WO2018030443A1 - コーティング組成物分散体、水性複合粒子分散体、及び水性複合粒子分散体の製造方法 - Google Patents

コーティング組成物分散体、水性複合粒子分散体、及び水性複合粒子分散体の製造方法 Download PDF

Info

Publication number
WO2018030443A1
WO2018030443A1 PCT/JP2017/028852 JP2017028852W WO2018030443A1 WO 2018030443 A1 WO2018030443 A1 WO 2018030443A1 JP 2017028852 W JP2017028852 W JP 2017028852W WO 2018030443 A1 WO2018030443 A1 WO 2018030443A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mass
composite particle
aqueous
ethylenically unsaturated
Prior art date
Application number
PCT/JP2017/028852
Other languages
English (en)
French (fr)
Inventor
豊昭 山内
恵 佐々木
倫春 吉沼
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP17839511.7A priority Critical patent/EP3498794B1/en
Priority to CN201780047548.3A priority patent/CN109563374A/zh
Priority to JP2018533523A priority patent/JP6691221B2/ja
Priority to US16/324,053 priority patent/US20190169458A1/en
Priority to EP20164425.9A priority patent/EP3708625A1/en
Publication of WO2018030443A1 publication Critical patent/WO2018030443A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D157/00Coating compositions based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D157/04Copolymers in which only the monomer in minority is defined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D157/00Coating compositions based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D157/06Homopolymers or copolymers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols

Definitions

  • the present invention relates to a coating composition dispersion, an aqueous composite particle dispersion, and a production method thereof.
  • aqueous composite particle dispersions that is, water-based paints obtained from latex
  • the aqueous coating material obtained from the aqueous composite particle dispersion does not yet exhibit sufficient physical properties in terms of pigment dispersibility, water resistance, stain resistance, hardness, and the like, as compared with organic solvent-based paints.
  • the aqueous composite particle dispersion refers to a liquid material in which a polymer is dissolved and / or dispersed in water.
  • the phosphate group possessed by the particles in the aqueous particle dispersion is specifically adsorbed to the inorganic substance, and by making some of the hydrophilic groups such as weak acid groups in the aqueous particle dispersion into phosphate groups, It is supposed that specific adsorption to an inorganic pigment can be achieved and dispersion stability can be improved (see, for example, Patent Document 1).
  • a copolymer polymer in which the amount of ethylenically unsaturated monomer having a phosphate group is limited to 1 to 4% in the particles in the aqueous particle dispersion Apart from this, a method of carrying out multi-stage emulsion polymerization on the acidic side has been proposed in order to coexist a copolymer with monomers containing p-styrenesulfonic acid or methacrylic acid (see, for example, Patent Document 2).
  • monomers containing an ethylenically unsaturated monomer having a carboxyl group are emulsion-polymerized in the previous stage on the acidic side, neutralized with a basic compound, and then an ethylene having a nitrogen functional group.
  • a method of emulsion polymerization of monomers including monomers containing a unsaturated unsaturated monomer on the basic side at the subsequent stage has been proposed (for example, see Patent Document 3).
  • Patent Document 3 when the above method is carried out together with ordinary nonionic ethylenically unsaturated monomers, the water resistance of the coating film obtained from the latex is deteriorated.
  • Patent Document 3 discloses that an ethylenically unsaturated monomer having a nitrogen functional group and an ethylenically unsaturated monomer having an acidic group under the condition of the basic side are ordinary nonionic ethylenically unsaturated monomers. It is disclosed that when emulsion polymerization is performed together with monomers, the water resistance of the coating film is significantly reduced.
  • Patent Document 4 as a method for producing latex, after emulsion polymerization of monomers containing an ethylenically unsaturated monomer having a carboxyl group on the acidic side, A method is disclosed in which an ethylenically unsaturated monomer containing a monomer having a basic functional group is emulsion-polymerized without using an ethylenically unsaturated monomer having a carboxyl group on the side.
  • the amount of the ethylenically unsaturated monomer having a phosphate group in the particles in the aqueous particle latex is 1 to 4% for the purpose of controlling specific adsorption to the inorganic pigment.
  • An ethylenically unsaturated polymer containing a copolymer having a basic functional group as a monomer containing an aldehyde-reactive group and a monomer containing p-styrenesulfonic acid or methacrylic acid, and an aldehyde-reactive group-containing monomer In order to co-exist copolymerized monomers with monomers, when copolymerizing ethylenically unsaturated monomers with phosphoric acid groups, it is acidic at low pH, and other stages are multistage near neutral. A method of performing emulsion polymerization has been proposed.
  • an ethylenically unsaturated monomer having a nitrogen functional group is copolymerized as a part of the core particle composition by emulsion polymerization into an aqueous particle dispersion, and then an ethylenically unsaturated monomer having a weak acid group.
  • a method for preparing particles in which a shell polymer is formed without using a body has been proposed (see, for example, Patent Document 7). However, there is a problem that the dispersion stability is not practically sufficient.
  • composition is a blend of an acrylic emulsion obtained by emulsion polymerization of monomers containing an ethylenically unsaturated monomer having a nitrogen functional group in an aqueous particle dispersion and inorganic particles.
  • an acrylic emulsion obtained by emulsion polymerization of monomers containing an ethylenically unsaturated monomer having a nitrogen functional group in an aqueous particle dispersion and inorganic particles.
  • the dispersion stability of the mixed compound is very poor and has a problem that it aggregates during storage.
  • Japanese Patent No. 4792052 Japanese Patent No. 58379961 Japanese Patent No. 3215329 Japanese Patent No. 5919131 Japanese Patent No. 58379961 JP 2007-246800
  • Coating film obtained by emulsion polymerization of monomers containing ethylenically unsaturated monomer having weakly acidic group such as carboxyl group and ethylenically unsaturated monomer having nitrogen functional group in the subsequent stage Has the problem that its water resistance is remarkably deteriorated.
  • an ethylenically unsaturated monomer having a carboxyl group as an ethylenically unsaturated monomer having an acidic group After the former emulsion polymerization is carried out on the acidic side using a monomer containing benzene and neutralized with a basic compound, a monomer containing an ethylenically unsaturated monomer having a basic functional group on the basic side is contained. It is necessary to carry out emulsion polymerization at a later stage using the monomers.
  • the particles used for emulsion polymerization in the previous stage are silica-coated particles using inorganic particles as core particles, or having core particles and a silica layer covering at least a part of the surface of the core particles,
  • basic composite particles stabilized by ions or potassium ions are used as core particles, monomers containing ethylenically unsaturated monomers having weakly acidic groups are maintained in the subsequent stage while maintaining basicity.
  • the composite particles obtained by emulsion polymerization have a zeta potential that is lower than the normal negative value. Therefore, aggregation (same sign heteroaggregation) is caused by a negative potential difference from pigment inorganic particles having a normal zeta potential. This causes a problem that the mixing stability is remarkably deteriorated.
  • the aqueous composite particle dispersion has excellent dispersion stability during production, excellent mixing stability with pigment inorganic particles during coating, and excellent water resistance and weather resistance of the coating film. It is an object of the present invention to provide a particle dispersion and a coating composition dispersion containing the aqueous composite particle dispersion.
  • the present inventors have found that the composite particles in an aqueous composite particle dispersion including an aqueous medium and composite particles dispersed in the aqueous medium.
  • An aqueous composite particle dispersion that contains phosphorus atoms at a predetermined mass ratio and specifies the zeta potential at 60 ° C.
  • the present invention is as follows.
  • An aqueous medium containing water; Composite particles dispersed in the aqueous medium; Including, The composite particle has a particle (A) and a polymer layer (B) covering at least a part of the surface of the particle (A), and 0.12% by mass or less based on the total mass of the composite particle At least one aqueous composite particle dispersion (C) containing phosphorus atoms; Other aqueous resin dispersion (D), A coating composition dispersion comprising: The solid content mass ratio between the aqueous composite particle dispersion (C) and the other aqueous resin dispersion (D) is: (Solid content mass of component (C) / solid content mass of component (D)) 100/0 to 1/99 of the coating film of the coating composition dispersion, By the color difference ⁇ b value and the color difference ⁇ b 0 value of the coating film of the other aqueous resin dispersion (D), Weather resistance modification value represented by the following formula:
  • Coating composition dispersion [2] An aqueous medium containing water; Composite particles dispersed in the aqueous medium; An aqueous composite particle dispersion (C) comprising: The composite particle has a particle (A) and a polymer layer (B) covering at least a part of the surface of the particle (A), and is 0.001 to 0.00 with respect to the total mass of the composite particle. Containing 12% by mass of phosphorus atoms, The particles (A) are inorganic particles or polymer particles, The aqueous composite particle dispersion (C) in which the zeta potential of the composite particles in the aqueous composite particle dispersion at 60 ° C.
  • the aqueous composite particle dispersion (C) includes an aqueous medium containing water, and composite particles dispersed in the aqueous medium,
  • the composite particle has a particle (A) and a polymer layer (B) covering at least a part of the surface of the particle (A), and is 0.001 to 0.00 with respect to the total mass of the composite particle. Containing 12% by mass of phosphorus atoms,
  • the particles (A) are inorganic particles or polymer particles, The zeta potential of the composite particles in the aqueous composite particle dispersion at 60 ° C.
  • the coating composition dispersion dispersion according to the above [1].
  • the zeta potential of the composite particles in the aqueous composite particle dispersion (C) at 25 ° C. after being dialyzed is -5 mV to -59 mV in any of the ranges of pH 7-11.
  • the zeta potential of the composite particles in the aqueous composite particle dispersion (C) at 25 ° C. after being dialyzed is -5 mV to -59 mV in any of the ranges of pH 7-11.
  • the coating composition dispersion according to [1] or [3].
  • the aqueous composite particle dispersion (C) according to [2] or [4].
  • the polymer layer (B) Containing a polymer (B-1) having a weakly acidic monomer unit derived from an ethylenically unsaturated monomer having a phosphate group, The ethylenically unsaturated group having a phosphate group with respect to the total amount of the monomer in the formation step of the polymer (B-1) having a weakly acidic monomer unit derived from the ethylenically unsaturated monomer having the phosphate group.
  • the polymer layer (B) Containing a polymer having an ethylenically unsaturated monomer unit having an acidic group, 0.01 to 5.0% by mass of an ethylenically unsaturated monomer unit having an acidic group with respect to the total amount of monomers in the step of forming a polymer having an ethylenically unsaturated monomer unit having the acidic group Including a polymer (B-3) having an ethylenically unsaturated monomer unit having an acidic group,
  • the coating composition dispersion according to any one of [1], [3], and [5].
  • the polymer layer (B) Containing a polymer (B-1) having a weakly acidic monomer unit derived from an ethylenically unsaturated monomer having a phosphate group, The ethylenically unsaturated group having a phosphate group with respect to the total amount of the monomer in the formation step of the polymer (B-1) having a weakly acidic monomer unit derived from the ethylenically unsaturated monomer having the phosphate group.
  • the coating composition dispersion according to any one of [1], [3], [5], and [8].
  • a polymer having a basic monomer unit derived from a saturated monomer of 0.05 to 50% by mass has a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group.
  • the aqueous composite particle dispersion (C) according to any one of [2], [4], [6], and [7].
  • the polymer layer (B) Containing a polymer (B-5) containing a basic non-polymerizable monomer unit containing a non-polymerizable monomer having a nitrogen functional group, Basic non-polymerizable monomer with respect to the total amount of monomers in the formation step of polymer (B-5) containing basic non-polymerizable monomer unit containing non-polymerizable monomer having nitrogen functional group
  • a polymer containing a nitrogen functional group-containing non-polymerizable monomer unit having a monomer unit of 0.05 to 50% by mass is converted into a basic non-polymerizable monomer containing a non-polymerizable monomer having a nitrogen functional group.
  • the aqueous composite particle dispersion (C) according to any one of claims [2], [4], [6], and [7].
  • the polymer layer (B) Basic non-polymerizable monomer comprising a polymer (B-2) having a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group and a non-polymerizable monomer having a nitrogen functional group Containing a polymer (B-5) containing a monomer unit, Basic non-polymerizable containing polymer (B-2) having basic monomer unit derived from ethylenically unsaturated monomer having nitrogen functional group and non-polymerizable monomer having nitrogen functional group
  • the step of forming the polymer (B-5) containing monomer units is performed at the same time or in a separate stage, The basic monomer unit derived from the ethylenically unsaturated monomer having a nitrogen
  • a polymer having a basic monomer unit derived from a saturated monomer of 0.05 to 50% by mass has a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group.
  • the coating composition dispersion according to any one of [1], [3], [5], [8], and [9].
  • the polymer layer (B) Containing a polymer (B-5) containing a basic non-polymerizable monomer unit containing a non-polymerizable monomer having a nitrogen functional group, Basic non-polymerizable monomer with respect to the total amount of monomers in the formation step of polymer (B-5) containing basic non-polymerizable monomer unit containing non-polymerizable monomer having nitrogen functional group
  • a polymer containing a nitrogen functional group-containing non-polymerizable monomer unit having a monomer unit of 0.05 to 50% by mass is converted into a basic non-polymerizable monomer containing a non-polymerizable monomer having a nitrogen functional group.
  • the coating composition dispersion according to any one of [1], [3], [5], [8], and [9].
  • the polymer layer (B) Basic non-polymerizable monomer comprising a polymer (B-2) having a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group and a non-polymerizable monomer having a nitrogen functional group Containing a polymer (B-5) containing a monomer unit, Basic non-polymerizable containing polymer (B-2) having basic monomer unit derived from ethylenically unsaturated monomer having nitrogen functional group and non-polymerizable monomer having nitrogen functional group
  • the step of forming the polymer (B-5) containing monomer units is performed at the same time or in a separate stage,
  • the basic monomer unit derived from the ethylenically unsaturated monomer having a nitrogen functional group is 0
  • the mass ratio of the polymer (B-2) / the polymer (B-1) is 0.01 to 50.
  • the aqueous composite particle dispersion (C) according to any one of [10] to [12].
  • the mass ratio of the polymer (B-2) / the polymer (B-1) is 0.01 to 50.
  • the mass ratio of the polymer layer (B) / the particles (A) is 0.01-100.
  • the aqueous composite particle dispersion (C) according to any one of [2], [4], [6], [7], [10], [11], [12], and [16].
  • the mass ratio of the polymer layer (B) / the particles (A) is 0.01-100.
  • the coating composition dispersion according to any one of [1], [3], [5], [8], [9], [13], [14], [15], and [17].
  • the zeta potential calculated from the mobility by the method using the Smoluchowski equation When the pH of the aqueous composite particle dispersion is less than 7, the dispersion for measurement is adjusted to a pH range of 7 to 11 by adding an aqueous NaOH solution, and the aqueous composite particle dispersion is diluted with the aqueous KCl solution.
  • the coating composition dispersion according to any one of [3], [5], [8], [9], [13], [14], [15], [17], and [19].
  • Dispersion for measurement obtained by dialysis of aqueous composite particle dispersion diluted with 1 mM NaOH aqueous solution, and diluting the aqueous composite particle dispersion after dialysis at pH 7-11 so that KCl concentration becomes 10 mM Zeta potential calculated by the method using the Smoluchowski equation from the electric mobility at If the pH of the aqueous composite particle dispersion after dialysis is less than 7, the dispersion for measurement is adjusted to a pH of 7 to 11 by adding an aqueous NaOH solution, and then the aqueous composite particle dispersion is converted to KCl. It was prepared by diluting with an aqueous solution.
  • the aqueous composite particle dispersion according to any one of [4], [6], [7], [10], [11], [12], [16], [18], and [20] ( C). [23] The zeta potential of the composite particles in the aqueous composite particle dispersion at 25 ° C.
  • Dispersion for measurement obtained by dialysis of aqueous composite particle dispersion diluted with 1 mM NaOH aqueous solution and diluting the aqueous composite particle dispersion after dialysis at pH 7-11 so that the KCl concentration becomes 10 mM Zeta potential calculated by the method using the Smoluchowski equation from the electric mobility at If the pH of the aqueous composite particle dispersion after dialysis is less than 7, the dispersion for measurement is adjusted to a pH of 7 to 11 by adding an aqueous NaOH solution, and then the aqueous composite particle dispersion is converted to KCl. It was prepared by diluting with an aqueous solution.
  • a method for producing an aqueous composite particle dispersion comprising a step of forming a polymer layer (B) on at least a part of the surface of particles (A),
  • the aqueous composite particle dispersion includes composite particles in which a polymer layer (B) is formed on at least a part of the surface of the particles (A),
  • the particles (A) are inorganic particles or polymer particles
  • the polymer layer (B) includes a polymer (B-3) having 0.01 to 5.0% by mass of an ethylenically unsaturated monomer unit having at least one acidic group,
  • the step of forming the polymer layer (B) A step of emulsion polymerizing the polymer (B-3) in a dispersion of particles (A) adjusted to pH 6 or higher in a state where at least a part of the ethylenically unsatur
  • the step of forming the polymer layer (B) As the polymer (B-4), 50 to 99.95% by mass of nonionic ethylenically unsaturated monomer units, 5.0% by mass or less of ethylenically unsaturated monomer units having acidic groups, and ethylenically unsaturated having nitrogen functional groups The method for producing an aqueous composite particle dispersion according to the above [24], comprising a step of emulsion polymerization of a polymer containing 0.05 to 50% by mass of monomer units.
  • the polymer layer (B) At least one acidic group selected from the group consisting of an ethylenically unsaturated monomer having a carboxyl group, an ethylenically unsaturated monomer having a phosphoric acid group, and an ethylenically unsaturated monomer having a sulfonic acid group
  • An ethylenically unsaturated monomer unit having a content of 0.005 to 4.0% by weight based on the total weight of the composite particles The method for producing an aqueous composite particle dispersion according to any one of [24] to [26].
  • the polymer layer (B) Polymer in which ethylenically unsaturated monomer unit having acidic group composed of ethylenically unsaturated monomer having phosphoric acid group is 0.001 to less than 1.0% by mass with respect to the total mass of composite particles including, The method for producing an aqueous composite particle dispersion according to any one of [24] to [28]. [30] The mass ratio of the polymer (B-4) / the polymer (B-3) is 0.01 to 50. The method for producing an aqueous composite particle dispersion according to any one of [24] to [29]. [31] The mass ratio of the polymer layer (B) / the particles (A) is 0.01-100. The method for producing an aqueous composite particle dispersion according to any one of [24] to [30].
  • a coating film having excellent water resistance can be formed, and an aqueous composite particle dispersion having excellent mixing stability with pigment inorganic particles can be obtained.
  • an aqueous composite particle dispersion capable of adding weather resistance to the coating film and a coating composition dispersion containing the aqueous composite particle dispersion are obtained.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiment is an exemplification for explaining the present invention, and the present invention is not limited to the following embodiment.
  • the present invention can be implemented with various modifications within the scope of the gist.
  • the color difference ⁇ b value of the coating film of the coating composition dispersion and the color difference ⁇ b 0 value of the coating film of the other aqueous resin dispersion (D) (Weather resistance modification value:
  • the aqueous composite particle dispersion (C) will be described later.
  • the other aqueous resin dispersion (D) is a dispersion of a resin different from the aqueous composite particle dispersion (C), and is not limited to the following, for example, vinyl polymer, vinyl acetate Selected from the group consisting of polymer, polyether, polyester, polycarbonate, polyamide, polyurethane, diene polymer, melamine / benzoguanamine polymer, aromatic polymer, polyimide, polycarbonate, polyurethane, polycaprolactone, sulfur polymer and natural polymer Polymers.
  • vinyl polymer vinyl acetate Selected from the group consisting of polymer, polyether, polyester, polycarbonate, polyamide, polyurethane, diene polymer, melamine / benzoguanamine polymer, aromatic polymer, polyimide, polycarbonate, polyurethane, polycaprolactone, sulfur polymer and natural polymer Polymers.
  • aqueous resin dispersions (D) include acrylic polymers containing (meth) acrylic acid esters as monomer units, styrene-acrylic polymers containing styrene and (meth) acrylic acid esters as monomer units, styrene and butadiene. It is preferable to be a resin dispersion composed of particles containing at least one polymer selected from a styrene-butadiene polymer containing, as a monomer unit, a silicone-modified polymer, and a fluorine-based polymer.
  • Ratio of solid content of aqueous composite particle dispersion (C) described later and solid content of other aqueous composite particle dispersion (D) is 100/0 to 1/99, preferably 100/0 to 5/95, more preferably 95/5 to 5/95, from the viewpoint of weather resistance. More preferably, it is 90/10 to 10/90. It is preferable to adjust the solid content mass ratio between the component (C) and the component (D) in accordance with a desired weather resistance modification value. Note that when the component (C) of the solid mass / (D) solid content of the components is 100/0, [Delta] b 0 is 0.
  • the color difference ⁇ b value of the coating film obtained from the coating composition dispersion and the color difference ⁇ b 0 value of the coating film of the other aqueous resin dispersion (D) is 0.15 or more. Preferably it is 0.20 or more, More preferably, it is 0.29 or more. When the weather resistance modification value represented by the above formula is 0.15 or more, the weather resistance of the coating film obtained by the coating composition dispersion of the present embodiment is sufficiently improved.
  • the color difference ⁇ b value of the coating film of the coating composition dispersion is prepared by mixing the aqueous composite particle dispersion (C) with another aqueous resin dispersion (D) in a desired ratio and mixing titanium dioxide. It is obtained by carrying out a predetermined weather resistance test with a coating specimen formed using the white paint thus obtained, measuring the b value after 1000 hours of exposure, and calculating the difference from the b value before exposure.
  • the b value can be measured by a color difference meter. In the color measurement of the b value, in addition to using a white paint mixed with titanium dioxide, a white paint film as a coating specimen was already formed and no titanium dioxide was blended (C).
  • the color difference ⁇ b 0 value of the other aqueous resin dispersion (D) is determined according to a predetermined weather resistance by a coating test body formed using a paint prepared by mixing other aqueous resin dispersion (D) and titanium oxide. It is obtained by conducting a test, measuring the b value after 1000 hours of exposure, and calculating the difference from the b value before exposure. Also in this case, the b value can be measured by a color difference meter.
  • the weather resistance reforming value is represented by the equation
  • ⁇ b 0 ⁇ 20 is preferable, and ⁇ b 0 ⁇ 10 is more preferable. Outside this range, it is difficult to obtain a weather resistance improvement effect.
  • / ( ⁇ b 0 + ⁇ b)) is present in the presence of a light stabilizer component and / or ultraviolet absorber component that is homogeneously dispersed and coordinated in the coating film. And by adjusting the amount thereof, the numerical value range can be controlled.
  • the coating composition of this embodiment includes the aqueous composite particle dispersion (C) including an aqueous medium containing water and composite particles dispersed in the aqueous medium, and the composite particles are particles.
  • the particles (A) are inorganic particles or polymer particles
  • the aqueous composite particle dispersion (C) in which the zeta potential of the composite particles in the aqueous composite particle dispersion at 60 ° C. is ⁇ 10 mV to ⁇ 69 mV in any of the pH 7 to 11 range of the aqueous composite particle dispersion.
  • the thing containing is mentioned as a preferable aspect.
  • the aqueous composite particle dispersion of this embodiment is An aqueous medium containing water; Composite particles dispersed in the aqueous medium; Including, The composite particle has a particle (A) and a polymer layer (B) covering at least a part of the surface of the particle (A), and is 0.001 to 0.00 with respect to the total mass of the composite particle. Containing 12% by mass of phosphorus atoms, The particles (A) are inorganic particles or polymer particles, In any one of the pH 7 to 11 ranges of the aqueous composite particle dispersion, the zeta potential of the composite particles in the aqueous composite particle dispersion at 60 ° C. is ⁇ 10 mV to ⁇ 69 mV.
  • the aqueous medium may contain, in addition to water, a hydrophilic solvent such as alcohols such as ethanol and isopropyl alcohol; ketones such as acetone; ethers such as tetrahydrofuran and dioxane.
  • a hydrophilic solvent such as alcohols such as ethanol and isopropyl alcohol; ketones such as acetone; ethers such as tetrahydrofuran and dioxane.
  • the composite particles contained in the aqueous composite particle dispersion (C) of the present embodiment include particles (A) and a polymer layer (B) that covers at least a part of the surface of the particles (A).
  • the particles (A) are inorganic particles or polymer polymer particles (A).
  • the composite particles can have various structures.
  • the particle (A) constituting the composite particle may be one or more fine inorganic particles, or a core-shell type having a core particle and a silica layer covering at least a part of the surface of the core particle. Silica-coated particles may be used.
  • the particles (A) may be completely covered with the polymer layer (B) or may be partially covered.
  • the aqueous composite particle dispersion (C) of the present embodiment includes particles (A) covered with the polymer layer (B) and particles (on the surface of the polymer particles constituting the polymer layer (B)) ( A) may be included. That is, a large number of particles (A) are arranged on the surface of the composite polymer particles constituting the polymer layer (B), and the dispersion is stabilized by the large number of particles (A).
  • the polymer particles to be present may be present. Further, most of the particles (A) may be disposed on the surface of the polymer particles constituting the polymer layer (B). Furthermore, depending on the solid matter concentration of the composite particles dispersed in the aqueous medium, slight partial aggregation of the composite particles may occur.
  • the aqueous composite particle dispersion (C) of this embodiment is coated with the polymer layer (B) in addition to the composite particles in which the individual particles (A) are coated with the polymer layer (B). Particles (A) may be included. In this case, the zeta potential of the composite particles in the aqueous composite particle dispersion (C) of the present embodiment can easily exhibit a low value.
  • the particles (A) are preferably completely covered with the polymer layer (B), and more preferably completely covered with the polymer layer (B) for each particle (A) unit.
  • the shape of the composite particles in which the particles (A) are completely covered by the polymer layer (B) is obtained by dialysis and ion exchange of the dispersion, and then by counter ion condensation specific to the particle surface silanol groups by electric conductivity titration. It can be estimated from the fact that the phenomenon is no longer seen. Moreover, it can confirm that it is coating of a particle unit from a particle size measurement.
  • the composite particles contained in the aqueous composite particle dispersion (C) of this embodiment preferably contain phosphorus atoms.
  • the phosphorus atom is contained in the composite particle and / or composite. It is a phosphorus atom immobilized on the particle surface, and refers to a phosphorus atom derived from a phosphorus component obtained by removing the aqueous phase component of the dispersion and the adsorbing component of the dispersion from the aqueous composite particle dispersion (C).
  • the composite particle has the particle (A) and the polymer layer (B) that covers at least a part of the surface of the particle (A), and is 0. 0 relative to the total mass of the composite particle. It contains 12 mass% or less of phosphorus atoms, preferably 0.001 to 0.12 mass%, more preferably 0.001 to 0.08 mass%, still more preferably 0.002 to 0.07 mass%. %, Still more preferably 0.002 to 0.06 mass%, and still more preferably 0.002 to 0.03 mass%.
  • the phosphorus atom content By setting the phosphorus atom content in the above numerical range, the dispersion stability with the pigment inorganic particles is excellent, and the water resistance of the coating film tends to be obtained.
  • the formation of the polymer layer (B) on the particles (A) tends to be insufficient due to causes such as the generation of new particles during the production process.
  • the phosphorus atom content can be controlled by appropriately adjusting the copolymerization conditions using an ethylenically unsaturated monomer having a phosphate group when forming the polymer layer (B). it can.
  • the component of the polymer layer (B) contains an ethylenically unsaturated monomer having a nitrogen functional group, the effect of developing water resistance of the coating film is high.
  • the particles (A) are inorganic particles or a polymer.
  • the particle diameter (average particle diameter) of the particles (A) is preferably 1 nm to 5 ⁇ m, more preferably 1 nm to 500 nm, and further preferably 3 nm from the viewpoint of the transparency of the coating film formed from the composite particles. ⁇ 250 nm.
  • the average particle diameter of the particles (A) can be determined based on cumulant method analysis by a dynamic light scattering method using ELSZ-1000ZS manufactured by Otsuka Electronics Co., Ltd.
  • Examples of the inorganic particles that can be used as the particles (A) include, but are not limited to, metal particles, metal compounds, metalloid compounds, and nonmetallic inorganic compounds.
  • Examples of the metal compound include metal oxides and metal salts.
  • the inorganic particles may be particles composed of a single phase containing an inorganic material.
  • Examples of the metal particles include, but are not limited to, noble metal colloids such as palladium, silver, ruthenium, platinum, gold, rhodium or alloys containing these.
  • the metal oxide examples include titanium dioxide (titania, for example, manufactured by Ishihara Sangyo Co., Ltd.), zirconium oxide (zirconia), tin oxide (for example, manufactured by Nissan Chemical Co., Ltd.), and aluminum oxide (for example, manufactured by Nissan Chemical Co., Ltd.). ), Barium oxide, magnesium oxide, various iron oxides (eg, Westite, hematite and magnetite), chromium oxide, antimony oxide, bismuth oxide, zinc oxide, nickel oxide, cobalt oxide, copper oxide, yttrium oxide, and cerium oxide Metal oxides.
  • the metal oxide may be amorphous or various crystal modifications.
  • the metal oxide particles may comprise a metal hydroxy oxide, such as a metal compound selected from hydroxy titanium oxide, hydroxy zirconium oxide, hydroxy aluminum oxide and hydroxy iron oxide, which are amorphous. There may be various crystal modifications. Specifically, the following amorphous and / or metal salt particles present in various crystal structures thereof can be used as the inorganic particles as the particles (A).
  • Sulfides such as iron sulfide, iron disulfide, tin sulfide, mercury sulfide, cadmium sulfide, zinc sulfide, copper sulfide, silver sulfide, nickel sulfide, cobalt sulfide, manganese sulfide, chromium sulfide, titanium sulfide, titanium sulfide, zirconium sulfide, Antimony sulfide, bismuth sulfide; Hydroxides such as tin hydroxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, iron hydroxide; Sulfates such as calcium sulfate, strontium sulfate, barium sulfate, lead sulfate; Carbonates such as lithium carbonate, magnesium carbonate, calcium carbonate, zinc carbonate, zirconium carbonate; Iron carbonate; Ortho
  • Examples of the metalloid compound particles that can be used as the inorganic particles as the particles (A) include amorphous and / or silicon dioxide (silica) particles that exist in various crystal structures.
  • Suitable silicon dioxide (silica) particles are commercially available and include, but are not limited to, Aerosil® (Degussa), Levasil® (Bayer), Ludox ( (Registered trademark) (manufactured by DuPont), Nyacol (registered trademark) (manufactured by Nayacor), Bindzil (registered trademark) (manufactured by Akzo Nobel), Snowtex (registered trademark) (trademark of Nissan Chemical Industries, Ltd.), Adelite (Registered trademark) (manufactured by ADEKA Corporation), Cataloid (registered trademark) (trademark of JGC Catalysts & Chemicals Co., Ltd.).
  • Suitable non-metallic compound particles include, for example, colloidal graphite and diamond.
  • the inorganic particles as particles (A) are preferably silicon dioxide, aluminum oxide, tin oxide, yttrium oxide, cerium oxide, hydroxyaluminum oxide, calcium carbonate, magnesium carbonate, calcium orthophosphate, magnesium orthophosphate, calcium metaphosphate, metaphosphate It contains at least one inorganic compound selected from the group consisting of magnesium, calcium pyrophosphate, magnesium pyrophosphate, iron oxide, titanium dioxide, hydroxylapatite, zinc oxide and zinc sulfide. More preferred is colloidal silica exhibiting a zeta potential having a negative sign.
  • the polymer polymer particles usable as the particles (A) are not limited to the following, but examples thereof include vinyl polymers, vinyl acetate polymers, polyethers, polyesters, polycarbonates, polyamides, polyurethanes, and diene polymers. , A polymer selected from the group consisting of melamine / benzoguanamine polymers, aromatic polymers, polyimides, polycarbonates, polyurethanes, polycaprolactones, sulfur polymers and natural polymers.
  • the polymer particles are acrylic polymer containing (meth) acrylic acid ester as a monomer unit, styrene-acrylic polymer containing styrene and (meth) acrylic acid ester as a monomer unit, styrene and butadiene as monomer units.
  • Particles containing a styrene-butadiene polymer as a polymer, and at least one polymer selected from silicone-modified polymers and fluorine-based polymers are preferred.
  • the particles (A) may contain silica-coated particles.
  • the silica-coated particles have core particles and a silica layer containing silicon dioxide (silica) that covers part or all of the surface of the core particles.
  • Silica-coated particles can be obtained, for example, by a method in which at least one silane compound is hydrolyzed and condensed in the presence of core particles dispersed in an aqueous medium or an organic solvent. Depending on the case, surfactants can be used as appropriate.
  • the silica-coated particles can have a surface that is substantially similar to the surface of the silica particles.
  • the silica layer may be completely covered by the polymer layer (B).
  • the core particles constituting the silica-coated particles may be predetermined inorganic particles or high polymer particles.
  • the inorganic particles and the polymer particles the same particles as those described above can be applied.
  • grains as a core particle and a silica layer may correspond in itself to an inorganic substance particle
  • the silane compound used in order to form the silica layer which comprises a silica covering particle contains at least 1 sort (s) chosen from the compound represented by a following formula (a).
  • n is an integer of 0 to 3.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 16 carbon atoms, an aryl group having 5 to 10 carbon atoms, a cycloalkyl group having 5 to 6 carbon atoms, a vinyl group, or an acrylic acid having 1 to 10 carbon atoms.
  • the n R 1 may be the same or different.
  • R 2 is an alkoxy group having 1 to 8 carbon atoms, an acetoxy group or a hydroxyl group. 4-n R 2 may be the same or different.
  • the silane compound used to form the silica layer is at least one of the silane compound (I) in which n in the formula (a) is 0 or the silane compound (II) in which n in the formula (a) is 1. It is preferable to contain a seed, and in order to obtain good polymerization stability of the aqueous dispersion and a crosslinking effect, it is more preferable that n is 0 silane compound (I).
  • R 2 of the silane compound (I) is preferably independently a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a methoxyethoxy group or a hydroxyl group.
  • the silane compound (I) include tetramethoxysilane and tetraethoxysilane.
  • R 1 of the silane compound (II) is preferably a methyl group, a phenyl group, a cyclohexyl group, a vinyl group, or a ⁇ - (meth) acryloxypropyl group.
  • R 2 of the silane compound (II) is preferably each independently a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a methoxyethoxy group, or a hydroxyl group.
  • silane compound (II) examples include methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, cyclohexyltrimethoxysilane, and isobutyltrimethoxysilane.
  • examples of the silane compound (II) having a radical polymerizable double bond include vinylethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -Methacryloxypropyltriethoxysilane and the like.
  • the silane compound for forming the silica layer mentioned above may be used alone or in combination of two or more.
  • a hydrolyzable silane compound having a radical polymerizable double bond and a silane compound not having a radical polymerizable double bond are used in combination.
  • oligomers of these silane compounds can also be used.
  • the ratio of the silica layer in the silica-coated particles as the particles (A) is preferably 0.1 to 100% by mass with respect to the mass of the silica-coated particles, for example.
  • the composite particles included in the aqueous composite particle dispersion of the present embodiment have the particles (A) and the polymer layer (B) that covers at least a part of the surfaces of the particles (A).
  • the polymer layer (B) can be formed by performing polymerization in the presence of the particles (A) and a predetermined monomer.
  • an ethylenically unsaturated monomer having an acidic group, preferably a weakly acidic group is used as the monomer. That is, the polymer layer (B) preferably has weakly acidic monomer units derived from an ethylenically unsaturated monomer having a weakly acidic group.
  • an ethylenically unsaturated monomer having a weakly acidic group having at least one group selected from the group consisting of a carboxylic acid group and a phosphoric acid group is used, preferably weakly acidic.
  • the ethylenically unsaturated monomer having a group is an ethylenically unsaturated monomer having a phosphate group.
  • the composite particles contained in the aqueous composite particle dispersion (C) of the present embodiment are 0.12% by mass or less, preferably 0.001 to 0.12% by mass of phosphorus atoms with respect to the total mass of the composite particles.
  • the monomer for forming the polymer layer (B) preferably contains an ethylenically unsaturated monomer having a phosphate group.
  • the ionic ethylenically unsaturated monomer having a carboxylic acid group include, but are not limited to, itaconic acid, fumaric acid, maleic acid, maleic anhydride, maleic acid and monoesters thereof, acrylic Examples include acid, methacrylic acid, and crotonic acid.
  • the ethylenically unsaturated monomer having a phosphoric acid group include the following.
  • the phosphate group (phosphonic acid group) shown here contains a phosphate ester group (phosphate group).
  • dihydrogen phosphate esters of alcohol containing a polymerizable vinyl group or olefin group eg, allyl phosphate, bis (hydroxymethyl) fumarate or itaconate mono- or diphosphate
  • derivatives of (meth) acrylic acid esters ((meta ) Phosphate of hydroxyalkyl acrylate, phosphate monoester of 2-hydroxyethyl (meth) acrylate, phosphate monoester of 2-hydroxypropyl (meth) acrylate, and phosphorus of 3-hydroxypropyl (meth) acrylate Acid monoester, etc.).
  • the ethylenically unsaturated monomer having a phosphoric acid group exists in the form of an acid or a salt of a phosphoric acid group.
  • the phosphoric acid group (phosphonic acid group) shown here contains a phosphorous acid group (phosphorus acid group), and also contains a phosphoric acid ester group (phosphate group) and a phosphorous acid ester group (phosphonate group).
  • dihydrogen phosphate esters of alcohol containing a polymerizable vinyl group or olefin group such as allyl phosphate, bis (hydroxymethyl) fumarate or itaconate mono- or diphosphate
  • acrylic acid ester derivatives (meth) Phosphoric acid hydroxyalkyl phosphate, phosphoric acid monoester of 2-hydroxyethyl (meth) acrylate, phosphoric acid monoester of 2-hydroxypropyl (meth) acrylate, phosphoric acid monoester of 3-hydroxypropyl (meth) acrylate Ester, (meth) acrylic acid 2-hydroxyethyl phosphate diester, (meth) acrylic acid-2-hydroxypropyl phosphate diester, (meth) acrylic acid-3 hydroxypropyl phosphate diester, (meth) acryloyloxyal Mono phosphate, (meth) acryloyloxy polyoxyethylene glycol acid phosphate, and (meth) acryloyl
  • the ethylenically unsaturated monomer having a phosphoric acid group that is commercially available is not particularly limited.
  • Examples of other monomers having a phosphate group include, but are not limited to, vinyl phosphonic acid, allyl phosphonic acid, 2-acrylamido-2-methylpropanephosphonic acid, ⁇ -phosphonostyrene, 2-methylacrylamide-2-methylpropanephosphonic acid, phosmer CL available from Unichemical Co., Ltd., and monomers having a phosphite group include 2-phosphoethyl (meth) acrylate, 2-phosphopropyl (meta ) Acrylate, 3-phosphopropyl (meth) acrylate, and the like.
  • the use amount of at least one ethylenically unsaturated monomer unit having a weakly acidic group selected from the group consisting of monomers is the total mass of composite particles finally obtained (solid content mass of component (C)) ) To 0.05 to 4.0% by mass, more preferably 0.001 to less than 1.0% by mass, and still more preferably 0.05 to less than 0.5% by mass. is there.
  • the amount of the ethylenically unsaturated monomer having a phosphate group is based on the total mass of the composite particles finally obtained (solid content mass of the component (C)).
  • the dispersion amount with the pigment inorganic particles is excellent and the coating film has a low content of 0.001 to less than 1.0% by mass, preferably less than 0.05 to 0.5% by mass. There is a tendency to obtain excellent water resistance.
  • the use amount of the ethylenically unsaturated monomer having a phosphate group is 0.001 with respect to the total amount of polymerizable monomers forming the polymer layer (B).
  • the amount is less than 0.5% by mass, and more preferably 0.05 to 0.4% by mass.
  • the amount of the ethylenically unsaturated monomer having a weakly acidic group in the process of forming the polymer layer (B) is as follows.
  • the effect of water dispersion stability is acquired.
  • the amount of the ethylenically unsaturated monomer having a phosphate group is changed to the amount of the polymer of the particle (A) and the polymer layer ( B)
  • the total mass of all monomers used to form that is, 0.001 to less than 1.0 mass% in the total mass of the finally obtained composite particles (solid mass of component (C))
  • the content be 0.05 to less than 0.5% by mass.
  • the monomer used to form the polymer layer (B) includes the above-mentioned weakly acidic ethylenic monomer and a different monomer, such as one or more sulfonic acid groups.
  • An ionic ethylenically unsaturated monomer having a (sulfonate group) or a sulfate ester group (sulfate group), an ethylenically unsaturated monomer having a nitrogen functional group, and / or a nonionic ethylenically unsaturated monomer May be included.
  • Examples of the ionic ethylenically unsaturated monomer having a sulfonic acid group include, but are not limited to, ⁇ -olefin sulfonic acid including allyl sulfonic acid, p-styrene sulfonic acid, 2-acrylamide. Examples include -2-methylpropanesulfonic acid and 3-allyloxy-2-hydroxy-1-propanesulfonic acid. Salts of these acids (for example, alkali metal salts and ammonium salts) can also be included in the “ionic ethylenically unsaturated monomer having a sulfonic acid group”. Examples of alkali metal salts or ammonium salts include, but are not limited to, lithium salts, sodium salts, potassium salts, ammonium salts, alkanol ammonium salts, and ammonium salts of basic amino acids.
  • an ethylenically unsaturated monomer having a nitrogen functional group can be further used as the monomer.
  • the nitrogen functional group include, but are not limited to, an amino group, a monoalkylamino group, a dialkylamino group, and a quaternized amino group.
  • Specific examples of the ethylenically unsaturated monomer having a nitrogen functional group include an aminoalkyl (meth) acrylate or a compound having a 5- or 6-membered heterocyclic ring in which a hetero atom is nitrogen. Applicable.
  • (meth) acrylic acid-N, N-dialkyl (1 to 6 carbon atoms) aminoalkyl (2 to 3 carbon atoms) ester is preferable.
  • examples include, but are not limited to, (meth) acrylic acid diethylaminoethyl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminopropyl ester, (meth) acrylic acid dimethylamino
  • examples thereof include propyl ester, (meth) acrylic acid dimethylamino t-butyl ester, and (meth) acrylic acid diethylamino t-butyl ester.
  • the aqueous composite particle dispersion (C) of this embodiment may further contain a non-copolymerizable ultraviolet absorber and / or a non-copolymerizable light stabilizer in the polymer layer (B).
  • a non-copolymerizable ultraviolet absorber and / or a non-copolymerizable light stabilizer in the polymer layer (B).
  • High weather resistance can be imparted.
  • non-copolymerizable UV absorbers and / or non-copolymerizable light stabilizers are added to the polymer particles. Since it is not fixed, when mixed with other aqueous resin dispersion (D), it can be diffused in the coating film, and it is effective in developing weather resistance.
  • the ultraviolet absorber and / or the light stabilizer are mixed with a film-forming auxiliary and then added. However, it is preferably present during emulsion polymerization.
  • the ultraviolet absorber and / or light stabilizer is preferably used in an amount of 0.01% to 20% by mass based on the total mass of the composite particles finally obtained (that is, the solid content mass of the component (C)).
  • % Preferably 0.05 to 10% by weight, more preferably 0.1 to 5% by weight.
  • an ultraviolet absorber and a light stabilizer in combination because the coating film is particularly excellent in weather resistance when the coating film is formed using the aqueous composite particle dispersion (C) of the present embodiment.
  • non-polymerizable UV absorbers include benzotriazole UV absorbers and triazine UV absorbers.
  • benzotriazole-based ultraviolet absorber examples include, but are not limited to, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-), and the like.
  • tert-butylphenyl) benzotriazole 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2 -(2-hydroxy-3,5-di-tert-octylphenyl) benzotriazole, 2- [2'-hydroxy-3 ', 5'-bis ( ⁇ , ⁇ '-dimethylbenzyl) phenyl] benzotriazole), Methyl-3- [3-tert-butyl-5- (2H-benzotriazol-2-yl) -4-hydroxyphenyl] propio Condensate of polyphosphate and polyethylene glycol (molecular weight 300
  • a hindered amine light stabilizer can be used as the photopolymerizable light stabilizer.
  • hindered amine light stabilizers include, but are not limited to, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis (2,2,6,6-tetra Methyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-butylmalonate 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propynyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxy Phenyl) propynyloxy] -2,2,6,6-tetramethylpiperidine, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,
  • nonionic ethylenically unsaturated monomer examples include acrylic acid esters, methacrylic acid esters, and monomers copolymerizable therewith.
  • acrylic acid and methacrylic acid may be collectively referred to as (meth) acrylic acid.
  • the monomer copolymerizable with the (meth) acrylic acid ester is not particularly limited.
  • a saturated monomer is mentioned.
  • (meth) acrylic acid esters include, but are not limited to, for example, (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms in the alkyl portion, and (1) to 18 ( (Meth) acrylic acid hydroxyalkyl ester, (poly) oxyethylene (meth) acrylate having 1 to 100 oxyethylene groups, (poly) oxypropylene (meth) acrylate having 1 to 100 oxypropylene groups, Examples thereof include (poly) oxyethylene di (meth) acrylate having 1 to 100 oxyethylene groups.
  • Examples of (meth) acrylic acid alkyl esters include, but are not limited to, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid.
  • -Tert-butyl 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, dodecyl (meth) acrylate, isobornyl (meth) acrylate, stearyl (meth) acrylate,
  • An example is adamantyl (meth) acrylate.
  • (meth) acrylic acid hydroxyalkyl esters include, but are not limited to, for example, (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid 2- Examples thereof include hydroxycyclohexyl and dodecyl (meth) acrylate.
  • Nonionic ethylenically unsaturated monomers having two or more ethylenic groups are not limited to the following, but examples include diene such as allyl (meth) acrylate, diallyl phthalate, butadiene, and divinyl.
  • Benzene and for example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, ethylene oxide modified 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, propylene oxide modified neopentyl glycol di (meth) acrylate, tripropylene Glycol di (meth) acrylate
  • Di (meth) acrylates of polyhydric alcohols having 1 to 10 carbon atoms such as polyethylene glycol di (meth) acrylates having an addition mole number of ethylene oxide of 2 to 50, polypropylene glycols having an addition mole number of propylene oxide of 2 to 50 Alkyl di (
  • nonionic ethylenically unsaturated monomers having two or more ethylenic groups may be used alone or in combination of two or more.
  • the diethylenically unsaturated monomer having a phosphate group is included in the ethylenically unsaturated monomer having a phosphate group.
  • Examples of (poly) oxypropylene (meth) acrylate include, but are not limited to, propylene glycol (meth) acrylate, propylene glycol methoxy (meth) acrylate, dipropylene glycol (meth) acrylate, Examples include methoxy (meth) acrylic acid dipropylene glycol, (meth) acrylic acid tetrapropylene glycol, and methoxy (meth) acrylic acid tetrapropylene glycol.
  • Examples of (poly) oxyethylene di (meth) acrylate include, but are not limited to, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, diethylene glycol methoxy (meth) acrylate, Examples include tetraethylene glycol di (meth) acrylate.
  • Examples of (meth) acrylamide monomers include, but are not limited to, for example, (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, dimethyl (meth) Examples include acrylamide, diethyl (meth) acrylamide, vinyl pyrrolidone, and diacetone (meth) acrylamide.
  • Examples of vinyl cyanides include, but are not limited to, (meth) acrylonitrile and N, N′-methylenebisacrylamide.
  • Examples of the ethylenically unsaturated monomer having an aldo group or keto group include, but are not limited to, acrolein, diacetone acrylamide, diacetone methacrylamide, vinyl methyl ketone, vinyl ethyl ketone, acetoacetoxy Examples include ethyl methacrylate, acetoacetoxyethyl acrylate, formylstyrol, and combinations thereof.
  • the ethylenically unsaturated monomer that can be used for forming the polymer layer (B) is not limited to the following, but examples thereof include olefins such as ethylene, propylene, and isobutylene; vinyl chloride Haloolefins such as vinylidene chloride; vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl benzoate, vinyl pt-butylbenzoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl versatate, lauric acid Carboxylic acid vinyl esters such as vinyl; Carboxylic acid isopropenyl esters such as isopropenyl acetate and isopropenyl propionate; Vinyl ethers of ethyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether; Aromatic vinyl compounds such as styrene and vinyl toluene; Allyl acetate Allyl acetate Ally
  • the other ethylenically unsaturated monomer is not limited to the following, for example, ⁇ - (meth) acryloxypropyltrialkoxysilane, ⁇ - (meth) acryloxypropylalkyldialkoxysilane, Vinylmethyldiethoxysilane, vinylmethyldimethoxysilane, vinyldimethylethoxysilane, vinyldimethylmethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, perfluoromethyl (meth) acrylate, perfluoropropyl (meth) acrylate, perfluoropro Examples include pyromethyl (meth) acrylate, vinyl pyrrolidone, 2,3-cyclohexene oxide (meth) acrylate, allyl (meth) acrylate, and combinations thereof.
  • the polymer layer (B) contains a polymer having an ethylenically unsaturated monomer unit having an acidic group, and a monomer in the step of forming a polymer having the ethylenically unsaturated monomer unit having the acidic group
  • a polymer (B-3) having 0.01 to 5.0% by mass of an ethylenically unsaturated monomer unit having an acidic group with respect to the total amount of the ethylenic code ring monomer unit having the acidic group It is preferable to include it as a polymer having
  • the polymer layer (B) more preferably contains a polymer having a weakly acidic monomer unit derived from an ethylenically unsaturated monomer having a weakly acidic group, and has an ethylenically unsaturated group having a phosphate group.
  • the weakly acidic monomer unit derived from the ethylenically unsaturated monomer having a weakly acidic group contains a polymer that is 0.01 to 5.0% by mass in the total amount of the monomer,
  • the weakly acidic monomer unit derived from the ethylenically unsaturated monomer having a phosphate group is 0.01 to 5 with respect to the total amount of the monomer in the polymer (B-1) formation step.
  • the polymer layer (B) has a weakly acidic monomer unit derived from an ethylenically unsaturated monomer having a weakly acidic group, preferably a phosphoric acid group, in an amount of 0.01 to 2.0 mass in the total amount of the monomer. %, And the polymer layer (B) has a weakly acidic monomer unit, preferably a weakly acidic monomer unit derived from an ethylenically unsaturated monomer having a phosphoric acid group.
  • the polymer is contained in an amount of 0.05 to 2.0% by mass.
  • the “total amount of monomers” means the amount of monomers used in the polymerization step when forming the polymer layer (B), and the particles (A) when the material of the particles (A) is a polymer ( The amount of monomer constituting A) is not included.
  • the step of forming a polymer (B-1) having a weakly acidic monomer unit derived from an ethylenically unsaturated monomer having a phosphoric acid group is described below.
  • the “total amount of monomer”, which is a standard for the content of, means the total amount of monomer used in the step of forming the polymer (B-1).
  • the content of the weakly acidic monomer unit derived from the ethylenically unsaturated monomer having a phosphate group is such that ethylene having a phosphate group with respect to all the monomers used in the formation step of the polymer (B-1). It can control by adjusting the usage-amount of a polyunsaturated monomer.
  • the amount of the ethylenically unsaturated monomer having an acidic group, preferably a weakly acidic group, more preferably a phosphoric acid group, is 4 in all monomers used in the polymerization step for forming the polymer layer (B).
  • the content is 0.0% by mass or less, sufficient water resistance tends to be obtained in the obtained coating film.
  • the content is 0.01% by mass or more in all monomers used for polymerization, good water is obtained. Dispersibility is obtained, and aggregation of the aqueous dispersion can be prevented.
  • the polymer layer (B) can maintain its dispersion stability as a dipolar ionic water dispersion (emulsion) having properties such as adsorption / desorption to other different particles and improvement of weather resistance. It is preferable to contain a polymer (B-2) having a basic monomer unit derived from an ethylenically unsaturated monomer having a group, and in particular, the following polymer (B-2) in the polymer layer (B) A polymer having a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group in an amount of 0.05 to 50% by mass based on the total amount of monomers in the forming step is It is preferable to include as a polymer (B-2) having a basic monomer unit derived from an ethylenically unsaturated monomer having a group.
  • the polymer layer (B) is composed of 0.05 to 25% by mass of “the basic monomer derived from an ethylenically unsaturated monomer having a nitrogen functional group” in the total monomer amount in the polymer (B-2) formation step. It is more preferable to include a polymer having “body unit”, and “a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group” is 0.1 to 15 of the total amount of the monomer. It is more preferable to include a polymer that is mass%.
  • the polymer (B-2) having a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group in the polymer layer (B) It becomes an anionic or dipolar ionic water dispersion (emulsion) having adsorption / desorption and / or excellent light fastness properties, and the content is determined within a range where the dispersion stability can be maintained at pH 7 or higher.
  • a polymer (B-2) having a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group an ethylenically unsaturated group having a nitrogen functional group for all monomers used
  • the amount of “basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group” can be controlled by adjusting the amount of the monomer used.
  • the copolymerization amount of the ethylenically unsaturated monomer having a nitrogen functional group with respect to the total polymer mass of the finally obtained composite particles is 0.01 to It is preferably 20% by mass, more preferably 0.05 to 15% by mass. That is, when producing composite particles, an ethylenically unsaturated monomer having a nitrogen functional group is used in an amount of 0.01 to 20% by mass based on the total mass of monomers used for producing composite particles. Preferably, 0.05 to 15% by mass is used.
  • the polymer layer (B) has a basic monomer content of 0.05 to the total amount of monomers in the polymer (B-2) formation step. It is preferable to contain a nitrogen functional group-containing non-polymerizable monomer of ⁇ 50 mass%. More preferred is 0.1 to 25% by mass, and further preferred is 0.1 to 15% by mass. At this time, the nitrogen functional group-containing non-polymerizable monomer should be 0.01 to 20% by mass with respect to the total polymer mass of the composite particles finally obtained (polymer solid content mass in component (C)). Preferably, the content is 0.05 to 15% by mass.
  • the nitrogen functional group-containing non-polymerizable monomer is as described above.
  • the polymer layer (B) is a polymer containing a basic non-polymerizable monomer unit containing a non-polymerizable monomer having a nitrogen functional group.
  • Total amount of monomers in the step of forming a polymer (B-5) containing a basic non-polymerizable monomer unit containing (B-5) and containing a non-polymerizable monomer having a nitrogen functional group It is preferable that the polymer (B-5) contains a polymer containing a nitrogen functional group-containing non-polymerizable monomer unit in which the basic non-polymerizable monomer unit is 0.05 to 50% by mass. .
  • the polymer layer (B) is a polymer having a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group ( B-2) and a polymer (B-5) containing a basic non-polymerizable monomer unit containing a non-polymerizable monomer having a nitrogen functional group, and having ethylenic unsaturation having the nitrogen functional group
  • Polymer (B-2) having basic monomer unit derived from monomer and polymer containing basic non-polymerizable monomer unit containing non-polymerizable monomer having nitrogen functional group (B- 5) the forming process is carried out simultaneously or in different stages,
  • the basic monomer unit derived from the ethylenically unsaturated monomer having a nitrogen functional group is 0 with respect to the total amount of monomers in the formation step of the polymer (B-2) and the polymer (B-5).
  • a polymer containing a nitrogen functional group-containing non-polymerizable monomer unit of 0.02 to 30% by mass and a basic non-polymerizable monomer of 0.02 to 30% by mass, the polymer (B-2) and The polymer (B-5) is preferably included.
  • the polymer (B-5) can be produced by emulsion polymerization using a predetermined monomer in the same manner as the polymers (B-1) and (B-2) described above.
  • the mass ratio of the polymer (B-2) / the polymer (B-1) is preferably 0.01-50, and 0.05-20. More preferably, 0.1 to 10 is even more preferable.
  • the mass ratio of the polymer (B-2) / the polymer (B-1) is 50 or less, formation of new polymer particles can be suppressed, and when it is 0.01 or more, the water resistance of the coating film is good. There is a tendency to become.
  • the mass ratio exceeds 50 the dispersion stability during production becomes poor, or even if it can be produced stably, the particles become unstable when concentrated in the film formation process, and the water resistance of the coating film is reduced. descend.
  • the ethylenically unsaturated monomer having a weakly acidic group for forming the polymer layer (B) is preferably an ethylenically unsaturated monomer having a phosphate group.
  • the polymer layer (B) can be satisfactorily formed around the particle (A), and adsorption / desorption to other foreign particles can be controlled. .
  • the mass ratio of the polymer layer (B) / the particles (A) is preferably 0.01 to 100, more preferably 0.02 to 50, and still more preferably 0.05 to 20.
  • the mass ratio of the polymer layer (B) / the particles (A) is preferably 0.01 to 100, more preferably 0.02 to 50, and still more preferably 0.05 to 20.
  • the mass ratio of the polymer layer (B) / particle (A) can be controlled within the above numerical range by arbitrarily setting the monomer amount during emulsion polymerization.
  • the aqueous composite particle dispersion of this embodiment has a zeta potential of ⁇ 10 mV to ⁇ 69 mV in the aqueous composite particle dispersion at 60 ° C. in any of the pH 7 to 11 range of the aqueous composite particle dispersion. It is. That is, the zeta potential of the composite particles at 60 ° C. in the aqueous composite particle dispersion including the aqueous particles containing water and the composite particles dispersed in the aqueous solvent is determined from the viewpoint of the mixing stability with the pigment inorganic particles.
  • the pH is -10 mV to -69 mV in any of the ranges of pH 7 to 11, preferably -20 mV to -65 mV, and more preferably -25 mV to -65 mV.
  • This zeta potential is ⁇ 10 mV to ⁇ 69 mV at any pH in the range of pH 7 to 10, preferably ⁇ 20 mV to ⁇ 65 mV in any of the pH 8 to 10.5 ranges, more preferably pH 8 to -25 mV to -65 mV in any of the 10.5 range.
  • the composite particles contained in the aqueous composite particle dispersion of the present embodiment may be anionic or bipolar ion type particles.
  • the zeta potential of the composite particles is determined by selecting a weak acid group monomer species during emulsion polymerization, selecting its amount, selecting a surfactant species and its amount during emulsion polymerization, pH during emulsion polymerization, and basicity during emulsion polymerization. Selection of the compound type and the amount thereof can be controlled by the pH and the electrolyte concentration at the time of zeta potential measurement.
  • the zeta potential of the composite particles in the aqueous composite particle dispersion at 25 ° C. after dialysis has a pH of 7 to 11 from the viewpoint of the stability of mixing with the pigment inorganic particles. It is preferably ⁇ 5 mV to ⁇ 59 mV in any of the ranges, more preferably ⁇ 20 mV to ⁇ 59 mV, and ⁇ 25 mV to ⁇ 55 mV.
  • dialysis refers to the surfactant component in the aqueous phase in the dispersion or the surfactant component adsorbed on the dispersed particles, the water-soluble oligomer component, and the inorganic salt, with respect to the aqueous composite particle dispersion. It generally means an operation of removing and removing only the dispersed particles in an aqueous dispersion state.
  • the zeta potential at 25 ° C. after this dialysis is preferably ⁇ 10 mV to ⁇ 59 mV in any of the pH 7 to 10 ranges, more preferably ⁇ 20 mV to ⁇ in any of the pH 8 to 10.5 ranges.
  • the zeta potential of the composite particles in the aqueous composite particle dispersion at 25 ° C. after being dialyzed depends on the choice of weak acid group monomer species and the amount thereof during emulsion polymerization, and the selection of surfactant species and the amount thereof during emulsion polymerization. It can be controlled by selection of pH during emulsion polymerization, selection of basic compound species and amount during emulsion polymerization, and selection of pH and electrolyte concentration during zeta potential measurement.
  • the mass ratio of the ethylenically unsaturated monomer having a nitrogen functional group and the ethylenically unsaturated monomer having a phosphoric acid group is an ethylenically unsaturated monomer having a nitrogen functional group.
  • / Ethylenically unsaturated monomer having a phosphoric acid group 0 to 200 is preferable, more preferably 0 to 100, and still more preferably 0 to 75.
  • the zeta potential of the aqueous composite particle dispersion at 60 ° C. was determined from the electric mobility in the dispersion for measurement obtained by diluting the aqueous composite particle dispersion having a pH of 7 to 11 to a KCl concentration of 10 mM. It is preferable that the zeta potential is calculated by a method using the following formula.
  • the pH of the aqueous composite particle dispersion is less than 7
  • the dispersion for measurement is adjusted to a pH range of 7 to 11 by adding an aqueous NaOH solution, and the aqueous composite particle dispersion is diluted with the aqueous KCl solution. It is preferable that it is prepared. As described above, the zeta potential can be reliably measured.
  • the aqueous composite particle dispersion diluted with 1 mM NaOH aqueous solution is dialyzed in the aqueous composite particle dispersion at 25 ° C. after the dialysis, and the aqueous composite particle dispersion after dialysis at pH 7 to 11 is dialyzed.
  • the zeta potential calculated by the method using the Smoluchowski equation from the electric mobility in the dispersion for measurement obtained by diluting the KCl concentration to 10 mM is preferable.
  • the dispersion for measurement is adjusted to a pH of 7 to 11 by adding an aqueous NaOH solution, and then the aqueous composite particle dispersion is converted to KCl. It is preferably prepared by diluting with an aqueous solution. As described above, the zeta potential can be reliably measured.
  • the aqueous composite particle dispersion of the present embodiment uses an amine such as ammonia, sodium hydroxide, potassium hydroxide, dimethylaminoethanol, and the pH of the aqueous composite particle dispersion is 7. It is preferable to adjust to the range of ⁇ 10.
  • the volume ratio (composite particles / aqueous medium) of the dispersoid (composite particles) and the dispersion medium (aqueous medium) in the aqueous composite particle dispersion of the present embodiment is preferably 70/30 or less, more preferably 5 / It is 95 or more and 60/40 or less.
  • the aqueous medium may contain, in addition to water, a hydrophilic solvent such as an alcohol such as ethanol or isopropyl alcohol, a ketone such as acetone, an ether such as tetrahydrofuran, or an ether such as dioxane.
  • a hydrophilic solvent such as an alcohol such as ethanol or isopropyl alcohol, a ketone such as acetone, an ether such as tetrahydrofuran, or an ether such as dioxane.
  • components that are usually added and blended with water-based paints such as film forming aids, thickeners, antifoaming agents, pigments, dispersants, dyes, preservatives, ultraviolet rays Absorbers, light stabilizers, and colloidal inorganic particles can be arbitrarily blended.
  • colloidal inorganic particles are effective for further enhancing the stain resistance.
  • the content of the colloidal inorganic particles is preferably 1 to 50% by mass and more preferably 2 to 15% by mass with respect to the mass of the composite particles of the aqueous composite particle dispersion.
  • Aqueous composite particle dispersion includes (partially saponified) polymer dispersion stabilizers such as polyvinyl alcohol, methyl cellulose, hydroxyethyl cellulose, polyvinyl pyrrolidone; thickeners such as polyether-based thickeners; plasticizers, film-forming aids or these May be included.
  • aqueous composite particle dispersion components usually added to and blended with paints, various coating materials, etc., such as viscosity adjusters, pH adjusters, antifoaming agents, pigments, fillers, dispersants, dyes, preservatives, interfaces Contains activators, heat stabilizers, UV absorbers, antioxidants, light stabilizers, flame retardants, organic solvents, wetting agents, surfactants, thickeners, plasticizers, film-forming aids, rust inhibitors, etc. May be.
  • aqueous composite particle dispersion can be dispersed in the aqueous composite particle dispersion using a kneader such as an attritor or a sand mill, and the aqueous composite particle dispersion can be adjusted to have a predetermined viscosity.
  • a kneader such as an attritor or a sand mill
  • the method for producing the aqueous composite particle dispersion of this embodiment is as follows.
  • a method for producing an aqueous composite particle dispersion comprising a step of forming a polymer layer (B) on at least a part of the surface of particles (A),
  • the aqueous composite particle dispersion includes composite particles in which a polymer layer (B) is formed on at least a part of the surface of the particles (A),
  • the particles (A) are inorganic particles or polymer particles
  • the polymer layer (B) includes a polymer (B-3) having 0.01 to 5.0% by mass of an ethylenically unsaturated monomer unit having at least one acidic group,
  • the step of forming the polymer layer (B) A step of emulsion polymerizing the polymer (B-3) in a dispersion of particles (A) adjusted to pH 6 or higher in a state where at least a part of the ethylenically unsaturated monomer having
  • the composite particles contained in the aqueous composite particle dispersion obtained by the method for producing an aqueous composite particle dispersion of the present embodiment include a polymer layer (B) that covers at least a part of the surface of the particle (A) and the particle (A). )have.
  • the method for producing an aqueous composite particle dispersion of the present embodiment includes a step of forming a polymer layer (B) on at least a part of the surface of the particle (A).
  • the polymer layer (B) includes molecular polymer particles, and the polymer layer (B) includes a polymer (B-3) having 0.01 to 5.0% by mass of an ethylenically unsaturated monomer unit having at least one acidic group.
  • the polymer layer (B) can be formed by performing emulsion polymerization in the presence of the particles (A) and a predetermined monomer.
  • a predetermined monomer ethylenically unsaturated monomer
  • a dispersion liquid containing water, particles (A), and a surfactant.
  • a predetermined amount of a surfactant is mixed in a dispersion containing water and particles (A), and then a monomer is added to the dispersion.
  • the method for introducing the monomer is not particularly limited, but it is preferable that the monomer, water, and surfactant be a monomer mixture in an emulsion state with a homogenizer.
  • the monomer mixture is added stepwise or continuously to the reaction system, and the introduction rate is determined within a range in which heat removal from the reaction system is possible.
  • the polymer layer (B) formed by the method for producing the aqueous composite particle dispersion of the present embodiment includes the polymer (B-3) and the polymer (B-4), and the aqueous composite particle dispersion of the present embodiment
