WO2018014486A1 - 电池充电装置、方法及终端 - Google Patents

电池充电装置、方法及终端 Download PDF

Info

Publication number
WO2018014486A1
WO2018014486A1 PCT/CN2016/108589 CN2016108589W WO2018014486A1 WO 2018014486 A1 WO2018014486 A1 WO 2018014486A1 CN 2016108589 W CN2016108589 W CN 2016108589W WO 2018014486 A1 WO2018014486 A1 WO 2018014486A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
battery
switch
array
charging
Prior art date
Application number
PCT/CN2016/108589
Other languages
English (en)
French (fr)
Inventor
宁金星
周鹏辉
刘世伟
王建成
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018014486A1 publication Critical patent/WO2018014486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • Embodiments of the present invention relate to the field of charging management technologies, and in particular, to a battery charging apparatus, method, and terminal.
  • the battery's charging protection mechanism sets the charging current and charging voltage by detecting the battery temperature.
  • the main purpose is to protect the battery life and user safety.
  • a matching resistance of a set of battery charging temperatures is calculated in advance, and then charging can only be performed by such a fixed strategy when charging, that is, charging is performed according to a pre-calculated peripheral resistance matching, and the resistance matching is determined. Will not be able to change. For example, when the [-10, 60] charging temperature threshold is set for charging, it cannot be achieved if you want to change to the [0, 45] charging temperature threshold for charging.
  • the charging is turned off.
  • the battery temperature can only be recharged; in the case of shutdown, when the initial temperature of the battery is relatively high, the shutdown charging cannot be performed, thereby reducing the battery.
  • the efficiency of charging when it is detected that the temperature of the battery exceeds a certain charging temperature threshold, the charging is turned off.
  • a main object of embodiments of the present invention is to provide a battery charging apparatus, method, and terminal, which are intended to improve the efficiency of battery charging.
  • an embodiment of the present invention provides a battery charging device, which includes a resistor array module, a resistor array control module, a detection module, and a main control module, and the resistor array module and the resistor array are respectively The control module and the detection module are connected, and the main control module is respectively connected to the detection module and the resistance array control module;
  • the resistor array control module When the battery is charged according to the set first charging temperature threshold, after the main control module determines the target resistance array according to the first charging temperature threshold, the resistor array control module is controlled to be turned on in the resistance array module.
  • the target resistor array and receiving the detection module to Comparing the internal voltage dividing value with the partial pressure value of the target resistance array, and determining, according to the comparison result, whether the temperature of the battery reaches an upper limit or a lower limit of the first charging temperature threshold, and if so, Then controlling the resistor array control module to switch to turn on the resistor array corresponding to the second charging temperature threshold preset in the resistor array module.
  • the resistor array module includes a plurality of sets of resistor arrays, each set of resistor arrays comprising two resistors.
  • the resistance array control module comprises a plurality of sets of switch arrays, each set of switch arrays comprising two switches.
  • the resistor array module includes a first resistor array and a second resistor array
  • the first resistor array includes a first resistor and a second resistor
  • the second resistor array includes a third resistor and a fourth resistor resistance
  • the resistance array control module includes a first switch array and a second switch array
  • the first switch array includes a first switch and a second switch
  • the second switch array includes a third switch and a fourth switch
  • One end of the first resistor is sequentially connected in series with the first switch, the second resistor, and the second switch to form a first series circuit; one end of the third resistor is sequentially connected to the third switch.
  • the fourth resistor and the fourth switch are connected in series to form a second series circuit; the first series circuit is connected in parallel with the second series circuit;
  • the other end of the first resistor and the other end of the third resistor are connected to the battery; the first switch and the second resistor are connected to the detecting module, and the third switch is Connecting the fourth resistor to the detecting module;
  • the resistor array module further includes a thermistor, and the second switch and the fourth switch are both grounded through the thermistor.
  • the detection module includes a plurality of comparators.
  • the detecting module when the detecting module includes a first comparator and a second comparator, the detecting module further includes a first single pole double throw switch, a second single pole double throw switch, a fifth resistor, a sixth resistor, and a Seven resistors, an eighth resistor, and a ninth resistor;
  • the non-inverting input of the first comparator is coupled to the inverting input of the second comparator, An inverting input end of the first comparator is connected to a dynamic end of the first single-pole double-throw switch, and a first connection between the first fixed end and the second fixed end of the first single-pole double-throw switch a sixth resistor, the first fixed end of the first single pole double throw switch is connected to the battery through the fifth resistor;
  • the non-inverting input end of the second comparator is connected to the moving end of the second single-pole double-throw switch, and the first fixed end of the second single-pole double-throw switch passes the seventh resistor and the first single-pole a second non-moving end of the double-throw switch is connected, an eighth resistor is connected in series between the first fixed end and the second fixed end of the second single-pole double-throw switch, and the second single-pole double-throw switch is second The fixed end is grounded through the ninth resistor.
  • an embodiment of the present invention further provides a terminal, where the terminal includes the battery charging device of the above structure.
  • an embodiment of the present invention further provides a battery charging method, where the battery charging method includes:
  • the control terminal charges the battery according to the set first charging temperature threshold
  • charging the battery includes:
  • a computer storage medium is further provided, where the computer storage medium may store an execution instruction for executing the battery charging side in the above embodiment. law.
  • the battery charging device of the embodiment of the invention comprises a resistor array module, a resistor array control module, a detection module and a main control module, wherein the resistor array module is respectively connected with the resistor array control module and the detection module, and the main control module and the detection module and the resistor respectively The array control module is connected.
  • the control resistor array control module turns on the target resistance array in the resistance array module, and receives the detection module.
  • the charging temperature threshold is dynamically controlled to effectively perform charging, thereby improving the efficiency of battery charging.
  • FIG. 1 is a schematic diagram of functional modules of a battery charging device of the present invention
  • FIG. 2 is a schematic view showing the circuit structure of a battery charging device of the present invention.
  • FIG. 3 is a schematic flow chart of an embodiment of a battery charging method according to the present invention.
  • first, second and the like in the present invention are for the purpose of description only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. It is also within the scope of protection required by the present invention.
  • the battery charging device of this embodiment includes a resistor array module 30, a resistor array control module 40, a detection module 20, and a main control module 10, and the resistor array module 30 is respectively connected to the resistor array control module 40 and the detection module 20.
  • the main control module 10 is connected to the detection module 20 and the resistance array control module 40, respectively.
  • the battery charging device can be applied to the terminal to charge the battery.
  • the type of the terminal can be set according to actual needs.
  • the terminal can be a mobile phone, a tablet computer or the like.
  • the resistor array module 30 includes a plurality of sets of resistor arrays, and each set of resistor arrays includes two resistors. In the process of charging, only one set of resistor arrays is selected, and the determination of the resistor array is mainly calculated according to formula (1) and formula (2).
  • Rs1 and Rs2 represent the resistance values of the two resistors in the resistor array to be determined
  • Rntc1 represents the battery resistance value corresponding to the lower limit temperature of the charging temperature threshold (ie, the off charging range)
  • Rntc2 represents the upper limit temperature of the charging temperature threshold.
  • the battery resistance ie, the battery NTC resistance value
  • Rntc1 and Rntc2 can be obtained by querying the mapping table between the temperature and resistance of the battery charging.
  • a and b respectively represent the percentage values of the lower limit temperature and the upper limit temperature of the charging temperature threshold, and a and b can be flexibly set according to specific conditions.
  • the battery's charging temperature threshold is [0 ° C, At 45 ° C]
  • the corresponding a% and b% are 70% and 30%, respectively
