WO2018027495A1 - 一种电子设备的蓄电池寿命保护电路 - Google Patents

一种电子设备的蓄电池寿命保护电路 Download PDF

Info

Publication number
WO2018027495A1
WO2018027495A1 PCT/CN2016/094006 CN2016094006W WO2018027495A1 WO 2018027495 A1 WO2018027495 A1 WO 2018027495A1 CN 2016094006 W CN2016094006 W CN 2016094006W WO 2018027495 A1 WO2018027495 A1 WO 2018027495A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charge
discharge control
chip
discharge
Prior art date
Application number
PCT/CN2016/094006
Other languages
English (en)
French (fr)
Inventor
蒋建兵
Original Assignee
深圳市锐明技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市锐明技术股份有限公司 filed Critical 深圳市锐明技术股份有限公司
Priority to PCT/CN2016/094006 priority Critical patent/WO2018027495A1/zh
Priority to CN201680000671.5A priority patent/CN106663956A/zh
Publication of WO2018027495A1 publication Critical patent/WO2018027495A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention belongs to the technical field of battery protection circuits, and in particular, to a battery life protection circuit for an electronic device.
  • An object of the embodiments of the present invention is to provide a battery life protection circuit for an electronic device, which aims to solve the problem that the current battery energy is depleted due to excessive heat loss in the long circuit, thereby reducing the service life of the battery.
  • a battery life protection circuit of an electronic device includes a battery, and the battery life protection circuit of the electronic device further includes:
  • the charge and discharge control unit is further connected to the battery discharge control unit and the battery discharge path unit, respectively, and the charge and discharge control unit respectively outputs an invalid enable signal to the battery discharge control unit and the battery discharge path unit,
  • the battery discharge control unit and the battery discharge path unit are in a default state in which the battery discharge is disabled, and the battery impedance to ground is reduced.
  • the battery life protection circuit of the electronic device further includes a step-up regulator and a charger connected in series between the external power source and the battery.
  • the charge and discharge control unit uses a charge and discharge control chip U1, the first detection end of the charge and discharge control chip U1 is connected to the external power source, and the second detection of the charge and discharge control chip U1.
  • the end SenS e2 is connected to the battery
  • the power terminal VCC of the charge and discharge control chip U1 is connected to the DC-DC conversion unit
  • the control terminal ctrl3 and the fourth control terminal cM4 are respectively connected to the battery discharge control unit, the battery discharge path unit, the charger, and the up-down regulator.
  • the comparison unit includes a diode D1 and a diode D2.
  • the cathodes of the diode D1 and the diode D2 are connected to the input end of the DC-DC conversion unit, and the anode of the diode D1 is connected to the battery.
  • the anode of the diode D2 is connected to the output of the step-up regulator.
  • the battery discharge path unit uses the FET chip U2, the input terminal IN of the FET chip U2 is connected to the battery, and the output terminal OUT of the FET chip U2 is connected to the The anode of the diode D1, the control terminal Ctrl of the FET chip U2 is connected to the second control terminal ctrl2 of the charge and discharge control chip U1.
  • the DC-DC conversion unit uses a DC-DC conversion chip U3, and the input terminal IN of the DC-DC conversion chip U3 is connected to the cathode of the diode D1 and the diode D2, and the DC-DC The output terminal OUT of the conversion chip U 3 is connected to the power supply terminal VCC of the charge and discharge control chip U 1 .
  • the second detecting end sens of the charging and discharging control chip U1 detects that the storage capacity of the battery is lower than 10% of the protection power, and the charging and discharging control chip U1 turns off the discharging circuit of the battery. , protecting the battery.
