WO2018020657A1 - Power converting device and air conditioner - Google Patents

Power converting device and air conditioner Download PDF

Info

Publication number
WO2018020657A1
WO2018020657A1 PCT/JP2016/072311 JP2016072311W WO2018020657A1 WO 2018020657 A1 WO2018020657 A1 WO 2018020657A1 JP 2016072311 W JP2016072311 W JP 2016072311W WO 2018020657 A1 WO2018020657 A1 WO 2018020657A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
charging
conversion circuit
discharging unit
Prior art date
Application number
PCT/JP2016/072311
Other languages
French (fr)
Japanese (ja)
Inventor
憲嗣 岩崎
成雄 梅原
有澤 浩一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018530298A priority Critical patent/JPWO2018020657A1/en
Priority to PCT/JP2016/072311 priority patent/WO2018020657A1/en
Publication of WO2018020657A1 publication Critical patent/WO2018020657A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a power conversion device including a plurality of power conversion circuits that convert power output to a load such as a motor, and an air conditioner including the power conversion device.
  • Patent Document 1 discloses an apparatus in which a first inverter is electrically connected to a first winding of a double three-phase motor, and a second inverter is electrically connected to a second winding.
  • Patent Document 1 discloses a structure in which a first capacitor is connected to the first inverter as a smoothing capacitor, and a second capacitor is connected to the second inverter as a smoothing capacitor.
  • Patent Document 2 discloses a structure in which the smoothing capacitor connected to the subsequent stage of the diode bridge of the inverter is a film capacitor.
  • the power conversion device can reduce the size and cost of the device in addition to ensuring reliability.
  • the film capacitor has a smaller capacity than the electrolytic capacitor.
  • the input voltage of the power conversion device is abruptly reduced each time an instantaneous voltage drop occurs in the power supply.
  • the driving of the motor is stopped each time an instantaneous voltage drop occurs in the power supply.
  • the operation of the air conditioner stops and causes discomfort to the user whenever an instantaneous voltage drop occurs in the power supply. become.
  • the present invention is an invention for solving the above-described problems, and maintains an input voltage even when an instantaneous voltage drop occurs in a power supply while reducing the size and cost of the apparatus.
  • An object of the present invention is to provide a power conversion device capable of performing the above and an air conditioner including the power conversion device.
  • the power conversion device of the present invention is connected to a power source, converts the power of the power source into power to be output to the load, and is connected to the power source, and converts the power of the power source into power to be output to the load.
  • a capacitance of the second charging / discharging unit is smaller than a capacitance of the first charging / discharging unit.
  • the air conditioner of the present invention includes the above-described power converter, a motor driven by the power output from the power converter, and a compressor operated by the motor.
  • the power conversion device can reduce the size and cost of the device at the second charging / discharging unit, and can reduce the cost at the first charging / discharging unit even when an instantaneous voltage drop occurs at the power source.
  • the input voltage can be maintained.
  • FIG. 1 is a block diagram showing a configuration and an application example of the power conversion apparatus according to Embodiment 1 of the present invention.
  • the power conversion device shown in FIG. 1 converts the power supplied from the power supply 130 to generate driving power for the motor 7.
  • a first power conversion circuit 3 connected to the power source 130, the first winding 5 of the double three-phase motor 7, and a second power conversion circuit 4 connected to the second winding 6 of the double three-phase motor 7.
  • the power conversion device includes a first charging / discharging unit 1 connected to the input side of the first power conversion circuit 3 and a second charging / discharging unit 2 connected to the input side of the second power conversion circuit 4. ing.
  • the first power conversion circuit 3 and the second power conversion circuit 4 are connected to a common power supply 130 in parallel. Note that the first power conversion circuit 3 and the second power conversion circuit 4 may be connected to separate power supplies 130, respectively.
  • the first power conversion circuit 3 and the second power conversion circuit 4 are configured by, for example, inverter circuits, and two upper and lower switching elements (for example, IGBT (insulated gate bipolar) corresponding to each of the U phase, the V phase, and the W phase. Transistor).
  • the first power conversion circuit 3 and the second power conversion circuit 4 are not limited to a three-phase inverter circuit, and may be a two-phase inverter circuit as long as it is connected to a two-phase motor.
  • the 1st charging / discharging part 1 (1st charging / discharging part) and the 2nd charging / discharging part 2 (2nd charging / discharging part) have 1 each of charging / discharging components, and the 2nd charging / discharging part 2 is Compared with the 1st charging / discharging part 1, an electrostatic capacitance is small. That is, for example, a large-capacity electrolytic capacitor is used for the first charging / discharging unit 1, and a small-capacity film capacitor is used for the second charging / discharging unit 2, for example.
  • the electrolytic capacitor and the film capacitor are used for charging / discharging components, other components which can be charged / discharged, for example, an electric double layer capacitor, etc. may be used.
  • the power conversion device further includes a control unit 12 that controls each of the first power conversion circuit 3 and the second power conversion circuit 4.
  • the control unit 12 controls the first power conversion circuit 3 based on the detection results of the first current sensor 8 and the second current sensor 9 that detect the output current of the first power conversion circuit 3.
  • the second power conversion circuit 4 is controlled based on the detection results of the third current sensor 10 and the fourth current sensor 11 that detect the output current.
  • the present invention may be applied to a power conversion device in which the number of electrically independent windings and the number of power conversion circuits are n (where is a natural number of 2 or more). Further, when the number of power conversion circuits is n, the number of charge / discharge units is also n.
  • the respective capacitances from the (m + 1) th charging / discharging unit (m ⁇ n, m are natural numbers) to the nth charging / discharging unit are changed from the first charging / discharging unit to the mth charging / discharging unit. It is smaller than each electrostatic capacity to the discharge part.
  • a first power conversion circuit 3 and a second power conversion circuit 4 are respectively provided in a motor 7 having electrically independent windings (first winding 5 and second winding 6).
  • the first charging / discharging unit 1 is connected to the input unit of the first power conversion circuit 3, and the second charging / discharging unit 2 is connected to the input unit of the second power conversion circuit 4.
  • FIG. 2 is a circuit diagram showing an example of a charge / discharge unit of the power conversion device according to Embodiment 1 of the present invention.
  • the 1st charging / discharging part 1 shown in FIG. 2 has several charging / discharging components connected in series or in parallel.
  • the first charging / discharging unit 1 includes a first electrolytic capacitor 1a and a second electrolytic capacitor 1b connected in series, a third electrolytic capacitor 1c and a fourth electrolytic capacitor 1d connected in series, The electrolytic capacitor 1a and the third electrolytic capacitor 1c are connected in parallel, and the second electrolytic capacitor 1b and the fourth electrolytic capacitor 1d are connected in parallel. Furthermore, in the 1st charging / discharging part 1, the 1st balance resistor 1e and the 2nd balance resistor 1f which are accompanying passive elements are connected in parallel with the 1st electrolytic capacitor 1a and the 2nd electrolytic capacitor 1b.
  • the withstand voltage of the first charging / discharging unit 1 can be increased. That is, by combining a plurality of low breakdown voltage capacitors, it is possible to increase the breakdown voltage of the entire charging / discharging unit, eliminating the need for expensive high breakdown voltage capacitors, and reducing costs. Specifically, when a power converter having a withstand voltage of 200V is changed to a power converter having a withstand voltage of 400V, the charge / discharge part (capacitor) having a withstand voltage of 200V is changed to a charge / discharge part (capacitor) having a withstand voltage of 400V. Instead, as shown in FIG.
  • a plurality of charge / discharge portions (capacitors) having a withstand voltage of 200 V are combined.
  • the number of parts to use increases, cost can be reduced by using parts with a low unit price and sharing parts with a plurality of devices.
  • the 1st charging / discharging part 1 was demonstrated in FIG. 2, you may apply the structure shown in FIG.
  • FIG. 2 demonstrated the structure which combined the some electrolytic capacitor, you may comprise combining other charge / discharge components, such as a film capacitor.
  • FIG. 3 is a timing chart showing an operation when an instantaneous voltage drop occurs in power supply 130 in the power conversion apparatus according to Embodiment 1 of the present invention.
  • the second power conversion circuit 4 has an input voltage due to the instantaneous voltage drop because the capacitance of the second charging / discharging unit 2 is small. The change is stopped without being covered, and the torque generated becomes 0 (zero) as shown in FIG.
  • the first power conversion circuit 3 since the first power conversion circuit 3 has a large capacitance of the first charging / discharging unit 1, the change in the input voltage is covered by the instantaneous voltage drop and the generated torque is maintained. Further, the first power conversion circuit 3 performs control to maintain the rotation speed of the motor 7 even when the second power conversion circuit 4 is stopped, and thus the torque generated temporarily increases.
  • the controller 12 reduces the rotational speed of the motor 7, the torque generated by the first power conversion circuit 3 is returned to the original torque.
  • the rotation speed of the motor 7 starts to decrease from when the instantaneous voltage drop occurs at the power source 130 and decreases to a certain power failure protection rotation speed.
  • the rotation speed of the motor 7 maintains the power failure protection rotation speed, and returns to the normal rotation speed when the instantaneous voltage drop is resolved. That is, the control unit 12 resumes the operation of the second power conversion circuit 4 when the instantaneous voltage drop is resolved.
  • FIG. 4 is a flowchart showing the operation of the power conversion apparatus according to Embodiment 1 of the present invention.
  • step S101 When the output command value is smaller than the output power capacity of the second power conversion circuit 4 (step S101: YES), the control unit 12 activates only the second power conversion circuit 4 with the first power conversion circuit 3 stopped. (Step S101a). The control part 12 returns a process to step S101 after step S101a, and judges whether there is any change in an output command value. When the output command value is greater than or equal to the output power capacity of the second power conversion circuit 4 (step S101: NO), the control unit 12 activates the first power conversion circuit 3 and the second power conversion circuit 4 (step S102).
  • control unit 12 detects whether or not an instantaneous voltage drop has occurred in the power supply 130 (step S103). Specifically, the control unit 12 monitors whether or not an instantaneous voltage drop has occurred in the power supply 130 by monitoring the voltages of the first charging / discharging unit 1 and the second charging / discharging unit 2 as shown in FIG. Detected. The control unit 12 may directly detect the voltage of the power supply 130 instead of monitoring the voltages of the first charging / discharging unit 1 and the second charging / discharging unit 2.
  • step S103: NO When the controller 12 does not detect that an instantaneous voltage drop has occurred in the power supply 130 (step S103: NO), the control unit 12 returns the process to step S103 and monitors the occurrence of the instantaneous voltage drop in the power supply 130.
  • step S103: YES when the controller 12 detects that an instantaneous voltage drop has occurred in the power supply 130 (step S103: YES), the controller 12 stops the operation of the second power conversion circuit 4 (step S103a). And the control part 12 starts the protection driving mode which reduces the rotation speed of the motor 7 to a power failure protection rotation speed, as demonstrated in FIG. 3 (step S103b).
  • control unit 12 detects whether or not the instantaneous voltage drop generated by the power supply 130 has been recovered (step S104). Specifically, as shown in FIG. 1, the control unit 12 monitors the voltages of the first charging / discharging unit 1 and the second charging / discharging unit 2 to determine whether or not the instantaneous voltage drop generated in the power supply 130 has been recovered. Is detected.
  • Control part 12 starts the 2nd power converter circuit 4 (Step S103c), when detecting having returned from a momentary voltage drop which occurred with power supply 130 (Step S104: YES). And the control part 12 complete
  • the control unit 12 determines whether the operation time in the protection operation mode has exceeded the protection operation possible time. (Step S105). Specifically, the control unit 12 activates a timer that measures the protected operation time during the process in step S103b, and determines whether the time measured by the timer has exceeded the protected operation possible time.
  • step S105: NO When the operation time in the protection operation mode does not exceed the protection operation possible time (step S105: NO), the control unit 12 returns the process to step S104 and monitors the operation time in the protection operation mode. On the other hand, when the operation time in the protection operation mode exceeds the protection operation possible time (step S105: YES), the control unit 12 stops the operation of the first power conversion circuit 3 (step S106). And the control part 12 notifies that the power failure abnormality generate
  • the power conversion device includes the first charging / discharging unit 1 connected to the first power conversion circuit 3 and the second charging / discharging unit 2 connected to the second power conversion circuit 4. And.
  • the first power conversion circuit 3 and the second power conversion circuit 4 are connected to the power source 130 and convert the power of the power source 130 into power output to the motor 7 (load).
  • First charging / discharging unit 1 and second charging / discharging unit 2 are connected to each of first power conversion circuit 3 and second power conversion circuit 4 and are charged by power supply 130.
  • the capacitance of the second charging / discharging unit 2 is smaller than the capacitance of the first charging / discharging unit 1.
  • the power conversion device has the first charge / discharge even when an instantaneous voltage drop occurs in the power supply 130 while the second charge / discharge unit 2 reduces the size and cost of the device.
  • the input voltage which can continue rotation of the motor 7 in the part 1 can be maintained.
  • the 1st charging / discharging part 1 the 2nd charging / discharging part 2, and the case where there were two charging / discharging parts were demonstrated
  • the 1st charging / discharging part to nth charging / discharging. You may generalize to n charge / discharge parts up to the part.
  • the power conversion device includes n charging / discharging units, a power conversion circuit is connected to each charging / discharging unit, and thus n power conversion circuits are required.
  • each capacitance from the (m + 1) th charging / discharging unit to the nth charging / discharging unit is smaller than each capacitance from the first charging / discharging unit to the mth charging / discharging unit.
  • the power conversion device further includes a control unit that controls each of the first power conversion circuit 3 and the second power conversion circuit 4. Therefore, the power conversion device can start and stop the necessary power conversion circuit according to the output voltage required for the load.
  • the power converter according to the present embodiment has been described that the load that outputs the power converted by the first power converter circuit 3 and the second power converter circuit 4 is the motor 7, it is not limited thereto. The same effect can be obtained even with a load other than the motor.
  • the control unit 12 stops the first power conversion circuit 3 when the necessary power of the motor 7 is smaller than the output power of the second power conversion circuit 4. Energy consumption can be reduced.
  • the control unit 12 determines that the required power of the motor 7 is from the (m + 1) th power conversion circuit to the nth power conversion circuit. When it is smaller than the total output power up to the power conversion circuit, the first power conversion circuit 3 to the m-th power conversion circuit are stopped.
  • the control unit 12 causes the voltage of the second charging / discharging unit 2 to be a constant value when the voltage of the power supply 130 is reduced to a certain value or less (for example, an instantaneous voltage drop).
  • the second power conversion circuit 4 is stopped while the first power conversion circuit 3 is operated, so that the rotation speed of the motor 7 can be maintained at the power failure protection rotation speed.
  • the control unit 12 reduces the voltage of the power supply 130 to a predetermined value or less, so that (m + 1) th
  • the (m + 1) th power conversion circuit to the nth power conversion circuit are stopped, while the first power conversion circuit 3 to the mth power Operate up to the conversion circuit.
  • the motor 7 has the first winding 5 and the second winding 6 that are electrically independent, and the first power conversion circuit 3 and the second power conversion circuit 4. However, since it is connected to each of the first winding 5 and the second winding 6, the motor 7 can be driven even if one of the power conversion circuits is stopped.
  • FIG. 5 is a block diagram showing a configuration and an application example of the power conversion apparatus according to Embodiment 2 of the present invention.
  • the same components as those described in the power conversion device according to Embodiment 1 of the present invention are denoted by the same reference numerals and detailed description thereof is omitted.
  • the first charging / discharging unit 1 is connected to the single-phase AC power source 13 via the rectifier circuit 14, and the second charging / discharging unit 2 is connected to the AC power source 13 via the rectifier circuit 15. It is connected.
  • the rectifier circuits 14 and 15 are, for example, full-wave rectifier circuits configured by diode bridges for full-wave rectification of the AC input voltage supplied from the AC power supply 13.
  • the inputs of the rectifier circuits 14 and 15 are connected to one AC power source 13, but different AC power sources may be connected to each other.
  • FIG. 6 is a block diagram showing another configuration of the power conversion apparatus according to Embodiment 2 of the present invention.
  • the same components as those described in the power conversion device according to Embodiment 1 of the present invention and the power conversion device shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • an open / close circuit is provided between the second power conversion circuit 4 and the second charging / discharging unit 2.
  • the open / close circuit is a switch circuit 16 provided on the wiring connected to the cathode side of the diode constituting the rectifier circuit 15.
  • the switch circuit 16 causes the regenerative current from the motor 7 that is a load to flow toward the second charge / discharge unit 2. Can be blocked. Therefore, in the power conversion device shown in FIG. 6, when the instantaneous voltage drop occurs in the AC power supply 13 and the second power conversion circuit 4 is stopped, the regenerative current from the motor 7 is cut off by the switch circuit 16. It is possible to prevent the voltage of the second charging / discharging unit 2 from rising and being destroyed beyond the breakdown voltage. That is, the switch circuit 16 prevents the regenerative current from flowing and protects the second charging / discharging unit 2.
  • FIG. 7 is a flowchart showing the operation of the power conversion device of another configuration according to Embodiment 2 of the present invention.
  • the same processes as those in the flowchart showing the operation of the power conversion device according to Embodiment 1 of the present invention shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the control unit 12 determines whether or not the output command value of the input power is smaller than the output power capacity of the second power conversion circuit 4 (step S101).
  • step S101: YES When the output command value is smaller than the output power capacity of the second power conversion circuit 4 (step S101: YES), the control unit 12 activates only the second power conversion circuit 4 with the first power conversion circuit 3 stopped. (Step S101a). When the output command value is greater than or equal to the output power capacity of the second power conversion circuit 4 (step S101: NO), the control unit 12 activates the first power conversion circuit 3 and the second power conversion circuit 4 (step S102).
  • the control unit 12 detects whether or not an instantaneous voltage drop has occurred in the AC power supply 13 (step S103).
  • step S103: NO the control unit 12 returns the process to step S103 and monitors the occurrence of the instantaneous voltage drop in the AC power supply 13.
  • step S103: YES the controller 12 stops the operation of the second power conversion circuit 4 (step S103a).
  • the control unit 12 opens the switch circuit 16 in order to cut off the regenerative current to the second charging / discharging unit 2 (step S103e). And the control part 12 starts the protection driving mode which reduces the rotation speed of the motor 7 to a power failure protection rotation speed (step S103b).
  • control unit 12 detects whether or not the instantaneous voltage drop generated by the AC power supply 13 has been recovered (step S104).
  • the control unit 12 closes (short-circuits) the switch circuit 16 to supply power to the second power conversion circuit 4. (Step S103f).
  • the control part 12 starts the 2nd power converter circuit 4 (step S103c).
  • step S104 NO
  • step S105 it is determined whether or not the operation time in the protection operation mode exceeds the protection operation possible time. Judgment is made (step S105).
  • step S105: NO When the operation time in the protection operation mode does not exceed the protection operation possible time (step S105: NO), the control unit 12 returns the process to step S104 and monitors the operation time in the protection operation mode. On the other hand, when the operation time in the protection operation mode exceeds the protection operation possible time (step S105: YES), the control unit 12 stops the operation of the first power conversion circuit 3 (step S106). And the control part 12 notifies that the power failure abnormality generate
  • the switch circuit 16 is further provided on the output side of the second charge / discharge unit 2.
  • a regenerative current can be interrupted
  • the control part 12 when generalizing into n charging / discharging parts from the 1st charging / discharging part 1 to the nth charging / discharging part, the control part 12 will each charge from the (m + 1) th charging / discharging part to the nth charging / discharging part.
  • An opening / closing circuit is further provided on the output side of the discharge unit.
  • the switch circuit 16 is opened when the second power conversion circuit 4 is stopped, so that an instantaneous voltage drop occurs in the AC power supply 13.
  • the switch circuit 16 stops when the (m + 1) th power conversion circuit to the nth power conversion circuit are stopped. ,Open.
  • the switch circuit 16 is closed when the second power conversion circuit 4 is operated, so that an instantaneous voltage drop occurs in the AC power supply 13.
  • the second power conversion circuit 4 can be operated by the AC power supply 13 except when the second power conversion circuit 4 is stopped. Note that when generalized to n power conversion circuits from the first power conversion circuit 3 to the nth power conversion circuit, the switching circuit is used when operating from the (m + 1) th power conversion circuit to the nth power conversion circuit. ,close.
  • FIG. 8 is a block diagram showing a configuration and an application example of the power conversion apparatus according to Embodiment 3 of the present invention.
  • FIG. 8 about the same structure as the structure demonstrated with the power converter device which concerns on Embodiment 1, 2, the same code
  • the rectifier circuit 14 connected to the input side of the first charging / discharging unit 1 and the second charging / discharging unit 2 is common.
  • the first power conversion circuit 3 and the second power conversion circuit 4 are connected to the first charging / discharging unit 1 and the second charging / discharging unit 2 connected to the common rectifier circuit 14. Then, electric power is supplied to the motor 7.
  • the power conversion device according to Embodiment 3 of the present invention further includes the reactor 17 on the input side of the first charging / discharging unit 1, the first charging / discharging unit 1 absorbs the regenerative current.
  • the second charging / discharging unit 2 can be protected.
  • the first charging / discharging unit 1 can be charged using the regenerative current, and the power can be used effectively.
  • At least one charging / discharging part of the 1st charging / discharging part 1 to the mth charging / discharging part A reactor is further provided on the input side.
  • FIG. 9 is a block diagram showing a configuration and an application example of the power conversion device according to Embodiment 4 of the present invention.
  • the same components as those described in the power conversion devices according to Embodiments 1 to 3 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first power conversion circuit 3 is connected to the motor 18, and the second power conversion circuit 4 is connected to the motor 19 independent of the motor 18.
  • the power converter device shown in FIG. 9 can drive a plurality of independent motors (loads) by one power converter device.
  • an independent motor is connected to each of the n power conversion circuits.
  • the n power conversion circuits may be divided into a plurality of groups, and independent motors may be connected to each group.
  • the motor 18 is connected to the first group from the first power conversion circuit 3 to the mth power conversion circuit
  • the motor 19 is connected to the second group from the (m + 1) th power conversion circuit to the nth power conversion circuit. May be.
  • FIG. 10 is a block diagram showing a configuration and an application example of the power conversion apparatus according to Embodiment 5 of the present invention.
  • the same components as those described in the power converters according to Embodiments 1 to 4 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the power source connected to the rectifier circuit 14 common to the first charging / discharging unit 1 and the second charging / discharging unit 2 is the three-phase AC power source 13a.
  • the power of the three-phase AC power supply 13 a is converted by the first power conversion circuit 3 and the second power conversion circuit 4 and supplied to the motor 7.
  • various types of power supplies can be used in the power conversion device shown in FIG.
  • FIG. 11 is a block diagram which shows the structure and application example of the power converter device which concerns on Embodiment 6 of this invention.
  • the same components as those described in the power converters according to Embodiments 1 to 5 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the load connected to the first power conversion circuit 3 and the second power conversion circuit 4 is the double two-phase motor 7a.
  • the double two-phase motor 7a includes a first winding 5a and a second winding 6a that are electrically independent, and the first winding 5a is connected to the first power conversion circuit 3 and the second winding. 6a is connected to the second power conversion circuit 4, respectively.
  • the power conversion device shown in FIG. 11 can supply power to various types of loads.
  • the single phase alternating current power supply 13 is used, you may use a three phase alternating current power supply.
  • FIG. 12 is a schematic diagram showing an air-conditioning apparatus 100 according to Embodiment 7 of the present invention.
  • the air conditioner 100 includes a compressor 1A, a four-way valve 2A, an outdoor heat exchanger 3A, an expansion valve 4A, and an indoor heat exchanger 5A.
  • the refrigerant circuit 90A is configured by connecting the compressor 1A, the four-way valve 2A, the outdoor heat exchanger 3A, the expansion valve 4A, and the indoor heat exchanger 5A in order by piping. .
  • Compressor 1A is a variable capacity compressor that can discharge high-temperature and high-pressure refrigerant by compressing sucked refrigerant.
  • the compressor 1A is operated by a motor (not shown), and the motor is connected to the power converter according to Embodiments 1 to 6 of the present invention (not shown), and is supplied from the power converter. Driven by electric power.
  • the four-way valve 2A is a switching unit that can switch the flow direction of the refrigerant discharged from the compressor 1A according to the operation.
  • the outdoor heat exchanger 3A is a heat exchanger that functions as a condenser when performing a cooling operation and functions as an evaporator when performing a heating operation.
  • the outdoor fan 31A is a blower that supplies outside air to the outdoor heat exchanger 3A and forms an air flow.
  • the expansion valve 4A decompresses and expands the refrigerant flowing out of the outdoor heat exchanger 3A when performing the cooling operation, and decompresses and expands the refrigerant flowing out of the indoor heat exchanger 5A when performing the heating operation.
  • the indoor heat exchanger 5A is a heat exchanger that functions as an evaporator when performing a cooling operation and functions as a condenser when performing a heating operation.
  • the indoor fan 51A is a blower that supplies outside air to the indoor heat exchanger 5A and forms an air flow.
  • the outdoor refrigerant temperature sensor 32A is a temperature detection unit that detects the temperature of the refrigerant flowing through the outdoor heat exchanger 3A.
  • the indoor side refrigerant temperature sensor 52A is a sensor that detects the temperature of the refrigerant flowing through the indoor heat exchanger 5A.
  • the outdoor temperature sensor 33A is a temperature detection unit that detects the outdoor temperature around the outdoor heat exchanger 3A.
  • the controller 80A controls the four-way valve 2A to switch the direction in which the refrigerant discharged from the compressor 1A flows.
  • the air-conditioning apparatus 100 includes the power converter according to Embodiments 1 to 6 of the present invention, the motor driven by the electric power output from the power converter, And a compressor operated by a motor.
  • the second charging / discharging unit 2 can reduce the size and cost of the power converter, and the power converter can perform the first charging / discharging even when an instantaneous voltage drop occurs in the power source. Since the input voltage which can continue rotation of a motor in the part 1 is maintained, a driving

Abstract

A power converting device includes a first power converting circuit (3), a second power converting circuit (4), a first charge/discharge unit (1), and a second charge/discharge unit (2). The first power converting circuit (3) and the second power converting circuit (4) convert the power of a power supply (130) into power to be output to a load. The first charge/discharge unit (1) and the second charge/discharge unit (2) are connected to the first power converting circuit (3) and the second power converting circuit (4) respectively and charged by the power supply (130). The second charge/discharge unit (2) has capacitance smaller than the capacitance of the first charge/discharge unit (1).