  • the battery resistance is known to be Rntc1 and Rntc2 at 0 °C and 45 °C, respectively, according to formula (1) and formula (2).
  • the two resistance values Rs1, Rs2 of the resistor array can be calculated.
  • the number of groups of the resistor arrays included in the resistor array module 30 can be set according to the number of charging temperature thresholds (ie, the off charging range). If the number of charging temperature thresholds required is larger, the more resistor arrays need to be set. . For example, when you need to set the four charging temperature thresholds [0, 45], [0, 60], [-10, 45], [-10, 60], you need to set up 4 sets of resistor arrays to achieve battery charging control. Strategy.
  • the resistor array control module 40 includes a plurality of sets of switch arrays, each set of switch arrays including two switches.
  • the resistor array control module 40 is primarily responsible for switching the resistor array. For example, switches to different resistor arrays can be based on different charging temperature thresholds. The corresponding occasion is to set a strict or loose charging temperature threshold according to different usage scenarios of the user and different temperature rise rates.
  • the plurality of sets of switch arrays in the resistor array control module 40 can only have one switch array to close the switch arrays of the other groups.
  • the number of groups of the plurality of switch arrays can be consistent with the number of groups of the resistor arrays, and one-to-one correspondence, that is, when a certain group of resistor arrays is required, the switch array corresponding to the group of resistor arrays is closed.
  • the detection module 20 includes a plurality of comparators.
  • the number of comparators can be determined according to the number of groups of the resistor array and the number of groups of the switch array. For example, when the number of groups of the resistor array and the number of groups of the switch array are two groups, two comparators can be set.
  • the first voltage dividing value may be calculated according to the resistor array, and compared with the second voltage dividing value of the detecting module to determine whether the comparator needs to trigger the interrupt. If the first partial pressure value is equal to the second partial pressure value, an interrupt is triggered; if the first partial pressure value is less than the second partial pressure value, the interruption is released.
  • the resistor array control module 40 includes two sets of switch arrays
  • the detection module 20 includes two comparators
  • sets the battery temperature to -10 ° C, 0 ° C, 45 ° C, 60 ° C corresponds to 80%, 70%, 30%, 20% of the voltage value.
  • the main control module 10 controls the battery according to the set first charging temperature.
  • the threshold is [0 ° C, 45 ° C] for charging, and the target resistance arrays Rs1 and Rs2 are calculated according to the parameters corresponding to [0 ° C, 45 ° C], and the resistance array control module 40 is controlled.
  • the switch arrays K1, K2 are closed, and the target resistance arrays Rs1, Rs2 in the resistance array module 30 are turned on.
  • the detecting module 20 obtains the first partial voltage value of the internal resistor and the second voltage dividing value of the target resistor array for comparison, and determines whether the first partial pressure value is equal to the second partial pressure value.
  • the first partial pressure value is equal to the second partial pressure value, it indicates that the current charging temperature of the battery has reached 45 ° C, or the current charging temperature of the battery has reached 0 ° C, that is, the temperature of the battery reaches the first charging temperature threshold [0 ° C , 45 ° C] upper or lower limit, at this time will trigger 45 ° C or 0 ° C interrupt.
  • the control resistor array control module 40 turns off the switch arrays K1, K2, closes the switch arrays K3, K4, and switches to the second charging temperature threshold [-10 ° C, 60 ° C] corresponding to the resistance array Rs3 in the resistance array module 30. , Rs4, continue to charge the battery.
  • the battery temperature reaches 60 ° C or -10 ° C
  • the battery is turned off, and when the battery temperature is within the range of [-10 ° C, 60 ° C], the charging is continued until the completion. Charge the battery. This allows the battery to be charged in accordance with JEITA charging standards.
  • the control resistor array control module when the battery is charged according to the set first charging temperature threshold, after the main control module determines the target resistance array according to the first charging temperature threshold, the control resistor array control module turns on the target resistance array in the resistance array module. And receiving a comparison result obtained by the detection module comparing the internal partial pressure value with the partial pressure value of the target resistance array, and determining, according to the comparison result, whether the temperature of the battery reaches an upper limit or a lower limit of the first charging temperature threshold, and if so, controlling The resistor array control module switches to an array of resistors corresponding to the second charging temperature threshold preset in the resistor array module. According to the temperature of the battery, the charging temperature threshold is dynamically controlled to effectively perform charging, thereby improving the efficiency of battery charging.
  • the resistor array module 30 when the resistor array module 30 includes a first resistor array and a second resistor array, the first resistor array includes a first resistor R1 and a second resistor R2.
  • the second resistor array includes a third resistor R3 and a fourth resistor R4;
  • the resistance array control module includes a first switch array and a second switch array
  • the first switch array includes a first switch K1 and a second switch K2
  • the second switch array includes a third a switch K3 and a fourth switch K4;
  • first resistor R1 is sequentially connected in series with the first switch K1, the second resistor R2 and the second switch K2 to form a first series circuit; one end of the third resistor R3 is sequentially and The third switch K3, the fourth resistor R4 and the fourth switch are connected in series K4 to form a second series circuit; the first series circuit is connected in parallel with the second series circuit;
  • the other end of the first resistor R1 and the other end of the third resistor R3 are connected to the battery; the first switch K1 and the second resistor R2 are connected to the detecting module 20, The third switch K3 and the fourth resistor R4 are connected to the detecting module 20.
  • the resistor array module 30 further includes a thermistor Rntc, and the second switch K2 and the fourth switch K4 are both grounded through the thermistor Rntc.
  • the first resistor R1 and the second resistor R2 in the first resistor array, and the third resistor R3 and the fourth resistor R4 in the second resistor array are all selected with 1% precision. Resistor to improve the accuracy of the comparator in the detection module 20. Only one switch array can be closed in the first switch array and the second switch array, and the other switch array is disconnected.
  • the control K1/K2 switch is synchronously closed, the K3/K4 switch is synchronously disconnected, or the K1/K2 switch is controlled to be disconnected, K3/K4 The switch is closed synchronously and the battery can be charged in JEITA standard with the corresponding charging current and charging voltage.
  • the detecting module 20 when the detecting module 20 includes the first comparator U1 and the second comparator U2, the detecting module 20 further includes a first single pole double throw switch S1, a second single pole double throw switch S2, and a fifth resistor R5. a sixth resistor R6, a seventh resistor R7, an eighth resistor R8 and a ninth resistor R9;
  • the non-inverting input end of the first comparator U1 is connected to the inverting input end of the second comparator U2, and the inverting input end of the first comparator U1 and the first single-pole double-throw switch S1 are moved.
  • a sixth resistor R6 is connected in series between the first fixed end and the second fixed end of the first single-pole double-throw switch S1, and the first fixed end of the first single-pole double-throw switch S1 passes through
  • the fifth resistor R5 is connected to the battery power;
  • the non-inverting input end of the second comparator U2 is connected to the dynamic end of the second single-pole double-throw switch S2, and the first fixed end of the second single-pole double-throw switch S2 passes through the seventh resistor R7
  • the second fixed end of the first single pole double throw switch S1 is connected, and the eighth fixed resistor R8 is connected in series between the first fixed end and the second fixed end of the second single pole double throw switch S2, the second The second fixed end of the single-pole double-throw switch S2 is grounded through the ninth resistor R9.
  • the detecting module 20 can be configured as a battery management chip, and the inside of the battery management chip includes the first comparator U1, the second comparator U2, the first single-pole double-throw switch S1, and the second single-pole double The throwing switch S2, the fifth resistor R5, the sixth resistor R6, the seventh resistor R7, the eighth resistor R8, the ninth resistor R9, and the like have the same connection relationship as described above.
  • the charging principle of the battery will be exemplified below, and the matched resistance array is pre-calculated to sense the temperature of the battery based on the charging temperature threshold of the comparator and the battery. For example, 70% corresponds to -10 ° C and 30% corresponds to 60 ° C. This can actually be set. According to the above formula (1) and formula (2), the resistance array of the battery temperature matching can be calculated.
  • the charging temperature threshold is set to [0 ° C, 45 ° C] to charge the battery, and the formula (1) and formula (2) corresponding to [0 ° C, 45 ° C]
