WO2018020867A1 - Radar system, radar device, and weather observation method - Google Patents

Radar system, radar device, and weather observation method Download PDF

Info

Publication number
WO2018020867A1
WO2018020867A1 PCT/JP2017/021714 JP2017021714W WO2018020867A1 WO 2018020867 A1 WO2018020867 A1 WO 2018020867A1 JP 2017021714 W JP2017021714 W JP 2017021714W WO 2018020867 A1 WO2018020867 A1 WO 2018020867A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
observation
area
region
radar system
Prior art date
Application number
PCT/JP2017/021714
Other languages
French (fr)
Japanese (ja)
Inventor
高木 敏明
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2018529421A priority Critical patent/JP6858778B2/en
Publication of WO2018020867A1 publication Critical patent/WO2018020867A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a radar system that performs weather observation with a plurality of radar devices, a radar device that is used in the radar system, and a weather observation method.
  • Patent Document 1 discloses a weather radar network system (radar system) including a plurality of Doppler radars. In this radar system, a wind velocity vector can be observed as weather information.
  • Patent Document 2 discloses a meteorological information processing apparatus including a rain cloud detection unit that detects a position of a rain cloud and a three-dimensional velocity of the rain cloud based on signals from at least three radars.
  • the present invention is for solving the above-described problems, and an object of the present invention is to provide a radar system and a radar apparatus capable of dynamically determining a region where weather observation is to be focused on according to observation results from a plurality of radar apparatuses. And providing a weather observation method.
  • a radar system is arranged at different positions, and based on the observation data, a plurality of radar devices that perform meteorological observation and acquire observation data, A meteorological information calculation unit that calculates meteorological information at each point in the observation area of each radar device; and an antenna that each radar device has, based on the weather information, each observation region of the plurality of radar devices. Determination of an observation area that is determined as one of a first area that is a peripheral area around the center, and a second area that is an area of an angular range set for the radar apparatus based on an antenna included in each radar apparatus. And a section.
  • a radar apparatus includes an antenna that scans a predetermined range, and an observation data acquisition unit that acquires observation data in an observation region in which weather observation is performed by the antenna.
  • the antenna is based on meteorological information calculated based on the observation data obtained from other radar devices and meteorological information of each point in the observation area calculated based on the observation data
  • the observation region is determined to be one of a first region that is a peripheral region centered on the antenna and a second region that is an angular range region set with the antenna as a base point. Scanning is performed based on the determination result of the determination unit.
  • a weather observation method includes a plurality of radar devices that perform weather observation and acquire observation data at different positions, and each based on the observation data.
  • the meteorological information of each point in the observation area of the radar device is calculated, and based on the meteorological information, the observation area of each of the plurality of radar devices is an area around the antenna of each radar device.
  • a second area that is an area of an angular range set in the radar apparatus with the antenna included in each radar apparatus as a base point.
  • a radar system a radar apparatus, and a meteorological observation method that can dynamically determine an area in which weather observation is to be focused on according to observation results from a plurality of radar apparatuses.
  • FIG. 1 is a schematic diagram of a radar system according to an embodiment of the present invention. It is a block diagram which shows the structure of each radar apparatus shown in FIG.
  • FIGS. 3A and 3B are schematic diagrams for explaining the scanning operation of the antenna in the CAPPI mode, in which FIG. 3A is viewed from above and FIG. 3B is a view viewed from the side.
  • 4A and 4B are schematic diagrams for explaining an antenna scanning operation in the sector PPI mode, in which FIG. 4A is a diagram viewed from above, and FIG. 4B is a diagram viewed from the side. It is a figure for demonstrating the determination method at the time of determining whether the area
  • the present invention can be widely applied as a radar system that performs weather observation with a plurality of radar devices, a radar device that is used in the radar system, and a weather observation method.
  • FIG. 1 is a schematic diagram of a weather radar system 1 (hereinafter simply referred to as a radar system 1) according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of each radar apparatus shown in FIG.
  • the radar system 1 is configured to calculate the horizontal wind direction and wind speed at each point in the observation region using three radar devices 10a, 10b, and 10c arranged at positions separated from each other. Has been.
  • the Doppler is calculated based on the difference between the frequency of the transmission wave and the frequency of the reflected wave that returns after being reflected by precipitation particles (rain, snow, hail, hail) in the atmosphere.
  • the direction and magnitude of the wind speed at each point that is, the wind speed vector V
  • the wind speed vector at the point where the Doppler velocity is observed is calculated as weather information.
  • the radar system 1 includes three radar devices 10a, 10b, and 10c, a central processing unit 2, and a display 3, as shown in FIG.
  • the three radar devices 10a, 10b, and 10c are arranged at different positions as shown in FIG.
  • FIG. 1 an example is given in which the radar devices 10a, 10b, and 10c are arranged in a regular triangle shape, but the present invention is not limited to this, and the radar devices may be arranged in other shapes.
  • the distance between the radar apparatuses 10a, 10b, and 10c is, for example, about 10 to 20 km.
  • Each radar device 10a, 10b, 10c has the same components.
  • the radar apparatuses 10a, 10b, and 10c may be referred to as the radar apparatus 10.
  • the radar apparatus 10 includes an antenna 11, a circulator 12, a transmission waveform generation unit 13, an amplification unit 14, a transmitter 15, a receiver 16, a bandpass filter 17, and an amplification unit. 18, a signal processing unit 19, and a drive control unit 21.
  • the antenna 11 is a radar antenna capable of transmitting a transmission wave with narrow directivity.
  • the antenna 11 is provided as a transmission unit that transmits an electromagnetic wave as a transmission wave, and is also provided as a reception unit that receives a reception wave as a reflection wave of the transmission wave.
  • a transmission signal output from the transmitter 15 is input to the antenna 11 via the circulator 12.
  • a transmission wave generated from the transmission signal is transmitted from the antenna 11.
  • the antenna 11 outputs a reception signal obtained from the received reflected wave to the receiver 16 via the circulator 12.
  • the antenna 11 has an electric motor (not shown) as a rotation drive mechanism.
  • the antenna 11 can be rotated 360 ° along the horizontal plane when the electric motor is driven to rotate.
  • the antenna 11 is configured to be able to change the elevation angle ⁇ in the range of 0 ° to 180 °.
  • the antenna 11 is configured to repeatedly transmit and receive the transmission wave and the reception wave while changing the direction (specifically, the azimuth ⁇ and the elevation angle ⁇ ) in which the transmission wave and the reception wave are transmitted and received.
  • each of the radar devices 10a, 10b, and 10c arranged at different positions can perform a three-dimensional scan (that is, CAPPI scan) around each of the radar devices 10a, 10b, and 10c.
  • CAPPI scan a three-dimensional scan
  • the system 1 can observe precipitation over a relatively wide range.
  • the circulator 12 switches to a connection in which a transmission signal is transmitted from the transmitter 15 to the antenna 11 during transmission. In addition, the circulator 12 switches to a connection in which a reception signal obtained from a reception wave received by the antenna 11 is sent from the antenna 11 to the receiver 16 at the time of reception.
  • the transmission waveform generation unit 13 generates a transmission signal having a waveform that is the basis of the transmission wave transmitted from the antenna 11.
  • the transmission signal generated by the transmission waveform generation unit 13 is amplified by the amplification unit 14 and then output to the antenna 11 via the transmitter 15 and the circulator 12.
  • the receiver 16 receives the received signal obtained from the received wave received by the antenna 11 via the circulator 12.
  • the reception signal received by the receiver 16 is subjected to removal of unnecessary signals such as noise by the band-pass filter 17, amplified by the amplification unit 18, and then output to the signal processing unit 19.
  • the signal processing unit 19 is provided as an observation data acquisition unit that acquires observation data in an observation region where weather observation is performed by the antenna 11.
  • the signal processing unit 19 is composed of devices such as a hardware processor 8 (for example, CPU, FPGA, etc.) and a nonvolatile memory.
  • the hardware processor 8 functions as the signal processing unit 19 by the CPU reading and executing the program from the nonvolatile memory.
  • the signal processing unit 19 in the wind speed vector at each point where the wind speed is observed.
  • the horizontal wind velocity component along the horizontal plane is acquired as observation data.
  • the drive control unit 21 controls the antenna 11 so that the antenna 11 is driven according to a predetermined regularity.
  • the antenna 11 of each radar apparatus 10 performs wind speed measurement in the CAPPI mode (first observation method) and wind speed measurement in the sector PPI mode (second observation method).
  • the drive control unit 21 controls the scanning range of the antenna 11 by controlling the driving of the antenna 11 in accordance with a command from the central processing unit 2.
  • FIG. 3A and 3B are schematic diagrams for explaining the scanning operation of the antenna 11 in the CAPPI mode, in which FIG. 3A is a view from above and FIG. 3B is a view from the side. .
  • FIG. 4 is a schematic diagram for explaining the scanning operation of the antenna 11 in the sector PPI mode.
  • FIG. 4 (A) is a view from above
  • FIG. 4 (B) is a view from the side.
  • the antenna 11 rotates in a predetermined direction along the horizontal plane with reference to FIG.
  • the antenna 11 changes the elevation angle by the angle width ⁇ 1 every time it rotates once, and continues the same rotation operation.
  • the radar apparatus 10 scans a three-dimensional space centered on itself. That is, in the CAPPI mode, the drive control unit 21 controls the drive of the antenna 11 so that the elevation angle is changed by the angle width ⁇ 1 every rotation while rotating the antenna 11 in a predetermined direction along the horizontal plane.
  • the above-described angle width may be referred to as an elevation angle change width.
  • the antenna 11 reciprocates within a predetermined angle range along the horizontal plane with reference to FIG. Further, with reference to FIG. 4B, the antenna 11 changes the elevation angle by the elevation angle change width ⁇ 2 ( ⁇ 2 ⁇ 1 ) each time scanning in one direction and continues the same scanning. . Thereby, in the sector PPI mode, the observation range can be scanned for each fine elevation angle change width ⁇ 2 . That is, in the sector PPI mode, the drive control unit 21 reciprocates the antenna 11 within a predetermined angle range along the horizontal plane, and changes the elevation angle by the angle width ⁇ 2 every time scanning is performed in one direction. In addition, the driving of the antenna 11 is controlled.
  • the central processing unit 2 is provided as an external device separate from the radar devices 10.
  • the central processing unit 2 includes a weather information calculation unit 4, a weather feature calculation unit 5, and an observation region determination unit 6.
  • the central processing unit 2 is composed of devices such as a hardware processor 7 (for example, a CPU, FPGA, etc.) and a nonvolatile memory.
  • the hardware processor 7 functions as the weather information calculation unit 4, the weather feature calculation unit 5, and the observation region determination unit 6 by the CPU reading and executing the program from the nonvolatile memory.
  • the meteorological information calculation unit 4 calculates a wind speed vector (horizontal wind speed vector for each point) in the direction along the horizontal plane among the wind speed vectors at each point included in the observation area as weather information at each point. Specifically, the meteorological information calculation unit 4 calculates the horizontal wind speed vector for each point by integrating the wind speed components for each point calculated by the signal processing unit 19 of each radar device 10a, 10b, 10c. The horizontal wind speed vector for each point includes the wind speed and wind direction at each point as information. Information on the wind speed vector at each point calculated by the weather information calculation unit 4 is output to the display 3 and the weather feature calculation unit 5.
  • the display 3 displays a wind speed distribution map in the observation region (specifically, a horizontal wind speed vector at each point calculated by the weather information calculation unit 4).
  • the wind speed vector at each point is represented by, for example, an arrow, the direction of each arrow indicates the wind direction, and the length of each arrow indicates the wind speed.
  • the meteorological feature calculation unit 5 calculates an in-region meteorological feature that is a feature of meteorological information in the observation region based on the horizontal wind velocity vector for each point at each point.
  • the meteorological feature calculation unit 5 calculates an average wind direction that is an average of wind directions at an altitude surface at each point in the observation region as the in-region meteorological feature.
  • the weather feature calculation unit 5 calculates, as an example, the direction indicated by the wind speed vector obtained by combining the horizontal wind speed vectors for each point as the average wind direction.
  • the method for calculating the average wind direction is not limited to this, and the average wind direction may be calculated by other methods.
  • FIG. 5 is a diagram for explaining a determination method used when determining which of the first region and the second region the region where the weather information should be observed by each of the radar apparatuses 10a, 10b, and 10c.
  • the first area is a circular area centered on the antenna 11 of each radar apparatus 10 when viewed from above
  • the second area is a fan centered on the antenna 11 of each radar apparatus 10 when viewed from above. It is an area of shape.
  • the position of each radar device 10 is schematically indicated by dots.
  • FIG. 5 the position of each radar device 10 is schematically indicated by dots.
  • the center of gravity of the triangle Tr having the apexes of the positions of the three radar devices 10 a, 10 b, and 10 c is indicated by a symbol G, and straight lines passing through the radar devices 10 a, 10 b, 10 c and the center of gravity G are respectively The first straight line L1, the second straight line L2, and the third straight line L3 are used.
  • a speed vector (average wind speed vector) in the same direction as the average wind direction calculated by the weather feature calculation unit 5 is indicated by a symbol W AVE .
  • the observation area determination unit 6 determines which of the three radar devices 10a, 10b, and 10c should operate in the sector PPI mode. Specifically, when it is assumed that the observation region determination unit 6 stands from the position of each radar device 10a, 10b, 10c toward the center of gravity G, the head wind component or the tail wind component of the average wind speed vector WAVE is the largest. Is determined as the second region Z2 (that is, the radar device is determined as a radar device to be operated in the sector PPI mode), and the observation region of the other radar device is determined as the first region Z1. (That is, another radar device is determined as a radar device to be operated in the CAPPI mode).
  • the observation area decision unit 6 the average wind velocity vector W first line component W AVE1 is a component of the first straight line L1 direction in AVE
  • the average wind speed vector W second is a component of the second straight line L2 direction in the AVE
  • a straight line component W AVE2 and a third straight line component W AVE3 which is a component in the direction of the third straight line L3 in the average wind speed vector W AVE , are calculated.
  • These linear components are wind speed components for each radar device calculated for each radar device.
  • the observation region determination unit 6 determines the radar device from which the linear component having the largest value is calculated as a radar device to operate in the sector PPI mode, and sets the other radar devices as radar devices to operate in the CAPPI mode. decide.
