WO2018026232A1 - Method for supporting cl service in wireless communication system and device therefor - Google Patents

Method for supporting cl service in wireless communication system and device therefor Download PDF

Info

Publication number
WO2018026232A1
WO2018026232A1 PCT/KR2017/008438 KR2017008438W WO2018026232A1 WO 2018026232 A1 WO2018026232 A1 WO 2018026232A1 KR 2017008438 W KR2017008438 W KR 2017008438W WO 2018026232 A1 WO2018026232 A1 WO 2018026232A1
Authority
WO
WIPO (PCT)
Prior art keywords
upgw
information
uclsi
core
ran
Prior art date
Application number
PCT/KR2017/008438
Other languages
French (fr)
Korean (ko)
Inventor
김래영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2018026232A1 publication Critical patent/WO2018026232A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for supporting a ConnectionLess (CL) service.
  • CL ConnectionLess
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the mobile communication system such as 3GPP EPS, Next Generation system (aka 5G)
  • Next Generation system aka 5G
  • the method is a technical task.
  • a core control plane supports a ConnectionLess (CL) service in a wireless communication system
  • first information indicating that the core CP is unreachable from a radio access network (RAN) by the core CP Receiving
  • RAN radio access network
  • transmitting by the core CP, all of the UPGWs associated with the UE to the second information informing that the UE is unreachable.
  • a core control plane (CP) device for supporting a CL (ConnectionLess) service in a wireless communication system, comprising: a transceiver; And a processor, wherein the core CP receives, from the radio access network (RAN), first information indicating that the UE is unreachable through the transmitting and receiving device, and the core CP informs all UPGWs associated with the UE to the UE. Is a core CP device that transmits, via the transceiver device, second information indicating that is unreachable.
  • RAN radio access network
  • the second information may be an indication that the UPGW receiving the second information changes all UPGW ConnectionLess Service Information (UCLSI) for the UE to the IDLE state.
  • ULSI UPGW ConnectionLess Service Information
  • the UPGW of the UE may have two UCLSI whose status is REACHABLE for the UE.
  • the first information may be received when at least one of the two or more UCLSI is changed to the IDLE state.
  • the second information may be transmitted when the UPGW of the UE has two UCLSI whose status is REACHABLE for the UE.
  • the first information may be received when at least one of the two or more UCLSI is changed to the IDLE state.
  • Each of the two or more UPGWs of the UE may have at least one UCLSI whose status is REACHABLE for the UE.
  • the first information may be received when the UCLSI for the UE included in at least one UPGW of the two or more UPGWs is changed to an IDLE state.
  • the second information may be transmitted when each of two or more UPGWs of the UE has at least one UCLSI whose status is REACHABLE for the UE.
  • the first information may be received when the UCLSI for the UE included in at least one UPGW of the two or more UPGWs is changed to an IDLE state.
  • the first information may be transmitted when the RAN transmits a NACK to the UPGW.
  • the first information may be omitted from the UPGW that receives the NACK.
  • the UPGW that receives the NACK may change all UCLSI for the UE to an ILDE state.
  • the core CP may be composed of one or more of an MM CP function, an SM CP function, a function having subscriber information, and a function for managing SM information of the UE.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • FIG. 7 is a diagram for describing a 5G system.
  • FIG. 8 is a diagram illustrating a structure for CL mode transmission.
  • FIG. 9 is a diagram for explaining CL downlink data transmission according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • the MME is divided into a core access and mobility management function (AMF) and a session management function (SMF) in a next generation system (or 5G CN).
  • AMF access and mobility management function
  • SMF session management function
  • the NAS interaction and mobility management (MM) with the UE are performed by the AMF
  • the session management (SM) is performed by the SMF.
  • the SMF manages a user plane function (UPF), which has a user-plane function, that is, a gateway for routing user traffic.
  • the SMF is responsible for the control-plane portion of the S-GW and the P-GW in the conventional EPC.
  • the user-plane part can be considered to be in charge of the UPF.
  • the conventional EPC may be configured as illustrated in FIG. 7 at 5G.
  • a PDU (Protocol Data Unit) session is defined in the 5G system.
  • the PDU session refers to an association between the UE and the DN providing the PDU connectivity service of the Ethernet type or the unstructured type as well as the IP type.
  • UDM Unified Data Management
  • PCF Policy Control Function
  • the functions can be provided in an expanded form to satisfy the requirements of the 5G system. For details on the 5G system architecture, each function and each interface, TS 23.501 is applicable.
  • FIG. 8 shows a structure for CL mode transmission, which is composed of network elements such as a UE, a Radio Access Network (RAN), a User plane Gateway (UPGW), a Core control plane (Core CP), and the like.
  • RAN Radio Access Network
  • UPGW User plane Gateway
  • Core control plane Core control plane
  • the user plane protocol stack is derived from the basic connection-oriented protocol stack with the following additions.
  • CLS UPL ConnectionLess Service User Plane
  • This layer placed between the IP and the access layer, connects the UE and the UPGW, and protects encryption and integrity between the UE and the network, including PDU session identification in the RAN and UPGW, and the air interface section.
  • the CLS UP layer supports avoiding packet duplication (sequence numbering).
  • GRE Generic Routing Encapsulation
  • the following layers are defined by the RAN group.
  • NG- Radio control sublayer (responsible for segmentation and ARQ).
  • MAC Media Access control (responsible for connectionless access and HARQ).
  • UPGW CL Service Information is an identifier used by the UE, RAN and UPGW to identify a PDU session with CL mode data transmission on the RAN and core interface. This identifier includes the identifier of the UPGW serving the PDU session and the local identifier for the particular PDU session for the particular UE.
  • the RAN uses UCLSI to derive a UPGW that must process data exchanged with the UE.
  • the UE may be assigned one or more UCLSI on one or more UPGWs.
  • step S901 the core UPGW receives downlink incoming data (PDU).
  • step S902 the UPGW searches for the corresponding UCLSI. If UCLSI is marked as REACHABLE, UPGW uses the last known RAN to service this UCLSI. The UPGW compresses the IP header if necessary, encrypts the data, and then passes the data and UCLSI over the appropriate downlink RAN transport interface to UCLSI. UPGW restarts the UE location freshness timer for UCLSI.
  • UPGW drops the packet or starts network paging. This behavior is controlled by the policy received from the Core Control Plane (ie, Session Management). If network paging is required, the UPGW sends a paging request for UCLSI to the core CP, buffers the data, and starts a paging timer. The core CP triggers the corresponding paging by the RAN. If a page response from the UE arrives before the paging timer expires, the UPGW learns the current RAN serving the UE and forwards the data over this RAN.
  • Core Control Plane ie, Session Management
  • step S903 the UPGW transmits data and UCLSI via the appropriate downlink RAN transport interface to UCLSI.
  • the RAN matches the downlink UCLSI.
  • the RAN sends data to the UE.
  • the RAN restarts the UE location freshness timer for UCLSI.
  • the RAN discards the packet, sends a NACK to the UPGW, and deletes the context for the UCLSI.
  • UCLSI is not known by the RAN (eg the RAN previously failed to transmit to the UE), the RAN drops the data and sends a NACK to the UPGW.
  • UPGW receives a NACK from the RAN (for example, UCLSI is known but transmission fails or UCLSI is unknown)
  • UPGW clears the UPGW UE location freshness timer and marks UCLSI as IDLE (UCLSI no longer works with the RAN node). Not associated).
  • step S904 the RAN sends CL data to the UE.
  • step S905 upon receiving the CL data, the UE processes the data (reconstructs, decrypts, etc.) and then forwards the data to the application and sends an uplink grant.
  • the UE resets the UE location freshness timer.
  • UPGW UE freshness timer for UCLSI expires, UPGW displays UCLSI as IDLE. If the RAN UE freshness timer for UCLSI expires, the RAN deletes the UCLSI. If the UE freshness timer for UCLSI expires or the UE reselects a new cell, the UE returns to the CL idle state and stops monitoring downlink channels for data reception.
  • the UPGW when the UPGW receives DL data, the UPGW transmits the DL data to the appropriate RAN.
  • the RAN receives this and knows the UCLSI, that is, it has a context for the target UE of the DL data (more specifically, the context for the PDU session of the UE), the RAN transmits it to the UE. If it transmits to the UE but fails, the RAN drops this data and sends a NACK to the UPGW that sent it, and the UPGW deletes the context for the UCLSI (ie, the associated PDU session).
  • UPGW marks that the UCLSI of the UE is "IDLE".
  • one UE may have a plurality of PDU sessions, and a plurality of UCLSIs may be allocated to one UE.
  • one UPGW may be allocated for a plurality of PDU sessions or a plurality of UPGWs may be allocated.
  • UPGW manages the state (state, REACHABLE or IDLE) for each UCLSI. As described above, if the RAN sends a NACK to the UPGW after a data transmission failure to the UE, the UPGW changes its UCLSI to the IDLE state.
  • the UPGW receiving the NACK maintains another REACHABLE marked UCLSI context for the UE, or when another UPGW of the UE maintains the REACHABLE marked UCLSI context, the UPGW is received when DL data to the UE is received.
  • the RAN receives DL data from the UPGW and transmits it to the UE, but fails.
  • the core CP receives first information from the RAN indicating that the UE is unreachable. The transmission of the first information may always be performed or may be performed only when the RAN has different UCLSI for the corresponding UE and then has another UCLSI.
  • the core CP may transmit second information indicating that the UE is unreachable to all UPGWs associated with the UE.
  • the UPGW (s) receiving this will change all UCLSI for the UE to the IDLE state. That is, the second information may be an indication that the UPGW receiving the second information changes all UCLSI for the UE to the IDLE state.
  • the (unique) UPGW of the UE may have two UCLSI whose state is REACHABLE for the UE, wherein the first information is received when at least one of the two or more UCLSI is changed to the IDLE state It may be.
  • the first information is received when at least one of the two or more UCLSI is changed to the IDLE state It may be.
  • the core CP instructs all UPGWs related to the UE to change all UCLSI for the UE to the IDLE state, unnecessary transmission to the RAN does not occur.
  • the second information may be transmitted if the (unique) UPGW of the UE has two UCLSI whose status is REACHABLE for the UE.
  • each of the two or more UPGWs of the UE has at least one UCLSI having a status of REACHABLE for the UE, and the first information is UCLSI for the UE that has at least one UPGW of the two or more UPGWs. May be received when IDLE is changed to the IDLE state.
  • UCLSI may be marked as IDLE in one UPGW, and thus data transmission may be performed to a RAN that has failed to transmit due to UCLSI REACHABLE in another UPGW.
  • the second information may be transmitted when each of the two or more UPGWs of the UE has at least one UCLSI whose status is REACHABLE for the UE.
  • the operation of notifying the core CP that the UE is unreachable may be performed together with the operation of transmitting the NACK to the UPGW having transmitted the DL data, or may be performed without replacing the NACK (that is, replacing it).
  • the first information may be omitted from the UPGW that receives the NACK.
  • the UPGW receiving the NACK from the RAN may be set to change all UCLSI for the UE to an ILDE state.
  • the core CP may be composed of one or more of an MM CP function, an SM CP function, a function having subscriber information, and a function for managing SM information of the UE.
  • the UPGW When the UPGW forwards DL data to the RAN and then receives a NACK from the RAN, the UPGW checks whether there is another UCLSI other than the UCLSI corresponding to the NACK (this means a PDU session associated therewith) for the UE. If there is another UCLSI and the state is REACHABLE, it is changed to IDLE and marked.
  • the UPGW may inform the core CP that this UE is IDLE.
  • the IDLE may mean that the RAN of the UE is no longer valid / available.
  • the fact that the UE is IDLE may mean that the UE is unreachable.
  • the UPGW notifying the core CP that the UE is IDLE may be performed i) always or ii) the core CP may be instructed by the UPGW.
  • the core CP may select and instruct the UPGW during the PDU session setup procedure, and may direct the UPGW at any time after the PDU session setup procedure.
  • This indication may always occur, and may indicate to all UPGWs related to the UE when a second PDU session is setup for the UE.
  • the operation of instructing the core CP to inform the UPGW of the unreachability of the UE may be interpreted as "unreachability notification service subscription," and the operation of the UPGW informing the core CP of the unreachability of the UE may be interpreted as "unreachability notification.”
  • the core CP Upon receiving the IDLE, the core CP notifies the UPGW (s) maintaining the UCLSI for the UE, indicating that the UE is IDLE. This is ultimately to cause UPGW to change IDLE if UCLSI's status is REACHABLE.
  • the UPGW (s) may include but not include UPGW which informs the core CP that the UE is IDLE.
  • each UPGW may be controlled by a different session management (SM) CP function.
  • SM session management
  • the UPGW informs the SM CP function controlling itself of the UE's unreachability
  • this notification / notified information is a) transferred to another SM CP function through the Mobility Management (MM) CP function of the UE to the UPGW controlled.
  • the function may be transferred to another UPGW controlled by being transferred to another SM CP function.
  • the core CP may be considered to be a collective of all functions that are responsible for such a control plane function.
  • the UPGW forwards DL data to the RAN and then receives a NACK from the RAN.
  • the RAN checks whether it has another UCLSI for the UE. If the RAN has another UCLSI for the UE, a message indicating that the UE is IDLE is transmitted to a corresponding UPGW.
  • the UE is IDLE may mean that the RAN of the UE is no longer valid / available.
  • the UE being IDLE may mean that the UE is unreachable.
  • the corresponding UPGW ie, the UPGW associated with another UCLSI
  • the message may not be sent to this UPGW, and this IDLE is given to all corresponding UPGWs without this consideration. You can also send a message.
  • the UPGW receiving the message indicating that the UE is IDLE from the RAN marks the IDLE when the state of the corresponding UCLSI context of the UE is REACHABLE.
  • the core CP may be configured with one or more of a MM CP function, an SM CP function, a function having subscriber information (function performing HSS), and a function for managing SM information of the UE.
  • the core CP to which the RAN sends a message may be an MM CP function (or AMF: Access and Mobility Management Function).
  • the MM CP function that has received information that the UE is unreachable from the RAN may transmit it to the UPGW (or UPF: User Plane Function) through the SM CP function (or SMF: Session Management Function).
  • UPF User Plane Function
  • SMF Session Management Function
  • FIG. 10 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the processor 220 receives the first information from the radio access network (RAN) by the core CP through the transmitting / receiving apparatus, and the core CP informs all UPGWs of the UE that the UE is unreachable. Second information indicating the unreachable may be transmitted through the transceiver.
  • RAN radio access network
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