  • the formula (1) and formula (2) corresponding to [0 ° C, 45 ° C]
  • the battery corresponding to 0°C is Rntc1
  • the battery corresponding to 45°C is Rntc2
  • the resistance values of the resistance array are calculated as R1 and R2.
  • the first comparator U1 outputs a COLD interrupt signal to the main control module 10, or detects that the temperature of the battery reaches a high temperature of 45 ° C, the second comparator U2 The HOT interrupt signal is output to the main control module 10. After receiving the interrupt signal, the main control module 10 turns off the charging. When the temperature of the battery is in the range of [0 ° C, 45 ° C], charging is continued.
  • the charging temperature threshold is initially set to [0 ° C, 45 ° C] to charge the battery, and the [0 ° C, 45 ° C] corresponds to the formula (1) and the a% in the formula (2) 70%, b% is 30%, the battery at 0 °C is Rntc1, and the battery corresponding to 45 °C is Rntc2, then the resistance values of the resistor array are calculated as R1 and R2.
  • the first single-pole double-throw switch S1 is closed to the second fixed end, and the first single-pole double-throw switch S1 is closed to the first fixed end, while the first switch K1 and the second switch K2 are closed.
  • the first single-pole double-throw switch S1 is closed to the first fixed end
  • the first single-pole double-throw switch S1 is closed to the second fixed end
  • the first switch K1 and the second switch K2 are turned off
  • the third is turned off.
  • the HOT interrupt signal is output to the main control module 10 to trigger the off charging; or when the temperature of the battery reaches the low temperature of -10 ° C, the COLD interrupt signal is output.
  • the main control module 10 triggers the off charging.
  • the temperature of the battery is in the range of [-10 ° C, 60 ° C]
  • charging is continued until the charging is completed.
  • the battery charging method of this embodiment includes:
  • Step S10 The control terminal charges the battery according to the set first charging temperature threshold
  • Step S20 determining whether the temperature of the battery reaches an upper limit or a lower limit of the first charging temperature threshold
  • Step S30 If the temperature of the battery reaches the upper limit or the lower limit of the first charging temperature threshold, control the terminal to switch to a preset second charging temperature threshold to charge the battery.
  • the battery charging method can be applied to the terminal to charge the battery.
  • the type of the terminal can be set according to actual needs.
  • the terminal can be a mobile phone, a tablet computer, or the like.
  • the terminal When charging the battery, the terminal first charges the battery according to the set first charging temperature threshold.
  • the first charging temperature threshold can be set to [0 ° C, 45 ° C], and the first charging temperature threshold is set to [ 0 ° C, 45 ° C] to charge the battery, on the one hand from the JEITA charging standard, [0 ° C, 45 ° C] charging temperature threshold through hardware interrupts to judge, more accurate and efficient.
  • the temperature in the [0 ° C, 45 ° C] charging temperature threshold is detected by a hardware interrupt, which does not require software ADC detection and saves current.
  • the first charging temperature threshold can also be flexibly set according to specific conditions.
  • the terminal determines whether the temperature of the battery reaches the upper limit or the lower limit of the first charging temperature threshold, and if so, triggers the interruption of the upper or lower limit of the first charging temperature threshold, according to The JEITA standard reduces the constant voltage charging threshold and charging current while continuing to charge the battery by switching the charging temperature threshold to the second charging temperature threshold.
  • the second charging temperature threshold can be set to [-10 ° C, 60 ° C].
  • the charging temperature threshold is set to [-10 ° C, 60 ° C] wide threshold, in this case, it can be guaranteed that the battery can be preferentially charged when the battery is hot and exhausted.
  • the second charging temperature threshold is also flexibly set by the guest according to the specific situation.
  • the step S30 includes: determining whether the current temperature of the battery reaches an upper limit or a lower limit of the second charging temperature threshold; if yes, ending the charging until the current temperature of the battery is in the second When the charging temperature threshold is within the range, the battery is recharged; if not, the current state of charge is maintained until the battery is fully charged.
  • the charging temperature threshold is set to [0 ° C, 45 ° C] to charge the battery, and the formula (1) and formula (2) corresponding to [0 ° C, 45 ° C]
  • the formula (1) and formula (2) corresponding to [0 ° C, 45 ° C]
  • the battery corresponding to 0°C is Rntc1
  • the battery corresponding to 45°C is Rntc2
  • the resistance values of the resistance array are calculated as R1 and R2.
  • the first comparator U1 outputs a COLD interrupt signal to the main control module 10, or detects that the temperature of the battery reaches a high temperature of 45 ° C, the second comparator U2 The HOT interrupt signal is output to the main control module 10. After receiving the interrupt signal, the main control module 10 turns off the charging. When the temperature of the battery is in the range of [0 ° C, 45 ° C], charging is continued.
  • the charging temperature threshold is initially set to [0 ° C, 45 ° C] to charge the battery, and the [0 ° C, 45 ° C] corresponds to the formula (1) and the a% in the formula (2) 70%, b% is 30%, the battery at 0 °C is Rntc1, and the battery corresponding to 45 °C is Rntc2, then the resistance values of the resistor array are calculated as R1 and R2.
  • the first single-pole double-throw switch S1 is closed to the second fixed end, and the first single-pole double-throw switch S1 is closed to the first fixed end, while the first switch K1 and the second switch K2 are closed.
  • the charging temperature threshold is switched to [-10 ° C, 60 ° C].
  • the charging voltage and current are reduced according to the JEITA standard to charge the battery.
  • the battery temperature is not high and the battery is low, it is necessary to wait until the battery temperature drops and recharge, which improves the charging efficiency.
  • [-10 ° C, 60 ° C] corresponding formula (1) and public
  • a% is 80%
  • b% is 20%
  • the battery at -10 °C is Rntc3
  • the battery corresponding to 60 °C is Rntc4
  • the resistance values of the resistance array are calculated as R3 and R4.
  • the first single-pole double-throw switch S1 is closed to the first fixed end
  • the first single-pole double-throw switch S1 is closed to the second fixed end
  • the first switch K1 and the second switch K2 are turned off
  • the third is turned off.
  • the HOT interrupt signal is output to the main control module 10 to trigger the off charging; or when the temperature of the battery reaches the low temperature of -10 ° C, the COLD interrupt signal is output.
  • the main control module 10 triggers the off charging.
  • the temperature of the battery is in the range of [-10 ° C, 60 ° C]
  • charging is continued until the charging is completed.
  • the terminal surface temperature is required to exceed 45 ° C in a certain scenario, if the corresponding battery temperature is 35 ° C at this time, the 35 ° C cut-off charging can be set for the scene. And control the charging through hardware, so that the terminal is more efficient in charging and more accurate in control.
  • the charging temperature threshold is [0 ° C, 45 ° C], which can well control the charging of the wearable device. Temperature rises to improve the user experience.
  • the wearable device is small in size and fast in temperature rise, the [0°C, 45°C] threshold is very easy to achieve, so in production testing, it is necessary to switch to a wide charging temperature threshold of [-10 ° C, 60 ° C].
  • the wearable device When the wearable device is shipped from the factory, it switches to the charging temperature threshold of [0 ° C, 45 ° C], which is convenient for the user to charge the wearable device using the charging temperature threshold.
  • the default charging temperature threshold of the mobile phone is [0 ° C, 45 ° C], when the user uses the mobile phone to call until the battery is exhausted, and the temperature of the battery exceeds 45 ° C, this
  • the charging temperature threshold can be switched to [-10 ° C, 60 ° C] to charge the battery, to ensure that the battery can be charged at a high temperature, and the charging efficiency of the battery is improved. Improved user experience.
  • the terminal charges the battery according to the set first charging temperature threshold.
  • the control terminal switches to the preset second charging temperature threshold to charge the battery.
  • the charging can be performed when the temperature of the battery needs to wait for the temperature of the battery to return to the specified charging temperature threshold, thereby improving the charging efficiency of the battery.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the control terminal charges the battery according to the set first charging temperature threshold
  • the control terminal switches to the preset second charging temperature threshold to charge the battery.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the battery charging device includes a resistance array module, a resistance array control module, a detection module, and a main control module, wherein the resistance array module is respectively connected with the resistance array control module and the detection module, and the main control module and the detection module respectively And the resistor array control module is connected.
  • the control resistor array control module turns on the target resistance array in the resistance array module, and receives the detection module.
  • the charging temperature threshold is dynamically controlled to effectively perform charging, thereby improving the efficiency of battery charging.