  • the observation region determination unit 6 sets the observation region of the radar device 10a to the second region Z2, and sets the observation regions of the radar devices 10b and 10c to the first region.
  • One area Z1 is set.
  • the observation region determination unit 6 determines the second region Z2 as follows. Specifically, the observation region determination unit 6 defines a fan-shaped region that extends from the radar device 10 toward the center of gravity G of the triangle Tr having the positions of the three radar devices 10a, 10b, and 10c as vertices. It determines as 2 area
  • FIG. 6 is a schematic diagram showing the wind direction of each point as a thick arrow when each radar apparatus 10a, 10b, 10c is operating in the CAPPI mode.
  • FIG. 7 is a schematic diagram showing the wind direction at each point with a thick arrow when the radar apparatus 10a operates in the sector PPI mode and the radar apparatuses 10b and 10c operate in the CAPPI mode.
  • each radar apparatus 10 operates in the CAPPI mode until the determination result by the observation region determination unit 6 is derived.
  • each radar device 10 when the determination result by the observation region determination unit 6 is derived, each radar device 10 operates based on the determination result.
  • FIG. 7 shows a state in which the radar apparatus 10a operates in the sector PPI mode and the radar apparatuses 10b and 10c operate in the CAPPI mode.
  • FIG. 8 is a flowchart for explaining a weather observation method performed using the radar system 1 described above. Below, with reference to FIG. 8, the meteorological observation method implemented using the radar system 1 is demonstrated.
  • step S1 the radar apparatuses 10 are arranged at different positions. At that time, for example, each radar device 10 is arranged such that, for example, the region where the weather observation is to be focused is surrounded by the three radar devices 10.
  • step S2 the radar system 1 is activated. Thereby, the horizontal wind speed component at each point in the observation area is calculated by each radar device 10, and the wind direction in the horizontal direction at each point is calculated by integrating them. Note that immediately after the radar system 1 is started, each radar apparatus 10 calculates a horizontal wind speed component in the first region Z1. In other words, each radar apparatus 10 performs wind speed measurement in the CAPPI mode. Then, the radar system 1 calculates the average wind direction by averaging the horizontal wind speed vectors for each point obtained by integrating the horizontal wind speed components in the first region Z1 of each radar device 10.
  • step S3 the observation area of each radar apparatus 10 is determined based on the average wind direction calculated in step S2. Specifically, in step S3, referring to FIG. 5, the head wind component or the tail wind component (first linear component W AVE1 , second linear component W AVE2 , third linear component W AVE3 ) of average wind speed vector W AVE is obtained. The observation region of the radar apparatus that becomes the largest is determined as the second region Z2, and the observation region of the other radar device is determined as the first region Z1.
  • step S4 the scanning range of the antenna 11 of each radar apparatus 10 is controlled based on the observation region determined in step S3. Specifically, the radar apparatus 10 whose observation area is determined to be the first area continues to perform weather observation of the first area by CAPPI observation, and the radar apparatus 10 whose observation area is determined to be the second area is the second area. Meteorological observation of the area is performed by sector PPI observation.
  • the observation area of each radar apparatus is determined at each predetermined timing, and the determined observation area is determined each time the observation area is determined.
  • the antenna is controlled based on.
  • the observation regions of each radar device 10 are the first region Z1 and the second region Z2. Either one is determined. In this way, it is possible to switch the observation area of the radar apparatus 10 that can most appropriately observe the area where weather information is to be mainly observed to the second area Z2 that is narrower than the first area Z1. Then, since the scanning range of the antenna 11 that scans the second region Z2 becomes narrow, the update period of the weather information in the second region Z2 can be shortened accordingly. Alternatively, as described with reference to FIGS. 3 and 4, since the elevation angle change width can be reduced from ⁇ 1 to ⁇ 2 , the spatial resolution in the elevation angle direction can be increased.
  • the radar system 1 it is possible to provide a radar system that can dynamically determine a region in which weather observation is to be focused on according to observation results obtained by the plurality of radar devices 10.
  • the radar apparatus that observes the first region Z1 acquires observation data by the first observation method (CAPPI observation in the case of the present embodiment), and observes the second region Z2. Obtains observation data by the second observation method (in this embodiment, sector PPI observation). That is, according to the radar system 1, a method for observing a region to be observed can be dynamically determined according to the observation results obtained by the plurality of radar devices 10.
  • the first region Z1 is observed by CAPPI observation, and the second region Z2 is observed by sector PPI observation. Thereby, the weather information of each point included in each area
  • the wind direction at each point in the observation area can be obtained.
  • the observation area of each radar device is determined based on the average wind direction.
  • the observation area can be determined more appropriately.
  • each radar device has a wind speed component (in the case of the present embodiment, the first linear component W AVE1 , the second linear component W AVE2 , and the third linear component W AVE3 ), An observation area of the radar device is determined. Thereby, an observation area can be determined more appropriately.
  • the radar having the largest headwind component or tailwind component in the average wind direction when standing from the radar devices 10 a, 10 b, 10 c toward the center of gravity G of the triangle Tr.
  • the observation region of the device (in the case of FIG. 5, the radar device 10a) is determined as the second region. Due to its characteristics, the radar apparatus can accurately measure the wind speed having many components along a straight line connecting itself and the observation point.
  • the radar device 10a that can calculate the wind direction in the region near the center of gravity G more accurately than the other radar devices 10b and 10c.
  • the radar apparatus 10 it is possible to provide a radar apparatus suitable for the radar system 1 capable of dynamically determining a region where the weather observation is to be focused on.
  • the meteorological observation method it is possible to dynamically determine the area where the meteorological observation is focused.
  • one radar device that performs weather observation in the second region Z2 is determined.
  • the present invention is not limited to this, and a plurality of radar devices that perform weather observation in the second region Z2 may be determined. Good.
  • the horizontal wind speed vector for each point which is the horizontal wind speed vector at each point, is calculated based on the Doppler velocity of precipitation particles included in each point, but the present invention is not limited to this.
  • a precipitation cell a cell in which precipitation particles are observed
  • the advection vector a vector in which precipitation particles are observed
  • FIG. 9 is a block diagram showing a configuration of a radar system 1a according to a modification.
  • a radar system 1a according to the modification shown in FIG. 9 includes a master radar device 9 in which a radar device 10a and a central processing unit 2 are integrated, and slave radar devices 10b and 10c.
  • the radar system 1a having such a configuration, as in the case of the radar system 1 according to the above-described embodiment, an area in which the weather observation is to be focused on depending on the observation results of the plurality of radar apparatuses 10 is performed.
  • a radar system that can be determined dynamically can be provided.
  • the constituent elements of the radar apparatuses 10a, 10b, and 10c shown in FIG. 9 are the same as the constituent elements of the radar apparatuses 10a, 10b, and 10c of the above-described embodiment, and thus illustration thereof is omitted. Yes.
  • FIG. 10 is a block diagram showing a configuration of a radar system 1b according to a modification.
  • FIG. 11 is a block diagram showing a configuration of each radar apparatus 20 shown in FIG.
  • the weather information observed by the radar system 1 is described as an example of the wind direction, but the present invention is not limited to this.
  • the weather information observed by the radar system 1b according to this modification is precipitation intensity.
  • a different part from the radar system 1 which concerns on the said embodiment is demonstrated, and description is abbreviate
  • each radar device 20 includes an antenna 11, a circulator 12, a transmission waveform generation unit 13, an amplification unit 14, a transmitter 15, a receiver 16, a bandpass filter 17, and an amplification.
  • the signal processing unit 19 a of each radar apparatus 20 acquires the echo intensity of the reflected wave of the transmission wave transmitted from the antenna 11 from each point in the observation area set corresponding to each radar apparatus 20.
  • the central processing unit 2a includes a weather information calculation unit 4a, a heavy precipitation region extraction unit 22, and an observation region determination unit 6a.
  • the meteorological information calculation unit 4a calculates the precipitation intensity at each point based on the echo intensity obtained from each point in the observation area.
  • FIG. 12 is a distribution diagram showing the precipitation intensity at each point calculated by the weather information calculation unit 4a shown in FIG. In FIG. 12, a region having a high precipitation intensity is indicated by dot hatching having a high density, and a region having a low precipitation intensity is indicated by dot hatching having a low density.
  • the heavy precipitation area extraction unit 22 compares the precipitation intensity calculated by the weather information calculation unit 4a with a predetermined threshold value. And the heavy precipitation area extraction part 22 extracts the area
  • the observation area determination unit 6a determines an observation area to be observed by each of the radar devices 20a, 20b, and 20c. Specifically, the observation region determination unit 6a determines the observation region of the radar apparatus having the observation region including the heavy precipitation region Zr extracted by the heavy precipitation region extraction unit 22 as the second region, and other radar devices. Is determined as the first observation region. In the example shown in FIG. 12, the observation region of the radar device 20b is determined as the second region Z2, and the observation regions of the radar devices 20a and 20c are determined as the first region Z1.
  • the observation region determination unit 6a of this modification determines the second region Z2 as follows. Specifically, the observation region determination unit 6a determines, as the second region Z2, a fan-shaped region that extends toward the heavy precipitation region Zr with the radar device 20 as a center and includes the heavy precipitation region Zr.
  • FIG. 13 is a schematic diagram showing precipitation intensity at each point when the radar apparatus 20b operates in the sector PPI mode and the radar apparatuses 20a and 20c operate in the CAPPI mode.
  • the observation region of each radar device 20 is determined as one of the first region Z1 and the second region Z2 based on the precipitation intensity as weather information. .
  • the observation region of the radar apparatus that includes the region (high precipitation region Zr) having a high precipitation intensity in the observation region can be determined as the second region including the heavy precipitation region. If it does so, the acquisition update period of precipitation intensity distribution in the 2nd field can be shortened, or the spatial resolution in an elevation angle direction can be raised. Therefore, according to the radar system 1b, it is possible to provide a radar system capable of dynamically determining a region where precipitation intensity observation is to be focused on according to observation results obtained by the plurality of radar devices 20.
  • the second region Z2 is determined so as to include the heavy precipitation region Zr. Therefore, in the region where the precipitation intensity is high, the acquisition update period of the precipitation intensity distribution is shortened, or the space in the elevation angle direction is reduced. The resolution can be increased.
  • FIG. 14 is a schematic diagram for explaining the arrangement of the radar devices 10a, 10c, and 10d included in the radar system 1c according to the modification.
  • the central processing unit is not shown.
  • the radar system 1c according to the present modification is the same as the radar system 1 according to the above-described embodiment, except that one of the three radar devices is a movable radar device.
  • one of the three radar devices is a movable radar device.
  • the radar system 1c includes three radar devices 10a, 10c, and 10d. Of these three radar devices 10a, 10c, and 10d, the radar devices 10a and 10c are fixed radar devices that are fixed at the points. On the other hand, the radar apparatus 10d is a mobile radar apparatus that can change the installation position.
  • the installation position of the mobile radar device 10d is changed according to the direction of the prevailing wind.
  • the prevailing wind is the wind with the most frequent wind direction that blows during a specific period in a certain region.
  • the white arrow shown in FIG. 14 (A) indicates the seasonal wind W NW blowing from the northwest
  • the white arrow shown in FIG. 14 (B) indicates the seasonal wind W SE blowing from the southeast.
  • Mobile radar device 10d is the main period blows monsoon W NW from northwest, as shown in FIG. 14 (A), 2 two stationary radar device 10a, the windward side of the monsoon W NW than 10c ( In other words, it is arranged on the northwest side of the two fixed radar devices 10a and 10c.
  • mobile radar device 10d is the main period blows monsoon W SE from southeast, as shown in FIG. 14 (B), 2 two stationary radar device 10a, the wind of the monsoon W SE than 10c It is arranged on the upper side (in other words, on the southeast side of the two fixed radar devices 10a and 10c).
  • the mobile radar device 10d is arranged on the windward side of the seasonal wind than the fixed radar devices 10a and 10c. In this way, the direction of the wind blowing from the windward side over the region (specifically, the region surrounded by the three radar devices 10a, 10c, and 10d) on which precipitation prediction is to be focused on is determined by the mobile radar device 10d. It can be calculated with high accuracy. Then, since it becomes easy to accurately predict the course of the rain cloud moving on the seasonal wind, it is possible to perform accurate precipitation prediction.
  • the seasonal wind is exemplified as the prevailing wind, and the position of the mobile radar device 10d is moved according to the direction in which the seasonal wind is blown.
  • the present invention is not limited to this.
  • the position of the mobile radar device 10d may be moved according to the direction in which the air blows.
  • the position of the mobile radar device 10d is moved according to the prevailing wind.
  • the present invention is not limited to this, and other surrounding environments (for example, areas where the radar system 1c is installed)
  • the position of the mobile radar device 10d may be moved according to a specific weather environment or the like.
  • FIG. 15 is a block diagram showing a configuration of a radar system 1d according to a modification.
  • FIG. 16 is a block diagram showing a configuration of each radar apparatus shown in FIG.
  • the drive control unit 21 that controls the rotational drive of each antenna 11 has been described as an example provided in each radar device 10, but the present invention is not limited thereto.
  • the drive control unit 21 is provided in the central processing unit 2b.
  • a drive control signal for rotationally driving the antenna 11 of each radar device 30a, 30b, 30c is transmitted from the central processing unit 2b to each radar device 30.
  • Each antenna 11 is driven to rotate based on the drive control signal, thereby scanning the first region Z1 or the second region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

[Problem] To provide a radar system that is capable of dynamically setting an area in which weather observation is to focus in accordance with observation results by a plurality of radar devices. [Solution] A radar system 1 comprising: a plurality of radar devices 10 that acquire observation data by carrying out weather observation, and are disposed at different locations; a weather information calculation unit 4 that calculates the weather information at each point within the observation area of each radar device 10 on the basis of the observation data; and an observation area determination unit 6 that determines the observation area of each of the plurality of radar devices 10 to be one of a first area and a second area on the basis of the weather information, the first area being an area around the antenna of each radar device 10 and the second area being an area within an angular range set to the radar device using the antenna of the radar device as the origin point.