One embodiment of the present invention relates to a method by which a core control plane (CP) supports a connectionless (CL) service in a wireless communication system, comprising the steps of: allowing the core CP to receive, from a radio access network (RAN), first information for notifying that UE is unreachable; and allowing the core CP to transmit, to all UPGWs associated with the UE, second information for notifying that the UE is unreachable.

Description

무선 통신 시스템에서 CL 서비스 지원 방법 및 이를 위한 장치CL service support method in wireless communication system and apparatus therefor
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 CL(ConnectionLess) 서비스를 지원하는 방법 및 장치에 대한 것이다.The following description relates to a wireless communication system, and more particularly, to a method and apparatus for supporting a ConnectionLess (CL) service.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access (MCD) systems and multi-carrier frequency division multiple access (MC-FDMA) systems.
본 발명에서는 3GPP EPS, Next Generation system (차세대, 일명 5G)과 같은 이동통신 시스템에서 UE를 위해 RAN과 Core Network 간 연결을 명시적으로 설정하지 않고 데이터를 보낼 때 전송실패 상황을 효율적으로 처리하기 위한 방법을 기술적 과제로 한다.In the present invention, in the mobile communication system such as 3GPP EPS, Next Generation system (aka 5G), it is necessary to efficiently handle transmission failure when sending data without explicitly establishing a connection between the RAN and the Core Network for the UE. The method is a technical task.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명의 일 실시예는, 무선통신시스템에서 코어 CP(control plane)가 CL(ConnectionLess) 서비스 지원하는 방법에 있어서, 상기 코어 CP가 RAN(Radio access network)으로부터 UE가 unreachable함을 알리는 제1 정보를 수신하는 단계; 및 코어 CP가 상기 UE에 연관된 모든 UPGW에게 상기 UE가 unreachable함을 알리는 제2 정보를 전송하는 단계를 포함하는, CL 서비스 지원 방법이다.According to an embodiment of the present invention, in a method in which a core control plane (CP) supports a ConnectionLess (CL) service in a wireless communication system, first information indicating that the core CP is unreachable from a radio access network (RAN) by the core CP Receiving; And transmitting, by the core CP, all of the UPGWs associated with the UE to the second information informing that the UE is unreachable.
본 발명의 일 실시예는, 무선통신시스템에서 CL(ConnectionLess) 서비스 지원하는 코어 CP(control plane) 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는 상기 코어 CP가 RAN(Radio access network)으로부터 UE가 unreachable함을 알리는 제1 정보를 상기 송수신 장치를 통해 수신하고, 코어 CP가 상기 UE에 연관된 모든 UPGW에게 상기 UE가 unreachable함을 알리는 제2 정보를 상기 송수신 장치를 통해 전송하는, 코어 CP 장치이다.An embodiment of the present invention, a core control plane (CP) device for supporting a CL (ConnectionLess) service in a wireless communication system, comprising: a transceiver; And a processor, wherein the core CP receives, from the radio access network (RAN), first information indicating that the UE is unreachable through the transmitting and receiving device, and the core CP informs all UPGWs associated with the UE to the UE. Is a core CP device that transmits, via the transceiver device, second information indicating that is unreachable.
상기 제2 정보는 상기 제2 정보를 수신한 UPGW가 상기 UE에 대한 모든 UCLSI(UPGW ConnectionLess Service Information)를 IDLE 상태로 변경하라는 지시일 수 있다.The second information may be an indication that the UPGW receiving the second information changes all UPGW ConnectionLess Service Information (UCLSI) for the UE to the IDLE state.
상기 UE의 UPGW는 상기 UE에 대해 상태가 REACHABLE인 두 개의 UCLSI를 가질 수 있다.The UPGW of the UE may have two UCLSI whose status is REACHABLE for the UE.
상기 제1 정보는 상기 두 개 이상의 UCLSI 중 적어도 하나가 IDLE 한 상태로 변경된 경우 수신되는 것일 수 있다.The first information may be received when at least one of the two or more UCLSI is changed to the IDLE state.
상기 제2 정보는, 상기 UE의 UPGW가 상기 UE에 대해 상태가 REACHABLE인 두 개의 UCLSI를 갖는 경우 전송될 수 있다.The second information may be transmitted when the UPGW of the UE has two UCLSI whose status is REACHABLE for the UE.
상기 제1 정보는 상기 두 개 이상의 UCLSI 중 적어도 하나가 IDLE 한 상태로 변경된 경우 수신되는 것일 수 있다.The first information may be received when at least one of the two or more UCLSI is changed to the IDLE state.
상기 UE의 두 개 이상의 UPGW 각각은 상기 UE에 대해 상태가 REACHABLE인 UCLSI를 적어도 하나씩 갖는 것일 수 있다.Each of the two or more UPGWs of the UE may have at least one UCLSI whose status is REACHABLE for the UE.
상기 제1 정보는 상기 두 개 이상의 UPGW 중 적어도 하나의 UPGW가 가진 상기 UE에 대한 UCLSI가 IDLE 한 상태로 변경된 경우 수신되는 것일 수 있다.The first information may be received when the UCLSI for the UE included in at least one UPGW of the two or more UPGWs is changed to an IDLE state.
상기 제2 정보는, 상기 UE의 두 개 이상의 UPGW 각각은 상기 UE에 대해 상태가 REACHABLE인 UCLSI를 적어도 하나씩 갖는 경우 전송될 수 있다.The second information may be transmitted when each of two or more UPGWs of the UE has at least one UCLSI whose status is REACHABLE for the UE.
상기 제1 정보는 상기 두 개 이상의 UPGW 중 적어도 하나의 UPGW가 가진 상기 UE에 대한 UCLSI가 IDLE 한 상태로 변경된 경우 수신되는 것일 수 있다.The first information may be received when the UCLSI for the UE included in at least one UPGW of the two or more UPGWs is changed to an IDLE state.
상기 제1 정보는 상기 RAN이 UPGW로 NACK을 전송시 전송되는 것일 수 있다.The first information may be transmitted when the RAN transmits a NACK to the UPGW.
상기 RAN이 NACK을 전송하는 경우, 상기 제1 정보는 상기 NACK을 수신하는 UPGW에게는 전송이 생략될 수 있다.When the RAN transmits the NACK, the first information may be omitted from the UPGW that receives the NACK.
상기 NACK을 수신한 UPGW는 상기 UE에 대한 모든 UCLSI를 ILDE 상태로 변경할 수 있다.The UPGW that receives the NACK may change all UCLSI for the UE to an ILDE state.
상기 코어 CP는 MM CP function, SM CP function, 가입자 정보를 가지고 있는 function, UE의 SM 정보를 관리하는 function 중 하나 이상으로 구성된 것일 수 있다.The core CP may be composed of one or more of an MM CP function, an SM CP function, a function having subscriber information, and a function for managing SM information of the UE.
본 발명에 따르면, 전송실패 상황에서 불필요한 전송이 반복되는 것을 방지할 수 있다.According to the present invention, unnecessary transmission can be prevented from repeating in a transmission failure situation.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다. BRIEF DESCRIPTION OF THE DRAWINGS The drawings appended hereto are for the purpose of providing an understanding of the present invention and for illustrating various embodiments of the present invention and for describing the principles of the present invention together with the description of the specification.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다. 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.5 is a flowchart illustrating a random access procedure.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.6 is a diagram illustrating a connection process in a radio resource control (RRC) layer.
도 7은 5G 시스템을 설명하기 위한 도면이다.7 is a diagram for describing a 5G system.
도 8은 CL 모드 전송을 위한 구조가 예시된 도면이다.8 is a diagram illustrating a structure for CL mode transmission.
도 9는 본 발명의 실시예에 관련된 CL 하향링크 데이터 전송을 설명하기 위한 도면이다.9 is a diagram for explaining CL downlink data transmission according to an embodiment of the present invention.
도 10는 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.10 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.The following techniques can be used in various wireless communication systems. For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다. Terms used in this document are defined as follows.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.UMTS (Universal Mobile Telecommunications System): A third generation mobile communication technology based on Global System for Mobile Communication (GSM) developed by 3GPP.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다. Evolved Packet System (EPS): A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN. UMTS is an evolutionary network.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.NodeB: base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.eNodeB: base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다. UE (User Equipment): a user device. The UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like. In addition, the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device. In the context of MTC, the term UE or UE may refer to an MTC device.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다. Home NodeB (HNB): A base station of a UMTS network, which is installed indoors and has a coverage of a micro cell.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다. HeNB (Home eNodeB): A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.Mobility Management Entity (MME): A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.Packet Data Network-Gateway (PDN-GW) / PGW: A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.Serving Gateway (SGW): A network node of an EPS network that performs mobility anchor, packet routing, idle mode packet buffering, and triggers the MME to page the UE.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다. Non-Access Stratum (NAS): Upper stratum of the control plane between the UE and the MME. A functional layer for exchanging signaling and traffic messages between a UE and a core network in an LTE / UMTS protocol stack, which supports session mobility and establishes and maintains an IP connection between the UE and the PDN GW. Supporting is the main function.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크. Packet Data Network (PDN): A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결. PDN connection: A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다. RAN (Radio Access Network): a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.Home Location Register (HLR) / Home Subscriber Server (HSS): A database containing subscriber information in the 3GPP network. The HSS may perform functions such as configuration storage, identity management, and user state storage.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.Public Land Mobile Network (PLMN): A network composed for the purpose of providing mobile communication services to individuals. It may be configured separately for each operator.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