Abstract

一种电池充电装置,包括电阻阵列模块(30)、电阻阵列控制模块(40)、检测模块(20)及主控模块(10),电阻阵列模块(30)分别与电阻阵列控制模块(40)及检测模块(20)连接,主控模块(10)分别与检测模块(20)及电阻阵列控制模块(40)连接。当电池按照设定的第一充电温度门限进行充电时,主控模块(10)根据第一充电温度门限确定目标电阻阵列后,控制电阻阵列控制模块(40)接通电阻阵列模块(30)中的目标电阻阵列,接收检测模块(20)将其内部的分压值与目标电阻阵列的分压值的比较结果,判断电池的温度是否达到第一充电温度门限的上限或下限,若是,则控制电阻阵列控制模块(40)切换为接通电阻阵列模块(30)中预置的第二充电温度门限对应的电阻阵列。该充电装置提高了电池充电的效率。

Description

电池充电装置、方法及终端 技术领域
本发明实施例涉及充电管理技术领域,尤其涉及一种电池充电装置、方法及终端。
背景技术
目前,电池的充电保护机制,通过检测电池温度来设置充电电流和充电电压,主要目的是保护电池寿命以及用户使用安全。现有技术方案中,预先计算好的一组电池充电温度的匹配电阻,然后充电时只能以这种固定的策略进行充电,即根据预先计算好外围的电阻匹配进行充电,该电阻匹配确定后将无法更改。例如,当设定[-10,60]充电温度门限进行充电时,如果想更改为[0,45]充电温度门限进行充电,则无法实现。
因此,在充电的过程中,当检测到电池的温度超出一定的充电温度门限时,截止充电。例如,当电池的温度比较高且电池的电量较低时,只能等到电池的温度降下来再充电;关机情况下,电池的初始温度比较高时,会导致关机充电无法进行,从而降低了电池充电的效率。
发明内容
本发明实施例的主要目的在于提供一种电池充电装置、方法及终端,旨在提高电池充电的效率。
为实现上述目的,本发明实施例提供了一种电池充电装置,所述电池充电装置包括电阻阵列模块、电阻阵列控制模块、检测模块及主控模块,所述电阻阵列模块分别与所述电阻阵列控制模块及所述检测模块连接,所述主控模块分别与所述检测模块及所述电阻阵列控制模块连接;
当电池按照设定的第一充电温度门限进行充电时,所述主控模块根据所述第一充电温度门限确定目标电阻阵列后,控制所述电阻阵列控制模块接通所述电阻阵列模块中的所述目标电阻阵列,并接收所述检测模块将其 内部的分压值与所述目标电阻阵列的分压值进行比较而得到的比较结果,根据所述比较结果判断所述电池的温度是否达到所述第一充电温度门限的上限或下限,若是,则控制所述电阻阵列控制模块切换为接通所述电阻阵列模块中预置的第二充电温度门限对应的电阻阵列。
可选地,所述电阻阵列模块包括多组电阻阵列,每组电阻阵列包括两个电阻。
可选地,所述电阻阵列控制模块包括多组开关阵列,每组开关阵列包括两个开关。
可选地,当所述电阻阵列模块包括第一电阻阵列和第二电阻阵列时,所述第一电阻阵列包括第一电阻和第二电阻,所述第二电阻阵列包括第三电阻和第四电阻;
所述电阻阵列控制模块包括第一开关阵列和第二开关阵列时,所述第一开关阵列包括第一开关和第二开关,所述第二开关阵列包括第三开关和第四开关;
所述第一电阻的一端依次与所述第一开关、所述第二电阻及所述第二开关串联,形成第一串联电路;所述第三电阻的一端依次与所述第三开关、所述第四电阻及所述第四开关串联,形成第二串联电路;所述第一串联电路与所述第二串联电路并联;
所述第一电阻的另一端及所述第三电阻的另一端均与所述电池连接;所述第一开关与所述第二电阻之间连接至所述检测模块,所述第三开关与所述第四电阻之间连接至所述检测模块;
所述电阻阵列模块还包括热敏电阻,所述第二开关和所述第四开关均通过所述热敏电阻接地。
可选地,所述检测模块包括多个比较器。
可选地,当所述检测模块包括第一比较器和第二比较器时,所述检测模块还包括第一单刀双掷开关、第二单刀双掷开关、第五电阻、第六电阻、第七电阻、第八电阻和第九电阻;
所述第一比较器的同相输入端与所述第二比较器的反相输入端连接, 所述第一比较器的反相输入端与所述第一单刀双掷开关的动端连接,所述第一单刀双掷开关的第一不动端与第二不动端之间串联有第六电阻,所述第一单刀双掷开关的第一不动端通过所述第五电阻与所述电池连接;
所述第二比较器的同相输入端与所述第二单刀双掷开关的动端连接,所述第二单刀双掷开关的第一不动端通过所述第七电阻与所述第一单刀双掷开关的第二不动端连接,所述第二单刀双掷开关的第一不动端与第二不动端之间串联有第八电阻,所述第二单刀双掷开关的第二不动端通过所述第九电阻接地。
此外,为实现上述目的,本发明实施例还提供了一种终端,所述终端包括上述结构所述的电池充电装置。
此外,为实现上述目的,本发明实施例还提供了一种电池充电方法,所述电池充电方法包括:
控制终端按照设定的第一充电温度门限对电池进行充电;
判断所述电池的温度是否达到所述第一充电温度门限的上限或下限;
若所述电池的温度达到所述第一充电温度门限的上限或下限,则控制所述终端切换至预置的第二充电温度门限对所述电池进行充电。
可选地,所述控制所述终端切换至预置的第二充电温度门限对所述电池进行充电之后包括:
判断所述电池的当前温度是否达到所述第二充电温度门限的上限或下限;
若是,则截至充电,直至所述电池的当前温度在所述第二充电温度门限的范围内时,重新对所述电池进行充电;
若否,则维持当前的充电状态,直至所述电池完成充电。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的电池充电方 法。
本发明实施例中电池充电装置包括电阻阵列模块、电阻阵列控制模块、检测模块及主控模块,其中,电阻阵列模块分别与电阻阵列控制模块及检测模块连接,主控模块分别与检测模块及电阻阵列控制模块连接。当电池按照设定的第一充电温度门限进行充电时,主控模块根据第一充电温度门限确定目标电阻阵列后,控制电阻阵列控制模块接通电阻阵列模块中的目标电阻阵列,并接收检测模块将其内部的分压值与目标电阻阵列的分压值进行比较而得到的比较结果,根据比较结果判断电池的温度是否达到第一充电温度门限的上限或下限,若是,则控制电阻阵列控制模块切换为接通电阻阵列模块中预置的第二充电温度门限对应的电阻阵列。实现了根据电池的温度,动态控制充电温度门限有效地进行充电,提高了电池充电的效率。