Description

レーダシステム、レーダ装置、及び気象観測方法Radar system, radar apparatus, and meteorological observation method
 本発明は、複数のレーダ装置で気象観測を行うレーダシステム、該レーダシステムに用いられるレーダ装置、及び気象観測方法に関する。 The present invention relates to a radar system that performs weather observation with a plurality of radar devices, a radar device that is used in the radar system, and a weather observation method.
 従来より、互いに異なる位置に配置された複数のレーダ装置を用いて気象観測を行うレーダシステムが知られている。例えば特許文献1には、複数のドップラーレーダを備えた気象レーダネットワークシステム(レーダシステム)が開示されている。このレーダシステムでは、気象情報として、風の速度ベクトルを観測することができる。また、特許文献2には、少なくとも3つのレーダからの信号に基づいて雨雲の位置と雨雲の3次元速度を検出する雨雲検出部を備えた気象情報処理装置が開示されている。 Conventionally, radar systems that perform weather observation using a plurality of radar devices arranged at different positions are known. For example, Patent Document 1 discloses a weather radar network system (radar system) including a plurality of Doppler radars. In this radar system, a wind velocity vector can be observed as weather information. Patent Document 2 discloses a meteorological information processing apparatus including a rain cloud detection unit that detects a position of a rain cloud and a three-dimensional velocity of the rain cloud based on signals from at least three radars.
特許第3460586号公報Japanese Patent No. 3460586 国際公開2015/005020号International Publication No. 2015/005020
 ところで、特許文献1及び特許文献2に開示されるシステムでは、各レーダで観測された気象情報に関わらず、同じ観測領域に対して気象観測が行われる。そうすると、例えば重点的に観測を行いたい領域についても、他領域と同等の条件で(具体的には、他領域と同等の空間分解能、空間分解能等で)観測が行われるため、その領域の気象情報を細かく観測することができない。 By the way, in the systems disclosed in Patent Document 1 and Patent Document 2, weather observation is performed on the same observation area regardless of the weather information observed by each radar. Then, for example, even in an area that you want to observe mainly, observation is performed under the same conditions as other areas (specifically, with the same spatial resolution, spatial resolution, etc. as the other areas). Information cannot be observed in detail.
 本発明は、上記課題を解決するためのものであり、その目的は、複数のレーダ装置での観測結果に応じて重点的に気象観測を行いたい領域をダイナミックに決定可能なレーダシステム、レーダ装置、及び気象観測方法を提供することである。 The present invention is for solving the above-described problems, and an object of the present invention is to provide a radar system and a radar apparatus capable of dynamically determining a region where weather observation is to be focused on according to observation results from a plurality of radar apparatuses. And providing a weather observation method.
 上記課題を解決するため、本発明のある局面に係るレーダシステムは、互いに異なる位置に配置されていて、気象観測を行って観測データを取得する複数のレーダ装置と、前記観測データに基づいて、各前記レーダ装置の観測領域内における各地点の気象情報を算出する気象情報算出部と、前記気象情報に基づいて、複数の前記レーダ装置のそれぞれの観測領域を、各前記レーダ装置が有するアンテナを中心とした周囲の領域である第1領域、及び各前記レーダ装置が有するアンテナを基点とした当該レーダ装置に設定される角度範囲の領域である第2領域のいずれかにそれぞれ決定する観測領域決定部と、を備えている。 In order to solve the above-described problem, a radar system according to an aspect of the present invention is arranged at different positions, and based on the observation data, a plurality of radar devices that perform meteorological observation and acquire observation data, A meteorological information calculation unit that calculates meteorological information at each point in the observation area of each radar device; and an antenna that each radar device has, based on the weather information, each observation region of the plurality of radar devices. Determination of an observation area that is determined as one of a first area that is a peripheral area around the center, and a second area that is an area of an angular range set for the radar apparatus based on an antenna included in each radar apparatus. And a section.
 また、上記課題を解決するため、本発明のある局面に係るレーダ装置は、所定範囲を走査するアンテナと、前記アンテナによって気象観測が行われた観測領域内の観測データを取得する観測データ取得部と、を備え、前記アンテナは、前記観測データに基づいて算出された前記観測領域内における各地点の気象情報、及び他のレーダ装置で得られた観測データに基づいて算出された気象情報に基づいて、前記観測領域が、前記アンテナを中心とした周囲の領域である第1領域、及び前記アンテナを基点として設定される角度範囲の領域である第2領域のいずれかであると決定する観測領域決定部、の決定結果に基づいて走査される。 In order to solve the above problem, a radar apparatus according to an aspect of the present invention includes an antenna that scans a predetermined range, and an observation data acquisition unit that acquires observation data in an observation region in which weather observation is performed by the antenna. The antenna is based on meteorological information calculated based on the observation data obtained from other radar devices and meteorological information of each point in the observation area calculated based on the observation data The observation region is determined to be one of a first region that is a peripheral region centered on the antenna and a second region that is an angular range region set with the antenna as a base point. Scanning is performed based on the determination result of the determination unit.
 また、上記課題を解決するため、本発明のある局面に係る気象観測方法は、気象観測を行って観測データを取得する複数のレーダ装置を互いに異なる位置に配置し、前記観測データに基づいて各前記レーダ装置の観測領域内における各地点の気象情報を算出し、前記気象情報に基づいて、複数の前記レーダ装置のそれぞれの観測領域を、各前記レーダ装置が有するアンテナを中心とした周囲の領域である第1領域、及び各前記レーダ装置が有するアンテナを基点とした当該レーダ装置に設定される角度範囲の領域である第2領域のいずれかにそれぞれ決定する。 Further, in order to solve the above-described problem, a weather observation method according to an aspect of the present invention includes a plurality of radar devices that perform weather observation and acquire observation data at different positions, and each based on the observation data. The meteorological information of each point in the observation area of the radar device is calculated, and based on the meteorological information, the observation area of each of the plurality of radar devices is an area around the antenna of each radar device. And a second area that is an area of an angular range set in the radar apparatus with the antenna included in each radar apparatus as a base point.
 本発明によれば、複数のレーダ装置での観測結果に応じて重点的に気象観測を行いたい領域をダイナミックに決定可能なレーダシステム、レーダ装置、及び気象観測方法を提供できる。 According to the present invention, it is possible to provide a radar system, a radar apparatus, and a meteorological observation method that can dynamically determine an area in which weather observation is to be focused on according to observation results from a plurality of radar apparatuses.
本発明の実施形態に係るレーダシステムの模式図である。1 is a schematic diagram of a radar system according to an embodiment of the present invention. 図1に示す各レーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of each radar apparatus shown in FIG. CAPPIモード時におけるアンテナのスキャン動作を説明するための模式図であって、図3(A)は上方から視た図、図3(B)は側方から視た図である。FIGS. 3A and 3B are schematic diagrams for explaining the scanning operation of the antenna in the CAPPI mode, in which FIG. 3A is viewed from above and FIG. 3B is a view viewed from the side. セクタPPIモード時におけるアンテナのスキャン動作を説明するための模式図であって、図4(A)は上方から視た図、図4(B)は側方から視た図である。4A and 4B are schematic diagrams for explaining an antenna scanning operation in the sector PPI mode, in which FIG. 4A is a diagram viewed from above, and FIG. 4B is a diagram viewed from the side. 各レーダ装置で気象情報を観測すべき領域が第1領域及び第2領域のいずれであるかを決定する際の決定手法を説明するための図である。It is a figure for demonstrating the determination method at the time of determining whether the area | region which should observe weather information in each radar apparatus is a 1st area | region or a 2nd area | region. 各レーダ装置がCAPPIモードで動作しているときの各地点の風向を太線矢印で示す模式図である。It is a schematic diagram which shows the wind direction of each point when each radar apparatus is operate | moving in CAPPI mode with a thick line arrow. レーダ装置10aがセクタPPIモードで動作し且つレーダ装置10b,10cがCAPPIモードで動作しているときの各地点の風向を太線矢印で示す模式図である。It is a schematic diagram which shows the wind direction of each point with a thick line arrow when the radar apparatus 10a operate | moves by sector PPI mode, and the radar apparatus 10b, 10c operate | moves by CAPPI mode. 本実施形態に係るレーダシステムを用いて行う気象観測方法を説明するためのフローチャートである。It is a flowchart for demonstrating the weather observation method performed using the radar system which concerns on this embodiment. 変形例に係るレーダシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the radar system which concerns on a modification. 変形例に係るレーダシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the radar system which concerns on a modification. 図10に示す各レーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of each radar apparatus shown in FIG. 図10に示す気象情報算出部によって算出された各地点の降水強度を示す分布図である。It is a distribution map which shows the precipitation intensity | strength of each point calculated by the weather information calculation part shown in FIG. レーダ装置20bがセクタPPIモードで動作し且つレーダ装置20a,20cがCAPPIモードで動作しているときの各地点の降水強度を示す模式図である。It is a schematic diagram showing precipitation intensity at each point when the radar apparatus 20b operates in the sector PPI mode and the radar apparatuses 20a and 20c operate in the CAPPI mode. 変形例に係るレーダシステムが有する各レーダ装置の互いに対する配置を説明するための模式図である。It is a schematic diagram for demonstrating arrangement | positioning with respect to each other of each radar apparatus which the radar system which concerns on a modification has. 変形例に係るレーダシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the radar system which concerns on a modification. 図15に示す各レーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of each radar apparatus shown in FIG.
 以下、本発明を実施するための形態について、図面を参照しつつ説明する。本発明は、複数のレーダ装置で気象観測を行うレーダシステム、該レーダシステムに用いられるレーダ装置、及び気象観測方法として広く適用することができる。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The present invention can be widely applied as a radar system that performs weather observation with a plurality of radar devices, a radar device that is used in the radar system, and a weather observation method.
 図1は、本発明の実施形態に係る気象レーダシステム1(以下では、単にレーダシステム1と記載する)の模式図である。また、図2は、図1に示す各レーダ装置の構成を示すブロック図である。 FIG. 1 is a schematic diagram of a weather radar system 1 (hereinafter simply referred to as a radar system 1) according to an embodiment of the present invention. FIG. 2 is a block diagram showing the configuration of each radar apparatus shown in FIG.
 本実施形態に係るレーダシステム1は、観測領域内の各地点における水平方向の風向及び風速を、互いに離れた位置に配置された3つのレーダ装置10a,10b,10cを用いて算出するように構成されている。本実施形態に係るレーダシステム1では、送信波の周波数と、大気中の降水粒子(雨、雪、あられ、ひょう)に反射して帰来する反射波の周波数との差異に基づいて算出されるドップラー速度を用いて、各地点における風速の向き及び大きさ(すなわち風速ベクトルV)が算出される。すなわち、レーダシステム1では、ドップラー速度が観測された地点における風速ベクトルが、気象情報として算出される。 The radar system 1 according to the present embodiment is configured to calculate the horizontal wind direction and wind speed at each point in the observation region using three radar devices 10a, 10b, and 10c arranged at positions separated from each other. Has been. In the radar system 1 according to the present embodiment, the Doppler is calculated based on the difference between the frequency of the transmission wave and the frequency of the reflected wave that returns after being reflected by precipitation particles (rain, snow, hail, hail) in the atmosphere. Using the speed, the direction and magnitude of the wind speed at each point (that is, the wind speed vector V) is calculated. That is, in the radar system 1, the wind speed vector at the point where the Doppler velocity is observed is calculated as weather information.
 レーダシステム1は、図1に示すように、3つのレーダ装置10a,10b,10cと、中央演算処理部2と、表示器3とを備えている。 The radar system 1 includes three radar devices 10a, 10b, and 10c, a central processing unit 2, and a display 3, as shown in FIG.
 3つのレーダ装置10a,10b,10cは、図1に示すように、互いに異なる位置に配置されている。図1に示す例では、各レーダ装置10a,10b,10cを正三角形状に配置する例を挙げているが、これに限らず、その他の形状に配置してもよい。各レーダ装置10a,10b,10c間の距離は、例えば一例として、10~20km程度である。 The three radar devices 10a, 10b, and 10c are arranged at different positions as shown in FIG. In the example shown in FIG. 1, an example is given in which the radar devices 10a, 10b, and 10c are arranged in a regular triangle shape, but the present invention is not limited to this, and the radar devices may be arranged in other shapes. The distance between the radar apparatuses 10a, 10b, and 10c is, for example, about 10 to 20 km.
 各レーダ装置10a,10b,10cは、同じ構成要素を有している。以下では、各レーダ装置10a,10b,10cを区別して説明しない場合には、レーダ装置10a,10b,10cを、レーダ装置10と称する場合もある。 Each radar device 10a, 10b, 10c has the same components. Hereinafter, when the radar apparatuses 10a, 10b, and 10c are not described separately, the radar apparatuses 10a, 10b, and 10c may be referred to as the radar apparatus 10.
 レーダ装置10は、図2を参照して、アンテナ11と、サーキュレータ12と、送信波形生成部13と、増幅部14と、送信機15と、受信機16と、バンドパスフィルタ17と、増幅部18と、信号処理部19と、駆動制御部21とを備えている。 With reference to FIG. 2, the radar apparatus 10 includes an antenna 11, a circulator 12, a transmission waveform generation unit 13, an amplification unit 14, a transmitter 15, a receiver 16, a bandpass filter 17, and an amplification unit. 18, a signal processing unit 19, and a drive control unit 21.
 アンテナ11は、指向性の狭い送信波を送波可能なレーダアンテナである。アンテナ11は、送信波としての電磁波を送波する送波部として設けられているとともに、送信波の反射波としての受信波を受波する受波部として設けられている。アンテナ11には、送信機15から出力された送信信号がサーキュレータ12を介して入力される。アンテナ11からは、当該送信信号から生成される送信波が送波される。また、アンテナ11は、受波した反射波から得られる受信信号を、サーキュレータ12を介して受信機16へ出力する。 The antenna 11 is a radar antenna capable of transmitting a transmission wave with narrow directivity. The antenna 11 is provided as a transmission unit that transmits an electromagnetic wave as a transmission wave, and is also provided as a reception unit that receives a reception wave as a reflection wave of the transmission wave. A transmission signal output from the transmitter 15 is input to the antenna 11 via the circulator 12. A transmission wave generated from the transmission signal is transmitted from the antenna 11. The antenna 11 outputs a reception signal obtained from the received reflected wave to the receiver 16 via the circulator 12.
 アンテナ11は、回転駆動機構としての電動モータ(図示省略)を有している。アンテナ11は、この電動モータが回転駆動することにより水平面に沿って360°回転することができる。また、アンテナ11は、仰角φを0°~180°の範囲で変更可能に構成されている。アンテナ11は、送信波及び受信波を送受信する方向(具体的には、方位θ、仰角φ)を変えながら、送信波及び受信波の送受波を繰り返し行うように構成されている。 The antenna 11 has an electric motor (not shown) as a rotation drive mechanism. The antenna 11 can be rotated 360 ° along the horizontal plane when the electric motor is driven to rotate. The antenna 11 is configured to be able to change the elevation angle φ in the range of 0 ° to 180 °. The antenna 11 is configured to repeatedly transmit and receive the transmission wave and the reception wave while changing the direction (specifically, the azimuth θ and the elevation angle φ) in which the transmission wave and the reception wave are transmitted and received.