EPC(Evolved Packet Core)Evolved Packet Core (EPC)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.EPC is a key element of System Architecture Evolution (SAE) to improve the performance of 3GPP technologies. SAE is a research project to determine network structure supporting mobility between various kinds of networks. SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다. Specifically, the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services. In a conventional mobile communication system (i.e., a second generation or third generation mobile communication system), the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data. The function has been implemented. However, in the 3GPP LTE system, an evolution of the third generation mobile communication system, the sub-domains of CS and PS have been unified into one IP domain. That is, in the 3GPP LTE system, the connection between the terminal and the terminal having the IP capability (capability), IP-based base station (for example, eNodeB (evolved Node B)), EPC, application domain (for example, IMS ( IP Multimedia Subsystem)). That is, EPC is an essential structure for implementing end-to-end IP service.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.The EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다. The SGW (or S-GW) acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW. In addition, when the UE moves over the area served by the eNodeB, the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later). SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다. The PDN GW (or P-GW) corresponds to the termination point of the data interface towards the packet data network. The PDN GW may support policy enforcement features, packet filtering, charging support, and the like. In addition, mobility management between 3GPP networks and non-3GPP networks (for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다. Although the example of the network structure of FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다. The MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. The MME controls control plane functions related to subscriber and session management. The MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks. The MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다. SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다. The ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다. As described with reference to FIG. 1, a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.). In the 3GPP system, a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point. Table 1 below summarizes the reference points shown in FIG. 1. In addition to the examples of Table 1, there may be various reference points according to the network structure.
레퍼런스 포인트Reference point 설명Explanation
S1-MMES1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)Reference point for the control plane protocol between E-UTRAN and MME
S1-US1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNodeB path switching during handover
S3S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)Reference point between the MME and SGSN providing user and bearer information exchange for mobility between 3GPP access networks in idle and / or active state. This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
S4S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)(Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.) and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW. It provides user plane tunneling and tunnel management between Serving GW and PDN GW.It is used because of the mobility of the terminal, and for connection to a PDN GW where the SGW is not co-located for the required PDN connectivity. for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11S11 MME와 SGW 간의 레퍼런스 포인트Reference point between MME and SGW
SGiSGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)Reference point between the PDN GW and the PDN. The PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.Among the reference points shown in FIG. 1, S2a and S2b correspond to non-3GPP interfaces. S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW. S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.As shown, an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active. Can perform functions for dynamic allocation to the UE, configuration and provision for measurement of the eNodeB, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station, and FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.The air interface protocol is based on the 3GPP radio access network standard. The air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.The protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.Hereinafter, each layer of the radio protocol of the control plane shown in FIG. 3 and the radio protocol in the user plane shown in FIG. 4 will be described.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.The physical layer, which is the first layer, provides an information transfer service using a physical channel. The physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel. In addition, data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis. Here, one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis. One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers. The transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.According to 3GPP LTE, the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
제2계층에는 여러 가지 계층이 존재한다.There are several layers in the second layer.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.First, the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing). The MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.The Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.The Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. In addition, in the LTE system, the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.The radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release. In this case, RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.Hereinafter, the RRC state and the RRC connection method of the UE will be described. The RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell. That is, the terminal in the RRC_IDLE state is only detected whether the terminal exists in a larger area than the cell, and the terminal must transition to the RRC_CONNECTED state in order to receive a normal mobile communication service such as voice or data. Each TA is identified by a tracking area identity (TAI). The terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell. When it is necessary to establish an RRC connection, the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state. There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.A non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.The following describes the NAS layer shown in FIG. 3 in detail.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.ESM (evolved Session Management) belonging to the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network. The default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN). At this time, the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer. LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth. In case of Default bearer, Non-GBR bearer is assigned. In the case of a dedicated bearer, a bearer having a QoS characteristic of GBR or non-GBR may be allocated.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.The bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID. One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.5 is a flowchart illustrating a random access procedure in 3GPP LTE.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.The random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.The UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB. Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.Transmission of the random access preamble is limited to a specific time and frequency resource for each cell. The PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.The UE sends the randomly selected random access preamble to the eNodeB. The UE selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index. The UE transmits the selected random access preamble in the selected subframe.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE. The random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.6 shows a connection process in a radio resource control (RRC) layer.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.As shown in FIG. 6, the RRC state is shown depending on whether the RRC is connected. The RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB. When the RRC state is connected, the RRC state is referred to as an RRC connected state. The non-state is called the RRC idle state.