  • the production method includes the step of forming the polymer (B-4) after forming the polymer (B-3) on at least a part of the surface of the particle (A).
  • an ethylenically unsaturated monomer having an acidic group is used as a monomer in the polymerization process for forming the polymer (B-3).
  • the polymer (B-3) has an acidic monomer unit derived from an ethylenically unsaturated monomer having at least one acidic group.
  • the polymer layer (B) contains a polymer (B-3) having 0.01 to 5.0% by mass of an ethylenically unsaturated monomer unit having at least one acidic group, preferably 0.05 To 4.0% by mass, more preferably 0.1 to 2.0% by mass, including the polymer (B-3) having the monomer unit.
  • the polymer layer (B) contains a polymer (B-3) having 0.01 to 5.0% by mass of an ethylenically unsaturated monomer unit having at least one acidic group, It can be stabilized, and the effect of mixing and stabilizing with pigment inorganic particles described later can be obtained.
  • the polymer (B-3) is used in the polymerization step to adjust the amount of the ethylenically unsaturated monomer having an acidic group, or to have an amide bond ethylenically unsaturated monomer, hydroxyl group or PEG group
  • the polymer (B-3) is used in the polymerization step to adjust the amount of the ethylenically unsaturated monomer having an acidic group, or to have an amide bond ethylenically unsaturated monomer, hydroxyl group or PEG group
  • the polymer (B-4) in the polymerization process for forming the polymer (B-4) in the polymer layer (B), generation of new polymer particles other than the particles (A)
  • the polymer (B-4) containing 50 to 100% by mass of a nonionic monomer unit and 5.0% by mass or less of an ethylenically unsaturated monomer unit having an acidic group in an aqueous medium
  • a polymer layer is produced by emulsion polymerization.
  • a polymer (B-4) containing 50 to 100% by mass of nonionic monomer units and 2.0% by mass or less of ethylenically unsaturated monomer units having an acidic group is obtained by emulsion polymerization in an aqueous medium. It is preferable to produce a polymer (B-4) containing 50 to 100% by mass of nonionic monomer units and 0.5% by mass or less of ethylenically unsaturated monomer units having acidic groups in an aqueous medium. It is more preferable to produce by emulsion polymerization.
  • the polymer (B-4) is prepared by adjusting the amount of the nonionic ethylenically unsaturated monomer or ethylenically unsaturated monomer having an acidic group, or by using the acrylamide ethylenically unsaturated monomer.
  • the polymer having each monomer unit in the above range can be controlled.
  • the polymer layer (B) forming step has a pH of 6 or more, preferably a pH of 7 or more, more preferably a pH of 7.6 or more, and even more preferably.
  • the polymer (B-3) is added in an aqueous medium in a state where at least a part of the ethylenically unsaturated monomer having an acidic group is neutralized.
  • the polymer (B-4) is emulsion-polymerized in an aqueous medium.
  • the combination and amount of surfactants used adjusting the type and amount of ionic ethylenically unsaturated monomers having anionic end groups, water-soluble initiator persulfate It is possible to appropriately adjust the amount of use and maintain the dispersion during polymerization at pH 6 or higher, and a combination thereof can be adopted. As a result, the pH is maintained at 6 or higher, preferably 7 or higher, more preferably 7.6 or higher, and even more preferably 8 or higher.
  • the dispersion of the particles (A) in the polymer layer (B) formation step has a pH of 6 or more, sufficient dispersion stability is obtained in the polymerization process after the introduction of the monomer, and the particles are effectively aggregated. Can be prevented.
  • aqueous medium As the aqueous medium for forming the polymer layer (B), the same medium as described in the above item [Aqueous composite particle dispersion (C)] can be used.
  • the composite particles contained in the aqueous composite particle dispersion obtained by the production method of the present embodiment include particles (A) and a polymer layer (B) covering at least a part of the surface of the particles (A).
  • A) is an inorganic particle or a polymer particle (A).
  • About the structure of a composite particle the thing similar to what was described in the item of the said [aqueous composite particle dispersion (C)] is employable.
  • the aqueous composite particle dispersion obtained by the production method of the present embodiment is arranged on the surface of the polymer particles constituting the polymer layer (B) in addition to the particles (A) covered with the polymer layer (B). Particles (A) may be included. About this structure, the thing similar to what was described in the item of [aqueous composite particle dispersion (C)] is employable.
  • the aqueous composite particle dispersion obtained by the production method of the present embodiment is coated with the polymer layer (B) in addition to the composite particles in which individual particles (A) are coated with the polymer layer (B).
  • grains (A) which are not made may be included.
  • the zeta potential of the composite particles in the aqueous composite particle dispersion obtained by the production method of the present embodiment can easily express a low value.
  • the state of coating of the particles (A) with the polymer layer (B) the same as described in the item [Aqueous composite particle dispersion (C)] can be adopted.
  • the particle diameter (average particle diameter) of the particles (A) used in the method for producing the aqueous composite particle dispersion of this embodiment is preferably 1 nm to 5 ⁇ m from the viewpoint of the transparency of the coating film formed from the composite particles. More preferably 1 nm to 500 nm, and still more preferably 3 nm to 250 nm.
  • inorganic particles As the inorganic particles usable as the particles (A), the same particles as those described in the item [Aqueous composite particle dispersion (C)] can be used.
  • polymer particles As the polymer particles usable as the particles (A), the same polymer particles as those described in the item [Aqueous composite particle dispersion (C)] can be used.
  • the particles (A) may contain silica-coated particles.
  • the same silica-coated particles as those described in the above item [Aqueous composite particle dispersion (C)] can be used.
  • the polymer layer (B) is an ethylenically unsaturated monomer having an acidic group in the dispersion of particles (A) adjusted to pH 6 or higher as described above.
  • the polymer layer (B) is a polymer having a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group.
  • (B-2) and a polymer (B-5) containing a basic non-polymerizable monomer unit containing a non-polymerizable monomer having a nitrogen functional group may also be included.
  • the layer (B) is obtained by emulsion-polymerizing the polymer (B-2) using a predetermined monomer in a dispersion of particles (A) adjusted to pH 6 or higher, and simultaneously or In a separate step, the polymer (B-5) can be obtained by emulsion polymerization.
  • Examples of the ethylenically unsaturated monomer having an acidic group include an ethylenically unsaturated monomer having an acidic group having at least one group selected from the group consisting of a carboxylic acid group, a phosphoric acid group, and a sulfonic acid group. A mer is used.
  • Examples of the ethylenically unsaturated monomer having a carboxylic acid group include, but are not limited to, itaconic acid, fumaric acid, maleic acid, maleic anhydride, maleic acid and monoesters thereof, acrylic acid, Examples include methacrylic acid and crotonic acid.
  • Examples of the ethylenically unsaturated monomer having a phosphoric acid group include the following.
  • the phosphoric acid group (phosphonic acid group) shown here contains a phosphorous acid group (phosphorus acid group), and also a phosphate ester group (phosphate group), phosphorous acid It contains an acid ester group (phosphonate group).
  • dihydrogen phosphate esters of alcohol containing a polymerizable vinyl group or olefin group such as allyl phosphate, bis (hydroxymethyl) fumarate or itaconate mono- or diphosphate
  • acrylic acid ester derivatives (meth) Phosphoric acid hydroxyalkyl phosphate, phosphoric acid monoester of 2-hydroxyethyl (meth) acrylate, phosphoric acid monoester of 2-hydroxypropyl (meth) acrylate, phosphoric acid monoester of 3-hydroxypropyl (meth) acrylate Ester, (meth) acrylic acid 2-hydroxyethyl phosphate diester, (meth) acrylic acid-2-hydroxypropyl phosphate diester, (meth) acrylic acid-3 hydroxypropyl phosphate diester, (meth) acryloyloxyal Rhemonophosphate, (meth) acryloyloxypolyoxyethylene glycol acid phosphate, (meth) acrylo
  • the ethylenically unsaturated monomer having a phosphoric acid group that is commercially available is not particularly limited.
  • Examples of other monomers having a phosphate group include, but are not limited to, vinyl phosphonic acid, allyl phosphonic acid, 2-acrylamido-2-methylpropanephosphonic acid, ⁇ -phosphonostyrene, 2-methylacrylamide-2-methylpropanephosphonic acid, phosmer CL available from Unichemical Co., Ltd., and monomers having a phosphite group include 2-phosphoethyl (meth) acrylate, 2-phosphopropyl (meta ) Acrylate, 3-phosphopropyl (meth) acrylate, and the like.
  • Examples of the ethylenically unsaturated monomer having a sulfonic acid group include, but are not limited to, for example, ⁇ -olefin sulfonic acid including allyl sulfonic acid, p-styrene sulfonic acid, 2-acrylamide-2- Examples include methylpropanesulfonic acid and 3-allyloxy-2-hydroxy-1-propanesulfonic acid.
  • These acid salts (for example, alkali metal salts and ammonium salts) are also referred to as “ethylenically unsaturated monomer having a carboxyl group”, “ethylenically unsaturated monomer having a phosphate group”, “sulfonic acid group”.
  • alkali metal salts or ammonium salts include, but are not limited to, lithium salts, sodium salts, potassium salts, ammonium salts, alkanol ammonium salts, and ammonium salts of basic amino acids.
  • the method for producing the aqueous composite particle dispersion of the present embodiment is an inorganic particle or polymer polymer adjusted to pH 6 or higher, preferably pH 7 or higher, more preferably pH 7.6 or higher, and further preferably pH 8 or higher.
  • a dispersion of particles (A) comprising particles, an ethylenically unsaturated monomer having a carboxyl group, an ethylenically unsaturated monomer having a phosphoric acid group, and an ethylenically unsaturated monomer having a sulfonic acid group
  • an ethylenically unsaturated monomer having an acidic group selected from the group consisting of emulsion polymerizing the polymer (B-3) in a state where at least a part of the acidic group is neutralized Is preferred.
  • the use amount of at least one ethylenically unsaturated monomer unit having an acidic group selected from the group consisting of 0 with respect to the total mass of the composite particles finally obtained (solid content mass of component (C)) is 0 0.005 to 4.0% by mass, preferably 0.01 to less than 1.0% by mass, more preferably 0.01 to less than 0.5% by mass, and even more preferably 0.05 to less than 1.0% by mass.
  • the polymer layer (B) is obtained by using an ethylenically unsaturated monomer having a carboxyl group, an ethylenically unsaturated monomer having a phosphoric acid group, and an ethylenically unsaturated monomer having a sulfonic acid group.
  • At least one ethylenically unsaturated monomer unit having an acidic group selected from the group consisting of bodies is 0.005 to 4.0 mass with respect to the total mass of the composite particles (solid content mass of component (C)) % Polymer.
  • the composite particles finally obtained by using the ethylenically unsaturated monomer having an acidic group composed of an ethylenically unsaturated monomer having a phosphoric acid group are used.
  • the amount low preferably 0.001 to less than 1.0% by mass, more preferably 0.05 to less than 0.5% by mass with respect to the total mass (solid content mass of component (C))
  • the dispersion stability with the pigment inorganic particles is excellent, and the coating film tends to obtain excellent water resistance.
  • the polymer layer (B) has an ethylenically unsaturated monomer unit having an acidic group composed of an ethylenically unsaturated monomer having a phosphoric acid group with respect to the total mass of the composite particles. 0.001 to less than 1.0% by weight of polymer.
  • the amount of the predetermined monomer used exceeds the above-described range, the formation of the polymer layer (B) with respect to the particles (A) is insufficient due to the generation of new particles during the production process. Tend to be.
  • adjusting the combination and amount of surfactants used adjusting the type and amount of ethylenically unsaturated monomers having acidic groups
  • the dispersion liquid of the particles (A) can be adjusted to pH 6 or higher. These methods may be used alone. You may use combining more than a seed.
  • the dispersion liquid of the particles (A) in the polymerization step of the polymer layer (B) is maintained at pH 6 or higher, preferably pH 7 or higher, more preferably pH 7.6 or higher, and further preferably pH 8 or higher.
  • the aqueous composite particle dispersion in the polymer (B) layer forming step, adsorbs and desorbs the dispersion particles to other different particles. 50 to 99.95% by mass of a nonionic ethylenically unsaturated monomer unit and 5.0% of an ethylenically unsaturated monomer unit having an acidic group for the purpose of controlling the light resistance and improving the light resistance. It is preferable to include a step of emulsion polymerization of a polymer (B-4) containing 0.05 to 50% by mass of an ethylenically unsaturated monomer unit having a nitrogen functional group of not more than mass%.
  • the polymer unit (B-4) is a monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group and 50 to 99.95% by mass of a nonionic ethylenically unsaturated monomer unit.
  • a polymer comprising 0.05 to 50% by mass of an ethylenically unsaturated monomer unit having an acidic group and 0 to 5% by mass of an ethylenically unsaturated monomer having a nitrogen functional group 0.1 to 25% by mass of the monomer unit derived from the above, 0 to 2% by mass of the ethylenically unsaturated monomer unit having an acidic group, and 75 to 75% of the nonionic ethylenically unsaturated monomer unit It is more preferable to form a polymer containing 99.9% by mass, 0.1 to 25% by mass of a monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group, and an ethylenic group having an acidic group.
  • a polymer comprising ethylenically unsaturated monomer units from 75 to 99.9% by weight.
  • the dispersion stability of the latex can be maintained as a bipolar ion latex (emulsion).
  • the monomer unit derived from the ethylenically unsaturated monomer having a nitrogen functional group exceeds the above numerical range, the water resistance of the coating film obtained from the latex may be significantly lowered.
  • the polymer layer (B) contains a polymer having a monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group as the polymer (B-4), a new polymer other than the particles (A) can be obtained.
  • An anionic or dipolar ionic latex (emulsion) that controls the generation of particles and has excellent light fastness properties.
  • the content of the ethylenically unsaturated monomer having a nitrogen functional group is determined within a range where the dispersion stability can be maintained at pH 7 or higher.
  • the monomer used for forming the polymer (B-3) was subjected to emulsion polymerization using an ethylenically unsaturated monomer having an acidic group, and after introducing the acidic group, the polymer (B-4)
  • a polymer having an ethylenically unsaturated monomer unit having the nitrogen functional group is stably identical. Can be provided on the particles.
  • aqueous composite particle latex of the present embodiment in the dispersion liquid of particles (A) adjusted to pH 6 or higher, preferably pH 7 or higher, more preferably pH 7.6 or higher, and further preferably pH 8 or higher.
  • a polymer (B-3) having 0.01 to 5.0% by mass of acidic monomer units derived from an ethylenically unsaturated monomer having at least one acidic group was formed on the particles by emulsion polymerization.
  • the polymer (B-4) a polymer having a basic monomer unit derived from an ethylenically unsaturated monomer having a nitrogen functional group is preferably formed on the same particle by emulsion polymerization.
  • Forming the polymer on the same particle means that a polymer layer covering at least a part of the surface of the particle (A) is present.
  • the nitrogen functional group include, but are not limited to, an amino group, a monoalkylamino group, a dialkylamino group, and a quaternized amino group.
  • ethylenically unsaturated monomer having nitrogen functional group Specific examples of the ethylenically unsaturated monomer having a nitrogen functional group include aminoalkyl (meth) acrylates or those containing a compound having a 5- or 6-membered heterocyclic ring in which the hetero atom is nitrogen. it can.
  • the ethylenically unsaturated monomer having a nitrogen functional group that can be used in the polymerization step for forming the polymer layer (B) in the above item [Aqueous composite particle dispersion (C)]. The same ones as listed can be used.
  • Nonionic ethylenically unsaturated monomer examples include acrylic acid esters, methacrylic acid esters, and monomers copolymerizable therewith.
  • acrylic acid and methacrylic acid may be collectively referred to as (meth) acrylic acid.
  • the monomer copolymerizable with the (meth) acrylic acid ester is not particularly limited, and examples thereof include (meth) acrylamide monomers, vinyl cyanides, ethylene having an amide group or a keto group. And ethylenically unsaturated monomers having a hydroxyl group or a PEG group.
  • Examples of the (meth) acrylic acid ester include, but are not limited to, for example, a (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms in the alkyl portion and a carbon atom having 1 to 18 carbon atoms in the alkyl portion ( (Meth) acrylic acid hydroxyalkyl ester, (poly) oxyethylene (meth) acrylate having 1 to 100 oxyethylene groups, (poly) oxypropylene (meth) acrylate having 1 to 100 oxypropylene groups, Examples thereof include (poly) oxyethylene di (meth) acrylate having 1 to 100 oxyethylene groups.
  • Examples of (meth) acrylic acid alkyl esters include, but are not limited to, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid.
  • -Tert-butyl 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, dodecyl (meth) acrylate, isobornyl (meth) acrylate, stearyl (meth) acrylate,
  • An example is adamantyl (meth) acrylate.
  • the hydroxyalkyl ester (meth) acrylate is not limited to the following, but examples thereof include 2-hydroxyethyl (meth) acrylate, ( Examples thereof include 2-hydroxypropyl (meth) acrylate and 2-hydroxycyclohexyl (meth) acrylate.
  • (poly) oxyethylene (meth) acrylate although not limited to the following, for example, ethylene glycol (meth) acrylate, ethylene glycol methoxy (meth) acrylate, diethylene glycol (meth) acrylate, methoxy
  • examples include (meth) acrylic acid diethylene glycol, (meth) acrylic acid tetraethylene glycol, and methoxy (meth) acrylic acid tetraethylene glycol.
  • Examples of (poly) oxypropylene (meth) acrylate include, but are not limited to, propylene glycol (meth) acrylate, propylene glycol methoxy (meth) acrylate, dipropylene glycol (meth) acrylate, Examples include methoxy (meth) acrylic acid dipropylene glycol, (meth) acrylic acid tetrapropylene glycol, and methoxy (meth) acrylic acid tetrapropylene glycol.
  • Examples of (poly) oxyethylene di (meth) acrylate include, but are not limited to, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, diethylene glycol methoxy (meth) acrylate, Examples include tetraethylene glycol di (meth) acrylate.
  • Examples of (meth) acrylamide ethylenically unsaturated monomers include, but are not limited to, (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, Examples include dimethyl (meth) acrylamide, diethyl (meth) acrylamide, vinyl pyrrolidone, diacetone (meth) acrylamide, (meth) acryloylmorpholine, and the like.
  • Examples of vinyl cyanides include, but are not limited to, (meth) acrylonitrile and N, N′-methylenebisacrylamide.
  • Examples of the ethylenically unsaturated monomer having an aldo group or keto group include, but are not limited to, acrolein, diacetone acrylamide, diacetone methacrylamide, vinyl methyl ketone, vinyl ethyl ketone, acetoacetoxy Examples include ethyl methacrylate, acetoacetoxyethyl acrylate, formylstyrol, and combinations thereof.
  • Nonionic ethylenically unsaturated monomers having two or more ethylenic groups are not limited to the following, but examples include diene such as allyl (meth) acrylate, diallyl phthalate, butadiene, and divinyl.
  • Benzene and for example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, ethylene oxide modified 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, propylene oxide modified neopentyl glycol di (meth) acrylate, tripropylene Glycol di (meth) acrylate
  • Di (meth) acrylates of polyhydric alcohols having 1 to 10 carbon atoms such as polyethylene glycol di (meth) acrylates having an addition mole number of ethylene oxide of 2 to 50, polypropylene glycols having an addition mole number of propylene oxide of 2 to 50 Alkyl di (
  • nonionic ethylenically unsaturated monomers having two or more ethylenic groups may be used alone or in combination of two or more.
  • the diethylenically unsaturated monomer having a phosphate group is included in the ethylenically unsaturated monomer having a phosphate group.
  • the ethylenically unsaturated monomer that can be used for forming the polymer layer (B) is not limited to the following, but examples thereof include olefins such as ethylene, propylene, and isobutylene; vinyl chloride Haloolefins such as vinylidene chloride; vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl benzoate, vinyl pt-butylbenzoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl versatate, lauric acid Carboxylic acid vinyl esters such as vinyl; Carboxylic acid isopropenyl esters such as isopropenyl acetate and isopropenyl propionate; Vinyl ethers of ethyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether; Aromatic vinyl compounds such as styrene and vinyl toluene; Allyl acetate Allyl acetate Ally
  • ethylenically unsaturated monomers are not limited to the following, for example, perfluoromethyl (meth) acrylate, perfluoropropyl (meth) acrylate, perfluoropropylmethyl (meth) acrylate. Vinylpyrrolidone, 2,3-cyclohexene oxide (meth) acrylate, allyl (meth) acrylate, and combinations thereof.
  • the polymer layer (B) is an ethylenically unsaturated monomer having a hydrolyzable silane group and / or hydrolysis as the polymer (B-3) It is preferable to include a polymer obtained by emulsion polymerization of a monomer component having 2.0% by mass or less of a monomer having a functional silane group and a mercapto group. More preferably, the polymer layer (B) is a polymer (B-3) having an ethylenically unsaturated monomer having a hydrolyzable silane group and / or a monomer having a hydrolyzable silane group and a mercapto group.
  • a polymer obtained by emulsion polymerization of a monomer component having a mass of 1.0% by mass or less more preferably 0.5% by mass or less.
  • Examples of the ethylenically unsaturated monomer having a hydrolyzable silane group include, but are not limited to, for example, ⁇ - (meth) acryloxypropyltrialkoxysilane, ⁇ - (meth) acryloxypropylalkyl Examples thereof include dialkoxysilane, vinylmethyldiethoxysilane, vinylmethyldimethoxysilane, vinyldimethylethoxysilane, vinyldimethylmethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane.
  • the monomer having a hydrolyzable silane group and a mercapto group is not limited to the following, and examples thereof include 3-mercaptopropyltrimethoxysilane and 3-mercaptopropylmethyldimethoxysilane. Further, from the viewpoint of maintaining the dispersion stability of particles during emulsion polymerization and suppressing the generation of water-soluble oligomers, the constituent components of the monomer of the polymer (B-3) constituting the polymer layer (B); It is preferable that the constituent component of the monomer of the polymer (B-4) is different.
  • a non-copolymerizable ultraviolet absorber in the polymer (B) layer forming step, particularly in the polymerization step of the polymer (B-4), a non-copolymerizable ultraviolet absorber and It is preferable to include a non-copolymerizable light stabilizer. Thereby, high weather resistance can be provided.
  • a non-copolymerizable ultraviolet absorber and / or a non-copolymerizable light stabilizer, and a specific material it is the same as that of what was described in the item of the said [aqueous composite particle dispersion (C)].
  • the polymer (B-3) and the polymer (B-4) are emulsified in the presence of the particles (A) and a predetermined monomer.
  • Composite particles are formed by polymerization.
  • the polymer (B-3) is an ethylenic acid group having an acidic group in the presence of particles (A) adjusted to pH 6 or higher, preferably pH 7 or higher, more preferably pH 7.6 or higher, and still more preferably pH 8 or higher.
  • the polymer (B-4) contains the particles (A) and the polymer (B- It is produced by emulsion polymerization in the presence of 3).
  • the mass ratio of the polymer (B-4) / the polymer (B-3) is preferably 0.01 to 50, more preferably 0.05 to 20, and further preferably 0.1 to 10.
  • the mass ratio of the polymer (B-4) / the polymer (B-3) is 50 or less, formation of new polymer particles can be suppressed, and when it is 0.01 or more, the water resistance of the coating film is good. There is a tendency to become.
  • the mass ratio exceeds 50, the dispersion stability during production becomes poor, or even if it can be produced stably, the particles become unstable when concentrated in the film formation process, and the water resistance of the coating film is reduced. May decrease. If it is less than 0.01, the generation of the water-soluble oligomer derived from the dissociated acidic group monomer is increased, and a new polymer particle is formed as a nucleus, or the water resistance of the coating film is lowered by the water-soluble oligomer. May be significant.
  • the mass ratio of polymer (B-4) / polymer (B-3) is determined by adjusting polymerization conditions such as the introduction rate of monomers, polymerization time, polymerization temperature, and amount of polymerization initiator in each polymer polymerization step.
  • polymerization conditions such as the introduction rate of monomers, polymerization time, polymerization temperature, and amount of polymerization initiator in each polymer polymerization step.
  • the mass ratio of the polymer layer (B) / the particles (A) is preferably 0.01 to 100, more preferably 0.02 to 50, and still more preferably 0.05 to 20.
  • the mass ratio of the polymer layer (B) / particle (A) is preferably 0.01 to 100, more preferably 0.02 to 50, and still more preferably 0.05 to 20.
  • the excessive amount of the component (B) for the polymer layer (B) forms new particles using the polymer derived from the water-soluble monomer in the component (B) as a seed,
  • the particles (A) may grow together with the particles coated with the polymer layer (B) to form coarse particles, and the water resistance of the coating film tends to be poor.
  • the polymer layer (B) / particle (A) mass ratio is the amount of particles (A) used, the polymerization rate of the monomers in the polymer (B) polymerization step, polymerization time, polymerization temperature, polymerization initiator amount, etc.
  • a surfactant may be used when the polymer layer (B) is formed.
  • the surfactant preferably includes a surfactant described below.
  • the surfactant can be added in three stages before the start of polymerization and / or at the initial stage of production, the polymerization process, and after the completion of the polymerization process.
  • a predetermined amount of a surfactant may be mixed in a dispersion containing particles (A), and then polymerization may be performed using an ethylenically unsaturated monomer, which includes particles (A).
  • Polymerization may be performed by supplying an ethylenically unsaturated monomer simultaneously with a predetermined amount of surfactant to the dispersion.
  • an anionic surfactant can be preferably used as the anionic surfactant.
  • the anionic surfactant are not limited to the following, but include, for example, fatty acid soap, alkyl sulfonate, alkenyl sulfonate, alkyl aryl sulfonate (alkyl benzene sulfonate, alkyl diphenyl sulfonate).
  • alkenyl aryl sulfonate alkenyl aryl sulfonate, isethionate-type alkyl fatty acid ester, isethionate-type alkenyl fatty acid ester, alkyl diphenyl ether disulfonate (for example, Kao Corporation product names Plex SS-L, Plex SS-H), Alkyl sulfates, alkenyl sulfates, alkylaryl sulfates, ethoxylated alkylphenol sulfates, alkylallylsulfosuccinates and dialkylsulfosuccinates (eg, dioctylsulfosuccinate, dihexylsulfosuccinate) Alkyl allylsulfosuccinate (eg Sanyo Chemical Co., Ltd., product name Eleminol JS-2, JS-5), and alkyl or alkenyl 2-hydroxy (3-allyloxy
  • the sulfonate and sulfate refer to alkali metal salts or ammonium salts, and specifically include lithium salts, sodium salts, potassium salts, ammonium salts, alkanol ammonium salts, and ammonium salts of basic amino acids. It is done.
  • the surfactant preferably contains at least one selected from alkyl sulfonates, alkyl benzene sulfonates, alkyl diphenyl ether disulfonates, alkyl allyl sulfosuccinates, and dialkyl sulfosuccinates.
  • anionic surfactant a so-called reactive surfactant having a hydrophilic group and a lipophilic group and having an ethylenically unsaturated bond group in order to develop high water resistance and warm water resistance of the coating film.
  • An agent may be used.
  • the anionic surfactant is not limited to the following, but for example, an ethylenically unsaturated monomer having a sulfonic acid group, a sulfate ester group, or a salt thereof. Is mentioned.
  • Specific examples include compounds having a sulfonic acid group and a group (ammonium sulfonate group or alkali metal sulfonate group) which is an ammonium salt or an alkali metal salt thereof.
  • the reactive surfactant include, but are not limited to, for example, a salt of polyoxyethylene alkylpropenyl phenyl ether sulfate (for example, product name Aqualon HS-10, Daiichi Kogyo Seiyaku Co., Ltd.), ⁇ -[1-[(allyloxy) methyl] -2- (phenylphenoxy) ethyl] - ⁇ -polyoxyethylene sulfate salt (for example, product name ADEKA rear soap SE-1025A manufactured by ADEKA Corporation), ⁇ -sulfo - ⁇ - (1- (alkoxy) methyl) -2- (2-propenyloxy) ethoxy) -poly (oxy-1,2-ethanediyl)
  • the reactive surfactant having a hydrophilic group and a lipophilic group and having an ethylenic double bond group in addition to the reactive surfactant having a hydrophilic group and a lipophilic group and having an ethylenic double bond group.
  • Nonionic surfactants and the like can also be used.
  • a nonionic surfactant a so-called reactive surfactant having a hydrophilic group and a lipophilic group and having an ethylenic double bond group is used in order to express high water resistance of the coating film. Also good.
  • Nonionic surfactants that are reactive surfactants are not limited to the following, and examples include ⁇ - [1-[(allyloxy) methyl] -2- (phenylphenoxy) ethyl] - ⁇ . -Hydroxypolyoxyethylene (for example, product names ADEKA rear soap NE-20, NE-30, NE-40 manufactured by ADEKA Corporation), polyoxyethylene alkylpropenyl phenyl ether (for example, Daiichi Kogyo Seiyaku Co., Ltd. product name) Aqualon RN-10, RN-20, RN-30, RN-50).
  • ADEKA rear soap NE-20, NE-30, NE-40 manufactured by ADEKA Corporation
  • polyoxyethylene alkylpropenyl phenyl ether for example, Daiichi Kogyo Seiyaku Co., Ltd. product name
  • Aqualon RN-10, RN-20, RN-30, RN-50 Aqualon RN-10, RN-20, RN-30
  • a normal surfactant is used as a surfactant in addition to a reactive surfactant having a hydrophilic group and a lipophilic group and having an ethylenic double bond group. It can also be used.
  • the normal surfactant include, but are not limited to, non-polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene sorbitan fatty acid ester, oxyethylene oxypropylene block copolymer, and the like.
  • a reactive nonionic surfactant is mentioned.
  • the type of surfactant that can be added to the aqueous composite particle latex after the completion of the polymerization process of the present embodiment is not particularly limited, but nonionic and / or anionic surfactants are preferred.
  • the amount of the surfactant added to the aqueous composite particle latex after the completion of the polymerization process is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the monomers. When the amount is larger than this, the water resistance of the resulting coating film tends to be remarkably lowered.
  • a radical polymerization initiator for production of aqueous composite particle dispersion
  • the radical polymerization initiator is a compound that undergoes radical decomposition by heat or a reducing substance to cause radical polymerization of the monomer.
  • water-soluble polymerization initiator water-soluble persulfates, peroxides, azobis compounds and the like can be used. Examples thereof include potassium persulfate, sodium persulfate, ammonium persulfate, hydrogen peroxide, t-butyl hydroperoxide, and 2,2-azobis (2-diaminopropane) hydrochloride.
  • the oil-soluble polymerization initiator is not limited to the following, and examples thereof include t-butyl peroxybenzoate, 2,2-azobisisobutyronitrile, 2,2-azobis (2,4-dimethyl). Valeronitrile) and the like.
  • a water-soluble initiator alone, or it is preferable to use a water-soluble initiator and an oil-soluble initiator together.
  • an oil-soluble initiator may be used.
  • the amount of the water-soluble polymerization initiator is preferably 0.01 to 10% by mass and more preferably 0.01 to 1.0% by mass with respect to the total mass of the monomer.
  • the amount of the oil-soluble polymerization initiator is usually 0.01 to 10% by mass, preferably 0.01 to 0.1% by mass, based on the total mass of the monomers.
  • a reducing agent such as sodium bisulfite, ferrous chloride, ascorbate, or longalite in combination with a radical polymerization initiator.
  • the polymerization temperature is determined in accordance with the decomposition temperature of the polymerization initiator, and emulsion polymerization is usually carried out at 90 ° C. or lower, which is lower than the boiling point of water.
  • the polymerization time varies depending on the polymer concentration in the finally obtained emulsion when emulsion polymerization or miniemulsion polymerization is performed, but the polymerization reaction time after the monomer is supplied to the dispersion (ripening time) ) Is preferably 10 minutes or more. Below this time, unreacted monomers may remain.
  • the chain transfer agent In the polymerization of the monomer, it is possible to add a chain transfer agent during the polymerization process in order to adjust the molecular weight after the polymerization, and it is obtained by mixing the chain transfer agent with 0.1 to 5% by mass. be able to.
  • the chain transfer agent is 0.1% by mass or less, the viscosity of the aqueous solution or the aqueous dispersion tends to be high, and the handling tends to be difficult.
  • chain transfer agent examples include mercaptans such as butyl mercaptan, n-dodecyl mercaptan and t-dodecyl mercaptan, alcohols such as methanol and isopropyl alcohol, ⁇ -methylstyrene dimer, carbon tetrachloride and the like.
  • This solution is filtered with filter paper 5C (corresponding to 5 types C defined in JIS P3801 [filter paper (for chemical analysis)] to remove acid-insoluble residues such as silica, and the filtrate is used with 1% nitric acid.
  • the volume was made up to 20 mL and used as a test solution for ICP emission analysis.
  • analysis was performed with an ICP emission analyzer (VISTA-PRO, manufactured by Agilent Technologies).
  • the zeta potential of the composite particles in the aqueous composite particle dispersion at 60 ° C. was measured using a dispersion prepared by diluting an aqueous composite particle dispersion having a pH in the range of 7 to 11 with 10 mM aqueous KCl solution.
  • the pH of the aqueous composite particle dispersion is less than 7, the pH is adjusted to 7 to 11 with an aqueous NaOH solution, and then the aqueous composite particle dispersion is diluted with an aqueous 10 mM KCl solution to obtain a dispersion for measurement.
  • the measurement conditions for the zeta potential are as follows.
  • a 10 mM KCl aqueous solution was added as appropriate. Since the upper limit concentration that can be measured is determined by the particle size of the composite particles, the concentration of the composite particles after being diluted with a 10 mM KCl aqueous solution is 0.001 mass based on the mass of the dispersion. % To 20% by mass and a concentration within a measurable range indicated by the device. The dispersion for measurement was placed in the standard cell of the above apparatus and measurement was performed.
  • the pH of the concentrated aqueous composite particle dispersion was less than 7, an aqueous NaOH solution was added to adjust the pH to 7-11.
  • the zeta potential at 25 ° C. was measured under the same conditions as described above.
  • a 1 mM KCl aqueous solution was added as appropriate.
  • the specific concentration of dilution is such that the upper limit concentration that can be measured is determined by the particle size of the composite particles. It was measured at a concentration within a mass% or less and within a measurable range indicated by the device.
  • the KCl concentration of the measurement dispersion was 1 to 10 mM.
  • a paint was prepared with the paint composition shown below, and the test was conducted according to the weather resistance test method shown below.
  • (Paint composition) ⁇ (1) Pigment dispersion> Water 221 parts by mass BYK190 [20% aqueous dispersant: manufactured by BYK] 35 parts by mass Taipure R-706 [rutile titanium oxide: manufactured by DuPont Co., Ltd.] 706 parts by mass Propylene glycol 45 parts by mass Ammonia water 1.0 part by mass ⁇ (2-1)
  • aqueous resin dispersion D
  • polytron E780 acrylic latex: manufactured by Asahi Kasei Co., Ltd.
  • Aqueous composite particle dispersion of each example and comparative example solid content conversion
  • 30 parts by mass Polytron E780 (acrylic latex: manufactured by Asahi Kasei Corporation) 70 mass parts Pluronic (registered trademark) F68 5% aqueous solution (surfactant: manufactured by ADEKA Corporation) 6 mass parts Texanol CS-12 4-10 mass parts ion-exchanged water 10 mass parts
  • the coating formulation of the above (2-1) letdown component was added to the wire coater No. No. 55 was applied to an alumite sulfate plate and dried at room temperature for 2 hours. Furthermore, what was dried at 50 ° C. for 2 days was used as a test specimen.
  • the b value before exposure was measured with a color difference meter (manufactured by BYK-Gardner GmbH, spectro-guide) before the weather resistance test. Subsequently, an exposure test (rain cycle: 12 minutes / hour, black panel temperature 60 to 66 ° C.) was conducted using a sunshine type weatherometer (WEL-SUN-DC, manufactured by Suga Test Instruments Co., Ltd.). The b value after 1000 hours of exposure was measured, and the difference from the b value before exposure was taken as the ⁇ b value.
  • No. 55 was applied to an alumite sulfate plate and dried at room temperature for 2 hours. Furthermore, what was dried at 50 ° C. for 2 days was used as a test specimen. The b value before exposure was measured with a color difference meter (manufactured by BYK-Gardner GmbH, spectro-guide) before the weather resistance test. Subsequently, an exposure test (rain cycle: 12 minutes / hour, black panel temperature 60 to 66 ° C.) was conducted using a sunshine type weatherometer (WEL-SUN-DC, manufactured by Suga Test Instruments Co., Ltd.).
  • WEL-SUN-DC sunshine type weatherometer
  • the average particle size of the composite particles in the aqueous composite particle dispersion is obtained by appropriately diluting the aqueous composite particle dispersion with ion-exchanged water and using ELSZ-1000 manufactured by Otsuka Electronics Co., Ltd. at room temperature (23 ° C.). Cumulant average was determined. From the average particle size of the composite particles, whether or not the particles (A) were grown as composite seeds was compared with the calculated value, and evaluated as “synthetic particle determination” according to the following criteria. A: The component (B) is almost formed on the same particle using the particle (A) as a seed, and generation of new particles and aggregation of grown particles are substantially suppressed.
  • B Although the component (B) was almost formed on the same particle using the particle (A) as a seed, the particle diameter was enlarged due to agglomeration of the growing particles.
  • C The component (B) was not substantially formed on the same particle using the particle (A) as a seed, many new particles were generated, and the average particle size was close to that of the particle (A).
  • dispersion stability during synthesis was evaluated according to the following criteria. ⁇ : No aggregates are observed in the aqueous composite particle dispersion, or slightly white aggregates are scattered, but it can be filtered with a 100-mesh wire mesh. X: A large amount of aggregates are present in the aqueous composite particle dispersion, and clogging occurs when filtration through a 100-mesh wire mesh, and filtration is impossible. Alternatively, the entire dispersion aggregated and was no longer liquid.
  • Solid content (mass%) The aqueous composite particle dispersion was placed in a 1 g aluminum dish, precisely weighed and then dried at 105 ° C. for 3 hours, the dried mass was precisely weighed, and the solid content was calculated from the ratio.
  • AEROSOL registered trademark
  • MA-80 aqueous solution of sodium dihexyl sulfosuccinate, manufactured by Nippon Cytec Industries, Inc.
  • Eleminol registered trademark
  • JS-2 aqueous solution of sodium alkylallylsulfosuccinate, manufactured by Sanyo Chemical Co., Ltd.
  • Neoperex registered trademark
  • G-15 aqueous solution of sodium dodecylbenzenesulfonate, manufactured by Kao Corporation
  • Aqualon registered trademark
  • KH-10 polyoxyethylene-1- (alkyloxymethyl) alkyl ether ammonium sulfate, manufactured by Dai
  • Example 1 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer, the aqueous dispersion of the polymer particles (A) of [Synthesis Example 1] was adjusted to pH 9.5 with ammonia, and water was added. In addition, the concentration was adjusted to 40.0% by mass, 250.0 g thereof was added, and the temperature was raised to 60 ° C. Thereto, 30 g of Aqualon (registered trademark) KH-10 adjusted to a concentration of 10% by mass was slowly added. The temperature of the dispersion in the reactor was raised to 70 ° C. under a nitrogen atmosphere, and then 45 g of ammonium persulfate (2% aqueous solution) was added.
  • Aqualon (registered trademark) KH-10 adjusted to a concentration of 10% by mass was slowly added.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 8.9, a solid content of 38.1% by mass, and an average particle size of 125 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 42 mV at pH 8.9. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 2 Snowtex (registered trademark) ST-N-40 (ammonia neutralized colloidal silica, Nissan Chemical Industries, Ltd.) adjusted to a concentration of 40.0% by mass in a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirring device 250.0 g) was added, and the temperature was raised to 60 ° C. Thereto was slowly added 30 g of an aqueous solution of AEROSOL (registered trademark) OT-75 (sodium dioctylsulfosuccinate) adjusted to a concentration of 10% by mass, manufactured by Nippon Cytec Industries Co., Ltd. The dispersion in the reactor was heated to 70 ° C.
  • AEROSOL registered trademark
  • OT-75 sodium dioctylsulfosuccinate
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 9.1, a solid content of 41.1% by mass, and an average particle size of 65 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at 60 ° C. of ⁇ 40 mV at pH 9.1. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 3 A reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer was charged with 200.0 g of SNOWTEX (registered trademark) ST-N-40 adjusted to a concentration of 40.0% by mass and heated to 60 ° C. The temperature rose. Thereto, 25 g of Eleminol (registered trademark) JS-2 (an aqueous solution of sodium alkylallylsulfosuccinate, manufactured by Sanyo Chemical Co., Ltd.) adjusted to a concentration of 10% by mass was slowly added. The dispersion in the reactor was heated to 70 ° C. under a nitrogen atmosphere, and 12.5 g of ammonium persulfate (2% aqueous solution) was added.
  • SNOWTEX registered trademark
  • ST-N-40 a concentration of 40.0% by mass
  • Eleminol (registered trademark) JS-2 an aqueous solution of sodium alkylallylsulfosuccinate, manufactured by Sanyo Chemical Co.
  • Neoperex (registered trademark) G-15 sodium dodecylbenzenesulfonate sodium salt
  • a mixture of 0.67 g of an aqueous solution (manufactured by Kao Corporation) and 25 g of ion-exchanged water was allowed to flow into the reactor over 90 minutes. After completion of the inflow, the dispersion in the reactor was stirred at 70 ° C. for 30 minutes.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 9.2, a solid content of 41.0% by mass, and an average particle size of 62 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 42 mV at pH 9.2. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 4 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer, the aqueous dispersion of the polymer particles (A) of [Synthesis Example 1] was adjusted to pH 9.5 with ammonia, and water was added. In addition, the concentration was adjusted to 40.0% by mass, 250.0 g thereof was added, and the temperature was raised to 70 ° C. Thereto, 30 g of Aqualon (registered trademark) KH-10 adjusted to a concentration of 10% by mass was slowly added. With the dispersion in the reactor kept at 70 ° C. under a nitrogen atmosphere, 15 g of ammonium persulfate (2% aqueous solution) was added.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 9.2, a solid content of 40.9% by mass, and an average particle size of 130 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 45 mV at pH 9.2. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 5 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer, the aqueous dispersion of the polymer particles (A) of [Synthesis Example 1] was adjusted to pH 9.5 with ammonia, and water was added. In addition, the concentration was adjusted to 40.0% by mass, 200.0 g thereof was added, and the temperature was raised to 70 ° C.
  • Adekari Soap registered trademark
  • SR-10 ⁇ -sulfo- ⁇ - (1- (alkoxy) methyl) -2- (2-propenyloxy) ethoxy) -poly (oxy) adjusted to a concentration of 10% by mass -1,2-ethanediyl) ammonium salt (manufactured by ADEKA Corporation) was slowly added.
  • 15 g of ammonium persulfate 2% aqueous solution
  • Adekari Soap registered trademark
  • SR-10 Adekari Soap (registered trademark) SR-10 adjusted to a concentration of 15% by mass, 8.0 g of methyl methacrylate, 24.0 g of cyclohexyl methacrylate, 44.0 g of butyl acrylate, 0.8 g of acrylamide,
  • a mixture of 2.4 g of registered LA-82, 0.8 g of RUVA-93 (manufactured by Otsuka Chemical Co., Ltd., reactive ultraviolet absorber), and 80 g of ion-exchanged water was allowed to flow into the reactor over 120 minutes. A dispersion was obtained. Thereafter, the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh.
  • an aqueous composite particle dispersion containing composite particles having a pH of 9.2, a solid content of 40.8% by mass, and an average particle size of 134 nm was obtained. .
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 51 mV at pH 9.2.
  • the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C. at pH 7.9 was ⁇ 42 mV, and the phosphorus atom in the composite particles was 0.018% by mass.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test.
  • the paint for the weather resistance test it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 6 Snowtex (registered trademark) ST-N-40 (ammonia neutralized colloidal silica, Nissan Chemical Industries, Ltd.) adjusted to a concentration of 40.0% by mass in a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirring device 250.0 g) was added, and the temperature was raised to 60 ° C. Thereto was slowly added 30 g of AEROSOL (registered trademark) MA-80 (an aqueous solution of sodium dihexyl sulfosuccinate, manufactured by Nippon Cytec Industries Co., Ltd.) adjusted to a concentration of 10% by mass. The dispersion in the reactor was heated to 70 ° C.
  • AEROSOL registered trademark
  • MA-80 an aqueous solution of sodium dihexyl sulfosuccinate, manufactured by Nippon Cytec Industries Co., Ltd.
  • Neopelex registered trademark
  • a mixture of 0.67 g of G-15 and 25 g of ion exchange water was allowed to flow into the reactor over 40 minutes. After completion of the inflow, the dispersion in the reactor was further stirred at 70 ° C. for 30 minutes.
  • Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass 2.67, methyl methacrylate 9.2 g, cyclohexyl methacrylate 24.0 g, 2-ethylhexyl acrylate 44.0 g, PPME 0.01 g, acrylamide 1 .2 g, 0.8 g of diethylaminoethyl methacrylate and 0.8 g of Adekastab® LA-82, 0.80 g of Tinuvin® 384-2, 0.08 g of methacrylic acid and 80 g of ion-exchanged water was allowed to flow into the reactor over 120 minutes to obtain a dispersion.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 8.9, a solid content of 40.9% by mass, and an average particle diameter of 69 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at 60 ° C. of ⁇ 47 mV at pH 8.9. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 7 Snowtex (registered trademark) ST-N-40 (ammonia neutralized colloidal silica, Nissan Chemical Industries, Ltd.) adjusted to a concentration of 40.0% by mass in a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirring device 250.0 g) was added, and the temperature was raised to 60 ° C. Thereto was slowly added 30 g of AEROSOL (registered trademark) OT-75 adjusted to a concentration of 10% by mass. The dispersion in the reactor was heated to 70 ° C. under a nitrogen atmosphere, and 15 g of ammonium persulfate (2% aqueous solution) was added.
  • AEROSOL registered trademark
  • Neoperex (registered trademark) G adjusted to a concentration of 15.0% by mass
  • a mixture of 0.67 g of ⁇ 15 and 20 g of ion-exchanged water was allowed to flow into the reactor over 20 minutes. After completion of the inflow, the dispersion in the reactor was further stirred at 70 ° C. for 30 minutes.
  • Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass was 3.33, cyclohexyl methacrylate 29.5 g, butyl methacrylate 55.0 g, butyl acrylate 10.0 g, PPME 0.01 g, acrylamide 1.50 g.
  • a mixture of 0.50 g and 100 g of ion exchange water was allowed to flow into the reactor over 150 minutes to obtain a dispersion.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 9.1, a solid content of 41.1% by mass, and an average particle size of 70 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 36 mV at pH 9.1. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 8 A reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer was charged with 250.0 g of SNOWTEX (registered trademark) ST-N-40 adjusted to a concentration of 40.0% by mass and heated to 60 ° C. The temperature rose. Thereto was slowly added 30 g of AEROSOL (registered trademark) OT-75 adjusted to a concentration of 10% by mass. The dispersion in the reactor was heated to 70 ° C. under a nitrogen atmosphere, and 15 g of ammonium persulfate (2% aqueous solution) was added.
  • SNOWTEX registered trademark
  • ST-N-40 a concentration of 40.0% by mass
  • AEROSOL registered trademark
  • Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass was 3.33, cyclohexyl methacrylate 36.0 g, butyl methacrylate 48.0 g, butyl acrylate 10.0 g, PPME 0.01 g, ADK STAB (registered trademark) )
  • a mixture of 6.0 g LA82, 3.0 g Tinuvin (registered trademark) 384-2, and 100 g ion-exchanged water was allowed to flow into the reactor over 150 minutes to obtain a dispersion.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 8.8, a solid content of 41.8% by mass, and an average particle size of 68 nm. . Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 53 mV at pH 8.8. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 9 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer, the aqueous dispersion of the polymer particles (A) of [Synthesis Example 1] was adjusted to pH 9.5 with ammonia, and water was added. In addition, the concentration was adjusted to 40.0% by mass, 275.0 g thereof was added, and the temperature was raised to 70 ° C. Thereto, 30 g of Aqualon (registered trademark) KH-10 adjusted to a concentration of 10% by mass was slowly added. With the dispersion in the reactor kept at 70 ° C. under a nitrogen atmosphere, 15 g of ammonium persulfate (2% aqueous solution) was added.
  • Neoperex (registered trademark) G-15 adjusted to a concentration of 15.0% by mass, and ion exchange A mixture with 20 g of water was allowed to flow into the reactor over 30 minutes. After completion of the inflow, the dispersion in the reactor was further stirred at 70 ° C. for 30 minutes.
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 58 mV at pH 8.7.
  • the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C. at pH 8.1 was ⁇ 48 mV, and the phosphorus atom in the composite particles was 0.010% by mass.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 10 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer, the aqueous dispersion of the polymer particles (A) of [Synthesis Example 1] was adjusted to pH 9.5 with ammonia, and water was added. In addition, the concentration was adjusted to 40.0% by mass, 250.0 g thereof was added, and the temperature was raised to 60 ° C. Thereto, 30 g of Aqualon (registered trademark) KH-10 adjusted to a concentration of 10% by mass was slowly added. The temperature of the dispersion in the reactor was raised to 70 ° C. under a nitrogen atmosphere, and then 45 g of ammonium persulfate (2% aqueous solution) was added.
  • Aqualon (registered trademark) KH-10 adjusted to a concentration of 10% by mass was slowly added.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having an average particle size of 127 nm with a pH of 8.8 and a solid content of 38.1% by mass. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at 60 ° C. of ⁇ 61 mV at pH 8.8. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 11 A reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer was charged with 250.0 g of Snowtex (registered trademark) ST-N-40 adjusted to a concentration of 40.0% by mass, and the temperature was raised to 60 ° C. Warm up. Thereto was slowly added 30 g of AEROSOL (registered trademark) OT-75 adjusted to a concentration of 10% by mass. The dispersion in the reactor was heated to 70 ° C. under a nitrogen atmosphere, and 15 g of ammonium persulfate (2% aqueous solution) was added.
  • Snowtex registered trademark
  • AEROSOL registered trademark
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 9.1, a solid content of 41.1% by mass, and an average particle size of 68 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 59 mV at pH 9.1. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 12 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer, the aqueous dispersion of the polymer particles (A) of [Synthesis Example 1] was adjusted to pH 9.5 with ammonia, and water was added. In addition, the concentration was adjusted to 40.0% by mass, 275.0 g thereof was added, and the temperature was raised to 70 ° C. Thereto, 30 g of Aqualon (registered trademark) KH-10 adjusted to a concentration of 10% by mass was slowly added. With the dispersion in the reactor kept at 70 ° C. under a nitrogen atmosphere, 12.5 g of ammonium persulfate (2% aqueous solution) was added.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 8.7, a solid content of 40.8% by mass, and an average particle size of 132 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 65 mV at pH 8.7. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • Example 13 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer, the aqueous dispersion of the polymer particles (A) of [Synthesis Example 1] was adjusted to pH 9.5 with ammonia, and water was added. In addition, the concentration was adjusted to 40.0% by mass, 275.0 g thereof was added, and the temperature was raised to 70 ° C. Thereto, 30 g of Aqualon (registered trademark) KH-10 adjusted to a concentration of 10% by mass was slowly added. With the dispersion in the reactor kept at 70 ° C. under a nitrogen atmosphere, 15 g of ammonium persulfate (2% aqueous solution) was added.
  • Neoperex (registered trademark) G-15 adjusted to a concentration of 15.0% by mass, and ion exchange A mixture with 20 g of water was allowed to flow into the reactor over 30 minutes. After completion of the inflow, the dispersion in the reactor was further stirred at 70 ° C. for 30 minutes.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 8.7, a solid content of 40.8% by mass, and an average particle size of 130 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 59 mV at pH 8.7. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the formulation of the paint for the weather resistance test, it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • the dispersion was cooled to room temperature and filtered through a 100 mesh wire netting to obtain an aqueous composite particle dispersion having a pH of 9.3, a solid content of 40.9% by mass, and an average particle size of 102 nm.
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 45 mV at pH 9.3.
  • the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C. at pH 7.8 was ⁇ 42 mV, and no phosphorus atom was detected in the particles.
  • the aqueous particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test.
  • the paint for the weather resistance test it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion having a pH of 8.8, a solid content of 40.4% by mass, and an average particle size of 121 nm.
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 35 mV at pH 8.8.
  • the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C. at pH 8.0 was ⁇ 45 mV, and the phosphorus atom in the particles was 0.131% by mass.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test.
  • the paint for the weather resistance test it could be stably mixed without agglomeration with the titanium oxide and acrylic latex for the pigment.
  • the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain an aqueous composite particle dispersion containing composite particles having a pH of 9.5, a solid content of 47.7% by mass, and an average particle diameter of 78 nm. It was. Moreover, there was little generation
  • the resulting aqueous composite particle dispersion had a zeta potential at ⁇ 60 ° C. of ⁇ 78 mV at pH 9.5. When the zeta potential of the aqueous composite particle dispersion after dialysis was measured, the zeta potential at 25 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the coating formulation for the weather resistance test, it aggregated with the titanium oxide and acrylic latex for the pigment and could not be stably mixed.
  • Presence or absence of polymer (B-1) in mass% “single amount in the formation step of polymer (B-2) having basic monomer unit derived from ethylenically unsaturated monomer having nitrogen functional group” Derived from an ethylenically unsaturated monomer having a nitrogen functional group with respect to the whole body Presence of the polymer (B-2) basic monomer units is 0.05 to 50% by weight "," weight ratio of the polymer (B-2) / polymer (B-1) " “Mass ratio of polymer layer (B) / particle (A)” is shown, “warm water resistance” and “weather resistance ⁇ b”, “weather resistance modification value
  • a coating film having excellent water resistance could be formed, and an aqueous composite particle dispersion having excellent mixing stability with pigment inorganic particles was obtained.
  • excellent weather resistance could be added to the coating film.
  • the temperature in the reactor was maintained at 80 ° C.
  • the dispersion in the reactor was further kept at 80 ° C. for 60 minutes and then cooled to room temperature, and then the hydrogen ion concentration was measured to be pH 2.1.
  • the solid content concentration of the aqueous dispersion of the obtained polymer particles was 43.0% by mass, and the average particle size was 96 nm.
  • Examples 14 to 18 A reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer was added to a predetermined pH on the basic side (Examples 14, 15, 17, and 18 were ammonia at pH 9.5, Example 16 was pH 10. 1) and particles (A) adjusted to a predetermined concentration (Examples 14, 15, 17, 18, 20, and 21 are 40.0% by mass, and Example 16 is 50.0% by mass) are weighed and charged. The temperature was raised to 60 ° C. A predetermined amount of the initially added surfactant adjusted to a concentration of 10% by mass was slowly added thereto. The mixture in the reactor was heated to 70 ° C.
  • (B-4) a monomer mixture constituting the polymer, an ultraviolet absorber, Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass, 8 g of ammonium persulfate (2% aqueous solution) and 80 g of ion-exchanged water were homogenized.
  • the mixture was emulsified and mixed, and the mixture was allowed to flow into the reactor over 120 minutes to obtain a dispersion. Thereafter, the dispersion was cooled to room temperature, filtered through a 100-mesh wire mesh, solid content and average particle diameter were measured, and the state of deposits on the reaction vessel was visually confirmed.
  • the zeta potential at 60 ° C.
  • aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test.
  • the mixed state with the titanium oxide for pigment and acrylic latex was confirmed, and it was confirmed that the results were good in Examples 14 to 18.
  • Example 19 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirring device, particles (A) adjusted to pH 6.8 and a concentration of 40.0% by mass were weighed and charged, and the temperature was raised to 60 ° C. . A predetermined amount of the initially added surfactant adjusted to a concentration of 10% by mass was slowly added thereto. The mixture in the reactor was heated to 70 ° C. under a nitrogen atmosphere, and 15 g of ammonium persulfate (2% aqueous solution) was added.
  • (B-3) a monomer mixture constituting the polymer, a surfactant co-introduced with the monomer (B-3) adjusted to a concentration of 15% by mass, 18 g of ion-exchanged water, and aqueous ammonia (25% by mass) %) 4.0 g was emulsified and mixed with a homogenizer, and the mixture was allowed to flow into the reactor over 90 minutes. After the end of the inflow, the latex in the reactor was further stirred at 70 ° C. for 30 minutes.
  • (B-4) a monomer mixture constituting the polymer, an ultraviolet absorber, Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass, 8 g of ammonium persulfate (2% aqueous solution), aqueous ammonia (25% by mass) ) 4 g and ion-exchanged water 80 g were emulsified and mixed with a homogenizer, and this mixture was allowed to flow into the reactor over 120 minutes to obtain a dispersion. Thereafter, the dispersion was cooled to room temperature, filtered through a 100-mesh wire mesh, solid content and average particle diameter were measured, and the state of deposits on the reaction vessel was visually confirmed.
  • Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass
  • ion-exchanged water 80 g emulsified
  • the obtained aqueous composite particle dispersion had a pH of 7.9, and after adjusting to pH 8.5 with aqueous ammonia, the zeta potential at 60 ° C. and the zeta potential of the aqueous composite particle dispersion after dialysis at 25 ° C. were measured. .
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the paint formulation for the weather resistance test, the mixed state with the titanium oxide for pigment and acrylic latex was confirmed, and in Example 19, it was confirmed to be good.
  • Examples 20 and 21 In a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirring device, a predetermined pH on the basic side (Examples 20 and 21 are pH 9.5 with aqueous ammonia) and a predetermined concentration of 40.0% by mass Particles (A) adjusted to were weighed and charged, and the temperature was raised to 60 ° C. A predetermined amount of the initially added surfactant adjusted to a concentration of 10% by mass was slowly added thereto. The mixture in the reactor was heated to 70 ° C. under a nitrogen atmosphere, and 15 g of ammonium persulfate (2% aqueous solution) was added.
  • (B-5) a monomer mixture constituting the polymer, a non-polymerizable light stabilizer, an ultraviolet absorber, Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass, ammonium persulfate (2% aqueous solution) 8 g And 80 g of ion-exchanged water was emulsified and mixed with a homogenizer, and this mixture was allowed to flow into the reactor over 120 minutes to obtain a dispersion. Thereafter, the dispersion was cooled to room temperature, filtered through a 100-mesh wire mesh, solid content and average particle diameter were measured, and the state of deposits on the reaction vessel was visually confirmed. The zeta potential at 60 ° C.
  • aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test.
  • the coating formulation for the weather resistance test the mixed state with the titanium oxide and acrylic latex for the pigment was confirmed, and it was confirmed that in Examples 20 and 21, it was good.
  • (B-4) a monomer mixture constituting the polymer, an ultraviolet absorber, Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass, 8 g of ammonium persulfate (2% aqueous solution) and 80 g of ion-exchanged water were homogenized.
  • the mixture was emulsified and mixed, and the mixture was allowed to flow into the reactor over 120 minutes to obtain a dispersion. Thereafter, the dispersion was cooled to room temperature, filtered through a 100-mesh wire mesh, solid content and average particle diameter were measured, and the state of deposits on the reaction vessel was visually confirmed.
  • the zeta potential at 60 ° C.
  • aqueous composite particle latex containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the paint blending for the weather resistance test, the mixed state with the titanium oxide and acrylic latex for the pigment was confirmed and confirmed to be good.
  • Comparative Example 5 (Example in which (B-4) polymer was synthesized without synthesizing (B-3) polymer)
  • the mass ratio of each raw material in Comparative Example 5 is shown in Table 2 below.
  • Particles (A) adjusted to a predetermined pH and concentration on the basic side were weighed and charged into a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirring device, and the temperature was raised to 60 ° C.
  • a predetermined amount of the initially added surfactant adjusted to a concentration of 10% by mass was slowly added thereto.
  • the mixture in the reactor was heated to 70 ° C. under a nitrogen atmosphere, and 15 g of ammonium persulfate (2% aqueous solution) was added.
  • (B-4) a monomer mixture constituting the polymer, an ultraviolet absorber, Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass, 8 g of ammonium persulfate (2% aqueous solution) and 80 g of ion-exchanged water was emulsified and mixed with a homogenizer, and the mixture was allowed to flow into the reactor over 150 minutes to obtain a dispersion. Thereafter, the dispersion was cooled to room temperature, filtered through a 100-mesh wire mesh, solid content and average particle diameter were measured, and the state of deposits on the reaction vessel was visually confirmed. The zeta potential at 60 ° C.
  • the aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test.
  • the mixing state with the titanium oxide and acrylic latex for the pigment was confirmed and confirmed to be good, but because the mixing stability of the dispersion and texanol was poor, The weather resistance test could not be performed.
  • Comparative Example 6 (Example in which (B-3) polymer was synthesized on the acidic side of pH 6 and the amount of ethylenically unsaturated monomer having acidic group in (B-3) was out of range)
  • the mass ratio of each raw material in Comparative Example 6 is shown in Table 2 below.
  • a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer particles (A) adjusted to a concentration of 40.0% by mass with pH 2.1 were weighed and charged, and the temperature was raised to 60 ° C. .
  • the amount described in Table 2 below was slowly added to the initially added surfactant adjusted to a concentration of 10% by mass.
  • the mixture in the reactor was heated to 70 ° C.
  • (B-4) a monomer mixture constituting the polymer, an ultraviolet absorber, Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass, 8 g of ammonium persulfate (2% aqueous solution) and 80 g of ion-exchanged water were homogenized.
  • the mixture was emulsified and mixed, and the mixture was allowed to flow into the reactor over 120 minutes to obtain a dispersion. Thereafter, the dispersion was cooled to room temperature, filtered through a 100-mesh wire mesh, solid content and average particle diameter were measured, and the state of deposits on the reaction vessel was visually confirmed.
  • the zeta potential at 60 ° C.
  • aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the paint blending for the weather resistance test, the mixed state with the titanium oxide and acrylic latex for the pigment was confirmed and confirmed to be good.
  • Comparative Example 7 (Example of using ethylenically unsaturated monomer unit having hydrolyzable silane group before (B-3) polymer synthesis and (B-4) during polymer synthesis)
  • the mass ratio of each raw material in Comparative Example 7 is shown in Table 2 below.
  • Particle (A) adjusted to a predetermined pH (pH 10.1) on the basic side and a predetermined concentration (40.0% by mass) in a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirring device was weighed and charged, and the temperature was raised to 60 ° C.
  • a predetermined amount of an initially added surfactant adjusted to a concentration of 10% by mass and 0.08 parts by mass of ⁇ -methacryloxypropyltrimethoxysilane were slowly added thereto.
  • the mixture in the reactor was heated to 70 ° C. under a nitrogen atmosphere and held for 1 hour, and then 15 g of ammonium persulfate (2% aqueous solution) was added.
  • (B-3) the monomer mixture constituting the polymer, the surfactant (B-3) adjusted to a concentration of 15% by mass and the surfactant introduced at the same time, and 20 g of ion-exchanged water were emulsified and mixed in a homogenizer.
  • the mixture was allowed to flow into the reactor over 90 minutes.
  • (B-4) a monomer mixture constituting the polymer, an ultraviolet absorber, Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass, 8 g of ammonium persulfate (2% aqueous solution) and 80 g of ion-exchanged water were used as a homogenizer.
  • the mixture was emulsified and mixed, and the mixture was allowed to flow into the reactor over 120 minutes to obtain a dispersion. As a result, a large amount of aggregate was generated. Thereafter, the dispersion was cooled to room temperature and filtered through a 100-mesh wire mesh. As a result, filtration could not be performed.
  • Comparative Example 8 (Example where (B-3) composition and (B-4) composition overlap and there is substantially no (B-4))
  • the mass ratio of each raw material in Comparative Example 8 is shown in Table 2 below.
  • a reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer particles (A) adjusted to a predetermined pH and a predetermined concentration on the basic side (pH 9.5 with ammonia water, concentration 40. 0 mass%) was weighed and charged, and the temperature was raised to 60 ° C. A predetermined amount of the initially added surfactant adjusted to a concentration of 10% by mass was slowly added thereto. The mixture in the reactor was heated to 70 ° C.
  • (B-4) a monomer mixture constituting the polymer, an ultraviolet absorber, Aqualon (registered trademark) KH-10 adjusted to a concentration of 15% by mass, 8 g of ammonium persulfate (2% aqueous solution) and 80 g of ion-exchanged water were homogenized.
  • the mixture was emulsified and mixed, and the mixture was allowed to flow into the reactor over 120 minutes to obtain a dispersion. Thereafter, the dispersion was cooled to room temperature, filtered through a 100-mesh wire mesh, solid content and average particle diameter were measured, and the state of deposits on the reaction vessel was visually confirmed.
  • the zeta potential at 60 ° C.
  • aqueous composite particle dispersion containing the composite particles was subjected to a warm water resistance test and a weather resistance test. In the paint blending for the weather resistance test, the mixed state with the titanium oxide and acrylic latex for the pigment was confirmed and confirmed to be good.
  • Examples 14 to 21 of the present invention it is possible to form a coating film having good dispersion stability during production, excellent water resistance, and excellent mixing stability. Further, an aqueous composite particle dispersion capable of adding weather resistance to the coating film was obtained by copolymerizing an ethylenically unsaturated monomer having a nitrogen functional group.
  • the aqueous composite particle dispersion of the present invention includes a photonic crystal, a paint, a coating material, a paper surface treatment agent, a paper processing agent, a fiber treatment agent, an adhesive material, a conductive material, a battery material, a thermoplastic resin composition, As a fine structure, an optical material, an antireflection member, and an optical lens, there is industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