附图说明
图1为本发明电池充电装置的功能模块示意图;
图2为本发明电池充电装置的电路结构示意图;
图3为本发明电池充电方法一实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有作出 创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
需要说明,本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。因此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
如图1所示,示出了本发明一种电池充电方法第一实施例。该实施例的电池充电装置包括电阻阵列模块30、电阻阵列控制模块40、检测模块20及主控模块10,所述电阻阵列模块30分别与所述电阻阵列控制模块40及所述检测模块20连接,所述主控模块10分别与所述检测模块20及所述电阻阵列控制模块40连接。该电池充电装置可应用于终端对电池进行充电,该终端的类型可根据实际需要进行设置,例如,该终端可为手机、平板电脑等。
其中,所述电阻阵列模块30包括多组电阻阵列,每组电阻阵列包括两个电阻。在充电的过程中,只需选择其中的一组电阻阵列,电阻阵列的确定主要是根据公式(1)和公式(2)计算得到。
Figure PCTCN2016108589-appb-000001
Figure PCTCN2016108589-appb-000002
Rs1、Rs2表示所要确定的电阻阵列中的两个电阻的阻值,Rntc1表示充电温度门限(即截止充电范围)的下限温度所对应的电池阻值,Rntc2表示充电温度门限的上限温度所对应的电池阻值(即电池NTC电阻值),Rntc1和Rntc2可通过查询电池充电的温度与阻值之间的映射表得到。a、b分别表示充电温度门限的下限温度和上限温度所对应电压的百分数值,a、b可根据具体情况而灵活设置。例如,当设置电池的充电温度门限为[0℃, 45℃]时,对应的a%、b%分别为70%、30%,且已知电池在0℃、45℃时电池阻值分别为Rntc1和Rntc2,则根据公式(1)和公式(2)可计算出电阻阵列的两个电阻值Rs1、Rs2。
电阻阵列模块30包括的电阻阵列的组数可根据充电温度门限(即截止充电范围)的个数进行设置,若需要用到的充电温度门限的个数越多,则需要设置越多的电阻阵列。例如,当需要设置[0,45]、[0,60]、[-10,45]、[-10,60]这四个充电温度门限时,需要设置4组电阻阵列来实现电池的充电控制策略。
所述电阻阵列控制模块40包括多组开关阵列,每组开关阵列包括两个开关。该电阻阵列控制模块40主要是负责对电阻阵列进行切换。例如,可根据不同的充电温度门限,切换到不同的电阻阵列。对应的场合就是根据用户的不同的使用场景,不同的温升速率,对应设置严格或者宽松的充电温度门限。
在电池充电的过程中,电阻阵列控制模块40中的多组开关阵列,只能有一组开关阵列闭合其他组的开关阵列关断。多组开关阵列的组数可与电阻阵列的组数一致,并且一一对应,即当需要某组电阻阵列时,该组电阻阵列对应的开关阵列闭合。
所述检测模块20包括多个比较器。比较器的个数可根据电阻阵列的组数及开关阵列的组数来确定,例如,当电阻阵列的组数及开关阵列的组数均为两组时,可设置两个比较器。
在电阻阵列确定后,可根据电阻阵列计算出第一分压值,与检测模块的内部的第二分压值进行比较,判断比较器是否需要触发中断。若第一分压值与第二分压值相等,则触发中断;若第一分压值小于第二分压值,则释放中断。
以下进行举例说明,当电阻阵列模块30包括两组电阻阵列,电阻阵列控制模块40包括两组开关阵列,检测模块20包括两个比较器,并且,设定电池的温度-10℃、0℃、45℃、60℃分别对应80%、70%、30%、20%的电压值。在充电开始时,主控模块10控制电池按照设定的第一充电温 度门限[0℃,45℃]进行充电,根据[0℃,45℃]对应的参数带入公式(1)和公式(2)计算得到目标电阻阵列Rs1、Rs2,并控制电阻阵列控制模块40闭合开关阵列K1、K2,接通电阻阵列模块30中的该目标电阻阵列Rs1、Rs2。在充电的过程中,检测模块20获取其内部的第一分压值及目标电阻阵列的第二分压值进行比较,判断第一分压值是否等于第二分压值。当第一分压值等于第二分压值时,说明电池当前的充电温度已经达到45℃,或是电池当前的充电温度已经达到0℃,即电池的温度达到第一充电温度门限[0℃,45℃]的上限或下限,此时将会触发45℃或0℃的中断。同时控制电阻阵列控制模块40断开开关阵列K1、K2,闭合开关阵列K3、K4,切换为接通电阻阵列模块30中的第二充电温度门限[-10℃,60℃]对应的电阻阵列Rs3、Rs4,继续对电池进行充电。在按照[-10℃,60℃]进行充电的过程中,当电池温度达到60℃或-10℃时截至充电,并当电池温度在[-10℃,60℃]范围内时继续充电直至完成对电池的充电。从而使得电池可以按照JEITA充电标准进行充电。
本发明实施例当电池按照设定的第一充电温度门限进行充电时,主控模块根据第一充电温度门限确定目标电阻阵列后,控制电阻阵列控制模块接通电阻阵列模块中的目标电阻阵列,并接收检测模块将其内部的分压值与目标电阻阵列的分压值进行比较而得到的比较结果,根据比较结果判断电池的温度是否达到第一充电温度门限的上限或下限,若是,则控制电阻阵列控制模块切换为接通电阻阵列模块中预置的第二充电温度门限对应的电阻阵列。实现了根据电池的温度,动态控制充电温度门限有效地进行充电,提高了电池充电的效率。
进一步地,如图2所示,本实施例中,当所述电阻阵列模块30包括第一电阻阵列和第二电阻阵列时,所述第一电阻阵列包括第一电阻R1和第二电阻R2,所述第二电阻阵列包括第三电阻R3和第四电阻R4;
