensor may also be implanted in the patient's body. Examples of  invasive sensors that may be used  include epicortical electrodes, deep brain electrodes for   
 
measuring  local  field  potentials,  for  example,  subdural  or  epidural  brain  electrodes,  subcutaneous EEG electrodes and subdural or epidural spinal cord electrodes.
[00142] The  evaluation  unit  13 may  contain  such  sensors  or  it may  receive  information  and/or  data  sent  to  the  evaluation  unit  13  via  the  input/output  unit  14,  where  this  information is used by the evaluation unit 13 to ascertain the success of the stimulation. For  example, the evaluation unit 13 may detect a successful stimulation  if the synchronicity of  the neural population 1 has been reduced by at  least a predefined value as a result of the  stimulation.
[00143] As illustrated schematically in Figure 17, additional therapy tones are added to the  therapy tones already selected. If the therapeutic success  is thereby  increased by a certain  value,  for example,  the  synchronicity of  the neural population 1  is  reduced by  at  least  a  predefined value, then the therapy tones are retained and otherwise they are discarded.
[00144] The addition of another therapy tone  is assessed as a success, for example,  if the  clinical  assessments  or  the  objective  electrophysiological  measurement  show  an  improvement by at least 5% or 10% or 15%, etc., for example.
[00145] To  obtain  reliable  results,  the  assessment  of  the  therapeutic  success  can  be  repeated several times.
[00146] In  the  present  embodiment  a  predetermined  value  is  used  for  the  relative  ERB  overlap for all neighboring therapy tones. For example, one value may be selected from the  values  0.35,  0.47,  0.58,  0.65  and  0.71  for  the  predetermined  value  for  the  ERB  overlap  ρ(fCRjhta,  fCRj+1hta)  of  neighboring  therapy  tones.  However,  therapeutic  success  can  be  achieved if these values are varied within ranges of ±10% or even ±25%. The frequencies of  neighboring therapy tones are determined, for example, by having the control unit 11 vary  the  frequency of  the neighboring  therapy  tones until  the control unit 11 detects  that  the  ERB overlap  ρ(fCRjhta,  fCRj+1hta) of  the neighboring  therapy  tones has  assumed  the  selected  value  for  the  ERB overlap.  It  is  advantageous  if,  in  choosing  the  first  two  therapy  tones,  which stimulate subpopulations 2 and 3  in Figure 17, not only  is their mutual relative ERB  overlap determined, but in addition the criterion is that the relative ERB overlap of the two  tones, respectively, is identical or as similar as possible to the tinnitus ERB (in relation to the  tinnitus ERB). This boundary condition "anchors" the first pair of therapy tones in a balanced  manner, e.g., on the tinnitus frequency fT, based on the extent of the tinnitus ERB.  
 
[00147] The  procedure  for  determining  the  individualized  hearing  threshold‐adapted  therapy  tones  with  the  calibration  of  both  the  number  and  frequency  intervals  of  the  therapy tones according to the first variant of the second embodiment  is diagramed  in the  flow chart in Figure 18. First the dominant or most pronounced tinnitus frequency fT or the  frequency  perceived  by  the  patient  as  being  the most  annoying  is  determined  by  pitch  matching, for example. A first and a second therapy tones are then calculated with respect  to  the  tinnitus  frequency  fT  or  neighboring  therapy  tones  are  calculated  based  on  a  predetermined value for the relative ERB overlap, wherein the ERB overlap is extracted from  the patient's audiogram and the hearing threshold adapted spreading of the auditory filters  is thereby taken into account. The therapeutic success is evaluated by way of CR stimulation  (using two stimulation channels) and additional therapy tones on the right and left sides of  the frequency axis are added. If the therapeutic success is not further improved by adding a  therapy tone on the right or left side of the frequency axis, then no further therapy tone is  added on  the  respective  side.  In Figure 18, measurements and evaluations performed on  the  patient  are  shown  in  boxes  outlined with  dotted  lines whereas  data  analysis,  signal  processing and sound generation are shown in boxes outlined with solid lines.
[00148] Figure 19 shows  the procedure  for determining  the optimum number of  therapy  tones and their optimum arrangement on the frequency axis according to a second variant  of  the  example  embodiment  of  the  second  embodiment.  In  the  second  variant,  in  comparison with  the  first  variant  of  the  example  embodiment,  the  relative  ERB  overlap  ρ(fCRjhta,  fCRj+1hta) of neighboring therapy tones can be calibrated.  In a  first step the relative  ERB  overlap  ρ(fCR2ta,  fCR3hta)  of  the  first  and  second  therapy  tones  by  way  of  which  the  subpopulations 2 and 3 are stimulated  is calibrated. To do so multiple CR stimulations are  performed using  the  two  therapy  tones  and different  values  for  the  relative ERB overlap  ρ(fCR2ta,  fCR3hta). The value  for the relative ERB overlap ρ(fCR2ta,  fCR3hta) can be selected  from  the  following values,  for example: 0.35, 0.47, 0.58, 0.65 and 0.71. Next  the value  for  the  relative ERB overlap at which the CR stimulation has shown the greatest therapeutic success  is  selected.  Alternatively  the  relative  ERB  overlap  ρ(fCR2ta,  fCR3hta)  can  also  be  varied  continuously  and/or  incrementally,  and  the  value  range  at  which  the  best  therapeutic  results are obtained can be selected. In another alternative, the relative ERB overlap can be  varied  until  an  adequate  reduction,  e.g.,  10%  or  7%  or  5%  of  the  synchronous  EEG  performance  /  power  is  observed.  It  is  advantageous  if,  in  the  selection  of  the  first  two   
 
therapy  tones which stimulate subpopulations 2 and 3  in Figure 19, not only  their mutual  relative ERB overlap is taken into account but also in addition the criterion that the relative  ERB overlap of the two therapy tones with the tinnitus ERB (in relation to the tinnitus ERB)  should be identical or at least as similar as possible. This boundary condition "anchors" the  first pair of  therapy  tones  in a balanced manner, namely  it  is based on  the extent of  the  tinnitus ERB relative to the tinnitus frequency fT. This  individual value which  is determined  with the help of the first and second therapy tones for the relative ERB overlap is then used  for all other therapy tones. The procedure is otherwise exactly the same as that represented  in Figure 17.
[00149] The  procedure  for  determining  the  individualized  hearing  threshold  adapted  therapy tones with the calibration of the number of therapy tones, the frequency intervals  of the therapy tones and the relative ERB overlap of neighboring therapy tones according to  the second variant of the second embodiment are diagramed in the flow chart in Figure 20.  First  the  dominant  or  most  pronounced  tinnitus  frequency  fT  or  that  perceived  by  the  patient as the most annoying is ascertained, e.g., by pitch matching. A first therapy tone and  a  second  therapy  tone  are  then  calculated with  respect  to  the  tinnitus  frequency  fT  or  neighboring  therapy  tones based on  a predetermined  value  for  the  relative  ERB overlap,  wherein  the  ERB  overlap  is  extracted  from  the  patient's  audiogram  and  the  hearing  threshold  adapted  broadening  of  the  auditory  filters  is  thereby  taken  into  account.  A  loudness matching  is  carried out  to  adapt  the  loudness of  the  two  therapy  tones  to one  another, and a therapeutic success  is evaluated by means of CR stimulation using the two  therapy  tones. Next  the  relative  ERB overlap of  the  two  therapy  tones  is  calibrated.  The  resulting value determined for the optimum relative ERB overlap is then used for adding all  other  therapy  tones. Additional  therapy  tones are added on  the  right or  left  sides of  the  frequency axis and the respective stimulation result achieved is assessed with the help of CR  stimulation. If the therapeutic success is not improved further by adding a therapy tone on  the  right or  left  side of  the  frequency axis,  then no  further  therapy  tone  is added on  the  respective side. In Figure 20, measurements carried out on the patient and evaluations are  shown in boxes outlined with dotted lines, while data analysis, signal processing and sound  generation are shown in boxes outlined with solid lines.  
 
[00150] In  principle  the  optimum  ERB  overlap  can  be  recalibrated  for  each  additional  therapy tone. However, this is time‐consuming and goes beyond typical time constraints in a  clinical/audiological application.
[00151] The ERB arrangement shown in Figure 15 leads to improved treatment results, but  the arrangement of the various therapy tones may still be unbalanced. For example, there is  no overlap between  the ERB of  the  therapy  tone  fCR4hta and  the ERB of  the  therapy  tone  fCR3hta whereas the ERB of the therapy tone fCR2hta and the ERB of the therapy tone fCR1hta do  overlap.  It  has  surprisingly  been  discovered  that  a  balanced  tinnitus  ERB‐centered  arrangement of the therapy tones is more advantageous for the therapeutic result and also  with  respect  to  the  parameterization  and  therefore  the  calibration  because  just  two  parameters, the stretching factor of the tinnitus ERB and the number of therapy tones, are  specified to be  introduced  into the target ERB. The stretched tinnitus ERB  is referred to as  the target ERB. To obtain a personalized tinnitus ERB‐centered, hearing threshold adapted  and balanced arrangement of therapy tones, one should proceed as shown in Figure 13 and  then continue as follows, for example.
[00152] First,  the  target  ERB  is  specified  by  broadening  the  tinnitus  ERB  by  way  of  a  stretching  factor.  The  stretching  factor  prevents  narrow  intervals  between  the  therapy  tones  in a manner that  is not advantageous. The following values for the stretching factor  are  advantageous  in  the  case of  four  therapy  tones,  for  example:  1.5,  2.0,  2.25  and  2.5.  However, good results can still be obtained if the stretching factor is varied in a range of up  to ±15%. The goal here  is to place the  four therapy tones  in the target ERB  in such a way  that  the  arrangement  is  balanced.  The  frequencies  of  the  four  therapy  tones  to  be  determined  are  referred  to  below  as  fCR1hb,  fCR2hb,  fCR3hb  and  fCR4hb where  "hb"  stands  for  "hearing threshold adapted" or "hearing threshold adapted, balanced."
[00153] Two therapy tones with the frequencies fCR2hb and fCR3hb, which meet the following  conditions, are selected: 
(i)  The overlap of the ERBs of the two internal therapy tones with the frequencies fCR2hb  and fCR3hb is not negligible and symmetrical (symmetry condition). 
(ii)  The mutual  ERB overlap of  the  two  therapy  tones with  the  frequencies  fCR2hb  and  fCR3hb (with respect to the lower ERB) is:   
 
– identical  to  the overlap of  the ERB of  the  therapy  tone with  the  frequency  fCR1hb and the ERB of the therapy tone with the frequency fCR2hb (with respect to the  internal ERB, namely the ERB of the therapy tone with the frequency fCR2hb) and  – identical  to  the overlap of  the ERB of  the  therapy  tone with  the  frequency  fCR3hb and the ERB of the therapy tone with the frequency fCR4hb (with respect to the  internal ERB, namely the ERB of the therapy tone with the frequency fCR3hb). 
[00154] An  infinite  number  of  balanced  arrangements  of  therapy  tones  satisfy  the  conditions (i) and (ii). The arrangement of the therapy tones is selected with the help of the  following  secondary  conditions:  the maximum  relative overlap parameters  that meet  the  following conditions are selected:
– The frequency of the lowest therapy tone, namely the frequency fCR1hb, is  higher than the lower edge of the tinnitus ERB. 
– The frequency of the highest therapy tone, namely the frequency fCR4hb, is  lower than the upper edge of the tinnitus ERB. 
[00155] In Figure 21  the ERB edges bordering  the  respective ERB, divided by  the  tinnitus  frequency  fT  (cf.  y  axis)  for  the  personalized  tinnitus  ERB‐centered,  hearing  threshold‐ adapted and balanced arrangement of  the  therapy  tones are plotted as a  function of  the  tinnitus frequency fT (cf. x axis) with a stretch factor of 1.5. The hearing threshold h of the  tinnitus patients from Figure 2 and a tinnitus frequency fT of 2950 Hz were used. Figure 21  shows the following ERB bandwidths in the order given from top to bottom: 
– ERB  for  the  therapy  tones  fCR4hb with  ERB  edges  at  fCF4hb/f ±  0.5  ERB  (fCR4htb,  h)  represented by solid lines, 
– ERB  for  the  therapy  tones  fCR3hb  with  ERB  edges  at  fCR3hb/f ±  0.5  ERB  (fCR3hb,  h)  represented by dotted lines, 
– ERB for the tinnitus frequency fT with ERB edges at 1 ± 0.5 ERB (fT, h) represented by  solid lines, 
– ERB  for  the  therapy  tone  fCR2hb  with  ERB  edges  at  fCR2hb/f ±  0.5  ERB  (fCR2hb,  h)  represented by dash‐dot lines and 
– ERB  for  the  therapy  tone  fCR1hb  with  ERB  edges  at  fCR1hb/f ±  0.5  ERB  (fCR1hb,  h)  represented by solid lines. 
[00156] Figure 22 shows the personalized tinnitus ERB‐centered hearing threshold‐adapted  and  balanced  frequency  of  the  therapy  tones  divided  by  the  tinnitus  frequency  fT.  The   
 
hearing threshold h of the tinnitus patients from Figure 2, a tinnitus frequency fT of 2950 Hz  and a  stretch  factor of 1.5 were used. Figure 22  shows  from bottom  to  top  fCR1hb/fT  ('d'),  fCR2hb/fT ('c'), fCR3hb/fT ('b') and fCR4hb/fT ('a') in the order given, represented by solid lines. The  lower edge ('e') and the upper edge ('a') of the target ERB divided by the tinnitus frequency  fT comprise the four frequencies of the therapy tones. It should be pointed out that fCR4hb/fT  and the upper edge of the target ERB divided by the tinnitus frequency fT coincide ('a'). For  comparison  purposes,  Figure  22  also  shows  the  ratios  between  the  frequencies  of  the  standard  therapy  tones and  the  tinnitus  frequency  fT, namely  fCR1/fT = 0.766,  fCR2/fT = 0.9,  fCR3/fT = 1.1 and fCR4/fT = 1.4, shown from bottom to top in the order given, represented by  dotted horizontal  lines. The  frequencies  fCR1hb,  fCR2hb,  fCR3hb and  fCR4hb are within  the  target  ERB, namely within the tinnitus ERB after being improved by a stretch factor of 1.5.
[00157] In  principle,  the  larger  ERB  and/or  the  external  ERB  relative  to  the  tinnitus  frequency  fT may be used  as  a  reference.  Instead of  a  symmetrical  arrangement with  an  even number of, for example, four therapy tones, an odd number of therapy tones may also  be used, such that one therapy tone, usually the center therapy tone,  is aimed directly at  the tinnitus frequency fT.
[00158] Some  embodiments permit  rapid  and  effective  calibration of  the  therapy  tones.  For example,  four therapy tones can be  inserted  into a target ERB with a stretch factor of  1.5,  for  example,  as  described  above.  The  ERBs  of  neighboring  therapy  tones  have  an  identical  relative  overlap.  Then  additional  therapy  tones  are  added  on  the  right  and  left  sides with  the  same  relative ERB overlap as  that  shown  in Figures 17 and 18. The added  therapy tones are discarded if the therapeutic result is not improved by a minimum amount,  for example, an additional 5% or 10% or 15% or 25%.
[00159] In  addition  to  treating  tinnitus,  the  device  10  is  also  suitable  for  treating  other  diseases  characterized by pathologically‐enhanced neural  synchronization.  These  diseases  include depression, epilepsy, compulsive disorders, dementia illnesses, Alzheimer's disease,  autism,  dysfunctions  following  a  stroke,  sleep  disorders,  schizophrenia,  irritable  bowel  syndrome,  addictive  diseases,  borderline  personality  disorder,  attention  deficit  disorder,  attention deficit hyperactivity  syndrome, gambling addiction, neuroses, bulimia, anorexia,  eating disorders, burnout syndrome, migraines, cluster headaches and general headaches.
[00160] For treatment of the above diseases, the procedure is as follows:  
 