 以上の構成で、互いに異なる位置に配置された各レーダ装置10a,10b,10cは、該各レーダ装置10a,10b,10cの周囲を3次元スキャン(すなわち、CAPPIスキャン)することができるため、レーダシステム1では、上述のように、比較的広範囲に亘って降水を観測できる。 With the above configuration, each of the radar devices 10a, 10b, and 10c arranged at different positions can perform a three-dimensional scan (that is, CAPPI scan) around each of the radar devices 10a, 10b, and 10c. As described above, the system 1 can observe precipitation over a relatively wide range.
 サーキュレータ12は、送波時には、送信機15からアンテナ11に送信信号が送られる接続に切り替える。また、サーキュレータ12は、受波時には、アンテナ11によって受波された受信波から得られた受信信号がアンテナ11から受信機16へ送られる接続に切り替える。 The circulator 12 switches to a connection in which a transmission signal is transmitted from the transmitter 15 to the antenna 11 during transmission. In addition, the circulator 12 switches to a connection in which a reception signal obtained from a reception wave received by the antenna 11 is sent from the antenna 11 to the receiver 16 at the time of reception.
 送信波形生成部13は、アンテナ11から送波される送信波の基となる波形を有する送信信号を生成する。送信波形生成部13で生成された送信信号は、増幅部14によって増幅された後、送信機15及びサーキュレータ12を介してアンテナ11へ出力される。 The transmission waveform generation unit 13 generates a transmission signal having a waveform that is the basis of the transmission wave transmitted from the antenna 11. The transmission signal generated by the transmission waveform generation unit 13 is amplified by the amplification unit 14 and then output to the antenna 11 via the transmitter 15 and the circulator 12.
 受信機16は、アンテナ11によって受波された受信波から得られた受信信号を、サーキュレータ12を介して受信する。受信機16で受信された受信信号は、バンドパスフィルタ17によってノイズ等の不要な信号が除去され、増幅部18によって増幅された後、信号処理部19に出力される。 The receiver 16 receives the received signal obtained from the received wave received by the antenna 11 via the circulator 12. The reception signal received by the receiver 16 is subjected to removal of unnecessary signals such as noise by the band-pass filter 17, amplified by the amplification unit 18, and then output to the signal processing unit 19.
 信号処理部19は、アンテナ11によって気象観測が行われた観測領域内の観測データを取得する観測データ取得部として設けられている。信号処理部19は、ハードウェア・プロセッサ8(例えば、CPU、FPGA等)及び不揮発性メモリ等のデバイスで構成される。例えば、CPUが不揮発性メモリからプログラムを読み出して実行することにより、ハードウェア・プロセッサ8が、信号処理部19として機能する。信号処理部19は、風速を観測する各地点での風速ベクトルにおける、当該信号処理部19が設けられたレーダ装置10と風速を観測する各地点とを結ぶ直線に沿った方向の風速成分のうちの、水平面に沿った水平風速成分を、観測データとして取得する。 The signal processing unit 19 is provided as an observation data acquisition unit that acquires observation data in an observation region where weather observation is performed by the antenna 11. The signal processing unit 19 is composed of devices such as a hardware processor 8 (for example, CPU, FPGA, etc.) and a nonvolatile memory. For example, the hardware processor 8 functions as the signal processing unit 19 by the CPU reading and executing the program from the nonvolatile memory. Of the wind speed components in the direction along the straight line connecting the radar apparatus 10 provided with the signal processing unit 19 and each point where the wind speed is observed, the signal processing unit 19 in the wind speed vector at each point where the wind speed is observed. The horizontal wind velocity component along the horizontal plane is acquired as observation data.
 駆動制御部21は、アンテナ11が所定の規則性に従って駆動するように、該アンテナ11を制御する。本実施形態では、各レーダ装置10のアンテナ11は、CAPPIモード(第1観測手法)による風速測定と、セクタPPIモード(第2観測手法)による風速測定とを行う。駆動制御部21は、中央演算処理部2からの指令に応じて、アンテナ11の駆動を制御することにより、アンテナ11の走査範囲を制御する。 The drive control unit 21 controls the antenna 11 so that the antenna 11 is driven according to a predetermined regularity. In the present embodiment, the antenna 11 of each radar apparatus 10 performs wind speed measurement in the CAPPI mode (first observation method) and wind speed measurement in the sector PPI mode (second observation method). The drive control unit 21 controls the scanning range of the antenna 11 by controlling the driving of the antenna 11 in accordance with a command from the central processing unit 2.
 図3は、CAPPIモード時におけるアンテナ11のスキャン動作を説明するための模式図であって、図3(A)は上方から視た図、図3(B)は側方から視た図である。また、図4は、セクタPPIモード時におけるアンテナ11のスキャン動作を説明するための模式図であって、図4(A)は上方から視た図、図4(B)は側方から視た図である。 3A and 3B are schematic diagrams for explaining the scanning operation of the antenna 11 in the CAPPI mode, in which FIG. 3A is a view from above and FIG. 3B is a view from the side. . FIG. 4 is a schematic diagram for explaining the scanning operation of the antenna 11 in the sector PPI mode. FIG. 4 (A) is a view from above, and FIG. 4 (B) is a view from the side. FIG.
 CAPPIモード時は、アンテナ11は、図3(A)を参照して、水平面に沿って所定方向に回転動作する。また、アンテナ11は、図3(B)を参照して、1回転する毎に仰角を角度幅Δθだけ変更し、同様の回転動作を続ける。これにより、CAPPIモード時には、レーダ装置10は、自身を中心とした3次元空間をスキャンする。すなわち、駆動制御部21は、CAPPIモード時、アンテナ11を水平面に沿った所定方向に回転させつつ、1回転する毎に仰角を角度幅Δθだけ変更するように、アンテナ11の駆動を制御する。なお、以下では、上述した角度幅を、仰角変更幅と称する場合もある。 In the CAPPI mode, the antenna 11 rotates in a predetermined direction along the horizontal plane with reference to FIG. In addition, referring to FIG. 3B, the antenna 11 changes the elevation angle by the angle width Δθ 1 every time it rotates once, and continues the same rotation operation. Thereby, in the CAPPI mode, the radar apparatus 10 scans a three-dimensional space centered on itself. That is, in the CAPPI mode, the drive control unit 21 controls the drive of the antenna 11 so that the elevation angle is changed by the angle width Δθ 1 every rotation while rotating the antenna 11 in a predetermined direction along the horizontal plane. . Hereinafter, the above-described angle width may be referred to as an elevation angle change width.
 一方、セクタPPIモード時は、アンテナ11は、図4(A)を参照して、水平面に沿って所定の角度範囲内において往復動作する。また、アンテナ11は、図4(B)を参照して、片道方向への走査を行う毎に、仰角を、仰角変更幅Δθ(Δθ<Δθ)だけ変更し、同様の走査を続ける。これにより、セクタPPIモード時は、細かい仰角変更幅Δθ毎に観測範囲内をスキャンできる。すなわち、駆動制御部21は、セクタPPIモード時、アンテナ11を水平面に沿った所定の角度範囲内で往復動作させつつ、片道方向への走査を行う毎に仰角を角度幅Δθだけ変更するように、アンテナ11の駆動を制御する。 On the other hand, in the sector PPI mode, the antenna 11 reciprocates within a predetermined angle range along the horizontal plane with reference to FIG. Further, with reference to FIG. 4B, the antenna 11 changes the elevation angle by the elevation angle change width Δθ 2 (Δθ 2 <Δθ 1 ) each time scanning in one direction and continues the same scanning. . Thereby, in the sector PPI mode, the observation range can be scanned for each fine elevation angle change width Δθ 2 . That is, in the sector PPI mode, the drive control unit 21 reciprocates the antenna 11 within a predetermined angle range along the horizontal plane, and changes the elevation angle by the angle width Δθ 2 every time scanning is performed in one direction. In addition, the driving of the antenna 11 is controlled.
 中央演算処理部2は、各レーダ装置10とは別体の外部装置として設けられている。中央演算処理部2は、気象情報算出部4と、気象特徴算出部5と、観測領域決定部6とを有している。中央演算処理部2は、ハードウェア・プロセッサ7(例えば、CPU、FPGA等)及び不揮発性メモリ等のデバイスで構成される。例えば、CPUが不揮発性メモリからプログラムを読み出して実行することにより、ハードウェア・プロセッサ7が、気象情報算出部4、気象特徴算出部5、及び観測領域決定部6として機能する。 The central processing unit 2 is provided as an external device separate from the radar devices 10. The central processing unit 2 includes a weather information calculation unit 4, a weather feature calculation unit 5, and an observation region determination unit 6. The central processing unit 2 is composed of devices such as a hardware processor 7 (for example, a CPU, FPGA, etc.) and a nonvolatile memory. For example, the hardware processor 7 functions as the weather information calculation unit 4, the weather feature calculation unit 5, and the observation region determination unit 6 by the CPU reading and executing the program from the nonvolatile memory.
 気象情報算出部4は、観測領域内に含まれる各地点の風速ベクトルのうち水平面に沿う方向の風速ベクトル(地点毎水平風速ベクトル)を、各地点での気象情報として算出する。具体的には、気象情報算出部4は、各レーダ装置10a,10b,10cの信号処理部19で算出された地点毎の風速成分を統合することにより、地点毎水平風速ベクトルを算出する。地点毎水平風速ベクトルには、各地点の風速及び風向が、情報として含まれる。気象情報算出部4で算出された、各地点での風速ベクトルに関する情報は、表示器3及び気象特徴算出部5に出力される。 The meteorological information calculation unit 4 calculates a wind speed vector (horizontal wind speed vector for each point) in the direction along the horizontal plane among the wind speed vectors at each point included in the observation area as weather information at each point. Specifically, the meteorological information calculation unit 4 calculates the horizontal wind speed vector for each point by integrating the wind speed components for each point calculated by the signal processing unit 19 of each radar device 10a, 10b, 10c. The horizontal wind speed vector for each point includes the wind speed and wind direction at each point as information. Information on the wind speed vector at each point calculated by the weather information calculation unit 4 is output to the display 3 and the weather feature calculation unit 5.
 表示器3には、観測領域内の風速分布図(具体的には、気象情報算出部4で算出された各地点の水平風速ベクトル)が表示される。各地点の風速ベクトルは、例えば一例として矢印で表され、各矢印の向きが風向を示し、各矢印の長さが風速を示す。 The display 3 displays a wind speed distribution map in the observation region (specifically, a horizontal wind speed vector at each point calculated by the weather information calculation unit 4). The wind speed vector at each point is represented by, for example, an arrow, the direction of each arrow indicates the wind direction, and the length of each arrow indicates the wind speed.
 気象特徴算出部5は、各地点での地点毎水平風速ベクトルに基づき、観測領域内における気象情報の特徴である領域内気象特徴を算出する。本実施形態では、気象特徴算出部5は、領域内気象特徴として、観測領域内の各地点のある高度面における風向の平均である平均風向を算出する。具体的には、気象特徴算出部5は、例えば一例として、地点毎水平風速ベクトルを合成して得られた風速ベクトルが示す向きを、平均風向として算出する。なお、平均風向の算出方法はこれに限らず、その他の方法によって平均風向が算出されてもよい。 The meteorological feature calculation unit 5 calculates an in-region meteorological feature that is a feature of meteorological information in the observation region based on the horizontal wind velocity vector for each point at each point. In the present embodiment, the meteorological feature calculation unit 5 calculates an average wind direction that is an average of wind directions at an altitude surface at each point in the observation region as the in-region meteorological feature. Specifically, for example, the weather feature calculation unit 5 calculates, as an example, the direction indicated by the wind speed vector obtained by combining the horizontal wind speed vectors for each point as the average wind direction. The method for calculating the average wind direction is not limited to this, and the average wind direction may be calculated by other methods.
 図5は、各レーダ装置10a,10b,10cで気象情報を観測すべき領域が第1領域及び第2領域のいずれであるかを決定する際の決定手法を説明するための図である。第1領域は、上方から視て、各レーダ装置10のアンテナ11を中心とした円形状の領域であり、第2領域は、上方から視て、各レーダ装置10のアンテナ11を中心とした扇形状の領域である。図5では、各レーダ装置10の位置を模式的にドットで示している。また、図5では、3つのレーダ装置10a,10b,10cの位置を頂点とする三角形Trの重心を符号Gで示し、各レーダ装置10a,10b,10c及び重心Gを通過する直線を、それぞれ、第1直線L1,第2直線L2,第3直線L3としている。また、図5では、気象特徴算出部5で算出された平均風向と同じ向きの速度ベクトル(平均風速ベクトル)を符号WAVEで示している。 FIG. 5 is a diagram for explaining a determination method used when determining which of the first region and the second region the region where the weather information should be observed by each of the radar apparatuses 10a, 10b, and 10c. The first area is a circular area centered on the antenna 11 of each radar apparatus 10 when viewed from above, and the second area is a fan centered on the antenna 11 of each radar apparatus 10 when viewed from above. It is an area of shape. In FIG. 5, the position of each radar device 10 is schematically indicated by dots. In FIG. 5, the center of gravity of the triangle Tr having the apexes of the positions of the three radar devices 10 a, 10 b, and 10 c is indicated by a symbol G, and straight lines passing through the radar devices 10 a, 10 b, 10 c and the center of gravity G are respectively The first straight line L1, the second straight line L2, and the third straight line L3 are used. In FIG. 5, a speed vector (average wind speed vector) in the same direction as the average wind direction calculated by the weather feature calculation unit 5 is indicated by a symbol W AVE .
 観測領域決定部6は、3つのレーダ装置10a,10b,10cのうち、いずれのレーダ装置10a,10b,10cがセクタPPIモードで動作すべきかを決定する。具体的には、観測領域決定部6は、各レーダ装置10a,10b,10cの位置から重心Gへ向かって立ったと仮定した場合に、その平均風速ベクトルWAVEの向かい風成分又は追い風成分が最も大きくなるレーダ装置の観測領域を第2領域Z2と決定し(すなわち、そのレーダ装置をセクタPPIモードで動作すべきレーダ装置として決定し)、他のレーダ装置の観測領域を第1領域Z1と決定する(すなわち、他のレーダ装置をCAPPIモードで動作すべきレーダ装置として決定する)。 The observation area determination unit 6 determines which of the three radar devices 10a, 10b, and 10c should operate in the sector PPI mode. Specifically, when it is assumed that the observation region determination unit 6 stands from the position of each radar device 10a, 10b, 10c toward the center of gravity G, the head wind component or the tail wind component of the average wind speed vector WAVE is the largest. Is determined as the second region Z2 (that is, the radar device is determined as a radar device to be operated in the sector PPI mode), and the observation region of the other radar device is determined as the first region Z1. (That is, another radar device is determined as a radar device to be operated in the CAPPI mode).
 より詳しくは、観測領域決定部6は、平均風速ベクトルWAVEにおける第1直線L1方向の成分である第1直線成分WAVE1、平均風速ベクトルWAVEにおける第2直線L2方向の成分である第2直線成分WAVE2、及び平均風速ベクトルWAVEにおける第3直線L3方向の成分である第3直線成分WAVE3、を算出する。これらの直線成分は、レーダ装置毎に算出されるレーダ装置毎風速成分である。そして、観測領域決定部6は、その値が最も大きい直線成分が算出されたレーダ装置をセクタPPIモードで動作すべきレーダ装置として決定し、その他のレーダ装置をCAPPIモードで動作すべきレーダ装置として決定する。図5に示す例では、第1直線成分WAVE1が最も大きいため、観測領域決定部6は、レーダ装置10aの観測領域を第2領域Z2に設定し、レーダ装置10b,10cの観測領域を第1領域Z1に設定する。 More specifically, the observation area decision unit 6, the average wind velocity vector W first line component W AVE1 is a component of the first straight line L1 direction in AVE, the average wind speed vector W second is a component of the second straight line L2 direction in the AVE A straight line component W AVE2 and a third straight line component W AVE3 , which is a component in the direction of the third straight line L3 in the average wind speed vector W AVE , are calculated. These linear components are wind speed components for each radar device calculated for each radar device. Then, the observation region determination unit 6 determines the radar device from which the linear component having the largest value is calculated as a radar device to operate in the sector PPI mode, and sets the other radar devices as radar devices to operate in the CAPPI mode. decide. In the example shown in FIG. 5, since the first linear component WAVE1 is the largest, the observation region determination unit 6 sets the observation region of the radar device 10a to the second region Z2, and sets the observation regions of the radar devices 10b and 10c to the first region. One area Z1 is set.
