WO2018025589A1 - 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置 - Google Patents

集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置 Download PDF

Info

Publication number
WO2018025589A1
WO2018025589A1 PCT/JP2017/025095 JP2017025095W WO2018025589A1 WO 2018025589 A1 WO2018025589 A1 WO 2018025589A1 JP 2017025095 W JP2017025095 W JP 2017025095W WO 2018025589 A1 WO2018025589 A1 WO 2018025589A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solar power
concentrating solar
bottom plate
frame
Prior art date
Application number
PCT/JP2017/025095
Other languages
English (en)
French (fr)
Inventor
斉藤 健司
永井 陽一
塁 三上
小島 哲彦
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201780047207.6A priority Critical patent/CN109564950B/zh
Priority to AU2017306084A priority patent/AU2017306084B2/en
Priority to EP17836696.9A priority patent/EP3496161A4/en
Priority to US16/319,215 priority patent/US10825943B2/en
Publication of WO2018025589A1 publication Critical patent/WO2018025589A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a concentrating solar power generation module, a concentrating solar power generation panel, and a concentrating solar power generation apparatus.
  • This application claims priority based on Japanese Patent Application No. 2016-152903 filed on Aug. 3, 2016, and incorporates all the description content described in the above Japanese application.
  • Concentrated solar power generation is basically configured to irradiate solar power condensed by a lens onto a power generation element composed of a small compound semiconductor element or the like having high power generation efficiency (see, for example, Patent Document 1). .
  • a concentrating solar power generation module is configured by arranging a large number of such basic units in a matrix in a single housing. Further, a concentrating solar power generation panel in which a plurality of modules are arranged. This concentrating solar power generation panel constitutes a concentrating solar power generation device together with a drive device for tracking the panel toward the sun.
  • a large number of power generation elements are mounted on the surface of the bottom plate of the housing.
  • a metal plate material having a thin plate thickness for example, aluminum or the like
  • the frame which forms the outer frame of the housing supports the outer edge portion of the bottom plate.
  • a resin plate is suitable for reducing the manufacturing cost.
  • a concentrating solar power generation module includes a condensing unit configured by arranging a plurality of lens elements that condense sunlight, and a plurality of power generating elements disposed at positions corresponding to the lens elements, respectively.
  • a concentrating solar power generation module including a housing that houses a resin frame and a metal bottom plate mounted on the frame and mounted with the power generation element.
  • the frame body includes a frame main body portion that forms an outer frame, a liner portion that extends along the upper surface of the bottom plate inside the frame main body portion, and has both end portions formed integrally with the frame main body portion; And a concentrating solar power generation module.
  • the concentrating solar power generation panel of the present disclosure is a concentrating solar power generation panel in which a plurality of the concentrating solar power generation modules are arranged.
  • the concentrating solar power generation device includes the concentrating solar power generation panel and a driving device that drives the concentrating solar power generation panel to follow the movement of the sun while facing the sun. And a concentrating solar power generation device.
  • FIG. 7 is a cross-sectional view taken along the arrow II in FIG. 6.
  • FIG. 7 is a cross-sectional view taken along the line II-II in FIG. 6.
  • a concentrating solar power generation module includes a condensing unit configured by arranging a plurality of lens elements that condense sunlight, and a position corresponding to each of the lens elements.
  • a concentrating solar power generation module including a housing that accommodates a plurality of generated power generation elements, wherein the housing is mounted on the frame with a resin frame and the power generation element mounted A metal bottom plate, and the frame body extends along the top surface of the bottom plate inside the frame main body portion, and both ends thereof are integrated with the frame main body portion. And a liner portion formed on.
  • the frame body of the housing since the frame body of the housing has the liner portion extending along the upper surface of the bottom plate inside the frame main body portion, the bottom plate is deformed into a convex shape by thermal expansion. This can be suppressed by the liner portion. Further, since both end portions of the liner portion are integrally formed inside the frame main body portion, the load resistance strength of the entire frame body can be improved by the liner portion.
  • the frame body is formed of a resin material containing glass fiber, and the liner portion has a shape change portion in the middle in the longitudinal direction. .
  • the linear expansion coefficient of the liner part can be changed by making the glass fibers have a random fiber orientation at the shape changing part, and as a result, the heat at the operating temperature of the liner part can be changed.
  • the amount of expansion can be adjusted. Therefore, even if the operating temperatures of the liner part and the bottom plate are different from each other, the thermal expansion amount of the liner part and the bottom plate can be adjusted by adjusting the thermal expansion amount of the liner part to match the thermal expansion amount of the bottom plate. The difference from the thermal expansion amount can be reduced.
  • the housing further includes a shielding member that covers the liner portion.
  • the shielding member can prevent the condensed sunlight from hitting the liner part, so that the liner part is thermally damaged by the sunlight. Can be prevented.
  • the shielding member is preferably a metal.
  • the shielding member since the shielding member has good sunlight reflectance and low sunlight absorption rate, the liner portion can be reliably prevented from being thermally damaged by sunlight.
  • the liner part preferably has a positioning part for positioning the bottom plate with respect to the liner part.
  • the bottom plate can be easily positioned with respect to the liner portion.
  • the housing includes a screw that passes through the bottom plate and fixes the bottom plate to the liner portion, and is provided between the bottom plate and the liner portion. It is preferable that a sealing layer for sealing the inside of the housing is formed around the screw penetrating the bottom plate. In this case, it is possible to prevent foreign matters such as moisture and dust from entering the inside of the housing from the gap between the screw passing through the bottom plate and the bottom plate.
  • embossing is performed on an adhesive surface to which the seal layer of the liner portion is bonded.
  • the seal layer can be firmly adhered to the liner portion, it is possible to further suppress the entry of foreign matters such as moisture and dust into the inside of the housing.
  • the concentrating solar power generation panel according to the embodiment of the present invention includes a plurality of concentrating solar power generation modules described in (1). Such a concentrating solar power generation panel can obtain desired generated power.
  • a concentrating solar power generation apparatus is the concentrating solar power generation panel according to (8) above, and the concentrating solar power generation panel faces the sun. And a driving device that drives to follow the movement of the sun. In this case, it is possible to provide a concentrating solar power generation apparatus that always maintains the state of highest power generation efficiency at that time in the daytime.
  • FIG. 1 is a perspective view showing an example of a concentrating solar power generation device.
  • a concentrating solar power generation apparatus 100 includes a concentrating solar power generation panel 1 having a panel divided into two left and right wings, and a concentrating solar power generation panel (hereinafter also simply referred to as a solar power generation panel).
  • a gantry 2 that supports 1 on the back side.
  • the panel 1 on the right side of the drawing is shown with a part of the photovoltaic power generation panel 1 omitted to show the structure of the gantry 2.
  • the gantry 2 includes a foundation 3 and a support portion 4 erected on the foundation 3.
  • the foundation 3 is fixed to the ground.
  • the support part 4 is provided vertically.
  • a driving device 5 is provided to drive the photovoltaic power generation panel 1 so as to face the sun and follow the movement of the sun.
  • the drive device 5 drives the photovoltaic power generation panel 1 so as to rotate in an elevation angle direction about a horizontally extending shaft 6.
  • the driving device 5 drives the photovoltaic power generation panel 1 so as to rotate in the azimuth direction around the support portion 4.
  • the driving device 5 is controlled by a control device (not shown).
  • the control device has a drive circuit for driving the built-in motor of the drive device 5.
  • the photovoltaic power generation panel 1 can take an attitude of any angle with respect to each of the azimuth angle and the elevation angle.
  • the shaft 6 driven by the drive device 5 is provided with a plurality of beams 7 in a direction orthogonal to the shaft 6.