  • the charge and discharge control unit controls the battery discharge control unit and the battery discharge path unit to be in a default state in which the battery discharge is disabled, and reduces the battery impedance to ground to The minimum state, the static current stored in the static storage of the battery is controlled to the minimum loss state, thereby protecting and extending the life of the battery, and the battery life protection circuit of the electronic device can maintain the logic of the rationality of the battery use environment, and, in addition, the charge and discharge control The unit detects that the storage capacity of the battery is lower than 10% of the protection power, and the charge and discharge control unit protects the battery by turning off the discharge circuit of the battery.
  • FIG. 1 is a block diagram of a battery life protection circuit of an electronic device according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a battery life protection circuit of an electronic device according to an embodiment of the present invention.
  • FIG. 1 shows a module structure of a battery life protection circuit of an electronic device according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown.
  • a battery life protection circuit for an electronic device comprising a battery 1, the battery life protection circuit of the electronic device further includes:
  • a charge and discharge control unit 2 connected to an external power source
  • the battery of the battery 1 or the external power source is supplied to the battery discharge path unit 4 of the charge and discharge control unit 2 by comparison, and comparison is made.
  • the charge and discharge control unit 2 is further connected to the battery discharge control unit 3 and the battery discharge path unit 4, respectively, and the charge and discharge control unit 2 outputs an invalid enable signal to the battery discharge control unit 3 and
  • the battery discharge path unit 4 causes the battery discharge control unit 3 and the battery discharge path unit 4 to be in a default state in which the battery discharge is disabled, and reduces the impedance of the battery 1 to ground.
  • FIG. 2 shows a circuit structure of a battery life protection circuit of an electronic device according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the battery life protection circuit of the electronic device further includes a step-up regulator 8 and a charger 6 connected in series between the external power source and the battery 1.
  • the charge and discharge control unit 2 uses a charge and discharge control chip U1, and the first detection end of the charge and discharge control chip U1 is connected to the external power source, and the charge and discharge control chip U1
  • the second detecting end sens is connected to the battery 1
  • the power supply terminal VCC of the charging and discharging control chip U1 is connected to the DC-DC converting unit 5, the first control terminal ctril of the charging and discharging control chip U1, and the second control
  • the terminal ctr 12, the third control terminal ctrl3, and the fourth control terminal ctri4 are respectively connected to the battery discharge control unit 3, the battery discharge path unit 4, the charger 6, and the up-down regulator 8.
  • the comparison unit 7 includes a diode D1 and a diode D2.
  • the cathodes of the diode D1 and the diode D2 are connected in common to the input end of the DC-DC conversion unit 5, and the diode D1
  • the anode is connected to the output end of the battery discharge path unit 4, and the anode of the diode D2 is connected to the output end of the step-down regulator 8.
  • the battery discharge path unit 4 uses a FET chip U2, and the input terminal IN of the FET chip U2 is connected to the battery 1, and the output of the FET chip U2.
  • the terminal OU T is connected to the anode of the diode D1, and the control terminal Ctrl of the FET chip U2 is connected to the second control terminal ctrl2 of the charge and discharge control chip U1.