 観測領域決定部6は、第2領域Z2を、以下のようにして決定する。具体的には、観測領域決定部6は、レーダ装置10を中心として、3つのレーダ装置10a,10b,10cの位置を頂点とする三角形Trの重心Gへ向かって拡がる扇型の領域を、第2領域Z2として決定する。 The observation region determination unit 6 determines the second region Z2 as follows. Specifically, the observation region determination unit 6 defines a fan-shaped region that extends from the radar device 10 toward the center of gravity G of the triangle Tr having the positions of the three radar devices 10a, 10b, and 10c as vertices. It determines as 2 area | region Z2.
 図6は、各レーダ装置10a,10b,10cがCAPPIモードで動作しているときの各地点の風向を太線矢印で示す模式図である。また、図7は、レーダ装置10aがセクタPPIモードで動作し且つレーダ装置10b,10cがCAPPIモードで動作しているときの各地点の風向を太線矢印で示す模式図である。 FIG. 6 is a schematic diagram showing the wind direction of each point as a thick arrow when each radar apparatus 10a, 10b, 10c is operating in the CAPPI mode. FIG. 7 is a schematic diagram showing the wind direction at each point with a thick arrow when the radar apparatus 10a operates in the sector PPI mode and the radar apparatuses 10b and 10c operate in the CAPPI mode.
 レーダシステム1では、観測領域決定部6による決定結果が導出されるまでは、各レーダ装置10は、CAPPIモードで動作する。そして、レーダシステム1では、観測領域決定部6による決定結果が導出されると、その決定結果に基づいて各レーダ装置10が動作する。図7では、レーダ装置10aがセクタPPIモードで動作し且つレーダ装置10b,10cがCAPPIモードで動作している状態を示している。 In the radar system 1, each radar apparatus 10 operates in the CAPPI mode until the determination result by the observation region determination unit 6 is derived. In the radar system 1, when the determination result by the observation region determination unit 6 is derived, each radar device 10 operates based on the determination result. FIG. 7 shows a state in which the radar apparatus 10a operates in the sector PPI mode and the radar apparatuses 10b and 10c operate in the CAPPI mode.
 [気象観測方法]
 図8は、上述したレーダシステム1を用いて行う気象観測方法を説明するためのフローチャートである。以下では、図8を参照して、レーダシステム1を用いて実施される気象観測方法について説明する。
[Meteorological observation method]
FIG. 8 is a flowchart for explaining a weather observation method performed using the radar system 1 described above. Below, with reference to FIG. 8, the meteorological observation method implemented using the radar system 1 is demonstrated.
 まず、ステップS1では、各レーダ装置10が互いに異なる位置に配置される。その際、各レーダ装置10は、例えば一例として、重点的に気象観測を行いたい領域が3つのレーダ装置10で囲まれるように、各レーダ装置10を配置する。 First, in step S1, the radar apparatuses 10 are arranged at different positions. At that time, for example, each radar device 10 is arranged such that, for example, the region where the weather observation is to be focused is surrounded by the three radar devices 10.
 次に、ステップS2では、レーダシステム1が起動される。これにより、各レーダ装置10によって、観測領域内の各地点における水平風速成分が算出され、それらが統合されることにより、各地点の水平方向における風向が算出される。なお、レーダシステム1の起動直後は、各レーダ装置10は、第1領域Z1内の水平風速成分を算出する。言い換えれば、各レーダ装置10は、CAPPIモードによる風速測定を行う。そして、レーダシステム1は、各レーダ装置10の第1領域Z1内の水平風速成分を統合して得られた地点毎水平風速ベクトルを平均化して、平均風向を算出する。 Next, in step S2, the radar system 1 is activated. Thereby, the horizontal wind speed component at each point in the observation area is calculated by each radar device 10, and the wind direction in the horizontal direction at each point is calculated by integrating them. Note that immediately after the radar system 1 is started, each radar apparatus 10 calculates a horizontal wind speed component in the first region Z1. In other words, each radar apparatus 10 performs wind speed measurement in the CAPPI mode. Then, the radar system 1 calculates the average wind direction by averaging the horizontal wind speed vectors for each point obtained by integrating the horizontal wind speed components in the first region Z1 of each radar device 10.
 次に、ステップS3では、ステップS2で算出された平均風向に基づき、各レーダ装置10の観測領域を決定する。具体的には、ステップS3では、図5を参照して、平均風速ベクトルWAVEの向かい風成分又は追い風成分(第1直線成分WAVE1、第2直線成分WAVE2、第3直線成分WAVE3)が最も大きくなるレーダ装置の観測領域を第2領域Z2と決定し、それ以外のレーダ装置の観測領域を第1領域Z1と決定する。 Next, in step S3, the observation area of each radar apparatus 10 is determined based on the average wind direction calculated in step S2. Specifically, in step S3, referring to FIG. 5, the head wind component or the tail wind component (first linear component W AVE1 , second linear component W AVE2 , third linear component W AVE3 ) of average wind speed vector W AVE is obtained. The observation region of the radar apparatus that becomes the largest is determined as the second region Z2, and the observation region of the other radar device is determined as the first region Z1.
 最後に、ステップS4では、ステップS3で決定された観測領域に基づいて、各レーダ装置10のアンテナ11の走査範囲が制御される。具体的には、観測領域が第1領域に決定されたレーダ装置10は、引き続き第1領域の気象観測をCAPPI観測によって行い、観測領域が第2領域に決定されたレーダ装置10は、第2領域の気象観測をセクタPPI観測によって行う。 Finally, in step S4, the scanning range of the antenna 11 of each radar apparatus 10 is controlled based on the observation region determined in step S3. Specifically, the radar apparatus 10 whose observation area is determined to be the first area continues to perform weather observation of the first area by CAPPI observation, and the radar apparatus 10 whose observation area is determined to be the second area is the second area. Meteorological observation of the area is performed by sector PPI observation.
 そして、本実施形態に係るレーダシステム1を用いて行われる気象観測方法では、所定のタイミング毎に各レーダ装置の観測領域が決定され、観測領域が決定される毎に、その決定された観測領域に基づくアンテナの制御が行われる。 In the meteorological observation method performed using the radar system 1 according to the present embodiment, the observation area of each radar apparatus is determined at each predetermined timing, and the determined observation area is determined each time the observation area is determined. The antenna is controlled based on.
 [効果]
 以上のように、本実施形態に係るレーダシステム1によれば、複数のレーダ装置10から得られた気象情報に基づいて、各レーダ装置10の観測領域が第1領域Z1及び第2領域Z2のいずれか一方に決定される。こうすると、重点的に気象情報を観測したい領域を最も適切に観測できるレーダ装置10の観測領域を、第1領域Z1よりも狭い第2領域Z2に切り替えることができる。そうすると、当該第2領域Z2を走査するアンテナ11の走査範囲が狭くなるため、その分、第2領域Z2内の気象情報の更新周期を短くすることが可能となる。或いは、図3及び図4を用いて説明したように、仰角変更幅をΔθからΔθへ小さくできるため、仰角方向における空間分解能を上げることができる。
[effect]
As described above, according to the radar system 1 according to the present embodiment, based on the weather information obtained from the plurality of radar devices 10, the observation regions of each radar device 10 are the first region Z1 and the second region Z2. Either one is determined. In this way, it is possible to switch the observation area of the radar apparatus 10 that can most appropriately observe the area where weather information is to be mainly observed to the second area Z2 that is narrower than the first area Z1. Then, since the scanning range of the antenna 11 that scans the second region Z2 becomes narrow, the update period of the weather information in the second region Z2 can be shortened accordingly. Alternatively, as described with reference to FIGS. 3 and 4, since the elevation angle change width can be reduced from Δθ 1 to Δθ 2 , the spatial resolution in the elevation angle direction can be increased.
 従って、レーダシステム1によれば、複数のレーダ装置10での観測結果に応じて重点的に気象観測を行いたい領域をダイナミックに決定可能なレーダシステムを提供できる。 Therefore, according to the radar system 1, it is possible to provide a radar system that can dynamically determine a region in which weather observation is to be focused on according to observation results obtained by the plurality of radar devices 10.
 また、レーダシステム1によれば、第1領域Z1を観測するレーダ装置は、第1観測手法(本実施形態の場合、CAPPI観測)によって観測データを取得し、第2領域Z2を観測するレーダ装置は、第2観測手法(本実施形態の場合、セクタPPI観測)によって観測データを取得する。すなわち、レーダシステム1によれば、複数のレーダ装置10での観測結果に応じて、観測したい領域を観測する手法をダイナミックに決定することができる。 Also, according to the radar system 1, the radar apparatus that observes the first region Z1 acquires observation data by the first observation method (CAPPI observation in the case of the present embodiment), and observes the second region Z2. Obtains observation data by the second observation method (in this embodiment, sector PPI observation). That is, according to the radar system 1, a method for observing a region to be observed can be dynamically determined according to the observation results obtained by the plurality of radar devices 10.
 また、レーダシステム1によれば、第1領域Z1がCAPPI観測により観測され、第2領域Z2がセクタPPI観測によって観測される。これにより、各領域Z1,Z2に含まれる各地点の気象情報を得ることができる。 Also, according to the radar system 1, the first region Z1 is observed by CAPPI observation, and the second region Z2 is observed by sector PPI observation. Thereby, the weather information of each point included in each area | region Z1, Z2 can be obtained.
 また、レーダシステム1によれば、観測領域内における各地点の風向を得ることができる。 Moreover, according to the radar system 1, the wind direction at each point in the observation area can be obtained.
 また、レーダシステム1によれば、平均風向に基づいて、各レーダ装置の観測領域が決定される。このように、統計的な情報に基づいて各レーダ装置の観測領域を決定することにより、観測領域をより適切に決定することができる。 Also, according to the radar system 1, the observation area of each radar device is determined based on the average wind direction. Thus, by determining the observation area of each radar device based on statistical information, the observation area can be determined more appropriately.
 また、レーダシステム1によれば、レーダ装置毎風速成分(本実施形態の場合、第1直線成分WAVE1、第2直線成分WAVE2、及び第3直線成分WAVE3)の大きさに基づき、各レーダ装置の観測領域が決定される。これにより、観測領域をより一層適切に決定することができる。 Further, according to the radar system 1, each radar device has a wind speed component (in the case of the present embodiment, the first linear component W AVE1 , the second linear component W AVE2 , and the third linear component W AVE3 ), An observation area of the radar device is determined. Thereby, an observation area can be determined more appropriately.
 また、レーダシステム1によれば、図5を参照して、各レーダ装置10a,10b,10cから三角形Trの重心Gに向かって立った場合において、平均風向の向かい風成分又は追い風成分が最も大きいレーダ装置(図5の場合、レーダ装置10a)の観測領域が、第2領域に決定される。レーダ装置は、その特性上、自身と観測地点とを結ぶ直線に沿う成分を多く有する風速を精度よく測定することができる。この点につき、レーダシステム1のようにして第2領域Z2を観測するレーダ装置を決定すると、重心G付近の領域の風向を、他のレーダ装置10b,10cよりも正確に算出可能なレーダ装置10aによって、時間分解能及び空間分解能を上げて測定できる。すなわち、この構成によれば、セクタPPIモードで動作すべきレーダ装置を適切に選択できる。 Further, according to the radar system 1, referring to FIG. 5, the radar having the largest headwind component or tailwind component in the average wind direction when standing from the radar devices 10 a, 10 b, 10 c toward the center of gravity G of the triangle Tr. The observation region of the device (in the case of FIG. 5, the radar device 10a) is determined as the second region. Due to its characteristics, the radar apparatus can accurately measure the wind speed having many components along a straight line connecting itself and the observation point. In this regard, when the radar device that observes the second region Z2 is determined as in the radar system 1, the radar device 10a that can calculate the wind direction in the region near the center of gravity G more accurately than the other radar devices 10b and 10c. Thus, it is possible to increase the time resolution and spatial resolution. That is, according to this configuration, it is possible to appropriately select a radar apparatus that should operate in the sector PPI mode.
 また、レーダ装置10によれば、重点的に気象観測を行いたい領域をダイナミックに決定可能なレーダシステム1に適したレーダ装置を提供できる。 Further, according to the radar apparatus 10, it is possible to provide a radar apparatus suitable for the radar system 1 capable of dynamically determining a region where the weather observation is to be focused on.
 また、気象観測方法によれば、重点的に気象観測を行いたい領域をダイナミックに決定することができる。 Also, according to the meteorological observation method, it is possible to dynamically determine the area where the meteorological observation is focused.
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
[Modification]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 (1)上記実施形態では、第2領域Z2の気象観測を行うレーダ装置を1つ、決定したが、これに限らず、第2領域Z2の気象観測を行うレーダ装置が複数、決定されてもよい。 (1) In the above embodiment, one radar device that performs weather observation in the second region Z2 is determined. However, the present invention is not limited to this, and a plurality of radar devices that perform weather observation in the second region Z2 may be determined. Good.
 (2)上記実施形態では、各地点の水平風速ベクトルである地点毎水平風速ベクトルを、各地点に含まれる降水粒子のドップラー速度に基づいて算出したが、これに限らない。具体的には、例えば一例として、降水セル(降水粒子が観測されるセル)を時系列に追尾し、降水セルの変移量に基づいてその移流ベクトル(伝搬ベクトル)を算出してもよい。 (2) In the above embodiment, the horizontal wind speed vector for each point, which is the horizontal wind speed vector at each point, is calculated based on the Doppler velocity of precipitation particles included in each point, but the present invention is not limited to this. Specifically, for example, as an example, a precipitation cell (a cell in which precipitation particles are observed) may be tracked in time series, and the advection vector (propagation vector) may be calculated based on the amount of change of the precipitation cell.
 (3)図9は、変形例に係るレーダシステム1aの構成を示すブロック図である。上述した実施形態では、各レーダ装置10の観測領域が、各レーダ装置10とは別に設けられた中央演算処理部2によって決定される例を挙げて説明したが、これに限らない。具体的には、複数のレーダ装置のいずれかに、上述した中央演算処理部2の機能を持たせてもよい。図9に示す変形例に係るレーダシステム1aは、レーダ装置10a及び中央演算処理部2が一体化されたマスター用レーダ装置9と、スレーブ用のレーダ装置10b,10cとを備えている。このような構成を有するレーダシステム1aであっても、上述した実施形態に係るレーダシステム1の場合と同様、複数のレーダ装置10での観測結果に応じて重点的に気象観測を行いたい領域をダイナミックに決定可能なレーダシステムを提供できる。なお、図9に示すレーダ装置10a,10b,10cが有する各構成要素は、上述した実施形態の各レーダ装置10a,10b,10cが有する各構成要素と同じであるため、その図示を省略している。 (3) FIG. 9 is a block diagram showing a configuration of a radar system 1a according to a modification. In the embodiment described above, an example in which the observation area of each radar device 10 is determined by the central processing unit 2 provided separately from each radar device 10 has been described, but the present invention is not limited thereto. Specifically, any of the plurality of radar devices may have the function of the central processing unit 2 described above. A radar system 1a according to the modification shown in FIG. 9 includes a master radar device 9 in which a radar device 10a and a central processing unit 2 are integrated, and slave radar devices 10b and 10c. Even in the radar system 1a having such a configuration, as in the case of the radar system 1 according to the above-described embodiment, an area in which the weather observation is to be focused on depending on the observation results of the plurality of radar apparatuses 10 is performed. A radar system that can be determined dynamically can be provided. The constituent elements of the radar apparatuses 10a, 10b, and 10c shown in FIG. 9 are the same as the constituent elements of the radar apparatuses 10a, 10b, and 10c of the above-described embodiment, and thus illustration thereof is omitted. Yes.