(i)  A frequency range with a hearing loss of < 50 dB HL or a voice range of 250 to  6000 Hz, for example, or a range over the voice range with a hearing loss of < 50 dB  HL or a frequency range preferred by the patient (not perceived as annoying and/or  troublesome,  not  interfering  with  the  understanding  of  speech,  not  causing  hyperacusis, etc.). 
(ii)  A frequency is selected either randomly or by a physician or audiologist; this  frequency  is  specified as  the  frequency of  the predetermined  tone, namely as  the  tinnitus frequency fT
(iii)  The steps illustrated in Figures 13, 18 and 20 are carried out with the selected  frequency as the tinnitus frequency fT
[00161] The  therapy  tones  obtained  by  way  of  some  embodiments  are  used  in  CR  stimulation.  Figure  23  shows  as  an  example  of  a  CR  stimulation,  in which  sequences  of  therapy tones 31 to 34 are generated  in four stimulation channels 21 to 24.  In each of the  stimulation channels 21 to 24, therapy tones 31 to 34 are generated at a certain frequency,  namely each one of the therapy channels 21 to 24 stimulates a certain subpopulation in the  target region in the patient's brain. For example, in a therapy channel 21, therapy tones 31  with the frequency fCR1hta or fCR1hb are generated, therapy channel 22 of the therapy tone 32  with  the  frequency  fCR2hta  or  fCR2hb,  therapy  channel  23  of  the  therapy  tone  33 with  the  frequency fCR3hta or fCR3hb and therapy channel 24 of the therapy tone 34 with the frequency  fCR4hta or fCR4hb
[00162] Figure 23 shows the therapy tones 31 to 34 generated in the stimulation channels  21 to 24 plotted as a function of time t. The sequences are generated  in a predetermined  time grid comprised of successive cycles. The  individual cycles are differentiated  from one  another by dotted  lines  in Figure 23. Each cycle has a  length Tstim.  In each cycle  in which a  stimulation  occurs,  exactly  one  sequence  of  therapy  tones  31  to  34  is  generated  in  the  stimulation  channels 21  to 24,  and exactly one  therapy  tone  is  generated  in each of  the  stimulation channels 21 to 24, namely each sequence in the present example comprised of a  series of four time‐delayed therapy tones 31 to 34, each of which  is generated  in different  stimulation channels 21 to 24 in particular, wherein the time lag may be based in particular  on the starting points of the therapy tones 31 to 34.
[00163] It  is  possible  to  provide  that  the  sequence  of  stimulation  channels  21  to  24,  in  which the therapy tones 31 to 34 are generated within the respective sequence, e.g., after a   
 
certain number of cycles, is varied. It has proven advantageous, in particular at low stimulus  intensities, if the sequence of simulation channels 21 to 24 is varied in a randomized manner  for one cycle to the next. A difference in filling of the bars shown in Figure 23, symbolizing  therapy tones 31 to 34, indicates a variation in the order. 
[00164] CR stimulation may be carried out continuously, for example, where sequences of  therapy  tones 31  to 34 are always generated  in  successive cycles. Alternatively, however,  pauses may  also  occur  during  CR  stimulation,  in  particular  during  entire  cycles,  in which  there is no stimulation with therapy tones 31 to 34.
[00165] Each of the four stimulation channels 21 to 24 stimulates a respective one of the  subpopulations 2 to 5 of the pathological neural population 1  illustrated  in Figures 3 to 6.  During cycles  in which the sequences are constant, the respective therapy tone 31 to 34  is  applied  periodically  with  the  period  Tstim  in  each  of  the  stimulation  channels  21  to  24.  Therapy  tones  31  to  34  produce  a  phase  reset  of  the  neural  activity  of  the  respective  stimulated subpopulation 2 to 5. Furthermore, the time lag between therapy tones that are  generated in different stimulation channels and follow one another directly in time within a  sequence amounts to Tstim/4, because four stimulation channels 21 to 24 are used for the CR  stimulation  in  the  present  example  embodiment.  For  the  general  case  of  N  (N  >  2)  stimulation  channels  used  for  the  stimulation,  the  time  lag  between  therapy  tones  generated  in  different  stimulation  channels within  a  sequence  of  directly  chronologically  successive therapy tones would amount to Tstim/N (for example, there may be a deviation of  up  to ±5%, ±10% or ±20%  from  this  value).  The  time  lag Tstim/N may  relate  to  the  initial  points  in  time of  the  therapy  tones. The  therapy  tones generated  in different  stimulation  channels may be identical except for the different starting points and the frequencies.
[00166] The  period  Tstim, which  indicates,  first,  the  duration  of  a  cycle  and,  second,  the  period, is repeated with the same sequences, and the therapy tones 31 to 34 generated in a  respective  stimulation  channel  21  to  24  may  be  close  to  the  middle  period  of  the  pathological oscillation of  the neural population 1 with  the pathological  synchronous and  oscillatory neural activity and/or may deviate from the middle period by up to ±5%, ±10% or  ±20%.  The  frequency  fstim  =  1/Tstim  is  typically  in  the  range  of  1  to  30 Hz.  The  period  of  pathological oscillation of the neural population 1 to be stimulated can be measured by way  of  EEG,  for  example.  However,  it  is  also  possible  to  use  values  from  the  literature  or   
 
empirical  values  based  on  the  respective  disease  to  be  treated  for  the  period  of  the  pathological oscillation.
[00167] Figure  23  shows  as  an  example  CR  stimulation  in  which  therapy  tones  are  generated  in  four  stimulation  channels,  namely  N  =  4.  However,  the  number  N  of  stimulation channels may also be selected differently (with N > 2). CR stimulation may thus  be carried out with exactly two stimulation channels, namely N = 2, if stimulation with just  two therapy tones is provided, for example, in the embodiment according to Figure 13, or in  order  to  test  the  first  two  therapy  tones, which  stimulate  subpopulations 2  and 3  in  the  embodiments according  to Figures 17 and 19. CR stimulation can also be carried out with  exactly  three  stimulation  channels,  namely N  =  3.  CR  stimulation with  three  stimulation  channels may be desirable in the embodiment according to Figure 13 or in the embodiments  according  to Figures 17 and 19, and  it may be used  to  test  the CR stimulation with  three  therapy  tones which  stimulate,  for  example,  subpopulations  2,  3  and  4.  The  stimulation  pattern in CR stimulation over two or three stimulation channels corresponds essentially to  the  pattern  illustrated  in  Figure  23  except  that  each  sequence  comprise  of  two  therapy  tones  for N = 2 and/or  three  therapy  tones  for N = 3 and  thus  two and/or  three  therapy  tones are generated in cycles in which stimulation is carried out, and the time lag between  therapy  tones  created  within  a  sequence  of  chronologically  directly  successive  therapy  tones  generated  in  different  stimulation  channels  amounts  to  Tstim/2  and/or  Tstim/3,  respectively, according to one example embodiment.
[00168] The phase reset induced by the therapy tones can be verified as described above,  and  the  therapy  tones  in CR  stimulation produce a  so‐called  reset of  the phase of neural  activity of the stimulated neurons. With the help of the measurement signals recorded with  a sensor, for example, an EEG sensor or an MEG sensor, such a test can then be performed  by the actual therapeutic CR neurostimulation. In order for a therapy tone, whose frequency  has  been  determined  using  the  methods  described  here,  to  induce  a  phase  reset,  for  example,  the amplitude, or  the  loudness of  the  therapy  tone, can be varied until a phase  reset of the neurons stimulated by the therapy tone is detected on the basis of the methods  described below.
[00169] To do  so, a  signal which adequately  represents  the activity of  the  subpopulation  stimulated over  the  jth  stimulation  channel  is measured by way of a  sensor. This  signal  is  obtained either directly from the subpopulation by way of a noninvasive measurement, e.g.,   
 
by way of EEG or MEG electrodes or by way of an  invasive measurement, for example, by  way  of  implanted  electrodes,  as  surface  EEG  or  as  local  field  potential  by way  of  depth  electrodes. The signal can also be determined indirectly by measurement of a variable that  correlates with  the  activity  of  the  stimulated  subpopulation.  For  example,  EEG/MEG/LFP  signals of the neural activity of a neural population closely associated with this population  are suitable for this purpose.
[00170] Since neural signals typically contain rhythmic activity in different frequency bands,  it  is  advantageous  in  such  cases  to  determine  the  signal  xj(t)  which  represents  the  pathological  oscillatory  activity  of  the  subpopulation  stimulated  by  the  jth  stimulation  channel  by  way  of  band  pass  filtering  or  by  wavelet  analysis  or  by  empirical  mode  decomposition.
[00171] A  procedure  that  is  streamlined  for  verifying  a  phase  reset  comprises  of  determining  the  average  stimulus  response.  To  do  so,  a  therapy  tone  with  identical  parameters  is  generated  at  the  times  τ1,  τ2, …,  τl,  the  intervals  between  the  individual  therapy  times  τk+1 ‐  τk  should  be  large  enough  and  should  be  randomized,  namely  not  constant in order to avoid standardization processes (cf. document D29). The distances τk+1 ‐  τk should typically be in the range of at least a factor of 10, or even better a factor of 100 of  the middle period of the pathological  isolation. The stimulus response average over all  l  is  calculated according to the following equation:
Figure imgf000043_0001
[00172] If the intervals τk+1 ‐ τk between the individual therapy tones are large enough, then  one does not obtain an average stimulus response in the pre‐stimulus range, namely in the  range before application of the respective therapy tone (cf. document D29). A phase reset  can be detected  if an average stimulus response can be detected, namely when there  is a  stimulus response different from zero in the post‐stimulus range, namely in the range of t >  0, where t = 0 represents the initial point in time of the respective therapy tone. This can be  determined by visual inspection. This can also be carried out by device 10, in particular the  control unit  11 by  taking  into  account  the pre‐stimulus distribution of  x(t) or  |x(t)|  and  determining  a  characteristic  threshold  value,  for  example,  the  99th percentile of  the pre‐ stimulus  distribution  of  |x(t)|  or  its maximum.  For  example,  if  the  amount  of  the  post‐  
 
stimulus  response  exceeds  this  characteristic  threshold  value  in  principle  or  for  a  predetermined minimum period of time, for example, 20 ms, then the average response  is  different from zero. In this case, there may be a phase reset. In other words, the intensity of  the  therapy  tones,  in particular  their amplitude, or  loudness, would have  to be  increased  until  the post‐stimulus  response  is different  from a  zero  line.  In addition  to  the methods  presented  here,  which  are  streamlined  but  have  proven  successful  in  practice,  other  statistical  tests  with  which  those  skilled  in  the  art  are  familiar  may  be  used  for  signal  analysis.
[00173] Analysis of  the phase permits a more accurate but more complicated variant  for  investigating whether the therapy tones  induce a phase reset. To do so, the phase ψj(t) of  xj(t)  is  determined.  This  is  done  by  way  of  a  Hilbert  transformation  from  the  signal  determined  by  way  of  band‐pass  filtering  and/or  empirical  mode  decomposition  representing  the  pathological  oscillatory  activity.  This  empirical  mode  decomposition  permits  a  parameter‐independent  determination  of  physiologically  relevant  modes  in  various  frequency  ranges  in  comparison with band‐pass  filtering  (cf. document D30). The  combination of empirical mode decomposition with the subsequent Hilbert transformation  is referred to as Hilbert‐Huang transformation (cf. document D31). The phase ψj(t) can also  be determined by way of wavelet analysis.
[00174] A phase reset occurs when the phase ψj(t) is set at a preferred value by a therapy  tone  (with  the  start of  the  therapy  tone at  t = 0) after a  certain period of  time.  In other  words,  {ψjk  +  t)}k=1,…,l,  the  distribution  of  values  of  the  phase  ψj(t)  obtained  from  the  l  stimulus  responses  has  an  accumulation  point  at  the  time  t  (relative  to  the  start  of  the  therapy tone at t = 0). Those skilled in the art are familiar with those methods with which it  is possible  to detect  that  a distribution has  an  accumulation point  (namely  a peak). One  method is to determine the phase reset index ρ(t) by way of circular average:
Figure imgf000044_0001
A phase  reset occurs when  φ(t) exceeds  the maximum or  the 99th percentile of  the pre‐ stimulus distribution of φ(t) (at a point in time or within a small time window of 20 ms, for  example).   
 