Description

電力変換装置および空気調和装置Power converter and air conditioner
 本発明は、モータなどの負荷に出力する電力を変換する複数の電力変換回路を備えている電力変換装置、および当該電力変換装置を含む空気調和装置に関する。 The present invention relates to a power conversion device including a plurality of power conversion circuits that convert power output to a load such as a motor, and an air conditioner including the power conversion device.
 従来、モータで駆動される装置では、信頼性を確保するため、複数の巻線を用いたモータが使用されることがあった。例えば、巻線を2重にした2重3相モータを使用した装置では、一方の巻線に問題が発生した場合でも、他方の巻線を使用してモータを駆動させることができ運転を継続させることができる。特に、2重3相モータを使用した装置では、電気的に独立したそれぞれの巻線に対して、インバータである電力変換装置をそれぞれ接続することで、信頼性を確保した装置を構成することができる。特許文献1では、2重3相モータの第1巻線に第1インバータを、第2巻線に第2インバータをそれぞれ電気的に接続した装置が開示されている。なお、特許文献1では、第1インバータに平滑コンデンサとして第1コンデンサが、第2インバータに平滑コンデンサとして第2コンデンサがそれぞれ接続される構造が開示されている。 Conventionally, in a device driven by a motor, a motor using a plurality of windings has been used to ensure reliability. For example, in a device using a double three-phase motor with two windings, even if a problem occurs in one winding, the motor can be driven using the other winding and the operation continues. Can be made. In particular, in a device using a double three-phase motor, it is possible to configure a device that ensures reliability by connecting a power conversion device as an inverter to each electrically independent winding. it can. Patent Document 1 discloses an apparatus in which a first inverter is electrically connected to a first winding of a double three-phase motor, and a second inverter is electrically connected to a second winding. Patent Document 1 discloses a structure in which a first capacitor is connected to the first inverter as a smoothing capacitor, and a second capacitor is connected to the second inverter as a smoothing capacitor.
 モータで駆動される装置が信頼性を確保するためには、モータの巻線を複数にする以外に、電力変換装置自体の信頼性を確保する必要がある。例えば、電力変換装置は、インバータの入力部に接続される平滑コンデンサを、フィルムコンデンサにする。なお、フィルムコンデンサは、その構造から電解コンデンサに比べて信頼性が高く、寿命も長い。特許文献2では、インバータのダイオードブリッジ後段に接続された平滑用コンデンサがフィルムコンデンサである構造が開示されている。 In order to ensure the reliability of a device driven by a motor, it is necessary to ensure the reliability of the power conversion device itself in addition to using a plurality of motor windings. For example, the power converter uses a film capacitor as the smoothing capacitor connected to the input unit of the inverter. The film capacitor is more reliable and has a longer life than the electrolytic capacitor because of its structure. Patent Document 2 discloses a structure in which the smoothing capacitor connected to the subsequent stage of the diode bridge of the inverter is a film capacitor.
特開2015-198542号公報JP-A-2015-198542 特開2010-112585号公報JP 2010-112585 A
 2重3相モータに接続される従来の電力変換装置は、平滑コンデンサに大容量な電解コンデンサを使用する場合が多い。従来の電力変換装置は、平滑コンデンサに大容量な電解コンデンサを使用することで、電力変換装置に接続する電源で瞬時電圧低下が発生した場合でも電解コンデンサに蓄えた電荷を使って入力電圧を維持していた。しかし、電解コンデンサは、体積が大きいため、電力変換装置のサイズが大形化する問題があった。また、電解コンデンサは、大容量になるほど価格は高くなるため、電力変換装置のコストが高くなる問題があった。さらに、電解コンデンサは、フィルムコンデンサに比べ熱に弱く、発熱するモータの近くに配置されると寿命が短くなりやすいという問題があった。 ∙ Conventional power converters connected to double three-phase motors often use large-capacity electrolytic capacitors as smoothing capacitors. Conventional power converters use a large-capacitance electrolytic capacitor for the smoothing capacitor, so that the input voltage can be maintained using the charge stored in the electrolytic capacitor even when an instantaneous voltage drop occurs in the power supply connected to the power converter. Was. However, since the electrolytic capacitor has a large volume, there is a problem that the size of the power conversion device is increased. Moreover, since the price of the electrolytic capacitor increases as the capacity increases, there is a problem that the cost of the power conversion device increases. Furthermore, the electrolytic capacitor is weaker than heat as compared with the film capacitor, and there is a problem that the life is likely to be shortened when the electrolytic capacitor is disposed near the heat generating motor.
 平滑コンデンサにフィルムコンデンサを使用した場合、電力変換装置は、信頼性を確保することができる以外に、装置の小型化、低コスト化を図ることが可能になる。しかし、フィルムコンデンサは、電解コンデンサに比べて容量が小さい。そのため、平滑コンデンサにフィルムコンデンサを使用した場合、電源で瞬時電圧低下が発生する度に電力変換装置の入力電圧が急激に低下することになる。従来の電力変換装置をモータに接続した場合、電源で瞬時電圧低下が発生する度に、モータの駆動が停止することになる。特に、空気調和装置の圧縮機に用いるモータに従来の電力変換装置を接続した場合、電源で瞬時電圧低下が発生する度に、空気調和装置の運転が停止して使用者に不快感を与えることになる。特に、電源で瞬時電圧低下の発生頻度が高い地域では、満足に空気調和装置を運転できない問題があった。 When a film capacitor is used as the smoothing capacitor, the power conversion device can reduce the size and cost of the device in addition to ensuring reliability. However, the film capacitor has a smaller capacity than the electrolytic capacitor. For this reason, when a film capacitor is used as the smoothing capacitor, the input voltage of the power conversion device is abruptly reduced each time an instantaneous voltage drop occurs in the power supply. When a conventional power conversion device is connected to a motor, the driving of the motor is stopped each time an instantaneous voltage drop occurs in the power supply. In particular, when a conventional power conversion device is connected to the motor used in the compressor of the air conditioner, the operation of the air conditioner stops and causes discomfort to the user whenever an instantaneous voltage drop occurs in the power supply. become. In particular, there is a problem that the air conditioner cannot be operated satisfactorily in an area where the occurrence frequency of instantaneous voltage drop is high in the power source.
 本発明は、上記のような問題を解決するための発明であって、装置の小型化、低コスト化を図りつつ、電源で瞬時電圧低下が発生した場合であっても入力電圧を維持することが可能な電力変換装置、および当該電力変換装置を含む空気調和装置を提供することを目的とする。 The present invention is an invention for solving the above-described problems, and maintains an input voltage even when an instantaneous voltage drop occurs in a power supply while reducing the size and cost of the apparatus. An object of the present invention is to provide a power conversion device capable of performing the above and an air conditioner including the power conversion device.
 本発明の電力変換装置は、電源に接続され、電源の電力を負荷に出力する電力に変換する第1の電力変換回路と、電源に接続され、電源の電力を負荷に出力する電力に変換する第2の電力変換回路と、第1の電力変換回路に接続され、電源により充電される第1の充放電部と、第2の電力変換回路に接続され、電源により充電される第2の充放電部と、を備え、第2の充放電部の静電容量は、第1の充放電部の静電容量より小さい。 The power conversion device of the present invention is connected to a power source, converts the power of the power source into power to be output to the load, and is connected to the power source, and converts the power of the power source into power to be output to the load. A second power conversion circuit, a first charging / discharging unit connected to the first power conversion circuit and charged by the power source, and a second charging unit connected to the second power conversion circuit and charged by the power source And a capacitance of the second charging / discharging unit is smaller than a capacitance of the first charging / discharging unit.
 本発明の空気調和装置は、前述の電力変換装置と、電力変換装置が出力する電力によって駆動されるモータと、モータによって動作する圧縮機とを備えている。 The air conditioner of the present invention includes the above-described power converter, a motor driven by the power output from the power converter, and a compressor operated by the motor.
 本発明によれば、電力変換装置は、第2の充放電部で装置の小型化、低コスト化を図りつつ、電源で瞬時電圧低下が発生した場合であっても第1の充放電部で入力電圧を維持することができる。 According to the present invention, the power conversion device can reduce the size and cost of the device at the second charging / discharging unit, and can reduce the cost at the first charging / discharging unit even when an instantaneous voltage drop occurs at the power source. The input voltage can be maintained.
本発明の実施の形態1に係る電力変換装置の構成および適用例を示すブロック図である。It is a block diagram which shows the structure and application example of the power converter device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電力変換装置の充放電部の一例を示す回路図である。It is a circuit diagram which shows an example of the charging / discharging part of the power converter device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電力変換装置において電源で瞬時電圧低下が発生した場合の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement when the instantaneous voltage drop generate | occur | produces in the power supply in the power converter device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電力変換装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the power converter device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る電力変換装置の構成および適用例を示すブロック図である。It is a block diagram which shows the structure and application example of the power converter device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る電力変換装置の別構成を示すブロック図である。It is a block diagram which shows another structure of the power converter device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る別構成の電力変換装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the power converter device of another structure which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る電力変換装置の構成および適用例を示すブロック図である。It is a block diagram which shows the structure and application example of the power converter device which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る電力変換装置の構成および適用例を示すブロック図である。It is a block diagram which shows the structure and application example of the power converter device which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る電力変換装置の構成および適用例を示すブロック図である。It is a block diagram which shows the structure and application example of the power converter device which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る電力変換装置の構成および適用例を示すブロック図である。It is a block diagram which shows the structure and application example of the power converter device which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る空気調和装置を示す概略図である。It is the schematic which shows the air conditioning apparatus which concerns on Embodiment 7 of this invention.
 以下、図面に基づいて、本発明の好適な実施の形態について説明する。
 実施の形態1.
 図1は、本発明の実施の形態1に係る電力変換装置の構成および適用例を示すブロック図である。図1に示す電力変換装置は、電源130から供給される電力を変換してモータ7の駆動用電力を生成する。電源130と、2重3相モータ7の第1巻線5に接続された第1電力変換回路3と、2重3相モータ7の第2巻線6に接続された第2電力変換回路4とを備えている。さらに、電力変換装置は、第1電力変換回路3の入力側に接続される第1充放電部1と、第2電力変換回路4の入力側に接続される第2充放電部2とを備えている。第1電力変換回路3および第2電力変換回路4は、共通の電源130に並列に接続されている。なお、第1電力変換回路3および第2電力変換回路4は、それぞれ別々の電源130に接続されてもよい。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration and an application example of the power conversion apparatus according to Embodiment 1 of the present invention. The power conversion device shown in FIG. 1 converts the power supplied from the power supply 130 to generate driving power for the motor 7. A first power conversion circuit 3 connected to the power source 130, the first winding 5 of the double three-phase motor 7, and a second power conversion circuit 4 connected to the second winding 6 of the double three-phase motor 7. And. Furthermore, the power conversion device includes a first charging / discharging unit 1 connected to the input side of the first power conversion circuit 3 and a second charging / discharging unit 2 connected to the input side of the second power conversion circuit 4. ing. The first power conversion circuit 3 and the second power conversion circuit 4 are connected to a common power supply 130 in parallel. Note that the first power conversion circuit 3 and the second power conversion circuit 4 may be connected to separate power supplies 130, respectively.
 第1電力変換回路3および第2電力変換回路4は、例えば、インバータ回路で構成され、U相、V相、W相のそれぞれに対応する上下二つのスイッチング素子(例えば、IGBT(絶縁ゲート型バイポーラトランジスタ)など)を有している。なお、第1電力変換回路3および第2電力変換回路4は、3相インバータ回路に限らず、2相モータに接続するのであれば2相インバータ回路などでもよい。 The first power conversion circuit 3 and the second power conversion circuit 4 are configured by, for example, inverter circuits, and two upper and lower switching elements (for example, IGBT (insulated gate bipolar) corresponding to each of the U phase, the V phase, and the W phase. Transistor). The first power conversion circuit 3 and the second power conversion circuit 4 are not limited to a three-phase inverter circuit, and may be a two-phase inverter circuit as long as it is connected to a two-phase motor.