水を含む水性媒体と、 当該水性媒体中に分散している複合粒子と、 を、含み、 前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)を有し、かつ、複合粒子の総質量に対して0.12質量%以下のリン原子を含む、少なくとも一つの水性複合粒子分散体(C)と、 他の水性樹脂分散体(D)と、 を、含有する、コーティング組成物分散体であって、 前記水性複合粒子分散体(C)と、前記他の水性樹脂分散体(D)との固形分質量比が、 ((C)成分の固形分質量)/(D)成分の固形分質量)=100/0~1/99からなるコーティング組成物分散体の塗膜において、当該コーティング組成物分散体の塗膜の色差Δb値と、前記他の水性樹脂分散体(D)の塗膜の色差Δb値とにより、 下記式で表される耐候性改質値:|Δb-Δb|/(Δb+Δb)が、0.15以上である、 コーティング組成物分散体。

Description

コーティング組成物分散体、水性複合粒子分散体、及び水性複合粒子分散体の製造方法
 本発明は、コーティング組成物分散体、水性複合粒子分散体、及びその製造方法に関する。
 近年、水性複合粒子分散体、すなわちラテックスから得られる水系塗料は、有機溶剤系から水系への転換用の素材としてコーティング分野において注目されている。
 しかし、水性複合粒子分散体から得られる水系コーティング材は、有機溶剤系塗料と比べて、顔料分散性、耐水性、耐汚染性、及び硬度等の観点において、未だ充分な物性を示していないという問題を有している。
 ここで、水性複合粒子分散体とは、水中にポリマーが溶解及び/又は分散している液状物を指す。
 従来から、水性複合粒子分散体の分野において、水中のポリマー粒子や、無機物粒子の機能を向上させる目的で、様々な官能基を粒子の表面へ導入する技術が開発されている。
 例えば、水性粒子分散体へ、リン酸基を持つエチレン性不飽和単量体を含む単量体類を酸性側で乳化重合する方法が提案されている。この方法は、水性粒子分散体中の粒子が持つリン酸基が無機物へ特異的に吸着するとされ、水性粒子分散体中の弱酸基等の親水基の一部をリン酸基とすることにより、無機顔料への特異的吸着を達成し、かつ分散安定性の向上を図ることができるものとされている(例えば、特許文献1参照)。
 また、無機顔料への特異的吸着を制御する目的で、水性粒子分散体中の粒子中に、リン酸基を持つエチレン性不飽和単量体の量を1~4%に限定した共重合ポリマーとは別に、p-スチレンスルホン酸又はメタクリル酸含む単量体類による共重合ポリマーを併存させるべく、酸性側で多段乳化重合を行う方法が提案されている(例えば、特許文献2参照)。
 さらに、水性粒子分散体へ、カルボキシル基を持つエチレン性不飽和単量体を含む単量体類を酸性側で前段の乳化重合し、塩基性化合物で中和した後、窒素官能基を持つエチレン性不飽和単量体を含む単量体類を含む単量体類を塩基性側で後段の乳化重合する方法が提案されている(例えば、特許文献3参照)。
 しかし、通常の非イオン性エチレン性不飽和単量体類とともに前記の方法を実施した場合には、ラテックスから得られる塗膜の耐水性を悪化させることから、非イオン性エチレン性不飽和単量体としてシクロアルキル基を持つエチレン性不飽和単量体と、グリシジル基を持つエチレン性不飽和単量体を用いて共重合させることを必須とせざるを得ないという問題を有している。また、特許文献3には、塩基性側という条件下で窒素官能基を持つエチレン性不飽和単量体と酸性基を持つエチレン性不飽和単量体とを通常の非イオン性エチレン性不飽和単量体類とともに乳化重合した場合には、その塗膜の耐水性は著しく低下してしまうことが開示されている。
 また、下記特許文献4には、ラテックスの製造方法として、カルボキシル基を持つエチレン性不飽和単量体を含む単量体類を酸性側で乳化重合した後、後段の乳化重合においては、塩基性側でカルボキシル基を持つエチレン性不飽和単量体を用いず、塩基性官能基を持つ単量体を含むエチレン性不飽和単量体類を乳化重合する方法が開示されている。
 さらに、下記特許文献5には、無機顔料への特異的吸着を制御する目的で、水性粒子ラテックス中の粒子中に、リン酸基を持つエチレン性不飽和単量体の量を1~4%に限定した共重合ポリマーと、これに加えて、p-スチレンスルホン酸又はメタクリル酸含む単量体類、及びアルデヒド反応性基含有モノマーとして塩基性官能基を持つ単量体を含むエチレン性不飽和単量体類による共重合ポリマーを併存させるために、リン酸基を持つエチレン性不飽和単量体を共重合するときは酸性となる低pH下で、それ以外の段階は中性付近で多段乳化重合を行う方法が提案されている。
 さらにまた、水性粒子分散体へ、窒素官能基を持つエチレン性不飽和単量体類を乳化重合する際、その塗膜の耐水性を改善するため、特定のシランカップリング剤を利用する方法が開示されている(例えば、特許文献6参照)。
 しかし、当該方法は、乳化重合中の分散安定性を損ないやすく、シランカップリング剤の使用量が制限されるという問題を有している。
 またさらに、水性粒子分散体へ乳化重合することにより、窒素官能基を持つエチレン性不飽和単量体をコア粒子組成の一部として共重合し、その後、弱酸基を持つエチレン性不飽和単量体を使用せず、シェルポリマーを形成させた粒子の調製方法が提案されている(例えば、特許文献7参照)。
 しかし、分散安定性が実用上十分ではないという問題を有している。
 また、水性粒子分散体に窒素官能基を持つエチレン性不飽和単量体を含む単量体類が乳化重合されたアクリル系エマルジョンと、無機物粒子との配合物である組成物が提案されている(例えば、特許文献8参照)。
 しかし、混合配合物の分散安定性が非常に悪く、保存時に凝集してしまうという問題を有している。
特許4792052号公報 特許5837961号公報 特許3215329号公報 特許第5919131号公報 特許第5837961号公報 特開2007-246800号公報 特表2003-506545号公報 特許2998604号公報
 上述したように、従来から、水性粒子分散体に対して種々の官能基を有するポリマーを重合させ、水性複合粒子分散体を得る技術が提案されているが、未だ十分な特性が得られていない。
 例えば、水性粒子分散体へカルボキシル基等の弱酸性基を持つエチレン性不飽和単量体を含む単量体類を酸性側にて前段の乳化重合をし、塩基性化合物で中和した後、塩基性側にてカルボキシル基等の弱酸性基を持つエチレン性不飽和単量体を含む単量体類による後段の乳化重合をした場合、得られる塗膜の耐水性は悪くなるという問題を有している。
 また、水性粒子分散体へカルボキシル基等の弱酸性基を持つエチレン性不飽和単量体を含む単量体類を酸性側にて前段の乳化重合をし、塩基性化合物で中和した後、カルボキシル基等の弱酸性基を持つエチレン性不飽和単量体と窒素官能基を持つエチレン性不飽和単量体とを含む単量体類を後段にて乳化重合をした場合、得られる塗膜の耐水性は著しく悪くなるという問題を有している。
 さらに、カルボキシル基等の弱酸性基を持つエチレン性不飽和単量体と、窒素官能基を持つエチレン性不飽和単量体とを含む単量体類を酸性側にて乳化重合した場合、分散体粒子の製造時の分散安定性を確保することができないという問題を有している。
 このため、塩基性官能基を持つエチレン性不飽和単量体を共重合したラテックスを得るためには、酸性基を持つエチレン性不飽和単量体としてカルボキシル基を持つエチレン性不飽和単量体を含む単量体類を用いて酸性側にて前段の乳化重合をし、塩基性化合物で中和した後、塩基性側にて塩基性官能基を持つエチレン性不飽和単量体を含む単量体類を用いて後段にて乳化重合をする必要がある。しかしながら、乳化重合中の分散安定性を確保するためには、前記「カルボキシル基を持つエチレン性不飽和単量体」を多量に必要とするため、当該ラテックスを用いた塗膜において、十分な耐水性が得られないという問題を有している。
 またさらに耐水性という課題を解決するため、前段及び/又は後段の乳化重合において、メタアクリル酸シクロヘキシル及びメタアクリル酸ブチルを用いることが必須であるという問題も有している。
 また、前段の乳化重合を行う際の粒子が無機物粒子をコア粒子として用いるか、又は、コア粒子と当該コア粒子の表面の少なくとも一部を覆うシリカ層とを有するシリカ被覆粒子であって、ナトリウムイオン又はカリウムイオンによって安定化された塩基性の複合粒子をコア粒子とする場合に、塩基性を維持したまま、弱酸性基を持つエチレン性不飽和単量体を含む単量体類を後段で乳化重合させることにより得られる複合粒子は、ゼータ電位が通常のマイナス値より低い値を示すため、ゼータ電位が通常のマイナス値を持つ顔料無機粒子とマイナスの電位差による凝集(同符号ヘテロ凝集)を起こしてしまい、混和安定性が著しく悪化するという問題を有している。
 そこで本発明においては、水性複合粒子分散体の製造時の分散安定性が良好で、塗料化時の顔料無機粒子との混和安定性に優れ、塗膜の耐水性及び耐候性に優れた水性複合粒子分散体及び当該水性複合粒子分散体を含有するコーティング組成物分散体を提供することを目的とする。
課題を解決するために手段
 本発明者らは、上記従来技術の課題を解決するために鋭意検討を行った結果、水性媒体と、当該水性媒体中に分散している複合粒子を含む水性複合粒子分散体において、前記複合粒子は、無機物粒子又は高分子ポリマー粒子をコア粒子(粒子(A))とし、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)を有するものとし、前記複合粒子の総質量に対して所定の質量割合のリン原子を含むものとし、水性複合粒子分散体の、pH7~11の範囲における60℃のゼータ電位を所定の数値範囲に特定した水性複合粒子分散体及び当該水性複合粒子分散体を含有するコーティング組成物分散体が、上記従来技術の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
〔1〕
 水を含む水性媒体と、
 当該水性媒体中に分散している複合粒子と、
を、含み、
 前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)を有し、かつ、複合粒子の総質量に対して0.12質量%以下のリン原子を含む、少なくとも一つの水性複合粒子分散体(C)と、
 他の水性樹脂分散体(D)と、
を、含有する、コーティング組成物分散体であって、
 前記水性複合粒子分散体(C)と、前記他の水性樹脂分散体(D)との固形分質量比が、
((C)成分の固形分質量)/(D)成分の固形分質量)=100/0~1/99からなるコーティング組成物分散体の塗膜において、当該コーティング組成物分散体の塗膜の色差Δb値と、前記他の水性樹脂分散体(D)の塗膜の色差Δb値とにより、
 下記式で表される耐候性改質値:|Δb-Δb|/(Δb+Δb)が、0.15以上である、
コーティング組成物分散体。
〔2〕
 水を含む水性媒体と、
 当該水性媒体中に分散している複合粒子と、
を、含む水性複合粒子分散体(C)であって、
 前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを有し、かつ、複合粒子の総質量に対して0.001~0.12質量%のリン原子を含み、
 前記粒子(A)が、無機物粒子又は高分子ポリマー粒子であり、
 前記水性複合粒子分散体のpH7~11の範囲のいずれかにおいて、60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が-10mV~-69mVである、水性複合粒子分散体(C)。
〔3〕
 前記水性複合粒子分散体(C)が、水を含む水性媒体と、当該水性媒体中に分散している複合粒子とを含み、
 前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを有し、かつ、複合粒子の総質量に対して0.001~0.12質量%のリン原子を含み、
 前記粒子(A)が、無機物粒子又は高分子ポリマー粒子であり、
 前記水性複合粒子分散体のpH7~11の範囲のいずれかにおいて、60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が-10mV~-69mVである、
 前記〔1〕に記載のコーティング組成物分散体。
〔4〕
 透析された後の25℃の前記水性複合粒子分散体(C)における前記複合粒子のゼータ電位が、
 pH7~11の範囲のいずれかにおいて-5mV~-59mVである、
 前記〔2〕に記載の水性複合粒子分散体(C)。
〔5〕
 透析された後の25℃の前記水性複合粒子分散体(C)における前記複合粒子のゼータ電位が、
 pH7~11の範囲のいずれかにおいて-5mV~-59mVである、
 前記〔1〕又は〔3〕に記載のコーティング組成物分散体。
〔6〕
 前記ポリマー層(B)が、
 酸性基を持つエチレン性不飽和単量体単位を有するポリマーを含有し、
 当該酸性基を持つエチレン性不飽和単量体単位を有するポリマーの形成工程における単量体全体量に対して酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を、前記酸性基を持つエチレン性不飽和単量体単位を有するポリマーとして含む、
 前記〔2〕又は〔4〕に記載の水性複合粒子分散体(C)。
〔7〕
 前記ポリマー層(B)が、
 リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)を含有し、
 当該リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)の形成工程における単量体全体量に対してリン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が0.1~5.0質量%であるポリマーを、前記リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)として含む、
 前記〔2〕、〔4〕、及び〔6〕のいずれか一に記載の水性複合粒子分散体(C)。
〔8〕
 前記ポリマー層(B)が、
 酸性基を持つエチレン性不飽和単量体単位を有するポリマーを含有し、
 当該酸性基を持つエチレン性不飽和単量体単位を有するポリマーの形成工程における単量体全体量に対して酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を、前記酸性基を持つエチレン性不飽和単量体単位を有するポリマーとして含む、
 前記〔1〕、〔3〕、及び〔5〕のいずれか一に記載のコーティング組成物分散体。
〔9〕
 前記ポリマー層(B)が、
 リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)を含有し、
 当該リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)の形成工程における単量体全体量に対してリン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が0.1~5.0質量%であるポリマーを、前記リン酸基を持つエチレン性不飽和単量体単位に由来する弱酸性単量体単位を有するポリマー(B-1)として含む、
 前記〔1〕、〔3〕、〔5〕、及び〔8〕のいずれか一に記載のコーティング組成物分散体。
〔10〕
 前記ポリマー層(B)が、
 窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)を含有し、
 当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)の形成工程における単量体全体量に対して窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.05~50質量%であるポリマーを、前記窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)として含む、
 前記〔2〕、〔4〕、〔6〕、及び〔7〕のいずれか一に記載の水性複合粒子分散体(C)。
〔11〕
 前記ポリマー層(B)が、
 窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、
 当該窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程における単量体全体量に対して塩基性非重合性単量体単位が0.05~50質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)として含む、
 請求項〔2〕、〔4〕、〔6〕、及び〔7〕のいずれか一に記載の水性複合粒子分散体(C)。
〔12〕
 前記ポリマー層(B)が、
 窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、
 当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程が、同時又は別段階で実施され、
 前記ポリマー(B-2)及びポリマー(B-5)の形成工程における単量体全体量に対して、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.02~30質量%、及び塩基性非重合性単量体単位が0.02~30質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記ポリマー(B-2)及び前記ポリマー(B-5)として含む、
 前記〔11〕に記載の水性複合粒子分散体(C)。
〔13〕
 前記ポリマー層(B)が、
 窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)を含有し、
 当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)の形成工程における単量体全体量に対して窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.05~50質量%であるポリマーを、前記窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)として含む、
 前記〔1〕、〔3〕、〔5〕、〔8〕、及び〔9〕のいずれか一に記載のコーティング組成物分散体。
〔14〕
 前記ポリマー層(B)が、
 窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、
 当該窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程における単量体全体量に対して塩基性非重合性単量体単位が0.05~50質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)として含む、
 前記〔1〕、〔3〕、〔5〕、〔8〕、及び〔9〕のいずれか一に記載のコーティング組成物分散体。
〔15〕
 前記ポリマー層(B)が、
 窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、
 当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程が、同時又は別段階で実施され、
 前記ポリマー(B-2)及びポリマー(B-5)の形成工程における単量体全体量に対して、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.02~30質量%、及び塩基性非重合性単量体単位が0.02~30質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記ポリマー(B-2)及び前記ポリマー(B-5)として含む、前記〔14〕に記載のコーティング組成物分散体。
〔16〕
 前記ポリマー(B-2)/前記ポリマー(B-1)の質量比が0.01~50である、
 前記〔10〕乃至〔12〕のいずれか一に記載の水性複合粒子分散体(C)。
〔17〕
 前記ポリマー(B-2)/前記ポリマー(B-1)の質量比が0.01~50である、
 前記〔13〕乃至〔15〕のいずれか一に記載のコーティング組成物分散体。
〔18〕
 前記ポリマー層(B)/前記粒子(A)の質量比が0.01~100である、
 前記〔2〕、〔4〕、〔6〕、〔7〕、〔10〕、〔11〕、〔12〕、及び〔16〕のいずれか一に記載の水性複合粒子分散体(C)。
〔19〕
 前記ポリマー層(B)/前記粒子(A)の質量比が0.01~100である、
 前記〔1〕、〔3〕、〔5〕、〔8〕、〔9〕、〔13〕、〔14〕、〔15〕、及び〔17〕のいずれか一に記載のコーティング組成物分散体。
〔20〕
 前記60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が、pH7~11の水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であり、
 前記測定用の分散体は、前記水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体を前記KCl水溶液で希釈して調製されたものである、
 前記〔2〕、〔4〕、〔6〕、〔7〕、〔10〕、〔11〕、〔12〕、〔16〕、及び〔18〕のいずれか一に記載の水性複合粒子分散体(C)。
〔21〕
 前記60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が、pH7~11の水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であり、
 前記測定用の分散体は、前記水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体を前記KCl水溶液で希釈して調製されたものである、
 前記〔3〕、〔5〕、〔8〕、〔9〕、〔13〕、〔14〕、〔15〕、〔17〕、及び〔19〕のいずれか一に記載のコーティング組成物分散体。
〔22〕
 前記透析された後の25℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が、
 1mMのNaOH水溶液で希釈された水性複合粒子分散体を透析し、pH7~11の透析後の当該水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であり、
 前記測定用の分散体は、透析された後の水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体をKCl水溶液で希釈して調製されたものである、
 前記〔4〕、〔6〕、〔7〕、〔10〕、〔11〕、〔12〕、〔16〕、〔18〕、及び〔20〕のいずれか一に記載の水性複合粒子分散体(C)。
〔23〕
 前記透析された後の25℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が、
 1mMのNaOH水溶液で希釈された水性複合粒子分散体を透析し、pH7~11の透析後の当該水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であり、
 前記測定用の分散体は、透析された後の水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体をKCl水溶液で希釈して調製されたものである、
 前記〔5〕、〔8〕、〔9〕、〔13〕、〔14〕、〔15〕、〔17〕、〔19〕、及び〔21〕のいずれか一に記載のコーティング組成物分散体。
〔24〕
 粒子(A)の表面の少なくとも一部に、ポリマー層(B)を形成する工程を有する水性複合粒子分散体の製造方法であって、
 前記水性複合粒子分散体は、粒子(A)の表面の少なくとも一部にポリマー層(B)が形成された複合粒子を含み、
 前記粒子(A)が無機物粒子又は高分子ポリマー粒子であり、
 前記ポリマー層(B)が、少なくとも一つの酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を含み、
 前記ポリマー層(B)を形成する工程が、
 pH6以上に調整された粒子(A)の分散液において、酸性基を持つエチレン性不飽和単量体の少なくとも一部を中和した状態にて、前記ポリマー(B-3)を乳化重合する工程と、
 その後、非イオン性エチレン性不飽和単量体単位を50~100質量%及び酸性基を持つエチレン性不飽和単量体単位を5.0質量%以下含むポリマー(B-4)を水性媒体中で乳化重合する工程と、
を、含む、
 水性複合粒子分散体の製造方法。
〔25〕
 前記ポリマー層(B)を形成する工程が、
 前記ポリマー(B-4)として、
 非イオン性エチレン性不飽和単量体単位を50~99.95質量%、酸性基を持つエチレン性不飽和単量体単位を5.0質量%以下、及び窒素官能基を持つエチレン性不飽和単量体単位を0.05~50質量%含むポリマーを乳化重合する工程を含む、前記〔24〕に記載の水性複合粒子分散体の製造方法。
〔26〕
 前記ポリマー層(B)が、
 前記ポリマー(B-3)として、
加水分解性シラン基を持つエチレン性不飽和単量体及び/又は加水分解性シラン基とメルカプト基とを持つ単量体を2.0質量%以下有するモノマー成分を乳化重合するとによって得られるポリマーを含み、
 前記ポリマー(B-3)の単量体の構成成分と、前記ポリマー(B-4)の単量体の構成成分とが、異なっている、前記〔24〕又は〔25〕に記載の水性複合粒子分散体の製造方法。
〔27〕
 前記ポリマー層(B)が、
 カルボキシル基を持つエチレン性不飽和単量体、リン酸基を持つエチレン性不飽和単量体、及びスルホン酸基を持つエチレン性不飽和単量体からなる群より選ばれる少なくとも一つの、酸性基を持つエチレン性不飽和単量体単位が複合粒子の総質量に対して0.005~4.0質量%であるポリマーを含む、
 前記〔24〕乃至〔26〕のいずれか一に記載の水性複合粒子分散体の製造方法。
〔28〕
 前記粒子(A)の表面の少なくとも一部にポリマー層(B)を形成する工程を有し、
 当該ポリマー層(B)を形成する工程が、
 pH6以上に調整された粒子(A)の分散液において、前記粒子(A)の存在下、リン酸基をもつ単量体を用いて、当該リン酸基の少なくとも一部を中和した状態にて乳化重合する工程を含む、
 前記〔24〕乃至〔27〕のいずれか一に記載の水性複合粒子分散体の製造方法。
〔29〕
 前記ポリマー層(B)が、
 前記リン酸基を持つエチレン性不飽和単量体からなる酸性基を持つエチレン性不飽和単量体単位が、複合粒子の総質量に対して0.001~1.0質量%未満であるポリマーを含む、
 前記〔24〕乃至〔28〕のいずれか一に記載の水性複合粒子分散体の製造方法。
〔30〕
 前記ポリマー(B-4)/前記ポリマー(B-3)の質量比が0.01~50である、
 前記〔24〕乃至〔29〕のいずれか一に記載の水性複合粒子分散体の製造方法。
〔31〕
 前記ポリマー層(B)/前記粒子(A)の質量比が0.01~100である、
 前記〔24〕乃至〔30〕のいずれか一に記載の水性複合粒子分散体の製造方法。
 本発明によれば、耐水性に優れた塗膜を形成することができ、また、顔料無機粒子との混和安定性に優れた水性複合粒子分散体が得られ、さらに窒素官能基を持つエチレン性不飽和単量体を共重合することによって塗膜に耐候性を付加できる水性複合粒子分散体、及び当該水性複合粒子分散体を含有するコーティング組成物分散体が得られる。
 以下、本発明を実施するための形態(以下「本実施形態」という。)について詳細に説明する。
 以下の本実施形態は、本発明を説明するための例示であり、本発明は以下の実施形態に限定されるものではない。本発明は、その要旨の範囲内で種々変形して実施できる。
〔コーティング組成物分散体〕
 本実施形態のコーティング組成物分散体は、
 水を含む水性媒体と、
 当該水性媒体中に分散している複合粒子と、
を、含み、
 前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)を有し、かつ、複合粒子の総質量に対して0.12質量%以下のリン原子を含む、少なくとも一つの水性複合粒子分散体(C)と、
 他の水性樹脂分散体(D)と、を、含有するコーティング組成物分散体であって、
 前記水性複合粒子分散体(C)と前記他の水性樹脂分散体(D)との固形分質量比が、((C)成分の固形分質量)/(D)成分の固形分質量)=100/0~1/99からなるコーティング組成物分散体の塗膜において、当該コーティング組成物分散体の塗膜の色差Δb値と前記他の水性樹脂分散体(D)の塗膜の色差Δb値との差(耐候性改質値:|Δb-Δb|/(Δb+Δb)が、0.15以上である。
 前記水性複合粒子分散体(C)については、後述する。
 他の水性樹脂分散体(D)とは、水性複合粒子分散体(C)とは、異なる樹脂の分散体であり、以下に限定されるものではないが、例えば、ビニル系ポリマー、酢酸ビニル系ポリマー、ポリエーテル、ポリエステル、ポリカーボネート、ポリアミド、ポリウレタン、ジエン系ポリマー、メラミン・ベンゾグアナミン系ポリマー、芳香族系ポリマー、ポリイミド、ポリカーボネート、ポリウレタン、ポリカプロラクトン、硫黄系ポリマー及び天然高分子からなる群より選択されるポリマーが挙げられる。
 他の水性樹脂分散体(D)は、(メタ)アクリル酸エステルを単量体単位として含むアクリルポリマー、スチレン及び(メタ)アクリル酸エステルを単量体単位として含むスチレン-アクリルポリマー、スチレン及びブタジエンを単量体単位として含むスチレン-ブタジエンポリマー、並びに、シリコーン変性ポリマー、フッ素系ポリマーから選ばれる少なくとも1種のポリマーを含む粒子からなる樹脂分散体であることが好ましい。
 後述する水性複合粒子分散体(C)の固形分質量と、他の水性複合粒子分散体(D)の固形分質量との比((C)成分の固形分質量/(D)成分の固形分質量)は、耐候性発現の観点から、100/0~1/99であるものとし、100/0~5/95であることが好ましく、95/5~5/95であることがより好ましく、90/10~10/90であることがさらに好ましい。
 当該(C)成分と(D)成分の固形分質量比は、所望の耐候性改質値に合わせて調節することが好ましい。
 なお、(C)成分の固形分質量/(D)成分の固形分質量が100/0であるとき、Δbは0である。
 本実施形態のコーティング組成物分散体においては、当該コーティング組成物分散体から得られる塗膜の色差Δb値と、前記他の水性樹脂分散体(D)の塗膜の色差Δb値とにより、下記式で示される耐候性改質値:|Δb-Δb|/(Δb+Δb)が、0.15以上である。好ましくは0.20以上であり、より好ましくは0.29以上である。
 前記式により示される耐候性改質値が0.15以上であることにより、本実施形態のコーティング組成物分散体により得られる塗膜の耐候性が十分に改善されたものとなる。
 前記コーティング組成物分散体の塗膜の色差Δb値は、水性複合粒子分散体(C)と他の水性樹脂分散体(D)とを所望の比率で混合し、かつ二酸化チタンを混合して調製した白色塗料を用いて形成した塗装試験体により、所定の耐候性試験を実施して、曝露1000時間後のb値を測定し、曝露前のb値との差を算出することにより得られる。なお、b値は色差計により測色することができる。なお、b値の測色に当たっては、二酸化チタンを混合した白色塗料を用いる以外に、すでに塗装試験体としての白色塗料塗膜が形成された上に、ニ酸化チタンを配合していない(C)成分及び/又は(D)成分のクリア膜を形成させたものを用いる方法を適用してもよい。
 前記他の水性樹脂分散体(D)の色差Δb値は、他の水性樹脂分散体(D)と酸化チタンを混合して調製した塗料を用いて形成した塗装試験体により、所定の耐候性試験を実施して、曝露1000時間後のb値を測定し、曝露前のb値との差を算出することにより得られる。この場合もb値は色差計により測定することができる。
 通常は、耐候性改質値は、|Δb-Δb|/(Δb+Δb)の式により示されるが、前記Δb≦30である場合に耐候性改質効果が認められる。Δb≦20であることが好ましく、Δb≦10であることがさらに好ましい。この範囲以外では耐候性改質効果は得られにくい。
 (耐候性改質値:|Δb-Δb|/(Δb+Δb))の値は、塗膜中に均質に分散及び配位した、光安定剤成分及び/又は紫外線吸収剤成分を存在させること、及びその量を調整することにより、上記数値範囲に制御することができる。
 また、本実施形態のコーティング組成物は、前記水性複合粒子分散体(C)が、水を含む水性媒体と、当該水性媒体中に分散している複合粒子とを含み、前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを有し、かつ、複合粒子の総質量に対して0.001~0.12質量%のリン原子を含み、
 前記粒子(A)が、無機物粒子又は高分子ポリマー粒子であり、
 前記水性複合粒子分散体のpH7~11の範囲のいずれかにおいて、60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が-10mV~-69mVである、水性複合粒子分散体(C)を含有するものが好ましい態様として挙げられる。
〔水性複合粒子分散体(C)〕
 本実施形態の水性複合粒子分散体は、
 水を含む水性媒体と、
 当該水性媒体中に分散している複合粒子と、
を、含み、
 前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを有し、かつ、複合粒子の総質量に対して0.001~0.12質量%のリン原子を含み、
 前記粒子(A)が、無機物粒子又は高分子ポリマー粒子であり、
 前記水性複合粒子分散体のpH7~11の範囲のいずれかにおいて、60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が-10mV~-69mVである。
(水性媒体)
 水性媒体は、水の他に、エタノール、イソプロピルアルコール等のアルコール類;アセトン等のケトン類;テトラヒドロフラン、及びジオキサン等のエーテル類の親水性溶媒を含み得る。
(複合粒子)
 本実施形態の水性複合粒子分散体(C)に含まれる複合粒子は、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを含む。
 粒子(A)は、無機物粒子又は高分子ポリマー粒子(A)である。
 複合粒子は種々の構造を有することができる。例えば、複合粒子を構成する粒子(A)は、1個以上の微細な無機物粒子であってもよいし、コア粒子と当該コア粒子の表面の少なくとも一部を覆うシリカ層とを有するコアシェル型のシリカ被覆粒子であってもよい。
 また、粒子(A)はポリマー層(B)により完全に被覆されていてもよく、一部のみを被覆されていてもよい。
 本実施形態の水性複合粒子分散体(C)は、ポリマー層(B)によって被覆された粒子(A)の他に、ポリマー層(B)を構成するポリマー粒子の表面上に配置された粒子(A)を含んでいてもよい。すなわち、ポリマー層(B)を構成する、複合化されたポリマー粒子表面に多数の粒子(A)が配置し、多数の粒子(A)によって分散安定化し、中央部にポリマー層(B)を構成するポリマー粒子が存在する形態となっていてもよい。
 また、粒子(A)の大部分がポリマー層(B)を構成するポリマー粒子の表面に配置していてもよい。
 さらに、水性媒体に分散した複合粒子の固体物質濃度に依存して、複合粒子のわずかな部分的凝集が生じる場合もある。
 本実施形態の水性複合粒子分散体(C)は、個々の粒子(A)がポリマー層(B)により被覆された状態で分散された複合粒子の他に、ポリマー層(B)で被覆されていない粒子(A)を含んでいてもよい。この場合、本実施形態の水性複合粒子分散体(C)における複合粒子のゼータ電位が容易に低い値を発現することが可能となる。
 粒子(A)はポリマー層(B)により完全に被覆されていることが好ましく、粒子(A)単位ごとにポリマー層(B)により完全に被覆されていることがさらに好ましい。
 粒子(A)がポリマー層(B)によって完全に被覆されている複合粒子の形状は、分散液を透析・イオン交換した後、電気伝導度滴定によって、粒子表面シラノール基に特有のカウンターイオンコンデンゼーション現象が見られなくなったことから推定できる。また、粒径測定から粒子単位の被覆であることを確認できる。
<複合粒子が含むリン原子>
 本実施形態の水性複合粒子分散体(C)に含まれる複合粒子は、リン原子を含むものであることが好ましい。
 当該リン原子は、後述するようにポリマー層(B)の形成の際、リン酸基を持つエチレン性不飽和単量体が他単量体類と共重合する際、複合粒子内及び/又は複合粒子表面に固定化されたリン原子であり、水性複合粒子分散体(C)から、当該分散体の水相成分、当該分散体の吸着成分を除いたリン成分に由来するリン原子を指す。
 複合粒子は、上記のように、粒子(A)と、前記粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを有し、かつ、複合粒子の総質量に対して0.12質量%以下のリン原子を含み、好ましくは0.001~0.12質量%であり、より好ましくは0.001~0.08質量%であり、さらに好ましくは0.002~0.07質量%、さらにより好ましくは0.002~0.06質量%、よりさらに好ましくは、0.002~0.03質量%である。
 リン原子の含有量を上記数値範囲とすることにより、顔料無機粒子との分散安定性に優れ、塗膜が優れた耐水性が得られる傾向にある。
 上記範囲を超えると、製造工程中に新たな粒子が発生してしまう等の原因により、粒子(A)に対するポリマー層(B)の形成が不十分となる傾向にある。
 リン原子の含有量は、後述するように、ポリマー層(B)形成の際の、リン酸基を持つエチレン性不飽和単量体を用いた共重合条件を適宜調整することにより制御することができる。
 特に、ポリマー層(B)の成分に、窒素官能基を持つエチレン性不飽和単量体が含まれるとき、塗膜耐水性の発現効果が高い。
<粒子(A)>
 粒子(A)は、無機物粒子又は高分子ポリマーである。
 粒子(A)の粒径(平均粒径)は、複合粒子から形成される塗膜の透明性の観点から、好ましくは1nm~5μmであり、より好ましくは1nm~500nmであり、さらに好ましくは3nm~250nmである。
 粒子(A)の平均粒径は、大塚電子(株)製ELSZ-1000ZS等を用いた動的光散乱法によって、キュムラント法解析に基づいて求めることができる。
[無機物粒子]
 粒子(A)として使用可能な無機物粒子としては、以下に限定されるものではないが、例えば、金属粒子、金属化合物、半金属化合物、非金属無機化合物の粒子が挙げられる。
 金属化合物としては、例えば、金属酸化物及び金属塩が挙げられる。
 無機物粒子は、無機物を含む単一の相から構成される粒子であってもよい。
 金属粒子としては、以下に限定されるものではないが、例えば、貴金属コロイド、例えばパラジウム、銀、ルテニウム、白金、金、ロジウム又はこれらを含有する合金のコロイドが挙げられる。
 金属酸化物としては、例えば、二酸化チタン(チタニア、例えば石原産業(株)製)、酸化ジルコニウム(ジルコニア)、酸化スズ(例えば日産化学(株)製)、酸化アルミニウム(例えば日産化学(株)製)、酸化バリウム、酸化マグネシウム、種々の酸化鉄(例えばウエスタイト、ヘマタイト及びマグネタイト)、酸化クロム、酸化アンチモン、酸化ビスマス、酸化亜鉛、酸化ニッケル、酸化コバルト、酸化銅、酸化イットリウム、及び酸化セリウムから選ばれる金属酸化物が挙げられる。
 金属酸化物は、非晶質であってもよいし、種々の結晶変態であってもよい。
 金属酸化物粒子は、金属のヒドロキシ酸化物、例えばヒドロキシチタン酸化物、ヒドロキシジルコニウム酸化物、ヒドロキシアルミニウム酸化物及びヒドロキシ鉄酸化物から選ばれる金属化合物を含んでもよいし、これらは、非晶質であってもよく、種々の結晶変態であってもよい。
 具体的には、下記の非晶質及び/又はその種々の結晶構造で存在する金属塩の粒子を、粒子(A)である無機物粒子として使用できる。
硫化物、例えば硫化鉄、二硫化鉄、硫化スズ、硫化水銀、硫化カドミウム、硫化亜鉛、硫化銅、硫化銀、硫化ニッケル、硫化コバルト、硫化マンガン、硫化クロム、硫化チタン、硫化チタン、硫化ジルコニウム、硫化アンチモン、硫化ビスマス;
水酸化物、例えば水酸化スズ、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、水酸化鉄;
硫酸塩、例えば硫酸カルシウム、硫酸ストロンチウム、硫酸バリウム、硫酸鉛;
炭酸塩、例えば炭酸リチウム、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、炭酸ジルコニウム;
炭酸鉄;
オルトリン酸塩、例えばオルトリン酸リチウム、オルトリン酸カルシウム、オルトリン酸亜鉛、オルトリン酸マグネシウム、オルトリン酸アルミニウム、オルトリン酸スズ、オルトリン酸鉄;
メタリン酸塩、例えばメタリン酸リチウム、メタリン酸カルシウム、メタリン酸アルミニウム;
ピロリン酸塩、例えばピロリン酸マグネシウム、ピロリン酸カルシウム、ピロリン酸亜鉛、ピロリン酸鉄、ピロリン酸スズ;
アンモニウムリン酸塩、例えばアンモニウムリン酸マグネシウム、アンモニウムリン酸亜鉛;
ヒドロキシルアパタイト;
オルトケイ酸塩、例えばオルトケイ酸リチウム、オルトケイ酸カルシウム/マグネシウム、オルトケイ酸アルミニウム、オルトケイ酸鉄、オルトケイ酸マグネシウム、オルトケイ酸亜鉛、オルトケイ酸ジルコニウム;
メタケイ酸塩、例えばメタケイ酸リチウム、メタケイ酸カルシウム/マグネシウム、メタケイ酸カルシウム、メタケイ酸マグネシウム、メタケイ酸亜鉛;
層状ケイ酸塩、例えばアルミニウムケイ酸ナトリウム及びマグネシウムケイ酸ナトリウム、特に自発的に離層した形、例えばOprigel(登録商標)(ロックウッド社製)、Saponite(登録商標)、Hektorite(登録商標)(ヘキスト社製)およびLaponite(登録商標)(ロックウッド社製);
アルミン酸塩、例えばアルミン酸リチウム、アルミン酸カルシウム、アルミン酸亜鉛;
ホウ酸塩、例えばメタホウ酸マグネシウム、オルトホウ酸マグネシウム;
シュウ酸、例えばシュウ酸カルシウム、シュウ酸ジルコニウム、シュウ酸亜鉛、シュウ酸アルミニウム;
酒石酸塩、例えば酒石酸カルシウム、
アセチルアセトネート、例えばアルミニウムアセチルアセトネート、鉄アセチルアセトネート;
サリチル酸塩、例えばサリチル酸アルミニウム;
クエン酸塩、例えばクエン酸カルシウム、クエン酸鉄、クエン酸亜鉛;
パルミチン酸塩、例えばパルミチン酸アルミニウム、パルミチン酸カルシウム、パルミチン酸マグネシウム;
ステアリン酸塩、例えばステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛;
ラウレート、例えばカルシウムラウレート;
リノレイン酸塩、例えばリノレイン酸カルシウム;
及びオレイン酸塩、例えばオレイン酸鉄、オレイン酸亜鉛が挙げられる。
 粒子(A)である無機物粒子として使用可能な半金属化合物粒子としては、非晶質及び/又は種々の結晶構造で存在する二酸化ケイ素(シリカ)粒子が挙げられる。
 好適な二酸化ケイ素(シリカ)粒子は市販されており、以下に限定されるものではないが、例えば、Aerosil(登録商標)(デグッサ社製)、Levasil(登録商標)(バイエル社製)、Ludox(登録商標)(デュポン社製)、Nyacol(登録商標)(ナヤコール社製)、Bindzil(登録商標)(アクゾーノーベル社製)、Snowtex(登録商標)(日産化学工業(株)の商標)、アデライト(登録商標)(アデカ(株)製)、カタロイド(登録商標)(日揮触媒化成(株))の商標)が挙げられる。
 好適な非金属化合物粒子としては、例えばコロイド状で存在するグラファイト及びダイヤモンドが挙げられる。
 粒子(A)としての無機物粒子は、好ましくは、二酸化ケイ素、酸化アルミニウム、酸化スズ、酸化イットリウム、酸化セリウム、酸化ヒドロキシアルミニウム、炭酸カルシウム、炭酸マグネシウム、オルトリン酸カルシウム、オルトリン酸マグネシウム、メタリン酸カルシウム、メタリン酸マグネシウム、ピロリン酸カルシウム、ピロリン酸マグネシウム、酸化鉄、二酸化チタン、ヒドロキシルアパタイト、酸化亜鉛及び硫化亜鉛からなる群から選択される少なくとも1種の無機化合物を含む。負の符号を有するゼータ電位を示すコロイダルシリカがさらに好ましい。
[高分子ポリマー粒子]
 粒子(A)として使用可能な高分子ポリマー粒子としては、以下に限定されるものではないが、例えば、ビニル系ポリマー、酢酸ビニル系ポリマー、ポリエーテル、ポリエステル、ポリカーボネート、ポリアミド、ポリウレタン、ジエン系ポリマー、メラミン・ベンゾグアナミン系ポリマー、芳香族系ポリマー、ポリイミド、ポリカーボネート、ポリウレタン、ポリカプロラクトン、硫黄系ポリマー及び天然高分子からなる群より選択されるポリマーを含むことができる。
 高分子ポリマー粒子は、(メタ)アクリル酸エステルを単量体単位として含むアクリルポリマー、スチレン及び(メタ)アクリル酸エステルを単量体単位として含むスチレン-アクリルポリマー、スチレン及びブタジエンを単量体単位として含むスチレン-ブタジエンポリマー、並びに、シリコーン変性ポリマー、フッ素系ポリマーから選ばれる少なくとも1種のポリマーを含む粒子であることが好ましい。
[シリカ被覆粒子]
 粒子(A)はシリカ被覆粒子を含んでいてもよい。
 シリカ被覆粒子は、コア粒子と、当該コア粒子の表面の一部又は全てを覆う、二酸化ケイ素(シリカ)を含むシリカ層とを有する。
 シリカ被覆粒子は、例えば、水性媒体又は有機溶剤中に分散されたコア粒子の存在下で、少なくとも1種のシラン化合物を加水分解及び縮合反応させる方法によって得ることができ、当該方法においては、必要に応じて適宜界面活性剤類を使用することができる。
 シリカ被覆粒子は、シリカ粒子表面と実質的に同様の表面を有し得る。シリカ層はポリマー層(B)により完全に被覆されてもよい。
 シリカ被覆粒子を構成するコア粒子は、所定の無機物粒子又は高分子ポリマー粒子であってもよい。無機物粒子及び高分子ポリマー粒子としては、上述した各種粒子と同様のものを適用できる。
 コア粒子としての無機物粒子とシリカ層とを有する粒子は、それ自体、無機物粒子に該当し得るが、本明細書ではこれをシリカ被覆粒子に分類する。
 シリカ被覆粒子を構成するシリカ層を形成するために用いられるシラン化合物は、下記式(a)で表される化合物から選ばれる少なくとも1種を含むことが好ましい。
  (R-Si-(R4-n      (a)
 前記式(a)中、nは0~3の整数である。
 また、Rは水素原子、炭素数1~16の脂肪族炭化水素基、炭素数5~10のアリール基、炭素数5~6のシクロアルキル基、ビニル基、炭素数1~10のアクリル酸アルキル基、又は炭素数1~10のメタクリル酸アルキル基である。
 n個のRは同一であっても、異なってもよい。
 Rは炭素数1~8のアルコキシ基、アセトキシ基又は水酸基である。
 4-n個のRは同一であっても、異なってもよい。
 シリカ層を形成するために用いられるシラン化合物は、前記式(a)におけるnが0であるシラン化合物(I)、又は式(a)におけるnが1であるシラン化合物(II)のうち少なくとも1種を含んでいることが好ましく、良好な水分散体の重合安定性と架橋効果を得るためにはnが0のシラン化合物(I)であることがさらに好ましい。
 前記シラン化合物(I)のRは、それぞれ独立して、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基又は水酸基であることが好ましい。前記シラン化合物(I)の好ましい具体例としては、テトラメトキシシラン、テトラエトキシシランが挙げられる。
 前記シラン化合物(II)のRは、メチル基、フェニル基、シクロヘキシル基、ビニル基、又はγ-(メタ)アクリロキシプロピル基であることが好ましい。
 前記シラン化合物(II)のRは、それぞれ独立して、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基、又は水酸基であることが好ましい。
 前記シラン化合物(II)の好ましい具体例としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、シクロヘキシルトリメトキシシラン、イソブチルトリメトキシシランが挙げられる。
 ラジカル重合性二重結合を有するシラン化合物(II)としては、例えば、ビニルエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン等が挙げられる。
 上述したシリカ層を形成するためのシラン化合物は、1種のみを単独で用いてもよく、又は二種以上を組み合わせて用いてもよい。好ましくはラジカル重合性二重結合を有する加水分解性シラン化合物と、ラジカル重合性二重結合を有しないシラン化合物とを併用する。またこれらシラン化合物のオリゴマー類も使用することができる。
 粒子(A)としてのシリカ被覆粒子におけるシリカ層の割合は、例えば、シリカ被覆粒子の質量に対して、0.1~100質量%が好ましい。
<ポリマー層(B)>
 本実施形態の水性複合粒子分散体に含まれる複合粒子は、上述したように、粒子(A)と当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)を有している。
 ポリマー層(B)は、粒子(A)及び所定の単量体の存在下で重合を行うことにより形成できる。
 ポリマー層(B)を形成するための重合過程において、単量体として、酸性基、好ましくは弱酸性基を持つエチレン性不飽和単量体を使用する。すなわちポリマー層(B)は、好ましくは弱酸性基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有する。
 前記単量体としては、例えば、カルボン酸基、リン酸基からなる群より選ばれる少なくとも1種の基を有する、弱酸性基を持つエチレン性不飽和単量体が用いられ、好ましくは弱酸性基を持つエチレン性不飽和単量体が、リン酸基を持つエチレン性不飽和単量体である。
 なお、本実施形態の水性複合粒子分散体(C)に含まれる複合粒子は、複合粒子の総質量に対して0.12質量%以下、好ましくは0.001~0.12質量%のリン原子を含むものであるため、前記ポリマー層(B)を形成する際の単量体としては、リン酸基を持つエチレン性不飽和単量体を含むものとすることが好ましい。
 カルボン酸基を持つイオン性エチレン性不飽和量体としては、以下に限定されるものではないが、例えば、イタコン酸、フマール酸、マレイン酸、無水マレイン酸、マレイン酸及びこれらのモノエステル、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。
 リン酸基を持つエチレン性不飽和単量体としては、以下のものが挙げられる。
 なお、ここに示すリン酸基(phosphonic acid基)とは、リン酸エステル基(phosphate基)を含む。例えば、重合性ビニル基又はオレフィン基を含むアルコールのリン酸二水素エステル(アリルホスファート、ビス(ヒドロキシメチル)フマラート若しくはイタコナートのモノ若しくはジホスファート等)や、(メタ)アクリル酸エステルの誘導体((メタ)アクリル酸ヒドロキシアルキルのホスファート、(メタ)アクリル酸2-ヒドロキシエチルのリン酸モノエステル、(メタ)アクリル酸2-ヒドロキシプロピルのリン酸モノエステル、及び(メタ)アクリル酸3-ヒドロキシプロピルのリン酸モノエステル等)が挙げられる。
 リン酸基を持つエチレン性不飽和単量体は酸の形態、又はリンの酸基の塩として存在し、以下のものが挙げられる。
 なお、ここに示すリン酸基(phosphonic acid基)とは、亜リン酸基(phosphorus acid基)を含み、さらにリン酸エステル基(phosphate基)、亜リン酸エステル基(phosphonate基)を含む。
 例えば、重合性ビニル基又はオレフィン基を含むアルコールのリン酸二水素エステル(アリルホスフェート、ビス(ヒドロキシメチル)フマラート若しくはイタコナートのモノ若しくはジホスフェート等)や、(メタ)アクリル酸エステルの誘導体(メタ)アクリル酸ヒドロキシアルキルのホスフェート、(メタ)アクリル酸2-ヒドロキシエチルのリン酸モノエステル、(メタ)アクリル酸2-ヒドロキシプロピルのリン酸モノエステル、(メタ)アクリル酸3-ヒドロキシプロピルのリン酸モノエステル、(メタ)アクリル酸2-ヒドロキシエチルのリン酸ジエステル、(メタ)アクリル酸-2ヒドロキシプロピルのリン酸ジエステル、(メタ)アクリル酸-3ヒドロキシプロピルのリン酸ジエステル、(メタ)アクリロイルオキシアルキルモノホスフェート、(メタ)アクリロイロキシポリオキシエチレングリコールアシッドホスフェート、(メタ)アクリロイロキシポリオキシプロピレングリコールアシッドホスフェートが挙げられる。
 これらは、一種のみを単独で用いても、2種以上を組み合わせて用いてもよい。
 市販されているリン酸基を持つエチレン性不飽和単量体としては特に限定されず、例えば、共栄社化学株式会社から入手可能なライトアクリレート(登録商標)P-1A(N)、ライトエステル(登録商標)P-1M、ライトエステル(登録商標)P-2M、東邦化学工業株式会社から入手可能なPPME、PMR12、PPM-5P、ローディアインコーポレーティド(Rhodia,Inc.)から入手可能なSIPOMER(登録商標)PAM-100、SIPOMER(登録商標)PAM-200、SIPOMER(登録商標)PAM-300、及びSIPOMER(登録商標)PAM-400、ユニケミカル(株)から入手可能なホスマー(登録商標)M、ホスマー(登録商標)PE、ホスマー(登録商標)PP、大八化学工業株式会社から入手可能なMR-200、MR-260等が挙げられる。
 その他のリン酸基を持つ単量体としては、以下に限定されるものではないが、例えば、ビニルホスホン酸、アリルホスホン酸、2-アクリルアミド-2-メチルプロパンホスホン酸、α-ホスホノスチレン、2-メチルアクリルアミド-2-メチルプロパンホスホン酸、ユニケミカル(株)から入手可能なホスマーCL、亜リン酸基を持つ単量体としては、2-ホスホエチル(メタ)アクリレート、2-ホスホプロピル(メタ)アクリレート、3-ホスホプロピル(メタ)アクリレート等が挙げられる。
 ポリマー層(B)を形成する過程において、弱酸性基を持つエチレン性不飽和単量体の使用量に関しては、カルボキシル基を持つエチレン性不飽和単量体及びリン酸基を持つエチレン性不飽和単量体からなる群より選ばれる少なくとも一つの、弱酸性基を持つエチレン性不飽和単量体単位の使用量を、最終的に得られる複合粒子の総質量((C)成分の固形分質量)に対して0.05~4.0質量%となるようにすることが好ましく、より好ましくは0.001~1.0質量%未満、さらに好ましくは0.05~0.5質量%未満である。
 ポリマー層(B)を形成する過程において、リン酸基を持つエチレン性不飽和単量体の使用量が、最終的に得られる複合粒子の総質量((C)成分の固形分質量)に対して、0.001~1.0質量%未満、好ましくは0.05~0.5質量%未満の低量となるようにすることにより、顔料無機粒子との分散安定性に優れ、塗膜が優れた耐水性を得られる傾向にある。
 ポリマー層(B)を形成する過程において、リン酸基を持つエチレン性不飽和単量体の使用量は、ポリマー層(B)を形成する重合性単量体の総量に対して、0.001~5.0質量%とすることが好ましく、より好ましくは0.01~1.0質量%であり、さらに好ましくは0.01~0.5質量%であり、さらにより好ましくは0.01~0.5質量%未満であり、よりさらに好ましくは0.05~0.4質量%である。かかる低量とすることにより、顔料無機粒子との分散安定性に優れ、塗膜が優れた耐水性を得られる傾向にある。
 なお、粒子(A)がポリマーであるとき、ポリマー層(B)を形成する過程において、弱酸性基を持つエチレン性不飽和単量体の使用量に関しては、カルボキシル基を持つエチレン性不飽和単量体及びリン酸基を持つエチレン性不飽和単量体からなる群より選ばれる少なくとも一つの、弱酸性基を持つエチレン性不飽和単量体単位の使用量を、粒子(A)のポリマーとポリマー層(B)を形成するために用いる全単量体の質量合計、すなわち最終的に得られる複合粒子の総質量((C)成分の固形質量分)中の、0.31~5.0質量%とすることが好ましく、0.31~2.0質量%とすることがより好ましく、0.31~1.0質量%とすることがさらに好ましい。
 これにより、水分散安定性の効果が得られる。
 また、粒子(A)がポリマーであるとき、ポリマー層(B)を形成する過程において、リン酸基を持つエチレン性不飽和単量体の使用量を、粒子(A)のポリマーとポリマー層(B)を形成するために用いる全単量体の質量合計、すなわち最終的に得られる複合粒子の総質量((C)成分の固形質量分)中の、0.001~1.0質量%未満とすることが好ましく、0.05~0.5質量%未満とすることがより好ましい。
 これにより、無機酸化物への吸着の効果が得られる。
 ポリマー層(B)を形成するために用いられる単量体には、上述した弱酸性エチレン性単量体の他、これとは異なる単量体、例えば、1種又は2種以上のスルホン酸基(sulfonate基)又は硫酸エステル基(sulfate基)を有するイオン性エチレン性不飽和単量体、窒素官能基を持つエチレン性不飽和単量体、及び/又は非イオン性エチレン性不飽和単量体を含んでいてもよい。
 前記スルホン酸基を有するイオン性エチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、アリルスルホン酸を含むα-オレフィンスルホン酸、p-スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシ-1-プロパンスルホン酸が挙げられる。
 これらの酸の塩(例えばアルカリ金属塩及びアンモニウム塩)も、「スルホン酸基を有するイオン性エチレン性不飽和単量体」に含まれ得る。
 アルカリ金属塩又はアンモニウム塩としては、以下に限定されるものではないが、例えば、リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩、アルカノールアンモニウム塩、及び塩基性アミノ酸のアンモニウム塩等が挙げられる。
 ポリマー層(B)を形成するための重合工程において、単量体としては、さらに、窒素官能基を持つエチレン性不飽和単量体を用いることができる。
 前記窒素官能基としては、以下に限定されるものではないが、例えば、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、4級化アミノ基が挙げられる。
 窒素官能基を持つエチレン性不飽和単量体としては、具体的には、(メタ)アクリル酸アミノアルキル、又はへテロ原子が窒素である5又は6員環複素環を有する化合物を含むものを適用できる。
 窒素官能基を持つエチレン性不飽和単量体としては、(メタ)アクリル酸-N,N-ジアルキル(炭素数1~6)アミノアルキル(炭素数2~3)エステルが好ましい。その例としては、以下に限定されるものではないが、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノプロピルエステル、(メタ)アクリル酸ジメチルアミノプロピルエステル、(メタ)アクリル酸ジメチルアミノt-ブチルエステル、(メタ)アクリル酸ジエチルアミノt-ブチルエステルが挙げられる。その他、(メタ)アクリル酸トリエタノールアミン、ビニルアミン、ビニルピリジンが挙げられる。
 さらには、4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-〔3-(メタ)アクリルオキシ-2-ヒドロキシプロポキシ〕ベンゾフェノン、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシヘキシル)フェニル]-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-3'-tert-ブチル-5'-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-tert-ブチル-3'-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシエチル)フェニル]-5-クロロ-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシエチル)フェニル]-5-メトキシ-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシエチル)フェニル]-5-シアノ-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシエチル)フェニル]-5-tert-ブチル-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5'-(メタクリロイルオキシエチル)フェニル]-5-ニトロ-2H-ベンゾトリアゾール、2-〔2'-ヒドロキシ-5'-(β-メタクリロイルオキシエトキシ)-3'-tert-ブチルフェニル〕-4-tert-ブチル-2H-ベンゾトリアゾール(大塚化学(株)製、製品名:RUVA-93)、3-メタクリロイル-2-ヒドロキシプロピル-3-[3-(2-ベンゾトリアゾリル)-4-ヒドロキシ-5-tert-ブチル]フェニルプロピオネート(BASFジャパン(株)製、製品名:CGL-104)等の紫外線吸収性エチレン性不飽和単量体;4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン[例えば(ADEKA(株)製、製品名:アデカスタブLA87):2,2,6,6-テトラメチル-4-ピペリジルメタクリレート]、4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン[例えば(ADEKA(株)製、製品名:アデカスタブLA82):1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート]、2,2,6,6-テトラメチル-4-ピペリジルアクリレート、1,2,2,6,6-ペンタメチル-4-イミノピペリジルメタクリレート、2,2,6,6-テトラメチル-4-イミノピペリジルメタクリレート、4-シアノ-2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-シアノ-1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルアミノ-1,2,2,6,6-ペンタメチルピペリジン、4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-(メタ)アクリロアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-シアノ-4-(メタ)アクリロアミノ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルアミノ-2,2,6,6-テトラメチルピペリジン、1-クロトノイル-4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン等の光安定性エチレン性不飽和単量体等が挙げられる。
 本実施形態の水性複合粒子分散体(C)は、さらに、ポリマー層(B)中に非共重合性の紫外線吸収剤及び/又は非共重合性の光安定剤を含んでいてもよく、これにより高耐候性を付与することができる。
 紫外線吸収性エチレン性不飽和単量体及び/又は光安定性エチレン性不飽和単量体に対し、非共重合性の紫外線吸収剤及び/又は非共重合性の光安定剤は、ポリマー粒子に固定化されないため、他の水性樹脂分散体(D)と混合利用された場合には、塗膜中に拡散させることができ、耐候性発現に効果的である。
 前記非共重合性の紫外線吸収剤及び/又は非重合性の光安定剤をエマルションに含有させる方法としては、紫外線吸収剤及び/又は光安定剤を成膜助剤等と混合して後添加してもよいが、乳化重合時に存在させることが好ましい。
 紫外線吸収剤及び/又は光安定剤は、最終的に得られる複合粒子の総質量(すなわち(C)成分の固形分質量)に対して0.01質量%~20質量%用いることが好ましく、0.05質量%~10質量%用いることがより好ましく、0.1質量%~5質量%用いることがさらに好ましく、特にラジカル重合性の単量体総質量に対して0.01質量%~20質量%用いることが好ましく、0.05質量%~10質量%用いることがより好ましく、0.1質量%~5質量%用いることがさらに好ましい。
 紫外線吸収剤と光安定剤を併用すると、本実施形態の水性複合粒子分散体(C)を用いて塗膜を形成した際に、塗膜が特に耐候性に優れるため好ましい。
 非重合性の紫外線吸収剤としては、ベンゾトリアゾール系の紫外線吸収剤、トリアジン系の紫外線吸収剤が挙げられる。
 ベンゾトリアゾール系の紫外線吸収剤としては、以下に限定されるものではないが、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-オクチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α,α’-ジメチルベンジル)フェニル]ベンゾトリアゾール)、メチル-3-[3-tert-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネートとポリエチレングリコール(分子量300)との縮合物(BASFジャパン(株)製、製品名:TINUVIN1130)、イソオクチル-3-[3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル]プロピオネート(BASFジャパン(株)製、製品名:TINUVIN384)、2-(3-ドデシル-5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール(BASFジャパン(株)製、製品名:TINUVIN571)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクトキシフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル]ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASFジャパン(株)製、製品名:TINUVIN900)等が挙げられる。
 トリアジン系紫外線吸収剤としては、以下に限定されるものではないが、例えば、TINUVIN400(製品名、BASFジャパン(株)製)等が挙げられる。
 光重合性の光安定剤としては、ヒンダードアミン系光安定剤が使用できる。
 ヒンダードアミン系光安定剤としては、以下に限定されるものではないが、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)サクシネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、1-[2-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ]エチル]-4-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ]-2,2,6,6-テトラメチルピペリジン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル-1,2,2,6,6-ペンタメチル-4-ピペリジル-セバケートの混合物(BASFジャパン(株)製、製品名:TINUVIN292)、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、TINUVIN123(製品名、BASFジャパン(株)製)、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノール及び3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N′,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等が挙げられ、市販されているヒンダードアミン系光安定剤としては特に限定されず、例えば、BASFジャパン(株)製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN622SF、TINUVIN152、アデカ製として、アデカスタブLA-52、アデカスタブLA-57、アデカスタブLA-63P、アデカスタブLA-72、アデカスタブLA-77Y、アデカスタブLA-81等が挙げられる。
 前記非イオン性エチレン性不飽和単量体としては、アクリル酸エステル、メタクリル酸エステル、及びこれらと共重合可能な単量体が挙げられる。
 本明細書においてアクリル酸及びメタクリル酸をまとめて(メタ)アクリル酸と表すことがある。
 当該(メタ)アクリル酸エステルと共重合可能な単量体は、特に限定されるものではないが、例えば、メタクリルアミド系単量体、シアン化ビニル類、アルド基又はケト基を有するエチレン性不飽和単量体が挙げられる。
 (メタ)アクリル酸エステルとしては、以下に限定されるものではないが、例えば、アルキル部の炭素数が1~18の(メタ)アクリル酸アルキルエステル、アルキル部の炭素数が1~18の(メタ)アクリル酸ヒドロキシアルキルエステル、オキシエチレン基の数が1~100個の(ポリ)オキシエチレン(メタ)アクリレート、オキシプロピレン基の数が1~100個の(ポリ)オキシプロピレン(メタ)アクリレート、オキシエチレン基の数が1~100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。
 (メタ)アクリル酸アルキルエステルとしては、以下に限定されるものではないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸アダマンチルが挙げられる。
 (メタ)アクリル酸ヒドロキシアルキルエステルとしては、以下に限定されるものではないが、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシシクロヘキシル、(メタ)アクリル酸ドデシルが挙げられる。
 エチレン性基を2つ以上持つ非イオン性エチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、(メタ)アクリル酸アリル、フタル酸ジアリル、ブタジエン等のジエン、ジビニルベンゼンが挙げられ、さらに例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エチレンオキシド変性1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート等の炭素数1~10の多価アルコールのジ(メタ)アクリレート;エチレンオキシドの付加モル数が2~50のポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシドの付加モル数が2~50のポリプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート等の炭素数2~4のアルキレンオキシド基の付加モル数が2~50であるアルキルジ(メタ)アクリレート;エトキシ化グリセリントリ(メタ)アクリレート、プロピレンオキシド変性グリセロールトリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールモノヒドロキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート等の炭素数1~10の多価アルコールのトリ(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の炭素数1~10の多価アルコールのテトラ(メタ)アクリレート;ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトール(モノヒドロキシ)ペンタ(メタ)アクリレート等の炭素数1~10の多価アルコールのペンタ(メタ)アクリレート;ペンタエリスリトールヘキサ(メタ)アクリレートなどの炭素数1~10の多価アルコールのヘキサ(メタ)アクリレート;ビスフェノールAジ(メタ)アクリレート、2-(2’-ビニルオキシエトキシエチル)(メタ)アクリレート、エポキシ(メタ)アクリレートなどのエポキシ基含有(メタ)アクリレート;ウレタン(メタ)アクリレート等の多官能(メタ)アクリレート等が挙げられる。