  • the photovoltaic power generation panel 1 is fixed to the upper side of the plurality of beams 7.
  • the solar power generation panel 1 is configured, for example, by arranging units 1U configured by arranging ten concentrating solar power generation modules 1M in a horizontal row in multiple stages.
  • the unit 1U includes a plurality of concentrating solar power generation modules 1M and a pair of frames 8 that integrally fix the concentrating solar power generation modules 1M in an aligned manner.
  • Each unit 1U is spanned over each beam 7 and fixed to the upper side of each beam 7.
  • Each wing of the photovoltaic power generation panel 1 is constituted by, for example, ten units 1U. Thereby, each wing
  • FIG. 2 is an enlarged perspective view showing a concentrating solar power generation module (hereinafter also simply referred to as a module) 1M according to an embodiment of the present invention (a part of the condensing unit 13 is broken). ).
  • the module 1 ⁇ / b> M includes a box-shaped housing 11, a flexible printed wiring board 12 arranged in a plurality of rows on the bottom plate 15 of the housing 11, and a flange 11 b of the housing 11.
  • the condensing part 13 attached in this way is provided as a main component.
  • the flexible printed wiring board 12 is a thin film-like insulating base provided with a conductor layer constituting a circuit pattern, on which a power generation element (solar cell) 12c and other electronic components are provided. Has been implemented.
  • a power generation element 12c a solar cell having heat resistance and high power generation efficiency is used.
  • the casing 11 includes a bottom plate 15 on which the flexible printed wiring board 12 is disposed, and a frame body 16 to which an outer edge portion of the bottom plate 15 is attached and the light collecting portion 13 is held facing the bottom plate 15. Yes.
  • the housing 11 will be described in detail later.
  • the condensing unit 13 is a Fresnel lens array, and a plurality of Fresnel lenses 13f as lens elements for condensing sunlight are arranged in a matrix (for example, 192 in the 16 ⁇ 12 horizontal direction).
  • a condensing part 13 can use a glass plate as a base material and a silicone resin film formed on the back surface thereof, for example.
  • the Fresnel lens 13f is formed on this resin film.
  • the total number and arrangement of the Fresnel lenses 13f are the same as the total number and arrangement of the power generation elements 12c, and correspond one-to-one so that the optical axes coincide with each other.
  • FIG. 3 is a perspective view showing an optical relationship between one Fresnel lens 13f and the power generation element 12c.
  • the optical axis Ax of the Fresnel lens 13f intersects the center of the power generation element 12c.
  • FIG. 4 is a perspective view showing the housing 11.
  • FIG. 5 is a plan view showing the frame 16 of the housing 11. 4 and 5, the housing 11 is formed in a rectangular (here, rectangular (or square)) box shape, and a resin-made frame 16 and a metal bottom plate 15 such as aluminum, for example. It is configured with an attached.
  • the frame body 16 is made of, for example, a resin material such as PBT (Poly Butylene Terephthalate) resin filled with glass fibers, and a frame body portion 17 that forms an outer frame (side wall frame), and the frame body portion 17. And a liner portion 18 formed integrally with the frame main body portion 17.
  • PBT Poly Butylene Terephthalate
  • the frame body part 17 is formed by integrally forming a base part 17a formed in a rectangular frame shape, a pair of short side wall parts 17b and a pair of long side wall parts 17c protruding from the base part 17a. It is configured.
  • the outer edge portion of the bottom plate 15 is fixed to the back surface of the base portion 17a by a fastening member (not shown).
  • the collar part 11b to which the condensing part 13 (refer FIG. 2) is attached as mentioned above is formed in each upper end part of the short side wall part 17b and the long side wall part 17c.
  • the liner portion 18 is made of, for example, a plate-like member, and is formed to extend in the short side direction along the central portion in the long side direction of the upper surface of the bottom plate 15.
  • the liner portion 18 is disposed on the upper surface of the bottom plate 15 so as to sew between the power generating elements 12c.
  • Both end portions in the longitudinal direction of the liner portion 18 are connected to the central portion in the longitudinal direction on the inner surface of the long side wall portion 17c. Thereby, it can prevent that the center part of the longitudinal direction of the long side wall part 17c deform
  • constricted portions 18A are formed at a plurality of locations (5 locations in the example).
  • the constricted portion 18A includes a straight portion 181 having a width dimension W1 smaller than the width dimension W2 of the non-constricted portion 18B in which the constricted portion 18A is not formed, and tapered portions 182 formed at both ends of the straight portion 181. have.
  • the taper portion 182 is formed so that the width dimension gradually increases as the distance from the straight portion 181 increases.
  • FIG. 6 is a bottom view of the liner portion 18.
  • 7 is a cross-sectional view taken along the line II of FIG. 6 and 7, a positioning pin (positioning portion) 19 for positioning the bottom plate 15 with respect to the liner portion 18 is formed in the constricted portion 18A1 formed in the center portion of the liner portion 18 in the longitudinal direction.
  • the positioning pin 19 is formed in a columnar shape, for example, and is formed integrally with the constricted portion 18A1 so as to protrude from the central portion of the bottom surface of the constricted portion 18A1.
  • the positioning pin 19 is inserted through a positioning hole 15 a penetrating in the thickness direction of the bottom plate 15. Thereby, the bottom plate 15 can be easily positioned with respect to the liner portion 18.
  • the positioning pin is formed in the liner portion 18 and the positioning hole is formed in the bottom plate 15.
  • the positioning hole may be formed in the liner portion 18 and the positioning pin may be formed in the bottom plate 15. .
  • the positioning hole functions as a positioning portion of the liner portion 18.
  • An annular projecting portion 20 is integrally formed on the outer peripheral side of the positioning pin 19 on the bottom surface of the constricted portion 18A1.
  • the protruding portion 20 is formed concentrically with the positioning pin 19, and the distal end surface (lower surface) of the protruding portion 20 is on the upper surface of the bottom plate 15 in a state where the positioning pin 19 is inserted into the positioning hole 15 a of the bottom plate 15. It comes to contact.
  • An annular region R1 to which a sealing agent is applied is formed on the inner peripheral side of the protruding portion 20 so as to surround the positioning pin 19.
  • the bottom surface of the constricted portion 18A1 in the region R1 is an adhesive surface 183 to which the sealing agent adheres, and the adhesive surface 183 is embossed.
  • a sealing layer 21 is formed by applying a sealing agent.
  • the seal layer 21 bonds and fixes the peripheral portion of the positioning pin 19 and the bottom plate 15 in the liner portion 18, closes the space between the peripheral portion of the positioning pin 19 and the bottom plate 15, and the inside of the housing 11 from the outside. And seal. Thereby, it is possible to suppress moisture and dust from entering the inside of the housing 11 through the positioning holes 15 a of the bottom plate 15.
  • FIG. 8 is a cross-sectional view taken along the line II-II in FIG. 6 and 8, the liner portion 18 is integrally formed with an inner projecting portion 22 at the center of the bottom surface of the constricted portion 18A2 located on both sides of the constricted portion 18A1.
  • the inner protrusion 22 is formed in, for example, a cylindrical shape, and a screw hole 22a is formed on the inner periphery thereof.
  • the screw hole 22a of this embodiment is formed deep inside the constricted portion 18A2.
  • a screw (screw) 23 inserted through an insertion hole 15b penetrating in the thickness direction of the bottom plate 15 is screwed into the screw hole 22a. Thereby, the bottom plate 15 can be fixed to the liner portion 18.
  • screws are used as the screws 23, but bolts may be used.
  • An annular outer protrusion 24 is integrally formed on the outer peripheral side of the inner protrusion 22 on the bottom surface of the constricted portion 18A2.
  • the outer protruding portion 24 is formed concentrically and at the same height as the inner protruding portion 22, and the screw 23 is screwed into the screw hole 22 a of the inner protruding portion 22.
  • Each tip surface (lower surface) of the portion 24 is in contact with the upper surface of the bottom plate 15.
  • An annular region R2 to which a sealing agent is applied is formed on the inner peripheral side of the outer protrusion 24 so as to surround the inner protrusion 22.
  • the bottom surface of the constricted portion 18A2 in the region R2 is an adhesive surface 184 to which the sealing agent adheres, and the adhesive surface 184 is embossed. Thereby, the seal layer 25 can be firmly bonded to the liner portion 18.
  • a sealing layer 25 is formed by applying a sealing agent.
  • the seal layer 25 adheres and fixes the peripheral portion of the inner protruding portion 22 and the bottom plate 15 in the liner portion 18, closes the space between the peripheral portion of the inner protruding portion 22 and the bottom plate 15, and externally covers the interior of the housing 11. Seal against. Thereby, it is possible to prevent foreign matters such as moisture and dust from entering the inside of the housing 11 through the insertion hole 15 b of the bottom plate 15.