[00175] In practice, analysis with the average responses x(t) has proven to be sufficient for  some embodiments.
[00176] Figure 24 shows schematically a device 40 for noninvasive acoustic stimulation of  neurons with  a  pathological  synchronous  and  oscillatory  neural  activity  according  to  one  embodiment of the  invention. The device 40 can be operated as an acoustic stimulator by  itself or in combination with a hearing device, e.g., combined in one component. The device  40 may also  include an audiometer combined with  it structurally or  it may be equipped to  receive data from an audiometer by wireless transmission, for example.
[00177] Acoustic  stimulation  signals,  in particular  therapy  tones, are administered  to  the  patient  via  an  earbud  or  headphones  41  or  a  loudspeaker  (or  a  hearing  aid,  a  cochlear  implant  (which  can  deliver  signals  both  acoustically  and  electrically),  or  another  acoustic  generator or transducer of a different design), wherein an earbud is a loudspeaker placed in  the  auditory  channel.  The  earbud  or  headphones  41  is/are  connected  by  cable  43  to  a  control unit 42 placed behind the ear with a (rechargeable) battery. A central control unit 44  with  a  (rechargeable)  battery  for  operation  by  the  patient  may  be  connected  to  the  components in and/or on the ear either by cable or by wireless connection.
[00178] Figure 25 shows schematically a device 45, which is a refinement of the device 40  from  Figure 24.  The device 45  contains,  in  addition  to  the  components described  above,  noninvasively secured EEG electrodes 46 which are connected by cable 47, 48 to the behind‐ the‐ear control unit 42. EEG signals are amplified and applied in the control unit 42.
[00179] The devices  10,  40  and  45 may  also  contain  a unit  for producing  an  audiogram  and/or a unit for recording sensor signals, in particular EEG signals or MEG signals and/or for  detecting  information  about  the  patient’s  condition,  in  particular  VAS  scales  or  tinnitus  questionnaires,  in addition  to containing  the device components already described above.  However,  it  is also possible  to provide  that  the audiogram,  the  sensor  signals and/or  the  well‐being  information  is/are  detected  by  way  of  external  devices  and  that  the  corresponding data is sent to the devices 10, 40 and 45 by way of an input/output unit.
[00180] The audiogram typically covers frequencies from 250 Hz to 8000 Hz or from 250 Hz  to 16,000 Hz. It may be more advantageous to produce a high‐pitch audiogram, e.g., up to  16,000 Hz if the dominant tinnitus frequency is at higher frequencies, in particular at more  than 8000 Hz. In this case, the therapy tones will be higher than 8000 Hz and the choice of   
 
an  optimal  interval  between  them  can  involve  adaptation  to  the  respective  hearing  threshold.
[00181] Embodiments of this disclosure are not restricted to pure tone stimuli, but may use  many other types of sound stimuli  including stimuli with frequency components within the  auditory  filter  bandwidth,  and  the  inverse  case  of  broadband  signals  with  removal  of  frequency  components within  the  auditory  filter  bandwidth.  For  instance,  in  the  case  of  delivering CR stimulation with four different narrowband noise sound stimuli, replacement  can be made of the ERB corresponding to the sine tone, as used so far, by an  integral ERB  belonging  to  the narrowband signal as described  in  the  following and  illustrated  in Figure  26. 
[00182] Let nb1 and nb2 denote the lower and the upper frequency where the power of the  narrowband signal is equal to half of its maximal value, namely 3 dB less power than at the  peak  as  shown  in  Figure  26, with  nb2 ‐  nb1  specifying  the  band width  at  half maximum  power. The value of 3 dB  is arbitrary but  is the most commonly used  in engineering when  specifying electronic filters. It also is the most commonly used in psychoacoustics because of  the  analogy  to  engineering  filters,  because  this  value  is  just  over  the  just  noticeable  differences  (jnd)  for  loudness  that  range  from  about  0.5  dB  to  2.0  dB  depending  on  frequency  and  because  it  is  approximately  the  midpoint  of  the  dB  step  size  use  for  diagnostic  threshold  testing.  To  extract  the  perceptually  prominent  part  of  the  power  spectrum  of  a  narrow  band  signal  and  separate  it  from  possible  additional  noise  and/or  sound  components not  relevant  to  the disclosed  stimulation mechanism, a 3 dB  cutoff  is  used. The approach is stable with respect to variations of the cutoff level of up to 10 %, up  to 25 % and even more. Then  the  integral auditory  filter  range of  this narrow band noise  stimulus reads: 
Figure imgf000046_0001
 
 
Figure imgf000047_0001
[00183] Because  the  ERB  width  depends  on  the  frequency  f,  and  also  on  the  hearing  threshold  h,  nbmin  is  not  necessarily  equal  to  nb1 ‐0,5 ∙ERB(nb1,h),  and  nbmax  is  not  necessarily equal to nb2 + 0,5 ∙ ERB(nb2 , h). 
[00184] The integral ERB of the narrow band signal is then given by nbmax ‐ nbmin∙ The sound  used  for  stimulation may  contain additional  spectral  components  that do not exceed  the  half maximum  (Pmax/2)  level.  These  frequency  components  generally  are not  relevant  for  measures of hearing sensitivity or pitch estimates under most circumstances and are also  remote from the frequency region of  interest.  In that case one can determine the  integral  ERB  in the same way as explained above.  Instead of considering the spectral power of the  narrow band sound signal one can also use the intensity and apply the same analysis. 
[00185] Currently the diagnosis of primary tinnitus is an exclusionary diagnosis that is made  after having ruled out diseases that may cause secondary tinnitus. No objective diagnosis of  primary  tinnitus  is  available.  However,  embodiments  of  this  disclosure  can  be  used  for  diagnostic purposes, too. 
[00186] Abnormal neuronal  synchrony  is  typically  found  in patients with primary  tinnitus  (see  documents D3, D4, D9, D10, D20, D22, D23  and D25)  and  is  reflected  in  abnormal  spectral power of EEG  signals and/or MEG  signals and/or  the  corresponding brain  source  activity,  e.g.,  determined  with  a  BESA  source  montage  approach  (see  document  D34),  and/or  the  corresponding  current  source  density  approach,  e.g.  calculated with  sLORETA  (see document D33). While the currently available findings have been shown to work on a  group  basis,  namely  able  to  separate  groups  of  tinnitus  patients  from  groups  of  healthy  controls  or  groups  of  patients  before  and  after  successful  treatment  intervention  (see  documents D3, D4, D9, D20, D22, D23 and D25), so far a diagnostic test remains desired that  allows these separations on an individual basis. 
[00187] Some embodiments can be used for diagnostic purposes even with the surprising  finding  that  the  amount  of  abnormal  neuronal  synchrony  may  not  be  characteristic  for  primary  tinnitus. Rather,  the  response of  the abnormal,  synchronized neuronal activity  in  the  auditory  cortex  to  desynchronizing  test  sound  stimulation,  e.g.,  acoustic  CR   
 
neuromodulation,  delivered  in  a  hearing  threshold  adapted  manner  by  way  of  this  disclosure, can be used as a diagnostic marker for primary tinnitus. 
[00188] To this end some embodiments are used in the following way: 
(i) Assess the tinnitus frequency fr by way of a pitch matching procedure. 
(ii) Calibrate up to 4 stimulation tones as described above (see Figures 13, 18 and 20).  (iii) Perform EEG and/or MEG recordings before, during and after stimulation. 
(iv)  Determine  baseline  power  levels  of  delta  and/or  theta  and/or  alpha  and/or  gamma  band levels, e.g., in 2‐5 min spontaneous recordings, for example with eyes closed. Spectral  power  in  the different  frequency bands  is  separated by way of  standard bandpass  filters  with  dedicated  band  pass  parameters,  e.g.,  delta:  1‐4 Hz,  theta:  4‐8 Hz,  alpha:  8‐13 Hz,  gamma: 30‐48 Hz, or by way of empirical mode decomposition  (see documents D30  and  D32) where the modes are assigned to different frequency bands by way of spectral analysis  (see document D20). 
(v) Perform test stimulation for, e.g., 5 min or 10 min or 15 min. 
(vi) Assess the duration of significant after‐effects at 60 s after cessation of stimulation, e.g.,  by using a 10 s window for time‐varying spectral analysis and standard statistical tests (e.g.  Wilcoxon matched pairs signed‐rank test) 
(vii) Findings indicative of tinnitus‐related abnormal brain activity: Significant aftereffects  to be observed after 60 s after cessation of stimulation: 
delta band after‐effect: 
(a) significant decrease of delta power below baseline  from 60 still at  least 240 s after 15  min desynchronizing sound stimulation. 
(b) significant decrease of delta power below baseline from 60 s till at  least 120 s after 10  min desynchronizing sound stimulation. 
(c) significant decrease of delta power below baseline from 60 still at least 90 s after 5 min  desynchronizing sound stimulation. 
gamma band after‐effect: 
(a) significant decrease of gamma power below baseline from 60 still at least 240 s after 15  min desynchronizing sound stimulation. 
(b) significant decrease of gamma power below baseline from 60 s till at least 120 s after 10  min desynchronizing sound stimulation.   
 
(c) significant decrease of gamma power below baseline from 60 still at least 90 s after 5 min  desynchronizing sound stimulation. 
alpha band after‐effect: 
(a) significant increase of gamma power below baseline from 60 still at least 120 s after 15  min desynchronizing sound stimulation. 
(b) significant  increase of gamma power below baseline from 60 s till at  least 90 s after 10  min desynchronizing sound stimulation. 
(c) significant increase of gamma power below baseline from 60 still at least 75 s after 5 min  desynchronizing sound stimulation. 
[00189] After‐effects can be assessed unilaterally, e.g., for the auditory cortex of the same  side, in case of unilateral tinnitus or bilaterally (by taking the mean of both sides) in patients  with  bilateral  tinnitus.  Instead  of  current  source  density  or  brain  source  activity,  reconstructed  after‐effects  can  also  be  determined  by  using  EEG  and/or  MEG  signals  (without any inverse analysis techniques). 
[00190] These after‐effect markers can be used  in  isolation or  in combination (to  increase  their diagnostic  specificity).  If used  in  isolation  the delta‐band after‐effect marker  is most  specific. The most robust pair of markers  is the delta/gamma marker pair, since the alpha  band activity may be altered due to non‐disease related influences, e.g., relaxation etc. 
[00191] Some embodiments  can also be used  for diagnostic purposes and/or  to monitor  therapeutic  outcome  in  the  course  of  a  treatment.  Both  purposes  can  leverage  that  the  amount of abnormal neuronal synchrony, in particular, in the delta frequency band (e.g., 1‐4  Hz) may not be sufficient to separate healthy controls from patients with primary tinnitus on  a patient‐to‐patient basis. 
[00192] By  the same  token, some embodiments can also be used  to monitor  therapeutic  outcome  in  the  course of  a  treatment.  To  this end  the  after‐effect markers  as explained  above,  especially  the  delta  band marker,  are  assessed  at  each  visit.  Positive  therapeutic  effect translates into a decrease of the duration of the test stimulation after‐effects. 
[00193] In  the  following  auditory  filter  theory will be explained. Auditory  filter  theory  is  based on the concept that the auditory system functions as a spectrum analyzer that is able  to analyze the  level, typically on a dB scale, of broad band acoustic signals such as speech,  music and noise to provide information on the spectral content of the signal. It is based on  the fundamental engineering concept of a band pass filter that can have a wide variety of   
 
shapes  and  fundamental  operational  differences.  However,  an  auditory  filter  typically  is  described  as  having  a  center  frequency  fC,  a  low  cut‐off  frequency  fL,  a  high  cut‐off  frequency fH, a bandwidth BW centered on this frequency, BW= fH ‐ fL at a point 3 dB lower  than the fC, an out of band rejection rate = dB/octave, and a variety of temporal effects such  as phase changes associated with different portions of the filter. fL and fH are the lower and  upper edges of the bandwidth, respectively. 
[00194] Auditory  filter  theory  can  specify  a  particular  filter  that  can  be  described  both  subjectively  and  mathematically  and  then  represents  the  auditory  system  as  a  set  of  adjacent auditory filters. The center frequency fC of an auditory filter initially is determined  by  the  peripheral  auditory  system,  specifically  the  external  ear,  middle  ear,  and  most  prominently,  the  cochlea.  The  bandwidths  BW  and  filter  shapes  are  determined  from  a  variety  of  psychoacoustic  and  physiologic  measures  with  descriptions  that  can  include  detailed mathematical representations that specify  level,  frequency and phase effects. For  acoustic tonal stimulation, and by analogy the tinnitus percept, the fundamental concept is  that an acoustic signal is filtered in the spectral domain by the auditory filter to establish the  spectral resolution of the resulting auditory percept that is associated with various locations  in  the  auditory  system beginning  at  the peripheral  ear  and  extending  to  central nervous  system locations up to the level of the auditory cortex. 
[00195]  Auditory filter theories are used to explain several abilities of the auditory system  including  frequency  sensitivity  and  selectivity  (e.g.,  frequency  tuning  curves),  speech  perception (e.g., vowel discrimination), music perception (e.g., timbre), source identification  (e.g., male vs female speaker) and selective attention (e.g., enhanced ability to attend to a  specific signal in the presence of non‐specific noise). 
[00196] Auditory  filter  theories  have  employed  a  wide  variety  of  mathematical  representations. The physical acoustic waveform  in  the environment  can be described as  the amount of time between specified oscillations  in the waveform, period p  in msec. The  number of oscillations per unit time, frequency f in Hz=1/p. The values can be expressed on  a  linear  scale or on a  logarithmic  scale,  log(p) and  log(f). The  logarithmic  scales have  the  same  absolute  value,  log(f)  = ‐log(p  ). A musical  octave  scale  is  specified  if  the  log  base  value=2 (see document D14). 
[00197] Auditory  filter theories can employ a wide variety of perceptual phenomena that  can  be  described  mathematically  as  well.  Musical  pitch  can  be  specified  as  being   
 
proportional  to  log(f) with  the musical octave=  log2(f  / 127.09) multiplied by 12  for  semi‐ tones or by 1200 for cents. 
[00198] Auditory pitch also can be specified based on psychoacoustically derived division of  frequency ranges into perceptually equal intervals or judgements of the frequency of a tone  as half as high as a comparison tone (see document D6). One mel m = one thousandth the  pitch of a 1 kHz tone, further specified as m = 1127 In (1 + f / 700), or the  inverse: f = 700  [exp(m / 1127)‐1]. 
[00199] Auditory  filter  theory  also  can  use  the  concept  of  critical  bandwidth  Bc  derived  from either masking (see document D19) or loudness summation psychoacoustic measures  (see  document D28). Masking  involves  simultaneously  presenting  a  tonal  signal  S with  a  broadband noise N where  selectively  the  frequencies of N  that  fall within  a  critical band  contribute to masking of the signal. The  larger the critical bandwidth, the  lower the signal‐ to‐noise  ratio  S/N  and  the  more  the  signal  is  masked.  Loudness  summation  involves  measurement of loudness changes with increasing signal bandwidth. 
[00200] The  Bark,  B,  scale  is  a  psychoacoustically‐derived  frequency  scale  where  equal  frequency  distances  correspond with  equal  perceptual  distances  (see document D24  ). A  scale from 1 to 24 corresponds to the first 24 critical bands. The critical band rate scale, z,  (in bark)= [26.81 I (1 + 1960 / f)] ‐ 0.53, with f in Hz. Critical bandwidth (in Hz), Bc = 52548 /  (z2 ‐ 52.56 z + 690.39). 
[00201] Auditory  filter  theories  are  useful  for  understanding  a wide  variety  of  auditory  phenomena  including  sound  localization ability,  the physiology of  the cochlea and central  nervous system processing of auditory signals and tinnitus. 
[00202] For acoustic  tonal  stimulation  for  tinnitus  intervention, and by analogy  the pitch  matched  frequency of  the  tinnitus percept, a  tonal signal can be considered analogous  to  the center  frequency of an auditory  filter. The auditory  filter characteristics, such as  filter  bandwidth, can be used to represent specific spatial representation in the auditory system.  Because the spatial representation of these signals is systematically organized at the level of  the cochlea and sequentially through the eighth cranial nerve, the auditory neural centers in  the  brainstem,  and  all  the  way  to  the  auditor  cortex  in  the  temporal  lobe,  acoustic  coordinated  reset  tinnitus  intervention  signals  are  tightly  controlled  and  the  effects  are  better understood.   
 