 第1充放電部1(第1の充放電部)および第2充放電部2(第2の充放電部)は充放電部品を1つずつ有しており、第2充放電部2は、第1充放電部1に比べて静電容量が小さい。つまり、第1充放電部1には、例えば大容量の電解コンデンサが使用され、第2充放電部2には、例えば小容量のフィルムコンデンサが使用される。なお、充放電部品には、電解コンデンサおよびフィルムコンデンサが使用されているが、充放電可能な他の部品、例えば電気二重層キャパシタ等でもよい。 The 1st charging / discharging part 1 (1st charging / discharging part) and the 2nd charging / discharging part 2 (2nd charging / discharging part) have 1 each of charging / discharging components, and the 2nd charging / discharging part 2 is Compared with the 1st charging / discharging part 1, an electrostatic capacitance is small. That is, for example, a large-capacity electrolytic capacitor is used for the first charging / discharging unit 1, and a small-capacity film capacitor is used for the second charging / discharging unit 2, for example. In addition, although the electrolytic capacitor and the film capacitor are used for charging / discharging components, other components which can be charged / discharged, for example, an electric double layer capacitor, etc. may be used.
 電力変換装置は、第1電力変換回路3および第2電力変換回路4のそれぞれを制御する制御部12をさらに備えている。制御部12は、第1電力変換回路3の出力電流を検出する第1電流センサ8および第2電流センサ9の検出結果に基づき第1電力変換回路3を制御し、第2電力変換回路4の出力電流を検出する第3電流センサ10および第4電流センサ11の検出結果に基づき第2電力変換回路4を制御している。 The power conversion device further includes a control unit 12 that controls each of the first power conversion circuit 3 and the second power conversion circuit 4. The control unit 12 controls the first power conversion circuit 3 based on the detection results of the first current sensor 8 and the second current sensor 9 that detect the output current of the first power conversion circuit 3. The second power conversion circuit 4 is controlled based on the detection results of the third current sensor 10 and the fourth current sensor 11 that detect the output current.
 図1に示す電力変換装置では、電気的に独立した巻線の数、および電力変換回路の数が2の場合について本実施の形態の具体例として説明するが、これに限定されない。電気的に独立した巻線の数、および電力変換回路の数がn(は2以上の自然数)の電力変換装置に適用してもよい。また、電力変換回路の数がnとなる場合、充放電部の数もnとなる。このn個の充放電部のうち、第(m+1)充放電部(m<n、mは自然数)から第n充放電部までのそれぞれの静電容量が、第1充放電部から第m充放電部までのそれぞれの静電容量より小さくなっている。 1, the case where the number of electrically independent windings and the number of power conversion circuits is two will be described as a specific example of the present embodiment, but the present invention is not limited to this. The present invention may be applied to a power conversion device in which the number of electrically independent windings and the number of power conversion circuits are n (where is a natural number of 2 or more). Further, when the number of power conversion circuits is n, the number of charge / discharge units is also n. Among the n charging / discharging units, the respective capacitances from the (m + 1) th charging / discharging unit (m <n, m are natural numbers) to the nth charging / discharging unit are changed from the first charging / discharging unit to the mth charging / discharging unit. It is smaller than each electrostatic capacity to the discharge part.
 本実施の形態に係る電力変換装置は、電気的に独立した巻線(第1巻線5および第2巻線6)持つモータ7にそれぞれ第1電力変換回路3、第2電力変換回路4を接続し、第1電力変換回路3の入力部に第1充放電部1、第2電力変換回路4の入力部に第2充放電部2を接続した構成である。 In the power conversion device according to the present embodiment, a first power conversion circuit 3 and a second power conversion circuit 4 are respectively provided in a motor 7 having electrically independent windings (first winding 5 and second winding 6). The first charging / discharging unit 1 is connected to the input unit of the first power conversion circuit 3, and the second charging / discharging unit 2 is connected to the input unit of the second power conversion circuit 4.
 第1充放電部1および第2充放電部2は、図1で示したように単体の充放電部品で構成されている場合について説明したが、これに限定されるものではない。図2は、本発明の実施の形態1に係る電力変換装置の充放電部の一例を示す回路図である。図2に示す第1充放電部1は、複数の充放電部品が直列または並列に接続されている。具体的に、第1充放電部1は、第1電解コンデンサ1aと第2電解コンデンサ1bとが直列に接続され、第3電解コンデンサ1cと第4電解コンデンサ1dとが直列に接続され、第1電解コンデンサ1aと第3電解コンデンサ1cとが並列に接続され、第2電解コンデンサ1bと第4電解コンデンサ1dとが並列に接続されている。さらに、第1充放電部1では、付随する受動素子である第1バランス抵抗1eおよび第2バランス抵抗1fが、第1電解コンデンサ1aおよび第2電解コンデンサ1bと並列に接続されている。 The first charging / discharging unit 1 and the second charging / discharging unit 2 have been described as being configured by a single charging / discharging component as illustrated in FIG. 1, but are not limited thereto. FIG. 2 is a circuit diagram showing an example of a charge / discharge unit of the power conversion device according to Embodiment 1 of the present invention. The 1st charging / discharging part 1 shown in FIG. 2 has several charging / discharging components connected in series or in parallel. Specifically, the first charging / discharging unit 1 includes a first electrolytic capacitor 1a and a second electrolytic capacitor 1b connected in series, a third electrolytic capacitor 1c and a fourth electrolytic capacitor 1d connected in series, The electrolytic capacitor 1a and the third electrolytic capacitor 1c are connected in parallel, and the second electrolytic capacitor 1b and the fourth electrolytic capacitor 1d are connected in parallel. Furthermore, in the 1st charging / discharging part 1, the 1st balance resistor 1e and the 2nd balance resistor 1f which are accompanying passive elements are connected in parallel with the 1st electrolytic capacitor 1a and the 2nd electrolytic capacitor 1b.
 図2に示す第1充放電部1のように構成することで、第1充放電部1の耐圧を高耐圧化させることができる。つまり、低耐圧のコンデンサを複数組み合わせることで、充放電部の全体とし高耐圧化することができ、高価な高耐圧コンデンサを使用せずに済み、コストを低減することができる。具体的に、耐圧が200Vの電力変換装置を、耐圧が400Vの電力変換装置に変更する場合、耐圧が200Vの充放電部(コンデンサ)を耐圧が400Vの充放電部(コンデンサ)に変更するのではなく、図2に示すように耐圧が200Vの充放電部(コンデンサ)を複数組み合わせる。これにより、使用する部品数は増えるが、単価の安い部品を使用し、かつ部品を複数の装置で共通化することでコストを低減することができる。なお、図2では第1充放電部1について説明したが、第2充放電部2に対しても図2に示した構成を適用してもよい。また、図2では複数の電解コンデンサを組み合わせた構成について説明したが、フィルムコンデンサなどの他の充放電部品を組み合わせて構成してもよい。 By configuring like the first charging / discharging unit 1 shown in FIG. 2, the withstand voltage of the first charging / discharging unit 1 can be increased. That is, by combining a plurality of low breakdown voltage capacitors, it is possible to increase the breakdown voltage of the entire charging / discharging unit, eliminating the need for expensive high breakdown voltage capacitors, and reducing costs. Specifically, when a power converter having a withstand voltage of 200V is changed to a power converter having a withstand voltage of 400V, the charge / discharge part (capacitor) having a withstand voltage of 200V is changed to a charge / discharge part (capacitor) having a withstand voltage of 400V. Instead, as shown in FIG. 2, a plurality of charge / discharge portions (capacitors) having a withstand voltage of 200 V are combined. Thereby, although the number of parts to use increases, cost can be reduced by using parts with a low unit price and sharing parts with a plurality of devices. In addition, although the 1st charging / discharging part 1 was demonstrated in FIG. 2, you may apply the structure shown in FIG. Moreover, although FIG. 2 demonstrated the structure which combined the some electrolytic capacitor, you may comprise combining other charge / discharge components, such as a film capacitor.
 次に、電源130で瞬時電圧低下が発生した場合、本実施の形態に係る電力変換装置の動作について説明する。図3は、本発明の実施の形態1に係る電力変換装置において電源130で瞬時電圧低下が発生した場合の動作を示すタイミングチャートである。本実施の形態に係る電力変換装置において、電源130で瞬時電圧低下が発生した場合、第2電力変換回路4は、第2充放電部2の静電容量が小さいため当該瞬時電圧低下による入力電圧の変化をカバーできずに停止し、図3に示すように発生するトルクが0(ゼロ)になる。一方、第1電力変換回路3は、第1充放電部1の静電容量が大きいので当該瞬時電圧低下によっても入力電圧の変化をカバーして、発生するトルクを維持する。また、第1電力変換回路3は、第2電力変換回路4が停止してもモータ7の回転数を維持しようと制御を行うため一時的に発生するトルクが高くなる。 Next, the operation of the power converter according to the present embodiment when an instantaneous voltage drop occurs in the power supply 130 will be described. FIG. 3 is a timing chart showing an operation when an instantaneous voltage drop occurs in power supply 130 in the power conversion apparatus according to Embodiment 1 of the present invention. In the power conversion device according to the present embodiment, when an instantaneous voltage drop occurs in the power supply 130, the second power conversion circuit 4 has an input voltage due to the instantaneous voltage drop because the capacitance of the second charging / discharging unit 2 is small. The change is stopped without being covered, and the torque generated becomes 0 (zero) as shown in FIG. On the other hand, since the first power conversion circuit 3 has a large capacitance of the first charging / discharging unit 1, the change in the input voltage is covered by the instantaneous voltage drop and the generated torque is maintained. Further, the first power conversion circuit 3 performs control to maintain the rotation speed of the motor 7 even when the second power conversion circuit 4 is stopped, and thus the torque generated temporarily increases.
 しかし、制御部12は、モータ7の回転数を低下させるので、第1電力変換回路3の発生するトルクを元のトルクに戻す。モータ7の回転数は、電源130で瞬時電圧低下が発生した時から低下し始め、一定の停電保護回転数まで低下する。当該瞬時電圧低下が発生している期間中、モータ7の回転数は、停電保護回転数を維持し、当該瞬時電圧低下が解消した場合に通常の回転数に戻る。つまり、制御部12は、当該瞬時電圧低下が解消した場合、第2電力変換回路4の動作を再開する。 However, since the controller 12 reduces the rotational speed of the motor 7, the torque generated by the first power conversion circuit 3 is returned to the original torque. The rotation speed of the motor 7 starts to decrease from when the instantaneous voltage drop occurs at the power source 130 and decreases to a certain power failure protection rotation speed. During the period in which the instantaneous voltage drop occurs, the rotation speed of the motor 7 maintains the power failure protection rotation speed, and returns to the normal rotation speed when the instantaneous voltage drop is resolved. That is, the control unit 12 resumes the operation of the second power conversion circuit 4 when the instantaneous voltage drop is resolved.
 さらに、本実施の形態に係る電力変換装置の動作を、フローチャートを用いて説明する。図4は、本発明の実施の形態1に係る電力変換装置の動作を示すフローチャートである。はじめに、制御部12は、第1電力変換回路3および第2電力変換回路4が停止状態の時に、制御部12に入力された電力の出力指令値が第2電力変換回路4の出力電力容量より小さいか否かを判断する(ステップS101)。 Furthermore, the operation of the power conversion device according to the present embodiment will be described using a flowchart. FIG. 4 is a flowchart showing the operation of the power conversion apparatus according to Embodiment 1 of the present invention. First, when the first power conversion circuit 3 and the second power conversion circuit 4 are stopped, the control unit 12 determines that the output command value of the power input to the control unit 12 is greater than the output power capacity of the second power conversion circuit 4. It is determined whether it is small (step S101).
 制御部12は、出力指令値が第2電力変換回路4の出力電力容量より小さい場合(ステップS101:YES)、第1電力変換回路3を停止させたまま第2電力変換回路4のみを起動する(ステップS101a)。制御部12は、ステップS101a後に処理をステップS101に戻し、出力指令値に変化がないかを判断する。制御部12は、出力指令値が第2電力変換回路4の出力電力容量以上の場合(ステップS101:NO)、第1電力変換回路3および第2電力変換回路4を起動する(ステップS102)。 When the output command value is smaller than the output power capacity of the second power conversion circuit 4 (step S101: YES), the control unit 12 activates only the second power conversion circuit 4 with the first power conversion circuit 3 stopped. (Step S101a). The control part 12 returns a process to step S101 after step S101a, and judges whether there is any change in an output command value. When the output command value is greater than or equal to the output power capacity of the second power conversion circuit 4 (step S101: NO), the control unit 12 activates the first power conversion circuit 3 and the second power conversion circuit 4 (step S102).
 次に、制御部12は、電源130で瞬時電圧低下が発生したか否かを検出する(ステップS103)。具体的には、制御部12は、図1に示すように第1充放電部1および第2充放電部2の電圧を監視することで、電源130で瞬時電圧低下が発生したか否かを検出している。なお、制御部12は、第1充放電部1および第2充放電部2の電圧を監視するのではなく、電源130の電圧を直接検出してもよい。 Next, the control unit 12 detects whether or not an instantaneous voltage drop has occurred in the power supply 130 (step S103). Specifically, the control unit 12 monitors whether or not an instantaneous voltage drop has occurred in the power supply 130 by monitoring the voltages of the first charging / discharging unit 1 and the second charging / discharging unit 2 as shown in FIG. Detected. The control unit 12 may directly detect the voltage of the power supply 130 instead of monitoring the voltages of the first charging / discharging unit 1 and the second charging / discharging unit 2.