  • the frame body 16 of the housing 11 has the liner portion 18 that extends along the upper surface of the bottom plate 15 inside the frame main body portion 17. Therefore, the liner portion 18 can suppress the bottom plate 15 from being deformed into a convex shape due to thermal expansion. Further, since both end portions of the liner portion 18 are integrally formed inside the frame main body portion 17, the load resistance strength of the entire frame body 16 can be improved by the liner portion 18.
  • the positioning pin 19 of the liner portion 18 is a resin injection portion (gate) into the mold when the liner portion 18 is resin-molded.
  • the resin material injected into the mold from the resin injection portion is: It flows from the center of the positioning pin 19 toward both sides in the X direction.
  • the resin material that has flowed to both sides in the X direction is mixed with the resin material for resin molding the long side wall portion 17 c at the joint portion between the liner portion 18 and the frame main body portion 17. For this reason, the glass fiber contained in the resin material of the liner part 18 becomes a fiber orientation as shown below.
  • the glass fiber is concentric with the positioning pin 19 in the constricted portion 18A1.
  • the fiber orientation of the glass fibers is aligned in the X direction.
  • the resin material flows into the non-constricted portion 18B3 adjacent to the outside of the constricted portion 18A3, the resin material collides with the resin material that has flowed into the non-constricted portion 18B3 from the long side wall portion 17c.
  • the orientation is further broken, and the glass fiber has a more random fiber orientation.
  • constricted portions 18A2 and 18A3 of the liner portion 18 of the present embodiment function as shape changing portions for randomizing the fiber orientation of the glass fiber when the liner portion 18 is molded with resin.
  • the shape changing portion is not limited to the constricted portion of the present embodiment, and any shape changing portion such as a rib or a hole may be used.
  • the linear expansion coefficient of the liner portion 18 can be changed by making the glass fiber have a random fiber orientation by such a shape changing portion, and as a result, the thermal expansion amount at the operating temperature of the liner portion 18 is adjusted. be able to. For this reason, even if the operating temperatures of the liner portion 18 and the bottom plate 15 are different from each other, the thermal expansion amount of the liner portion 18 is adjusted so as to match the thermal expansion amount of the bottom plate 15 to thereby increase the heat of the liner portion 18. The difference between the expansion amount and the thermal expansion amount of the bottom plate 15 can be reduced.
  • the operating temperature of the aluminum bottom plate 15 is 80 to 100 ° C.
  • the operating temperature of the resin liner 18 is 50 to 60 ° C.
  • the operating temperatures of the two are different from each other.
  • the linear expansion coefficient of the aluminum bottom plate 15 is 23 ⁇ 10 ⁇ 6 (1 / K).
  • the linear expansion coefficient in the direction parallel to the flow direction of the resin material during the resin molding is 21 ⁇ 10 ⁇ 6 (1 / K).
  • the linear expansion coefficient in the direction perpendicular to the flow direction (Y direction in FIG. 6) is 85 ⁇ 10 ⁇ 6 (1 / K), which is different from the linear expansion coefficient of the bottom plate 15.
  • the difference between the thermal expansion amount of the bottom plate 15 and the thermal expansion amount of the liner portion 18 becomes large. Therefore, in order to reduce the difference between these thermal expansion amounts, the fiber orientation of the glass fibers is made random during resin molding of the liner portion 18 based on the thermal expansion amount at the operating temperature of the bottom plate 15, and the operation of the liner portion 18 is performed. The coefficient of linear expansion at temperature is changed.
  • the length dimension in the short side direction of the bottom plate 15 made of aluminum is set to 660 mm
  • the relationship between the temperature of the bottom plate 15 and the amount of thermal expansion becomes a graph shown in FIG.
  • the amount of thermal expansion of the bottom plate 15 can be calculated by the product of the length dimension in the short side direction, the linear expansion coefficient, and the temperature rise from the temperature before thermal expansion (24 ° C. in the illustrated example). .
  • the orientation ratio of the glass fibers is adjusted at the time of resin molding of the liner portion 18 so that the thermal expansion amount of the liner portion 18 is 0.85 to 1.15 mm which is the thermal expansion amount of the bottom plate 15.
  • the linear expansion coefficient is changed.
  • the orientation ratio of the glass fiber means a ratio in which the fiber orientation of the glass fiber is parallel to the flow direction.
  • FIG. 10 is a graph showing the relationship between the orientation ratio of the glass fibers contained in the resin material of the liner portion 18 and the thermal expansion amount of the liner portion 18.
  • the thermal expansion amount of the liner portion 18 is adjusted to 0.85 to 1 by adjusting the glass fiber orientation ratio to about 24 to about 52%. .15 mm.
  • the thermal expansion amount of the liner portion 18 is adjusted to 0.85 to 1.15 mm by adjusting the glass fiber orientation ratio to about 56 to about 76%. Can do.
  • the orientation ratio of the glass fiber May be adjusted to about 24 to about 76%. Thereby, the difference between the thermal expansion amount of the liner portion 18 and the thermal expansion amount of the bottom plate 15 can be reduced.
  • the housing 11 includes a protection member 30 attached to the frame main body portion 17 and a shielding member 40 that covers the liner portion 18.
  • the protection member 30 includes a short side protection plate 31 that covers the entire lower half of the inner side surface of the short side wall portion 17b, and a long side protection plate 32 that covers the entire lower half of the inner side surface of the long side wall portion 17c. Yes.
  • the short side protection plate 31 and the long side protection plate 32 are made of a metal plate material such as aluminum.
  • the lower end portions of the short side protection plate 31 and the long side protection plate 32 are bent inward (to the bottom plate 15 side), and the base portion 17a (inside of the short side wall portion 17b and the long side side wall portion 17c) is projected.
  • the upper surface of FIG. 5) is also covered.
  • the short side protection plate 31 and the long side protection plate 32 are formed so as to cover the entire height direction of the inner side surface of the short side wall portion 17b and the entire height direction of the inner side surface of the long side wall portion 17c. Also good.
  • the protection member 30 can prevent the frame main body portion 17 from being thermally damaged by sunlight. Moreover, since the metallic protective member 30 has a good solar light reflectance and a low solar light absorption rate, the frame main body portion 17 can be reliably prevented from being thermally damaged.
  • FIG. 11 is a cross-sectional view showing the shielding member 40.
  • the shielding member 40 is made of a metal plate such as aluminum.
  • the shielding member 40 is bent to the bottom plate 15 side from both ends of the flat plate portion 41 covering the entire upper surface of the liner portion 18 and the width direction (left and right direction in the drawing) of the flat plate portion 41 so that both side surfaces of the liner portion 18 are covered.
  • a pair of bent portions 42 to be covered are integrally formed.
  • Screw holes 18C are formed on both sides in the longitudinal direction on the upper surface of the liner portion 18 (see also FIG. 5), and the screw holes 18C are inserted through the flat plate portion 41 of the shielding member 40 in the plate thickness direction. A screw 26 inserted through the hole 41a is screwed. Thereby, the shielding member 40 is fixed to the liner portion 18.
  • the screw 26 is used, but a bolt may be used.
  • the shielding member 40 can prevent the liner portion 18 from being thermally damaged by sunlight. Moreover, since the metallic shielding member 40 has a good solar light reflectance and a low solar light absorption rate, it is possible to reliably prevent thermal damage to the liner portion 18.
  • the concentrating solar power generation panel 1 is configured by arranging a plurality of the concentrating solar power generation modules 1M as described above, the concentrating solar power generation panel 1 can obtain desired generated power. . Moreover, the collector provided with such a concentrating solar power generation panel 1 and a driving device 5 that drives the concentrating solar power generation panel 1 so as to follow the movement of the sun toward the sun. The optical solar power generation apparatus 100 can always maintain the highest power generation efficiency at that time in the daytime.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽光を集光するレンズ要素を複数個並べて構成された集光部、及び、当該レンズ要素にそれぞれ対応する位置に配置された複数個の発電素子(12c)を収容する筐体(11)を備える集光型太陽光発電モジュールであって、前記筐体(11)は、樹脂製の枠体(16)と、前記枠体(16)に取り付けられ前記発電素子(12c)が搭載される金属製の底板(15)と、を備え、前記枠体(16)は、外枠を形成する枠本体部(17)と、前記枠本体部の内側において前記底板(15)の上面に沿って延びており両端部が前記枠本体部(17)に一体に形成されたライナー部(18)と、を有する、集光型太陽光発電モジュール。