 これらのエチレン性基を2つ以上持つ非イオン性エチレン性不飽和単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。本明細書においては、リン酸基を持つジエチレン性不飽和単量体は、前記のリン酸基を持つエチレン性不飽和単量体に含まれる。
 (ポリ)オキシプロピレン(メタ)アクリレートとしては、以下に限定されるものではないが、例えば、(メタ)アクリル酸プロピレングリコール、メトキシ(メタ)アクリル酸プロピレングリコール、(メタ)アクリル酸ジプロピレングリコール、メトキシ(メタ)アクリル酸ジプロピレングリコール、(メタ)アクリル酸テトラプロピレングリコール、メトキシ(メタ)アクリル酸テトラプロピレングリコールが挙げられる。
 (ポリ)オキシエチレンジ(メタ)アクリレートとしては、以下に限定されるものではないが、例えば、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコールが挙げられる。
 (メタ)アクリルアミド系単量体類としては、以下に限定されるものではないが、例えば、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、ビニルピロリドン、ジアセトン(メタ)アクリルアミド等が挙げられる。
 シアン化ビニル類としては、以下に限定されるものではないが、例えば、(メタ)アクリロニトリル、N,N’-メチレンビスアクリルアミドが挙げられる。
 アルド基又はケト基を有するエチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、アクロレイン、ジアセトンアクリルアミド、ジアセトンメタクリルアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチルメタクリレート、アセトアセトキシエチルアクリレート、ホルミルスチロール、及びこれらの組み合わせが挙げられる。
 上記以外で、ポリマー層(B)の形成のために用いられ得るエチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、エチレン、プロピレン、イソブチレン等のオレフィン;塩化ビニル、塩化ビニリデン等のハロオレフィン;酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、安息香酸ビニル、p-t-ブチル安息香酸ビニル、ピバリン酸ビニル、2-エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル等のカルボン酸ビニルエステル;酢酸イソプロペニル、プロピオン酸イソプロペニル等のカルボン酸イソプロペニルエステル;エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテルのビニルエーテル;スチレン、ビニルトルエン等の芳香族ビニル化合物;酢酸アリル、安息香酸アリル等のアリルエステル;アリルエチルエーテル;及び、アリルグリシジルエーテル、アリルフェニルエーテル等のアリルエーテルが挙げられる。
 更にその他のエチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、γ-(メタ)アクリロキシプロピルトリアルコキシシラン、γ-(メタ)アクリロキシプロピルアルキルジアルコキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルエトキシシラン、ビニルジメチルメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、(メタ)アクリル酸2,3-シクロヘキセンオキサイド、(メタ)アクリル酸アリル、及びこれらの組み合わせが挙げられる。
<ポリマー層(B)の組成>
 前記ポリマー層(B)は、酸性基を持つエチレン性不飽和単量体単位を有するポリマーを含有し、当該酸性基を持つエチレン性不飽和単量体単位を有するポリマーの形成工程における単量体全体量に対して、酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を、前記酸性基を持つエチレン性符号環単量体単位を有するポリマーとして含むことが好ましい。
 また、ポリマー層(B)は、弱酸性基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマーを含有することがより好ましく、リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)を含有することがさらに好ましい。
 また、弱酸性基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が単量体全体量中の0.01~5.0質量%であるポリマーを含むことが好ましく、より好ましくは、リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が、前記ポリマー(B-1)の形成工程における単量体全体量に対して0.01~5.0質量%、より好ましくは0.1~4.0質量%であるポリマーを、前記リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)として含む。
 前記ポリマー層(B)は、弱酸性基好ましくはリン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が単量体全体量中の0.01~2.0質量%であるポリマーを含むことが好ましく、前記ポリマー層(B)は、弱酸性基好ましくはリン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が単量体全体量中の0.05~2.0質量%であるポリマーを含むことがさらに好ましい。
 なお、前記「単量体全体量」とは、ポリマー層(B)を形成する際の、重合工程において用いる単量体量を意味し、粒子(A)の材料がポリマーである場合の粒子(A)を構成する単量体量は含まないものとする。
 また、リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)の形成工程を、後述する窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)の形成工程と別個に行う場合には、前記リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位の含有量の基準である「単量体全体量」とは、ポリマー(B-1)の形成工程において用いた単量体量全体を意味する。
 リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位の含有量は、ポリマー(B-1)の形成工程において、使用する全単量体に対するリン酸基を持つエチレン性不飽和単量体の使用量を調整することにより制御することができる。
 酸性基、好ましくは弱酸性基、より好ましくはリン酸基を持つエチレン性不飽和単量体の使用量が、ポリマー層(B)を形成する際の重合工程に用いる全単量体中の4.0質量%以下である場合には、得られる塗膜において、十分な耐水性が得られる傾向にあり、重合に用いる全単量体中の0.01質量%以上であると、良好な水分散性が得られ、水分散体の凝集を防止できる。
 前記ポリマー層(B)は、他異粒子への吸脱着、耐候性の改善等の特性を持つ双極性イオン型水分散体(エマルジョン)として、その分散安定性を維持できるという観点から、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)を含有することが好ましく、特に、ポリマー層(B)中の下記ポリマー(B-2)形成工程における単量体全体量に対して「窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位」が0.05~50質量%であるポリマーを、前記窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)として含むことが好ましい。
 ポリマー層(B)は、ポリマー(B-2)形成工程における単量体全体量の0.05~25質量%の「窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位」を有するポリマーを含むことがより好ましく、「窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位」が、前記単量体全体量の0.1~15質量%であるポリマーを含むことがさらに好ましい。
 ポリマー層(B)中に、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)を有していることにより、他異粒子への吸脱着、及び/又は優れた耐光性の特性を持つ、アニオン型又は双極性イオン型水分散体(エマルジョン)となり、pH7以上でその分散安定性を維持できる範囲で含有量が決定される。
 窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)の形成工程において、使用する全単量体に対する窒素官能基を持つエチレン性不飽和単量体の使用量を調整することにより、「窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位」の量を制御することができる。
 なお、最終的に得られる複合粒子のポリマー総質量((C)成分中のポリマー固形分質量)に対し、窒素官能基を持つエチレン性不飽和単量体の共重合量は、0.01~20質量%であることが好ましく、0.05~15質量%であることがより好ましい。
 すなわち、複合粒子の作製の際には、窒素官能基を持つエチレン性不飽和単量体を、複合粒子の作製に用いる単量体の総質量に対し、0.01~20質量%用いることが好ましく、0.05~15質量%用いることがより好ましい。
 本実施形態の水性複合粒子分散体(C)においては、ポリマー層(B)が、前記ポリマー(B-2)の形成工程における単量体全体量に対して塩基性単量体が0.05~50質量%である窒素官能基含有非重合性単量体を含むことが好ましい。より好ましくは0.1~25質量%であり、さらに好ましくは0.1~15質量%である。
 このとき、最終的に得られる複合粒子のポリマー総質量((C)成分中のポリマー固形分質量)に対し窒素官能基含有非重合性単量体が0.01~20質量%であることが好ましく、0.05~15質量%であることがより好ましい。
 窒素官能基含有非重合性単量体については、上述した通りである。
 また、本実施形態の水性複合粒子分散体(C)においては、ポリマー層(B)が、窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、当該窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程における単量体全体量に対して塩基性非重合性単量体単位が0.05~50質量%である窒素官能基含有非重合性単量体単位含むポリマーを、前記ポリマー(B-5)として含むものであることが好ましい。
 さらに、本実施形態の水性複合粒子分散体(C)においては、前記ポリマー層(B)が、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程が、同時又は別段階で実施され、
 前記ポリマー(B-2)及びポリマー(B-5)の形成工程における単量体全体量に対して、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.02~30質量%、及び塩基性非重合性単量体が0.02~30質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記ポリマー(B-2)及びポリマー(B-5)として含むものであることが好ましい。
 なお、ポリマー(B-5)は、上述したポリマー(B-1)、(B-2)と同様に、所定の単量体を用いて乳化重合により製造することができる。
 本実施形態の水性複合粒子分散体(C)において、前記ポリマー(B-2)/前記ポリマー(B-1)の質量比は0.01~50であることが好ましく、0.05~20がより好ましく、0.1~10がさらに好ましい。
 前記ポリマー(B-2)/前記ポリマー(B-1)の質量比が50以下であることにより、新ポリマー粒子の形成を抑制でき、0.01以上であることにより塗膜の耐水性が良好なものとなる傾向にある。
 前記質量比が、50を超えると、製造時の分散安定性分散が不良となるか、安定に製造できても成膜過程で濃縮される時に粒子が不安定化し、その塗膜の耐水性が低下する。
 また0.01未満である場合は、解離した弱酸性基モノマー由来の水溶性オリゴマーの発生が多くなり、核になって新ポリマー粒子を形成するかあるいは水溶性オリゴマーにより、塗膜の耐水性の低下が著しい。
 なお、上記のように、ポリマー層(B)を形成するための、弱酸性基を持つエチレン性不飽和単量体は、リン酸基を持つエチレン性不飽和単量体であることが好ましい。
 リン酸基を持つエチレン性不飽和単量体を共重合することにより、粒子(A)の周囲にポリマー層(B)を良好に形成でき、他異粒子への吸脱着を制御することができる。
<粒子(A)とポリマー層(B)の質量比>
 前記ポリマー層(B)/前記粒子(A)の質量比は0.01~100であることが好ましく、より好ましくは0.02~50であり、さらに好ましくは0.05~20である。
 100以下とすることにより、ポリマー層(B)の形成効率が実用上十分なものとなり、新ポリマー粒子の発生を抑制できる。また、0.01以上とすることにより、粒子(A)に対する量を十分に確保でき、ポリマー層として固定することができる。
 ポリマー層(B)の成分が過剰であると、ポリマー層(B)用の過剰量のB成分は、B成分中の水溶性モノマー由来のポリマーをシードとして新粒子を形成し、粒子(A)にポリマー層(B)が被覆した粒子と合一しながら成長して粗大粒子を形成してしまう。このため、その塗膜の耐水性は不良となる。
 ポリマー層(B)/粒子(A)の質量比は、乳化重合時の単量体量を任意に設定することにより、上記数値範囲に制御することができる。
(水性複合粒子分散体(C)の性状)
 本実施形態の水性複合粒子分散体は、当該水性複合粒子分散体のpH7~11の範囲のいずれかにおいて、60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位は-10mV~-69mVである。
 すなわち、水を含む水性溶媒、及び水性溶媒に分散している上記複合粒子を含む水性複合粒子分散体における、複合粒子の60℃でのゼータ電位は、顔料無機粒子との混和安定性の観点から、pH7~11の範囲のいずれかにおいて-10mV~-69mVであり、好ましくは-20mV~-65mVであり、さらに好ましくは、-25mV~-65mVである。
 このゼータ電位は、pH7~10の範囲のいずれかのpHにおいて-10mV~-69mVであり、好ましくはpH8~10.5の範囲のいずれかにおいて-20mV~-65mVであり、より好ましくはpH8~10.5の範囲のいずれかにおいて-25mV~-65mVである。
 本実施形態の水性複合粒子分散体に含まれる複合粒子は、アニオン型又は双極性イオン型粒子であってもよい。
 前記複合粒子のゼータ電位は、乳化重合中の弱酸基モノマー種の選択、その量の選択、乳化重合中の界面活性剤種及びその量の選択、乳化重合中のpH、乳化重合中の塩基性化合物種及びその量の選択、さらには、ゼータ電位測定時のpHと電解質濃度により制御することができる。
 本実施形態の水性複合粒子分散体は、顔料無機粒子との混和安定性の観点から、透析された後の25℃の当該水性複合粒子分散体における前記複合粒子のゼータ電位が、pH7~11の範囲のいずれかにおいて-5mV~-59mVであることが好ましく、より好ましくは-20mV~-59mVであり、-25mV~-55mVである。
 ここで、「透析」とは、水性複合粒子分散体に対して、分散体中の水相中の界面活性剤成分または分散粒子に吸着された界面活性剤成分、水溶性オリゴマー成分、無機塩類をおおむね除去し、分散体粒子だけを水分散状態で取り出す操作を行うことを言う。
 この透析された後の25℃のゼータ電位は、好ましくはpH7~10の範囲のいずれかにおいて-10mV~-59mVであり、より好ましくはpH8~10.5の範囲のいずれかにおいて-20mV~-59mVであり、さらに好ましくはpH8~10.5の範囲のいずれかにおいて-25mV~-55mVである。
 透析された後の25℃の水性複合粒子分散体における複合粒子にゼータ電位は、乳化重合中の弱酸基モノマー種の選択及びその量の選択、乳化重合中の界面活性剤種及びその量の選択、乳化重合中のpH、乳化重合中の塩基性化合物種及びその量の選択、ゼータ電位測定時のpHと電解質濃度の選択により制御することができる。
 前記ポリマー層(B)において、窒素官能基を持つエチレン性不飽和単量体とリン酸基を持つエチレン性不飽和単量体との質量比は窒素官能基を持つエチレン性不飽和単量体/リン酸基を持つエチレン性不飽和単量体=0~200であることが好ましく、より好ましくは0~100であり、さらに好ましくは0~75であるものとする。これにより、pH6以上の範囲において、好ましくはpH7以上の範囲において、より好ましくはpH8以上において、本実施形態の水性複合粒子分散体が凝集せずに安定な分散状態を保つことができ、水性複合粒子分散体の製造時の分散安定性が良好となる。
 前記60℃の水性複合粒子分散体のゼータ電位は、pH7~11の水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であることが好ましい。
 前記測定用の分散体は、前記水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体を前記KCl水溶液で希釈して調製されたものであることが好ましい。
 上記により、確実なゼータ電位の測定を行うことができる。
 前記透析された後の25℃の前記水性複合粒子分散体におけるゼータ電位は1mMのNaOH水溶液で希釈された水性複合粒子分散体を透析し、pH7~11の透析後の当該水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であることが好ましい。
 前記測定用の分散体は、透析された後の水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体をKCl水溶液で希釈し調製されたものであることが好ましい。
 上記により、確実なゼータ電位の測定を行うことができる。
(水性複合粒子分散体のその他の成分)
 本実施形態の水性複合粒子分散体には、長期の貯蔵安定性を保つため、アンモニア、水酸化ナトリウム、水酸化カリウム、ジメチルアミノエタノール等のアミンを用いて、水性複合粒子分散体のpHを7~10の範囲に調整することが好ましい。
 本実施形態の水性複合粒子分散体における分散質(複合粒子)と分散媒(水性媒体)との体積比(複合粒子/水性媒体)は、好ましくは70/30以下であり、より好ましくは5/95以上60/40以下である。
 前記水性媒体は、水の他に、エタノール、イソプロピルアルコール等のアルコール、アセトン等のケトン、テトラヒドロフラン、及びジオキサン等のエーテル等の親水性溶媒を含み得る。
 本実施形態の水性複合粒子分散体中には、通常水系塗料などに添加配合される成分、例えば、成膜助剤、増粘剤、消泡剤、顔料、分散剤、染料、防腐剤、紫外線吸収剤や光安定剤、コロイド状無機物粒子を任意に配合することができる。
 特にコロイド状無機物粒子は耐汚染性をより高めるに効果的である。コロイド状無機物粒子の含有量は、水性複合粒子分散体の複合粒子の質量に対し1~50質量%が好ましく、2~15質量%がより好ましい。コロイド状無機物粒子の含有量がこの範囲であると、水性複合粒子分散体から形成される塗膜は水へ浸漬しても白化しにくくなる。
 水性複合粒子分散体は、(部分鹸化)ポリビニルアルコール、メチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の高分子分散安定剤;ポリエーテル系増粘剤等の増粘剤;可塑剤、成膜助剤又はこれらの組み合わせを含んでもよい。
 水性複合粒子分散体には、通常塗料、種々のコーティング材等に添加配合される成分、例えば粘性調整剤、pH調整剤、消泡剤、顔料、充填剤、分散剤、染料、防腐剤、界面活性剤、熱安定剤、紫外線吸収剤、酸化防止剤、光安定剤、難燃剤、有機溶剤、湿潤剤、界面活性剤、増粘剤、可塑剤、成膜助剤、防錆剤等を配合してもよい。これらは、例えばアトライター、サンドミル等の練肉機を使用して、水性複合粒子分散体中に分散することができ、水性複合粒子分散体は所定の粘度になるよう調整することができる。
〔水性複合粒子分散体の製造方法〕
 本実施形態の水性複合粒子分散体の製造方法は、
 粒子(A)の表面の少なくとも一部に、ポリマー層(B)を形成する工程を有する、水性複合粒子分散体の製造方法であって、
 前記水性複合粒子分散体は、粒子(A)の表面の少なくとも一部にポリマー層(B)が形成された複合粒子を含み、
 前記粒子(A)が無機物粒子又は高分子ポリマー粒子であり、
 前記ポリマー層(B)が、少なくとも一つの酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を含み、
 前記ポリマー層(B)を形成する工程が、
 pH6以上に調整された粒子(A)の分散液において、酸性基を持つエチレン性不飽和単量体の少なくとも一部を中和した状態にて、前記ポリマー(B-3)を乳化重合する工程と、
 その後、非イオン性エチレン性不飽和単量体単位を50~100質量%及び酸性基を持つエチレン性不飽和単量体単位を5.0質量%以下含むポリマー(B-4)を水性媒体中で乳化重合する工程と、
を、含む。
 前記本実施形態の水性複合粒子分散体の製造方法により得られる水性複合粒子分散体に含まれる複合粒子は、粒子(A)と当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)を有している。
 本実施形態の水性複合粒子分散体の製造方法は、粒子(A)の表面の少なくとも一部にポリマー層(B)を形成する工程を有しており、前記粒子(A)は無機物粒子又は高分子ポリマー粒子であり、前記ポリマー層(B)は、少なくとも一つの酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を含む。
 ポリマー層(B)は、粒子(A)及び所定の単量体の存在下で乳化重合を行うことにより形成できる。
 前記本実施形態の水性複合粒子分散体の製造方法は、例えば、水、粒子(A)、及び界面活性剤を含む分散液中で、所定の単量体(エチレン性不飽和単量体)を重合させて、粒子(A)の表面の少なくとも一部を覆うポリマー層(B)を形成させる工程を含む。
 好ましくは、水及び粒子(A)を含む分散液に界面活性剤を所定量混合した後、分散液に単量体が加えられる。
 単量体の導入方法は特に限定されるものではないが、単量体と水及び界面活性剤とを、ホモジナイザーにて乳化液状態の単量体混合物とすることが好ましく、単量体又は当該単量体混合物は、段階的に又は連続して反応系へ添加され、その導入速度は反応系の除熱が可能な範囲で決定される。
 本実施形態の水性複合粒子分散体の製造方法により形成されるポリマー層(B)は、前記ポリマー(B-3)及び前記ポリマー(B-4)を含み、本実施形態の水性複合粒子分散体の製造方法においては、粒子(A)の表面の少なくとも一部にポリマー(B-3)を形成後、ポリマー(B-4)を形成する工程を有している。
 本実施形態の水性複合粒子分散体の製造方法においては、前記ポリマー(B-3)を形成するための重合過程において、単量体として、酸性基を持つエチレン性不飽和単量体を使用する。
 すなわちポリマー(B-3)は、少なくとも一つの酸性基を持つエチレン性不飽和単量体に由来する酸性単量体単位を有する。詳しくは、ポリマー層(B)は、少なくとも一つの酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を含み、好ましくは0.05~4.0質量%、より好ましくは0.1~2.0質量%、前記単量体単位を有するポリマー(B-3)を含む。
 ポリマー層(B)が、少なくとも一つの酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を含むことにより、製造時の分散状態を安定化でき、後述する顔料無機粒子と混和安定化する効果が得られる。
 また、ポリマー(B-3)は、その重合工程において、酸性基を持つエチレン性不飽和単量体の使用量を調整したり、アミド結合を持つエチレン性不飽和単量体、水酸基又はPEG基(ポリエチレンオキサイド基)を持つエチレン性不飽和単量体と共重合したりすることによって、上記範囲のエチレン性不飽和単量体単位を有するポリマーに制御することができる。
 本実施形態の水性複合粒子分散体の製造方法においては、ポリマー層(B)中の前記ポリマー(B-4)を形成するための重合過程においては、粒子(A)以外のポリマー新しい粒子の発生を制御する目的で、非イオン性単量体単位を50~100質量%及び酸性基を持つエチレン性不飽和単量体単位を5.0質量%以下含むポリマー(B-4)を水性媒体中で乳化重合することにより、ポリマー層を製造する。
 また、非イオン性単量体単位を50~100質量%及び酸性基を持つエチレン性不飽和単量体単位を2.0質量%以下含むポリマー(B-4)を水性媒体中で乳化重合により製造することが好ましく、非イオン性単量体単位を50~100質量%及び酸性基を持つエチレン性不飽和単量体単位を0.5質量%以下含むポリマー(B-4)を水性媒体中で乳化重合により製造することがさらに好ましい。
 ポリマー(B-4)は、その重合工程において、非イオン性エチレン性不飽和単量体、酸性基を持つエチレン性不飽和単量体の使用量を調整したり、アクリルアミド系エチレン性不飽和単量体、水酸基又はPEG基を持つエチレン性不飽和単量体と共重合したりすることにより、上記範囲の各単量体単位を有するポリマーに制御することができる。
 また、本実施形態の水性複合粒子分散体の製造方法においては、前記ポリマー層(B)の形成工程は、pH6以上に、好ましくはpH7以上に、より好ましくはpH7.6以上に、さらに好ましくはpH8以上に調整された粒子(A)の分散液において、酸性基を持つエチレン性不飽和単量体の少なくとも一部を中和した状態にて、前記ポリマー(B-3)を水性媒体中において乳化重合し、その後、前記ポリマー(B-4)を水性媒体中において乳化重合する。
 なお、界面活性剤の種類の組み合わせと使用量を調整すること、アニオン型末端基を有するイオン性エチレン性不飽和単量体の種類と使用量を調整すること、水溶性開始剤の過硫酸塩の使用量を調整すること、重合中の分散液をpH6以上に維持することは、それぞれ適宜行うことができ、これらの組み合わせを採用することができる。これらにより、pH6以上に、好ましくはpH7以上、より好ましくはpH7.6以上に、さらに好ましくはpH8以上に維持される。
 ポリマー層(B)の形成工程における粒子(A)の分散液が、pH6以上であると、単量体を導入した後の重合過程において、十分な分散安定性が得られ、粒子の凝集を効果的に防止できる。
(水性媒体)
 ポリマー層(B)を形成する際の水性媒体としては、上記〔水性複合粒子分散体(C)〕の項目に記載したものと同様のものを用いることができる。
(複合粒子)
 本実施形態の製造方法により得られる水性複合粒子分散体に含まれる複合粒子は、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを含み、粒子(A)は、無機物粒子又は高分子ポリマー粒子(A)である。
 複合粒子の構造については、上記〔水性複合粒子分散体(C)〕の項目に記載したものと同様のものを採用できる。
 本実施形態の製造方法により得られる水性複合粒子分散体は、ポリマー層(B)によって被覆された粒子(A)の他に、ポリマー層(B)を構成する高分子ポリマー粒子の表面上に配置された粒子(A)を含んでいてもよい。かかる構成については、〔水性複合粒子分散体(C)〕の項目に記載したものと同様のものを採用できる。
 本実施形態の製造方法により得られる水性複合粒子分散体は、個々の粒子(A)がポリマー層(B)により被覆された状態で分散された複合粒子の他に、ポリマー層(B)で被覆されていない粒子(A)を含んでいてもよい。この場合、本実施形態の製造方法により得られる水性複合粒子分散体における複合粒子のゼータ電位が容易に低い値を発現することが可能となる。かかる粒子(A)のポリマー層(B)による被覆の状態については、上記〔水性複合粒子分散体(C)〕の項目に記載したものと同様のものを採用できる。
<粒子(A)>
 本実施形態の水性複合粒子分散体の製造方法に用いる粒子(A)の粒径(平均粒径)については、複合粒子から形成される塗膜の透明性の観点から、好ましくは1nm~5μmであり、より好ましくは1nm~500nmであり、さらに好ましくは3nm~250nmである。
[無機物粒子]
 粒子(A)として使用可能な無機物粒子としては、上記〔水性複合粒子分散体(C)〕の項目に記載したものと同様のものを用いることができる。
[高分子ポリマー粒子]
 粒子(A)として使用可能な高分子ポリマー粒子としては、上記〔水性複合粒子分散体(C)〕の項目に記載したものと同様のものを用いることができる。
[シリカ被覆粒子]
 粒子(A)はシリカ被覆粒子を含んでいてもよい。
 当該シリカ被覆粒子についても、上記〔水性複合粒子分散体(C)〕の項目に記載したものと同様のものを用いることができる。
<ポリマー層(B)>
 本実施形態の水性複合粒子分散体の製造方法において、ポリマー層(B)は、上述したように、pH6以上に調整された粒子(A)の分散液において、酸性基を持つエチレン性不飽和単量体の少なくとも一部を中和した状態にて、「少なくとも一つの酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)」を乳化重合し、その後、「非イオン性エチレン性不飽和単量体単位を50~100質量%及び酸性基を持つエチレン性不飽和単量体単位を5.0質量%以下含むポリマー(B-4)」を、水性媒体中で乳化重合することにより得られる。
 なお、本実施形態の水性複合粒子分散体においては、上述したように、ポリマー層(B)が、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有する構成もあるが、かかる場合は、ポリマー層(B)は、上記と同様に、pH6以上に調整された粒子(A)の分散液において、所定の単量体を用いて、前記ポリマー(B-2)を乳化重合し、それと同時又は別段階にて、前記ポリマー(B-5)を、乳化重合することにより得られる。
[酸性基を持つエチレン性不飽和単量体]
 酸性基を持つエチレン性不飽和単量体としては、例えば、カルボン酸基、リン酸基、スルホン酸基からなる群より選ばれる少なくとも1種の基を有する、酸性基を持つエチレン性不飽和単量体が用いられる。
 カルボン酸基を有するエチレン性不飽和量体としては、以下に限定されるものではないが、例えば、イタコン酸、フマール酸、マレイン酸、無水マレイン酸、マレイン酸及びこれらのモノエステル、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。
 リン酸基を持つエチレン性不飽和単量体としては、以下のものが挙げられる。
 なお、以下に限定されるものではないが、ここに示すリン酸基(phosphonic acid基)とは、亜リン酸基(phosphorus acid基)を含み、さらにリン酸エステル基(phosphate基)、亜リン酸エステル基(phosphonate基)を含む。
 例えば、重合性ビニル基又はオレフィン基を含むアルコールのリン酸二水素エステル(アリルホスフェート、ビス(ヒドロキシメチル)フマラート若しくはイタコナートのモノ若しくはジホスフェート等)や、(メタ)アクリル酸エステルの誘導体(メタ)アクリル酸ヒドロキシアルキルのホスフェート、(メタ)アクリル酸2-ヒドロキシエチルのリン酸モノエステル、(メタ)アクリル酸2-ヒドロキシプロピルのリン酸モノエステル、(メタ)アクリル酸3-ヒドロキシプロピルのリン酸モノエステル、(メタ)アクリル酸2-ヒドロキシエチルのリン酸ジエステル、(メタ)アクリル酸-2ヒドロキシプロピルのリン酸ジエステル、(メタ)アクリル酸-3ヒドロキシプロピルのリン酸ジエステル、(メタ)アクリロイルオキシアルキルモノホスフェート、(メタ)アクリロイロキシポリオキシエチレングリコールアシッドホスフェート、(メタ)アクリロイロキシポリオキシプロピレングリコールアシッドホスフェートが挙げられ、これらは単独で用いても、2種以上を組み合わせて用いてもよい。市販されているリン酸基を持つエチレン性不飽和単量体としては特に限定されず、例えば、共栄社化学株式会社から入手可能なライトアクリレート(登録商標)P-1A(N)、ライトエステル(登録商標)P-1M、ライトエステル(登録商標)P-2M、東邦化学工業株式会社から入手可能なPPME、PMR12、PPM-5P、ローディアインコーポレーティド(Rhodia,Inc.)から入手可能なSIPOMER(登録商標)PAM-100、SIPOMER(登録商標)PAM-200、SIPOMER(登録商標)PAM-300、及びSIPOMER(登録商標)PAM-400、ユニケミカル(株)から入手可能なホスマー(登録商標)M、ホスマー(登録商標)PE、ホスマー(登録商標)PP、大八化学工業株式会社から入手可能なMR-200、MR-260等が挙げられる。
 その他のリン酸基を持つ単量体としては、以下に限定されるものではないが、例えば、ビニルホスホン酸、アリルホスホン酸、2-アクリルアミド-2-メチルプロパンホスホン酸、α-ホスホノスチレン、2-メチルアクリルアミド-2-メチルプロパンホスホン酸、ユニケミカル(株)から入手可能なホスマーCL、亜リン酸基を持つ単量体としては、2-ホスホエチル(メタ)アクリレート、2-ホスホプロピル(メタ)アクリレート、3-ホスホプロピル(メタ)アクリレート等が挙げられる。
 前記スルホン酸基を有するエチレン性不飽和量体としては、以下に限定されるものではないが、例えば、アリルスルホン酸を含むα-オレフィンスルホン酸、p-スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシ-1-プロパンスルホン酸が挙げられる。
 これらの酸の塩(例えばアルカリ金属塩及びアンモニウム塩)も、「カルボキシル基を持つエチレン性不飽和単量体」、「リン酸基を持つエチレン性不飽和単量体」、「スルホン酸基を有するエチレン性不飽和単量体」に含まれ得る。
 アルカリ金属塩又はアンモニウム塩としては、以下に限定されるものではないが、例えば、リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩、アルカノールアンモニウム塩、及び塩基性アミノ酸のアンモニウム塩等が挙げられる。
 すなわち、本実施形態の水性複合粒子分散体の製造方法は、pH6以上に、好ましくはpH7以上に、より好ましくはpH7.6以上に、さらに好ましくはpH8以上に調整された無機物粒子又は高分子ポリマー粒子よりなる粒子(A)の分散液において、カルボキシル基を持つエチレン性不飽和単量体、リン酸基を持つエチレン性不飽和単量体、及びスルホン酸基を持つエチレン性不飽和単量体からなる群より選ばれる酸性基を持つエチレン性不飽和単量体のを用いて、酸性基の少なくとも一部を中和した状態にて、ポリマー(B-3)を乳化重合する工程を有することが好ましい。
 前記ポリマー層(B)の形成工程において、カルボキシル基を持つエチレン性不飽和単量体、リン酸基を持つエチレン性不飽和単量体、及びスルホン酸基を持つエチレン性不飽和単量体からなる群より選ばれる少なくとも一つの、酸性基を持つエチレン性不飽和単量体単位の使用量を、最終的に得られる複合粒子の総質量((C)成分の固形分質量)に対して0.005~4.0質量%とすることが好ましく、0.01~1.0質量%未満がより好ましく、さらに好ましくは0.01~0.5質量%未満、さらにより好ましくは0.05~0.4質量%の低量とすることにより、顔料無機粒子との分散安定性に優れ、塗膜が優れた耐水性を得られる傾向にある。
 なお、上記方法により、ポリマー層(B)は、カルボキシル基を持つエチレン性不飽和単量体、リン酸基を持つエチレン性不飽和単量体、及びスルホン酸基を持つエチレン性不飽和単量体からなる群より選ばれる少なくとも一つの、酸性基を持つエチレン性不飽和単量体単位が複合粒子の総質量((C)成分の固形分質量)に対して0.005~4.0質量%であるポリマーを含むものとなる。
 また、前記ポリマー層(B)の形成工程において、リン酸基を持つエチレン性不飽和単量体からなる酸性基を持つエチレン性不飽和単量体の使用量を、最終的に得られる複合粒子の総質量((C)成分の固形分質量)に対して、好ましくは0.001~1.0質量%未満、より好ましくは0.05~0.5質量%未満の低量とすることにより、顔料無機粒子との分散安定性に優れ、塗膜が優れた耐水性を得られる傾向にある。
 なお、上記方法により、ポリマー層(B)は、リン酸基を持つエチレン性不飽和単量体からなる酸性基を持つエチレン性不飽和単量体単位が、複合粒子の総質量に対して0.001~1.0質量%未満のポリマーを含むものとなる。
 所定の単量体の使用量が、上述した範囲を超えると、製造工程中に新たな粒子が発生してしまう等の原因により、粒子(A)に対するポリマー層(B)の形成が不十分となる傾向にある。
 本実施形態の水性複合粒子分散体の製造方法においては、界面活性剤の種類の組み合わせと使用量を調整すること、酸性基を持つエチレン性不飽和単量体の種類と使用量を調整すること、水溶性開始剤の過硫酸塩の使用量を調整することにより、粒子(A)の分散液をpH6以上に調整することができ、これらの方法は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリマー層(B)の重合工程における粒子(A)の分散液は、pH6以上に、好ましくはpH7以上に、より好ましくはpH7.6以上に、さらに好ましくはpH8以上に維持する。
 粒子(A)の分散液を、pH6以上とすることにより、単量体を導入した後の重合過程において、十分な分散安定性が確保でき、粒子の凝集を効果的に防止できる。
 さらに、本実施形態の水性複合粒子分散体の製造方法においては、前記ポリマー(B)層の形成工程においては、他の異粒子への前記水性複合粒子分散体の、当該分散体粒子の吸脱着を制御する目的、及び耐光性を改善する目的で、非イオン性エチレン性不飽和単量体単位を50~99.95質量%、酸性基を持つエチレン性不飽和単量体単位を5.0質量%以下、及び窒素官能基を持つエチレン性不飽和単量体単位を0.05~50質量%含むポリマー(B-4)を乳化重合する工程を含むことが好ましい。
 詳しくは、ポリマー(B-4)として、非イオン性エチレン性不飽和単量体単位を50~99.95質量%、窒素官能基を持つエチレン性不飽和単量体に由来する単量体単位を0.05~50質量%、及び酸性基を持つエチレン性不飽和単量体単位を0~5質量%からなるポリマーを形成することが好ましく、窒素官能基を持つエチレン性不飽和単量体に由来する単量体単位を0.1~25質量%、酸性基を持つエチレン性不飽和単量体単位を0~2質量%、及び非イオン性エチレン性不飽和単量体単位を75~99.9質量%含むポリマーを形成することがより好ましく、窒素官能基を持つエチレン性不飽和単量体に由来する単量体単位を0.1~25質量%、酸性基を持つエチレン性不飽和単量体単位を0~0.5質量%、及び非イオン性エチレン性不飽和単量体単位を75~99.9質量%含むポリマーを形成することがさらに好ましい。
 上記範囲の単量体を有するポリマーを形成することにより、双極性イオン型ラテックス(エマルジョン)として、該ラテックスの分散安定性を維持できる。
 窒素官能基を持つエチレン性不飽和単量体に由来する単量体単位が、上記数値範囲を超えると、当該ラテックスから得られる塗膜の耐水性が著しく低下するおそれがある。
 ポリマー層(B)が、ポリマー(B-4)として、窒素官能基を持つエチレン性不飽和単量体に由来する単量体単位を有するポリマーを含むことにより、粒子(A)以外のポリマー新粒子の発生を制御し、かつ優れた耐光性の特性を持つ、アニオン型又は双極性イオン型ラテックス(エマルジョン)となる。なお、pH7以上でその分散安定性を維持できる範囲で、前記窒素官能基を持つエチレン性不飽和単量体の含有量が決定される。
 なお、前記ポリマー(B-3)形成に用いる単量体として、酸性基を有するエチレン性不飽和単量体を用いて乳化重合を行い、当該酸性基を導入した後、ポリマー(B-4)形成に用いる単量体として窒素官能基を持つエチレン性不飽和単量体を用いて乳化重合を行うことにより、当該窒素官能基を持つエチレン性不飽和単量体単位を有するポリマーを安定に同一の粒子上に提供することができる。
 本実施形態の水性複合粒子ラテックスの製造方法においては、pH6以上に、好ましくはpH7以上に、より好ましくはpH7.6以上に、さらに好ましくはpH8以上に調整された粒子(A)の分散液において、少なくとも一つの酸性基を持つエチレン性不飽和単量体に由来する酸性単量体単位を0.01~5.0質量%有するポリマー(B-3)を、乳化重合によって粒子上に形成した後、ポリマー(B-4)として、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマーを乳化重合によって同一粒子上に形成することが好ましい。
 ポリマーを同一粒子上に形成するとは、粒子(A)の表面の少なくとも一部を覆うポリマー層が存在するようにすることを意味する。
 前記窒素官能基としては、以下に限定されるものではないが、例えば、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、4級化アミノ基が挙げられる。
[窒素官能基を持つエチレン性不飽和単量体]
 窒素官能基を持つエチレン性不飽和単量体としては、具体的には、(メタ)アクリル酸アミノアルキル、又はヘテロ原子が窒素である5又は6員環複素環を有する化合物を含むものを適用できる。
 具体的には、上記〔水性複合粒子分散体(C)〕の項目において、ポリマー層(B)を形成するための重合工程において用いることができる窒素官能基を持つエチレン性不飽和単量体として挙げたものと同様のものを用いることができる。
[非イオン性エチレン性不飽和単量体]
 前記非イオン性エチレン性不飽和単量体としては、アクリル酸エステル、メタクリル酸エステル、及びこれらと共重合可能な単量体が挙げられる。本明細書においてアクリル酸及びメタクリル酸をまとめて(メタ)アクリル酸と表すことがある。
 当該(メタ)アクリル酸エステルと共重合可能な単量体は、特に限定されるものではないが、例えば、(メタ)アクリルアミド系単量体、シアン化ビニル類、アミド基又はケト基を有するエチレン性不飽和単量体、水酸基又はPEG基を有するエチレン性不飽和単量体が挙げられる。
 (メタ)アクリル酸エステルとしては、以下に限定されるものではないが、例えば、アルキル部の炭素数が1~18の(メタ)アクリル酸アルキルエステル、アルキル部の炭素数が1~18の(メタ)アクリル酸ヒドロキシアルキルエステル、オキシエチレン基の数が1~100個の(ポリ)オキシエチレン(メタ)アクリレート、オキシプロピレン基の数が1~100個の(ポリ)オキシプロピレン(メタ)アクリレート、オキシエチレン基の数が1~100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。
 (メタ)アクリル酸アルキルエステルとしては、以下に限定されるものではないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸アダマンチルが挙げられる。
 水酸基又はPEG基をを有するエチレン性不飽和単量体として、(メタ)アクリル酸ヒドロキシアルキルエステルとしては、以下に限定されるものではないが、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシシクロヘキシルが挙げられる。
 また(ポリ)オキシエチレン(メタ)アクリレートとしては、以下に限定されるものではないが、例えば、(メタ)アクリル酸エチレングリコール、メトキシ(メタ)アクリル酸エチレングリコール、(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、(メタ)アクリル酸テトラエチレングリコール、メトキシ(メタ)アクリル酸テトラエチレングリコールが挙げられる。
 (ポリ)オキシプロピレン(メタ)アクリレートとしては、以下に限定されるものではないが、例えば、(メタ)アクリル酸プロピレングリコール、メトキシ(メタ)アクリル酸プロピレングリコール、(メタ)アクリル酸ジプロピレングリコール、メトキシ(メタ)アクリル酸ジプロピレングリコール、(メタ)アクリル酸テトラプロピレングリコール、メトキシ(メタ)アクリル酸テトラプロピレングリコールが挙げられる。
 (ポリ)オキシエチレンジ(メタ)アクリレートとしては、以下に限定されるものではないが、例えば、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコールが挙げられる。
 (メタ)アクリルアミド系エチレン性不飽和単量体類としては、以下に限定されるものではないが、例えば、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、ビニルピロリドン、ジアセトン(メタ)アクリルアミド、(メタ)アクリロイルモルフォリン等が挙げられる。
 シアン化ビニル類としては、以下に限定されるものではないが、例えば、(メタ)アクリロニトリル、N,N’-メチレンビスアクリルアミドが挙げられる。
 アルド基又はケト基を有するエチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、アクロレイン、ジアセトンアクリルアミド、ジアセトンメタクリルアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチルメタクリレート、アセトアセトキシエチルアクリレート、ホルミルスチロール、及びこれらの組み合わせが挙げられる。
 エチレン性基を2つ以上持つ非イオン性エチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、(メタ)アクリル酸アリル、フタル酸ジアリル、ブタジエン等のジエン、ジビニルベンゼンが挙げられ、さらに例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エチレンオキシド変性1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート等の炭素数1~10の多価アルコールのジ(メタ)アクリレート;エチレンオキシドの付加モル数が2~50のポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシドの付加モル数が2~50のポリプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート等の炭素数2~4のアルキレンオキシド基の付加モル数が2~50であるアルキルジ(メタ)アクリレート;エトキシ化グリセリントリ(メタ)アクリレート、プロピレンオキシド変性グリセロールトリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールモノヒドロキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート等の炭素数1~10の多価アルコールのトリ(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の炭素数1~10の多価アルコールのテトラ(メタ)アクリレート;ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトール(モノヒドロキシ)ペンタ(メタ)アクリレート等の炭素数1~10の多価アルコールのペンタ(メタ)アクリレート;ペンタエリスリトールヘキサ(メタ)アクリレート等の炭素数1~10の多価アルコールのヘキサ(メタ)アクリレート;ビスフェノールAジ(メタ)アクリレート、2-(2’-ビニルオキシエトキシエチル)(メタ)アクリレート、エポキシ(メタ)アクリレートなどのエポキシ基含有(メタ)アクリレート;ウレタン(メタ)アクリレート等の多官能(メタ)アクリレート等が挙げられる。
 これらのエチレン性基を2つ以上持つ非イオン性エチレン性不飽和単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。本明細書においては、リン酸基を持つジエチレン性不飽和単量体は、前記のリン酸基を持つエチレン性不飽和単量体に含まれる。
 上記以外で、ポリマー層(B)の形成のために用いられ得るエチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、エチレン、プロピレン、イソブチレン等のオレフィン;塩化ビニル、塩化ビニリデン等のハロオレフィン;酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、安息香酸ビニル、p-t-ブチル安息香酸ビニル、ピバリン酸ビニル、2-エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル等のカルボン酸ビニルエステル;酢酸イソプロペニル、プロピオン酸イソプロペニル等のカルボン酸イソプロペニルエステル;エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテルのビニルエーテル;スチレン、ビニルトルエン等の芳香族ビニル化合物;酢酸アリル、安息香酸アリル等のアリルエステル;アリルエチルエーテル;及び、アリルグリシジルエーテル、アリルフェニルエーテル等のアリルエーテルが挙げられる。
 更にその他のエチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、(メタ)アクリル酸2,3-シクロヘキセンオキサイド、(メタ)アクリル酸アリル、及びこれらの組み合わせが挙げられる。
 本実施形態の水性複合粒子分散体の製造方法においては、前記ポリマー層(B)が、ポリマー(B-3)として、加水分解性シラン基を持つエチレン性不飽和単量体及び/又は加水分解性シラン基とメルカプト基とを持つ単量体を2.0質量%以下有するモノマー成分を乳化重合することによって得られるポリマーを含むものとすることが好ましい。
 より好ましくは、前記ポリマー層(B)が、ポリマー(B-3)として、加水分解性シラン基を持つエチレン性不飽和単量体及び/又は加水分解性シラン基とメルカプト基とを持つ単量体を1.0質量%以下、さらに好ましくは0.5質量%以下有するモノマー成分を乳化重合するとによって得られるポリマーを含むものとすることが好ましい。
 加水分解性シラン基を持つエチレン性不飽和単量体単位及び/又は加水分解性シラン基とメルカプト基とを持つ単量体を2.0質量%以下とすることにより、良好な分散安定性が得られ、乳化重合中の凝集を防止することができる。
 加水分解性シラン基を持つエチレン性不飽和単量体としては、以下に限定されるものではないが、例えば、γ-(メタ)アクリロキシプロピルトリアルコキシシラン、γ-(メタ)アクリロキシプロピルアルキルジアルコキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルエトキシシラン、ビニルジメチルメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が挙げられる。
 加水分解性シラン基とメルカプト基とを持つ単量体としては、以下に限定されるものではないが、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシランが挙げられる。
 また、乳化重合中の粒子の分散安定性を維持し、水溶性オリゴマー類の発生を抑制する観点から、ポリマー層(B)を構成するポリマー(B-3)の単量体の構成成分と、ポリマー(B-4)の単量体の構成成分とが異なっていることが好ましい。
 本実施形態の水性複合粒子分散体(C)の製造方法においては、ポリマー(B)層の形成工程、特に、前記ポリマー(B-4)の重合工程において、非共重合性の紫外線吸収剤及び/又は非共重合性の光安定剤を含めることが好ましい。これにより高耐候性を付与することができる。
 当該非共重合性の紫外線吸収剤及び/又は非共重合性の光安定剤の使用量、具体的な材料については、上記〔水性複合粒子分散体(C)〕の項目において記載したものと同様の条件、及び材料を採用することができる。
[前記ポリマー(B-4)/前記ポリマー(B-3)の質量比]
 本実施形態の水性複合粒子分散体の製造方法においては、上述したように、ポリマー(B-3)及びポリマー(B-4)を、粒子(A)及び所定の単量体の存在下で乳化重合を行うことにより複合粒子を形成する。
 前記ポリマー(B-3)が、pH6以上に、好ましくはpH7以上に、より好ましくはpH7.6以上、さらに好ましくはpH8以上に調整された粒子(A)の存在下、酸性基を持つエチレン性不飽和単量体の少なくとも一部を中和した状態にて水性媒体中乳化重合で製造された後、又は製造中に、前記ポリマー(B-4)が、粒子(A)及びポリマー(B-3)の存在下、乳化重合にて製造される。
 前記ポリマー(B-4)/前記ポリマー(B-3)の質量比は0.01~50であることが好ましく、0.05~20がより好ましく、0.1~10がさらに好ましい。
 前記ポリマー(B-4)/前記ポリマー(B-3)の質量比が50以下であることにより、新ポリマー粒子の形成を抑制でき、0.01以上であることにより塗膜の耐水性が良好なものとなる傾向にある。
 前記質量比が、50を超えると、製造時の分散安定性分散が不良となるか、安定に製造できても成膜過程で濃縮される時に粒子が不安定化し、その塗膜の耐水性が低下するおそれがある。
 また0.01未満である場合は、解離した酸性基モノマー由来の水溶性オリゴマーの発生が多くなり、核になって新ポリマー粒子を形成するかあるいは水溶性オリゴマーにより、塗膜の耐水性の低下が著しい場合がある。
 ポリマー(B-4)/ポリマー(B-3)の質量比は、それぞれのポリマーの重合工程において、モノマー類の導入速度、重合時間、重合温度及び重合開始剤量等の重合条件を調整することにより、上記数値範囲に制御することができる。
[粒子(A)とポリマー層(B)の質量比]
 前記ポリマー層(B)/前記粒子(A)の質量比は0.01~100であることが好ましく、より好ましくは0.02~50であり、さらに好ましくは0.05~20である。
 ポリマー層(B)/粒子(A)の質量比を100以下とすることにより、ポリマー層(B)の形成効率が実用上十分なものとなり、新ポリマー粒子の発生を抑制できる。
 また、0.01以上とすることにより、粒子(A)に対する量を十分に確保でき、ポリマー層として固定することができる。
 ポリマー層(B)の成分が過剰であると、ポリマー層(B)用の過剰量の(B)成分は、(B)成分中の水溶性モノマー由来のポリマーをシードとして新粒子を形成し、粒子(A)にポリマー層(B)が被覆した粒子と合一しながら成長して粗大粒子を形成してしまうおそれがあり、塗膜の耐水性は不良となる傾向にある。
 ポリマー層(B)/粒子(A)の質量比は、粒子(A)の使用量、ポリマー(B)の重合工程におけるモノマー類の導入速度、重合時間、重合温度及び重合開始剤量等の重合条件を調整することにより、上記数値範囲に制御することができる。
[水性複合粒子分散体の製造における界面活性剤]
 本実施形態の水性複合粒子分散体の製造方法において、ポリマー層(B)の形成の際には、界面活性剤を用いてもよい。当該界面活性剤は、以下に説明する界面活性剤を含むことが好ましい。
 界面活性剤は、重合開始前及び/又は製造初期過程、重合過程、重合過程終了後の3段階で添加することができる。
 例えば、製造初期過程において、粒子(A)を含む分散液に所定量の界面活性剤を混合した後、エチレン性不飽和単量体を用いて重合を行ってもよく、粒子(A)を含む分散液へ、所定量の界面活性剤と同時にエチレン性不飽和単量体を供給し、重合を行ってもよい。
 界面活性剤としては、アニオン型の界面活性剤としては、アニオン型の界面活性剤が好ましいものとして使用できる。
 アニオン型の界面活性剤としては、以下に限定されるものではないが、例えば、脂肪酸石鹸、アルキルスルホン酸塩、アルケニルスルホン酸塩、アルキルアリールスルホン酸塩(アルキルベンゼンスルホン酸塩、アルキルジフェニルスルホン酸塩等)、アルケニルアリールスルホン酸塩、イセチオン酸塩型アルキル脂肪酸エステル、イセチオン酸塩型アルケニル脂肪酸エステル、アルキルジフェニルエーテルジスルホン酸塩(例えば、花王(株)製品名ペレックスSS-L、ペレックスSS-H)、アルキル硫酸塩、アルケニル硫酸塩、アルキルアリール硫酸塩、エトキシル化アルキルフェノール硫酸塩、アルキルアリルスルホコハク酸塩及びジアルキルスルホコハク酸塩(例えば、ジオクチルスルホコハク酸塩、ジヘキシルスルホコハク酸塩、アルキルアリルスルホコハク酸塩(例えば、三洋化成(株)製品名エレミノールJS-2、JS-5)、及び、アルキル又はアルケニル2-ヒドロキシ(3-アリルオキシ)プロピオスルホコハク酸塩(例えば、花王(株)製品名ラテムルS-120、S-180A、S-180)が挙げられる。
 前記スルホン酸塩及び硫酸塩とは、アルカリ金属塩又はアンモニウム塩を指し、具体的には、リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩、アルカノールアンモニウム塩、及び塩基性アミノ酸のアンモニウム塩等が挙げられる。
 界面活性剤は、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルアリルスルホコハク酸塩、ジアルキルスルホコハク酸塩から選択される少なくとも1種を含むことが好ましい。
 アニオン型の界面活性剤としては、塗膜の高度な耐水性、耐温水性を発現するために、親水基と親油基を有し、エチレン性不飽和結合基を有する、いわゆる反応性界面活性剤を用いてもよい。当該反応性界面活性剤の中でアニオン型の界面活性剤としては、以下に限定されるものではないが、例えば、スルホン酸基、硫酸エステル基又はこれらの塩を有するエチレン性不飽和単量体が挙げられる。具体的には、スルホン酸基、及びそのアンモニウム塩若しくはアルカリ金属塩である基(アンモニウムスルホネート基、又はアルカリ金属スルホネート基)を有する化合物が挙げられる。
 反応性界面活性剤としては、以下に限定されるものではないが、例えば、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステルの塩(例えば、第一工業製薬(株)製品名アクアロンHS-10)、α-[1-[(アリルオキシ)メチル]-2-(フェニルフェノキシ)エチル]-ω-ポリオキシエチレン硫酸エステルの塩(例えば、(株)ADEKA製 製品名アデカリアソープSE-1025A)、α-スルホ-ω-(1-(アルコキシ)メチル)-2-(2-プロペニルオキシ)エトキシ)-ポリ(オキシ-1,2-エタンジイル)のアンモニウム塩(例えば、(株)ADEKA製 製品名アデカリアソープSR-1025)、アンモニウム=α-スルホナト-ω-1-(アリルオキシメチル)アルキルオキシポリオキシエチレン(例えば、第一工業製薬(株)製品名アクアロンKH-10)が挙げられる。
 本実施形態の水性複合粒子分散体の製造方法における、ポリマー層(B)の形成工程においては、親水基と親油基を有し、エチレン性二重結合基を有する反応性界面活性剤以外に、ノニオン型の界面活性剤等を使用することもできる。
 ノニオン型の界面活性剤としては、塗膜の高度な耐水性を発現するために、親水基と親油基を有し、エチレン性二重結合基を有する、いわゆる反応性界面活性剤を用いてもよい。
 反応性界面活性剤であるノニオン性の界面活性剤としては、以下に限定されるものではないが、例えば、α-[1-[(アリルオキシ)メチル]-2-(フェニルフェノキシ)エチル]-ω-ヒドロキシポリオキシエチレン(例えば、(株)ADEKA製 製品名アデカリアソープNE-20、NE-30、NE-40)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(例えば、第一工業製薬(株)製品名アクアロンRN-10、RN-20、RN-30、RN-50)が挙げられる。
 本実施形態の水性複合粒子分散体の製造方法では、親水基と親油基を有し、エチレン性二重結合基を有する反応性界面活性剤以外に、通常の界面活性剤を界面活性剤として使用することもできる。当該通常の界面活性剤としては、以下に限定されるものではないが、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマーなどの非反応性ノニオン型界面活性剤が挙げられる。
 本実施形態の重合過程終了後において、水性複合粒子ラテックスへ添加され得る界面活性剤の種類は特に限定されないが、ノニオン型及び/又はアニオン型界面活性剤が好ましい。
 重合過程終了後に水性複合粒子ラテックスへ添加される界面活性剤の使用量は、単量体の全質量を基準として、好ましくは10質量%以下であり、より好ましくは5質量%以下である。これより多い使用量では得られる塗膜の耐水性が著しく低下する傾向がある。
[水性複合粒子分散体の製造のための重合開始剤]
 水性複合粒子分散体を製造する際には、ラジカル重合開始剤を使用することができる。
 ラジカル重合開始剤は、熱又は還元性物質などによってラジカル分解して、単量体のラジカル重合を起こさせる化合物である。
 水溶性の重合開始剤としては、水溶性の過硫酸塩、過酸化物、アゾビス化合物等が使用できる。例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素、t-ブチルハイドロパーオキサイド、2,2-アゾビス(2-ジアミノプロパン)ハイドロクロライドが挙げられる。
 油溶性の重合開始剤としては、以下に限定されるものではないが、例えば、t-ブチルパーオキシベンゾエート、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。
 乳化重合を行う場合、水溶性開始剤を単独で使用するか、又は水溶性開始剤と油溶性開始剤とを併用することが好ましく、ミニエマルション重合の場合、油溶性開始剤を使用することが好ましい。
 水溶性の重合開始剤の量は、好ましくは、単量体の全質量に対して通常0.01~10質量%、より好ましくは0.01~1.0質量%である。
 油溶性の重合開始剤の量は、単量体の全質量に対して通常0.01~10質量%、好ましくは0.01~0.1質量%である。
 重合速度の促進、さらに低温での重合を行う場合、重亜硫酸ナトリウム、塩化第一鉄、アスコルビン酸塩、ロンガリット等の還元剤をラジカル重合開始剤と組み合わせて用いることが好ましい。
 重合温度は、重合開始剤の分解温度に合わせて決定され、乳化重合は通常水の沸点以下である90℃以下で実施される。
 重合時間は、乳化重合又はミニエマルション重合を行う場合には、最終的に得られるエマルション中の重合体濃度によっても異なるが、単量体を分散液に供給した後の重合反応の時間(熟成時間)は、10分以上であることが好ましい。この時間以下では、未反応の単量体が残留する可能性がある。
 単量体の重合にあたっては、重合後の分子量を調節するため、連鎖移動剤を重合過程で添加することも可能であり、連鎖移動剤を0.1~5質量%からなる混合物することによって得ることができる。
 連鎖移動剤が0.1質量%以下では水溶液又は水分散液の粘度が高値を示し取扱いを困難となる傾向があり、5質量%以上では塗膜の耐水性が低下する傾向がある。
 連鎖移動剤としては、具体的には、ブチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン等のメルカプタン、メタノール、イソプロピルアルコール等のアルコール、α-メチルスチレンダイマー、四塩化炭素等が挙げられる。
 以下、実施例及び比較例によって、本実施形態を具体的に説明するが、本実施形態は、以下の実施例により何ら限定されるものではない。
〔実施例1~13〕〔比較例1~3〕
 以下、実施例及び比較例において適用した測定方法、及び原料を示す。
〔複合粒子の総質量に対するリン原子の質量の定量分析方法〕
 複合粒子の総質量に対するリン原子の定量は、所望のラテックス試料について塩基性を維持したまま透析し、続けて凍結乾燥した試料をICP発光分析により行った。
 詳細な手順を以下に示す。
(1)ラテックス試料の透析、乾燥
 0.001規定NaOH(1.0mMのNaOH水溶液)にて20倍に希釈した水性複合粒子分散体の適切な容量を、複数本の限外ろ過膜(ビバスピン6,分画分子量:100,000(100K),膜材質:PES,Sartorius Stedim Biotech GmbH製)上に測り取り、遠心分離器を用いた回転数500rpmでのろ過により透析を行い、容量が0.5倍になるまで水性複合粒子分散体を濃縮した。
 濃縮後の水性複合粒子分散体(ろ過残分)に、同量の1.0mMのNaOH水溶液を加え、再度、同様の限外ろ過膜を用いた透析により、容量が0.5倍なるまで濃縮した。
 さらに、濃縮された分散体(ろ液)へ、同量の1.0mMのNaOH水溶液を加え、再度、同様の限外ろ過膜を用いた透析により、容量が0.5倍になるまで濃縮し、このろ過残分を凍結乾燥し、目的の複合粒子の試料を得た。
(2)湿式分解法によるICP発光分析
 前記試料約1gを300mLトールビーカーに取り、精秤後、硝酸(60%)20mLを添加し、徐々に加熱(最大250℃)しながら、茶色の亜硝酸ガスが出なくなるまで有機物質を分解(約5時間)した。
 乾固寸前まで加熱して液量を減らし、再度、硝酸(60%)20mL及び過塩素酸(60%)3mLを添加し、徐々に加熱(最大250℃)しながら、分解(約3時間)を行った。
 この液をろ紙5C(JIS P3801〔ろ紙(化学分析用)〕に規定される5種Cに相当)にてろ過し、シリカ等の酸不溶残分除き、そのろ液を、1%硝酸を用いて20mLに定容し、ICP発光分析の試験液とした。
(3)上記試験液を用いて、ICP発光分析装置(VISTA-PRO、(Agilent Technologies製))にて分析を行った。
〔ゼータ電位の測定〕
 複合粒子の水性複合粒子分散体中での60℃でのゼータ電位は、pH7~11の範囲の水性複合粒子分散体を10mMのKCl水溶液で希釈して調製された分散体を用いて測定した。
 水性複合粒子分散体のpHが7未満の場合、NaOH水溶液にてpHが7~11になるように調整した後、10mMのKCl水溶液で水性複合粒子分散体を希釈して、測定用の分散体を調製した。
 ゼータ電位の測定条件は以下のとおりである。
 装置名:大塚電子株式会社製 ELSZ―1000
 測定温度:60℃
 電気移動度からのゼータ電位の演算は、Smoluchowskiの式を用いた方法により行った。
 測定されるゼータ電位の値は、本装置により出力される値を1ピークフィット処理して表示させた数値とした。
 具体的な測定用の分散体の調製方法としては、水性複合粒子分散体を、10mMのKCl水溶液で複合粒子の濃度が当該分散体の質量を基準として10質量%となるように希釈して、測定用の分散体を調製した。
 濃度10質量%での測定が不可の場合には、適宜、10mMのKCl水溶液を追加した。
 具体的な希釈濃度は、測定できる上限濃度が複合粒子の粒径によって決まるため、10mMのKCl水溶液で希釈された後の複合粒子の濃度は、当該分散体の質量を基準として、0.001質量%以上20質量%以下、及び本機器が示す測定可能な範囲内の濃度で測定した。
 測定用の分散体を、上記装置の標準セルに入れ、測定を行った。
〔透析後のゼータ電位の測定〕
 0.001規定NaOH(1.0mMのNaOH水溶液)にて20倍に希釈した複合粒子分散体の適切な容量を、限外ろ過膜(ビバスピン6,分画分子量:100,000(100K),膜材質:PES,Sartorius Stedim Biotech Gmbh製)上に測り取り、遠心分離器を用いた回転数500rpmでのろ過により透析を行い、容量が0.5倍になるまで水性複合粒子分散体を濃縮した。
 濃縮後の水性複合粒子分散体(ろ過残分)に、同量の1.0mMのNaOH水溶液を加え、再度、同様の限外ろ過膜を用いた透析により、容量が0.5倍なるまで濃縮した。
 さらに、濃縮された分散体(ろ液)へ、同量の1.0mMのNaOH水溶液を加え、再度、同様の限外ろ過膜を用いた透析により、容量が0.5倍になるまで濃縮した。
 濃縮された水性複合粒子分散体のpHが7~11である場合、これを同容量の20mMのKCl水溶液を加え、希釈してKCl濃度を約10mMに調整した。
 濃縮された水性複合粒子分散体のpHが7未満である場合、NaOH水溶液を添加してpHを7~11に調整した。このようにして得られた測定用の透析後の分散体を用いて、上記と同様の条件により25℃でのゼータ電位を測定した。
 なお前記濃度条件での測定が不可の場合には、適宜、1mMのKCl水溶液を追加した。
 具体的な希釈濃度は、測定できる上限濃度が複合粒子の粒径によって決まるためKCl水溶液で希釈された後の複合粒子の濃度は、当該分散体の質量を基準として、0.001質量%以上20質量%以下、及び本機器が示す測定可能な範囲内の濃度で測定した。
 測定用の分散液のKCl濃度は、1~10mMとした。
〔耐温水性試験〕
 水性複合粒子分散体へ、テキサノールCS-12(JNC(株)製)2~5%を添加し、充分に撹拌して、塗液を調製した。
 この塗液をガラス板に塗布して、約80μmの厚みの塗膜を形成した。
 塗膜を23℃で1週間乾燥させた後、24時間、50℃の温水へ浸漬した。
 浸漬後の塗膜の外観を確認し、以下の基準で耐温水性を評価した。
  A:塗膜の形状を保ち、透明性を維持しているか、やや白化しているものの透明性を維持している。
  B:塗膜の形状を保ち、白化している。
  C:塗膜はブリスターを発生し、試験前の形状を保てず、白化している。
〔耐候性〕
 下記に示す塗料配合組成で塗料を調製し、以下に示す耐候性試験方法に従って試験を実施した。
(塗料配合組成)
<(1)顔料ディスパージョン>
 水 221質量部
 BYK190[分散剤20%水溶液:BYK社製] 35質量部
 タイピュア R-706[ルチル型酸化チタン:デュポン(株)製] 706質量部
 プロピレングリコール  45質量部
 アンモニア水 1.0質量部
<(2-1)レットダウン成分>
 他の水性樹脂分散体(D)として、ポリトロンE780(アクリルラテックス:旭化成(株)製を用い、下記に示す塗料配合組成で塗料を調製し、以下に示す耐候性試験方法に従って試験を実施した。
 各実施例、比較例の水性複合粒子分散体(固形分換算)  30質量部
 ポリトロンE780(アクリルラテックス:旭化成(株)製 
固形分換算)                      70質量部
 プルロニック(登録商標)F68の5%水溶液(界面活性剤
:(株)ADEKA製)                 6質量部
 テキサノールCS-12               4~10質量部
 イオン交換水                                       10質量部
 前記顔料ディスパージョン             101質量部
    