 制御部12は、電源130で瞬時電圧低下が発生したことを検出しない場合(ステップS103:NO)、処理をステップS103に戻し、電源130での瞬時電圧低下の発生を監視する。一方、制御部12は、電源130で瞬時電圧低下が発生したことを検出した場合(ステップS103:YES)、第2電力変換回路4の運転を停止する(ステップS103a)。そして、制御部12は、図3で説明したようにモータ7の回転数を停電保護回転数まで低下させる保護運転モードを開始する(ステップS103b)。 When the controller 12 does not detect that an instantaneous voltage drop has occurred in the power supply 130 (step S103: NO), the control unit 12 returns the process to step S103 and monitors the occurrence of the instantaneous voltage drop in the power supply 130. On the other hand, when the controller 12 detects that an instantaneous voltage drop has occurred in the power supply 130 (step S103: YES), the controller 12 stops the operation of the second power conversion circuit 4 (step S103a). And the control part 12 starts the protection driving mode which reduces the rotation speed of the motor 7 to a power failure protection rotation speed, as demonstrated in FIG. 3 (step S103b).
 次に、制御部12は、電源130で発生した瞬時電圧低下から復帰したか否かを検出する(ステップS104)。具体的には、制御部12は、図1に示すように第1充放電部1および第2充放電部2の電圧を監視することで、電源130で発生した瞬時電圧低下から復帰したか否かを検出している。 Next, the control unit 12 detects whether or not the instantaneous voltage drop generated by the power supply 130 has been recovered (step S104). Specifically, as shown in FIG. 1, the control unit 12 monitors the voltages of the first charging / discharging unit 1 and the second charging / discharging unit 2 to determine whether or not the instantaneous voltage drop generated in the power supply 130 has been recovered. Is detected.
 制御部12は、電源130で発生した瞬時電圧低下から復帰したことを検出した場合(ステップS104:YES)、第2電力変換回路4を起動する(ステップS103c)。そして、制御部12は、保護運転モードを終了しモータ7の回転数を通常の回転数まで戻す(ステップS103d)。一方、制御部12は、電源130で発生した瞬時電圧低下から復帰したことを検出できない場合(ステップS104:NO)、保護運転モードでの運転時間が保護運転可能時間を超過したか否かを判断する(ステップS105)。具体的には、制御部12は、ステップS103bでの処理時に保護運転時間を計時するタイマを起動し、当該タイマが計時した時間が保護運転可能時間を超過したか否かを判断する。 Control part 12 starts the 2nd power converter circuit 4 (Step S103c), when detecting having returned from a momentary voltage drop which occurred with power supply 130 (Step S104: YES). And the control part 12 complete | finishes protection operation mode, and returns the rotation speed of the motor 7 to a normal rotation speed (step S103d). On the other hand, when it is not possible to detect that the recovery from the instantaneous voltage drop generated by the power supply 130 is detected (step S104: NO), the control unit 12 determines whether the operation time in the protection operation mode has exceeded the protection operation possible time. (Step S105). Specifically, the control unit 12 activates a timer that measures the protected operation time during the process in step S103b, and determines whether the time measured by the timer has exceeded the protected operation possible time.
 制御部12は、保護運転モードでの運転時間が保護運転可能時間を超過していない場合(ステップS105:NO)、処理をステップS104に戻し、保護運転モードでの運転時間を監視する。一方、制御部12は、保護運転モードでの運転時間が保護運転可能時間を超過した場合(ステップS105:YES)、第1電力変換回路3の運転を停止する(ステップS106)。そして、制御部12は、停電異常が発生したことを通知する(ステップS107)。具体的には、制御部12は、接続されたモニタ(図示せず)にエラーコードを表示したり、スピーカ(図示せず)にエラーメッセージを出力したりすることで停電異常が発生したことを通知する。 When the operation time in the protection operation mode does not exceed the protection operation possible time (step S105: NO), the control unit 12 returns the process to step S104 and monitors the operation time in the protection operation mode. On the other hand, when the operation time in the protection operation mode exceeds the protection operation possible time (step S105: YES), the control unit 12 stops the operation of the first power conversion circuit 3 (step S106). And the control part 12 notifies that the power failure abnormality generate | occur | produced (step S107). Specifically, the control unit 12 indicates that a power failure has occurred by displaying an error code on a connected monitor (not shown) or outputting an error message to a speaker (not shown). Notice.
 以上のように、本実施の形態に係る電力変換装置は、第1電力変換回路3に接続された第1充放電部1と、第2電力変換回路4に接続された第2充放電部2とを備えている。第1電力変換回路3および第2電力変換回路4は、電源130に接続され、電源130の電力をモータ7(負荷)に出力する電力に変換する。第1充放電部1および第2充放電部2は、第1電力変換回路3および第2電力変換回路4の各々に接続され、電源130により充電される。第2充放電部2の静電容量は、第1充放電部1の静電容量より小さい。そのため、本実施の形態に係る電力変換装置は、第2充放電部2で装置の小型化、低コスト化を図りつつ、電源130で瞬時電圧低下が発生した場合であっても第1充放電部1でモータ7の回転を継続することができる入力電圧を維持することができる。 As described above, the power conversion device according to the present embodiment includes the first charging / discharging unit 1 connected to the first power conversion circuit 3 and the second charging / discharging unit 2 connected to the second power conversion circuit 4. And. The first power conversion circuit 3 and the second power conversion circuit 4 are connected to the power source 130 and convert the power of the power source 130 into power output to the motor 7 (load). First charging / discharging unit 1 and second charging / discharging unit 2 are connected to each of first power conversion circuit 3 and second power conversion circuit 4 and are charged by power supply 130. The capacitance of the second charging / discharging unit 2 is smaller than the capacitance of the first charging / discharging unit 1. For this reason, the power conversion device according to the present embodiment has the first charge / discharge even when an instantaneous voltage drop occurs in the power supply 130 while the second charge / discharge unit 2 reduces the size and cost of the device. The input voltage which can continue rotation of the motor 7 in the part 1 can be maintained.
 なお、本実施の形態に係る電力変換装置では、第1充放電部1および第2充放電部2と充放電部が2個の場合について説明したが、第1充放電部から第n充放電部までのn個の充放電部に一般化してもよい。電力変換装置は、n個の充放電部にした場合、各々の充放電部に電力変換回路が接続されるため、電力変換回路もn個必要である。また、第(m+1)充放電部から第n充放電部までのそれぞれの静電容量は、第1充放電部から第m充放電部までのそれぞれの静電容量より小さい。 In addition, in the power converter device which concerns on this Embodiment, although the 1st charging / discharging part 1, the 2nd charging / discharging part 2, and the case where there were two charging / discharging parts were demonstrated, the 1st charging / discharging part to nth charging / discharging. You may generalize to n charge / discharge parts up to the part. When the power conversion device includes n charging / discharging units, a power conversion circuit is connected to each charging / discharging unit, and thus n power conversion circuits are required. In addition, each capacitance from the (m + 1) th charging / discharging unit to the nth charging / discharging unit is smaller than each capacitance from the first charging / discharging unit to the mth charging / discharging unit.
 また、本実施の形態に係る電力変換装置は、第1電力変換回路3および第2電力変換回路4のそれぞれを制御する制御部をさらに備えている。そのため、当該電力変換装置は、負荷に必要な出力電圧に応じて必要となる電力変換回路を起動、停止することができる。 The power conversion device according to the present embodiment further includes a control unit that controls each of the first power conversion circuit 3 and the second power conversion circuit 4. Therefore, the power conversion device can start and stop the necessary power conversion circuit according to the output voltage required for the load.
 さらに、本実施の形態に係る電力変換装置は、第1電力変換回路3および第2電力変換回路4が変換した電力を出力する負荷は、モータ7であると説明したが、これに限定されずモータ以外の負荷であっても同様の効果を得ることができる。 Furthermore, although the power converter according to the present embodiment has been described that the load that outputs the power converted by the first power converter circuit 3 and the second power converter circuit 4 is the motor 7, it is not limited thereto. The same effect can be obtained even with a load other than the motor.
 また、本実施の形態に係る電力変換装置は、制御部12は、モータ7の必要な電力が、第2電力変換回路4の出力電力より小さい場合、第1電力変換回路3を停止させるので、消費するエネルギーを低減することができる。なお、第1電力変換回路3から第n電力変換回路までのn個の電力変換回路に一般化すると、制御部12は、モータ7の必要な電力が、第(m+1)電力変換回路から第n電力変換回路までを合計した出力電力より小さい場合、第1電力変換回路3から第m電力変換回路までを停止させる。 Further, in the power conversion device according to the present embodiment, the control unit 12 stops the first power conversion circuit 3 when the necessary power of the motor 7 is smaller than the output power of the second power conversion circuit 4. Energy consumption can be reduced. When generalized to n power conversion circuits from the first power conversion circuit 3 to the nth power conversion circuit, the control unit 12 determines that the required power of the motor 7 is from the (m + 1) th power conversion circuit to the nth power conversion circuit. When it is smaller than the total output power up to the power conversion circuit, the first power conversion circuit 3 to the m-th power conversion circuit are stopped.
 さらに、本実施の形態に係る電力変換装置は、制御部12は、電源130の電圧が一定値以下に低下すること(例えば、瞬時電圧低下)で、第2充放電部2の電圧が一定値以下になった場合、第2電力変換回路4を停止させる一方、第1電力変換回路3を運転させるので、モータ7の回転数を停電保護回転数に維持できる。なお、第1電力変換回路3から第n電力変換回路までのn個の電力変換回路に一般化すると、制御部12は、電源130の電圧が一定値以下に低下することで、第(m+1)充放電部から第n充放電部までの電圧が一定値以下になった場合、第(m+1)電力変換回路から第n電力変換回路までを停止させる一方、第1電力変換回路3から第m電力変換回路までを運転させる。 Furthermore, in the power conversion device according to the present embodiment, the control unit 12 causes the voltage of the second charging / discharging unit 2 to be a constant value when the voltage of the power supply 130 is reduced to a certain value or less (for example, an instantaneous voltage drop). In the case of the following, the second power conversion circuit 4 is stopped while the first power conversion circuit 3 is operated, so that the rotation speed of the motor 7 can be maintained at the power failure protection rotation speed. Note that when generalized to n power conversion circuits from the first power conversion circuit 3 to the nth power conversion circuit, the control unit 12 reduces the voltage of the power supply 130 to a predetermined value or less, so that (m + 1) th When the voltage from the charging / discharging unit to the nth charging / discharging unit becomes a certain value or less, the (m + 1) th power conversion circuit to the nth power conversion circuit are stopped, while the first power conversion circuit 3 to the mth power Operate up to the conversion circuit.
 また、本実施の形態に係る電力変換装置は、モータ7が、電気的に独立した第1巻線5および第2巻線6を有し、第1電力変換回路3および第2電力変換回路4が、第1巻線5および第2巻線6のそれぞれに接続されているので、一方の電力変換回路が停止してもモータ7を駆動することができる。 In the power conversion device according to the present embodiment, the motor 7 has the first winding 5 and the second winding 6 that are electrically independent, and the first power conversion circuit 3 and the second power conversion circuit 4. However, since it is connected to each of the first winding 5 and the second winding 6, the motor 7 can be driven even if one of the power conversion circuits is stopped.
 実施の形態2.
 本発明の実施の形態1に係る電力変換装置では、第1充放電部1および第2充放電部2のそれぞれが電源130に接続する構成であった。本発明の実施の形態2に係る電力変換装置では、充放電部が整流回路を介して交流電源に接続される構成について説明する。図5は、本発明の実施の形態2に係る電力変換装置の構成および適用例を示すブロック図である。なお、図5において、本発明の実施の形態1に係る電力変換装置で説明した構成と同じ構成については、同じ符号を付して詳細な説明を省略する。
Embodiment 2. FIG.
In the power conversion device according to Embodiment 1 of the present invention, each of first charging / discharging unit 1 and second charging / discharging unit 2 is connected to power supply 130. In the power conversion device according to Embodiment 2 of the present invention, a configuration in which the charging / discharging unit is connected to an AC power supply via a rectifier circuit will be described. FIG. 5 is a block diagram showing a configuration and an application example of the power conversion apparatus according to Embodiment 2 of the present invention. In FIG. 5, the same components as those described in the power conversion device according to Embodiment 1 of the present invention are denoted by the same reference numerals and detailed description thereof is omitted.
 図5に示す係る電力変換装置では、第1充放電部1が整流回路14を介して単相の交流電源13に接続され、第2充放電部2が整流回路15を介して交流電源13に接続されている。整流回路14,15は、例えば、交流電源13から供給された交流入力電圧を全波整流するためのダイオードブリッジで構成された全波整流回路である。整流回路14,15の入力は1つの交流電源13に接続されているが、それぞれ別の交流電源が接続されてもよい。 In the power converter shown in FIG. 5, the first charging / discharging unit 1 is connected to the single-phase AC power source 13 via the rectifier circuit 14, and the second charging / discharging unit 2 is connected to the AC power source 13 via the rectifier circuit 15. It is connected. The rectifier circuits 14 and 15 are, for example, full-wave rectifier circuits configured by diode bridges for full-wave rectification of the AC input voltage supplied from the AC power supply 13. The inputs of the rectifier circuits 14 and 15 are connected to one AC power source 13, but different AC power sources may be connected to each other.