  • the DC-DC conversion unit 5 uses a DC-DC conversion chip U3, and the input terminal IN of the D C-DC conversion chip U3 is connected to the cathodes of the diode D1 and the diode D2.
  • the output terminal OUT of the DC-DC conversion chip U3 is connected to the power supply terminal VCC of the charge and discharge control chip U1.
  • the charge and discharge control chip U1 uses a chip of the type STM32F030, and of course, other types of chips can also be used, and details are not described herein again.
  • the FET chip U2 is a chip of the type A04485L, when However, other types of chips can also be used, and will not be described here.
  • the DC-DC conversion chip U3 uses a chip of the type MP2315, and other types of chips may be used, and details are not described herein.
  • the battery discharge control unit 3 uses a chip of the model LM5060. Of course, other types of chips may be used, and details are not described herein.
  • the second detecting end sens of the charging and discharging control chip U1 detects that the storage capacity of the storage battery 1 is lower than 10% of the protection power, and the charging and discharging control chip U1 closes the The battery 1 is protected by a discharge circuit of the battery 1.
  • the external power supply voltage and the battery voltage are compared with the diode D1 and the diode D2 to determine whether the external power supply or the battery supplies power to the charge and discharge control chip U1;
  • the external power supply is missing or the external power supply voltage is less than the battery voltage ⁇ , the battery passes through the FET chip
  • the U2 discharge maintains the normal operating voltage of the charge and discharge control chip U1, so that the charge and discharge control chip U1 is still in a normal working state;
  • the charge and discharge control chip U1 issues an effective enable signal of the battery discharge control unit 3 and the battery discharge path unit 4 according to the battery discharge strategy with the battery electronic device;
  • the charge and discharge control chip U1 issues an invalid enable signal of the battery discharge control unit 3 and the battery discharge path unit 4 according to the battery discharge strategy of the battery electronic device, and the battery is grounded.
  • the impedance is reduced to a minimum state, and the static current stored in the battery is controlled to a minimum loss state, thereby protecting and extending the life of the battery.
  • the first control terminal ctr11 of the charge and discharge control chip U1 and the second control terminal cM2 are ineffectively shutting down the battery normal discharge circuit; storing a certain minimum battery protection power; Protect and extend battery life.
  • the battery can not be in the same process of charging and discharging, and the first control end of the chip U1 is controlled by charging and discharging.
  • the second control terminal cM2 cannot effectively achieve the mutual exclusion of the battery charging and discharging process; The role of long battery life.
  • the charge and discharge control unit controls the battery discharge control unit and the battery discharge path unit to be in a default state in which the battery discharge is disabled, and reduces the battery impedance to ground to The minimum state, the static current stored in the static storage of the battery is controlled to the minimum loss state, thereby protecting and extending the life of the battery, and the battery life protection circuit of the electronic device can maintain the logic of the rationality of the battery use environment, and, in addition, the charge and discharge control The unit detects that the storage capacity of the battery is lower than 10% of the protection power, and the charge and discharge control unit protects the battery by turning off the discharge circuit of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电子设备的蓄电池寿命保护电路,当电子设备的蓄电池(1)静态存储时,充放电控制单元(2)控制蓄电池放电控制单元(3)和蓄电池放电路径单元(4)处于蓄电池(1)放电无效使能的默认状态,将蓄电池(1)对地阻抗降低至最小状态,将蓄电池(1)静态存放的静态电流控制到最小耗损状态,起到保护、延长蓄电池(1)寿命的作用,并且该电子设备的蓄电池寿命保护电路可以维护蓄电池(1)使用环境的合理性逻辑,另外,充放电控制单元(2)检测到所述蓄电池(1)的存储电量低于10%保护电量,充放电控制单元(2)通过关闭所述蓄电池(1)的放电电路,对所述蓄电池(1)进行保护。