[00203] The auditory filter models cited above refer to normal hearing. An adjustment for  hearing  loss can take two forms.  In the case of an auditory filter model that contains both  hearing  threshold  and  suprathreshold  information,  the  hearing  loss  adjustment  can  be  made from the normal hearing data.  In the frequency tuning curve model, e.g., where the  hearing threshold can be specified as the minimum point of the frequency tuning curve and  the frequency selectivity  is specified for all suprathreshold  levels of stimuli, an adjustment  for hearing loss can be estimated by re‐specifying the minimum point on the curve based on  the magnitude of the hearing  loss and no additional measures are  involved other than the  existing  diagnostic  audiogram.  This  estimate  would  rely  on  the  assumption  that  the  individual's tuning curve for signals above threshold would be close to the normal frequency  tuning  curve  and  the  assumption  that  the  actual  change  in  hearing  sensitivity would  be  accurately estimated from the diagnostic audiogram, two assumptions not based on direct  measures.  In the case of an auditory filter model based on data measured  in persons with  sensorineural hearing  loss,  the ERB model, or  the  frequency  tuning  curve model e.g.,  the  adjustment for sensorineural hearing  loss, can be made from published average measured  data secondary to the original auditory filter theory. The hearing  loss range can be set for  the ERB analysis based on published actual averaged data from hearing loss subjects though  this  is  not  required,  and  ERB  bandwidths  can  be  specified  for  all  levels  of  hearing  loss.  Finally, regardless of which auditory filter model  is employed, the actual auditory filter can  be measured  in an  individual patient with a variety of either psychoacoustic or physiologic  methods. 
[00204] Instead of using the mathematical formulas presented above, some embodiments  can  also  use  actual  measures  of  the  auditory  filters  for  a  particular  patient.  The  disadvantage of measuring auditory filters individually is the time involved. Alternatively, as  a hybrid  compromise,  some embodiments  can provide  stimuli  initially determined with  a  model‐based  auditory  filter  (e.g.,  ERB)  calculated with  the  formulas  presented  above. At  subsequent visits  (e.g.,  for  re‐calibrating  the  sound  treatment)  the auditory  filters  can be  measured initially at the principal diagnostic frequencies, e.g., at 250 Hz, 500 Hz, 750 Hz, 1  kHz, 1.5 kHz, 2 kHz, 3 kHz, 4 kHz, 6 kHz, 8 kHz, 10 kHz, 12.5 kHz, 16 kHz or alternatively with  more  fine‐grained  measures  around  the  tinnitus  frequency  fT  to  gradually  replace  the  model‐based estimates of the auditory filters with individually measured auditory filters visit  by visit. Due to the extra time for these additional measures this hybrid procedure can be   
 
selectively  applied  to  patients who  do  not  respond  sufficiently well  to  the  initial model  based sound therapy. 
[00205] The  following  provided  further  details  for  explaining  and  implementing  some  embodiments of this disclosure. 
[00206] Analysis of the spacing of the standard CR tones:  
[00207] In  a  proof  of  concept  study  (document  D22)  63  patients  with  primary  tinnitus  received acoustic coordinated reset (CR) therapy. The therapy is composed of four tones
Figure imgf000053_0003
spaced  around  the  pitch  of  the  tinnitus  with  a  well‐defined  pattern  and 
Figure imgf000053_0002
Figure imgf000053_0004
implemented  several  hours  per  day  for  12  weeks  and  24  weeks.  The  mean  tinnitus  reduction was substantial but with a range of effective reductions across individual subjects.  The purpose of the following is to analyze the individual results of this study with respect to  the frequency spacing of the tones. 
[00208] The frequencies of CR tones used in the proof of concept study (D22) were a fixed  percentage of a tone matched to the pitch of the tinnitus with two placed below the tinnitus  frequency and two placed above the tinnitus frequency. The tinnitus pitch and the four CR  therapy tones were specified by: 
Figure imgf000053_0001
[00209] Frequency Spacing of standard CR tones: 
[00210] To quantify the  frequency spacing of the tones, the analysis  is based on auditory  filter  theory  where  the  relevant  auditory  processing  for  a  single  tone  is  a  band  width  centered on  the  tone.  In  this  case  the  corresponding  rectangular band width  (ERB)  (D11;  D17) was used for the tinnitus frequency and for each of the four tones. To determine the  frequency spacing and overlap of the ERBs between the different CR tones and the tinnitus  frequency,  determination  is  made  of  the  spacing  of  their  corresponding  ERBs  and  adjustment is made of these ERBs further based on the hearing level at each frequency for  each subject. To this end the following notations are introduced in Figure 27.  
[00211] Figure 27 shows notations of band edges and center frequencies of ERBs and each  of the four CR tones as an example.    
 
[00212] The x‐axis is the frequency (f) axis.   denote the lower and upper edge of 
Figure imgf000054_0008
an ERB(fj), the ERB belonging to the j‐th CR tone.  
[00213] Consideration  is  made  of  two  different  approximations  for  the  corresponding  rectangular bandwidth for normal hearing (ERBN): 
[00214] (i) 1st ERB approximation (D17): 
Figure imgf000054_0001
Figure imgf000054_0002
 where f  and ERB are in Hz. Accordingly, one obtains 
Figure imgf000054_0003
This approximation is valid for f in the range from 100 Hz to 6.5 kHz.  
[00215] (ii) 2nd ERB approximation (D11): 
Figure imgf000054_0004
Figure imgf000054_0005
 where ^ and ERB are in Hz. Accordingly, one obtains 
Figure imgf000054_0007
where 
Figure imgf000054_0006
This approximation  is valid for moderate sound  levels and for  in the range from 100 Hz to 10 kHz. 
[00216] The  frequency  range  of  validity  is  significantly  greater  than  that  of  the  1st  approximation.  In  addition,  the  2nd  approximation  appears  to  be  superior  in  terms  of  a  broader coverage of the admissible tinnitus frequency range combined with a streamlined  mathematical  model.  Accordingly,  the  2nd  ERB  approximation  is  used  for  the  following  analysis. 
[00217] Hearing threshold adapted ERB:  
[00218] In  a  next  step,  account  is  taken  of  the  impact  of  hearing  loss  on  the  ERB. D18  provides data for 2 kHz, 4kHz, and 6 kHz and absolute hearing threshold between 0 and 80  dB HL. Based on their data, in a first approximation, for the range between 0 and 50 dB HL  the dependence of ERB on hearing loss h can be modeled by 
ERB(h)=ERBo∙c(h) 
where ERBo denotes the ERB at normal hearing, and  
c(h)=1+h/50 
and h is hearing threshold in dB HL. Note, for frequencies other than 2 kHz, 4 kHz, and 6 kHz,  this model can be considered as a first approximation.     
 
[00219] Figure 28  (upper plot) shows  the ERB at normal hearing  (thin  line) as well as  the  hearing  threshold  adapted  ERB  (solid  line).  Symbols  indicate  frequencies  at  which  the  audiogram  was  measured.  Lower  plot  shows  the  corresponding  audiogram  (linearly  interpolated on a logarithmic frequency axis). 
[00220] For the sake of illustration, assume a homogenous hearing loss, e.g., a hearing loss  that  is  the  same  magnitude  across  frequency.  The  corresponding  ERBs  of  the  tinnitus  frequency as well as CR tones #1,…,#4 (displayed relative to tinnitus frequency) are plotted  for h= 0 dB HL (Figure 29, left panel). 
[00221] The  frequencies  of  the  CR  therapy  tones  f1,f2,f3,f used  in  the  proof  of  concept  study (D22) are specified by: 
Figure imgf000055_0001
The  left panel  in Figure 29 shows  the  tinnitus  frequency‐dependent ERB edges divided by  the  tinnitus  frequency  for  the  case  of  normal  hearing  (0  dB  HL  for  all  frequencies),  respectively. For  instance,  the upper and  lower edge of  the uppermost,  light shaded area  (belonging to the fourth CR tone, “CR4”) reads  respectively. 
Figure imgf000055_0002
[00222] In relation to the tinnitus ERB, namely the ERB belonging to the frequency   the 
Figure imgf000055_0003
ERBs of the different CR tones  (CR1,…,CR4) are not symmetrically aligned on the  (relative)  frequency  axis.  Considering  ERBs  as  quantifying  the  tonotopic  pathways  to  neuronal  populations in the central auditory system, e.g., the auditory cortex, it is hypothesized that a  non‐symmetrical  arrangement  of  ERBs  of  CR  tones  corresponds  to  a  non‐symmetric,  (spatially) non‐balanced stimulation of neuronal sub‐populations  in  the auditory cortex by  the  different  tones  CR1,…,CR4.  According  to  computational  and  pre‐clinical  findings  in  a  larger  number  of  studies,  a  spatially  symmetric  arrangement  of  stimulated  cortical  sub‐ populations  is  optimal:  The  spacing  (in  cortical  coordinates)  of  the  sub‐populations  (belonging  to  the  entire  population  involved  in  the  abnormal  neuronal  synchronization  process)  affected by  the different  subpopulations  should be  intermediate,  as opposed  to  completely overlapping or completely separate. The spatial overlap of the sub‐populations   
 
stimulated  by  the  tones  should  be  weak,  but  the  sub‐populations  should  still  share  significant synaptic connections and, hence, not be located far away from each other.  
[00223] In  addition,  Figure  29  shows  the  ERB  arrangement  for  the  case  of  standard  CR  tones  f_1,…,f_4 with  a  typical  hearing  loss  (upper  right  panel) with  hearing  threshold  as  displayed  in  the  lower  right  panel.  Overall  (e.g.,  across  all  tinnitus  frequencies)  the  arrangement  of  the  different CR  ERBs  (e.g.,  ERBs  belonging  to  the  different CR  tones)  is  neither  spatially well‐balanced nor  spatially  symmetric.  Furthermore,  the overlaps and/or  gaps between the different ERBs depend on the tinnitus frequency fT. This aspect is relevant  because for approximately 85% of the tinnitus patients the tinnitus frequency fT decreased  during the course of the CR treatment, so the CR tones have to be re‐adjusted (by tinnitus  pitch matching) on a  regular basis. Accordingly, during  the  course of  the  treatment  in an  individual  patient,  the  spacing  of  the  CR  tone  ERBs  may  change  significantly.  It  is  hypothesized that the efficacy of the CR treatment may vary accordingly. 
[00224] Next  re‐analysis  is  made  of  data  of  an  observational  study  (a  study  without  control/placebo/sham  control  group).  The  subjective  tinnitus  frequency  of  all  patients  treated with acoustic CR neuromodulation  in that study was pitch matched with the same  procedure as in the proof of concept study (D22).   
[00225] Calculation of the relative ERB overlap:  
[00226] The tinnitus ERB (e.g., the ERB belonging to the tinnitus frequency fT)  is used as a  reference for calculating the relative overlap or relative separation (gap) of each of the CR  therapy tone ERBs as illustrated in Figure 30. 
[00227] The  relative overlap/gap between  the  ERB of  the  j‐th CR  tone  (j=1,…,4)  and  the  tinnitus ERB reads  
Figure imgf000056_0001
Figure imgf000056_0002
  do  not  overlap,  and  there  is  a  gap  between  both 
Figure imgf000056_0003
ERBs. Since the ERB is specified on a linear frequency axis (D11; D17), calculation is made of  the relative ERB overlaps on a linear frequency axis. Calculating the relative ERB overlaps on   
 
a  logarithmic  frequency  axis  does  not  yield  different  subgroups  with  pronounced  and  statistically significant differences in therapeutic outcomes. 
[00228] Relative ERB overlaps/gaps for VAS loudness scores: 
[00229] To  study  whether  particular  relative  ERB  overlaps/gaps    might  be 
Figure imgf000057_0001
associated with better treatment outcome, Figure 31 plots the distributions of the number  of super responders, e.g., the subjects with VAS for loudness (VAS‐L) changes > 15 (y‐axis) in  relation  to 
Figure imgf000057_0006
  for all  four CR  tones 
Figure imgf000057_0002
  (rows 1,…,4) after 12 weeks  (column 1)  and after 24 weeks (column 2) and the corresponding distributions obtained by a standard  smoothing procedure  (column 3). Super  responders are patients who  respond particularly  well, e.g., have a decrease of their VAS‐L score (e.g., score for VAS loudness) of at least 15.  (Very  similar  distributions  are  obtained  for  responders,  as  opposed  to  super  responders,  e.g., patients with a decrease of at  least 10.) For CR  tones 2 and 3  the  super  responders  show a prominent peak in the distribution at larger relative overlap values (at approx. 0.45  and 0.55), whereas  for CR  tones 1 and 4 super  responders show a prominent peak  in  the  distribution  at  smaller  relative  gap  values  (at  approx. ‐0.25  and ‐0.65).  The  smoothened  distributions are obtained to determine peak maxima (for illustration). 
[00230] Relative ERB overlaps/gaps for VAS annoyance scores: 
[00231] Very  similar  distributions  are  obtained  for  the  distribution  of  super  responders  based on the VAS scores for annoyance (VAS‐A).  
[00232] If determination is made of the distribution of the super responders for VAS‐L and  VAS‐A by calculating  ൯ for CR tones 2 and 3   e.g., the relative 
Figure imgf000057_0005
Figure imgf000057_0003
ERB  overlap  between  the  neighboring  CR  tones  1  and  2,  and 
Figure imgf000057_0004
e.g.,  the  relative  overlap  between  the  neighboring  CR  tones  3  and  4,  one  obtains  very  similar  results.  In  contrast  and  remarkably,  if  ERB^^் ^,  the  tinnitus  ERB,  is  not  used  as  reference  for  the  normalization  in  the  formula  for  the  relative ERB overlap/gap   one obtains  significantly 
Figure imgf000057_0009
different distributions of the super responders (closer to a flat distribution, considerably less  pronounced peak).  
[00233] ERB overlap based subgroup analysis of treatment outcome: 
[00234] The  entire  patient  population  (N=66)  is  divided  in  (i)  patients  having  relative  overlaps  for  all  four  CR  tones  that  are  close  to  the  relative  ERB 
Figure imgf000057_0007
Figure imgf000057_0008
overlaps/gaps given by the peaks  in the super responder distributions, which will be called   
 