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.Since the UE in the connected state has an RRC connection, the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE. On the other hand, the UE in the idle state (idle state) can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit. The tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.There are several cases in which the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.In order to establish an RRC connection with the eNodeB, the UE in an idle state must proceed with an RRC connection procedure as described above. The RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.1) When a UE in idle mode attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to an eNodeB's paging, the UE first sends an RRC connection request message. Send to eNodeB.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.2) When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.3) When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Core Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.In the conventional EPC, the MME is divided into a core access and mobility management function (AMF) and a session management function (SMF) in a next generation system (or 5G CN). The NAS interaction and mobility management (MM) with the UE are performed by the AMF, and the session management (SM) is performed by the SMF. In addition, the SMF manages a user plane function (UPF), which has a user-plane function, that is, a gateway for routing user traffic. The SMF is responsible for the control-plane portion of the S-GW and the P-GW in the conventional EPC. The user-plane part can be considered to be in charge of the UPF. There may be one or more UPFs between the RAN and the DN for the routing of user traffic. That is, the conventional EPC may be configured as illustrated in FIG. 7 at 5G. In addition, as a concept corresponding to the PDN connection in the conventional EPS, a PDU (Protocol Data Unit) session is defined in the 5G system. The PDU session refers to an association between the UE and the DN providing the PDU connectivity service of the Ethernet type or the unstructured type as well as the IP type. In addition, UDM (Unified Data Management) performs a function corresponding to the HSS of the EPC, PCF (Policy Control Function) performs a function corresponding to the PCRF of the EPC. Of course, the functions can be provided in an expanded form to satisfy the requirements of the 5G system. For details on the 5G system architecture, each function and each interface, TS 23.501 is applicable.
최근, IoT 단말들을 타겟으로 한 효율적인 데이터 전송방법으로써, CL(connectionless) 데이터 전송 솔루션에 대해 논의가 이루어지고 있다. 이 솔루션은 간헐적으로 소량의 데이터를 전송하는 단말의 경우 소량의 데이터를 보내기 위해 RAN과 CN(Core Network)이 많은 양의 시그널링을 교환함으로써 RAN과 CN 간 user plane을 연결한 후 데이터를 보내도록 하는 대신 CN과 RAN간 연결 없이 (connectionless) UE가 그리고 UE로 데이터를 보낼 수 있도록 하는 것이다. 이와 같은 CL 모드 전송과 관련해 기본적인 사항들은 3GPP TR 23.799 문서의 6.4.8.1 Solution Overview 부분을 참고하며, 이 내용은 본 발명의 종래기술로 참조된다.Recently, as an efficient data transmission method targeting IoT terminals, a connection (CL) data transmission solution has been discussed. In this solution, in case of a terminal that transmits a small amount of data intermittently, the RAN and CN (Core Network) exchange a large amount of signaling to send a small amount of data so that the user plane is connected between the RAN and the CN to send data. Instead, it allows a connectionless UE to send data to and to the UE. For basic information regarding such CL mode transmission, refer to 6.4.8.1 Solution Overview of the 3GPP TR 23.799 document, which is referred to as a prior art of the present invention.
도 8에는 UE, Radio Access Network (RAN), User plane Gateway (UPGW), Core control plane (Core CP) 등의 네트워크 엘리먼트로 구성된, CL 모드 전송을 위한 구조가 도시되어 있다.8 shows a structure for CL mode transmission, which is composed of network elements such as a UE, a Radio Access Network (RAN), a User plane Gateway (UPGW), a Core control plane (Core CP), and the like.
한편, 사용자 평면 프로토콜 스택은 다음 사항들이 추가되어, 기본 연결 지향 프로토콜 스택에서 유도된다. On the other hand, the user plane protocol stack is derived from the basic connection-oriented protocol stack with the following additions.
- CLS UP(ConnectionLess Service User Plane) 레이어 : IP와 액세스 레이어 사이에 배치된 이 레이어는 UE와 UPGW를 연결하고 RAN과 UPGW에서 PDU 세션 식별, 무선 인터페이스 구간을 포함하여 UE와 네트워크간에 암호화 및 무결성 보호를 제공한다. CLS UP 레이어는 패킷 중복 (시퀀스 번호 매기기)을 피하는 것을 지원한다.CLS UPL (ConnectionLess Service User Plane) layer: This layer, placed between the IP and the access layer, connects the UE and the UPGW, and protects encryption and integrity between the UE and the network, including PDU session identification in the RAN and UPGW, and the air interface section. To provide. The CLS UP layer supports avoiding packet duplication (sequence numbering).
- GRE(Generic Routing Encapsulation (tunnel protocol)) : GRE는 터널링에 사용될 수 있는 예제 프로토콜로, 다른 터널링 프로토콜이 사용될 수도 있다.Generic Routing Encapsulation (tunnel protocol) (GRE): GRE is an example protocol that can be used for tunneling. Other tunneling protocols may be used.
다음 레이어들은 RAN 그룹에 의해 정의된다.The following layers are defined by the RAN group.
- (NG-)RLC: Radio control sublayer (responsible for segmentation and ARQ). (NG-) RLC: Radio control sublayer (responsible for segmentation and ARQ).
- (NG-)MAC: Media Access control (responsible for connectionless access and HARQ). (NG-) MAC: Media Access control (responsible for connectionless access and HARQ).
- (NG-)PHY: Physical Access. -(NG-) PHY: Physical Access.
도 9에는 하향링크 CL 데이터 전송 절차가 도시되어 있다. 이와 관련하여, CL 모드 데이터 전송 PDU 세션의 셋업 과정, CL 상향링크 데이터 전송, CL 데이터 전송 UE를 위한 페이징 등의 내용은 3GPP TR 23.799 문서의 6.4.8.2.3.1 절, 6.4.8.2.3.2 절, 6.4.8.2.3.4 절을 참고하며, 이 내용은 본 발명의 종래기술로 참조된다. 이하의 설명에서 UCLSI(UPGW CL Service Information)는 UE, RAN 및 UPGW에 의해 RAN과 코어 인터페이스 상의 CL 모드 데이터 전송을 갖는 PDU 세션을 식별하는데 사용되는 식별자이다. 이 식별자는 PDU 세션을 서비스하는 UPGW의 식별자 및 특정 UE를 위한 특정 PDU 세션을 위한 로컬 식별자를 포함한다. RAN은 UCLSI를 사용하여 UE와 교환되는 데이터를 처리해야 하는 UPGW를 도출한다. UE는 하나 이상의 UPGW상에서 하나 이상의 UCLSI를 할당 받을 수 있다.9 shows a downlink CL data transmission procedure. In this regard, the procedures for setting up CL mode data transmission PDU sessions, CL uplink data transmission, paging for CL data transmission UEs, etc. are described in Sections 6.4.8.2.3.1, 6.4.8.2.3.2, 3GPP TR 23.799, See section 6.4.8.2.3.4, which is referred to in the prior art of the present invention. In the following description, UPGW CL Service Information (UCLSI) is an identifier used by the UE, RAN and UPGW to identify a PDU session with CL mode data transmission on the RAN and core interface. This identifier includes the identifier of the UPGW serving the PDU session and the local identifier for the particular PDU session for the particular UE. The RAN uses UCLSI to derive a UPGW that must process data exchanged with the UE. The UE may be assigned one or more UCLSI on one or more UPGWs.
계속해서, 도 9를 참조하여 각 절차에 대해 상세히 살펴본다. 도 9에서 UE는 네트워크에 이미 어태치하고 인증되었으며 마스터 인증키를 얻은 것을 전제한다. 단계 S901에서, 코어 UPGW는 다운링크 인커밍 데이터 (PDU)를 수신한다. 단계 S902에서 UPGW는 해당 UCLSI를 검색한다. 만약 UCLSI가 REACHABLE으로 표시되어 있으면 UPGW는 이 UCLSI에게 서비스를 제공하는 마지막 알려진 RAN을 사용한다. UPGW는 필요한 경우 IP 헤더를 압축하고 데이터를 암호화 한 다음 UCLSI에 대한 적절한 다운링크 RAN 전송 인터페이스를 통해 데이터와 UCLSI를 전달한다. UPGW는 UCLSI를 위한 UE location freshness 타이머를 다시 시작한다. 만약, UCLSI가 IDLE로 표시되어 있으면 UPGW는 패킷을 삭제하거나 네트워크 페이징을 시작한다. 이 동작은 Core Control Plane (즉, SM: Session Management)에서 받은 정책에 의해 제어된다. 네트워크 페이징을 수행해야 하는 경우 UPGW가 코어 CP로 UCLSI에 대한 페이징 요청을 보내고, 데이터를 버퍼링하고 페이징 타이머를 시작한다. 코어 CP는 RAN에 의해 대응하는 페이징을 트리거한다. 페이징 타이머가 만료되기 전에 UE로부터의 페이지 응답이 도달하면, UPGW는 UE를 서비스하는 현재의 RAN을 인지하고(learn) 이 RAN을 통해 데이터를 포워딩한다. Subsequently, each procedure will be described in detail with reference to FIG. 9. In FIG. 9, it is assumed that the UE is already attached to the network and authenticated and has obtained a master authentication key. In step S901, the core UPGW receives downlink incoming data (PDU). In step S902, the UPGW searches for the corresponding UCLSI. If UCLSI is marked as REACHABLE, UPGW uses the last known RAN to service this UCLSI. The UPGW compresses the IP header if necessary, encrypts the data, and then passes the data and UCLSI over the appropriate downlink RAN transport interface to UCLSI. UPGW restarts the UE location freshness timer for UCLSI. If UCLSI is marked as IDLE, UPGW drops the packet or starts network paging. This behavior is controlled by the policy received from the Core Control Plane (ie, Session Management). If network paging is required, the UPGW sends a paging request for UCLSI to the core CP, buffers the data, and starts a paging timer. The core CP triggers the corresponding paging by the RAN. If a page response from the UE arrives before the paging timer expires, the UPGW learns the current RAN serving the UE and forwards the data over this RAN.
단계 S903에서 (UCLSI가 REACHABLE로 표시되어 있다고 가정하면) UPGW는 UCLSI에 대한 적절한 다운링크 RAN 전송 인터페이스를 통해 데이터 및 UCLSI를 전송한다. 임의의 다운링크 수신 데이터에 대해, RAN은 다운링크 UCLSI와 매칭한다. 만약, UCLSI가 RAN에 의해 알려지면 RAN은 데이터를 UE로 전송한다. 여기서, 만약 UE 전송이 성공적이면, RAN은 UCLSI에 대한 UE location freshness timer 를 재시작한다. 또는 만약 UE 전송이 실패하면 RAN은 패킷을 버리고 UPGW에 NACK를 보내고 UCLSI에 대한 컨텍스트를 삭제한다. 만약 UCLSI가 RAN에 의해 알려지지 않은 경우 (예를 들어 RAN이 이전에 UE로의 전송이 실패함), RAN은 데이터를 드롭하고 UPGW에 NACK를 전송한다. UPGW가 RAN으로부터 NACK을 수신하면 (예를 들어, UCLSI가 알려져 있지만 전송이 실패했거나 UCLSI가 알려지지 않은 경우) UPGW는 UPGW UE location freshness timer 를 지우고 UCLSI를 IDLE 로 표시한다 (UCLSI는 더 이상 RAN 노드와 연관되지 않음).In step S903 (assuming UCLSI is marked REACHABLE), the UPGW transmits data and UCLSI via the appropriate downlink RAN transport interface to UCLSI. For any downlink received data, the RAN matches the downlink UCLSI. If UCLSI is known by the RAN, the RAN sends data to the UE. Here, if the UE transmission is successful, the RAN restarts the UE location freshness timer for UCLSI. Or if the UE transmission fails, the RAN discards the packet, sends a NACK to the UPGW, and deletes the context for the UCLSI. If UCLSI is not known by the RAN (eg the RAN previously failed to transmit to the UE), the RAN drops the data and sends a NACK to the UPGW. When UPGW receives a NACK from the RAN (for example, UCLSI is known but transmission fails or UCLSI is unknown), UPGW clears the UPGW UE location freshness timer and marks UCLSI as IDLE (UCLSI no longer works with the RAN node). Not associated).