Description

一种电子设备的蓄电池寿命保护电路 技术领域
[0001] 本发明属于电池保护电路技术领域, 尤其涉及一种电子设备的蓄电池寿命保护 电路。
背景技术
[0002] 现在随着社会经济的迅猛发展和科技的进步, 带蓄电池的电子设备日益普及; 但是, 因蓄电池材料、 带蓄电池电子设备本身的内阻等因素的影响, 蓄电池电 能量会因长吋间的热损耗而耗尽。 这会对蓄电池寿命造成致命性破坏。 蓄电池 需要带电存放, 才能保证寿命的长期性, 一旦蓄电池进入欠电量状态, 其存储 使用寿命立即减少。 现有一部分带蓄电池电子设备采用电池与电子设备分幵包 装的形式, 这种方式只能满足一些组装简便的电子设备; 很多结构复杂的带蓄 电池电子设备无法使用。 带蓄电池电子设备需要周期性的进行充电补充电能量 已实现对蓄电池寿命的保护。 但这个周期性吋段不能太短, 太短不利于带蓄电 池电子设备的长途运输、 同吋也会大大增加带蓄电池电子设备的仓库存储成本 技术问题
[0003] 本发明实施例的目的在于提供一种电子设备的蓄电池寿命保护电路, 旨在解决 现在的蓄电池电能量因长吋间热损耗过快耗尽, 从而降低蓄电池使用寿命的问 题。
问题的解决方案
技术解决方案
[0004] 本发明实施例是这样实现的, 一种电子设备的蓄电池寿命保护电路, 包括蓄电 池, 所述电子设备的蓄电池寿命保护电路还包括:
[0005] 与外部电源连接的充放电控制单元;
[0006] 连接在所述蓄电池与用电负载之间的蓄电池放电控制单元;
[0007] 串联在所述蓄电池、 外部电源与充放电控制单元之间, 经过比较选择将所述蓄 电池或外部电源的电量供给所述充放电控制单元的蓄电池放电路径单元、 比较 单元和 DC-DC转换单元;
[0008] 所述充放电控制单元还分别与所述蓄电池放电控制单元和蓄电池放电路径单元 连接, 所述充放电控制单元分别输出无效使能信号给所述蓄电池放电控制单元 和蓄电池放电路径单元, 使得所述蓄电池放电控制单元和蓄电池放电路径单元 处于蓄电池放电无效使能的默认状态, 降低所述蓄电池对地阻抗。
[0009] 上述结构中, 所述电子设备的蓄电池寿命保护电路还包括串联在所述外部电源 与蓄电池之间的升-降压调整器和充电器。
[0010] 上述结构中, 所述充放电控制单元采用充放电控制芯片 Ul, 所述充放电控制芯 片 U1的第一检测端 sensel接所述外部电源, 所述充放电控制芯片 U1的第二检测 端 SenSe2接所述蓄电池, 所述充放电控制芯片 U1的电源端 VCC接所述 DC-DC转 换单元, 所述充放电控制芯片 U1的第一控制端 ctrll、 第二控制端 cM2、 第三控制 端 ctrl3和第四控制端 cM4分别接所述蓄电池放电控制单元、 蓄电池放电路径单元 、 充电器和升-降压调整器。
[0011] 上述结构中, 所述比较单元包括二极管 D1和二极管 D2, 所述二极管 Dl和二极 管 D2的阴极共同接所述 DC-DC转换单元的输入端, 所述二极管 D1的阳极接所述 蓄电池放电路径单元的输出端, 所述二极管 D2的阳极接所述升-降压调整器的输 出端。
[0012] 上述结构中, 所述蓄电池放电路径单元采用场效应管芯片 U2, 所述场效应管芯 片 U2的输入端 IN接所述蓄电池, 所述场效应管芯片 U2的输出端 OUT接所述二极 管 D1的阳极, 所述场效应管芯片 U2的控制端 Ctrl接所述充放电控制芯片 U1的第 二控制端 ctrl2。
[0013] 上述结构中, 所述 DC-DC转换单元采用 DC-DC转换芯片 U3, 所述 DC-DC转换 芯片 U3的输入端 IN接所述二极管 D1和二极管 D2的阴极, 所述 DC-DC转换芯片 U 3的输出端 OUT接所述充放电控制芯片 U 1的电源端 VCC。