Description

集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置
 本発明は、集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置に関する。
 本出願は、2016年8月3日出願の日本出願第2016-152903号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 集光型太陽光発電では、発電効率の高い小型の化合物半導体素子等により構成される発電素子に、レンズで集光させた太陽光を照射する構成を基本としている(例えば、特許文献1参照)。このような基本ユニットを1つの筐体内でマトリックス状に多数並べて構成したものが、集光型太陽光発電モジュールである。また、このモジュールがさらに複数個並べられたものが、集光型太陽光発電パネルである。この集光型太陽光発電パネルは、当該パネルを太陽に向けて追尾動作させるための駆動装置と共に、集光型太陽光発電装置を構成する。
 上記集光型太陽光発電モジュールにおいて、筐体の底板は、その表面上に多数の発電素子が搭載される。この底板の材質としては、製造コストを抑えつつ放熱性を確保するという観点から、板厚の薄い金属製(例えばアルミニウム等)の板材が好適とされている。また、筐体の外枠を形成する枠体は底板の外縁部を支持している。この枠体の材質としては、製造コストを抑えるために、樹脂製の板材が好適とされている。
国際公開第2013/115938号 国際公開第2013/098426号
 本開示の集光型太陽光発電モジュールは、太陽光を集光するレンズ要素を複数個並べて構成された集光部、及び、当該レンズ要素にそれぞれ対応する位置に配置された複数個の発電素子を収容する筐体を備える集光型太陽光発電モジュールであって、前記筐体は、樹脂製の枠体と、前記枠体に取り付けられ前記発電素子が搭載される金属製の底板と、を備え、前記枠体は、外枠を形成する枠本体部と、前記枠本体部の内側において前記底板の上面に沿って延びており両端部が前記枠本体部に一体に形成されたライナー部と、を有する、集光型太陽光発電モジュールである。
 本開示の集光型太陽光発電パネルは、上記集光型太陽光発電モジュールを複数個並べて成る集光型太陽光発電パネルである。
 本開示の集光型太陽光発電装置は、上記集光型太陽光発電パネルと、当該集光型太陽光発電パネルが太陽の方向を向いて太陽の動きに追尾動作するように駆動する駆動装置と、を備える集光型太陽光発電装置である。
集光型太陽光発電装置の一例を示す斜視図である。 本発明の一実施形態に係る集光型太陽光発電モジュールを拡大して示す斜視図である。 フレネルレンズと発電素子との光学的な関係を示す斜視図である。 筐体を示す斜視図である。 筐体の枠体を示す平面図である。 ライナー部の底面図である。 図6のI-I矢視断面図である。 図6のII-II矢視断面図である。 底板の温度と熱膨張量との関係を示すグラフである。 ライナー部の樹脂材料に含まれるガラス繊維の配向割合とライナー部の熱膨張量との関係を示すグラフである。 遮蔽部材を示す断面図である。
[本開示が解決しようとする課題]
 従来の上記集光型太陽光発電モジュールにおいて、筐体の底板に搭載された発電素子の温度が上昇すると、金属製の底板は熱膨張しやすい。そのため、底板が面方向に熱膨張によって拡がることが規制されている場合、底板が、面と直交する方向に凸状に膨らむように変形し、発電素子の位置が本来あるべき位置からずれて、発電効率が低下するという問題がある。また、樹脂製の枠体は、金属製のものに比べて耐荷重強度が低いため、底板に搭載される発電素子の個数が増加した場合、これらの発電素子の重量に耐えられなくなって破損するという問題もある。
 そこで、金属製の底板の熱膨張による発電素子の位置ずれを抑制し、かつ樹脂製の枠体の耐荷重強度を向上させることを目的とする。
[本開示の効果]
 本開示によれば、金属製の底板の熱膨張による発電素子の位置ずれを抑制し、かつ樹脂製の枠体の耐荷重強度を向上させることができる。
[本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
 (1)本発明の実施形態に係る集光型太陽光発電モジュールは、太陽光を集光するレンズ要素を複数個並べて構成された集光部、及び、当該レンズ要素にそれぞれ対応する位置に配置された複数個の発電素子を収容する筐体を備える集光型太陽光発電モジュールであって、前記筐体は、樹脂製の枠体と、前記枠体に取り付けられ前記発電素子が搭載される金属製の底板と、を備え、前記枠体は、外枠を形成する枠本体部と、前記枠本体部の内側において前記底板の上面に沿って延びており両端部が前記枠本体部に一体に形成されたライナー部と、を有する。
 上記集光型太陽光発電モジュールによれば、筐体の枠体は、枠本体部の内側において底板の上面に沿って延びるライナー部を有しているため、底板が熱膨張により凸状に変形するのをライナー部により抑制することができる。また、枠本体部の内側にライナー部の両端部が一体に形成されているため、このライナー部により枠体全体の耐荷重強度を向上させることができる。
 (2)前記集光型太陽光発電モジュールにおいて、前記枠体は、ガラス繊維を含む樹脂材料により形成されており、前記ライナー部は、その長手方向の途中部に形状変化部を有するのが好ましい。
 この場合、ライナー部の樹脂成形時に、形状変化部でガラス繊維をランダムな繊維配向にすることで、ライナー部の線膨張係数を変化させることができ、その結果、ライナー部の動作温度での熱膨張量を調整することができる。このため、ライナー部と底板の各動作温度が互いに異なる場合であっても、ライナー部の熱膨張量を、底板の熱膨張量と合うように調整することで、ライナー部の熱膨張量と底板の熱膨張量との差を小さくすることができる。
 (3)前記集光型太陽光発電モジュールにおいて、前記筐体は、前記ライナー部を覆う遮蔽部材をさらに備えるのが好ましい。
 この場合、集光部のレンズ要素による集光位置がずれたときに、集光する太陽光がライナー部に当たるのを遮蔽部材により防止することができるので、ライナー部が太陽光により熱損傷をするのを防止することができる。
 (4)前記集光型太陽光発電モジュールにおいて、前記遮蔽部材は金属であるのが好ましい。
 この場合、遮蔽部材は太陽光の反射率が良く、かつ太陽光の吸収率が少ないため、ライナー部が太陽光により熱損傷するのを確実に防止することができる。
 (5)前記集光型太陽光発電モジュールにおいて、前記ライナー部は、当該ライナー部に対して前記底板を位置決めするための位置決め部を有するのが好ましい。
 この場合、ライナー部に対して底板を容易に位置決めすることができる。
 (6)前記集光型太陽光発電モジュールにおいて、前記筐体は、前記底板を貫通して当該底板を前記ライナー部に固定するためのネジを備え、前記底板と前記ライナー部との間には、前記底板を貫通した前記ネジの周囲において前記筐体の内部を密封するためのシール層が形成されているのが好ましい。
 この場合、底板を貫通するネジと当該底板との間に存在するすき間から、筐体の内部に水分や塵埃等の異物が侵入するのを抑制することができる。