 本実施の形態に係る電力変換装置は、第2充放電部2の出力側に開閉回路をさらに設けることができる。図6は、本発明の実施の形態2に係る電力変換装置の別構成を示すブロック図である。なお、図6において、本発明の実施の形態1に係る電力変換装置および図5に示す電力変換装置で説明した構成と同じ構成については、同じ符号を付して詳細な説明を省略する。 The power conversion device according to the present embodiment can further be provided with a switching circuit on the output side of the second charging / discharging unit 2. FIG. 6 is a block diagram showing another configuration of the power conversion apparatus according to Embodiment 2 of the present invention. In FIG. 6, the same components as those described in the power conversion device according to Embodiment 1 of the present invention and the power conversion device shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図6に示す係る電力変換装置では、第2電力変換回路4と第2充放電部2との間に開閉回路が設けられている。開閉回路は、整流回路15を構成するダイオードのカソード側に接続された配線上に設けられたスイッチ回路16である。図6に示す係る電力変換装置では、第2電力変換回路4を停止した際に、負荷であるモータ7からの回生電流が第2充放電部2に向かって流れようとしても、スイッチ回路16により遮断することができる。そのため、図6に示す係る電力変換装置では、交流電源13で瞬時電圧低下が発生して第2電力変換回路4が停止した場合に、モータ7からの回生電流をスイッチ回路16で遮断することによって、第2充放電部2の電圧が上昇して、耐圧を超えて破壊されることを防止することができる。つまり、スイッチ回路16は、回生電流が流れることを阻止して第2充放電部2を保護している。 6, an open / close circuit is provided between the second power conversion circuit 4 and the second charging / discharging unit 2. The open / close circuit is a switch circuit 16 provided on the wiring connected to the cathode side of the diode constituting the rectifier circuit 15. In the power conversion device according to FIG. 6, when the second power conversion circuit 4 is stopped, the switch circuit 16 causes the regenerative current from the motor 7 that is a load to flow toward the second charge / discharge unit 2. Can be blocked. Therefore, in the power conversion device shown in FIG. 6, when the instantaneous voltage drop occurs in the AC power supply 13 and the second power conversion circuit 4 is stopped, the regenerative current from the motor 7 is cut off by the switch circuit 16. It is possible to prevent the voltage of the second charging / discharging unit 2 from rising and being destroyed beyond the breakdown voltage. That is, the switch circuit 16 prevents the regenerative current from flowing and protects the second charging / discharging unit 2.
 次に、図6に示す係る電力変換装置の動作を、フローチャートを用いて説明する。図7は、本発明の実施の形態2に係る別構成の電力変換装置の動作を示すフローチャートである。なお、図7において、図4に示した本発明の実施の形態1に係る電力変換装置の動作を示すフローチャートと同じ処理については、同じ符号を付して詳細な説明を省略する。はじめに、制御部12は、入力された電力の出力指令値が第2電力変換回路4の出力電力容量より小さいか否かを判断する(ステップS101)。 Next, the operation of the power conversion apparatus shown in FIG. 6 will be described using a flowchart. FIG. 7 is a flowchart showing the operation of the power conversion device of another configuration according to Embodiment 2 of the present invention. In FIG. 7, the same processes as those in the flowchart showing the operation of the power conversion device according to Embodiment 1 of the present invention shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted. First, the control unit 12 determines whether or not the output command value of the input power is smaller than the output power capacity of the second power conversion circuit 4 (step S101).
 制御部12は、出力指令値が第2電力変換回路4の出力電力容量より小さい場合(ステップS101:YES)、第1電力変換回路3を停止させたまま第2電力変換回路4のみを起動する(ステップS101a)。制御部12は、出力指令値が第2電力変換回路4の出力電力容量以上の場合(ステップS101:NO)、第1電力変換回路3および第2電力変換回路4を起動する(ステップS102)。 When the output command value is smaller than the output power capacity of the second power conversion circuit 4 (step S101: YES), the control unit 12 activates only the second power conversion circuit 4 with the first power conversion circuit 3 stopped. (Step S101a). When the output command value is greater than or equal to the output power capacity of the second power conversion circuit 4 (step S101: NO), the control unit 12 activates the first power conversion circuit 3 and the second power conversion circuit 4 (step S102).
 次に、制御部12は、交流電源13で瞬時電圧低下が発生したか否かを検出する(ステップS103)。制御部12は、交流電源13で瞬時電圧低下が発生したことを検出しない場合(ステップS103:NO)、処理をステップS103に戻し、交流電源13での瞬時電圧低下の発生を監視する。一方、制御部12は、交流電源13で瞬時電圧低下が発生したことを検出した場合(ステップS103:YES)、第2電力変換回路4の運転を停止する(ステップS103a)。さらに、制御部12は、第2充放電部2への回生電流を遮断するためにスイッチ回路16を開放する(ステップS103e)。そして、制御部12は、モータ7の回転数を停電保護回転数まで低下させる保護運転モードを開始する(ステップS103b)。 Next, the control unit 12 detects whether or not an instantaneous voltage drop has occurred in the AC power supply 13 (step S103). When the controller 12 does not detect that an instantaneous voltage drop has occurred in the AC power supply 13 (step S103: NO), the control unit 12 returns the process to step S103 and monitors the occurrence of the instantaneous voltage drop in the AC power supply 13. On the other hand, when the controller 12 detects that an instantaneous voltage drop has occurred in the AC power supply 13 (step S103: YES), the controller 12 stops the operation of the second power conversion circuit 4 (step S103a). Further, the control unit 12 opens the switch circuit 16 in order to cut off the regenerative current to the second charging / discharging unit 2 (step S103e). And the control part 12 starts the protection driving mode which reduces the rotation speed of the motor 7 to a power failure protection rotation speed (step S103b).
 次に、制御部12は、交流電源13で発生した瞬時電圧低下から復帰したか否かを検出する(ステップS104)。制御部12は、交流電源13で発生した瞬時電圧低下から復帰したことを検出した場合(ステップS104:YES)、第2電力変換回路4に電力を供給するためにスイッチ回路16を閉じる(短絡させる)(ステップS103f)。さらに、制御部12は、第2電力変換回路4を起動する(ステップS103c)。そして、制御部12は、保護運転モードを終了しモータ7の回転数を通常の回転数まで戻す(ステップS103d)。一方、制御部12は、交流電源13で発生した瞬時電圧低下から復帰したことを検出できない場合(ステップS104:NO)、保護運転モードでの運転時間が保護運転可能時間を超過したか否かを判断する(ステップS105)。 Next, the control unit 12 detects whether or not the instantaneous voltage drop generated by the AC power supply 13 has been recovered (step S104). When the control unit 12 detects that the instantaneous voltage drop generated in the AC power supply 13 has recovered (step S104: YES), the control unit 12 closes (short-circuits) the switch circuit 16 to supply power to the second power conversion circuit 4. (Step S103f). Furthermore, the control part 12 starts the 2nd power converter circuit 4 (step S103c). And the control part 12 complete | finishes protection operation mode, and returns the rotation speed of the motor 7 to a normal rotation speed (step S103d). On the other hand, when the control unit 12 cannot detect that the instantaneous voltage drop generated in the AC power supply 13 has recovered (step S104: NO), it is determined whether or not the operation time in the protection operation mode exceeds the protection operation possible time. Judgment is made (step S105).
 制御部12は、保護運転モードでの運転時間が保護運転可能時間を超過していない場合(ステップS105:NO)、処理をステップS104に戻し、保護運転モードでの運転時間を監視する。一方、制御部12は、保護運転モードでの運転時間が保護運転可能時間を超過した場合(ステップS105:YES)、第1電力変換回路3の運転を停止する(ステップS106)。そして、制御部12は、停電異常が発生したことを通知する(ステップS107)。 When the operation time in the protection operation mode does not exceed the protection operation possible time (step S105: NO), the control unit 12 returns the process to step S104 and monitors the operation time in the protection operation mode. On the other hand, when the operation time in the protection operation mode exceeds the protection operation possible time (step S105: YES), the control unit 12 stops the operation of the first power conversion circuit 3 (step S106). And the control part 12 notifies that the power failure abnormality generate | occur | produced (step S107).
 以上のように、本発明の実施の形態2に係る別構成の電力変換装置では、第2充放電部2の出力側にスイッチ回路16をさらに備えているので、第2充放電部2への回生電流を遮断することができ、第2充放電部2を保護することができる。なお、第1充放電部1から第n充放電部までのn個の充放電部に一般化すると、制御部12は、第(m+1)充放電部から第n充放電部までのそれぞれの充放電部の出力側に開閉回路をさらに備えている。 As described above, in the power conversion device with another configuration according to the second embodiment of the present invention, the switch circuit 16 is further provided on the output side of the second charge / discharge unit 2. A regenerative current can be interrupted | blocked and the 2nd charging / discharging part 2 can be protected. In addition, when generalizing into n charging / discharging parts from the 1st charging / discharging part 1 to the nth charging / discharging part, the control part 12 will each charge from the (m + 1) th charging / discharging part to the nth charging / discharging part. An opening / closing circuit is further provided on the output side of the discharge unit.
 また、本発明の実施の形態2に係る別構成の電力変換装置では、スイッチ回路16が、第2電力変換回路4を停止した場合に、開放するので、交流電源13で瞬時電圧低下が発生して第2電力変換回路4が停止した場合に、モータ7からの回生電流をスイッチ回路16で遮断することができ、第2充放電部2が破壊されることを防止することができる。なお、第1電力変換回路3から第n電力変換回路までのn個の電力変換回路に一般化すると、開閉回路は、第(m+1)電力変換回路から第n電力変換回路までを停止した場合に、開放する。 Further, in the power conversion device having another configuration according to the second embodiment of the present invention, the switch circuit 16 is opened when the second power conversion circuit 4 is stopped, so that an instantaneous voltage drop occurs in the AC power supply 13. Thus, when the second power conversion circuit 4 is stopped, the regenerative current from the motor 7 can be cut off by the switch circuit 16, and the second charging / discharging unit 2 can be prevented from being destroyed. In general, when the number of power conversion circuits from the first power conversion circuit 3 to the nth power conversion circuit is generalized, the switching circuit stops when the (m + 1) th power conversion circuit to the nth power conversion circuit are stopped. ,Open.
 さらに、本発明の実施の形態2に係る別構成の電力変換装置では、スイッチ回路16が、第2電力変換回路4を運転する場合に、閉じるので、交流電源13で瞬時電圧低下が発生して第2電力変換回路4が停止した場合以外に、交流電源13で第2電力変換回路4を運転することができる。なお、第1電力変換回路3から第n電力変換回路までのn個の電力変換回路に一般化すると、開閉回路は、第(m+1)電力変換回路から第n電力変換回路までを運転する場合に、閉じる。 Further, in the power conversion device having another configuration according to the second embodiment of the present invention, the switch circuit 16 is closed when the second power conversion circuit 4 is operated, so that an instantaneous voltage drop occurs in the AC power supply 13. The second power conversion circuit 4 can be operated by the AC power supply 13 except when the second power conversion circuit 4 is stopped. Note that when generalized to n power conversion circuits from the first power conversion circuit 3 to the nth power conversion circuit, the switching circuit is used when operating from the (m + 1) th power conversion circuit to the nth power conversion circuit. ,close.
 実施の形態3.
 本発明の実施の形態3に係る電力変換装置では、第1充放電部1および第2充放電部2に接続する整流回路を共通にする構成について説明する。図8は、本発明の実施の形態3に係る電力変換装置の構成および適用例を示すブロック図である。なお、図8において、本発明の実施の形態1,2に係る電力変換装置で説明した構成と同じ構成については、同じ符号を付して詳細な説明を省略する。
Embodiment 3 FIG.
In the power conversion device according to Embodiment 3 of the present invention, a configuration in which a rectifier circuit connected to the first charging / discharging unit 1 and the second charging / discharging unit 2 is shared will be described. FIG. 8 is a block diagram showing a configuration and an application example of the power conversion apparatus according to Embodiment 3 of the present invention. In addition, in FIG. 8, about the same structure as the structure demonstrated with the power converter device which concerns on Embodiment 1, 2, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 図8に示す電力変換装置では、第1充放電部1および第2充放電部2の入力側に接続される整流回路14を共通する。図8に示す電力変換装置は、共通の整流回路14に接続された第1充放電部1および第2充放電部2のそれぞれに、第1電力変換回路3および第2電力変換回路4が接続され、モータ7に電力を供給する。 In the power converter shown in FIG. 8, the rectifier circuit 14 connected to the input side of the first charging / discharging unit 1 and the second charging / discharging unit 2 is common. In the power conversion device shown in FIG. 8, the first power conversion circuit 3 and the second power conversion circuit 4 are connected to the first charging / discharging unit 1 and the second charging / discharging unit 2 connected to the common rectifier circuit 14. Then, electric power is supplied to the motor 7.
 図8に示す電力変換装置においても、交流電源13で瞬時電圧低下が発生して第2電力変換回路4が停止した場合、モータ7からの回生電流が流れるが、第1充放電部1の入力側にリアクタ17を設けてあるので、リアクタ17を通って第1充放電部1で回生電流を吸収する。そのため、モータ7からの回生電流がリアクタ17を通って第1充放電部1に吸収されることによって、第2充放電部2の電圧が上昇して、耐圧を超えて破壊されることを防止することができる。つまり、リアクタ17は、回生電流から第2充放電部2を保護している。 Also in the power conversion device shown in FIG. 8, when an instantaneous voltage drop occurs in the AC power supply 13 and the second power conversion circuit 4 stops, a regenerative current flows from the motor 7, but the input of the first charging / discharging unit 1 Since the reactor 17 is provided on the side, the regenerative current is absorbed by the first charging / discharging unit 1 through the reactor 17. Therefore, the regenerative current from the motor 7 is absorbed by the first charging / discharging unit 1 through the reactor 17 to prevent the voltage of the second charging / discharging unit 2 from rising and being destroyed beyond the breakdown voltage. can do. That is, the reactor 17 protects the second charging / discharging unit 2 from the regenerative current.