“optimal”  relative ERB overlaps/gaps, and  (ii) all other patients and  results are plotted  in  Figure 32. 
[00235] Subgroup analysis of the entire population:   
[00236] The  upper  two  panels  show  whisker  plots  of  the  VAS‐L  and  VAS‐A  values  at  baseline (prior to treatment), after 12 weeks and after 24 weeks of treatment with acoustic  CR  neuromodulation  for  the  two  subgroups  of  the  entire  population:  the  subgroup  of  patients with optimal relative ERB overlaps and all other patients. 
[00237] VAS‐A: At baseline both  subgroups have  similar VAS distributions, whereas after  both 12 weeks and after 24 weeks the reduction of VAS‐A scores is significantly stronger in  the subgroup with optimal relative ERB overlaps/gaps.  
[00238] VAS‐L: At baseline both subgroups have similar VAS distributions, whereas after 24  weeks the reduction of VAS‐A scores  is significantly stronger  in the subgroup with optimal  relative ERB overlaps/gaps. 
[00239] Subgroup analysis of the super responders:   
[00240] The lower two plots show whisker plots of the VAS‐L and VAS‐A values at baseline  (prior  to  treatment),  after  12  weeks  and  after  24 weeks  of  treatment with  acoustic  CR  neuromodulation  for  the  two  subgroups  of  the  super  responders:  subgroup  of  super  responders with optimal relative ERB overlaps and all other super responders. 
[00241] VAS‐A:  At  baseline  both  subgroups  of  super  responders  have  similar  VAS  distributions, whereas after 12 weeks the reduction of VAS‐A scores  is significantly greater  in the subgroup of super responders with optimal relative ERB overlaps/gaps. 
[00242] VAS‐L:  There was no  significant difference between  the  two  subgroups of  super  responders. 
[00243] Comparing  the  subgroup analysis of all patients  (upper plots) with  the  subgroup  analysis of the super responders (lower plots)  it  is concluded that all patients, not  just the  super responders, have a greater benefit if the CR tones have optimal relative ERB overlaps.  
[00244] ERB based subgroup analysis of responder rates: 
[00245] Determination  is then made of the responder rate dependent on the relative ERB  overlap/gap (Figure 33). To this end, calculation is made of the number of responders, super  responders and non‐responders with optimal relative ERB overlap/gap after 12 weeks (A12)  and 24 weeks  (A24) of  therapy as opposed  to  the number of all other  responders,  super  responders and non‐responders after 12 weeks  (B12) and 24 weeks  (B24) of  therapy. The  eft and right panels refer to the decrease of VAS-A and VAS-L, respectively. Intriguingly, the esponder rate is greater for patients without optimal relative ERB overlap/gap.
00246] In Figure 34 whisker plots are shown of the distribution of the hearing thresholds t CR tones fx, ... , f4 and at the tinnitus frequency fT for the subgroup of patients with ptimal relative ERB overlap/gap and for the subgroup of all other patients (left panel). The ight panel shows the corresponding distributions for the VAS-A and VAS-L super esponders.
[00247] Patients with optimal relative ERB overlap/gap have significantly greater hearing mpairment. Accordingly, it is hypothesized that greater hearing impairment leads to greater rrors of the tinnitus pitch matching procedure that, in turn, causes a reduced responder ate. Stated in another way, if the tinnitus frequency is properly assessed by way of the itch matching the treatment outcome is significantly stronger with optimal ERBs. However, t may be more difficult to obtain a reliable pitch match in patients with pronounced hearing mpairment.
[00248] Translational consequence:
[00249] To improve the treatment, in a first step, one could use the optimal relative ERB verlaps/gaps to determine the frequencies fx, ... , f4 based on the tinnitus frequency fT obtained by pitch matching). In a first approximation, in patients with pronounced hearing mpairment these hearing threshold adapted CR tones are similar to the standard CR tones with fixed ratio to the tinnitus frequency). In contrast, in normal hearing patients the etermination of CR tones based on the calculation of the relative ERB overlap/gap will imic the relative ERB overlap/gap observed in hearing impaired patients treated with tandard CR tones. Because tinnitus pitch matching is more reliable in patients with normal or moderate) hearing impairment as opposed to in patients with pronounced hearing mpairment, it is hypothesized that acoustic CR neuromodulation with optimal relative ERB verlaps/gaps will lead to improved treatment outcome.
[00250] Recalling the arrangement of the hearing threshold adapted ERBs of the standard R tones fx, ... , f4 (from Figure 29) for normal hearing (left panel) and a typical hearing loss right panel), the case for standard CR tones fx, ... , f4 with a typical hearing loss is replotted n Figure 35 (left panel). For comparison, the right panel of Figure 35 shows the hearing hreshold adapted ERBs in a patient with identical hearing loss (lower right panel) and ptimal ERB overlaps (as determined from the re-analysis of the clinical data above). Due to  
 
the  procedure  of  hearing  threshold  adaptation  based  on  the  optimal  relative  ERB  overlap/gap,  the  relative  ERB  gaps/overlaps between  adjacent CR  tones hardly  vary with  tinnitus  frequency 
Figure imgf000060_0001
Hence,  in  a  first  approximation  relative  ERBs  between  treatment  tones no longer depend on the tinnitus frequency  and, thus, would no longer vary in the 
Figure imgf000060_0004
course  of  the  treatment  (e.g.,  if  it  is  assumed  that  the  pitch matching  is  ideal  and  the  tinnitus frequency  is reduced by the treatment). However, the mutual arrangement of the  different ERBs is still not symmetric and well‐balanced in the hearing loss case (right panel).  For  instance,  between 
Figure imgf000060_0003
there  is  a  gap  at  all  frequencies, whereas 
 there is overlap at all frequencies. 
Figure imgf000060_0002
[00251] It is hypothesized that a more effective CR treatment can be achieved by way of a  symmetric, well‐balanced arrangement of the ERBs of the CR tones. Based on the patient’s  audiogram  this  can  be  achieved,  for  instance, with  just  two  parameters:  (i)  the  tinnitus  frequency
Figure imgf000060_0018
 a target ERB which
Figure imgf000060_0013
 where  is a stretching factor that 
Figure imgf000060_0017
ensures that the CR tone spacing does not get too narrow. Figure 36 shows an example of a  symmetric  ERB  arrangement  for 
Figure imgf000060_0012
(upper  panel)  for  the  patient  with  the  typical  hearing  loss  (lower  panel).  The  stretching  factor  can  be  calibrated  based  on  treatment  outcome (even by the patient’s individual results) or (in a more sophisticated way) by way of  EEG  recordings  e.g.,  assessing  the  CR‐induced  reduction  of  auditory  delta  power.  The  dependence of EEG delta power suppression on the stretching factor 
Figure imgf000060_0011
 can be assessed to  establish a range of  values suitable for clinical applications.  
Figure imgf000060_0019
[00252] The mutual overlap  (relative to smaller ERB) is identical 
Figure imgf000060_0005
with overlap    (relative  to  inner ERB, e.g.,   and  identical 
Figure imgf000060_0006
Figure imgf000060_0009
with  overlap  of  (relative  to  inner  ERB,  e.g.,    (mutually 
Figure imgf000060_0007
Figure imgf000060_0010
symmetric arrangement).  
[00253] An objective is to find maximal relative overlap parameter which fulfills  
Figure imgf000060_0008
‐ lowest CR tone 
Figure imgf000060_0015
 is greater than lower edge of stretched tinnitus ERB, 
Figure imgf000060_0014
  ‐ highest CR tone
Figure imgf000060_0016
 is smaller than higher edge of stretched tinnitus ERB. 
[00254] Literature: 
[00255] D1   I.  Adamchic,  B.  Langguth,  C.  Hauptmann,  P.A.  Tass:  Psychometric  evaluation of Visual Analog Scale for the assessment of chronic tinnitus. Am. J. Audiol., 21,  215‐225 (2012)  
 
[00256] D2  I.  Adamchic,  P.A.  Tass,  B.  Langguth,  C.  Hauptmann,  M.  Koller,  M.  Schecklmann, F. Zeman, M. Landgrebe: Linking the Tinnitus Questionnaire and the Clinical  Global  Impression: Which differences are  clinically  important? Health and Qol Outcomes,  10, 79 (2012)
[00257] D3   I.  Adamchic,  T.  Toth,  C.  Hauptmann,  P.A.  Tass:  Reversing  pathologically increased  EEG  power  by  acoustic  coordinated  reset  neuromodulation.  Human Brain  Mapping, 35, 2099‐2118 (2014)
[00258] D4   I.  Adamchic,  B.  Langguth,  C.  Hauptmann,  P.  A.  Tass:  Abnormal  brain  activity and cross‐frequency coupling in the tinnitus network. Front. Neurosc., 8, 284 (2014)
[00259] D5   A.  Axelsson,  A.  Ringdahl:  Tinnitus‐a  study  of  its  prevalence  and  characteristics. Br. J. Audiol., 23, 53‐62 (1989)
[00260] D6   L. L. Beranek: Acoustic Measurements, New York: Wiley (1949) 
[00261] D7   C.  R.  Butson,  C.  C. Mcintyre:  Current  steering  to  control  the  volume  of  tissue activated during deep brain stimulation. Brain Stimul., 1(1), 7‐15 (2008) 
[00262] D8  J.  J.  Eggermont,  L.  E.  Roberts:  The  neuroscience  of  tinnitus.  Trends  Neurosci., 27, 676‐682 (2004) 
[00263] D9   J. J. Eggermont, P.A. Tass: Maladaptive neural synchrony in tinnitus: origin and restoration. Front. Neurol., 6, 29 (2015)
[00264] D10   J. J. Eggermont: The auditory cortex and tinnitus ‐ a review of animal and human studies. European Journal of Neuroscience, 41, 665‐676 (2015)
[00265] D11   B.  R. Glasberg,  B.  J.  C. Moore: Derivation  of  auditory  filter  shapes  from notched‐noise data. Hearing Research, 47(1‐2), 103‐138 (1990)
[00266] D12   C.  Hauptmann,  A.  Stroebel,  M.  Williams,  N.  Patel,  H.  Wurzer,  T.  von Stackelberg,  U.  Brinkmann,  B.  Langguth,  P.A.  Tass:  Acoustic  Coordinated Reset  Neuromodulation in a Real Life Patient Population with Chronic Tonal Tinnitus. BioMed Res.  Int. Article ID 569052 (2015)
[00267] D13   C. Hauptmann, A. Wegener, H. Poppe, M. Williams, G. Popelka, P.A. Tass: Validation  of  a Mobile Device  for  Acoustic  Coordinated  Reset Neuromodulation Tinnitus  Therapy. J. Am. Acad. Audiol. (in print)
[00268] D14   IEC  61260:  Electroacoustics ‐  Octave‐band  and  Fractional‐Octave‐Band Filters, Geneva, Switzerland: International Electrotechnical Commission (1995)  
 
[00269] D15   B. Langguth: Tinnitus: the end of therapeutic nihilism. Lancet, 379, 1926‐ 1928 (2012)
[00270] D16   B.  Lysyansky, O.  P.  Popovych,  P.A.  Tass: Desynchronizing  anti‐resonance effect of the m : n ON‐OFF coordinated reset stimulation. Journal of Neural Engineering, 8,  036019 (2011) 
[00271] D17   B. C. J. Moore, B. R. Glasberg: Suggested formulae for calculating auditory  filter bandwidths and excitation patterns. Journal of the Acoustical Society of America, 74,  750‐753 (1983) 
[00272] D18   B. C. J. Moore, D. A. Vickers, C. J. Plack, A. J. Oxenham:  Inter‐relationship  between different psychoacoustic measures assumed  to be  related  to  the cochlear active  mechanism. J. Acoust. Soc. Am., 106, 2761‐2777 (1999) 
[00273] D19   R. D. Patterson: Auditory filter shapes derived with noise stimuli. J. Acoust.  Soc. Am., 59, 640‐654 (1976) 
[00274] D20   A. N. Silchenko,  I. Adamchic, C. Hauptmann, P.A. Tass:  Impact of acoustic  coordinated  reset  neuromodulation  on  effective  connectivity  in  a  neural  network  of  phantom sound. Neuroimage, 77, 133‐147 (2013) 
[00275] D21   P.A.  Tass:  A  model  of  desynchronizing  deep  brain  stimulation  with  a  demand‐controlled  coordinated  reset  of  neural  subpopulations.  Biol.  Cybern.,  89,  81‐88  (2003) 
[00276] D22   P.A.  Tass,  I.  Adamchic,  H.‐J.  Freund,  T.  von  Stackelberg,  C.  Hauptmann:  Counteracting  tinnitus  by  acoustic  coordinated  reset  neuromodulation.  Restorative  Neurology and Neuroscience, 30, 137‐159 {2012) 
[00277] D23   P.A. Tass,  L. Qin, C. Hauptmann, S. Doveros, E. Bezard, T. Boraud, W. G.  Meissner: Coordinated  reset neuromodulation  has  sustained  after‐effects  in parkinsonian  monkeys. Annals of Neurology, 72, 816‐820 (2012) 
[00278] D24   H. Traunmuller: Analytical expressions  for  the  tonotopic  sensory  scale.  J.  Acoust. Soc. Am., 88, 97‐100 (1990) 
[00279] D25   N.  Weisz,  S.  Moratti,  M.  Meinzer,  K.  Dohrmann,  T.  Elbert:  Tinnitus  perception and distress  is  related  to abnormal spontaneous brain activity as measured by  magnetoencephalography. PLoS Med, 2(6), 546‐553 (2005) 
[00280] D26   J. Wang, S. Nebeck, A. Muralidharan, M. D. Johnson, J. L. Vitek, K. B. Baker:  Coordinated  reset  deep  brain  stimulation  of  subthalamic  nucleus  produces  long‐lasting,   
 