[0014] 上述结构中, 所述充放电控制芯片 U1的第二检测端 sens 检测到所述蓄电池的 存储电量低于 10%保护电量, 所述充放电控制芯片 U1通过关闭所述蓄电池的放 电电路, 对所述蓄电池进行保护。 发明的有益效果
有益效果
[0015] 在本发明实施例中, 当电子设备的蓄电池静态存储吋, 充放电控制单元控制蓄 电池放电控制单元和蓄电池放电路径单元处于蓄电池放电无效使能的默认状态 , 将蓄电池对地阻抗降低至最小状态, 将蓄电池静态存放的静态电流控制到最 小耗损状态, 起到保护、 延长蓄电池寿命的作用, 并且该电子设备的蓄电池寿 命保护电路可以维护蓄电池使用环境的合理性逻辑, 另外, 充放电控制单元检 测到所述蓄电池的存储电量低于 10%保护电量, 充放电控制单元通过关闭所述蓄 电池的放电电路, 对所述蓄电池进行保护。
对附图的简要说明
附图说明
[0016] 图 1是本发明实施例提供的电子设备的蓄电池寿命保护电路的模块结构图; [0017] 图 2是本发明实施例提供的电子设备的蓄电池寿命保护电路的结构图。
本发明的实施方式
[0018] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0019] 图 1示出了本发明实施例提供的电子设备的蓄电池寿命保护电路的模块结构, 为了便于说明, 仅示出了与本发明实施例相关的部分。
[0020] 一种电子设备的蓄电池寿命保护电路, 包括蓄电池 1, 所述电子设备的蓄电池 寿命保护电路还包括:
[0021] 与外部电源连接的充放电控制单元 2;
[0022] 连接在所述蓄电池 1与用电负载之间的蓄电池放电控制单元 3;
[0023] 串联在所述蓄电池 1、 外部电源与充放电控制单元 2之间, 经过比较选择将所述 蓄电池 1或外部电源的电量供给所述充放电控制单元 2的蓄电池放电路径单元 4、 比较单元 7和 DC-DC转换单元 5; [0024] 所述充放电控制单元 2还分别与所述蓄电池放电控制单元 3和蓄电池放电路径单 元 4连接, 所述充放电控制单元 2分别输出无效使能信号给所述蓄电池放电控制 单元 3和蓄电池放电路径单元 4, 使得所述蓄电池放电控制单元 3和蓄电池放电路 径单元 4处于蓄电池放电无效使能的默认状态, 降低所述蓄电池 1对地阻抗。
[0025] 图 2示出了本发明实施例提供的电子设备的蓄电池寿命保护电路的电路结构, 为了便于说明, 仅示出了与本发明实施例相关的部分。
[0026] 作为本发明一实施例, 所述电子设备的蓄电池寿命保护电路还包括串联在所述 外部电源与蓄电池 1之间的升 -降压调整器 8和充电器 6。
[0027] 作为本发明一实施例, 所述充放电控制单元 2采用充放电控制芯片 Ul, 所述充 放电控制芯片 U1的第一检测端 sensel接所述外部电源, 所述充放电控制芯片 U1 的第二检测端 sens 接所述蓄电池 1, 所述充放电控制芯片 U1的电源端 VCC接所 述 DC-DC转换单元 5, 所述充放电控制芯片 U1的第一控制端 ctril、 第二控制端 ctr 12、 第三控制端 ctrl3和第四控制端 ctri4分别接所述蓄电池放电控制单元 3、 蓄电池 放电路径单元 4、 充电器 6和升 -降压调整器 8。
[0028] 作为本发明一实施例, 所述比较单元 7包括二极管 D1和二极管 D2, 所述二极管 D1和二极管 D2的阴极共同接所述 DC-DC转换单元 5的输入端, 所述二极管 D1的 阳极接所述蓄电池放电路径单元 4的输出端, 所述二极管 D2的阳极接所述升-降 压调整器 8的输出端。
[0029] 作为本发明一实施例, 所述蓄电池放电路径单元 4采用场效应管芯片 U2, 所述 场效应管芯片 U2的输入端 IN接所述蓄电池 1, 所述场效应管芯片 U2的输出端 OU T接所述二极管 D1的阳极, 所述场效应管芯片 U2的控制端 Ctrl接所述充放电控制 芯片 U1的第二控制端 ctrl2。