所述电阻阵列控制模块包括第一开关阵列和第二开关阵列时,所述第一开关阵列包括第一开关K1和第二开关K2,所述第二开关阵列包括第三 开关K3和第四开关K4;
所述第一电阻R1的一端依次与所述第一开关K1、所述第二电阻R2及所述第二开关K2串联,形成第一串联电路;所述第三电阻R3的一端依次与所述第三开关K3、所述第四电阻R4及所述第四开关串联K4,形成第二串联电路;所述第一串联电路与所述第二串联电路并联;
所述第一电阻R1的另一端及所述第三电阻R3的另一端均与所述电池连接;所述第一开关K1与所述第二电阻R2之间连接至所述检测模块20,所述第三开关K3与所述第四电阻R4之间连接至所述检测模块20。
所述电阻阵列模块30还包括热敏电阻Rntc,所述第二开关K2和所述第四开关K4均通过所述热敏电阻Rntc接地。
本实施例中,以设置两组电阻阵列为例,第一电阻阵列中第一电阻R1、第二电阻R2,及第二电阻阵列中第三电阻R3、第四电阻R4均选用1%精度的电阻,以提高检测模块20中比较器的精度。第一开关阵列和第二开关阵列中只能有一组开关阵列闭合,另一组开关阵列断开。
在电池进行充电的过程中,在确定电阻阵列的两个电阻的阻值后,控制K1/K2开关同步闭合,K3/K4开关同步断开,或者控制K1/K2开关同断开,K3/K4开关同步闭合,可以采用相应的充电电流和充电电压以JEITA标准对电池进行充电。
进一步地,当所述检测模块20包括第一比较器U1和第二比较器U2时,所述检测模块20还包括第一单刀双掷开关S1、第二单刀双掷开关S2、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8和第九电阻R9;
所述第一比较器U1的同相输入端与所述第二比较器U2的反相输入端连接,所述第一比较器U1的反相输入端与所述第一单刀双掷开关S1的动端连接,所述第一单刀双掷开关S1的第一不动端与第二不动端之间串联有第六电阻R6,所述第一单刀双掷开关S1的第一不动端通过所述第五电阻R5与所述电池power连接;
所述第二比较器U2的同相输入端与所述第二单刀双掷开关S2的动端连接,所述第二单刀双掷开关S2的第一不动端通过所述第七电阻R7与所 述第一单刀双掷开关S1的第二不动端连接,所述第二单刀双掷开关S2的第一不动端与第二不动端之间串联有第八电阻R8,所述第二单刀双掷开关S2的第二不动端通过所述第九电阻R9接地。
需要说明的是,该检测模块20可设置为电池管理芯片,该电池管理芯片的内部包括上述结构的第一比较器U1、第二比较器U2、第一单刀双掷开关S1、第二单刀双掷开关S2、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8和第九电阻R9等,其连接关系与前述一致。
以下将对电池的充电原理进行举例说明,在根据比较器和电池的充电温度门限,预先计算好匹配的电阻阵列来感知电池的温度。例如,70%对应-10℃,30%对应60℃,这个可以实际需要进行设置。根据上述公式(1)和公式(2),就可以计算出电池温度匹配的电阻阵列。
具体地,如图2中,在一实施例中,设定充电温度门限为[0℃,45℃]对电池进行充电,该[0℃,45℃]对应的公式(1)和公式(2)中的a%为70%,b%为30%,0℃对应的电池为Rntc1,45℃对应的电池为Rntc2,则计算得到电阻阵列的阻值为R1和R2。此时,第一单刀双掷开关S1向第二不动端闭合,第一单刀双掷开关S1向第一不动端闭合,同时第一开关K1和第二开关K2闭合。在充电的过程中,当检测到电池的温度达到低温0℃时,第一比较器U1输出COLD中断信号给主控模块10,或检测到电池的温度达到高温45℃时,第二比较器U2输出HOT中断信号给主控模块10,主控模块10接收到中断信号后,截止充电。当电池的温度在[0℃,45℃]范围内时,继续进行充电。
在另一实施例中,开始时设定充电温度门限为[0℃,45℃]对电池进行充电,该[0℃,45℃]对应的公式(1)和公式(2)中的a%为70%,b%为30%,0℃应的电池为Rntc1,45℃对应的电池为Rntc2,则计算得到电阻阵列的阻值为R1和R2。此时,第一单刀双掷开关S1向第二不动端闭合,第一单刀双掷开关S1向第一不动端闭合,同时第一开关K1和第二开关K2闭合。在充电的过程中,检测到电池的温度达到高温45℃时,切换至充电温度门限为[-10℃,60℃]按照JEITA标准降低充电电压电流对电池进 行充电。而不需要电池温度比较高并且电池电量低时,需要等到电池温度降下来再充电,提高了充电的效率。[-10℃,60℃]对应的公式(1)和公式(2)中的a%为80%,b%为20%,-10℃应的电池为Rntc3,60℃对应的电池为Rntc4,则计算得到电阻阵列的阻值为R3和R4。此时,第一单刀双掷开关S1向第一不动端闭合,第一单刀双掷开关S1向第二不动端闭合,同时断开第一开关K1和第二开关K2,而关闭第三开关K3和第四开关K4。在充电的过程中,当检测到电池的温度达到高温60℃时,输出HOT中断信号给主控模块10,触发截止充电;或者检测到电池的温度达到低温-10℃时,输出COLD中断信号给主控模块10,触发截止充电。当电池的温度在[-10℃,60℃]范围内时,继续进行充电,直至充电完成。
对应地,如图3所示,提出本发明一种电池充电方法第一实施例。该实施例的电池充电方法包括:
步骤S10、控制终端按照设定的第一充电温度门限对电池进行充电;
步骤S20、判断所述电池的温度是否达到所述第一充电温度门限的上限或下限;
步骤S30、若所述电池的温度达到所述第一充电温度门限的上限或下限,则控制所述终端切换至预置的第二充电温度门限对所述电池进行充电。
本实施例中,电池充电方法可应用于终端对电池进行充电,该终端的类型可根据实际需要进行设置,例如,终端可为手机、平板电脑等。在对电池进行充电时,首先终端的按照设定的第一充电温度门限对电池进行充电,该第一充电温度门限可设置为[0℃,45℃],将第一充电温度门限设置为[0℃,45℃]对电池进行充电,一方面从JEITA充电标准来看,[0℃,45℃]充电温度门限通过硬件中断来判断,更加准确高效。另一方面[0℃,45℃]充电温度门限内的温度通过硬件中断来检测,不需要软件ADC检测,节省电流。当然,第一充电温度门限也可根据具体情况而灵活设置。