 (4)上記実施形態では、第1観測手法としてCAPPI観測を採用し、第2観測手法としてセクタPPI観測を採用する例を挙げて説明したが、これに限らず、それら以外の観測手法を採用してもよい。例えば、第1観測手法として、PPI観測、RHI観測等を採用してもよい。また、第2観測手法として、RHI観測(セクタRHI観測であってもよい)を採用してもよい。 (4) In the above embodiment, an example in which CAPPI observation is adopted as the first observation method and sector PPI observation is adopted as the second observation method has been described. However, the present invention is not limited to this, and other observation methods are adopted. May be. For example, PPI observation, RHI observation, etc. may be adopted as the first observation method. Further, RHI observation (sector RHI observation may be used) may be adopted as the second observation method.
 (5)図10は、変形例に係るレーダシステム1bの構成を示すブロック図である。また、図11は、図10に示す各レーダ装置20の構成を示すブロック図である。 (5) FIG. 10 is a block diagram showing a configuration of a radar system 1b according to a modification. FIG. 11 is a block diagram showing a configuration of each radar apparatus 20 shown in FIG.
 上述した実施形態及び変形例では、レーダシステム1によって観測される気象情報が風向である例を挙げて説明したが、これに限らない。本変形例に係るレーダシステム1bによって観測される気象情報は、降水強度である。以下では、上記実施形態に係るレーダシステム1と異なる箇所について説明し、それ以外の箇所については説明を省略する。 In the above-described embodiment and modification, the weather information observed by the radar system 1 is described as an example of the wind direction, but the present invention is not limited to this. The weather information observed by the radar system 1b according to this modification is precipitation intensity. Below, a different part from the radar system 1 which concerns on the said embodiment is demonstrated, and description is abbreviate | omitted about the other part.
 各レーダ装置20は、図11に示すように、アンテナ11と、サーキュレータ12と、送信波形生成部13と、増幅部14と、送信機15と、受信機16と、バンドパスフィルタ17と、増幅部18と、信号処理部19aと、駆動制御部21とを備えている。各レーダ装置20の信号処理部19aは、アンテナ11から送波される送信波の反射波のエコー強度を、各レーダ装置20に対応して設定された観測領域内の各地点から取得する。 As shown in FIG. 11, each radar device 20 includes an antenna 11, a circulator 12, a transmission waveform generation unit 13, an amplification unit 14, a transmitter 15, a receiver 16, a bandpass filter 17, and an amplification. Unit 18, signal processing unit 19 a, and drive control unit 21. The signal processing unit 19 a of each radar apparatus 20 acquires the echo intensity of the reflected wave of the transmission wave transmitted from the antenna 11 from each point in the observation area set corresponding to each radar apparatus 20.
 中央演算処理部2aは、気象情報算出部4aと、多降水領域抽出部22と、観測領域決定部6aとを有している。 The central processing unit 2a includes a weather information calculation unit 4a, a heavy precipitation region extraction unit 22, and an observation region determination unit 6a.
 気象情報算出部4aは、観測領域内の各地点から得られたエコー強度に基づき、各地点の降水強度を算出する。図12は、図10に示す気象情報算出部4aによって算出された各地点の降水強度を示す分布図である。図12では、降水強度が強い領域を、密度が濃いドットハッチングで示し、降水強度が弱い領域を、密度が薄いドットハッチングで示している。 The meteorological information calculation unit 4a calculates the precipitation intensity at each point based on the echo intensity obtained from each point in the observation area. FIG. 12 is a distribution diagram showing the precipitation intensity at each point calculated by the weather information calculation unit 4a shown in FIG. In FIG. 12, a region having a high precipitation intensity is indicated by dot hatching having a high density, and a region having a low precipitation intensity is indicated by dot hatching having a low density.
 多降水領域抽出部22は、気象情報算出部4aによって算出された各地点の降水強度を、所定の閾値と比較する。そして、多降水領域抽出部22は、降水強度が閾値を超える領域を、多降水領域Zr(図12参照)として抽出する。 The heavy precipitation area extraction unit 22 compares the precipitation intensity calculated by the weather information calculation unit 4a with a predetermined threshold value. And the heavy precipitation area extraction part 22 extracts the area | region where precipitation intensity exceeds a threshold value as the heavy precipitation area Zr (refer FIG. 12).
 観測領域決定部6aは、各レーダ装置20a,20b,20cが観測すべき観測領域を決定する。具体的には、観測領域決定部6aは、多降水領域抽出部22によって抽出された多降水領域Zrを含む観測領域を有するレーダ装置の観測領域を、第2領域に決定し、その他のレーダ装置の観測領域を、第1観測領域に決定する。図12に示す例では、レーダ装置20bの観測領域が、第2領域Z2に決定され、レーダ装置20a,20cの観測領域が、第1領域Z1に決定される。 The observation area determination unit 6a determines an observation area to be observed by each of the radar devices 20a, 20b, and 20c. Specifically, the observation region determination unit 6a determines the observation region of the radar apparatus having the observation region including the heavy precipitation region Zr extracted by the heavy precipitation region extraction unit 22 as the second region, and other radar devices. Is determined as the first observation region. In the example shown in FIG. 12, the observation region of the radar device 20b is determined as the second region Z2, and the observation regions of the radar devices 20a and 20c are determined as the first region Z1.
 本変形例の観測領域決定部6aは、第2領域Z2を、以下のようにして決定する。具体的には、観測領域決定部6aは、レーダ装置20を中心として、多降水領域Zr側へ向かって拡がって該多降水領域Zrを含む扇形の領域を、第2領域Z2として決定する。図13は、レーダ装置20bがセクタPPIモードで動作し且つレーダ装置20a,20cがCAPPIモードで動作しているときの各地点の降水強度を示す模式図である。 The observation region determination unit 6a of this modification determines the second region Z2 as follows. Specifically, the observation region determination unit 6a determines, as the second region Z2, a fan-shaped region that extends toward the heavy precipitation region Zr with the radar device 20 as a center and includes the heavy precipitation region Zr. FIG. 13 is a schematic diagram showing precipitation intensity at each point when the radar apparatus 20b operates in the sector PPI mode and the radar apparatuses 20a and 20c operate in the CAPPI mode.
 以上のように、本変形例に係るレーダシステム1bでは、気象情報としての降水強度に基づいて、各レーダ装置20の観測領域が第1領域Z1及び第2領域Z2のいずれか一方に決定される。これにより、降水強度が大きい領域(多降水領域Zr)をその観測領域内に含むレーダ装置の観測領域を、該多降水領域を含む第2領域に決定することができる。そうすると、その第2領域内における降水強度分布の取得更新周期を短くしたり、仰角方向における空間分解能を上げることができる。従って、レーダシステム1bによれば、複数のレーダ装置20での観測結果に応じて重点的に降水強度観測を行いたい領域をダイナミックに決定可能なレーダシステムを提供できる。 As described above, in the radar system 1b according to this modification, the observation region of each radar device 20 is determined as one of the first region Z1 and the second region Z2 based on the precipitation intensity as weather information. . As a result, the observation region of the radar apparatus that includes the region (high precipitation region Zr) having a high precipitation intensity in the observation region can be determined as the second region including the heavy precipitation region. If it does so, the acquisition update period of precipitation intensity distribution in the 2nd field can be shortened, or the spatial resolution in an elevation angle direction can be raised. Therefore, according to the radar system 1b, it is possible to provide a radar system capable of dynamically determining a region where precipitation intensity observation is to be focused on according to observation results obtained by the plurality of radar devices 20.
 また、レーダシステム1bでは、多降水領域Zrが含まれるように第2領域Z2が決定されるため、降水強度が大きい領域において、降水強度分布の取得更新周期を短くしたり、或いは仰角方向における空間分解能を上げることができる。 In the radar system 1b, the second region Z2 is determined so as to include the heavy precipitation region Zr. Therefore, in the region where the precipitation intensity is high, the acquisition update period of the precipitation intensity distribution is shortened, or the space in the elevation angle direction is reduced. The resolution can be increased.
 (6)図14は、変形例に係るレーダシステム1cが有する各レーダ装置10a,10c,10dの互いに対する配置を説明するための模式図である。なお、図14では、中央演算処理部の図示を省略している。 (6) FIG. 14 is a schematic diagram for explaining the arrangement of the radar devices 10a, 10c, and 10d included in the radar system 1c according to the modification. In FIG. 14, the central processing unit is not shown.
 本変形例に係るレーダシステム1cは、3つのレーダ装置のうちの1つが可動式のレーダ装置である点を除き、上述した実施形態に係るレーダシステム1と同じである。以下では、上記実施形態と異なる箇所について説明し、それ以外の箇所については説明を省略する。 The radar system 1c according to the present modification is the same as the radar system 1 according to the above-described embodiment, except that one of the three radar devices is a movable radar device. Below, a different part from the said embodiment is demonstrated and description is abbreviate | omitted about the other part.
 本変形例に係るレーダシステム1cは、3つのレーダ装置10a,10c,10dを備えている。これら3つのレーダ装置10a,10c,10dのうち、レーダ装置10a,10cは、その地点に固定される固定式レーダ装置である。一方、レーダ装置10dは、設置位置を変更可能な、移動式レーダ装置である。 The radar system 1c according to this modification includes three radar devices 10a, 10c, and 10d. Of these three radar devices 10a, 10c, and 10d, the radar devices 10a and 10c are fixed radar devices that are fixed at the points. On the other hand, the radar apparatus 10d is a mobile radar apparatus that can change the installation position.
 移動式レーダ装置10dは、卓越風の向きに応じて、その設置位置が変更される。卓越風とは、ある地方である特定期間に吹く、最も頻度が多い風向の風である。卓越風の一例としては、冬季に日本で発生する北西風及び夏季に日本で発生する南東風である季節風が挙げられる。図14(A)に示す白抜き矢印は、北西から吹く季節風WNWを示し、図14(B)に示す白抜き矢印は、南東から吹く季節風WSEを示している。 The installation position of the mobile radar device 10d is changed according to the direction of the prevailing wind. The prevailing wind is the wind with the most frequent wind direction that blows during a specific period in a certain region. As an example of the prevailing wind, there is a northwest wind that occurs in Japan in winter and a seasonal wind that is a southeast wind that occurs in Japan in summer. The white arrow shown in FIG. 14 (A) indicates the seasonal wind W NW blowing from the northwest, and the white arrow shown in FIG. 14 (B) indicates the seasonal wind W SE blowing from the southeast.
 移動式レーダ装置10dは、主に北西からの季節風WNWが吹く期間には、図14(A)に示すように、2つの固定式レーダ装置10a,10cよりも当該季節風WNWの風上側(言い換えれば、2つの固定式レーダ装置10a,10cよりも北西側)に配置される。一方、移動式レーダ装置10dは、主に南東からの季節風WSEが吹く期間には、図14(B)に示すように、2つの固定式レーダ装置10a,10cよりも当該季節風WSEの風上側(言い換えれば、2つの固定式レーダ装置10a,10cよりも南東側)に配置される。 Mobile radar device 10d is the main period blows monsoon W NW from northwest, as shown in FIG. 14 (A), 2 two stationary radar device 10a, the windward side of the monsoon W NW than 10c ( In other words, it is arranged on the northwest side of the two fixed radar devices 10a and 10c. On the other hand, mobile radar device 10d is the main period blows monsoon W SE from southeast, as shown in FIG. 14 (B), 2 two stationary radar device 10a, the wind of the monsoon W SE than 10c It is arranged on the upper side (in other words, on the southeast side of the two fixed radar devices 10a and 10c).
 ところで、風向を正確に把握することは、より精度の高い降水予測を行うにあたり、非常に重要である。例えば、雨雲は、風上側から風下側へ向かって流れやすいため、降水予測を行いたい領域の風上側の風向を正確に算出することで、降水予測の精度を上げることができる。 By the way, it is very important to accurately grasp the wind direction in order to predict precipitation with higher accuracy. For example, since rain clouds tend to flow from the windward side to the leeward side, the accuracy of precipitation prediction can be increased by accurately calculating the wind direction on the windward side of the region where precipitation prediction is desired.
 この点につき、本変形例では、移動式レーダ装置10dは、固定式レーダ装置10a,10cよりも季節風の風上側に配置される。こうすると、重点的に降水予測を行いたい領域(具体的には、3つのレーダ装置10a,10c,10dによって囲まれた領域)よりも風上側から吹く風の風向を、移動式レーダ装置10dによって精度よく算出することができる。そうすると、その季節風に乗って移動する雨雲の進路を正確に予測しやすくなるため、正確な降水予測を行うことが可能となる。 In this regard, in the present modification, the mobile radar device 10d is arranged on the windward side of the seasonal wind than the fixed radar devices 10a and 10c. In this way, the direction of the wind blowing from the windward side over the region (specifically, the region surrounded by the three radar devices 10a, 10c, and 10d) on which precipitation prediction is to be focused on is determined by the mobile radar device 10d. It can be calculated with high accuracy. Then, since it becomes easy to accurately predict the course of the rain cloud moving on the seasonal wind, it is possible to perform accurate precipitation prediction.
 以上のように、本変形例によれば、所望の領域において、正確な降水予測を行うことが可能となる。 As described above, according to the present modification, it is possible to perform accurate precipitation prediction in a desired region.
 なお、本変形例では、卓越風として季節風を挙げ、季節風が吹いてくる方向に応じて移動式レーダ装置10dの位置を移動する例を挙げて説明したが、これに限らず、その他の卓越風が吹いてくる方向に応じて移動式レーダ装置10dの位置が移動されてもよい。 In this modified example, the seasonal wind is exemplified as the prevailing wind, and the position of the mobile radar device 10d is moved according to the direction in which the seasonal wind is blown. However, the present invention is not limited to this. The position of the mobile radar device 10d may be moved according to the direction in which the air blows.
 また、本変形例では、卓越風に応じて移動式レーダ装置10dの位置を移動する例を挙げて説明したが、これに限らず、その他の周囲環境(例えば、レーダシステム1cが設置される地域特有の気象環境等)に応じて、移動式レーダ装置10dの位置が移動されてもよい。 Further, in this modification, the example in which the position of the mobile radar device 10d is moved according to the prevailing wind has been described. However, the present invention is not limited to this, and other surrounding environments (for example, areas where the radar system 1c is installed) The position of the mobile radar device 10d may be moved according to a specific weather environment or the like.
 (7)図15は、変形例に係るレーダシステム1dの構成を示すブロック図である。また、図16は、図15に示す各レーダ装置の構成を示すブロック図である。 (7) FIG. 15 is a block diagram showing a configuration of a radar system 1d according to a modification. FIG. 16 is a block diagram showing a configuration of each radar apparatus shown in FIG.
 上述した実施形態では、各アンテナ11の回転駆動を制御する駆動制御部21が、各レーダ装置10に設けられた例を挙げて説明したが、これに限らない。図15に示すレーダシステム1dでは、駆動制御部21が、中央演算処理部2bに設けてられている。この場合、各レーダ装置30a,30b,30cのアンテナ11を回転駆動させるための駆動制御信号が、中央演算処理部2bから、各レーダ装置30へ送信される。各アンテナ11は、その駆動制御信号に基づいて回転駆動されることにより、第1領域Z1又は第2領域を走査する。 In the above-described embodiment, the drive control unit 21 that controls the rotational drive of each antenna 11 has been described as an example provided in each radar device 10, but the present invention is not limited thereto. In the radar system 1d shown in FIG. 15, the drive control unit 21 is provided in the central processing unit 2b. In this case, a drive control signal for rotationally driving the antenna 11 of each radar device 30a, 30b, 30c is transmitted from the central processing unit 2b to each radar device 30. Each antenna 11 is driven to rotate based on the drive control signal, thereby scanning the first region Z1 or the second region.
 1,1a~1d      レーダシステム
 4,4a         気象情報算出部
 6,6a         観測領域決定部
 10,10a~10c   レーダ装置
 10d          移動式レーダ装置
 11           アンテナ
 20,20a~20c   レーダ装置
 21           駆動制御部
 Z1           第1領域
 Z2           第2領域
1, 1a to 1d Radar system 4, 4a Weather information calculation unit 6, 6a Observation region determination unit 10, 10a to 10c Radar device 10d Mobile radar device 11 Antenna 20, 20a to 20c Radar device 21 Drive control unit Z1 First region Z2 second region