[0030] 作为本发明一实施例, 所述 DC-DC转换单元 5采用 DC-DC转换芯片 U3, 所述 D C-DC转换芯片 U3的输入端 IN接所述二极管 D1和二极管 D2的阴极, 所述 DC-DC 转换芯片 U3的输出端 OUT接所述充放电控制芯片 U 1的电源端 VCC。
[0031] 作为本发明一实施例, 所述充放电控制芯片 U1采用型号为 STM32F030的芯片 , 当然也可以采用其他型号芯片, 这里不再赘述。
[0032] 作为本发明一实施例, 所述场效应管芯片 U2采用型号为 A04485L的芯片, 当 然也可以采用其他型号芯片, 这里不再赘述。
[0033] 作为本发明一实施例, 所述 DC-DC转换芯片 U3采用型号为 MP2315的芯片, 当 然也可以采用其他型号芯片, 这里不再赘述。
[0034] 作为本发明一实施例, 所述蓄电池放电控制单元 3采用型号为 LM5060的芯片, 当然也可以采用其他型号芯片, 这里不再赘述。
[0035] 作为本发明一实施例, 所述充放电控制芯片 U1的第二检测端 sens 检测到所述 蓄电池 1的存储电量低于 10%保护电量, 所述充放电控制芯片 U1通过关闭所述蓄 电池 1的放电电路, 对所述蓄电池 1进行保护。
[0036] 该电子设备的蓄电池寿命保护电路的工作原理为:
[0037] 1.外部电源输入吋, 充放电控制芯片 U1正常工作后, 第一吋间发出 PMOS的有 效使能信号, 使蓄电池通过场效应管芯片 U2的放电通路正常;
[0038] 2.外部电源电压与蓄电池电压经过二极管 D1和二极管 D2比较, 确定外部电源 或蓄电池对充放电控制芯片 U1进行供电;
[0039] 3.外部电源缺失或外部电源电压小于蓄电池电压吋, 蓄电池经过场效应管芯片
U2放电维持充放电控制芯片 U1的正常工作电压, 使充放电控制芯片 U1仍处在正 常工作状态;
[0040] 4.充放电控制芯片 U1依据带蓄电池电子设备的蓄电池放电策略发出蓄电池放电 控制单元 3、 蓄电池放电路径单元 4的有效使能信号;
[0041] 5.当电子设备的蓄电池静态存储吋, 充放电控制芯片 U1依据带蓄电池电子设备 的蓄电池放电策略发出蓄电池放电控制单元 3、 蓄电池放电路径单元 4的无效使 能信号, 将蓄电池对地阻抗降低至最小状态, 将蓄电池静态存放的静态电流控 制到最小耗损状态, 起到保护、 延长蓄电池寿命的作用。
[0042] 6.蓄电池静态存储吋因蓄电池对地有阻抗会导致一个微安级大少的静态漏电流
; 通过检测到蓄电池电压低于最低保护电压值吋, 充放电控制芯片 U1的第一控 制端 ctrll与第二控制端 cM2同吋无效关闭电池正常放电电路; 存储一定的蓄电池 最低保护电量; 起到保护、 延长蓄电池寿命的作用。
[0043] 7.蓄电池不能同吋处在充放电过程中, 通过充放电控制芯片 U1的第一控制端 ctr
11、 第二控制端 cM2不能同吋有效实现蓄电池充放电过程的互斥; 起到保护、 延 长蓄电池寿命的作用。
[0044] 在本发明实施例中, 当电子设备的蓄电池静态存储吋, 充放电控制单元控制蓄 电池放电控制单元和蓄电池放电路径单元处于蓄电池放电无效使能的默认状态 , 将蓄电池对地阻抗降低至最小状态, 将蓄电池静态存放的静态电流控制到最 小耗损状态, 起到保护、 延长蓄电池寿命的作用, 并且该电子设备的蓄电池寿 命保护电路可以维护蓄电池使用环境的合理性逻辑, 另外, 充放电控制单元检 测到所述蓄电池的存储电量低于 10%保护电量, 充放电控制单元通过关闭所述蓄 电池的放电电路, 对所述蓄电池进行保护。
[0045] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种电子设备的蓄电池寿命保护电路, 包括蓄电池, 其特征在于, 所 述电子设备的蓄电池寿命保护电路还包括:
与外部电源连接的充放电控制单元;
连接在所述蓄电池与用电负载之间的蓄电池放电控制单元; 串联在所述蓄电池、 外部电源与充放电控制单元之间, 经过比较选择 将所述蓄电池或外部电源的电量供给所述充放电控制单元的蓄电池放 电路径单元、 比较单元和 DC-DC转换单元;
所述充放电控制单元还分别与所述蓄电池放电控制单元和蓄电池放电 路径单元连接, 所述充放电控制单元分别输出无效使能信号给所述蓄 电池放电控制单元和蓄电池放电路径单元, 使得所述蓄电池放电控制 单元和蓄电池放电路径单元处于蓄电池放电无效使能的默认状态, 降 低所述蓄电池对地阻抗。
[权利要求 2] 如权利要求 1所述的电子设备的蓄电池寿命保护电路, 其特征在于, 所述电子设备的蓄电池寿命保护电路还包括串联在所述外部电源与蓄 电池之间的升-降压调整器和充电器。
[权利要求 3] 如权利要求 2所述的电子设备的蓄电池寿命保护电路, 其特征在于, 所述充放电控制单元采用充放电控制芯片 U1, 所述充放电控制芯片 U 1的第一检测端 sensel接所述外部电源, 所述充放电控制芯片 U1的第 二检测端 sens 接所述蓄电池, 所述充放电控制芯片 U1的电源端 VCC 接所述 DC-DC转换单元, 所述充放电控制芯片 U1的第一控制端 ctrll 、 第二控制端 ctrl2、 第三控制端 ctri3和第四控制端 ctrl4分别接所述蓄 电池放电控制单元、 蓄电池放电路径单元、 充电器和升 -降压调整器
[权利要求 4] 如权利要求 3所述的电子设备的蓄电池寿命保护电路, 其特征在于, 所述比较单元包括二极管 D1和二极管 D2, 所述二极管 D1和二极管 D2 的阴极共同接所述 DC-DC转换单元的输入端, 所述二极管 D1的阳极 接所述蓄电池放电路径单元的输出端, 所述二极管 D2的阳极接所述 升-降压调整器的输出端。
如权利要求 4所述的电子设备的蓄电池寿命保护电路, 其特征在于, 所述蓄电池放电路径单元采用场效应管芯片 U2, 所述场效应管芯片 U 2的输入端 IN接所述蓄电池, 所述场效应管芯片 U2的输出端 OUT接所 述二极管 D1的阳极, 所述场效应管芯片 U2的控制端 Ctrl接所述充放电 控制芯片 U1的第二控制端 cM2。
如权利要求 5所述的电子设备的蓄电池寿命保护电路, 其特征在于, 所述 DC-DC转换单元采用 DC-DC转换芯片 U3, 所述 DC-DC转换芯片 U3的输入端 IN接所述二极管 D1和二极管 D2的阴极, 所述 DC-DC转换 芯片 U3的输出端 OUT接所述充放电控制芯片 U 1的电源端 VCC。
如权利要求 6所述的电子设备的蓄电池寿命保护电路, 其特征在于, 所述充放电控制芯片 U1的第二检测端 sens 检测到所述蓄电池的存储 电量低于 10%保护电量, 所述充放电控制芯片 U1通过关闭所述蓄电池 的放电电路, 对所述蓄电池进行保护。
PCT/CN2016/094006 2016-08-08 2016-08-08 一种电子设备的蓄电池寿命保护电路 WO2018027495A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/094006 WO2018027495A1 (zh) 2016-08-08 2016-08-08 一种电子设备的蓄电池寿命保护电路
CN201680000671.5A CN106663956A (zh) 2016-08-08 2016-08-08 一种电子设备的蓄电池寿命保护电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094006 WO2018027495A1 (zh) 2016-08-08 2016-08-08 一种电子设备的蓄电池寿命保护电路