dose‐dependent motor  improvements  in  the 1‐Methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine  non‐human primate model of parkinsonism. (published online, 2016) 
[00281] D27   M.  Williams,  C.  Hauptmann,  N.  Patel:  Acoustic  CR  neuromodulation  therapy  for  subjective  tonal  tinnitus:  a  review  of  clinical  outcomes  in  an  independent  audiology practice setting. Front. Neural., 6, 54 (2015) 
[00282] D28   E.  Zwicker,  G.  Flottorp  and  S.S.  Stevens:  Critical  bandwidth  in  loudness  summation. J. Acoust. Soc. Am., 29, 548‐557 (1957) 
[00283] D29   P.A. Tass: Transmission of stimulus‐locked responses in two coupled phase  oscillators. Phys. Rev. E 69, 051909‐1‐24 (2004) 
[00284] D30   N.  E.  Huang  et  al.:  The  empirical  mode  decomposition  and  the  Hilbert  spectrum for nonlinear and non‐stationary time series analysis. Proc. R. Soc. A: Math. Phys.  Eng. Sci., 454, 903‐995 (1998) 
[00285] D31   N.  E.  Huang  et  al.:  A  confidence  limit  for  the  empirical  mode  decomposition  and Hilbert  spectral  analysis.  Proceedings  of  the  Royal  Society  of  London  Series A, 459, 2317‐2345 (2003) 
[00286] D32   W.  Huang,  Z.  Shen,  N.  E.  Huang,  Y.  C.  Fung:  Engineering  analysis  of  biological variables: an example of blood pressure over 1 day. Proc. Nat. Acad. Sci. USA, 95,  4816‐4821 (1998) 
[00287] D33   R. D. Pascual‐Marqui:  Standardized  low‐resolution brain  electromagnetic  tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24 Suppl. D,  5‐12 (2002) 
[00288] D34   M. Scherg, N. Ille, H. Bornfleth, P. Berg: Advanced tools for digital EEG re‐ view: virtual source montages, whole‐head mapping, correlation, and phase analysis. J. Clin.  Neurophysiol., 19(2), 91‐112 (2002)
[00289] Example Embodiments:
[00290] Embodiment 1. A device (10) for stimulation of a patient with acoustic stimulation  signals, comprising:
a stimulation unit (12) configured to generate acoustic stimulation signals, and  a control unit (11) connected to the stimulation unit (12) and configured to control the  stimulation unit (12), wherein the control unit (11) is configured to 
determine a bandwidth of an auditory filter with a frequency of a predetermined tone as  a center frequency, wherein the bandwidth represents a reference bandwidth,    
 
determine a frequency of a first acoustic therapy signal, such that a measure of coverage  between the reference bandwidth around the frequency of the predetermined tone and  a first bandwidth of an auditory filter with the frequency of the first acoustic therapy  signal as a center frequency assumes a predetermined first value, and 
control the stimulation unit (12) such that the stimulation unit (12) generates the first  acoustic therapy signal. 
[00291] Embodiment 2. The device (10) according to Embodiment 1, wherein: 
the reference bandwidth of the auditory filter about the frequency of the 
predetermined tone and the first bandwidth of the auditory filter about the first acoustic  therapy signal each have an upper edge and a lower edge, and 
the measure of coverage between the reference bandwidth and the first bandwidth is a  function of a difference between the upper edge of the bandwidth of a lower acoustic  signal of the predetermined tone and the first acoustic therapy signal and the lower  edge of the bandwidth of the other acoustic signal. 
[00292] Embodiment 3.  The  device  (10)  according  to  Embodiment  1  or  2,  wherein  the  control unit (11) is configured to:
determine a frequency of a second acoustic therapy signal, such that a measure of  coverage between the reference bandwidth about the frequency of the predetermined  tone and a second bandwidth of an auditory filter with the frequency of the second  acoustic therapy signal as a center frequency assumes a predetermined second value,  and 
control the stimulation unit (12) such that the stimulation unit (12) generates the second  acoustic therapy signal. 
[00293] Embodiment 4.  The device  (10) according  to Embodiment 3, wherein one of  the  first acoustic  therapy signal and  the second acoustic  therapy signal has a  lower  frequency  than the predetermined tone, and the other acoustic therapy signal has a higher frequency  than the predetermined tone.
[00294] Embodiment 5.  The device (10) according to Embodiment 3 or 4, wherein:
the control unit (11) is configured to determine the frequency of the first acoustic  therapy signal by varying the frequency of the first acoustic therapy signal until the  measure of coverage between the reference bandwidth about the frequency of the  predetermined tone and the first bandwidth of the auditory filter with the frequency of   
 
the first acoustic therapy signal as the center frequency assumes the predetermined first  value, and 
the control unit (11) is configured to determine the frequency of the second acoustic  therapy signal by varying the frequency of the second acoustic therapy signal until the  measure of coverage between the reference bandwidth about the frequency of the  predetermined tone and the second bandwidth of the auditory filter with the frequency  of the second acoustic therapy signal as the center frequency assumes the 
predetermined second value. 
[00295] Embodiment 6.  The  device  (10)  according  to  any  one  of  Embodiments  3  to  5,  wherein the control unit (11) is configured to:
determine a frequency of a third acoustic therapy signal, such that a measure of  coverage between the reference bandwidth about the frequency of the predetermined  tone and a third bandwidth of an auditory filter with the frequency of the third acoustic  therapy signal as a center frequency assumes a predetermined third value, and  control the stimulation unit (12) such that the stimulation unit (12) generates the third  acoustic therapy signal. 
[00296] Embodiment 7.  The  device  (10)  according  to  any  one  of  Embodiments  3  to  5,  wherein the control unit (11) is configured to:
determine a frequency of a third acoustic therapy signal, such that a measure of  coverage between the first or second bandwidth of the auditory filter with the  frequency of the first or second acoustic therapy signal as the center frequency and a  third bandwidth of an auditory filter with the frequency of the third acoustic therapy  signal as a center frequency assumes a predetermined third value,  
control the stimulation unit (12) such that the stimulation unit (12) generates the third  acoustic therapy signal.  
[00297] Embodiment 8.  The  device  (10)  according  to  any  one  of  the  preceding  Embodiments 1 to 7, wherein at least one of the following applies:
the reference bandwidth depends on a hearing threshold of the patient at the frequency  of the predetermined tone,  
the first bandwidth depends on the hearing threshold of the patient at the frequency of  the first acoustic therapy signal,    
 
the second bandwidth depends on the hearing threshold of the patient at the frequency  of the second acoustic therapy signal, and 
the third bandwidth depends on the hearing threshold of the patient at the frequency of  the third acoustic therapy signal. 
[00298] Embodiment 9.  The  device  (10)  according  to  any  one  of  the  preceding  Embodiments 1 to 8, wherein at least one of the following applies:
the reference bandwidth is an equivalent rectangular bandwidth of the auditory filter at  the frequency of the predetermined tone,  
the first bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the first acoustic therapy signal,  
the second bandwidth is an equivalent rectangular bandwidth of the auditory filter at  the frequency of the second acoustic therapy signal, and 
the third bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the third acoustic therapy signal. 
[00299] Embodiment 10. The  device  (10)  according  to  any  one  of  the  preceding  Embodiments 1 to 9, wherein the frequency of the predetermined tone is a frequency of the  patient’s tinnitus tone estimated by pitch matching.
[00300] Embodiment  11.  The  device  (10)  according  to  any  one  of  the  preceding  Embodiments 1 to 10, wherein at least one of the following applies:
the first acoustic therapy signal is a first therapy tone or a first therapy tone mixture,   the second acoustic therapy signal is a second therapy tone or a second therapy tone  mixture, and 
the third acoustic therapy signal is a third therapy tone or a third therapy tone mixture. 
[00301] Embodiment  12.  The  device  (10)  according  to  any  one  of  the  preceding  Embodiments 1 to 11, wherein each measure of coverage is an overlap or a gap.
[00302] Embodiment 13.   The device (10) according to Embodiment 6 or 7, wherein the  control unit (11) is configured to control the stimulation unit (12), such that the stimulation  unit (12) generates the first acoustic therapy signal, the second acoustic therapy signal and  the third acoustic therapy signal with a time lag relative to one another, wherein amplitudes  of the acoustic therapy signals are each adjusted, so that the acoustic therapy signals trigger  a phase reset of a neural activity of respective stimulated neurons in the patient's brain.   
 
[00303] Embodiment 14. A method  for  stimulation of  a patient with  acoustic  stimulation  signals, comprising: 
determining a bandwidth of an auditory filter with a frequency of a predetermined tone  as a center frequency, wherein the bandwidth is a reference bandwidth, 
determining a frequency of a first acoustic therapy signal such that a measure of  coverage between the reference bandwidth about the frequency of the predetermined  tone and a first bandwidth of an auditory filter with the frequency of the first acoustic  therapy signal as a center frequency assumes a predetermined first value, and  generating the first acoustic therapy signal. 
[00304] Embodiment  15.  A  non‐transitory  computer‐readable  medium  comprising  computer code for execution in a data processing system to:
determine a bandwidth of an auditory filter with a frequency of a predetermined tone as  a center frequency, wherein the bandwidth is a reference bandwidth, 
determine a frequency of a first acoustic therapy signal, such that a measure of coverage  between the reference bandwidth about the frequency of the predetermined tone and a  first bandwidth of an auditory filter with the frequency of the first acoustic therapy  signal as a center frequency assumes a predetermined first value, and 
generate control signals for controlling a stimulation unit (12) to generate the first  acoustic therapy signal.  
[00305] Embodiment 16. A device (10) for stimulation of a patient with acoustic stimulation  signals, comprising: 
a stimulation unit (12) configured to generate acoustic stimulation signals, and  a control unit (11) connected to the stimulation unit (12) and configured to control the  stimulation unit (12), wherein the control unit (11) is configured to  
determine a frequency of a first acoustic therapy signal and a frequency of a second  acoustic therapy signal, such that a measure of coverage between a first bandwidth of  an auditory filter with the frequency of the first acoustic therapy signal as a center  frequency and a second bandwidth of an auditory filter with the frequency of the second  acoustic therapy signal as a center frequency assumes a predetermined first value, and  control the stimulation unit (12) such that the stimulation unit (12) generates the first  acoustic therapy signal and the second acoustic therapy signal.   
 
[00306] Embodiment 17. The device (10) according to Embodiment 16, wherein the device  (10) comprises an evaluation unit (13) configured to evaluate a success of a treatment.
[00307] Embodiment 18. The device (10) according to Embodiment 17, wherein the control  unit (11) is configured to:
determine a frequency of a third acoustic therapy signal such that a measure of  coverage between the first bandwidth of the auditory filter with the frequency of the  first acoustic therapy signal as the center frequency and a third bandwidth of an  auditory filter with the frequency of the third acoustic therapy signal as a center  frequency assumes a predetermined second value, 
control the stimulation unit (12) such that the stimulation unit (12) generates the first,  second and third acoustic therapy signals and  
discard the third acoustic therapy signal if the evaluation unit (13) does not identify a  sufficient therapeutic success in stimulation with the first, second and third acoustic  therapy signals. 
[00308] Embodiment 19. The device (10) according to Embodiment 18, wherein the control  unit  (11)  is  configured  to,  if  the  evaluation  unit  (13)  identifies  a  sufficient  therapeutic  success in stimulation with the first, second and third acoustic therapy signals:
determine a frequency of a fourth acoustic therapy signal such that a measure of  overlap between the second bandwidth of the auditory filter with the frequency of the  second acoustic therapy signal as the center frequency and a fourth bandwidth of an  auditory filter with the frequency of the fourth acoustic therapy signal as a center  frequency assumes a predetermined third value, 
control the stimulation unit (12) such that the stimulation unit (12) generates the first,  the second, the third and the fourth acoustic therapy signals and  
discard the fourth acoustic therapy signal if the evaluation unit (13) does not identify a  sufficient therapeutic success in stimulation with the first, second, third and fourth  acoustic therapy signals. 
[00309] Embodiment 20. The device (10) according to Embodiment 18, wherein the control  unit  (11)  is  configured  to,  if  the  evaluation  unit  (13)  identifies  a  sufficient  therapeutic  success in stimulation with the first, second and third acoustic therapy signals: 
determine a frequency of a fourth acoustic therapy signal such that a measure of  coverage between the third bandwidth of the auditory filter with the frequency of the   
 
third acoustic therapy signal as the center frequency and a fourth bandwidth of an  auditory filter with the frequency of the fourth acoustic therapy signal as a center  frequency assumes a predetermined third value, 
control the stimulation unit (12) such that the stimulation unit (12) generates the first,  second, third and fourth acoustic therapy signals and  
discard the fourth acoustic therapy signal if the evaluation unit (13) does not identify a  sufficient therapeutic success in stimulation with the first, second, third and fourth  acoustic therapy signals. 
[00310] Embodiment 21. The device  (10) according  to any one of Embodiments 16  to 20,  wherein the control unit (11) is configured to:
determine the frequency of the first acoustic therapy signal and the frequency of the  second acoustic therapy signal for multiple values for the measure of coverage between  the first bandwidth of the auditory filter with the frequency of the first acoustic therapy  signal as the center frequency and the second bandwidth of the auditory filter with the  frequency of the second acoustic therapy signal as the center frequency, 
control the stimulation unit (12) such that the stimulation unit (12) generates a  respective pair from the first acoustic therapy signal and the second acoustic therapy  signal for each of the multiple values for the measure of coverage, and 
select the pair in which the evaluation unit (13) identifies a greatest therapeutic success. 
[00311] Embodiment 22. The device  (10) according  to any one of Embodiments 16  to 21,  wherein a frequency of a tinnitus tone perceived by the patient is between the frequency of  the first acoustic therapy signal and the frequency of the second acoustic therapy signal.
[00312] Embodiment 23. The device  (10) according to any one of Embodiments 16 to 22,  wherein at least one of the following applies:
the first bandwidth is a function of the patient's hearing threshold at the frequency of  the first acoustic therapy signal,  
the second bandwidth is a function of the patient's hearing threshold at the frequency of  the second acoustic therapy signal,  
the third bandwidth is a function of the patient's hearing threshold at the frequency of  the third acoustic therapy signal, and 
the fourth bandwidth is a function of the patient's hearing threshold at the frequency of  the fourth acoustic therapy signal.   
 