단계 S904에서, RAN은 CL 데이터를 UE로 전송한다In step S904, the RAN sends CL data to the UE.
단계 S905에서, UE는 CL 데이터를 수신하면 데이터를 처리 (재구성, 해독 등) 한 다음 응용 프로그램에 데이터를 전달하고 업 링크 승인을 전송한다. UE는 UE location freshness timer를 리셋한다.In step S905, upon receiving the CL data, the UE processes the data (reconstructs, decrypts, etc.) and then forwards the data to the application and sends an uplink grant. The UE resets the UE location freshness timer.
만약, UCLSI에 대한 UPGW UE freshness timer가 만료되면 UPGW는 UCLSI를 IDLE 로 표시한다. 만약 UCLSI에 대한 RAN UE freshness timer 가 만료되면 RAN은 UCLSI를 삭제한다. 만약 UCLSI를 위한 UE freshness timer 가 만료되거나 UE가 새로운 셀을 재 선택하면, UE는 CL idle 상태로 리턴하고 데이터 수신을 위해 다운링크 채널들을 모니터링하는 것을 중지한다.If the UPGW UE freshness timer for UCLSI expires, UPGW displays UCLSI as IDLE. If the RAN UE freshness timer for UCLSI expires, the RAN deletes the UCLSI. If the UE freshness timer for UCLSI expires or the UE reselects a new cell, the UE returns to the CL idle state and stops monitoring downlink channels for data reception.
상기 도 9에서 살펴본 바와 같이, UPGW가 DL 데이터를 수신하면 적절한 RAN으로 이를 전송한다. RAN이 이를 받아 UCLSI를 알고 있는 경우, 즉 DL 데이터의 target UE에 대한 컨텍스트 (더 구체적으로는 UE의 PDU 세션에 대한 컨텍스트)를 갖고 있는 경우 이를 UE에게 전송한다. 만약 UE에게 전송했으나 전송실패하면 RAN은 이 데이터를 drop하고 이를 전송해 준 UPGW에게 NACK을 보내고 UPGW는 해당 UCLSI (즉, 연관되는 PDU 세션)에 대한 컨텍스트를 삭제한다. 또한, UPGW는 해당 UE의 UCLSI가 ‘IDLE’한 것으로 마크한다. 즉, 해당 UE의 UCLSI에 대한 RAN node 정보를 삭제하는 바, 추가로 DL 데이터를 수신하는 경우 이전의 RAN으로 데이터를 전송하는 대신 패킷을 삭제하는 등, UCLSI가 ‘IDLE’로 마크되어 있는 경우에 해당하는 동작을 수행한다. As shown in FIG. 9, when the UPGW receives DL data, the UPGW transmits the DL data to the appropriate RAN. When the RAN receives this and knows the UCLSI, that is, it has a context for the target UE of the DL data (more specifically, the context for the PDU session of the UE), the RAN transmits it to the UE. If it transmits to the UE but fails, the RAN drops this data and sends a NACK to the UPGW that sent it, and the UPGW deletes the context for the UCLSI (ie, the associated PDU session). In addition, UPGW marks that the UCLSI of the UE is "IDLE". That is, when the RAN node information about the UCLSI of the UE is deleted, when the DL data is received, when the UCLSI is marked as 'IDLE', for example, the packet is deleted instead of transmitting data to the previous RAN. Perform the corresponding action.
그런데, 하나의 UE가 복수 개의 PDU 세션을 가질 수 있고, UCLSI는 하나의 UE에 대해 복수 개가 할당될 수 있다. 또한, 복수 개의 PDU 세션을 위해 하나의 UPGW가 할당될 수도 있고, 복수 개의 UPGW가 할당될 수도 있다. 그리고 UPGW는 각각의 UCLSI 별로 상태(state, REACHABLE 또는 IDLE)을 관리한다. 앞서 설명된 바와 같이, RAN이 UE에게 데이터 전송 실패 후 UPGW에 NACK을 전송하면, UPGW는 이에 관한 UCLSI를 IDLE 상태로 변경한다. 그런데, NACK을 수신한 UPGW가 해당 UE에 대한 또 다른 REACHABLE 마크된 UCLSI 컨텍스트를 유지하고 있는 경우 또는 UE의 다른 UPGW가 REACHABLE 마크된 UCLSI 컨텍스트를 유지하고 있는 경우, 상기 UE로의 DL 데이터가 수신되면 UPGW는 이미 전송이 실패한 RAN으로 DL 데이터를 포워딩하는 문제가 있다. 이로 인해 CN에서 RAN으로의 불필요한 데이터 전송이 발생하게 될 뿐만 아니라 한번 RAN으로 전송한 데이터는 RAN에서 해당 데이터를 drop 시키기 때문에 더 이상 UE로 전달할 수가 없다. 따라서, 이하에서는 이러한 문제점을 해결할 수 있는 효율적인 CL 데이터 전송 실패 처리 방법에 대해 살펴본다.However, one UE may have a plurality of PDU sessions, and a plurality of UCLSIs may be allocated to one UE. In addition, one UPGW may be allocated for a plurality of PDU sessions or a plurality of UPGWs may be allocated. UPGW manages the state (state, REACHABLE or IDLE) for each UCLSI. As described above, if the RAN sends a NACK to the UPGW after a data transmission failure to the UE, the UPGW changes its UCLSI to the IDLE state. However, when the UPGW receiving the NACK maintains another REACHABLE marked UCLSI context for the UE, or when another UPGW of the UE maintains the REACHABLE marked UCLSI context, the UPGW is received when DL data to the UE is received. Has a problem of forwarding DL data to the RAN which has already failed transmission. This not only causes unnecessary data transmission from the CN to the RAN, but also once the data has been transmitted to the RAN, it can no longer be delivered to the UE because the RAN drops the corresponding data. Therefore, the following describes an efficient CL data transmission failure handling method that can solve this problem.
코어 CP 동작 위주의 실시예Core CP Operation-oriented Embodiments
RAN이 UPGW로부터 DL 데이터를 수신하여 UE에게 전송하였으나 실패한다. 이 경우, 코어 CP는 RAN으로부터 UE가 unreachable함을 알리는 제1 정보를 수신한다. 이러한 제1 정보의 전송은 항상 수행될 수도 있고, 해당 UE에 대해 RAN이 다른 UCLSI를 가지고 있는지 확인 후 다른 UCLSI를 가지고 있는 경우에만 수행할 수도 있다. 코어 CP는 상기 UE에 연관된 모든 UPGW에게 상기 UE가 unreachable함을 알리는 제2 정보를 전송할 수 있다. 이를 수신한 UPGW(s)는 상기 UE에 대한 모든 UCLSI를 IDLE 상태로 변경하게 된다. 즉, 제2 정보는 상기 제2 정보를 수신한 UPGW가 상기 UE에 대한 모든 UCLSI를 IDLE 상태로 변경하라는 지시일 수 있다. 이와 같은 코어 CP의 동작을 통해, 앞서 설명된 이미 전송 실패한 RAN으로의 불필요한 반복 전송 문제를 해결할 수 있다. The RAN receives DL data from the UPGW and transmits it to the UE, but fails. In this case, the core CP receives first information from the RAN indicating that the UE is unreachable. The transmission of the first information may always be performed or may be performed only when the RAN has different UCLSI for the corresponding UE and then has another UCLSI. The core CP may transmit second information indicating that the UE is unreachable to all UPGWs associated with the UE. The UPGW (s) receiving this will change all UCLSI for the UE to the IDLE state. That is, the second information may be an indication that the UPGW receiving the second information changes all UCLSI for the UE to the IDLE state. Through this operation of the core CP, it is possible to solve the unnecessary repetitive transmission problem to the RAN that has already failed transmission described above.
구체적으로, 상기 UE의 (유일한) UPGW는 상기 UE에 대해 상태가 REACHABLE인 두 개의 UCLSI를 갖는 것일 수 있고, 상기 제1 정보는 상기 두 개 이상의 UCLSI 중 적어도 하나가 IDLE 한 상태로 변경된 경우 수신되는 것일 수 있다. 이러한 경우는 종래 기술에 의할 경우 전송 실패에 의해 하나의 UCLSI가 IDLE 상태로 변경되어도 나머지 REACHABLE 상태의 UCLSI 때문에 전송 실패된 RAN으로의 데이터 전송이 다시 발생할 수 있는 경우이다. 이러한 경우에도, 코어 CP가 상기 UE에 관련된 모든 UPGW에게 상기 UE에 대한 모든 UCLSI를 IDLE 상태로 변경할 것을 지시하므로, 불필요한 RAN으로의 전송이 발생하지 않게 된다. 선택적으로, 상기 제2 정보는, 상기 UE의 (유일한) UPGW가 상기 UE에 대해 상태가 REACHABLE인 두 개의 UCLSI를 갖는 경우 전송되는 것일 수도 있다. Specifically, the (unique) UPGW of the UE may have two UCLSI whose state is REACHABLE for the UE, wherein the first information is received when at least one of the two or more UCLSI is changed to the IDLE state It may be. In this case, according to the prior art, even if one UCLSI is changed to the IDLE state due to a transmission failure, data transmission to the RAN which failed to be transmitted may occur again because of the UCLSI in the remaining REACHABLE state. Even in this case, since the core CP instructs all UPGWs related to the UE to change all UCLSI for the UE to the IDLE state, unnecessary transmission to the RAN does not occur. Optionally, the second information may be transmitted if the (unique) UPGW of the UE has two UCLSI whose status is REACHABLE for the UE.
또 다른 경우로써, 상기 UE의 두 개 이상의 UPGW 각각은 상기 UE에 대해 상태가 REACHABLE인 UCLSI를 적어도 하나씩 가지고, 상기 제1 정보는 상기 두 개 이상의 UPGW 중 적어도 하나의 UPGW가 가진 상기 UE에 대한 UCLSI가 IDLE 한 상태로 변경된 경우 수신되는 것일 수 있다. 이 경우 역시 종래 기술에 의할 경우 하나의 UPGW 내에서 UCLSI가 IDLE 상태로 마크되고 따라서 다른 UPGW에서 REACHABLE한 UCLSI로 인해 전송 실패된 RAN으로 데이터 전송이 수행될 수 있다. 이러한 경우에도 상기 실시예에 의할 경우, 코어 CP가 상기 UE에 관련된 모든 UPGW에게 상기 UE에 대한 모든 UCLSI를 IDLE 상태로 변경할 것을 지시하므로, 불필요한 RAN으로의 전송이 발생하지 않게 된다. 선택적으로, 상기 제2 정보는, 상기 UE의 두 개 이상의 UPGW 각각은 상기 UE에 대해 상태가 REACHABLE인 UCLSI를 적어도 하나씩 갖는 경우 전송되는 것일 수도 있다.In another case, each of the two or more UPGWs of the UE has at least one UCLSI having a status of REACHABLE for the UE, and the first information is UCLSI for the UE that has at least one UPGW of the two or more UPGWs. May be received when IDLE is changed to the IDLE state. In this case, according to the related art, UCLSI may be marked as IDLE in one UPGW, and thus data transmission may be performed to a RAN that has failed to transmit due to UCLSI REACHABLE in another UPGW. Even in such a case, according to the embodiment, since the core CP instructs all UPGWs related to the UE to change all UCLSI for the UE to the IDLE state, unnecessary transmission to the RAN does not occur. Optionally, the second information may be transmitted when each of the two or more UPGWs of the UE has at least one UCLSI whose status is REACHABLE for the UE.
이처럼 코어 CP에게 UE가 unreachable함을 알리는 동작은 RAN이 DL 데이터를 전송한 UPGW에게 NACK을 전송하는 동작과 함께 수행될 수도 있고, NACK을 전송하는 동작없이 (즉, 이를 대체하여) 수행될 수도 있다. 상기 RAN이 NACK을 전송하는 경우, 상기 제1 정보는 상기 NACK을 수신하는 UPGW에게는 전송이 생략될 수 있다. 이 경우, 상기 RAN으로부터 상기 NACK을 수신한 UPGW는 상기 UE에 대한 모든 UCLSI를 ILDE 상태로 변경하도록 설정될 수 있다.As such, the operation of notifying the core CP that the UE is unreachable may be performed together with the operation of transmitting the NACK to the UPGW having transmitted the DL data, or may be performed without replacing the NACK (that is, replacing it). . When the RAN transmits the NACK, the first information may be omitted from the UPGW that receives the NACK. In this case, the UPGW receiving the NACK from the RAN may be set to change all UCLSI for the UE to an ILDE state.
상기 코어 CP는 MM CP function, SM CP function, 가입자 정보를 가지고 있는 function, UE의 SM 정보를 관리하는 function 중 하나 이상으로 구성된 것일 수 있다.The core CP may be composed of one or more of an MM CP function, an SM CP function, a function having subscriber information, and a function for managing SM information of the UE.
UPGW 동작 위주의 실시예UPGW operation-oriented embodiment