Publications (1)

Publication Number Publication Date
WO2018027495A1 true WO2018027495A1 (zh) 2018-02-15

Family

ID=58838439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094006 WO2018027495A1 (zh) 2016-08-08 2016-08-08 一种电子设备的蓄电池寿命保护电路

Country Status (2)

Country Link
CN (1) CN106663956A (zh)
WO (1) WO2018027495A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184030A1 (fr) * 2022-03-31 2023-10-05 HYDRO-QUéBEC Système de localisation d'un défaut dans une partie souterraine d'un réseau électrique moyenne tension

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113574A1 (en) * 2001-02-20 2002-08-22 Takeshi Mashiko Charge and discharge controller
CN101026313A (zh) * 2007-03-20 2007-08-29 南开大学 多功能智能型太阳能灯控制器
CN201252410Y (zh) * 2008-09-08 2009-06-03 重庆交通大学 一种桥梁监测系统的供电设备
CN102738844A (zh) * 2011-04-15 2012-10-17 郑茂振 在线互动式电源控制系统
CN203339786U (zh) * 2013-05-15 2013-12-11 北京中交通信科技有限公司 一种便携应急电源箱
CN103618353A (zh) * 2013-11-28 2014-03-05 深圳市劲力思特科技有限公司 一种电池监控电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670522B2 (ja) * 1999-07-30 2005-07-13 富士通株式会社 バッテリパック
KR100639731B1 (ko) * 1999-09-03 2006-10-31 엘지전자 주식회사 배터리 팩 및 배터리 팩의 작동방법
ATE448592T1 (de) * 2002-03-04 2009-11-15 Ericsson Telefon Ab L M Batterieschutzschaltung
US8370659B2 (en) * 2009-09-21 2013-02-05 Dell Products L.P. Systems and methods for time-based management of backup battery life in memory controller systems
CN102496991B (zh) * 2011-12-28 2014-04-09 南京双登科技发展研究院有限公司 一种后备式锂离子电池组管理方法及其管理系统
US20130187468A1 (en) * 2012-01-24 2013-07-25 Google Inc. Uninterruptible power supply control in distributed power architecture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113574A1 (en) * 2001-02-20 2002-08-22 Takeshi Mashiko Charge and discharge controller
CN101026313A (zh) * 2007-03-20 2007-08-29 南开大学 多功能智能型太阳能灯控制器
CN201252410Y (zh) * 2008-09-08 2009-06-03 重庆交通大学 一种桥梁监测系统的供电设备
CN102738844A (zh) * 2011-04-15 2012-10-17 郑茂振 在线互动式电源控制系统
CN203339786U (zh) * 2013-05-15 2013-12-11 北京中交通信科技有限公司 一种便携应急电源箱
CN103618353A (zh) * 2013-11-28 2014-03-05 深圳市劲力思特科技有限公司 一种电池监控电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184030A1 (fr) * 2022-03-31 2023-10-05 HYDRO-QUéBEC Système de localisation d'un défaut dans une partie souterraine d'un réseau électrique moyenne tension

Also Published As

Publication number Publication date
CN106663956A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN205355935U (zh) 一种双电源自动切换供电及防止电源反接的电路
US20130257160A1 (en) Transformer Coupled Current Capping Power Supply Topology
CN101257221A (zh) 光伏电池-dc/dc升压转换充电的方法
CN103887899A (zh) 输电线路监测设备感应取能电源
CN103607009A (zh) 一种带自动保护功能的充放电电路
CN105515159A (zh) 一种太阳能控制器电源电路
CN206099459U (zh) 一种用于电池管理系统的激活电路
CN104062928A (zh) 电动汽车整车控制器电源电路
CN107979123B (zh) 一种电源自适应锂电池充电管理电路
CN201001039Y (zh) 一种大电流直流电源瞬间掉电保持电路
CN203788025U (zh) 一种蓄电池充放电管理电路
CN105977939A (zh) 一种直流源保护装置与方法
CN206211525U (zh) 一种基于s3r的航天用过压保护电路
WO2018027495A1 (zh) 一种电子设备的蓄电池寿命保护电路
CN203491749U (zh) 一种电源管理电路
CN201222649Y (zh) 一种可充电池的过放电保护电路
CN201015172Y (zh) 悬浮式感应电源
CN108964081A (zh) 一种应用于稳定微网储能系统输出的电路结构
CN103855768A (zh) 蓄电池非浮充热备用技术
CN202014088U (zh) 太阳能系统蓄电池过放电保护器
CN212726579U (zh) 一种用于远传型故障指示器的电流感应取电电路
CN103683394A (zh) 一种用于蓄电池的充电保护电路
CN212435364U (zh) 一种光伏逆变器的系统电源供电装置及光伏逆变器
CN209250219U (zh) 一种供电欠压延时保护装置
CN203251084U (zh) 基于双向buck变换器的双向限流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911951

Country of ref document: EP

Kind code of ref document: A1