 (7)前記集光型太陽光発電モジュールにおいて、前記ライナー部の前記シール層が接着される接着面にエンボス加工が施されているのが好ましい。
 この場合、シール層をライナー部に強固に接着することができるので、筐体の内部に水分や塵埃等の異物が侵入するのをさらに抑制することができる。
 (8)本発明の実施形態に係る集光型太陽光発電パネルは、上記(1)に記載の集光型太陽光発電モジュールを複数個並べて成る。
 このような集光型太陽光発電パネルは所望の発電電力を得ることができる。
 (9)本発明の実施形態に係る集光型太陽光発電装置は、上記(8)に記載の集光型太陽光発電パネルと、当該集光型太陽光発電パネルが太陽の方向を向いて太陽の動きに追尾動作するように駆動する駆動装置とを備える。
 この場合、昼間は常に、その時点で最も発電効率の高い状態を維持する集光型太陽光発電装置を提供することができる。
[本発明の実施形態の詳細]
 以下、本発明の実施形態について添付図面に基づき詳細に説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 <集光型太陽光発電装置および集光型太陽光発電パネル>
 まず、集光型太陽光発電装置の構成から説明する。図1は、集光型太陽光発電装置の一例を示す斜視図である。図1において、集光型太陽光発電装置100は、左右2翼に分かれたパネルを備える集光型太陽光発電パネル1と、集光型太陽光発電パネル(以下、単に太陽光発電パネルとも言う)1を背面側で支持する架台2とを備えている。なお、図1において、紙面右側のパネル1は、架台2の構造を示すために、太陽光発電パネル1の一部を省略して示している。
 架台2は、基礎3と、基礎3に立設されている支持部4とを備えている。基礎3は、地面に固定されている。支持部4は鉛直に設けられている。支持部4の上端の、太陽光発電パネル1の支持点には、太陽光発電パネル1が太陽の方向を向いて太陽の動きに追尾動作するように駆動する駆動装置5が設けられている。具体的には、この駆動装置5は、太陽光発電パネル1を、水平に延びている軸6を中心とする仰角方向に回動するように駆動する。また、駆動装置5は、太陽光発電パネル1を、支持部4を中心とする方位角方向に回動するように駆動する。
 駆動装置5は、制御装置(図示省略)によって制御される。制御装置は、駆動装置5の内蔵モータを駆動するための駆動回路を有している。各軸のモータ(ステッピングモータ)の動作により、太陽光発電パネル1は、方位角、仰角のそれぞれについて任意の角度の姿勢をとることができる。
 駆動装置5によって駆動される軸6には、当該軸6に直交する方向に複数の梁7が設けられている。太陽光発電パネル1は、これら複数の梁7の上側に固定されている。太陽光発電パネル1は、例えば、10個の集光型太陽光発電モジュール1Mを横一列に並べて構成されているユニット1Uを多段に配列することで構成されている。
 ユニット1Uは、複数の集光型太陽光発電モジュール1Mと、これら集光型太陽光発電モジュール1Mを一列に整列した状態で一体に固定している一対のフレーム8とを備えている。各ユニット1Uは、各梁7に架け渡され、各梁7の上側に固定されている。
 太陽光発電パネル1の各翼は、例えば10個のユニット1Uによって構成されている。これにより、太陽光発電パネル1の各翼は、縦10×横10の太陽光発電モジュール1Mをマトリクス状に並べて構成されている。従って、両翼の太陽光発電パネル1で、200個の集光型太陽光発電モジュール1Mが存在している。
 <集光型太陽光発電モジュール>
 図2は、本発明の一実施形態に係る集光型太陽光発電モジュール(以下、単にモジュールとも言う。)1Mを拡大して示す斜視図(集光部13の一部を破断している。)である。図2において、モジュール1Mは、箱状の筐体11と、筐体11の底板15に複数列に並べるように配置されたフレキシブルプリント配線板12と、筐体11の鍔部11bに、蓋のように取り付けられた集光部13とを主要な構成要素として備えている。
 フレキシブルプリント配線板12は、細片フィルム状の絶縁基材に、回路パターンを構成する導電体層を設けたものであり、その上に、発電素子(太陽電池セル)12cやその他の電子部品が実装されている。発電素子12cとしては、耐熱性を有する発電効率の高い太陽電池が用いられる。
 筐体11は、フレキシブルプリント配線板12が配置された底板15と、底板15の外縁部等が取り付けられ、集光部13を底板15に対向させて保持している枠体16とを備えている。なお、筐体11については、後に詳述する。
 集光部13は、フレネルレンズアレイであり、太陽光を集光するレンズ要素としてのフレネルレンズ13fがマトリックス状に複数個(例えば縦16×横12で、192個)並んで構成されている。このような集光部13は、例えば、ガラス板を基材として、その裏面にシリコーン樹脂膜を形成したものとすることができる。フレネルレンズ13fは、この樹脂膜に形成される。フレネルレンズ13fの総数及び配置は、発電素子12cの総数及び配置と同じであり、互いに光軸を一致させるように、一対一に対応している。
 図3は、1個のフレネルレンズ13fと発電素子12cとの光学的な関係を示す斜視図である。フレネルレンズ13fの光軸Axは、発電素子12cの中心と交差する。フレネルレンズ13fに対して太陽光が入射角0度で入射すると、フレネルレンズ13fで収束させられた光は、発電素子12cに集まり、発電素子12cが発電する。日中、太陽光発電パネル1(図1)が太陽を正確に追尾すれば、常にこのような光学的関係となり、効率よく発電が行われる。
 <筐体>
 図4は、筐体11を示す斜視図である。図5は、筐体11の枠体16を示す平面図である。図4及び図5において、筐体11は、方形(ここでは長方形(正方形でもよい。))の箱状に形成されており、樹脂製の枠体16に、例えばアルミニウム等の金属製の底板15を取り付けて構成されている。
 枠体16は、例えば、ガラス繊維が充填されたPBT(Poly Butylene Terephtalate)樹脂等の樹脂材料により形成されており、外枠(側壁枠)を形成する枠本体部17と、この枠本体部17の内側において当該枠本体部17に一体に形成されたライナー部18とを有している。
 枠本体部17は、方形枠状に形成された基台部17aと、この基台部17a上から突出する一対の短辺側壁部17b及び一対の長辺側壁部17cとが一体に形成されて構成されている。基台部17aの裏面には、底板15の外縁部が図示しない締結部材により固定されている。また、短辺側壁部17bおよび長辺側壁部17cの各上端部には、上述のように集光部13(図2参照)が取り付けられる鍔部11bが形成されている。
 <ライナー部>
 ライナー部18は、例えば板状部材からなり、底板15の上面の長辺方向の中央部に沿って、短辺方向に延びて形成されている。ライナー部18は、底板15の上面において発電素子12cの合間を縫うように配置されている。ライナー部18の長手方向の両端部は、長辺側壁部17cの内側面における長手方向の中央部に連結されている。これにより、長辺側壁部17cの長手方向の中央部が内側や外側に反るように変形するのを防止することができる。