 以上のように、本発明の実施の形態3に係る電力変換装置は、第1充放電部1の入力側にリアクタ17をさらに備えているので、回生電流を第1充放電部1で吸収することができ、第2充放電部2を保護することができる。さらに、本発明の実施の形態3に係る電力変換装置では、回生電流を利用して第1充放電部1の充電を行うことができ、電力を有効に利用することができる。なお、第1充放電部1から第n充放電部までのn個の充放電部に一般化すると、第1充放電部1から第m充放電部までのうち、少なくとも1つの充放電部の入力側にリアクタをさらに備えている。 As described above, since the power conversion device according to Embodiment 3 of the present invention further includes the reactor 17 on the input side of the first charging / discharging unit 1, the first charging / discharging unit 1 absorbs the regenerative current. The second charging / discharging unit 2 can be protected. Furthermore, in the power converter device according to Embodiment 3 of the present invention, the first charging / discharging unit 1 can be charged using the regenerative current, and the power can be used effectively. In addition, when generalizing to n charging / discharging parts from the 1st charging / discharging part 1 to the nth charging / discharging part, at least one charging / discharging part of the 1st charging / discharging part 1 to the mth charging / discharging part A reactor is further provided on the input side.
 実施の形態4.
 本発明の実施の形態4に係る電力変換装置では、独立した複数の負荷に電力を供給する構成について説明する。図9は、本発明の実施の形態4に係る電力変換装置の構成および適用例を示すブロック図である。なお、図9において、本発明の実施の形態1~3に係る電力変換装置で説明した構成と同じ構成については、同じ符号を付して詳細な説明を省略する。
Embodiment 4 FIG.
In the power conversion device according to Embodiment 4 of the present invention, a configuration for supplying power to a plurality of independent loads will be described. FIG. 9 is a block diagram showing a configuration and an application example of the power conversion device according to Embodiment 4 of the present invention. In FIG. 9, the same components as those described in the power conversion devices according to Embodiments 1 to 3 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted.
 図9に示す電力変換装置では、第1電力変換回路3がモータ18に接続され、第2電力変換回路4がモータ18と独立したモータ19に接続される。これにより、図9に示す電力変換装置は、1つの電力変換装置により、独立した複数のモータ(負荷)を駆動することができる。 9, the first power conversion circuit 3 is connected to the motor 18, and the second power conversion circuit 4 is connected to the motor 19 independent of the motor 18. Thereby, the power converter device shown in FIG. 9 can drive a plurality of independent motors (loads) by one power converter device.
 なお、第1電力変換回路3から第n電力変換回路までのn個の電力変換回路に一般化すると、n個の電力変換回路の各々に独立したモータを接続する。なお、n個の電力変換回路を複数のグループに分け、各々のグループに独立したモータを接続してもよい。例えば、第1電力変換回路3から第m電力変換回路までの第1グループにモータ18を接続し、第(m+1)電力変換回路から第n電力変換回路までの第2グループにモータ19を接続してもよい。 When generalized to n power conversion circuits from the first power conversion circuit 3 to the nth power conversion circuit, an independent motor is connected to each of the n power conversion circuits. The n power conversion circuits may be divided into a plurality of groups, and independent motors may be connected to each group. For example, the motor 18 is connected to the first group from the first power conversion circuit 3 to the mth power conversion circuit, and the motor 19 is connected to the second group from the (m + 1) th power conversion circuit to the nth power conversion circuit. May be.
 実施の形態5.
 本発明の実施の形態5に係る電力変換装置では、電源に3相交流電源を使用する構成について説明する。図10は、本発明の実施の形態5に係る電力変換装置の構成および適用例を示すブロック図である。なお、図10において、本発明の実施の形態1~4に係る電力変換装置で説明した構成と同じ構成については、同じ符号を付して詳細な説明を省略する。
Embodiment 5 FIG.
In the power conversion device according to Embodiment 5 of the present invention, a configuration in which a three-phase AC power supply is used as a power supply will be described. FIG. 10 is a block diagram showing a configuration and an application example of the power conversion apparatus according to Embodiment 5 of the present invention. In FIG. 10, the same components as those described in the power converters according to Embodiments 1 to 4 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted.
 図10に示す電力変換装置では、第1充放電部1および第2充放電部2に共通の整流回路14に接続される電源が3相交流電源13aである。図10に示す電力変換装置では、3相交流電源13aの電力が第1電力変換回路3および第2電力変換回路4で変換され、モータ7に供給される。このように、図10に示す電力変換装置で、さまざまな種類の電源を使用することができる。 10, the power source connected to the rectifier circuit 14 common to the first charging / discharging unit 1 and the second charging / discharging unit 2 is the three-phase AC power source 13a. In the power conversion device shown in FIG. 10, the power of the three-phase AC power supply 13 a is converted by the first power conversion circuit 3 and the second power conversion circuit 4 and supplied to the motor 7. Thus, various types of power supplies can be used in the power conversion device shown in FIG.
 実施の形態6.
 本発明の実施の形態6に係る電力変換装置では、負荷に2相モータを使用する構成について説明する。図11は、本発明の実施の形態6に係る電力変換装置の構成および適用例を示すブロック図である。なお、図11において、本発明の実施の形態1~5に係る電力変換装置で説明した構成と同じ構成については、同じ符号を付して詳細な説明を省略する。
Embodiment 6 FIG.
In the power conversion device according to Embodiment 6 of the present invention, a configuration in which a two-phase motor is used as a load will be described. FIG. 11: is a block diagram which shows the structure and application example of the power converter device which concerns on Embodiment 6 of this invention. In FIG. 11, the same components as those described in the power converters according to Embodiments 1 to 5 of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted.
 図11に示す電力変換装置では、第1電力変換回路3および第2電力変換回路4に接続される負荷が2重2相モータ7aである。具体的に、2重2相モータ7aは、電気的に独立した第1巻線5aおよび第2巻線6aから構成され、第1巻線5aが第1電力変換回路3に、第2巻線6aが第2電力変換回路4にそれぞれ接続されている。このように、図11に示す電力変換装置では、さまざまな種類の負荷に電力を供給することができる。なお、図11に示す電力変換装置では、単相の交流電源13を使用しているが、3相交流電源を使用してもよい。 11, the load connected to the first power conversion circuit 3 and the second power conversion circuit 4 is the double two-phase motor 7a. Specifically, the double two-phase motor 7a includes a first winding 5a and a second winding 6a that are electrically independent, and the first winding 5a is connected to the first power conversion circuit 3 and the second winding. 6a is connected to the second power conversion circuit 4, respectively. As described above, the power conversion device shown in FIG. 11 can supply power to various types of loads. In addition, in the power converter device shown in FIG. 11, although the single phase alternating current power supply 13 is used, you may use a three phase alternating current power supply.
 実施の形態7.
 次に、空気調和装置の圧縮機に用いされるモータを、本発明の実施の形態1~6に係る電力変換装置が出力する電力によって駆動する場合について説明する。図12は、本発明の実施の形態7に係る空気調和装置100を示す概略図である。空気調和装置100は、圧縮機1Aと、四方弁2Aと、室外熱交換器3Aと、膨張弁4Aと、室内熱交換器5Aとを備えている。空気調和装置100では、圧縮機1Aと、四方弁2Aと、室外熱交換器3Aと、膨張弁4Aと、室内熱交換器5Aとを順に配管で接続することで冷媒回路90Aを構成している。
Embodiment 7 FIG.
Next, the case where the motor used in the compressor of the air conditioner is driven by the electric power output by the power conversion device according to Embodiments 1 to 6 of the present invention will be described. FIG. 12 is a schematic diagram showing an air-conditioning apparatus 100 according to Embodiment 7 of the present invention. The air conditioner 100 includes a compressor 1A, a four-way valve 2A, an outdoor heat exchanger 3A, an expansion valve 4A, and an indoor heat exchanger 5A. In the air conditioner 100, the refrigerant circuit 90A is configured by connecting the compressor 1A, the four-way valve 2A, the outdoor heat exchanger 3A, the expansion valve 4A, and the indoor heat exchanger 5A in order by piping. .
 圧縮機1Aは、吸入された冷媒を圧縮することで高温および高圧の冷媒として吐出することができる可変容量の圧縮機である。圧縮機1Aは、モータ(図示せず)で動作し、当該モータは、図示していないが本発明の実施の形態1~6に係る電力変換装置に接続され、当該電力変換装置から供給される電力によって駆動される。四方弁2Aは、運転に応じて圧縮機1Aから吐出される冷媒の流れる方向を切替可能な切替部である。 Compressor 1A is a variable capacity compressor that can discharge high-temperature and high-pressure refrigerant by compressing sucked refrigerant. The compressor 1A is operated by a motor (not shown), and the motor is connected to the power converter according to Embodiments 1 to 6 of the present invention (not shown), and is supplied from the power converter. Driven by electric power. The four-way valve 2A is a switching unit that can switch the flow direction of the refrigerant discharged from the compressor 1A according to the operation.
 室外熱交換器3Aは、冷房運転を行う場合に凝縮器として機能し、暖房運転を行う場合に蒸発器として機能する熱交換器である。室外側ファン31Aは、室外熱交換器3Aに外気を供給し、空気流を形成する送風部である。 The outdoor heat exchanger 3A is a heat exchanger that functions as a condenser when performing a cooling operation and functions as an evaporator when performing a heating operation. The outdoor fan 31A is a blower that supplies outside air to the outdoor heat exchanger 3A and forms an air flow.
 膨張弁4Aは、冷房運転を行う場合、室外熱交換器3Aから流出した冷媒を減圧膨張し、暖房運転を行う場合、室内熱交換器5Aから流出した冷媒を減圧膨張する。 The expansion valve 4A decompresses and expands the refrigerant flowing out of the outdoor heat exchanger 3A when performing the cooling operation, and decompresses and expands the refrigerant flowing out of the indoor heat exchanger 5A when performing the heating operation.
 室内熱交換器5Aは、冷房運転を行う場合に蒸発器として機能し、暖房運転を行う場合に凝縮器として機能する熱交換器である。室内側ファン51Aは、室内熱交換器5Aに外気を供給し、空気流を形成する送風部である。 The indoor heat exchanger 5A is a heat exchanger that functions as an evaporator when performing a cooling operation and functions as a condenser when performing a heating operation. The indoor fan 51A is a blower that supplies outside air to the indoor heat exchanger 5A and forms an air flow.
 室外側冷媒温度センサ32Aは、室外熱交換器3Aを流れる冷媒の温度を検出する温度検出部である。室内側冷媒温度センサ52Aは、室内熱交換器5Aを流れる冷媒の温度を検出するセンサである。 The outdoor refrigerant temperature sensor 32A is a temperature detection unit that detects the temperature of the refrigerant flowing through the outdoor heat exchanger 3A. The indoor side refrigerant temperature sensor 52A is a sensor that detects the temperature of the refrigerant flowing through the indoor heat exchanger 5A.
 室外温度センサ33Aは、室外熱交換器3Aの周辺の室外温度を検出する温度検出部である。制御部80Aは、四方弁2Aを制御して、圧縮機1Aから吐出される冷媒の流れる方向を切替える。 The outdoor temperature sensor 33A is a temperature detection unit that detects the outdoor temperature around the outdoor heat exchanger 3A. The controller 80A controls the four-way valve 2A to switch the direction in which the refrigerant discharged from the compressor 1A flows.
 以上のように、本発明の実施の形態7に係る空気調和装置100は、本発明の実施の形態1~6に係る電力変換装置と、電力変換装置が出力する電力によって駆動されるモータと、モータによって動作する圧縮機とを備えている。そのため、空気調和装置100では、第2充放電部2で電力変換装置の小型化、低コスト化を図りつつ、電源で瞬時電圧低下が発生した場合であっても電力変換装置が第1充放電部1でモータの回転を継続することができる入力電圧を維持するので、冷房運転や暖房運転を停止させることなく運転を継続することができる。また、空気調和装置100では、電源で瞬時電圧低下が発生する度に運転を停止させることがないので、使用者が快適に利用することができる。 As described above, the air-conditioning apparatus 100 according to Embodiment 7 of the present invention includes the power converter according to Embodiments 1 to 6 of the present invention, the motor driven by the electric power output from the power converter, And a compressor operated by a motor. For this reason, in the air conditioner 100, the second charging / discharging unit 2 can reduce the size and cost of the power converter, and the power converter can perform the first charging / discharging even when an instantaneous voltage drop occurs in the power source. Since the input voltage which can continue rotation of a motor in the part 1 is maintained, a driving | operation can be continued, without stopping a cooling operation and a heating operation. Moreover, in the air conditioning apparatus 100, since a driving | operation is not stopped whenever an instantaneous voltage drop generate | occur | produces with a power supply, a user can utilize comfortably.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 第1充放電部、2 第2充放電部、3 第1電力変換回路、4 第2電力変換回路、5,5a 第1巻線、6,6a 第2巻線、7,7a,18,19 モータ、8 第1電流センサ、9 第2電流センサ、10 第3電流センサ、11 第4電流センサ、12 制御部、13 交流電源、13a 3相交流電源、14,15 整流回路 16 スイッチ回路、17 リアクタ。 1 1st charging / discharging part 2, 2nd charging / discharging part 3, 1st power conversion circuit, 4 2nd power conversion circuit, 5, 5a 1st winding, 6, 6a 2nd winding, 7, 7a, 18, 19 motor, 8 1st current sensor, 9 2nd current sensor, 10 3rd current sensor, 11 4th current sensor, 12 control unit, 13 AC power supply, 13a 3 phase AC power supply, 14, 15 rectifier circuit 16 switch circuit, 17 Reactor.