[00313] Embodiment 24. The device  (10) according  to any one of Embodiments 16  to 23,  wherein at least one of the following applies: 
the first bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the first acoustic therapy signal,   
the second bandwidth is an equivalent rectangular bandwidth of the auditory filter at  the frequency of the second acoustic therapy signal,   
the third bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the third acoustic therapy signal, and  
the fourth bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the fourth acoustic therapy signal. 
[00314] Embodiment 25. The device  (10) according  to any one of Embodiments 16  to 24,  wherein at least one of the following applies: 
the first acoustic therapy signal is a first therapy tone or a first therapy tone mixture,   the second acoustic therapy signal is a second therapy tone or a second therapy tone  mixture,  
the third acoustic therapy signal is a third therapy tone or a third therapy tone mixture,  and 
the fourth acoustic therapy signal is a fourth therapy tone or a fourth therapy tone  mixture.  
[00315] Embodiment 26. The device  (10) according to any one of Embodiments 16 to 25,  wherein each measure of coverage is an overlap or a gap.
[00316] Embodiment 27. The device  (10) according to Embodiment 19 or 20, wherein the  control unit (11) is configured to control the stimulation unit (12) such that the stimulation  unit (12) generates the first acoustic therapy signal, the second acoustic therapy signal, the  third acoustic therapy signal and the fourth acoustic therapy signal with a time lag between  one another, wherein amplitudes of the acoustic therapy signals are each adjusted so that  the acoustic therapy signals trigger a phase reset of a neural activity of respective neurons  stimulated in the patient's brain.
[00317] Embodiment 28. A method  for  stimulation of a patient with acoustic  stimulation  signals, comprising:
determining a frequency of a first acoustic therapy signal and a frequency of a second  acoustic therapy signal such that a measure of coverage between a first bandwidth of an   
 
auditory filter with the frequency of the first acoustic therapy signal as a center  frequency and a second bandwidth of an auditory filter with the frequency of the second  acoustic therapy signal as a center frequency assumes a predetermined first value, and  generating the first acoustic therapy signal and the second acoustic therapy signal. 
[00318] Embodiment 29. A  non‐transitory  computer‐readable  medium  comprising  computer code for execution in a data processing system to:
determine a frequency of a first acoustic therapy signal and a frequency of a second  acoustic therapy signal such that a measure of coverage between a first bandwidth of an  auditory filter with the frequency of the first acoustic therapy signal as a center  frequency and a second bandwidth of an auditory filter with the frequency of the second  acoustic therapy signal as a center frequency assumes a predetermined first value, and  generate control signals for controlling a stimulation unit (12) to generate the first  acoustic therapy signal and the second acoustic therapy signal. 
[00319] As used herein, the singular terms “a,” “an,” and “the” may include plural referents  unless the context clearly dictates otherwise. Thus, for example, reference to an object may  include multiple objects unless the context clearly dictates otherwise.
[00320] As used herein, the terms “approximately,” “substantially” and “about” are used to  describe  and  account  for  small  variations.  When  used  in  conjunction  with  an  event  or  circumstance,  the  terms can  refer  to  instances  in which  the event or circumstance occurs  precisely  as  well  as  instances  in  which  the  event  or  circumstance  occurs  to  a  close  approximation. For example, when used  in conjunction with a numerical value,  the  terms  can encompass a range of variation of  less than or equal to ±10% of that numerical value,  such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less  than or equal to ±2%,  less than or equal to ±1%,  less than or equal to ±0.5%,  less than or  equal to ±0.1%, or less than or equal to ±0.05%.
[00321] Additionally,  amounts,  ratios,  and  other  numerical  values  are  sometimes  presented herein in a range format. It is to be understood that such range format is used for  convenience  and  brevity  and  should  be  understood  flexibly  to  include  numerical  values  explicitly specified as limits of a range, but also to include all individual numerical values or  sub‐ranges  encompassed  within  that  range  as  if  each  numerical  value  and  sub‐range  is  explicitly  specified.  For  example,  a  ratio  in  the  range of  about 1  to  about 200  should be  understood  to  include  the  explicitly  recited  limits  of  about  1  and  about  200,  but  also  to   
 
include  individual  ratios  such  as  about  2,  about  3,  and  about  4,  and  sub‐ranges  such  as  about 10 to about 50, about 20 to about 100, and so forth.
[00322] Some embodiments of this disclosure relate to a non‐transitory computer‐readable  storage  medium  having  computer  code  or  instructions  thereon  for  performing  various  computer‐implemented operations. The term “computer‐readable storage medium” is used  to  include any medium that  is capable of storing or encoding a sequence of  instructions or  computer  code  for  performing  the  operations, methodologies,  and  techniques  described  herein. The media and computer code may be those specially designed and constructed for  the purposes of the embodiments of this disclosure, or may be of the kind available to those  having  skill  in  the computer  software arts. Examples of computer‐readable  storage media  include,  but  are  not  limited  to:  magnetic  media  such  as  hard  disks,  floppy  disks,  and  magnetic  tape; optical media  such as CD‐ROMs and holographic devices; magneto‐optical  media such as optical disks; and hardware devices that are specially configured to store and  execute  program  code,  such  as  application‐specific  integrated  circuits  (ASICs),  programmable  logic  devices  (PLDs),  and  ready‐only  memory  (ROM)  and  random‐access  memory  (RAM)  devices.  Examples  of  computer  code  include  machine  code,  such  as  produced  by  a  compiler,  and  files  containing  higher‐level  code  that  are  executed  by  a  processor using an interpreter or a compiler. For example, an embodiment of the disclosure  may be  implemented using Java, C++, or other object‐oriented programming  language and  development  tools.  Additional  examples  of  computer  code  include  encrypted  code  and  compressed  code. Moreover,  an embodiment of  the disclosure may be downloaded  as  a  computer  program  product, which may  be  transferred  from  a  remote  computer  (e.g.,  a  server  computing  device)  to  a  requesting  computer  (e.g.,  a  client  computing  device  or  a  different server computing device) via a transmission channel. Another embodiment of the  disclosure may be  implemented  in hardwired circuitry  in place of, or  in combination with,  processor‐executable software instructions.
[00323] While  this  disclosure  has  been  described  with  reference  to  the  specific  embodiments  thereof,  it  should  be  understood  by  those  skilled  in  the  art  that  various  changes may be made and equivalents may be substituted without departing from the true  spirit  and  scope  of  this  disclosure  as  defined by  the  appended  claims.  In  addition, many  modifications may be made to adapt a particular situation, material, composition of matter,  method, operation or operations,  to  the objective,  spirit  and  scope of  this disclosure. All   
 
such modifications are  intended to be within the scope of the claims appended hereto.  In  particular, while  certain methods may  have  been  described with  reference  to  particular  operations performed in a particular order, it will be understood that these operations may  be combined, sub‐divided, or re‐ordered to  form an equivalent method without departing  from  the  teachings of  this disclosure. Accordingly, unless  specifically  indicated herein,  the  order and grouping of the operations are not a limitation of this disclosure.   
  
   

Claims

 
 
Claims  1.  A device (10) for stimulation of a patient with acoustic stimulation signals,  comprising: 
a stimulation unit (12) configured to generate acoustic stimulation signals, and  a control unit (11) connected to the stimulation unit (12) and configured to control the  stimulation unit (12), wherein the control unit (11) is configured to 
determine a bandwidth of an auditory filter with a frequency of a predetermined tone as  a center frequency, wherein the bandwidth represents a reference bandwidth,   determine a frequency of a first acoustic therapy signal, such that a measure of coverage  between the reference bandwidth around the frequency of the predetermined tone and  a first bandwidth of an auditory filter with the frequency of the first acoustic therapy  signal as a center frequency assumes a predetermined first value, and 
control the stimulation unit (12) such that the stimulation unit (12) generates the first  acoustic therapy signal. 
2.  The device (10) according to claim 1, wherein:  
the reference bandwidth of the auditory filter about the frequency of the 
predetermined tone and the first bandwidth of the auditory filter about the first acoustic  therapy signal each have an upper edge and a lower edge, and 
the measure of coverage between the reference bandwidth and the first bandwidth is a  function of a difference between the upper edge of the bandwidth of a lower acoustic  signal of the predetermined tone and the first acoustic therapy signal and the lower  edge of the bandwidth of the other acoustic signal. 
3.  The device (10) according to claim 1 or 2, wherein the control unit (11) is configured  to: 
determine a frequency of a second acoustic therapy signal, such that a measure of  coverage between the reference bandwidth about the frequency of the predetermined  tone and a second bandwidth of an auditory filter with the frequency of the second  acoustic therapy signal as a center frequency assumes a predetermined second value,  and   
 
control the stimulation unit (12) such that the stimulation unit (12) generates the second  acoustic therapy signal. 
4.  The device (10) according to claim 3, wherein one of the first acoustic therapy signal  and the second acoustic therapy signal has a lower frequency than the predetermined tone,  and the other acoustic therapy signal has a higher frequency than the predetermined tone. 
5.  The device (10) according to claim 3 or 4, wherein: 
the control unit (11) is configured to determine the frequency of the first acoustic  therapy signal by varying the frequency of the first acoustic therapy signal until the  measure of coverage between the reference bandwidth about the frequency of the  predetermined tone and the first bandwidth of the auditory filter with the frequency of  the first acoustic therapy signal as the center frequency assumes the predetermined first  value, and 
the control unit (11) is configured to determine the frequency of the second acoustic  therapy signal by varying the frequency of the second acoustic therapy signal until the  measure of coverage between the reference bandwidth about the frequency of the  predetermined tone and the second bandwidth of the auditory filter with the frequency  of the second acoustic therapy signal as the center frequency assumes the 
predetermined second value. 
6.  The device (10) according to any one of claims 3 to 5, wherein the control unit (11) is  configured to: 
determine a frequency of a third acoustic therapy signal, such that a measure of  coverage between the reference bandwidth about the frequency of the predetermined  tone and a third bandwidth of an auditory filter with the frequency of the third acoustic  therapy signal as a center frequency assumes a predetermined third value, and  control the stimulation unit (12) such that the stimulation unit (12) generates the third  acoustic therapy signal. 
7.  The device (10) according to any one of claims 3 to 5, wherein the control unit (11) is  configured to:   
 
determine a frequency of a third acoustic therapy signal, such that a measure of  coverage between the first or second bandwidth of the auditory filter with the  frequency of the first or second acoustic therapy signal as the center frequency and a  third bandwidth of an auditory filter with the frequency of the third acoustic therapy  signal as a center frequency assumes a predetermined third value,  
control the stimulation unit (12) such that the stimulation unit (12) generates the third  acoustic therapy signal.  
8.  The device (10) according to any one of the preceding claims, wherein at least one of  the following applies: 
the reference bandwidth depends on a hearing threshold of the patient at the frequency  of the predetermined tone,  
the first bandwidth depends on the hearing threshold of the patient at the frequency of  the first acoustic therapy signal,  
the second bandwidth depends on the hearing threshold of the patient at the frequency  of the second acoustic therapy signal, and 
the third bandwidth depends on the hearing threshold of the patient at the frequency of  the third acoustic therapy signal. 
9.  The device (10) according to any one of the preceding claims, wherein at least one of  the following applies: 
the reference bandwidth is an equivalent rectangular bandwidth of the auditory filter at  the frequency of the predetermined tone,  
the first bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the first acoustic therapy signal,  
the second bandwidth is an equivalent rectangular bandwidth of the auditory filter at  the frequency of the second acoustic therapy signal, and 
the third bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the third acoustic therapy signal.   
 
10.  The device (10) according to any one of the preceding claims, wherein the frequency  of the predetermined tone is a frequency of the patient’s tinnitus tone estimated by pitch  matching. 
11.  The device (10) according to any one of the preceding claims, wherein at least one of  the following applies: 
the first acoustic therapy signal is a first therapy tone or a first therapy tone mixture,   the second acoustic therapy signal is a second therapy tone or a second therapy tone  mixture, and 
the third acoustic therapy signal is a third therapy tone or a third therapy tone mixture. 
12.  The device (10) according to any one of the preceding claims, wherein each measure  of coverage is an overlap or a gap. 
13.  The device (10) according to claim 6 or 7, wherein the control unit (11) is configured  to control the stimulation unit (12), such that the stimulation unit (12) generates the first  acoustic therapy signal, the second acoustic therapy signal and the third acoustic therapy  signal with a time lag relative to one another, wherein amplitudes of the acoustic therapy  signals are each adjusted, so that the acoustic therapy signals trigger a phase reset of a  neural activity of respective stimulated neurons in the patient's brain.  
14.  A method for stimulation of a patient with acoustic stimulation signals, comprising:   determining a bandwidth of an auditory filter with a frequency of a predetermined tone  as a center frequency, wherein the bandwidth is a reference bandwidth, 
determining a frequency of a first acoustic therapy signal such that a measure of  coverage between the reference bandwidth about the frequency of the predetermined  tone and a first bandwidth of an auditory filter with the frequency of the first acoustic  therapy signal as a center frequency assumes a predetermined first value, and  generating the first acoustic therapy signal. 
15.  A non‐transitory computer‐readable medium comprising computer code for  execution in a data processing system to:   
 
determine a bandwidth of an auditory filter with a frequency of a predetermined tone as  a center frequency, wherein the bandwidth is a reference bandwidth, 
determine a frequency of a first acoustic therapy signal, such that a measure of coverage  between the reference bandwidth about the frequency of the predetermined tone and a  first bandwidth of an auditory filter with the frequency of the first acoustic therapy  signal as a center frequency assumes a predetermined first value, and 
generate control signals for controlling a stimulation unit (12) to generate the first  acoustic therapy signal.  
16.  A device (10) for stimulation of a patient with acoustic stimulation signals,  comprising:  
a stimulation unit (12) configured to generate acoustic stimulation signals, and  a control unit (11) connected to the stimulation unit (12) and configured to control the  stimulation unit (12), wherein the control unit (11) is configured to  
determine a frequency of a first acoustic therapy signal and a frequency of a second  acoustic therapy signal, such that a measure of coverage between a first bandwidth of  an auditory filter with the frequency of the first acoustic therapy signal as a center  frequency and a second bandwidth of an auditory filter with the frequency of the second  acoustic therapy signal as a center frequency assumes a predetermined first value, and  control the stimulation unit (12) such that the stimulation unit (12) generates the first  acoustic therapy signal and the second acoustic therapy signal. 
17.  The device (10) according to claim 16, wherein the device (10) comprises an  evaluation unit (13) configured to evaluate a success of a treatment. 
18.  The device (10) according to claim 17, wherein the control unit (11) is configured to:  determine a frequency of a third acoustic therapy signal such that a measure of  coverage between the first bandwidth of the auditory filter with the frequency of the  first acoustic therapy signal as the center frequency and a third bandwidth of an  auditory filter with the frequency of the third acoustic therapy signal as a center  frequency assumes a predetermined second value,   
 