Claims (18)

  1.  互いに異なる位置に配置されていて、気象観測を行って観測データを取得する複数のレーダ装置と、
     前記観測データに基づいて、各前記レーダ装置の観測領域内における各地点の気象情報を算出する気象情報算出部と、
     前記気象情報に基づいて、複数の前記レーダ装置のそれぞれの観測領域を、各前記レーダ装置が有するアンテナを中心とした周囲の領域である第1領域、及び各前記レーダ装置が有するアンテナを基点とした当該レーダ装置に設定される角度範囲の領域である第2領域のいずれかにそれぞれ決定する観測領域決定部と、
     を備えていることを特徴とする、レーダシステム。
    A plurality of radar devices that are arranged at different positions and perform observations to acquire observation data;
    Based on the observation data, a meteorological information calculation unit that calculates meteorological information at each point in the observation area of each radar device;
    Based on the weather information, each observation region of the plurality of radar devices is defined as a first region that is a surrounding region centered on an antenna of each radar device, and an antenna of each radar device is a base point. An observation area determination unit that determines each of the second areas that are areas of an angular range set in the radar device;
    A radar system comprising:
  2.  請求項1に記載のレーダシステムにおいて、
     前記観測領域決定部での決定結果に基づいて各前記アンテナの走査範囲を制御する駆動制御部、を更に備えていることを特徴とする、レーダシステム。
    The radar system according to claim 1, wherein
    A radar system, further comprising: a drive control unit that controls a scanning range of each antenna based on a determination result in the observation region determination unit.
  3.  請求項2に記載のレーダシステムにおいて、
     前記複数のレーダ装置のうち観測領域が前記第1領域に設定されたレーダ装置は、第1観測手法によって前記観測データを取得し、
     前記複数のレーダ装置のうち観測領域が前記第2領域に設定されたレーダ装置は、前記第1観測手法とは異なる第2観測手法によって前記観測データを取得することを特徴とする、レーダシステム。
    The radar system according to claim 2,
    A radar device whose observation region is set to the first region among the plurality of radar devices acquires the observation data by a first observation method,
    A radar system in which an observation area is set to the second area among the plurality of radar apparatuses acquires the observation data by a second observation technique different from the first observation technique.
  4.  請求項3に記載のレーダシステムにおいて、
     前記第1観測手法は、CAPPI観測であり、前記第2観測手法は、セクタPPI観測又はRHI観測であることを特徴とする、レーダシステム。
    The radar system according to claim 3, wherein
    The radar system according to claim 1, wherein the first observation method is CAPPI observation, and the second observation method is sector PPI observation or RHI observation.
  5.  請求項1から請求項4のいずれか1項に記載のレーダシステムにおいて、
     前記各地点の気象情報には、前記観測データに基づいて算出された風向情報が含まれることを特徴とする、レーダシステム。
    The radar system according to any one of claims 1 to 4,
    The radar system according to claim 1, wherein the weather information at each point includes wind direction information calculated based on the observation data.
  6.  請求項5に記載のレーダシステムにおいて、
     前記観測領域決定部は、前記各地点の風向の平均である平均風向に基づいて、各前記レーダ装置の観測領域を決定することを特徴とする、レーダシステム。
    The radar system according to claim 5, wherein
    The radar system according to claim 1, wherein the observation region determination unit determines an observation region of each radar device based on an average wind direction that is an average of the wind directions at the respective points.
  7.  請求項6に記載のレーダシステムにおいて、
     前記観測領域決定部は、前記平均風向と同じ向きの平均風速ベクトルのうち、前記複数のレーダ装置の位置を頂点とする多角形の重心と各前記レーダ装置とを結ぶ直線方向の成分であるレーダ装置毎風速成分の大きさに基づき、各前記レーダ装置の観測領域を決定することを特徴とする、レーダシステム。
    The radar system according to claim 6, wherein
    The observation region determination unit is a radar that is a linear component that connects each of the radar devices with a polygonal center of gravity whose vertex is the position of the plurality of radar devices, out of the average wind velocity vector in the same direction as the average wind direction. A radar system, wherein an observation area of each radar device is determined based on a magnitude of a wind velocity component for each device.
  8.  請求項7に記載のレーダシステムにおいて、
     前記観測領域決定部は、前記レーダ装置毎風速成分が最も大きいレーダ装置の観測領域を前記第2領域に決定するとともに、他の前記レーダ装置の観測領域を前記第1領域に決定することを特徴とする、レーダシステム。
    The radar system according to claim 7, wherein
    The observation area determination unit determines an observation area of a radar apparatus having the largest wind speed component for each radar apparatus as the second area, and determines an observation area of another radar apparatus as the first area. Radar system.
  9.  請求項1から請求項4のいずれか1項に記載のレーダシステムにおいて、
     前記各地点の気象情報は、前記観測データに基づいて算出された降水強度情報であることを特徴とする、レーダシステム。
    The radar system according to any one of claims 1 to 4,
    The radar system according to claim 1, wherein the weather information of each point is precipitation intensity information calculated based on the observation data.
  10.  請求項9に記載のレーダシステムにおいて、
     前記観測領域決定部は、前記各地点の降水強度に基づいて、各前記レーダ装置の観測領域を決定することを特徴とする、レーダシステム。
    The radar system according to claim 9, wherein
    The radar system according to claim 1, wherein the observation area determination unit determines an observation area of each radar device based on precipitation intensity at each point.
  11.  請求項10に記載のレーダシステムにおいて、
     前記観測領域決定部は、降水強度が所定値よりも大きい領域である多降水領域がその観測領域に含まれるレーダ装置の観測領域を、前記多降水領域が含まれる前記第2領域に決定することを特徴とする、レーダシステム。
    The radar system according to claim 10, wherein
    The observation area determination unit determines an observation area of a radar device in which a heavy precipitation area, which is an area where the precipitation intensity is larger than a predetermined value, is included in the observation area, as the second area including the heavy precipitation area. A radar system characterized by
  12.  請求項1から請求項11のうちいずれか1項に記載のレーダシステムにおいて、
     前記複数のレーダ装置のうちの少なくとも1つのレーダ装置は、周囲環境に応じて移動される移動式レーダ装置であることを特徴とする、レーダシステム。
    The radar system according to any one of claims 1 to 11,
    The radar system according to claim 1, wherein at least one of the plurality of radar devices is a mobile radar device that is moved in accordance with an ambient environment.
  13.  請求項12に記載のレーダシステムにおいて、
     前記移動式レーダ装置は、前記周囲環境としての卓越風に応じて移動されることを特徴とする、レーダシステム。
    The radar system according to claim 12, wherein
    The radar system according to claim 1, wherein the mobile radar device is moved according to a prevailing wind as the surrounding environment.
  14.  請求項13に記載のレーダシステムにおいて、
     前記移動式レーダ装置は、前記複数のレーダ装置のうちの該移動式レーダ装置以外のレーダ装置である固定式レーダ装置よりも、前記卓越風の風上側に移動されることを特徴とする、レーダシステム。
    The radar system according to claim 13, wherein
    The mobile radar device is moved to a windward side of the prevailing wind rather than a fixed radar device which is a radar device other than the mobile radar device among the plurality of radar devices. system.
  15.  所定範囲を走査するアンテナと、
     前記アンテナによって気象観測が行われた観測領域内の観測データを取得する観測データ取得部と、
     を備え、
     前記アンテナは、前記観測データに基づいて算出された前記観測領域内における各地点の気象情報、及び他のレーダ装置で得られた観測データに基づいて算出された気象情報に基づいて、前記観測領域が、前記アンテナを中心とした周囲の領域である第1領域、及び前記アンテナを基点として設定される角度範囲の領域である第2領域のいずれかであると決定する観測領域決定部、の決定結果に基づいて走査されることを特徴とする、レーダ装置。
    An antenna that scans a predetermined range;
    An observation data acquisition unit for acquiring observation data in an observation area where weather observation was performed by the antenna;
    With
    The antenna is based on meteorological information at each point in the observation area calculated based on the observation data, and on the observation area calculated based on observation data obtained by other radar devices. Is determined to be one of a first region that is a surrounding region centered on the antenna and a second region that is an angle range region set with the antenna as a base point A radar apparatus that is scanned based on a result.
  16.  請求項15に記載のレーダ装置において、
     該レーダ装置とは異なる外部装置が前記観測領域決定部を有していることを特徴とする、レーダ装置。
    The radar apparatus according to claim 15, wherein
    A radar device, wherein an external device different from the radar device has the observation region determination unit.
  17.  請求項15に記載のレーダ装置において、
     前記観測領域決定部を更に備えていることを特徴とする、レーダ装置。
    The radar apparatus according to claim 15, wherein
    A radar apparatus, further comprising the observation region determination unit.
  18.  気象観測を行って観測データを取得する複数のレーダ装置を互いに異なる位置に配置し、前記観測データに基づいて各前記レーダ装置の観測領域内における各地点の気象情報を算出し、前記気象情報に基づいて、複数の前記レーダ装置のそれぞれの観測領域を、各前記レーダ装置が有するアンテナを中心とした周囲の領域である第1領域、及び各前記レーダ装置が有するアンテナを基点とした当該レーダ装置に設定される角度範囲の領域である第2領域のいずれかにそれぞれ決定する、気象観測方法。 A plurality of radar devices that perform meteorological observation and obtain observation data are arranged at different positions, and based on the observation data, calculate weather information at each point in the observation area of each radar device, Based on each of the plurality of radar devices, the first region, which is a surrounding region centered on the antenna of each radar device, and the radar device based on the antenna of each radar device A meteorological observation method for determining each of the second regions, which are regions of an angular range set in (1).
PCT/JP2017/021714 2016-07-29 2017-06-13 Radar system, radar device, and weather observation method WO2018020867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529421A JP6858778B2 (en) 2016-07-29 2017-06-13 Radar system, radar device, and meteorological observation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-149399 2016-07-29
JP2016149399 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018020867A1 true WO2018020867A1 (en) 2018-02-01