UPGW가 RAN으로 DL 데이터를 포워딩한 후 RAN으로부터 NACK을 수신하면, 상기 UPGW가 해당 UE에 대해 NACK에 해당하는 UCLSI (이는 이와 연관된 PDU 세션을 의미)가 아닌 또 다른 UCLSI가 있는지 확인한다. 만약, 상기 또 다른 UCLSI가 있고, 그 상태가 REACHABLE이면 이를 IDLE로 변경하여 마크한다.When the UPGW forwards DL data to the RAN and then receives a NACK from the RAN, the UPGW checks whether there is another UCLSI other than the UCLSI corresponding to the NACK (this means a PDU session associated therewith) for the UE. If there is another UCLSI and the state is REACHABLE, it is changed to IDLE and marked.
또 다른 방법으로써, UPGW가 RAN으로 DL 데이터를 포워딩한 후 RAN으로부터 NACK을 수신하면, 코어 CP에게 이 UE가 IDLE임을 알릴 수 있다. 여기서, IDLE임은 상기 UE의 RAN이 더 이상 유효/가용하지 않음을 의미할 수 있다. 상기 UE가 IDLE임은 상기 UE가 unreachable함을 의미할 수 있다. 이처럼 UPGW가 코어 CP에게 UE가 IDLE임을 알리는 것은 i) 항상 수행될 수도 있고, ii) 코어 CP가 UPGW로 하여금 지시함으로써 수행될 수도 있다. ii)의 경우 PDU 세션 셋업 절차 시에 코어 CP가 UPGW를 선택 후 이를 지시할 수도 있고, PDU 세션 셋업 절차 후에 아무때나 UPGW에게 지시할 수도 있다. 이러한 지시는 항상 발생할 수도 있고, UE에 대해 PDU 세션이 2개째 셋업되는 경우, 해당 UE에 관련된 모든 UPGW에게 지시할 수도 있다. 상기 코어 CP가 UPGW에게 UE의 unreachability를 알려줄 것을 지시하는 동작을 ‘unreachability 통보 서비스 가입’으로, UPGW가 UE의 unreachability를 코어 CP에게 알려주는 동작을 ‘unreachability 통보’로 해석할 수 있다.Alternatively, if the UPGW forwards DL data to the RAN and then receives a NACK from the RAN, it may inform the core CP that this UE is IDLE. Here, the IDLE may mean that the RAN of the UE is no longer valid / available. The fact that the UE is IDLE may mean that the UE is unreachable. As such, the UPGW notifying the core CP that the UE is IDLE may be performed i) always or ii) the core CP may be instructed by the UPGW. In the case of ii), the core CP may select and instruct the UPGW during the PDU session setup procedure, and may direct the UPGW at any time after the PDU session setup procedure. This indication may always occur, and may indicate to all UPGWs related to the UE when a second PDU session is setup for the UE. The operation of instructing the core CP to inform the UPGW of the unreachability of the UE may be interpreted as "unreachability notification service subscription," and the operation of the UPGW informing the core CP of the unreachability of the UE may be interpreted as "unreachability notification."
상기 UE가 IDLE임을 수신한 코어 CP는 해당 UE에 대해 UCLSI를 유지하고 있는 UPGW(s)에게 상기 UE가 IDLE임을 알린다. 이는 궁극적으로는 UPGW로 하여금 UCLSI의 상태가 REACHABLE인 경우 이를 IDLE로 변경하도록 하기 위함이다. 상기 UPGW(s)는 코어 CP에게 UE가 IDLE임을 알린 UPGW는 제외한 것일 수 있으나 포함한 것일 수도 있다.Upon receiving the IDLE, the core CP notifies the UPGW (s) maintaining the UCLSI for the UE, indicating that the UE is IDLE. This is ultimately to cause UPGW to change IDLE if UCLSI's status is REACHABLE. The UPGW (s) may include but not include UPGW which informs the core CP that the UE is IDLE.
상술한 설명에서, 하나의 UE에 대해 다수의 UPGW가 존재하는 경우 각 UPGW는 서로 다른 SM(세션 Management) CP function에 의해 제어를 받을 수도 있다. 이러한 경우 UPGW가 자신을 제어하는 SM CP function에게 UE의 unreachability를 통보하면, 이 통보/통보된 정보는 a) UE의 MM(Mobility Management) CP function을 통해 다른 SM CP function으로 전달되어 제어되는 UPGW로 전달되거나, b) SM CP function 간에 연결이 있어 서로 다른 SM CP function으로 전달되어 제어되는 UPGW로 전달되거나, c) 가입자 정보를 가지고 있는 function (HSS 역할을 수행하는 function)이나 UE의 SM 정보를 관리하는 function을 통해 다른 SM CP function으로 전달되어 제어되는 UPGW로 전달될 수 있다. 즉, 상기 코어 CP는 이러한 제어 평면 기능을 담당하는 모든 function을 통칭한 것으로 간주될 수 있다.In the above description, when a plurality of UPGWs exist for one UE, each UPGW may be controlled by a different session management (SM) CP function. In this case, when the UPGW informs the SM CP function controlling itself of the UE's unreachability, this notification / notified information is a) transferred to another SM CP function through the Mobility Management (MM) CP function of the UE to the UPGW controlled. B) a connection between SM CP functions, which is transferred to a different SM CP function, and then transferred to a controlled UPGW, or c) a function having subscriber information (a function serving HSS) or SM information of a UE. The function may be transferred to another UPGW controlled by being transferred to another SM CP function. In other words, the core CP may be considered to be a collective of all functions that are responsible for such a control plane function.
RAN 동작 위주의 실시예RAN operation-oriented embodiment
UPGW가 RAN으로 DL 데이터를 포워딩한 후 RAN으로부터 NACK을 수신한다. 이 경우, RAN은 해당 UE에 대해 다른 UCLSI를 가지고 있는지 확인한다. 만약, 상기 RAN이 상기 UE에 대한 다른 UCLSI를 갖고 있다면, 이에 해당하는 UPGW에게 상기 UE가 IDLE임을 알리는 메시지를 전송한다. The UPGW forwards DL data to the RAN and then receives a NACK from the RAN. In this case, the RAN checks whether it has another UCLSI for the UE. If the RAN has another UCLSI for the UE, a message indicating that the UE is IDLE is transmitted to a corresponding UPGW.
여기서 상기 UE가 IDLE이라는 것은, 상기 UE의 RAN이 더 이상 유효/가용하지 않음을 의미할 수 있다. 또는 상기 UE가 IDLE이라는 것은 상기 UE가 unreachable함을 의미할 수 있다. 이러한 메시지를 보낼 때 만약 해당 UPGW (즉, 또 다른 UCLSI에 연관된 UPGW)가 상기 NACK을 전송한 UPGW와 같다면 이 UPGW에게는 상기 메시지를 보내지 않을 수도 있고, 이러한 고려 없이 모든 해당하는 UPGW에게 상기 IDLE임을 알리는 메시지를 보낼 수도 있다.Here, that the UE is IDLE may mean that the RAN of the UE is no longer valid / available. Alternatively, the UE being IDLE may mean that the UE is unreachable. When sending such a message, if the corresponding UPGW (ie, the UPGW associated with another UCLSI) is the same as the UPGW that sent the NACK, then the message may not be sent to this UPGW, and this IDLE is given to all corresponding UPGWs without this consideration. You can also send a message.
RAN으로부터 UE가 IDLE임을 알리는 메시지를 수신한 UPGW는 해당 UE의 해당 UCLSI 컨텍스트의 상태가 REACHABLE이면 이를 IDLE로 마크한다.The UPGW receiving the message indicating that the UE is IDLE from the RAN marks the IDLE when the state of the corresponding UCLSI context of the UE is REACHABLE.
상술한 각 실시예에서, 상기 코어 CP는 MM CP function, SM CP function, 가입자 정보를 가지고 있는 function (HSS 역할을 수행하는 function), UE의 SM 정보를 관리하는 function 중 하나 이상으로 구성될 수 있다. 예를 들어, RAN이 메시지를 보내는 대상이 되는 코어 CP는 MM CP function (또는 AMF: Access and Mobility Management Function)일 수 있다. 이러한 경우 RAN으로부터 UE가 unreachable 하다는 정보를 수신한 MM CP function은 이를 SM CP function (또는 SMF: 세션 Management Function) 을 통해 UPGW (또는 UPF: User Plane Function)로 전달할 수 있다. 이는 RAN으로부터 상기 정보를 수신한 CN function이 궁극적으로 UPGW에게 이 정보를 전송하기 위해 다수의 관련 function을 거칠 수 있음을 의미한다.In each of the above-described embodiments, the core CP may be configured with one or more of a MM CP function, an SM CP function, a function having subscriber information (function performing HSS), and a function for managing SM information of the UE. . For example, the core CP to which the RAN sends a message may be an MM CP function (or AMF: Access and Mobility Management Function). In this case, the MM CP function that has received information that the UE is unreachable from the RAN may transmit it to the UPGW (or UPF: User Plane Function) through the SM CP function (or SMF: Session Management Function). This means that the CN function receiving the information from the RAN may ultimately go through a number of related functions to send this information to the UPGW.
도 10은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다. 10 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
도 10을 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. The terminal device 100 according to the present invention with reference to FIG. 10 may include a transceiver 110, a processor 120, and a memory 130. The transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. The terminal device 100 may be connected to an external device by wire and / or wirelessly. The processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device. The memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown). In addition, the processor 120 may be configured to perform a terminal operation proposed in the present invention.
도 10을 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 구체적으로, 프로세서(220)는 상기 코어 CP가 RAN(Radio access network)으로부터 UE가 unreachable함을 알리는 제1 정보를 상기 송수신 장치를 통해 수신하고, 코어 CP가 상기 UE에 연관된 모든 UPGW에게 상기 UE가 unreachable함을 알리는 제2 정보를 상기 송수신 장치를 통해 전송할 수 있다.Referring to FIG. 10, the network node device 200 according to the present invention may include a transceiver 210, a processor 220, and a memory 230. The transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. The network node device 200 may be connected to an external device by wire and / or wirelessly. The processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device. The memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown). In addition, the processor 220 may be configured to perform the network node operation proposed in the present invention. In detail, the processor 220 receives the first information from the radio access network (RAN) by the core CP through the transmitting / receiving apparatus, and the core CP informs all UPGWs of the UE that the UE is unreachable. Second information indicating the unreachable may be transmitted through the transceiver.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다. In addition, the specific configuration of the terminal device 100 and the network device 200 as described above, may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. Embodiments of the present invention described above may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.For implementation in hardware, a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable any person skilled in the art to make and practice the invention. Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.Various embodiments of the present invention as described above have been described with reference to the 3GPP system, but may be applied to various mobile communication systems in the same manner.