control the stimulation unit (12) such that the stimulation unit (12) generates the first,  second and third acoustic therapy signals and  
discard the third acoustic therapy signal if the evaluation unit (13) does not identify a  sufficient therapeutic success in stimulation with the first, second and third acoustic  therapy signals. 
19.  The device (10) according to claim 18, wherein the control unit (11) is configured to,  if the evaluation unit (13) identifies a sufficient therapeutic success in stimulation with the  first, second and third acoustic therapy signals: 
determine a frequency of a fourth acoustic therapy signal such that a measure of  overlap between the second bandwidth of the auditory filter with the frequency of the  second acoustic therapy signal as the center frequency and a fourth bandwidth of an  auditory filter with the frequency of the fourth acoustic therapy signal as a center  frequency assumes a predetermined third value, 
control the stimulation unit (12) such that the stimulation unit (12) generates the first,  the second, the third and the fourth acoustic therapy signals and  
discard the fourth acoustic therapy signal if the evaluation unit (13) does not identify a  sufficient therapeutic success in stimulation with the first, second, third and fourth  acoustic therapy signals. 
20.  The device (10) according to claim 18, wherein the control unit (11) is configured to,  if the evaluation unit (13) identifies a sufficient therapeutic success in stimulation with the  first, second and third acoustic therapy signals:  
determine a frequency of a fourth acoustic therapy signal such that a measure of  coverage between the third bandwidth of the auditory filter with the frequency of the  third acoustic therapy signal as the center frequency and a fourth bandwidth of an  auditory filter with the frequency of the fourth acoustic therapy signal as a center  frequency assumes a predetermined third value, 
control the stimulation unit (12) such that the stimulation unit (12) generates the first,  second, third and fourth acoustic therapy signals and    
 
discard the fourth acoustic therapy signal if the evaluation unit (13) does not identify a  sufficient therapeutic success in stimulation with the first, second, third and fourth  acoustic therapy signals. 
21.  The device (10) according to any one of claims 16 to 20, wherein the control unit (11)  is configured to: 
determine the frequency of the first acoustic therapy signal and the frequency of the  second acoustic therapy signal for multiple values for the measure of coverage between  the first bandwidth of the auditory filter with the frequency of the first acoustic therapy  signal as the center frequency and the second bandwidth of the auditory filter with the  frequency of the second acoustic therapy signal as the center frequency, 
control the stimulation unit (12) such that the stimulation unit (12) generates a  respective pair from the first acoustic therapy signal and the second acoustic therapy  signal for each of the multiple values for the measure of coverage, and 
select the pair in which the evaluation unit (13) identifies a greatest therapeutic success. 
22.  The device (10) according to any one of claims 16 to 21, wherein a frequency of a  tinnitus tone perceived by the patient is between the frequency of the first acoustic therapy  signal and the frequency of the second acoustic therapy signal. 
23.  The device (10) according to any one of claims 16 to 22, wherein at least one of the  following applies: 
the first bandwidth is a function of the patient's hearing threshold at the frequency of  the first acoustic therapy signal,  
the second bandwidth is a function of the patient's hearing threshold at the frequency of  the second acoustic therapy signal,  
the third bandwidth is a function of the patient's hearing threshold at the frequency of  the third acoustic therapy signal, and 
the fourth bandwidth is a function of the patient's hearing threshold at the frequency of  the fourth acoustic therapy signal.   
 
24.  The device (10) according to any one of claims 16 to 23, wherein at least one of the  following applies:  
the first bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the first acoustic therapy signal,   
the second bandwidth is an equivalent rectangular bandwidth of the auditory filter at  the frequency of the second acoustic therapy signal,   
the third bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the third acoustic therapy signal, and  
the fourth bandwidth is an equivalent rectangular bandwidth of the auditory filter at the  frequency of the fourth acoustic therapy signal. 
25.  The device (10) according to any one of claims 16 to 24, wherein at least one of the  following applies:  
the first acoustic therapy signal is a first therapy tone or a first therapy tone mixture,   the second acoustic therapy signal is a second therapy tone or a second therapy tone  mixture,  
the third acoustic therapy signal is a third therapy tone or a third therapy tone mixture,  and 
the fourth acoustic therapy signal is a fourth therapy tone or a fourth therapy tone  mixture.  
26.  The device (10) according to any one of claims 16 to 25, wherein each measure of  coverage is an overlap or a gap. 
27.  The device (10) according to claim 19 or 20, wherein the control unit (11) is  configured to control the stimulation unit (12) such that the stimulation unit (12) generates  the first acoustic therapy signal, the second acoustic therapy signal, the third acoustic  therapy signal and the fourth acoustic therapy signal with a time lag between one another,  wherein amplitudes of the acoustic therapy signals are each adjusted so that the acoustic  therapy signals trigger a phase reset of a neural activity of respective neurons stimulated in  the patient's brain.   
 
28.  A method for stimulation of a patient with acoustic stimulation signals, comprising:  determining a frequency of a first acoustic therapy signal and a frequency of a second  acoustic therapy signal such that a measure of coverage between a first bandwidth of an  auditory filter with the frequency of the first acoustic therapy signal as a center 
frequency and a second bandwidth of an auditory filter with the frequency of the second  acoustic therapy signal as a center frequency assumes a predetermined first value, and  generating the first acoustic therapy signal and the second acoustic therapy signal. 
29.  A non‐transitory computer‐readable medium comprising computer code for 
execution in a data processing system to: 
determine a frequency of a first acoustic therapy signal and a frequency of a second  acoustic therapy signal such that a measure of coverage between a first bandwidth of an  auditory filter with the frequency of the first acoustic therapy signal as a center 
frequency and a second bandwidth of an auditory filter with the frequency of the second  acoustic therapy signal as a center frequency assumes a predetermined first value, and  generate control signals for controlling a stimulation unit (12) to generate the first  acoustic therapy signal and the second acoustic therapy signal.   
PCT/US2017/043151 2016-08-12 2017-07-20 Device and method for hearing threshold-adapted acoustic stimulation WO2018031215A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17839995.2A EP3496807A4 (en) 2016-08-12 2017-07-20 Device and method for hearing threshold-adapted acoustic stimulation
US16/324,113 US10933213B2 (en) 2016-08-12 2017-07-20 Device and method for hearing threshold-adapted acoustic stimulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016009874.0 2016-08-12
DE102016009874.0A DE102016009874A1 (en) 2016-08-12 2016-08-12 Apparatus and method for hearing threshold adapted acoustic stimulation

Publications (1)

Publication Number Publication Date
WO2018031215A1 true WO2018031215A1 (en) 2018-02-15

Family

ID=61018251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/043151 WO2018031215A1 (en) 2016-08-12 2017-07-20 Device and method for hearing threshold-adapted acoustic stimulation

Country Status (4)

Country Link
US (1) US10933213B2 (en)
EP (1) EP3496807A4 (en)
DE (1) DE102016009874A1 (en)
WO (1) WO2018031215A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018048907A1 (en) 2016-09-06 2018-03-15 Neosensory, Inc. C/O Tmc+260 Method and system for providing adjunct sensory information to a user
EP3570935B1 (en) * 2017-01-18 2020-08-12 Soin Neuroscience, LLC System for providing therapy to a patient via application of a broad spectrum of tunable electrical noise signals
US11925805B2 (en) 2017-01-18 2024-03-12 Soin Neuroscience, LLC Tunable electrical noise signal technologies
US10582286B2 (en) * 2018-06-22 2020-03-03 University Of South Florida Method for treating debilitating hyperacusis
EP3846895A1 (en) * 2018-09-03 2021-07-14 Gretap AG Medical treatment device and method for stimulating neurons of a patient to suppress a pathologically synchronous activity of the neurons
US11079854B2 (en) 2020-01-07 2021-08-03 Neosensory, Inc. Method and system for haptic stimulation
CN112168167B (en) * 2020-09-25 2022-05-03 北京大学 Magnetoencephalogram single auditory evoked signal detection method and electronic device
US11497675B2 (en) * 2020-10-23 2022-11-15 Neosensory, Inc. Method and system for multimodal stimulation
US11862147B2 (en) 2021-08-13 2024-01-02 Neosensory, Inc. Method and system for enhancing the intelligibility of information for a user
US11793443B2 (en) 2022-02-01 2023-10-24 Soin Neuroscience, LLC Adjustable random electrical stimulation technologies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177877A1 (en) 2001-03-02 2002-11-28 Choy Daniel S. J. Method and apparatus for treatment of monofrequency tinnitus utilizing sound wave cancellation techniques
WO2005053533A1 (en) * 2003-12-04 2005-06-16 Neuromonics Pty Ltd Tinnitus rehabilitation device and method
US7376563B2 (en) * 2000-06-30 2008-05-20 Cochlear Limited System for rehabilitation of a hearing disorder
WO2016004970A1 (en) * 2014-07-07 2016-01-14 Advanced Bionics Ag System for combined neural and acoustic hearing stimulation
US20160151629A1 (en) * 2013-07-05 2016-06-02 Advanced Bionics Ag Cochlear implant system
US20160175557A1 (en) * 2013-08-08 2016-06-23 Forschungszentrum Juelich Gmbh Apparatus and method for calibrating acoustic desynchronizing neurostimulation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222393A (en) 1978-07-28 1980-09-16 American Tinnitus Association Tinnitus masker
DE102008015259B4 (en) * 2008-03-20 2010-07-22 Anm Adaptive Neuromodulation Gmbh Apparatus and method for auditory stimulation
DE202013006065U1 (en) * 2013-07-05 2013-09-12 Anm Adaptive Neuromodulation Gmbh Acoustic stimulation device with adaptive dynamic stimulation signal conditioning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376563B2 (en) * 2000-06-30 2008-05-20 Cochlear Limited System for rehabilitation of a hearing disorder
US20020177877A1 (en) 2001-03-02 2002-11-28 Choy Daniel S. J. Method and apparatus for treatment of monofrequency tinnitus utilizing sound wave cancellation techniques
WO2005053533A1 (en) * 2003-12-04 2005-06-16 Neuromonics Pty Ltd Tinnitus rehabilitation device and method
US20160151629A1 (en) * 2013-07-05 2016-06-02 Advanced Bionics Ag Cochlear implant system
US20160175557A1 (en) * 2013-08-08 2016-06-23 Forschungszentrum Juelich Gmbh Apparatus and method for calibrating acoustic desynchronizing neurostimulation
WO2016004970A1 (en) * 2014-07-07 2016-01-14 Advanced Bionics Ag System for combined neural and acoustic hearing stimulation

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
E. ZWICKERG. FLOTTORPS.S. STEVENS: "Critical bandwidth in loudness summation", J. ACOUST. SOC. AM., vol. 29, 1957, pages 548 - 557, XP009503619, DOI: 10.1121/1.1908963
M. SCHERGN. ILLEH. BORNFLETHP. BERG: "Advanced tools for digital EEG re-view: virtual source montages, whole-head mapping, correlation, and phase analysis", J. CLIN. NEUROPHYSIOL., vol. 19, no. 2, 2002, pages 91 - 112
M. WILLIAMSC. HAUPTMANNN. PATEL: "Acoustic CR neuromodulation therapy for subjective tonal tinnitus: a review of clinical outcomes in an independent audiology practice setting", FRONT. NEURAL., vol. 6, 2015, pages 54
N. E. HUANG ET AL.: "A confidence limit for the empirical mode decomposition and Hilbert spectral analysis", PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A, vol. 459, 2003, pages 2317 - 2345, XP009032954, DOI: 10.1098/rspa.2003.1123
N. E. HUANG ET AL.: "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", PROC. R. SOC. A: MATH. PHYS. ENG. SCI., vol. 454, 1998, pages 903 - 995, XP002410420
P.A. TASS: "Transmission of stimulus-locked responses in two coupled phase oscillators", PHYS. REV. E, vol. 69, 2004, pages 051909 - 1,24
R. D. PASCUAL-MARQUI: "Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details", METHODS FIND. EXP. CLIN. PHARMACOL., vol. 24, no. D, 2002, pages 5 - 12, XP003015350
W. HUANGZ. SHENN. E. HUANGY. C. FUNG: "Engineering analysis of biological variables: an example of blood pressure over 1 day", PROC. NAT. ACAD. SCI. USA, vol. 95, 1998, pages 4816 - 4821

Also Published As

Publication number Publication date
EP3496807A1 (en) 2019-06-19
EP3496807A4 (en) 2020-03-04
US10933213B2 (en) 2021-03-02
US20190201657A1 (en) 2019-07-04
DE102016009874A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
US10933213B2 (en) Device and method for hearing threshold-adapted acoustic stimulation
Lafon et al. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings
Tichko et al. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators
Bertoli et al. Temporal resolution in young and elderly subjects as measured by mismatch negativity and a psychoacoustic gap detection task
US9826916B2 (en) Device and method for examining a phase distribution used to determine a pathological interaction between different areas of the brain
Schwarz et al. Human auditory steady state responses to binaural and monaural beats
JP6543249B2 (en) Apparatus and method for calibrating acoustic desynchronization neural stimulation
Hong et al. Top-down and bottom-up neurodynamic evidence in patients with tinnitus
Monaghan et al. Hidden hearing loss impacts the neural representation of speech in background noise
Lai et al. A simple two-component model of the electrically evoked compound action potential in the human cochlea
US20150105837A1 (en) Brain therapy system and method using noninvasive brain stimulation
Won et al. Relationship between behavioral and physiological spectral-ripple discrimination
WO2011009807A1 (en) Tinnitus therapy device
JP2007515200A (en) Evaluation system and evaluation method for therapeutic effectiveness of neuropathy using electroencephalogram
JP2007515200A5 (en)
US20150290460A1 (en) Methods for Treating Mild Cognitive Impairment and Alzheimer&#39;s Disease
Wable et al. Mismatch negativity: a tool for the assessment of stimuli discrimination in cochlear implant subjects
McLaren et al. Scoping out noisy galvanic vestibular stimulation: a review of the parameters used to improve postural control
Li et al. Characteristics of stimulus artifacts in EEG recordings induced by electrical stimulation of cochlear implants
Chen et al. Temporal envelope coding of the human auditory nerve inferred from electrocochleography: Comparison with envelope following responses
Attina et al. A new method to test the efficiency of cochlear implant artifacts removal from auditory evoked potentials
Richardson et al. Temporal Pitch Sensitivity in an Animal Model: Psychophysics and Scalp Recordings: Temporal Pitch Sensitivity in Cat
Wagner et al. Perception of iterated rippled noise periodicity in cochlear implant users
RU2611909C1 (en) Method for rhythmic stimuli perception testing
van Zanten et al. Short-latency evoked potentials of the human auditory system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017839995

Country of ref document: EP

Effective date: 20190312