 上記の(2-1)レットダウン成分の塗料配合物をワイヤーコーターNo.55を用いて、硫酸アルマイト板に塗布し、室温にて2時間乾燥させた。
 さらに50℃にて2日間乾燥させたものを試験体とした。
 耐候性試験前の試験体を色差計(BYK―Gardner GmbH社製、spectro-guide)にて曝露前のb値を測定した。
 引き続きサンシャイン型ウエザオメーター(スガ試験機(株)製、WEL-SUN-DC)を使用して曝露試験(降雨サイクル;12分/時間、ブラックパネル温度60~66℃)を行った。
 曝露1000時間後のb値を測定し、曝露前のb値との差をΔb値とした。
〔耐候性改質値:|Δb-Δb|/(Δb+Δb)〕
 他の水性樹脂分散体(D)として、ポリトロンE780(アクリルラテックス:旭化成(株)製を用い、下記に示す塗料配合組成で塗料を調製し、以下に示す耐候性試験方法に従って試験を実施した。
(塗料配合組成)
<(1)顔料ディスパージョン>
 水 221質量部
 BYK190[分散剤20%水溶液:BYK社製] 35質量部
 タイピュア R-706[ルチル型酸化チタン:デュポン(株)製] 706質量部
 プロピレングリコール  45質量部
 アンモニア水 1.0質量部
<(2-2)レットダウン成分>
ポリトロンE780(アクリルラテックス:旭化成(株)製 
固形分換算)                      100質量部
 プルロニック(登録商標)F68の5%水溶液(界面活性剤:
(株)ADEKA製)                    6質量部
 テキサノールCS-12                  6質量部
 イオン交換水                                         10質量部
 前記顔料ディスパージョン                 101質量部
 