终端在充电的过程中,判断电池的温度是否达到第一充电温度门限的上限或下限,若是,则触发第一充电温度门限的上限或下限的中断,按照 JEITA标准,降低恒压充电门限和充电电流,同时通过切换充电温度门限至第二充电温度门限继续对电池进行充电,该第二充电温度门限可设置为[-10℃,60℃]。终端关机情况下,充电温度门限设置为[-10℃,60℃]宽门限,这样的话,可以保证在电池高温且耗尽情况下,可以优先充电。当然,第二充电温度门限也客人根据具体情况而灵活设置。
本实施例中,上述步骤S30之后包括:判断所述电池的当前温度是否达到所述第二充电温度门限的上限或下限;若是,则截至充电,直至所述电池的当前温度在所述第二充电温度门限的范围内时,重新对所述电池进行充电;若否,则维持当前的充电状态,直至所述电池完成充电。
具体地,如图2中,在一实施例中,设定充电温度门限为[0℃,45℃]对电池进行充电,该[0℃,45℃]对应的公式(1)和公式(2)中的a%为70%,b%为30%,0℃对应的电池为Rntc1,45℃对应的电池为Rntc2,则计算得到电阻阵列的阻值为R1和R2。此时,第一单刀双掷开关S1向第二不动端闭合,第一单刀双掷开关S1向第一不动端闭合,同时第一开关K1和第二开关K2闭合。在充电的过程中,当检测到电池的温度达到低温0℃时,第一比较器U1输出COLD中断信号给主控模块10,或检测到电池的温度达到高温45℃时,第二比较器U2输出HOT中断信号给主控模块10,主控模块10接收到中断信号后,截止充电。当电池的温度在[0℃,45℃]范围内时,继续进行充电。
在另一实施例中,开始时设定充电温度门限为[0℃,45℃]对电池进行充电,该[0℃,45℃]对应的公式(1)和公式(2)中的a%为70%,b%为30%,0℃应的电池为Rntc1,45℃对应的电池为Rntc2,则计算得到电阻阵列的阻值为R1和R2。此时,第一单刀双掷开关S1向第二不动端闭合,第一单刀双掷开关S1向第一不动端闭合,同时第一开关K1和第二开关K2闭合。在充电的过程中,检测到电池的温度达到高温45℃时,切换至充电温度门限为[-10℃,60℃]按照JEITA标准降低充电电压电流对电池进行充电。而不需要电池温度比较高并且电池电量低时,需要等到电池温度降下来再充电,提高了充电的效率。[-10℃,60℃]对应的公式(1)和公 式(2)中的a%为80%,b%为20%,-10℃应的电池为Rntc3,60℃对应的电池为Rntc4,则计算得到电阻阵列的阻值为R3和R4。此时,第一单刀双掷开关S1向第一不动端闭合,第一单刀双掷开关S1向第二不动端闭合,同时断开第一开关K1和第二开关K2,而关闭第三开关K3和第四开关K4。在充电的过程中,当检测到电池的温度达到高温60℃时,输出HOT中断信号给主控模块10,触发截止充电;或者检测到电池的温度达到低温-10℃时,输出COLD中断信号给主控模块10,触发截止充电。当电池的温度在[-10℃,60℃]范围内时,继续进行充电,直至充电完成。
以下进行举例说明,在一实施例中,当在某种场景下要求终端表面温度不能超过45℃时,若此时对应的电池温度为35℃,针对该场景就可以设置充电时35℃截止充电,并通过硬件来控制充电,使得终端的充电效率更高,控制更准确。
在另一实施中,当终端为可穿戴设备时,可穿戴设备对温升要求比较高,所以充电采用充电温度门限为[0℃,45℃],这样可以很好地控制可穿戴设备的充电温升,提高用户体验。但在生产测试场合中,尤其是可靠性测试中,需要持续测试比较长的时间,所以需要带充电器测试。但由于可穿戴设备体积小,温升快,[0℃,45℃]门限非常容易达到,所以在生产测试时,就需要切换到[-10℃,60℃]较宽的充电温度门限。可穿戴设备出厂时,切换到[0℃,45℃]的充电温度门限,方便用户使用该充电温度门限对可穿戴设备进行充电。
在又一实施例中,以终端为手机为例,手机默认的充电温度门限为[0℃,45℃],当用户使用手机打电话直到电池电量耗尽,并且电池的温度超过45℃,此时用户使用充电器对电池进程充电,会出现无法充电也没法开机的情况,用户遇到这种现象时可能会认为是手机出现故障。针对此现象,本实施例中,在手机关机的情况下,可将充电温度门限切换到[-10℃,60℃]对电池进行充电,保证电池高温时可以充电,提高了电池的充电效率,提升了用户体验。
本实施例终端在按照设定的第一充电温度门限对电池进行充电的过 程中,若电池的温度达到第一充电温度门限的上限或下限,则控制终端切换至预置的第二充电温度门限对电池进行充电。相对于需要等待电池的温度恢复至指定的充电温度门限内时方可进行充电,提高了电池的充电效率。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,控制终端按照设定的第一充电温度门限对电池进行充电;
S2,判断电池的温度是否达到第一充电温度门限的上限或下限;
S3,若电池的温度达到第一充电温度门限的上限或下限,则控制终端切换至预置的第二充电温度门限对电池进行充电。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
在本发明实施例中,电池充电装置包括电阻阵列模块、电阻阵列控制模块、检测模块及主控模块,其中,电阻阵列模块分别与电阻阵列控制模块及检测模块连接,主控模块分别与检测模块及电阻阵列控制模块连接。当电池按照设定的第一充电温度门限进行充电时,主控模块根据第一充电温度门限确定目标电阻阵列后,控制电阻阵列控制模块接通电阻阵列模块中的目标电阻阵列,并接收检测模块将其内部的分压值与目标电阻阵列的分压值进行比较而得到的比较结果,根据比较结果判断电池的温度是否达到第一充电温度门限的上限或下限,若是,则控制电阻阵列控制模块切换 为接通电阻阵列模块中预置的第二充电温度门限对应的电阻阵列。实现了根据电池的温度,动态控制充电温度门限有效地进行充电,提高了电池充电的效率。