 ライナー部18の長手方向の途中部には、くびれ部18Aが複数箇所(図例では5箇所)に形成されている。くびれ部18Aは、当該くびれ部18Aが形成されていない非くびれ部18Bの幅寸法W2よりも小さい幅寸法W1を有するストレート部181と、このストレート部181の両端部に形成されたテーパ部182とを有している。テーパ部182は、ストレート部181から遠ざかるに従って幅寸法が漸次大きくなるように形成されている。
 図6は、ライナー部18の底面図である。また、図7は、図6のI-I矢視断面図である。図6及び図7において、ライナー部18の長手方向の中央部に形成されたくびれ部18A1には、ライナー部18に対して底板15を位置決めするための位置決めピン(位置決め部)19が形成されている。位置決めピン19は、例えば円柱状に形成されており、くびれ部18A1の底面の中央部から突出するように、当該くびれ部18A1に一体に形成されている。
 位置決めピン19は、底板15の板厚方向に貫通する位置決め孔15aに挿通される。これにより、ライナー部18に対して底板15を容易に位置決めすることができる。
 なお、本実施形態では、位置決めピンをライナー部18に形成し、位置決め孔を底板15に形成しているが、位置決め孔をライナー部18に形成し、位置決めピンを底板15に形成してもよい。この場合、位置決め孔がライナー部18の位置決め部として機能する。
 くびれ部18A1の底面には、位置決めピン19の外周側に円環状の突出部20が一体に形成されている。この突出部20は、位置決めピン19と同心状に形成されており、位置決めピン19が底板15の位置決め孔15aに挿通された状態で、突出部20の先端面(下面)が底板15の上面に当接するようになっている。
 突出部20の内周側には、位置決めピン19を囲むようにシーリング剤が塗布される円環状の領域R1が形成されている。領域R1におけるくびれ部18A1の底面は、シーリング剤が接着する接着面183とされており、この接着面183にはエンボス加工が施されている。
 領域R1には、シーリング剤が塗布されることによりシール層21が形成されている。このシール層21は、ライナー部18における位置決めピン19の周辺部と底板15とを接着固定するとともに、位置決めピン19の周辺部と底板15との間を塞ぎ、筐体11の内部を外部に対して密封する。これにより、底板15の位置決め孔15aを通じて水分や塵埃が筐体11の内部に侵入するのを抑制することができる。
 図8は、図6のII-II矢視断面図である。図6及び図8において、ライナー部18には、くびれ部18A1の両隣りにそれぞれ位置するくびれ部18A2の底面の中央部に内側突出部22が一体に形成されている。内側突出部22は、例えば円筒状に形成されており、その内周には、ねじ穴22aが形成されている。本実施形態のねじ穴22aは、くびれ部18A2の内部の奥深くまで形成されている。ねじ穴22aには、底板15の板厚方向に貫通する挿通孔15bに挿通されたビス(ネジ)23が螺合される。これにより、底板15をライナー部18に固定することができる。なお、本実施形態ではネジ23としてビスを用いているが、ボルトを用いてもよい。
 くびれ部18A2の底面には、内側突出部22の外周側に円環状の外側突出部24が一体に形成されている。この外側突出部24は、内側突出部22と同心状かつ同一高さに形成されており、内側突出部22のねじ穴22aにビス23が螺合された状態で、内側突出部22および外側突出部24の各先端面(下面)が底板15の上面に当接するようになっている。
 外側突出部24の内周側には、内側突出部22を囲むようにシーリング剤が塗布される円環状の領域R2が形成されている。領域R2におけるくびれ部18A2の底面は、シーリング剤が接着する接着面184とされており、この接着面184にはエンボス加工が施されている。これにより、シール層25をライナー部18に強固に接着することができる。
 領域R2には、シーリング剤が塗布されることによりシール層25が形成されている。このシール層25は、ライナー部18における内側突出部22の周辺部と底板15とを接着固定するとともに、内側突出部22の周辺部と底板15との間を塞ぎ、筐体11の内部を外部に対して密封する。これにより、底板15の挿通孔15bを通じて水分や塵埃等の異物が筐体11の内部に侵入するのを抑制することができる。
 以上、本実施形態の集光型太陽光発電モジュール1Mによれば、筐体11の枠体16は、枠本体部17の内側において底板15の上面に沿って延びるライナー部18を有しているため、底板15が熱膨張により凸状に変形するのをライナー部18により抑制することができる。また、枠本体部17の内側にライナー部18の両端部が一体に形成されているため、このライナー部18により枠体16全体の耐荷重強度を向上させることができる。
 <ライナー部の樹脂成形時におけるガラス繊維の繊維配向>
 図6において、ライナー部18の位置決めピン19は、ライナー部18を樹脂成形する際に、金型への樹脂注入部(ゲート)とされている。図中の座標系の方向に示すように、枠本体部17の短辺方向をX方向、長辺方向をY方向とした場合、この樹脂注入部から金型内に注入された樹脂材料は、位置決めピン19の中心からX方向両側に向かって流れる。そして、X方向両側に流れた樹脂材料は、ライナー部18と枠本体部17との接合部分において、長辺側壁部17cを樹脂成形する樹脂材料と混じり合う。このため、ライナー部18の樹脂材料に含まれるガラス繊維は、以下に示すような繊維配向となる。
 まず、樹脂注入部(位置決めピン19)から金型内に樹脂材料が注入されると、ガラス繊維は、くびれ部18A1において、位置決めピン19と同心円状の繊維配向となる。そして、樹脂材料がくびれ部18A1の外側に隣接する非くびれ部18B1に流入すると、ガラス繊維の繊維配向はX方向に揃う。
 その後、非くびれ部18B1の外側に隣接するくびれ部18A2に樹脂材料が流入すると、ガラス繊維の繊維配向が崩れ、当該くびれ部18A2の外側に隣接する非くびれ部18B2に樹脂材料に流入すると、ガラス繊維はランダムな繊維配向となる。
 そして、非くびれ部18B2に隣接するくびれ部18A3に樹脂材料が流入すると、ガラス繊維の繊維配向がまた崩れる。
 その後、くびれ部18A3の外側に隣接する非くびれ部18B3に樹脂材料が流入すると、その樹脂材料が長辺側壁部17cから非くびれ部18B3に流入した樹脂材料とぶつかり合うことで、ガラス繊維の繊維配向がさらに崩れた状態となり、ガラス繊維はさらにランダムな繊維配向となる。
 以上のように、本実施形態のライナー部18のくびれ部18A2,18A3は、ライナー部18の樹脂成形時にガラス繊維の繊維配向をランダムにするための形状変化部として機能する。なお、形状変化部は、本実施形態のくびれ部に限定されるものではなく、リブや穴など、ライナー部18の形状を変化させるものであればよい。
 このような形状変化部によりガラス繊維をランダムな繊維配向にすることで、ライナー部18の線膨張係数を変化させることができ、その結果、ライナー部18の動作温度での熱膨張量を調整することができる。このため、ライナー部18と底板15の各動作温度が互いに異なる場合であっても、ライナー部18の熱膨張量を底板15の熱膨張量と合うように調整することで、ライナー部18の熱膨張量と底板15の熱膨張量との差を小さくすることができる。