Claims (15)

  1. 무선통신시스템에서 코어 CP(control plane)가 CL(ConnectionLess) 서비스 지원하는 방법에 있어서,A method of supporting a CL (ConnectionLess) service in a core control plane (CP) in a wireless communication system,
    상기 코어 CP가 RAN(Radio access network)으로부터 UE가 unreachable함을 알리는 제1 정보를 수신하는 단계; 및Receiving, by the core CP, first information indicating that the UE is unreachable from a radio access network (RAN); And
    코어 CP가 상기 UE에 연관된 모든 UPGW에게 상기 UE가 unreachable함을 알리는 제2 정보를 전송하는 단계;Sending, by the core CP, all of the UPGWs associated with the UE to the second information informing that the UE is unreachable;
    를 포함하는, CL 서비스 지원 방법.Including, CL service support method.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 정보는 상기 제2 정보를 수신한 UPGW가 상기 UE에 대한 모든 UCLSI(UPGW ConnectionLess Service Information)를 IDLE 상태로 변경하라는 지시인, CL 서비스 지원 방법.And the second information is an instruction for the UPGW to receive the second information to change all UCLSI (UPGW ConnectionLess Service Information) for the UE to IDLE state.
  3. 제1항에 있어서,The method of claim 1,
    상기 UE의 UPGW는 상기 UE에 대해 상태가 REACHABLE인 두 개의 UCLSI를 갖는, CL 서비스 지원 방법.The UPGW of the UE has two UCLSI whose status is REACHABLE for the UE.
  4. 제3항에 있어서,The method of claim 3,
    상기 제1 정보는 상기 두 개 이상의 UCLSI 중 적어도 하나가 IDLE 한 상태로 변경된 경우 수신되는 것인, CL 서비스 지원 방법.And the first information is received when at least one of the two or more UCLSI is changed to an IDLE state.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2 정보는, 상기 UE의 UPGW가 상기 UE에 대해 상태가 REACHABLE인 두 개의 UCLSI를 갖는 경우 전송되는, CL 서비스 지원 방법.The second information is transmitted when the UPGW of the UE has two UCLSI whose status is REACHABLE for the UE.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1 정보는 상기 두 개 이상의 UCLSI 중 적어도 하나가 IDLE 한 상태로 변경된 경우 수신되는 것인, CL 서비스 지원 방법.And the first information is received when at least one of the two or more UCLSI is changed to an IDLE state.
  7. 제1항에 있어서,The method of claim 1,
    상기 UE의 두 개 이상의 UPGW 각각은 상기 UE에 대해 상태가 REACHABLE인 UCLSI를 적어도 하나씩 갖는, CL 서비스 지원 방법.Wherein each of the two or more UPGWs of the UE has at least one UCLSI with a status of REACHABLE for the UE.
  8. 제1항에 있어서,The method of claim 1,
    상기 제1 정보는 상기 두 개 이상의 UPGW 중 적어도 하나의 UPGW가 가진 상기 UE에 대한 UCLSI가 IDLE 한 상태로 변경된 경우 수신되는 것인, CL 서비스 지원 방법.The first information is received when the UCLSI for the UE of the at least one UPGW of the two or more UPGW is changed to the IDLE state, CL service support method.
  9. 제1항에 있어서,The method of claim 1,
    상기 제2 정보는, 상기 UE의 두 개 이상의 UPGW 각각은 상기 UE에 대해 상태가 REACHABLE인 UCLSI를 적어도 하나씩 갖는 경우 전송되는, CL 서비스 지원 방법.The second information is transmitted when each of the two or more UPGWs of the UE has at least one UCLSI whose status is REACHABLE for the UE.
  10. 제9항에 있어서,The method of claim 9,
    상기 제1 정보는 상기 두 개 이상의 UPGW 중 적어도 하나의 UPGW가 가진 상기 UE에 대한 UCLSI가 IDLE 한 상태로 변경된 경우 수신되는 것인, CL 서비스 지원 방법.The first information is received when the UCLSI for the UE of the at least one UPGW of the two or more UPGW is changed to the IDLE state, CL service support method.
  11. 제1항에 있어서,The method of claim 1,
    상기 제1 정보는 상기 RAN이 UPGW로 NACK을 전송시 전송되는 것인, CL 서비스 지원 방법.The first information is transmitted when the RAN transmits a NACK to the UPGW.
  12. 제11항에 있어서,The method of claim 11,
    상기 RAN이 NACK을 전송하는 경우, 상기 제1 정보는 상기 NACK을 수신하는 UPGW에게는 전송이 생략되는, CL 서비스 지원 방법.If the RAN transmits a NACK, the first information is omitted transmission to the UPGW receiving the NACK.
  13. 제12항에 있어서,The method of claim 12,
    상기 NACK을 수신한 UPGW는 상기 UE에 대한 모든 UCLSI를 ILDE 상태로 변경하는, CL 서비스 지원 방법.The UPGW receiving the NACK changes all UCLSI for the UE to an ILDE state.
  14. 제1항에 있어서,The method of claim 1,
    상기 코어 CP는 MM CP function, SM CP function, 가입자 정보를 가지고 있는 function, UE의 SM 정보를 관리하는 function 중 하나 이상으로 구성된 것인,The core CP is composed of one or more of MM CP function, SM CP function, a function having subscriber information, a function for managing the SM information of the UE,
  15. 무선통신시스템에서 CL(ConnectionLess) 서비스 지원하는 코어 CP(control plane) 장치에 있어서,In a core control plane (CP) device supporting a CL (ConnectionLess) service in a wireless communication system,
    송수신 장치; 및A transceiver; And
    프로세서를 포함하고, Includes a processor,
    상기 프로세서는 상기 코어 CP가 RAN(Radio access network)으로부터 UE가 unreachable함을 알리는 제1 정보를 상기 송수신 장치를 통해 수신하고, 코어 CP가 상기 UE에 연관된 모든 UPGW에게 상기 UE가 unreachable함을 알리는 제2 정보를 상기 송수신 장치를 통해 전송하는, 코어 CP 장치.The processor is configured to receive, via the transceiver, first information indicating that the UE is unreachable from a radio access network (RAN) by the core CP, and the core CP notifies all UPGWs associated with the UE that the UE is unreachable. A core CP device for transmitting 2 information through the transceiver.
PCT/KR2017/008438 2016-08-04 2017-08-04 Method for supporting cl service in wireless communication system and device therefor WO2018026232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662371192P 2016-08-04 2016-08-04
US62/371,192 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018026232A1 true WO2018026232A1 (en) 2018-02-08