 上記の(2-2)レットダウン成分の塗料配合物をワイヤーコーターNo.55を用いて、硫酸アルマイト板に塗布し、室温にて2時間乾燥させた。
 さらに50℃にて2日間乾燥させたものを試験体とした。
 耐候性試験前の試験体を色差計(BYK―Gardner GmbH社製、spectro-guide)にて曝露前のb値を測定した。
 引き続きサンシャイン型ウエザオメーター(スガ試験機(株)製、WEL-SUN-DC)を使用して曝露試験(降雨サイクル;12分/時間、ブラックパネル温度60~66℃)を行った。
 (2-2)レットダウン成分による塗料配合物の試験体の曝露1000時間後のb値を測定し、曝露前のb値との差をΔb値とした。
 上記Δb及びb値により、耐候性改質値:|Δb-Δb|/(Δb+Δb)を算出した。
 なおポリトロンE780によるΔb値は1.90であった。
 表1中、「-」は、耐候性試験のための塗料において、凝集のため、安定して混和することが不可能であったことを意味する。
〔平均粒子径の測定、及び合成粒子の判定〕
 水性複合粒子分散体中での複合粒子の平均粒子径は、前記水性複合粒子分散体をイオン交換水で適宜希釈し、室温(23℃)にて大塚電子株式会社製 ELSZ―1000を使用し、キュムラント平均値を求めた。
 複合粒子の平均粒子径から、粒子(A)をシードとして複合粒子へ成長したか否かを計算値と比較判定し、「合成粒子の判定」として以下の基準で評価した。
     A:粒子(A)をシードとして(B)成分が同一粒子上にほぼ形成され、新粒子の発生、成長粒子の凝集はほぼ抑制されている。
      B:粒子(A)をシードとして(B)成分が同一粒子上にほぼ形成されたが、やや成長粒子の凝集のため、粒子径の肥大化が見られた。
      C:粒子(A)をシードとして(B)成分が同一粒子上にほぼ形成さず、新粒子の発生が多く、平均粒子径は粒子(A)に近い値を示した。
〔合成時の分散安定性〕
 水性複合粒子分散体を用いて、下記の基準により、合成時の分散安定性を評価した。
○:水性複合粒子分散体中に凝集物がまったく見られないか、わずかに白い凝集物が点在するが、100メッシュの金網で濾過することができる。
×:水性複合粒子分散体中に多量の凝集物が存在し、100メッシュの金網で濾過すると目詰まりを起こし、濾過することができない。あるいは、分散体全体が凝集し、液状でなくなった。
〔固形分(質量%)〕
 水性複合粒子分散体を、1gアルミ皿に取り、精秤後、105℃で3時間乾燥させ、乾燥後の質量を精秤し、その比率から固形分を算出した。
〔実施例及び比較例において用いた材料〕
(界面活性剤)
 AEROSOL(登録商標)OT-75(ジオクチルスルホコハク酸ナトリウム)の水溶液、日本サイテック・インダストリーズ(株)製)
 AEROSOL(登録商標)MA-80(ジヘキシルスルホコハク酸ナトリウムの水溶液、日本サイテック・インダストリーズ(株)製)
 エレミノール(登録商標)JS-2(アルキルアリルスルホコハク酸ナトリウムの水溶液、三洋化成(株)製)
 ネオペレックス(登録商標)G-15(ドデシルベンゼンスルホン酸ナトリウムの水溶液、花王(株)製)
(反応性界面活性剤であって、アニオン型の界面活性剤)
 アクアロン(登録商標)KH-10(ポリオキシエチレン-1-(アルキルオキシメチル)アルキルエーテル硫酸アンモニウム、第一工業製薬(株)製)
 アデカリアソープ(登録商標)SR-10(α-スルホ-ω-(1-(アルコキシ)メチル)-2-(2-プロペニルオキシ)エトキシ)-ポリ(オキシ-1,2-エタンジイル)のアンモニウム塩、(株)ADEKA製)
(リン酸基を持つエチレン性不飽和単量体)
 PPME(2-メタクリロイルオキシエチルフォスフェートとビス(2-メタクリロイルオキシエチルフォスフェート)との混合物、(別称)メタクリル酸2-ヒドロキシエチルのリン酸モノエステルとメタクリル酸2-ヒドロキシエチルのリン酸ジエステルとの混合物、東邦化学工業(株)製)
(窒素官能基を持つエチレン性不飽和単量体(共重合性の光安定剤))
 アデカスタブ(登録商標)LA-82(メタクリロキシ1,2,2,6,6-ペンタメチル-4-ピペリジン、ADEKA(株)製)
 アデカスタブ(登録商標)LA-87(2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、ADEKA(株)製)
(窒素官能基を持つエチレン性不飽和単量体(紫外線吸収性エチレン性不飽和単量体、共重合性の紫外線吸収剤))
 2-〔2'-ヒドロキシ-5'-(β-メタクリロイルオキシエトキシ)-3'-tert-ブチルフェニル〕-4-tert-ブチル-2H-ベンゾトリアゾール(大塚化学(株)製、製品名:RUVA-93)
(非共重合性の紫外線吸収剤)
 Tinuvin(登録商標)384-2(BASFジャパン(株)製)
 Tinuvin(登録商標)400(BASFジャパン(株)製)
(非共重合性の光安定剤)
 Tinuvin(登録商標)292(BASFジャパン(株)製)
(コロイダルシリカ)
 スノーテックス(登録商標)ST-N-40(アンモニア中和型コロイダルシリカ、日産化学工業(株)製)
 アデライト(登録商標)AT-50(ナトリウム中和型コロイダルシリカ、(株)ADEKA製)
(成膜助剤)
 テキサノール(登録商標)CS-12(JNC(株)製)
 以下、実施例1~13及び比較例1~3において適用した粒子(A)について記載する。
〔合成例1(高分子ポリマー粒子(A)の合成)〕
 撹拌機、還流冷却器、滴下槽、及び温度計を取りつけた反応容器に、水500g、濃度15質量%に調整したアクアロン(登録商標)KH-10(ポリオキシエチレン-1-(アルキルオキシメチル)アルキルエーテル硫酸アンモニウム、第一工業製薬(株)製)の40gを投入し、窒素雰囲気下で反応容器中の温度を78℃に上げてから、過硫酸アンモニウムの2%水溶液15gを添加した。
 その5分後に、メタクリル酸メチル185g、メタクリル酸シクロヘキシル300g、メタクリル酸ブチル200g、アクリル酸2-エチルヘキシル250g、メタクリル酸2-ヒドロキシエチル50g、メタクリル酸10g、アクリル酸5g、PPME(2-メタクリロイルオキシエチルフォスフェートとビス(2-メタクリロイルオキシエチルフォスフェート)との混合物、東邦化学工業(株)製)0.1g、p-スチレンスルホン酸ナトリウムの5g、濃度15質量%に調整したアクアロン(登録商標)KH-10を66.7gと、過硫酸アンモニウムの2%水溶液50g及びイオン交換水700gとの混合物を、180分かけて反応器へ流入させた。
 流入中は反応器中の温度を80℃に維持した。
 流入終了後、反応器中の分散液を、さらに80℃にて60分間保ち、その後室温まで冷却した後、水素イオン濃度を測定したところpH2.1であった。
 得られた高分子ポリマー粒子の水分散液の固形分濃度は43.0質量%で、平均粒子径96nmであった。
〔実施例1〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液をアンモニアにてpH9.5に調整後、水を加えて濃度40.0質量%に調整し、その250.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したアクアロン(登録商標)KH-10の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)45gを添加した。
 その5分後に、メタクリル酸メチル3.2g、メタクリル酸シクロヘキシル4.8g、アクリル酸ブチル7.76g及びPPME(メタクリロイルオキシエチルフォスフェート、東邦化学工業(株)製)0.24gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15(ドデシルベンゼンスルホン酸ナトリウムの水溶液、花王(株)製)0.53gと、イオン交換水20gとの混合物を、90分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 さらに濃度15質量%に調整したアクアロン(登録商標)KH-10を2.67g、メタクリル酸メチル16.0g、メタクリル酸シクロヘキシル8.0g、アクリル酸ブチル52.0g、アクリルアミド0.8g及びアデカスタブ(登録商標)LA-82(メタクリロキシ1,2,2,6,6-ペンタメチル-4-ピペリジン、ADEKA(株)製)3.2g、p-スチレンスルホン酸ナトリウム0.4gと、Tinuvin(登録商標)384-2(BASFジャパン(株)製)0.4g、過硫酸アンモニウム(2%水溶液)10g及びイオン交換水70gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH8.9、固形分38.1質量%で、平均粒子径125nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH8.9で-42mVであった。
 透析後の水性複合粒子分散体のゼータ電位の測定したところ、pH7.8で25℃でのゼータ電位は-38mV、複合粒子中のリン原子は0.013質量%であった。
 当該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例2〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、濃度40.0質量%に調整したスノーテックス(登録商標)ST-N-40(アンモニア中和型コロイダルシリカ、日産化学工業(株)製)の250.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したAEROSOL(登録商標)OT-75(ジオクチルスルホコハク酸ナトリウム)の水溶液、日本サイテック・インダストリーズ(株)製)の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。その5分後に、メタクリル酸メチル7.2g、アクリル酸ブチル16.56g及びPPME0.24gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15(ドデシルベンゼンスルホン酸ナトリウムの水溶液、花王(株)製)0.80gと、イオン交換水25gとの混合物を、20分かけて反応器へ流入させた。流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 さらに濃度15質量%に調整したアクアロン(登録商標)KH-10を1.6g及び濃度15質量%に調整したネオペレックス(登録商標)G-15を1.6g、メタクリル酸メチル28.8g、アクリル酸ブチル64.32g、アクリルアミド0.72g、PPME0.24g及びアデカスタブ(登録商標)LA-82を1.92g、Tinuvin(登録商標)384-2(BASFジャパン(株)製)を0.48g、イオン交換水100gとの混合物を、150分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH9.1、固形分41.1質量%で、平均粒子径65nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH9.1で-40mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH7.9で25℃でのゼータ電位は-36mV、複合粒子中のリン原子は0.024質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例3〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、濃度40.0質量%に調整したスノーテックス(登録商標)ST-N-40の200.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したエレミノール(登録商標)JS-2(アルキルアリルスルホコハク酸ナトリウムの水溶液、三洋化成(株)製)の25gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)12.5gを添加した。
 その5分後に、メタクリル酸メチル6.2g、アクリル酸ブチル13.7g、及びPPME0.10gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15(ドデシルベンゼンスルホン酸ナトリウムの水溶液、花王(株)製)の0.67gと、イオン交換水25gとの混合物を、90分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を70℃にて30分間撹拌した。
 さらに濃度15質量%に調整したアクアロン(登録商標)KH-10を1.34、及び濃度15質量%に調整したネオペレックス(登録商標)G-15を1.34g、メタクリル酸メチル23.2g、アクリル酸ブチル53.6g、PPME0.01g、アクリルアミド1.6g及びアデカスタブ(登録商標)LA-82を1.6g、Tinuvin(登録商標)384-2を0.80g、過硫酸アンモニウム(2%水溶液)10g、及びイオン交換水70gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH9.2、固形分41.0質量%で、平均粒子径62nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH9.2で-42mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.0で25℃でのゼータ電位は-34mV、複合粒子中のリン原子は0.006質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例4〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液をアンモニアにてpH9.5に調整後、水を加えて濃度40.0質量%に調整し、その250.0gを投入し、70℃に昇温した。
 そこに、濃度10質量%に調整したアクアロン(登録商標)KH-10の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃としたまま、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、メタクリル酸メチル4.0g、メタクリル酸ブチル6.0g、アクリル酸ブチル9.7g、メタクリル酸0.10g及びPPME0.20gと、濃度15.0質量%に調整したアクアロン(登録商標)KH-10を0.67gと、イオン交換水20gとの混合物を、30分かけて反応器へ流入させた。流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 濃度15質量%に調整したアクアロン(登録商標)KH-10を2.67g、メタクリル酸メチル16.0g、メタクリル酸シクロヘキシル8.0g、アクリル酸ブチル43.2g、アクリルアミド0.8g及びアデカスタブ(登録商標)LA-82を12.0g、Tinuvin(登録商標)400(BASFジャパン(株)製)0.8g、イオン交換水80gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH9.2、固形分40.9質量%で、平均粒子径130nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH9.2で-45mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.2で25℃でのゼータ電位は-34mV、複合粒子中のリン原子は0.011質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例5〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液をアンモニアにてpH9.5に調整後、水を加えて濃度40.0質量%に調整し、その200.0gを投入し、70℃に昇温した。
 そこに、濃度10質量%に調整したアデカリアソープ(登録商標)SR-10(α-スルホ-ω-(1-(アルコキシ)メチル)-2-(2-プロペニルオキシ)エトキシ)-ポリ(オキシ-1,2-エタンジイル)のアンモニウム塩、(株)ADEKA製)の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃としたまま、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、メタクリル酸メチル10.0g、アクリル酸ブチル9.7g及びPPME0.30gと、濃度15.0質量%に調整したアデカリアソープ(登録商標)SR-10を0.67gと、イオン交換水20gとの混合物を、30分かけて反応器へ流入させた。流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 濃度15質量%に調整したアデカリアソープ(登録商標)SR-10を2.67g、メタクリル酸メチル8.0g、メタクリル酸シクロヘキシル24.0g、アクリル酸ブチル44.0g、アクリルアミド0.8g、アデカスタブ(登録商標)LA-82を2.4g及びRUVA-93(大塚化学(株)製、反応型紫外線吸収剤)0.8g、イオン交換水80gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH9.2、固形分40.8質量%で、平均粒子径134nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH9.2で-51mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH7.9で25℃でのゼータ電位は-42mV、複合粒子中のリン原子は0.018質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例6〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、濃度40.0質量%に調整したスノーテックス(登録商標)ST-N-40(アンモニア中和型コロイダルシリカ、日産化学工業(株)製)の250.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したAEROSOL(登録商標)MA-80(ジヘキシルスルホコハク酸ナトリウムの水溶液、日本サイテック・インダストリーズ(株)製)の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15.0gを添加した。
 その10分後に、メタクリル酸メチル6.0g、アクリル酸ブチル13.9g、PPME0.10g及びp-スチレンスルホン酸ナトリウムを0.1gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.67gと、イオン交換水25gとの混合物を、40分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 さらに濃度15質量%に調整したアクアロン(登録商標)KH-10を2.67、メタクリル酸メチル9.2g、メタクリル酸シクロヘキシル24.0g、アクリル酸2-エチルヘキシル44.0g、PPME0.01g、アクリルアミド1.2g、メタクリル酸ジエチルアミノエチル0.8g及びアデカスタブ(登録商標)LA-82を0.8g、Tinuvin(登録商標)384-2を0.80g及びメタクリル酸0.08g、イオン交換水80gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH8.9、固形分40.9質量%で、平均粒子径69nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃におけるゼータ電位は、pH8.9で-47mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH7.8で25℃でのゼータ電位は-44mV、複合粒子中のリン原子は0.006質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例7〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、濃度40.0質量%に調整したスノーテックス(登録商標)ST-N-40(アンモニア中和型コロイダルシリカ、日産化学工業(株)製)の250.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したAEROSOL(登録商標)OT-75の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その10分後に、メタクリル酸メチル6.2g、メタクリル酸ブチル13.64g、PPME0.16g及びp-スチレンスルホン酸ナトリウム0.1gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.67gと、イオン交換水20gとの混合物を、20分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 さらに濃度15質量%に調整したアクアロン(登録商標)KH-10を3.33、メタクリル酸シクロヘキシル29.5g、メタクリル酸ブチル55.0g、アクリル酸ブチル10.0g、PPME0.01g、アクリルアミド1.50g及びアデカスタブ(登録商標)LA87(2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、ADEKA(株)製)を4.0g及びTinuvin(登録商標)384-2(BASFジャパン(株)製)0.50g、イオン交換水100gとの混合物を、150分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH9.1、固形分41.1質量%で、平均粒子径70nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH9.1で-36mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.0で25℃でのゼータ電位は-36mV、複合粒子中のリン原子は0.008質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例8〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、濃度40.0質量%に調整したスノーテックス(登録商標)ST-N-40の250.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したAEROSOL(登録商標)OT-75の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その10分後に、メタクリル酸メチル6.2g、アクリル酸ブチル13.2g、及びPPME0.60gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.67gと、イオン交換水20gとの混合物を、20分かけて反応器へ流入させた。流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 さらに濃度15質量%に調整したアクアロン(登録商標)KH-10を3.33、メタクリル酸シクロヘキシル36.0g、メタクリル酸ブチル48.0g、アクリル酸ブチル10.0g、PPME0.01g、アデカスタブ(登録商標)LA82を6.0g及びTinuvin(登録商標)384-2を3.0g、イオン交換水100gとの混合物を、150分かけて反応器へ流入させ、分散液を得た。
 その後、分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH8.8、固形分41.8質量%で、平均粒子径68nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH8.8で-53mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.0で25℃でのゼータ電位は-42mV、複合粒子中のリン原子は0.030質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例9〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液をアンモニアにてpH9.5に調整後、水を加えて濃度40.0質量%に調整し、その275.0gを投入し、70℃に昇温した。
 そこに、濃度10質量%に調整したアクアロン(登録商標)KH-10の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃としたまま、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、メタクリル酸メチル6.0g、アクリル酸ブチル13.8g及びPPME0.20gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.67gと、イオン交換水20gとの混合物を、30分かけて反応器へ流入させた。流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 濃度15質量%に調整したアクアロン(登録商標)KH-10を2.67g、メタクリル酸メチル12.0g、メタクリル酸シクロヘキシル24.0g、アクリル酸ブチル44.0g及びオン交換水80gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH8.7、固形分40.8質量%で、平均粒子径132nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH8.7で-58mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.1で25℃でのゼータ電位は-48mV、複合粒子中のリン原子は0.010質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例10〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液をアンモニアにてpH9.5に調整後、水を加えて濃度40.0質量%に調整し、その250.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したアクアロン(登録商標)KH-10の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)45gを添加した。
 その5分後に、メタクリル酸メチル4.8g、メタクリル酸シクロヘキシル3.2g、アクリル酸ブチル7.76g及びPPME0.24gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.53gと、イオン交換水20gとの混合物を、90分かけて反応器へ流入させた。流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 さらに濃度15質量%に調整したアクアロン(登録商標)KH-10を2.13g、メタクリル酸メチル21.76g、メタクリル酸シクロヘキシル12.8g、アクリル酸ブチル26.88g、アクリルアミド0.64g、アデカスタブ(登録商標)LA82を1.92g及びTinuvin(登録商標)384-2を0.64gと、過硫酸アンモニウム(2%水溶液)10g及びイオン交換水45gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH8.8、固形分38.1質量%で、平均粒子径127nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH8.8で-61mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.1で25℃でのゼータ電位は-35mV、複合粒子中のリン原子は0.014質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例11〕
 還流冷却器、滴下槽、温度計および撹拌装置を有する反応器に、濃度40.0質量%に調整したスノーテックス(登録商標)ST-N-40の250.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したAEROSOL(登録商標)OT-75の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、メタクリル酸メチル7.2g、メタクリル酸シクロヘキシル2.4g、アクリル酸ブチル14.16g及びPPME0.24gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.80gと、イオン交換水25gとの混合物を、30分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 さらに濃度15質量%に調整したアクアロン(登録商標)KH-10を1.6g、及び濃度15質量%に調整したネオペレックス(登録商標)G-15を1.6g、メタクリル酸メチル28.8g、メタクリル酸シクロヘキシル11.52g、アクリル酸ブチル54.72g、PPME0.01g、アクリルアミド0.72g、及びPPME0.24g、イオン交換水100gとの混合物を、150分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH9.1、固形分41.1質量%で、平均粒子径68nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH9.1で-59mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH7.7で25℃でのゼータ電位が-51mV、複合粒子中のリン原子は0.024質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例12〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液をアンモニアにてpH9.5に調整後、水を加えて濃度40.0質量%に調整し、その275.0gを投入し、70℃に昇温した。
 そこに、濃度10質量%に調整したアクアロン(登録商標)KH-10の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃としたまま、過硫酸アンモニウム(2%水溶液)12.5gを添加した。
 その5分後に、メタクリル酸シクロヘキシル5.2g、アクリル酸ブチル13.8g及びPPME1.0gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.67gと、イオン交換水20gとの混合物を、30分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 濃度15質量%に調整したアクアロン(登録商標)KH-10を2.67g、メタクリル酸メチル11.2g、メタクリル酸シクロヘキシル24.0g、アクリル酸ブチル40.0g、アデカスタブ(登録商標)LA82を4.80g、及びTinuvin(登録商標)384-2を2.40g及びオン交換水80gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH8.7、固形分40.8質量%で、平均粒子径132nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH8.7で-65mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH7.9で25℃でのゼータ電位は-55mV、複合粒子中のリン原子は0.051質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔実施例13〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液をアンモニアにてpH9.5に調整後、水を加えて濃度40.0質量%に調整し、その275.0gを投入し、70℃に昇温した。
 そこに、濃度10質量%に調整したアクアロン(登録商標)KH-10の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃としたまま、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、メタクリル酸メチル6.0g、アクリル酸ブチル13.8g及びPPME0.20gと、濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.67gと、イオン交換水20gとの混合物を、30分かけて反応器へ流入させた。流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 濃度15質量%に調整したアクアロン(登録商標)KH-10を2.67g、メタクリル酸メチル4.0g、メタクリル酸シクロヘキシル24.0g、アクリル酸ブチル44.0g、UMA25%(商品名:メタクリル酸ウレイドのメタクリル酸メチル25%溶液、BASF社製)8.0g及びオン交換水80gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH8.7、固形分40.8質量%で、平均粒子径130nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH8.7で-59mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.0で25℃でのゼータ電位は-50mV、複合粒子中のリン原子は0.010質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔比較例1〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液をアンモニアにてpH9.5に調整後、水を加えて濃度40.0質量%に調整し、その250.0gを投入し、70℃に昇温した。
 そこに、濃度10質量%に調整したアクアロン(登録商標)KH-10の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃としたまま、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、メタクリル酸メチル6.3g、アクリル酸ブチル13.7gと、濃度15.0質量%に調整したアクアロン(登録商標)KH-10を0.67gと、イオン交換水20gとの混合物を、30分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を、さらに70℃にて30分間撹拌した。
 濃度15質量%に調整したアクアロン(登録商標)KH-10を2.67g、メタクリル酸メチル16.0g、メタクリル酸シクロヘキシル8.0g、アクリル酸ブチル52.0g、アクリルアミド0.8g及びアデカスタブ(登録商標)LA-82を3.2g、Tinuvin(登録商標)、イオン交換水80gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH9.3、固形分40.9質量%で、平均粒子径102nmの水性複合粒子分散体が得られた。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH9.3で-45mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH7.8で25℃でのゼータ電位は-42mV、粒子中のリン原子は検知されなかった。
 該複合粒子を含む水性粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔比較例2〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、前記〔合成例1〕の高分子ポリマー粒子(A)の水分散液(pH2.1)を濃度40.0質量%に調整後、その250.0gを投入し、70℃に昇温した。
 そこに、濃度10質量%に調整したアクアロン(登録商標)KH-10の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃としたまま、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、メタクリル酸メチル5.8g、アクリル酸ブチル12.2g、PPME2.0g及び濃度15.0質量%に調整したアクアロン(登録商標)KH-10を0.67gと、イオン交換水20gとの混合物を、30分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を、さらに70℃にて60分間撹拌した。
 続けて、過硫酸アンモニウム(2%水溶液)15g、濃度15質量%に調整したアクアロン(登録商標)KH-10を2.67g、メタクリル酸メチル14.8g、メタクリル酸シクロヘキシル12.0g、アクリル酸ブチル52.0g、アクリルアミド0.8g及びPPMEを0.4g、イオン交換水80gとの混合物を、120分かけて反応器へ流入させた。
 その後、分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH8.8、固形分40.4質量%で、平均粒子径121nmの水性複合粒子分散体が得られた。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH8.8で-35mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.0で25℃でのゼータ電位は-45mV、粒子中のリン原子は0.131質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集することなく、安定に混和することができた。
〔比較例3〕
 還流冷却器、滴下槽、温度計および撹拌装置を有する反応器に、スノーテックス(登録商標)ST-50をNaOHにてpH10.0、および濃度50.0質量%に調整した200.0gを投入し、60℃に昇温した。
 そこに、濃度10質量%に調整したAEROSOL(登録商標)OT-75の30gを、ゆっくり添加した。
 反応器内の分散液を窒素雰囲気下で70℃としたまま、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、メタクリル酸メチル6.5g、アクリル酸ブチル12.8g、PPME0.3g及び濃度15.0質量%に調整したネオペレックス(登録商標)G-15を0.67gと、イオン交換水20gとの混合物を、30分かけて反応器へ流入させた。
 流入終了後、反応器中の分散液を、さらに70℃にて60分間撹拌した。
 続けて過硫酸アンモニウム(2%水溶液)15gを添加し、5分後に、濃度15質量%に調整したアクアロン(登録商標)KH-10を3.33g、メタクリル酸ブチル45.0g、メタクリル酸シクロヘキシル36.0g、アクリル酸ブチル18.0g、及びPPME1.0g、イオン交換水80gとの混合物を、120分かけて反応器へ流入させ、分散液を得た。
 その後、前記分散液を室温まで冷却し、100メッシュの金網で濾過したところ、pH9.5、固形分47.7質量%で、平均粒子径78nmの複合粒子を含む水性複合粒子分散体が得られた。また、凝集物の発生が少なく、反応容器への付着物も少なかった。
 得られた水性複合粒子分散体の60℃でのゼータ電位は、pH9.5で-78mVであった。
 透析後の水性複合粒子分散体のゼータ電位を測定したところ、pH8.3で25℃でのゼータ電位は-41mV、複合粒子中のリン原子は0.065質量%であった。
 該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと凝集してしまい、安定に混和することができなかった。
 下記の〔表1〕に、〔実施例1~13〕、〔比較例1~3〕の水性複合粒子分散体における、「複合粒子の総質量に対するリン原子の含有量(質量%)」、「60℃の水性複合粒子分散体における複合粒子のゼータ電位」、「25℃の水性複合粒子分散体における複合粒子のゼータ電位」、「リン酸基を持つ単量体に由来する弱酸性単量体単位を有するポリマー(B-1)の形成工程における単量体全体量に対してリン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が0.1~5.0質量%であるポリマー(B-1)の有無」、「窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)の形成工程における単量体全体量に対して窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.05~50質量%であるポリマー(B-2)の有無」、「ポリマー(B-2)/ポリマー(B-1)の質量比」
「ポリマー層(B)/粒子(A)の質量比」を示し、また、「耐温水性」及び「耐候性Δb」、「耐候性改質値|Δb-Δb|/(Δb+Δb)」の評価を示す。
Figure JPOXMLDOC01-appb-T000001
 