 例えば、本実施形態では、アルミニウム製の底板15の動作温度は80~100℃であり、樹脂製のライナー部18の動作温度は50~60℃であり、両者の動作温度は互いに異なる。
 また、アルミニウム製の底板15の線膨張係数は23×10-6(1/K)である。これに対して、樹脂製のライナー部18では、その樹脂成形時の樹脂材料の流動方向に対して平行方向(図6のX方向)の線膨張係数は21×10-6(1/K)であって、前記流動方向に対して垂直方向(図6のY方向)の線膨張係数は85×10-6(1/K)であり、底板15の線膨張係数と異なる。
 このように、底板15とライナー部18は、動作温度および線膨張係数が異なるため、底板15の熱膨張量とライナー部18の熱膨張量との差が大きくなる。そこで、これらの熱膨張量の差を小さくするために、底板15の動作温度における熱膨張量に基づいて、ライナー部18の樹脂成形時にガラス繊維の繊維配向をランダムにして、ライナー部18の動作温度における線膨張係数を変化させる。
 具体的には、アルミニウム製の底板15の短辺方向の長さ寸法を660mmとした場合、底板15の温度と熱膨張量との関係は、図9に示すグラフになる。なお、底板15の熱膨張量は、前記短辺方向の長さ寸法と、線膨張係数と、熱膨張前の温度(図例では24℃)からの上昇温度との積により算出することができる。
 図9に示すように、底板15の動作温度である80~100℃における底板15の熱膨張量は0.85~1.15mmとなる。そこで、ライナー部18の熱膨張量が、底板15の熱膨張量である0.85~1.15mmとなるように、ライナー部18の樹脂成形時にガラス繊維の配向割合を調整し、ライナー部18の線膨張係数を変化させる。ここで、ガラス繊維の配向割合とは、ガラス繊維の繊維配向が、前記流動方向に対して平行方向となる割合を意味している。
 図10は、ライナー部18の樹脂材料に含まれるガラス繊維の配向割合と、ライナー部18の熱膨張量との関係を示すグラフである。図10に示すように、ライナー部18の動作温度が50℃の場合、ガラス繊維の配向割合を約24~約52%に調整することで、ライナー部18の熱膨張量を0.85~1.15mmとすることができる。また、ライナー部18の動作温度が60℃の場合、ガラス繊維の配向割合を約56~約76%に調整することで、ライナー部18の熱膨張量を0.85~1.15mmとすることができる。
 したがって、ライナー部18の動作温度である50~60℃において、ライナー部18の熱膨張量を底板15の熱膨張量である0.85~1.15mmとするためには、ガラス繊維の配向割合を約24~約76%に調整すればよい。これによって、ライナー部18の熱膨張量と底板15の熱膨張量との差を小さくすることができる。
 <保護板および遮蔽部材>
 図4に戻り、筐体11は、枠本体部17に取り付けられた保護部材30と、ライナー部18を覆う遮蔽部材40とを備えている。保護部材30は、短辺側壁部17bの内側面の下半分全体を覆う短辺保護板31と、長辺側壁部17cの内側面の下半分全体を覆う長辺保護板32とによって構成されている。短辺保護板31及び長辺保護板32は、例えばアルミニウム等の金属製の板材からなる。
 短辺保護板31及び長辺保護板32の各下端部は、内側(底板15側)に折り曲げられ、短辺側壁部17b及び長辺側壁部17cよりも内側に突出している基台部17a(図5参照)の上面も覆っている。なお、短辺保護板31及び長辺保護板32は、短辺側壁部17bの内側面の高さ方向全体及び長辺側壁部17cの内側面の高さ方向全体を覆うように形成されていてもよい。
 以上の構成により、集光部13のフレネルレンズ13f(図2参照)による集光位置が、枠本体部17に隣接する発電素子12cからずれたときに、集光する太陽光が、枠本体部17の基台部17a、短辺側壁部17b及び長辺側壁部17cに当たるのを短辺保護板31及び長辺保護板32により防止することができる。したがって、保護部材30は枠本体部17が太陽光により熱損傷するのを防止することができる。また、金属製の保護部材30は太陽光の反射率が良く、かつ太陽光の吸収率が少ないため、枠本体部17の熱損傷を確実に防止することができる。
 図11は、遮蔽部材40を示す断面図である。図11において、遮蔽部材40は、例えばアルミニウム等の金属製の板材からなる。遮蔽部材40は、ライナー部18の上面全体を覆う平板部41と、この平板部41の幅方向(図中の左右方向)の両端部から底板15側に折り曲げられてライナー部18の両側面を覆う一対の折曲部42とを一体に形成して構成されている。
 ライナー部18の上面には、その長手方向両側にねじ穴18Cが形成されており(図5も参照)、このねじ穴18Cには、遮蔽部材40における平板部41の板厚方向に貫通する挿通孔41aに挿通されたビス26が螺合されている。これにより、遮蔽部材40はライナー部18に固定されている。なお、本実施形態ではビス26を用いているが、ボルトを用いてもよい。
 以上の構成により、集光部13のフレネルレンズ13f(図2参照)による集光位置が、遮蔽部材40に隣接する発電素子12cからずれたときに、集光する太陽光が、ライナー部18に当たるのを遮蔽部材40の平板部41及び折曲部42により防止することができる。したがって、遮蔽部材40はライナー部18が太陽光により熱損傷するのを防止することができる。また、金属製の遮蔽部材40は太陽光の反射率が良く、かつ太陽光の吸収率が少ないため、ライナー部18の熱損傷を確実に防止することができる。
 なお、上記のような集光型太陽光発電モジュール1Mを複数個並べて、集光型太陽光発電パネル1を構成すれば、集光型太陽光発電パネル1は所望の発電電力を得ることができる。
 また、このような集光型太陽光発電パネル1と、当該集光型太陽光発電パネル1が太陽の方向を向いて太陽の動きに追尾動作するように駆動する駆動装置5とを備えた集光型太陽光発電装置100は、昼間は常に、その時点で最も発電効率の高い状態を維持することができる。
 <その他>
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
1 集光型太陽光発電パネル
1M 集光型太陽光発電モジュール
1U ユニット
2 架台
3 基礎
4 支持部
6 軸
7 梁
8 フレーム
11 筐体
11b 鍔部
12 フレキシブルプリント配線板
12c 発電素子
13 集光部
13f フレネルレンズ
15 底板
15a 位置決め孔
15b 挿通孔
16 枠体
17 枠本体部
17a 基台部
17b 短辺側壁部
17c 長辺側壁部
18 ライナー部
18A くびれ部(形状変化部)
18B 非くびれ部
18C ねじ穴
19 位置決めピン(位置決め部)
20 突出部
21 シール層
22 内側突出部
22a ねじ穴
23 ビス(ネジ)
24 外側突出部
25 シール層
26 ビス
30 保護部材
31 短辺保護板
32 長辺保護板
40 遮蔽部材
41 平板部
41a 挿通孔
42 折曲部
100 集光型太陽光発電装置
181 ストレート部
182 テーパ部
183 接着面
184 接着面
Ax 光軸
R1 領域
R2 領域
W1 くびれ部の幅寸法
W2 非くびれ部の幅寸法