Family

ID=61073794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008438 WO2018026232A1 (en) 2016-08-04 2017-08-04 Method for supporting cl service in wireless communication system and device therefor

Country Status (1)

Country Link
WO (1) WO2018026232A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112262610A (en) * 2018-04-09 2021-01-22 上海诺基亚贝尔股份有限公司 Apparatus, method and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055999A2 (en) * 2009-11-04 2011-05-12 삼성전자 주식회사 Method and apparatus for transmitting data in a wireless communication network system
KR20130090831A (en) * 2012-02-06 2013-08-14 삼성전자주식회사 Method and apparatus for operating dormant mode of device
US20150139054A1 (en) * 2012-05-29 2015-05-21 Zte Corporation Method and system for controlling signalling transmission in power-saving mode
KR20160066056A (en) * 2012-09-28 2016-06-09 인텔 코포레이션 Always-on bearer for small data transfers in lte systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055999A2 (en) * 2009-11-04 2011-05-12 삼성전자 주식회사 Method and apparatus for transmitting data in a wireless communication network system
KR20130090831A (en) * 2012-02-06 2013-08-14 삼성전자주식회사 Method and apparatus for operating dormant mode of device
US20150139054A1 (en) * 2012-05-29 2015-05-21 Zte Corporation Method and system for controlling signalling transmission in power-saving mode
KR20160066056A (en) * 2012-09-28 2016-06-09 인텔 코포레이션 Always-on bearer for small data transfers in lte systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 14)", 3GPP STANDARD; 3GPP TS 23.401, no. V14.0.0, 22 June 2016 (2016-06-22), XP051123221 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112262610A (en) * 2018-04-09 2021-01-22 上海诺基亚贝尔股份有限公司 Apparatus, method and computer program
CN112262610B (en) * 2018-04-09 2024-04-05 上海诺基亚贝尔股份有限公司 Apparatus, method and computer program

Similar Documents

Publication Publication Date Title
WO2019160376A1 (en) Method for signal transmission and reception by smf in wireless communication system and device therefor
WO2018084635A1 (en) Method for moving from ngs to eps in wireless communication system and apparatus therefor
WO2018008922A2 (en) Method for supporting nas signaling by base station in wireless communication system and apparatus therefor
WO2018155934A1 (en) Method for receiving data related to non-3gpp through 3gpp access in wireless communication system, and device therefor
WO2017026872A1 (en) Signal transmission and reception method by remote ue in a wireless communication system and device for same
WO2015174702A1 (en) Method and apparatus for signal transmission and reception of hss/mme in wireless communication system
WO2017126948A1 (en) Method for transmitting/receiving v2x message in local network in wireless communication system and apparatus for same
WO2017188787A2 (en) Data transmission method performed by base station in wireless communication system, and apparatus using same
WO2016186414A1 (en) Method for providing broadcast service in wireless communication system and apparatus therefor
WO2019059740A1 (en) Method for transmitting/receiving ims voice support-related signal by ng-ran in wireless communication system, and apparatus therefor
WO2018009025A1 (en) Method for transceiving signals related to pdn connection in wireless communication system, and device therefor
WO2017086618A1 (en) Device-to-device direct communication method in wireless communication system and device therefor
WO2018169281A1 (en) Method for receiving report, network device, method for performing report, and base station
WO2018221943A1 (en) Method for transceiving signal in association with multi-homing based psa addition in wireless communication system and apparatus therefor
WO2016126092A1 (en) Method for selecting plmn of terminal in wireless communication system and apparatus for same
WO2019022442A9 (en) Method for supporting sms transmission for user equipment that can receive service from 3gpp 5g system and from eps in wireless communication system, and apparatus therefor
WO2016163635A1 (en) Method for selecting plmn of terminal in wireless communication system and apparatus therefor
WO2018143758A1 (en) Method for performing paging-related operation of second ue having connection with first ue in wireless communication system, and apparatus therefor
WO2017026772A1 (en) Method for selecting p-cscf and transmitting sip message in wireless communication system and device for same
WO2016003199A1 (en) Method for performing d2d communication in wireless communication system and device therefor
WO2017030347A1 (en) Method for requesting emergency service by roaming ue and method for processing same
WO2019194537A1 (en) Method for transmitting/receiving signal related to short message in wireless communication system, and device therefor
WO2017164686A1 (en) Method for performing operation related to v2x message transmission in wireless communication system, and device therefor
WO2017086617A1 (en) Operation method for terminal operating in congested network situation in wireless communication system and apparatus therefor
WO2018174492A1 (en) Method for selecting serving mme of remote ue and transmitting nas message in wireless communication system, and apparatus for said method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837283

Country of ref document: EP

Kind code of ref document: A1