 実施例1~13によれば、耐水性に優れた塗膜を形成することができ、また、顔料無機粒子との混和安定性に優れた水性複合粒子分散体が得られた。
 特に、窒素官能基を持つエチレン性不飽和単量体を共重合した実施例1~8、10、12においては、塗膜に優れた耐候性を付加することができた。
〔実施例14~21〕、〔比較例4~8〕
 以下、実施例14~21、及び比較例4~8において適用した粒子(A)について記載する。
〔合成例2(高分子ポリマー粒子(A)の合成)〕
 撹拌機、還流冷却器、滴下槽、及び温度計を取りつけた反応容器に、水500g、濃度15質量%に調整したアクアロン(登録商標)KH-10(ポリオキシエチレン-1-(アルキルオキシメチル)アルキルエーテル硫酸アンモニウム、第一工業製薬(株)製)40gを投入し、窒素雰囲気下で反応容器中の温度を78℃に上げてから、過硫酸アンモニウムの2%水溶液15gを添加した。
 その5分後に、メタクリル酸メチル185g、メタクリル酸シクロヘキシル300g、メタクリル酸ブチル209g、アクリル酸2-エチルヘキシル250g、メタクリル酸2-ヒドロキシエチル50g、メタクリル酸4g、アクリル酸1.9g、PPME0.1g、p-スチレンスルホン酸ナトリウムの5g、濃度15質量%に調整したアクアロン(登録商標)KH-10を66.7gと、過硫酸アンモニウムの2%水溶液50g及びイオン交換水700gとの混合物を、180分かけて反応器へ流入させた。
 流入中は反応器中の温度を80℃に維持した。
 流入終了後、反応器中の分散液を、さらに80℃にて60分間保ち、その後室温まで冷却した後、水素イオン濃度を測定したところpH2.1であった。
 得られた高分子ポリマー粒子の水分散液の固形分濃度は43.0質量%で、平均粒子径96nmであった。
〔その他の粒子(A)〕
 アデライト(登録商標)AT-50((株)ADEKA製) イオン交換水により、濃度50.0質量%に調整した。
 スノーテックス(登録商標)ST-N-40(日産化学工業(株)製) アンモニア水によりpH9.5、濃度40.0質量%に調整した。
 以下、実施例14~21、及び比較例4~8中の各原料の質量割合について、下記表2に記載する。
〔実施例14~18〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、塩基性側の所定のpH(実施例14、15、17、18はアンモニア水によりpH9.5、実施例16はpH10.1)、及び所定の濃度(実施例14、15、17、18、20、21は40.0質量%、実施例16は50.0質量%)へ調整した粒子(A)を計量、投入し、60℃に昇温した。
 そこに、濃度10質量%に調整した初期添加界面活性剤の所定量を、ゆっくり添加した。
 反応器内の前記混合物を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、(B-3)ポリマーを構成するモノマー混合物、濃度15質量%に調整した(B-3)のモノマーと同時導入の界面活性剤、及びイオン交換水20gをホモジナイザーにて乳化混合し、この混合物を90分かけて反応器へ流入させた。
 流入終了後、反応器中のラテックスをさらに70℃にて30分間撹拌した。
 次に、(B-4)ポリマーを構成するモノマー混合物、紫外線吸収剤、濃度15質量%に調整したアクアロン(登録商標)KH-10、過硫酸アンモニウム(2%水溶液)8g及びイオン交換水80gをホモジナイザーにて乳化混合し、この混合物を120分かけて反応器へ流入させ、分散体を得た。
 その後、前記分散体を室温まで冷却し、100メッシュの金網で濾過し、固形分、平均粒子径を測定し、反応容器への付着物状態を目視にて確認した。
 得られた水性複合粒子分散体の60℃でのゼータ電位、透析後の水性複合粒子分散体の25℃でのゼータ電位を測定した。
 当該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。
 耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと混和状態を確認し、実施例14~18において、良好であったことを確認した。
〔実施例19〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、pH6.8、及び40.0質量%の濃度へ調整した粒子(A)を計量、投入し、60℃に昇温した。
そこに、濃度10質量%に調整した初期添加界面活性剤の所定量を、ゆっくり添加した。
 反応器内の前記混合物を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、(B-3)ポリマーを構成するモノマー混合物、濃度15質量%に調整した(B-3)のモノマーと同時導入の界面活性剤、イオン交換水18g、及びアンモニア水(25質量%)4.0gをホモジナイザーにて乳化混合し、この混合物を90分かけて反応器へ流入させた。
 流入終了後、反応器中のラテックスをさらに70℃にて30分間撹拌した。
 次に、(B-4)ポリマーを構成するモノマー混合物、紫外線吸収剤、濃度15質量%に調整したアクアロン(登録商標)KH-10、過硫酸アンモニウム(2%水溶液)8g、アンモニア水(25質量%)4g及びイオン交換水80gをホモジナイザーにて乳化混合し、この混合物を120分かけて反応器へ流入させ、分散体を得た。
 その後、前記分散体を室温まで冷却し、100メッシュの金網で濾過し、固形分、平均粒子径を測定し、反応容器への付着物状態を目視にて確認した。
 得られた水性複合粒子分散体はpH7.9であり、アンモニア水でpH8.5へ調整後、60℃でのゼータ電位、透析後の水性複合粒子分散体の25℃でのゼータ電位を測定した。
 当該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。
 耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと混和状態を確認し、実施例19において、良好であったことを確認した。
〔実施例20、21〕
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、塩基性側の所定のpH(実施例20、21はアンモニア水によりpH9.5)、及び所定の濃度40.0質量%へ調整した粒子(A)を計量、投入し、60℃に昇温した。
 そこに、濃度10質量%に調整した初期添加界面活性剤の所定量を、ゆっくり添加した。
 反応器内の前記混合物を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、(B-3)ポリマーを構成するモノマー混合物、濃度15質量%に調整した(B-3)のモノマーと同時導入の界面活性剤、及びイオン交換水20gをホモジナイザーにて乳化混合し、この混合物を90分かけて反応器へ流入させた。
 流入終了後、反応器中のラテックスをさらに70℃にて30分間撹拌した。
 次に、(B-5)ポリマーを構成するモノマー混合物、非重合性光安定剤、紫外線吸収剤、濃度15質量%に調整したアクアロン(登録商標)KH-10、過硫酸アンモニウム(2%水溶液)8g及びイオン交換水80gをホモジナイザーにて乳化混合し、この混合物を120分かけて反応器へ流入させ、分散体を得た。
 その後、前記分散体を室温まで冷却し、100メッシュの金網で濾過し、固形分、平均粒子径を測定し、反応容器への付着物状態を目視にて確認した。
 得られた水性複合粒子分散体の60℃でのゼータ電位、透析後の水性複合粒子分散体の25℃でのゼータ電位を測定した。
 当該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。
 耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと混和状態を確認し、実施例20、21において、良好であったことを確認した。
〔比較例4〕((B-3)ポリマーを、pH6よりも酸性側で合成した例)
 比較例4中の各原料の質量割合については、下記表2に記載する。
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、pH2.1のまま40質量%の濃度に調整した粒子(A)を計量、投入し、60℃に昇温した。
 そこに、濃度10質量%に調整した初期添加界面活性剤の所定量を、ゆっくり添加した。
 反応器内の前記混合物を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、(B-3)ポリマーを構成するモノマー混合物、濃度15質量%に調整した(B-3)のモノマーと同時導入の界面活性剤、及びイオン交換水20gをホモジナイザーにて乳化混合し、この混合物を90分かけて反応器へ流入させた。
 流入終了後、反応器中のラテックスをさらに70℃にて30分間撹拌した後、アンモニア水でpH9.0とした。
 次に、(B-4)ポリマーを構成するモノマー混合物、紫外線吸収剤、濃度15質量%に調整したアクアロン(登録商標)KH-10、過硫酸アンモニウム(2%水溶液)8g及びイオン交換水80gをホモジナイザーにて乳化混合し、この混合物を120分かけて反応器へ流入させ、分散体を得た。
 その後、前記分散体を室温まで冷却し、100メッシュの金網で濾過し、固形分、平均粒子径を測定し、反応容器への付着物状態を目視にて確認した。
 得られた水性複合粒子分散体の60℃でのゼータ電位、及び透析後の水性複合粒子ラテックスの25℃でのゼータ電位を測定した。
 当該複合粒子を含む水性複合粒子ラテックスを耐温水性試験、耐候性試験に供した。
 耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと混和状態を確認し、良好であったことを確認した。
〔比較例5〕((B-3)ポリマーを合成せずに(B-4)ポリマーを合成した例)
 比較例5中の各原料の質量割合を、下記表2に記載する。
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、塩基性側の所定のpH、及び濃度へ調整した粒子(A)を計量、投入し、60℃に昇温した。
 そこに、濃度10質量%に調整した初期添加界面活性剤の所定量を、ゆっくり添加した。
 反応器内の前記混合物を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、(B-4)ポリマーを構成するモノマー混合物、紫外線吸収剤、濃度15質量%に調整したアクアロン(登録商標)KH-10、過硫酸アンモニウム(2%水溶液)8g及びイオン交換水80gをホモジナイザーにて乳化混合し、この混合物を150分かけて反応器へ流入させ、分散体を得た。
 その後、前記分散体を室温まで冷却し、100メッシュの金網で濾過し、固形分、平均粒子径を測定し、反応容器への付着物状態を目視にて確認した。
 得られた水性複合粒子分散体の60℃でのゼータ電位、及び透析後の水性複合粒子分散体の25℃でのゼータ電位を測定した。
 当該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。
 耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと混和状態を確認し、良好であったことを確認したが、前記分散体とテキサノールとの混和安定性が不良なため、耐候性試験を実施できなかった。
〔比較例6〕((B-3)ポリマーをpH6よりも酸性側で合成し、(B-3)中の酸性基を持つエチレン性不飽和単量体量が範囲外の例)
 比較例6中の各原料の質量割合を、下記表2に記載する。
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、pH2.1のまま40.0質量%の濃度に調整した粒子(A)を計量、投入し、60℃に昇温した。
 そこに、濃度10質量%に調整した初期添加界面活性剤について下記表2に記載の量を、ゆっくり添加した。
 反応器内の前記混合物を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、(B-3)ポリマーを構成するモノマー混合物、濃度15質量%に調整した(B-3)のモノマーと同時導入の界面活性剤、及びイオン交換水20gをホモジナイザーにて乳化混合し、この混合物を90分かけて反応器へ流入させた。
 流入終了後、反応器中の分散体をさらに70℃にて30分間撹拌した後、アンモニア水でpH9.0とした。
 次に、(B-4)ポリマーを構成するモノマー混合物、紫外線吸収剤、濃度15質量%に調整したアクアロン(登録商標)KH-10、過硫酸アンモニウム(2%水溶液)8g及びイオン交換水80gをホモジナイザーにて乳化混合し、この混合物を120分かけて反応器へ流入させ、分散体を得た。
 その後、前記分散体を室温まで冷却し、100メッシュの金網で濾過し、固形分、平均粒子径を測定し、反応容器への付着物状態を目視にて確認した。
 得られた水性複合粒子分散体の60℃でのゼータ電位、及び透析後の水性複合粒子分散体の25℃でのゼータ電位を測定した。
 当該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。
 耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと混和状態を確認し、良好であったことを確認した。
〔比較例7〕((B-3)ポリマーの合成前、および(B-4)ポリマーを合成時に、加水分解性シラン基持つエチレン性不飽和単量体単位を使用した例)
 比較例7中の各原料の質量割合を、下記表2に記載する。
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、塩基性側の所定のpH(pH10.1)、及び所定の濃度(40.0質量%)へ調整した粒子(A)を計量、投入し、60℃に昇温した。
 そこに、濃度10質量%に調整した初期添加界面活性剤を所定量、及びγ-メタクリロキシプロピルトリメトキシシラン0.08質量部を、ゆっくり添加した。
 反応器内の前記混合物を窒素雰囲気下で70℃に昇温し、1時間保持した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、(B-3)ポリマーを構成するモノマー混合物、濃度15質量%に調整した(B-3)のモノマーと同時導入の界面活性剤、及びイオン交換水20gをホモジナイザーにて乳化混合し、この混合物を90分かけて反応器へ流入させた。
 流入終了後、反応器中のラテックスをさらに70℃にて30分間撹拌した。
 次に(B-4)ポリマーを構成するモノマー混合物、紫外線吸収剤、濃度15質量%に調整したアクアロン(登録商標)KH-10、過硫酸アンモニウム(2%水溶液)8g及びイオン交換水80gをホモジナイザーにて乳化混合し、この混合物を120分かけて反応器へ流入させ、分散体を得たところ、多量の凝集物を発生した。
 その後、前記分散体を室温まで冷却し、100メッシュの金網で濾過したところ、ろ過をすることができなかった。
〔比較例8〕((B-3)組成と(B-4)組成が重複し、実質的に(B-4)が無い例)
 比較例8中の各原料の質量割合を、下記表2に記載する。
 還流冷却器、滴下槽、温度計、及び撹拌装置を有する反応器に、塩基性側の所定のpH、及び所定の濃度へ調整した粒子(A)(アンモニア水にてpH9.5、濃度40.0質量%)を計量、投入し、60℃に昇温した。
 そこに、濃度10質量%に調整した初期添加界面活性剤の所定量を、ゆっくり添加した。
 反応器内の前記混合物を窒素雰囲気下で70℃に昇温した後、過硫酸アンモニウム(2%水溶液)15gを添加した。
 その5分後に、(B-3)ポリマーを構成するモノマー混合物、濃度15質量%に調整した(B-3)のモノマーと同時導入の界面活性剤、及びイオン交換水20gをホモジナイザーにて乳化混合し、この混合物を90分かけて反応器へ流入させた。
 流入終了後、反応器中のラテックスをさらに70℃にて30分間撹拌した。
 次に、(B-4)ポリマーを構成するモノマー混合物、紫外線吸収剤、濃度15質量%に調整したアクアロン(登録商標)KH-10、過硫酸アンモニウム(2%水溶液)8g及びイオン交換水80gをホモジナイザーにて乳化混合し、この混合物を120分かけて反応器へ流入させ、分散体を得た。
 その後、前記分散体を室温まで冷却し、100メッシュの金網で濾過し、固形分、平均粒子径を測定し、反応容器への付着物状態を目視にて確認した。
 得られた水性複合粒子分散体の60℃でのゼータ電位、及び透析後の水性複合粒子分散体の25℃でのゼータ電位を測定した。
 当該複合粒子を含む水性複合粒子分散体を耐温水性試験、耐候性試験に供した。
 耐候性試験のための塗料配合では、顔料用の酸化チタン及びアクリルラテックスと混和状態を確認し、良好であったことを確認した。
Figure JPOXMLDOC01-appb-T000002
 
 下記表3に、表2中の(*注)の説明を示す。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 本発明の実施例14~21によれば、製造時の分散安定性が良好で、耐水性に優れた塗膜を形成することができ、また、混和安定性に優れた水性複合粒子分散体が得られ、さらには窒素官能基を持つエチレン性不飽和単量体を共重合することによって塗膜に耐候性を付加できる水性複合粒子分散体が得られた。
 本出願は、2016年8月8日に日本国特許庁に出願された日本特許出願(特願2016-155812)、及び2016年12月12日に日本国特許庁に出願された日本特許出願(特願2016-240189)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の水性複合粒子分散体は、フォトニック結晶、塗料、コーティング材、紙表面処理剤、紙加工剤、繊維処理剤、粘接着材、導電性材料、電池材料、熱可塑性樹脂組成物、微細構造体、光学材料、反射防止部材、及び光学レンズとして、産業上の利用可能性がある。

Claims (31)

  1.  水を含む水性媒体と、
     当該水性媒体中に分散している複合粒子と、
    を、含み、
     前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)を有し、かつ、複合粒子の総質量に対して0.12質量%以下のリン原子を含む、少なくとも一つの水性複合粒子分散体(C)と、
     他の水性樹脂分散体(D)と、
    を、含有する、コーティング組成物分散体であって、
     前記水性複合粒子分散体(C)と、前記他の水性樹脂分散体(D)との固形分質量比が、
    ((C)成分の固形分質量)/(D)成分の固形分質量)=100/0~1/99からなるコーティング組成物分散体の塗膜において、当該コーティング組成物分散体の塗膜の色差Δb値と、前記他の水性樹脂分散体(D)の塗膜の色差Δb値とにより、
     下記式で表される耐候性改質値:|Δb-Δb|/(Δb+Δb)が、0.15以上である、
    コーティング組成物分散体。
  2.  水を含む水性媒体と、
     当該水性媒体中に分散している複合粒子と、
    を、含む水性複合粒子分散体(C)であって、
     前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを有し、かつ、複合粒子の総質量に対して0.001~0.12質量%のリン原子を含み、
     前記粒子(A)が、無機物粒子又は高分子ポリマー粒子であり、
     前記水性複合粒子分散体のpH7~11の範囲のいずれかにおいて、60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が-10mV~-69mVである、水性複合粒子分散体(C)。
  3.  前記水性複合粒子分散体(C)が、水を含む水性媒体と、当該水性媒体中に分散している複合粒子とを含み、
     前記複合粒子が、粒子(A)と、当該粒子(A)の表面の少なくとも一部を覆うポリマー層(B)とを有し、かつ、複合粒子の総質量に対して0.001~0.12質量%のリン原子を含み、
     前記粒子(A)が、無機物粒子又は高分子ポリマー粒子であり、
     前記水性複合粒子分散体のpH7~11の範囲のいずれかにおいて、60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が-10mV~-69mVである、請求項1に記載のコーティング組成物分散体。
  4.  透析された後の25℃の前記水性複合粒子分散体(C)における前記複合粒子のゼータ電位が、
     pH7~11の範囲のいずれかにおいて-5mV~-59mVである、
     請求項2に記載の水性複合粒子分散体(C)。
  5.  透析された後の25℃の前記水性複合粒子分散体(C)における前記複合粒子のゼータ電位が、
     pH7~11の範囲のいずれかにおいて-5mV~-59mVである、
     請求項1又は3に記載のコーティング組成物分散体。
  6.  前記ポリマー層(B)が、
     酸性基を持つエチレン性不飽和単量体単位を有するポリマーを含有し、
     当該酸性基を持つエチレン性不飽和単量体単位を有するポリマーの形成工程における単量体全体量に対して酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を、前記酸性基を持つエチレン性不飽和単量体単位を有するポリマーとして含む、
     請求項2又は4に記載の水性複合粒子分散体(C)。
  7.  前記ポリマー層(B)が、
     リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)を含有し、
     当該リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)の形成工程における単量体全体量に対してリン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が0.1~5.0質量%であるポリマーを、前記リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)として含む、
     請求項2、4、及び6のいずれか一項に記載の水性複合粒子分散体(C)。
  8.  前記ポリマー層(B)が、
     酸性基を持つエチレン性不飽和単量体単位を有するポリマーを含有し、
     当該酸性基を持つエチレン性不飽和単量体単位を有するポリマーの形成工程における単量体全体量に対して酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を、前記酸性基を持つエチレン性不飽和単量体単位を有するポリマーとして含む、
     請求項1、3、及び5のいずれか一項に記載のコーティング組成物分散体。
  9.  前記ポリマー層(B)が、
     リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)を含有し、
     当該リン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位を有するポリマー(B-1)の形成工程における単量体全体量に対してリン酸基を持つエチレン性不飽和単量体に由来する弱酸性単量体単位が0.1~5.0質量%であるポリマーを、前記リン酸基を持つエチレン性不飽和単量体単位に由来する弱酸性単量体単位を有するポリマー(B-1)として含む、
     請求項1、3、5、及び8のいずれか一項に記載のコーティング組成物分散体。
  10.  前記ポリマー層(B)が、
     窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)を含有し、
     当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)の形成工程における単量体全体量に対して窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.05~50質量%であるポリマーを、前記窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)として含む、
     請求項2、4、6、及び7のいずれか一項に記載の水性複合粒子分散体(C)。
  11.  前記ポリマー層(B)が、
     窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、
     当該窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程における単量体全体量に対して塩基性非重合性単量体単位が0.05~50質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)として含む、
     請求項2、4、6、及び7のいずれか一項に記載の水性複合粒子分散体(C)。
  12.  前記ポリマー層(B)が、
     窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、
     当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程が、同時又は別段階で実施され、
     前記ポリマー(B-2)及びポリマー(B-5)の形成工程における単量体全体量に対して、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.02~30質量%、及び塩基性非重合性単量体単位が0.02~30質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記ポリマー(B-2)及び前記ポリマー(B-5)として含む、
     請求項11に記載の水性複合粒子分散体(C)。
  13.  前記ポリマー層(B)が、
     窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)を含有し、
     当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)の形成工程における単量体全体量に対して窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.05~50質量%であるポリマーを、前記窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)として含む、
     請求項1、3、5、8、及び9のいずれか一項に記載のコーティング組成物分散体。
  14.  前記ポリマー層(B)が、
     窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、
     当該窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程における単量体全体量に対して塩基性非重合性単量体単位が0.05~50質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)として含む、
     請求項1、3、5、8、及び9のいずれか一項に記載のコーティング組成物分散体。
  15.  前記ポリマー層(B)が、
     窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)を含有し、
     当該窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位を有するポリマー(B-2)及び窒素官能基を持つ非重合性単量体を含有する塩基性非重合性単量体単位を含むポリマー(B-5)の形成工程が、同時又は別段階で実施され、
     前記ポリマー(B-2)及びポリマー(B-5)の形成工程における単量体全体量に対して、窒素官能基を持つエチレン性不飽和単量体に由来する塩基性単量体単位が0.02~30質量%、及び塩基性非重合性単量体単位が0.02~30質量%である窒素官能基含有非重合性単量体単位を含むポリマーを、前記ポリマー(B-2)及び前記ポリマー(B-5)として含む、請求項14に記載のコーティング組成物分散体。
  16.  前記ポリマー(B-2)/前記ポリマー(B-1)の質量比が0.01~50である、
    請求項10乃至12のいずれか一項に記載の水性複合粒子分散体(C)。
  17.  前記ポリマー(B-2)/前記ポリマー(B-1)の質量比が0.01~50である、
    請求項13乃至15のいずれか一項に記載のコーティング組成物分散体。
  18.  前記ポリマー層(B)/前記粒子(A)の質量比が0.01~100である、
    請求項2、4、6、7、10、11、12、及び16のいずれか一項に記載の水性複合粒子分散体(C)。
  19.  前記ポリマー層(B)/前記粒子(A)の質量比が0.01~100である、
    請求項1、3、5、8、9、13、14、15、及び17のいずれか一項に記載のコーティング組成物分散体。
  20.  前記60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が、pH7~11の水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であり、
     前記測定用の分散体は、前記水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体を前記KCl水溶液で希釈して調製されたものである、
     請求項2、4、6、7、10、11、12、16、及び18のいずれか一項に記載の水性複合粒子分散体(C)。
  21.  前記60℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が、pH7~11の水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であり、
     前記測定用の分散体は、前記水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体を前記KCl水溶液で希釈して調製されたものである、
     請求項3、5、8、9、13、14、15、17、及び19のいずれか一項に記載のコーティング組成物分散体。
  22.  前記透析された後の25℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が、
     1mMのNaOH水溶液で希釈された水性複合粒子分散体を透析し、pH7~11の透析後の当該水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であり、
     前記測定用の分散体は、透析された後の水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体をKCl水溶液で希釈して調製されたものである、
     請求項4、6、7、10、11、12、16、18、及び20のいずれか一項に記載の水性複合粒子分散体(C)。
  23.  前記透析された後の25℃の前記水性複合粒子分散体における前記複合粒子のゼータ電位が、
     1mMのNaOH水溶液で希釈された水性複合粒子分散体を透析し、pH7~11の透析後の当該水性複合粒子分散体を、KCl濃度が10mMになるように希釈して得られる測定用の分散体における電気移動度から、Smoluchowskiの式を用いた方法にて演算したゼータ電位であり、
     前記測定用の分散体は、透析された後の水性複合粒子分散体のpHが7未満のときは、NaOH水溶液の添加によってpHを7~11の範囲に調整後、水性複合粒子分散体をKCl水溶液で希釈して調製されたものである、
     請求項5、8、9、13、14、15、17、19、及び21のいずれか一項に記載のコーティング組成物分散体。
  24.  粒子(A)の表面の少なくとも一部に、ポリマー層(B)を形成する工程を有する水性複合粒子分散体の製造方法であって、
     前記水性複合粒子分散体は、粒子(A)の表面の少なくとも一部にポリマー層(B)が形成された複合粒子を含み、
     前記粒子(A)が無機物粒子又は高分子ポリマー粒子であり、
     前記ポリマー層(B)が、少なくとも一つの酸性基を持つエチレン性不飽和単量体単位を0.01~5.0質量%有するポリマー(B-3)を含み、
     前記ポリマー層(B)を形成する工程が、
     pH6以上に調整された粒子(A)の分散液において、酸性基を持つエチレン性不飽和単量体の少なくとも一部を中和した状態にて、前記ポリマー(B-3)を乳化重合する工程と、
     その後、非イオン性エチレン性不飽和単量体単位を50~100質量%及び酸性基を持つエチレン性不飽和単量体単位を5.0質量%以下含むポリマー(B-4)を水性媒体中で乳化重合する工程と、
    を、含む、
     水性複合粒子分散体の製造方法。
  25.  前記ポリマー層(B)を形成する工程が、
     前記ポリマー(B-4)として、
     非イオン性エチレン性不飽和単量体単位を50~99.95質量%、酸性基を持つエチレン性不飽和単量体単位を5.0質量%以下、及び窒素官能基を持つエチレン性不飽和単量体単位を0.05~50質量%含むポリマーを乳化重合する工程を含む、請求項24に記載の水性複合粒子分散体の製造方法。
  26.  前記ポリマー層(B)が、
     前記ポリマー(B-3)として、
    加水分解性シラン基を持つエチレン性不飽和単量体及び/又は加水分解性シラン基とメルカプト基とを持つ単量体を2.0質量%以下有するモノマー成分を乳化重合するとによって得られるポリマーを含み、
     前記ポリマー(B-3)の単量体の構成成分と、前記ポリマー(B-4)の単量体の構成成分とが、異なっている、請求項24又は25に記載の水性複合粒子分散体の製造方法。
  27.  前記ポリマー層(B)が、
     カルボキシル基を持つエチレン性不飽和単量体、リン酸基を持つエチレン性不飽和単量体、及びスルホン酸基を持つエチレン性不飽和単量体からなる群より選ばれる少なくとも一つの、酸性基を持つエチレン性不飽和単量体単位が複合粒子の総質量に対して0.005~4.0質量%であるポリマーを含む、
     請求項24乃至26のいずれか一項に記載の水性複合粒子分散体の製造方法。
  28.  前記粒子(A)の表面の少なくとも一部にポリマー層(B)を形成する工程を有し、
     当該ポリマー層(B)を形成する工程が、
     pH6以上に調整された粒子(A)の分散液において、前記粒子(A)の存在下、リン酸基をもつ単量体を用いて、当該リン酸基の少なくとも一部を中和した状態にて乳化重合する工程を含む、
     請求項24乃至27のいずれか一項に記載の水性複合粒子分散体の製造方法。
  29.  前記ポリマー層(B)が、
     前記リン酸基を持つエチレン性不飽和単量体からなる酸性基を持つエチレン性不飽和単量体単位が、複合粒子の総質量に対して0.001~1.0質量%未満であるポリマーを含む、
     請求項24乃至28のいずれか一項に記載の水性複合粒子分散体の製造方法。
  30.  前記ポリマー(B-4)/前記ポリマー(B-3)の質量比が0.01~50である、
     請求項24乃至29のいずれか一項に記載の水性複合粒子分散体の製造方法。
  31.  前記ポリマー層(B)/前記粒子(A)の質量比が0.01~100である、
    請求項24乃至30のいずれか一項に記載の水性複合粒子分散体の製造方法。
PCT/JP2017/028852 2016-08-08 2017-08-08 コーティング組成物分散体、水性複合粒子分散体、及び水性複合粒子分散体の製造方法 WO2018030443A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17839511.7A EP3498794B1 (en) 2016-08-08 2017-08-08 Coating composition dispersion, aqueous dispersion of composite-particles, and method for producing aqueous dispersion of composite-particles
CN201780047548.3A CN109563374A (zh) 2016-08-08 2017-08-08 涂布组合物分散体、水性复合颗粒分散体以及水性复合颗粒分散体的制造方法
JP2018533523A JP6691221B2 (ja) 2016-08-08 2017-08-08 コーティング組成物分散体、水性複合粒子分散体、及び水性複合粒子分散体の製造方法
US16/324,053 US20190169458A1 (en) 2016-08-08 2017-08-08 Coating composition dispersion, aqueous dispersion of composite particles and method for producing aqueous dispersion of composite particles
EP20164425.9A EP3708625A1 (en) 2016-08-08 2017-08-08 Process for producing aqueous composite-particle dispersion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-155812 2016-08-08
JP2016155812 2016-08-08
JP2016240189 2016-12-12
JP2016-240189 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018030443A1 true WO2018030443A1 (ja) 2018-02-15

Family

ID=61162556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028852 WO2018030443A1 (ja) 2016-08-08 2017-08-08 コーティング組成物分散体、水性複合粒子分散体、及び水性複合粒子分散体の製造方法

Country Status (5)

Country Link
US (1) US20190169458A1 (ja)
EP (2) EP3708625A1 (ja)
JP (1) JP6691221B2 (ja)
CN (1) CN109563374A (ja)
WO (1) WO2018030443A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472755B2 (ja) 2020-10-27 2024-04-23 artience株式会社 積層体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754823B (zh) * 2021-10-22 2023-04-14 焦作众成新材料有限责任公司 一种二氧化锆基水性导电丙烯酸乳液及其制备方法
FR3131328A1 (fr) * 2021-12-23 2023-06-30 Activ' Biomat Solution de greffage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312369A (ja) * 1987-06-15 1988-12-20 Lion Corp 塗料組成物
JP2001526726A (ja) * 1997-05-21 2001-12-18 イーストマン ケミカル カンパニー フィルム形成まで化学的及び物理的に安定な反応性ラテックスブレンドを調製する方法
JP2003147278A (ja) * 2001-10-01 2003-05-21 Rohm & Haas Co 改良されたコーティング組成物
JP2005054166A (ja) * 2003-08-01 2005-03-03 Rohm & Haas Co コーティング組成物
JP2005211856A (ja) * 2004-02-02 2005-08-11 Aica Kogyo Co Ltd 親水性機能を担持した構造体
JP2008280522A (ja) * 2007-04-30 2008-11-20 Rohm & Haas Co 水性コポリマー分散体およびコーティング組成物
JP2011219656A (ja) * 2010-04-12 2011-11-04 Mitsubishi Rayon Co Ltd エマルションの製造方法
JP2014031457A (ja) * 2012-08-04 2014-02-20 Nippon Shokubai Co Ltd 塗料用樹脂組成物
JP2014194035A (ja) * 2010-09-03 2014-10-09 Rohm & Haas Co 多段エマルションポリマーおよび向上した顔料効率

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2431072C3 (de) 1974-06-28 1980-04-30 Bayer Ag, 5090 Leverkusen Thermoplastische Copolyester und Verfahren zu ihrer Herstellung
JPS5837961B2 (ja) 1976-02-02 1983-08-19 株式会社デンソー 高温用サ−ミスタ素子
US5385960A (en) * 1991-12-03 1995-01-31 Rohm And Haas Company Process for controlling adsorption of polymeric latex on titanium dioxide
JP2998604B2 (ja) 1995-08-18 2000-01-11 三菱化学エムケーブイ株式会社 防曇性組成物
JP3215329B2 (ja) 1996-08-27 2001-10-02 株式会社日本触媒 水性樹脂分散体の製造方法
US6312807B1 (en) 1999-08-09 2001-11-06 3M Innovative Properties Company UV-absorbing core/shell particles
JP2007246800A (ja) 2006-03-17 2007-09-27 Toyo Ink Mfg Co Ltd 多段重合ポリマーエマルジョン及びその製造方法
DE102008023444A1 (de) * 2008-05-14 2009-11-19 Basf Coatings Ag Elektrotauchlackzusammensetzung
AU2010217189A1 (en) * 2009-02-24 2011-09-08 The University Of Sydney Polymer particles
EP2560966B1 (en) 2010-03-30 2021-01-06 Verseon International Corporation Multisubstituted aromatic compounds as inhibitors of thrombin
CA2912294C (en) * 2014-12-01 2023-01-03 Dow Global Technologies Llc Phosphorus acid functionalized opaque polymer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312369A (ja) * 1987-06-15 1988-12-20 Lion Corp 塗料組成物
JP2001526726A (ja) * 1997-05-21 2001-12-18 イーストマン ケミカル カンパニー フィルム形成まで化学的及び物理的に安定な反応性ラテックスブレンドを調製する方法
JP2003147278A (ja) * 2001-10-01 2003-05-21 Rohm & Haas Co 改良されたコーティング組成物
JP2005054166A (ja) * 2003-08-01 2005-03-03 Rohm & Haas Co コーティング組成物
JP2005211856A (ja) * 2004-02-02 2005-08-11 Aica Kogyo Co Ltd 親水性機能を担持した構造体
JP2008280522A (ja) * 2007-04-30 2008-11-20 Rohm & Haas Co 水性コポリマー分散体およびコーティング組成物
JP2011219656A (ja) * 2010-04-12 2011-11-04 Mitsubishi Rayon Co Ltd エマルションの製造方法
JP2014194035A (ja) * 2010-09-03 2014-10-09 Rohm & Haas Co 多段エマルションポリマーおよび向上した顔料効率
JP2014031457A (ja) * 2012-08-04 2014-02-20 Nippon Shokubai Co Ltd 塗料用樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472755B2 (ja) 2020-10-27 2024-04-23 artience株式会社 積層体

Also Published As

Publication number Publication date
CN109563374A (zh) 2019-04-02
EP3498794B1 (en) 2021-02-10
EP3498794A4 (en) 2019-08-14
JPWO2018030443A1 (ja) 2019-03-14
JP6691221B2 (ja) 2020-04-28
EP3498794A1 (en) 2019-06-19
EP3708625A1 (en) 2020-09-16
US20190169458A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6691221B2 (ja) コーティング組成物分散体、水性複合粒子分散体、及び水性複合粒子分散体の製造方法
JP6343623B2 (ja) 水性複合粒子分散体
AU2012233014B2 (en) Coating composition with high pigment volume content opaque polymer
EP2675850B1 (de) Modifizierte kompositpartikel
JP4889244B2 (ja) 汚染防止用水性被覆組成物
JP5990277B2 (ja) セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体
JP4514524B2 (ja) 水性アクリルエマルジョン組成物
JP7423186B2 (ja) 水系組成物、水系塗料、塗膜、複合塗膜、及び塗装製品
JP2000355602A (ja) 水性樹脂分散体
JP2016107231A (ja) 分離膜
JP2010005595A (ja) 複層塗膜
JP2020079373A (ja) シリコーン変性塗膜耐候性改質用の水性複合粒子分散体、及びコーティング組成物分散体
JP2021020987A (ja) シリコーン変性ラテックス、及び水性コーティング組成物
JP5362416B2 (ja) 有機・無機複合組成物
JP2008031299A (ja) 機能性アルミニウム建材
JP2007246799A (ja) 紫外線遮断性水系コーティング用樹脂組成物
JP4067336B2 (ja) 高耐久性エマルジョンおよびその製造方法
JP4266727B2 (ja) 高耐久性エマルジョンおよびその製造方法
JP6823404B2 (ja) 重合体微粒子の製造方法、及び重合体微粒子の溶剤分散体の製造方法
JP2005336436A (ja) 高耐久性エマルジョン及びその製造方法
JP2009007513A (ja) コーティング組成物
JP2013258326A (ja) 太陽電池バックシート用積層体及び太陽電池バックシート
JP2013221036A (ja) ポリマーが被覆された無機粒子の製造方法
JP4641742B2 (ja) 高耐久性エマルジョン及びその製造方法
JP2004285219A (ja) 水性コーティング組成物及びその安定化方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533523

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017839511

Country of ref document: EP

Effective date: 20190311