Family

ID=61016378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021714 WO2018020867A1 (en) 2016-07-29 2017-06-13 Radar system, radar device, and weather observation method

Country Status (2)

Country Link
JP (1) JP6858778B2 (en)
WO (1) WO2018020867A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535793A (en) * 2018-06-14 2018-09-14 安徽省大气探测技术保障中心 A kind of monitoring of highway communication meteorological condition and warning system
CN110850406A (en) * 2019-11-14 2020-02-28 西安华腾微波有限责任公司 Hail suppression accurate operation guiding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281740A (en) * 1998-03-30 1999-10-15 Mitsubishi Electric Corp Meteorological observation radar system
JP2000075029A (en) * 1998-09-01 2000-03-14 Mitsubishi Electric Corp Weather radar device
JP2004212274A (en) * 2003-01-07 2004-07-29 Mitsubishi Electric Corp Wind speed vector measuring instrument, and wind speed vector measuring method
JP2005061905A (en) * 2003-08-08 2005-03-10 Sumitomo Electric Ind Ltd Wind speed radar
US20060202886A1 (en) * 2005-03-10 2006-09-14 Mahapatra Pravas R Constant altitude plan position indicator display for multiple radars

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297037B2 (en) * 2013-07-11 2018-03-20 古野電気株式会社 Weather information processing apparatus, weather radar system, and weather information processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281740A (en) * 1998-03-30 1999-10-15 Mitsubishi Electric Corp Meteorological observation radar system
JP2000075029A (en) * 1998-09-01 2000-03-14 Mitsubishi Electric Corp Weather radar device
JP2004212274A (en) * 2003-01-07 2004-07-29 Mitsubishi Electric Corp Wind speed vector measuring instrument, and wind speed vector measuring method
JP2005061905A (en) * 2003-08-08 2005-03-10 Sumitomo Electric Ind Ltd Wind speed radar
US20060202886A1 (en) * 2005-03-10 2006-09-14 Mahapatra Pravas R Constant altitude plan position indicator display for multiple radars

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535793A (en) * 2018-06-14 2018-09-14 安徽省大气探测技术保障中心 A kind of monitoring of highway communication meteorological condition and warning system
CN108535793B (en) * 2018-06-14 2023-09-26 安徽省大气探测技术保障中心 Highway traffic meteorological condition monitoring and warning system
CN110850406A (en) * 2019-11-14 2020-02-28 西安华腾微波有限责任公司 Hail suppression accurate operation guiding method

Also Published As

Publication number Publication date
JPWO2018020867A1 (en) 2019-05-09
JP6858778B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP3730486B2 (en) Weather radar
JP3463734B2 (en) Weather observation radar system
WO2015005020A1 (en) Weather information processing device, weather radar system, and weather information processing method
US9329266B2 (en) Weather radar apparatus, observation sequence generation method, and observation sequence generation program
JP5586292B2 (en) Meteorological radar apparatus and meteorological observation method
CN111337928B (en) Radar echo movement information calculation method and device
WO2018020867A1 (en) Radar system, radar device, and weather observation method
JP5693857B2 (en) Meteorological radar apparatus and meteorological observation method
JP3473385B2 (en) Weather radar control method
US20090167596A1 (en) Method of processing a radar image
JP6712313B2 (en) Signal processing device and radar device
CN109581384B (en) Clear sky vertical wind profile detection method and system based on Doppler weather radar
Clarke et al. Sensor modelling for radar-based occupancy mapping
CN108020837B (en) Radar, radar imaging method and device and unmanned automobile
EP4155770A1 (en) Apparatus and method for improving and scheduling of radar systems
JP5443867B2 (en) Weather radar apparatus and radar signal processing method
JP3399827B2 (en) Fog observation method and fog observation radar system
Kashiwayanagi et al. Rapid 3D scanning high resolution X-band weather radar with active phased array antenna
JP5632513B2 (en) Observation equipment
JP3571268B2 (en) Fog observation radar device
JP5545725B2 (en) Observation equipment
JPH11281741A (en) Meteorological radar system
JP2007033432A (en) Weather radar device for airfield, wind observation operation method and wind observation system
JP3508631B2 (en) Doppler observation equipment
JP2010085329A (en) Object detecting system, detecting method used for object detecting system, and control program of object detecting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018529421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833877

Country of ref document: EP

Kind code of ref document: A1