Claims (13)

  1.  電源に接続され、前記電源の電力を負荷に出力する電力に変換する第1の電力変換回路と、
     前記電源に接続され、前記電源の電力を負荷に出力する電力に変換する第2の電力変換回路と、
     前記第1の電力変換回路に接続され、前記電源により充電される第1の充放電部と、
     前記第2の電力変換回路に接続され、前記電源により充電される第2の充放電部と、
     を備え、
     前記第2の充放電部の静電容量は、前記第1の充放電部の静電容量より小さい、電力変換装置。
    A first power conversion circuit connected to a power source and converting the power of the power source into power output to a load;
    A second power conversion circuit that is connected to the power source and converts the power of the power source into power output to a load;
    A first charging / discharging unit connected to the first power conversion circuit and charged by the power source;
    A second charging / discharging unit connected to the second power conversion circuit and charged by the power source;
    With
    The capacitance of the second charging / discharging unit is a power conversion device that is smaller than the capacitance of the first charging / discharging unit.
  2.  前記第1の電力変換回路および前記第2の電力変換回路が変換した電力を出力する前記負荷は、モータである、請求項1に記載の電力変換装置。 The power converter according to claim 1, wherein the load that outputs the power converted by the first power conversion circuit and the second power conversion circuit is a motor.
  3.  前記第1の充放電部の入力側にリアクタをさらに備えている、請求項1または請求項2に記載の電力変換装置。 The power converter according to claim 1 or 2, further comprising a reactor on an input side of the first charging / discharging unit.
  4.  前記第2の充放電部の出力側に開閉回路をさらに備えている、請求項1または請求項2に記載の電力変換装置。 The power converter according to claim 1 or 2, further comprising a switching circuit on an output side of the second charging / discharging unit.
  5.  前記第1の電力変換回路および前記第2の電力変換回路のそれぞれを制御する制御部をさらに備えている、請求項1~請求項4のいずれか1項に記載の電力変換装置。 5. The power conversion device according to claim 1, further comprising a control unit that controls each of the first power conversion circuit and the second power conversion circuit.
  6.  前記制御部は、前記負荷に必要な電力が、前記第2の充放電部に接続される前記第2の電力変換回路の出力電力より小さい場合、前記第1の充放電部に接続される前記第1の電力変換回路を停止させる、請求項5に記載の電力変換装置。 The control unit is connected to the first charging / discharging unit when power required for the load is smaller than output power of the second power conversion circuit connected to the second charging / discharging unit. The power conversion device according to claim 5, wherein the first power conversion circuit is stopped.
  7.  前記制御部は、前記電源の電圧が一定値以下に低下することで、前記第2の充放電部に接続される前記第2の電力変換回路の電圧が一定値以下になった場合、前記第2の電力変換回路を停止させる一方、前記第1の充放電部に接続される前記第1の電力変換回路を運転させる、請求項5に記載の電力変換装置。 When the voltage of the second power conversion circuit connected to the second charging / discharging unit becomes equal to or lower than a predetermined value due to the voltage of the power supply being reduced to a predetermined value or lower, The power conversion device according to claim 5, wherein the first power conversion circuit connected to the first charging / discharging unit is operated while stopping the two power conversion circuits.
  8.  前記開閉回路は、前記第2の充放電部に接続される前記第2の電力変換回路を停止した場合に、開放する、請求項4に記載の電力変換装置。 The power conversion device according to claim 4, wherein the switching circuit opens when the second power conversion circuit connected to the second charging / discharging unit is stopped.
  9.  前記開閉回路は、前記第2の充放電部に接続される前記第2の電力変換回路を運転する場合に、閉じる、請求項4に記載の電力変換装置。 The power conversion device according to claim 4, wherein the switching circuit is closed when the second power conversion circuit connected to the second charging / discharging unit is operated.
  10.  前記モータは、電気的に独立した第1の巻線および第2の巻線を有し、
     前記第1の巻線は前記第1の電力変換回路に、前記第2の巻線は前記第2の電力変換回路にそれぞれ接続されている、請求項2に記載の電力変換装置。
    The motor has an electrically independent first winding and second winding;
    The power converter according to claim 2, wherein the first winding is connected to the first power conversion circuit, and the second winding is connected to the second power conversion circuit.
  11.  前記モータは、圧縮機を動作させる、請求項10に記載の電力変換装置。 The power converter according to claim 10, wherein the motor operates a compressor.
  12.  前記圧縮機は、空気調和装置に用いられる、請求項11記載の電力変換装置。 The power converter according to claim 11, wherein the compressor is used in an air conditioner.
  13.  請求項1~請求項10のいずれか1項に記載の前記電力変換装置と、
     前記電力変換装置が出力する電力によって駆動されるモータと、
     前記モータによって動作する圧縮機とを備えている、空気調和装置。
    The power conversion device according to any one of claims 1 to 10,
    A motor driven by the power output by the power converter;
    An air conditioner comprising a compressor operated by the motor.
PCT/JP2016/072311 2016-07-29 2016-07-29 Power converting device and air conditioner WO2018020657A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018530298A JPWO2018020657A1 (en) 2016-07-29 2016-07-29 Power converter and air conditioner
PCT/JP2016/072311 WO2018020657A1 (en) 2016-07-29 2016-07-29 Power converting device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072311 WO2018020657A1 (en) 2016-07-29 2016-07-29 Power converting device and air conditioner