Claims (9)

  1.  太陽光を集光するレンズ要素を複数個並べて構成された集光部、及び、当該レンズ要素にそれぞれ対応する位置に配置された複数個の発電素子を収容する筐体を備える集光型太陽光発電モジュールであって、
     前記筐体は、樹脂製の枠体と、前記枠体に取り付けられ前記発電素子が搭載される金属製の底板と、を備え、
     前記枠体は、外枠を形成する枠本体部と、前記枠本体部の内側において前記底板の上面に沿って延びており両端部が前記枠本体部に一体に形成されたライナー部と、を有する、集光型太陽光発電モジュール。
  2.  前記枠体は、ガラス繊維を含む樹脂材料により形成されており、
     前記ライナー部は、その長手方向の途中部に形状変化部を有する、請求項1に記載の集光型太陽光発電モジュール。
  3.  前記筐体は、前記ライナー部を覆う遮蔽部材をさらに備える、請求項1又は請求項2に記載の集光型太陽光発電モジュール。
  4.  前記遮蔽部材は金属である、請求項3に記載の集光型太陽光発電モジュール。
  5.  前記ライナー部は、当該ライナー部に対して前記底板を位置決めするための位置決め部を有する、請求項1~請求項4のいずれか1項に記載の集光型太陽光発電モジュール。
  6.  前記筐体は、前記底板を貫通して当該底板を前記ライナー部に固定するためのネジを備え、
     前記底板と前記ライナー部との間には、前記底板を貫通した前記ネジの周囲において前記筐体の内部を密封するためのシール層が形成されている、請求項1~請求項5のいずれか1項に記載の集光型太陽光発電モジュール。
  7.  前記ライナー部の前記シール層が接着される接着面にエンボス加工が施されている、請求項6に記載の集光型太陽光発電モジュール。
  8.  請求項1に記載の集光型太陽光発電モジュールを複数個並べて成る集光型太陽光発電パネル。
  9.  請求項8に記載の集光型太陽光発電パネルと、当該集光型太陽光発電パネルが太陽の方向を向いて太陽の動きに追尾動作するように駆動する駆動装置と、を備える集光型太陽光発電装置。
PCT/JP2017/025095 2016-08-03 2017-07-10 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置 WO2018025589A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780047207.6A CN109564950B (zh) 2016-08-03 2017-07-10 集光型光伏模块、集光型光伏面板和集光型光伏装置
AU2017306084A AU2017306084B2 (en) 2016-08-03 2017-07-10 Concentrating solar power generation module, concentrating solar power generation panel, and concentrating solar power generation device
EP17836696.9A EP3496161A4 (en) 2016-08-03 2017-07-10 CONCENTRATING SOLAR POWER GENERATION MODULE, CONCENTRATING SOLAR POWER GENERATION PANEL AND CONCENTRATING SOLAR POWER GENERATION DEVICE
US16/319,215 US10825943B2 (en) 2016-08-03 2017-07-10 Concentrating solar power generation module, concentrating solar power generation panel, and concentrating solar power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-152903 2016-08-03
JP2016152903A JP6631436B2 (ja) 2016-08-03 2016-08-03 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置

Publications (1)

Publication Number Publication Date
WO2018025589A1 true WO2018025589A1 (ja) 2018-02-08

Family

ID=61073601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025095 WO2018025589A1 (ja) 2016-08-03 2017-07-10 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置

Country Status (8)

Country Link
US (1) US10825943B2 (ja)
EP (1) EP3496161A4 (ja)
JP (1) JP6631436B2 (ja)
CN (1) CN109564950B (ja)
AU (1) AU2017306084B2 (ja)
MA (1) MA45884A (ja)
TW (1) TW201824734A (ja)
WO (1) WO2018025589A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764539A4 (en) * 2018-03-05 2021-12-29 Sumitomo Electric Industries, Ltd. Method for manufacturing concentrator photovoltaic module, and carrier jig

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344698A (ja) * 2005-06-07 2006-12-21 Sharp Corp 集光型太陽光発電ユニットおよび集光型太陽光発電装置
JP2013131647A (ja) * 2011-12-21 2013-07-04 Sharp Corp 太陽電池モジュール、太陽光発電ユニット、および太陽電池モジュールの製造方法
JP2013207079A (ja) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd 集光型太陽光発電パネル及び集光型太陽光発電装置
JP2014038881A (ja) * 2012-08-10 2014-02-27 Sumitomo Electric Ind Ltd 集光型太陽光発電モジュール及び集光型太陽光発電パネル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091612A (ja) * 1998-09-08 2000-03-31 Honda Motor Co Ltd 集光追尾式発電装置
AU2006256136B8 (en) * 2005-06-07 2010-05-27 Sharp Kabushiki Kaisha Concentrating solar power generation unit, concentrating solar power generation apparatus, concentrating lens, concentrating lens structure, and method for manufacturing concentrating lens structure
WO2009139896A2 (en) * 2008-05-16 2009-11-19 Soliant Energy, Inc. Concentrating photovoltaic solar panel
JP5814725B2 (ja) * 2011-10-03 2015-11-17 住友電気工業株式会社 集光型太陽光発電モジュール及び集光型太陽光発電パネル
EP2800150A4 (en) 2011-12-27 2015-07-29 Teknia Mfg Group S L PHOTOVOLTAIC SUNLIGHT CONCENTRATION MODULE
US8941000B2 (en) 2012-02-03 2015-01-27 International Business Machines Corporation Solar concentrator cooling by vortex gas circulation
JP6319318B2 (ja) * 2013-10-31 2018-05-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
JP6287222B2 (ja) * 2014-01-09 2018-03-07 住友電気工業株式会社 集光型太陽光発電ユニットの製造方法、これに用いる製造装置、集光型太陽光発電モジュールの製造方法、これに用いる製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344698A (ja) * 2005-06-07 2006-12-21 Sharp Corp 集光型太陽光発電ユニットおよび集光型太陽光発電装置
JP2013131647A (ja) * 2011-12-21 2013-07-04 Sharp Corp 太陽電池モジュール、太陽光発電ユニット、および太陽電池モジュールの製造方法
JP2013207079A (ja) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd 集光型太陽光発電パネル及び集光型太陽光発電装置
JP2014038881A (ja) * 2012-08-10 2014-02-27 Sumitomo Electric Ind Ltd 集光型太陽光発電モジュール及び集光型太陽光発電パネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3496161A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764539A4 (en) * 2018-03-05 2021-12-29 Sumitomo Electric Industries, Ltd. Method for manufacturing concentrator photovoltaic module, and carrier jig
US11742454B2 (en) 2018-03-05 2023-08-29 Sumitomo Electric Industries, Ltd. Method for manufacturing concentrator photovoltaic module, and transport jig

Also Published As

Publication number Publication date
TW201824734A (zh) 2018-07-01
MA45884A (fr) 2019-06-12
AU2017306084A1 (en) 2019-01-31
US10825943B2 (en) 2020-11-03
JP2018022770A (ja) 2018-02-08
EP3496161A4 (en) 2020-01-08
JP6631436B2 (ja) 2020-01-15
CN109564950A (zh) 2019-04-02
CN109564950B (zh) 2022-10-28
US20190237606A1 (en) 2019-08-01
EP3496161A1 (en) 2019-06-12
AU2017306084B2 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP6569340B2 (ja) 集光型太陽光発電モジュール用筐体取付構造、集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置
AU2016267138B2 (en) Concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic apparatus
US10812010B2 (en) Mounting structure for photovoltaic power generation module, photovoltaic power generation module, photovoltaic power generation panel, and photovoltaic power generation device
TW201707373A (zh) 聚光型太陽光發電單元、聚光型太陽光發電模組、聚光型太陽光發電面板及聚光型太陽光發電裝置
WO2018025589A1 (ja) 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置
JP7021670B2 (ja) 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置
CN110998868B (zh) 聚光型光伏模块、聚光型光伏面板、聚光型光伏设备、以及用于制造聚光型光伏模块的方法
US20100319683A1 (en) Molded Securing Device for an Optical Element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017306084

Country of ref document: AU

Date of ref document: 20170710

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836696

Country of ref document: EP

Effective date: 20190304