Publications (1)

Publication Number Publication Date
WO2018020657A1 true WO2018020657A1 (en) 2018-02-01

Family

ID=61016456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072311 WO2018020657A1 (en) 2016-07-29 2016-07-29 Power converting device and air conditioner

Country Status (2)

Country Link
JP (1) JPWO2018020657A1 (en)
WO (1) WO2018020657A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108185A1 (en) * 2006-03-15 2007-09-27 Mitsubishi Electric Corporation Motor drive and compressor drive
JP2011167035A (en) * 2010-02-15 2011-08-25 Denso Corp Motor control system, and electric power steering system using the same
JP2016131444A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Permanent magnet synchronous motor, winding-switching motor drive unit, and refrigeration air-conditioning apparatus using the same, electric vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252986A (en) * 1998-02-27 1999-09-17 Sanyo Denki Co Ltd Controller for multiplex winding motor
JP2012135157A (en) * 2010-12-22 2012-07-12 Daikin Ind Ltd Motor drive system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108185A1 (en) * 2006-03-15 2007-09-27 Mitsubishi Electric Corporation Motor drive and compressor drive
JP2011167035A (en) * 2010-02-15 2011-08-25 Denso Corp Motor control system, and electric power steering system using the same
JP2016131444A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Permanent magnet synchronous motor, winding-switching motor drive unit, and refrigeration air-conditioning apparatus using the same, electric vehicle

Also Published As

Publication number Publication date
JPWO2018020657A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
EP2072923B1 (en) Motor controller of air conditioner
JP5584357B2 (en) Variable speed drive
JP5454596B2 (en) Power control device
AU2008204184B2 (en) Inverter compressor operation method and compressor drive device
JP2005198377A (en) Inverter controller for motor drive
WO2012150649A1 (en) Power converter circuit, and air conditioner
WO2019138481A1 (en) Air conditioner
US11788752B2 (en) Power source quality management system and air conditioning apparatus
JP2019198152A (en) Motor driving device
JP2013162719A (en) Rush-current prevention device
JP2012135157A (en) Motor drive system
JP4869284B2 (en) AC / DC converter, and compressor drive device, compressor and air conditioner using the AC / DC converter
WO2018020657A1 (en) Power converting device and air conditioner
JPH1172261A (en) Air conditioner
JP2007089308A (en) Converter circuit and freezing/air-conditioning machine
JP6537594B2 (en) Air conditioner
JP3101380B2 (en) Air conditioner power supply
WO2005039037A1 (en) Fan controller, refrigeration cycle system and method for estimating rotation speed of fan
US9209705B2 (en) Power supply circuit and heat pump unit
JPH0819265A (en) Inverter for air-conditioner
JP2007209050A (en) Refrigerating cycle system
WO2022185374A1 (en) Ac-dc conversion device, electric motor drive device, and refrigeration cycle device
KR102178489B1 (en) Power converting apparatus and air conditioner including the same
JP5061578B2 (en) Inverter device, air conditioner, and control method for inverter device
KR101965180B1 (en) Air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530298

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910560

Country of ref document: EP

Kind code of ref document: A1