Claims (9)

  1. 一种电池充电装置,所述电池充电装置包括电阻阵列模块、电阻阵列控制模块、检测模块及主控模块,所述电阻阵列模块分别与所述电阻阵列控制模块及所述检测模块连接,所述主控模块分别与所述检测模块及所述电阻阵列控制模块连接;
    当电池按照设定的第一充电温度门限进行充电时,所述主控模块根据所述第一充电温度门限确定目标电阻阵列后,控制所述电阻阵列控制模块接通所述电阻阵列模块中的所述目标电阻阵列,并接收所述检测模块将其内部的分压值与所述目标电阻阵列的分压值进行比较而得到的比较结果,根据所述比较结果判断所述电池的温度是否达到所述第一充电温度门限的上限或下限,若是,则控制所述电阻阵列控制模块切换为接通所述电阻阵列模块中预置的第二充电温度门限对应的电阻阵列。
  2. 如权利要求1所述的电池充电装置,其中,所述电阻阵列模块包括多组电阻阵列,每组电阻阵列包括两个电阻。
  3. 如权利要求2所述的电池充电装置,其中,所述电阻阵列控制模块包括多组开关阵列,每组开关阵列包括两个开关。
  4. 如权利要求3所述的电池充电装置,其中,当所述电阻阵列模块包括第一电阻阵列和第二电阻阵列时,所述第一电阻阵列包括第一电阻和第二电阻,所述第二电阻阵列包括第三电阻和第四电阻;
    所述电阻阵列控制模块包括第一开关阵列和第二开关阵列时,所述第一开关阵列包括第一开关和第二开关,所述第二开关阵列包括第三开关和第四开关;
    所述第一电阻的一端依次与所述第一开关、所述第二电阻及所述第二开关串联,形成第一串联电路;所述第三电阻的一端依次与所述第三开关、所述第四电阻及所述第四开关串联,形成第二串联电路;所述第一串联电路与所述第二串联电路并联;
    所述第一电阻的另一端及所述第三电阻的另一端均与所述电池连接;所述第一开关与所述第二电阻之间连接至所述检测模块,所述第三开关与所述第四电阻之间连接至所述检测模块;
    所述电阻阵列模块还包括热敏电阻,所述第二开关和所述第四开关均通过所述热敏电阻接地。
  5. 如权利要求1所述的电池充电装置,其中,所述检测模块包括多个比较器。
  6. 如权利要求5所述的电池充电装置,其中,当所述检测模块包括第一比较器和第二比较器时,所述检测模块还包括第一单刀双掷开关、第二单刀双掷开关、第五电阻、第六电阻、第七电阻、第八电阻和第九电阻;
    所述第一比较器的同相输入端与所述第二比较器的反相输入端连接,所述第一比较器的反相输入端与所述第一单刀双掷开关的动端连接,所述第一单刀双掷开关的第一不动端与第二不动端之间串联有第六电阻,所述第一单刀双掷开关的第一不动端通过所述第五电阻与所述电池连接;
    所述第二比较器的同相输入端与所述第二单刀双掷开关的动端连接,所述第二单刀双掷开关的第一不动端通过所述第七电阻与所述第一单刀双掷开关的第二不动端连接,所述第二单刀双掷开关的第一不动端与第二不动端之间串联有第八电阻,所述第二单刀双掷开关的第二不动端通过所述第九电阻接地。
  7. 一种终端,所述终端包括如权利要求1-6中任一项所述的电池充电装置。
  8. 一种电池充电方法,所述电池充电方法包括以下步骤:
    控制终端按照设定的第一充电温度门限对电池进行充电;
    判断所述电池的温度是否达到所述第一充电温度门限的上限或下限;
    若所述电池的温度达到所述第一充电温度门限的上限或下限,则控制所述终端切换至预置的第二充电温度门限对所述电池进行充电。
  9. 如权利要求8所述的电池充电方法,其中,所述控制所述终端切换至预置的第二充电温度门限对所述电池进行充电之后包括:
    判断所述电池的当前温度是否达到所述第二充电温度门限的上限或下限;
    若是,则截至充电,直至所述电池的当前温度在所述第二充电温度门限的范围内时,重新对所述电池进行充电;
    若否,则维持当前的充电状态,直至所述电池完成充电。
PCT/CN2016/108589 2016-07-18 2016-12-05 电池充电装置、方法及终端 WO2018014486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610565618.1A CN107634551A (zh) 2016-07-18 2016-07-18 电池充电装置、方法及终端
CN201610565618.1 2016-07-18

Publications (1)

Publication Number Publication Date
WO2018014486A1 true WO2018014486A1 (zh) 2018-01-25

Family

ID=60991866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108589 WO2018014486A1 (zh) 2016-07-18 2016-12-05 电池充电装置、方法及终端

Country Status (2)

Country Link
CN (1) CN107634551A (zh)
WO (1) WO2018014486A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112998744A (zh) * 2021-03-16 2021-06-22 广州医科大学附属第一医院(广州呼吸中心) 一种可判读听诊器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613331B (zh) * 2018-12-19 2020-11-24 广东电网有限责任公司 一种基于双负载阵列的交流电充电桩检测负载及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630762A (zh) * 2008-07-14 2010-01-20 宏碁股份有限公司 电池充电方法及其装置
US20110215769A1 (en) * 2010-03-08 2011-09-08 Hon Hai Precision Industry Co., Ltd. Battery charging system and method
CN102195299A (zh) * 2010-03-10 2011-09-21 鸿富锦精密工业(深圳)有限公司 电池充电系统及方法
CN103124097A (zh) * 2013-03-27 2013-05-29 南通林诺电子科技有限公司 智能型锂离子充电器
CN103986215A (zh) * 2014-05-30 2014-08-13 深圳市中兴移动通信有限公司 移动终端及其充电电流调整方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914764B2 (en) * 2002-07-11 2005-07-05 International Business Machines Corporation On-chip thermal sensing circuit
CN104143813B (zh) * 2014-07-25 2017-06-06 Tcl通讯(宁波)有限公司 一种移动终端的温度控制方法及系统
CN104935030A (zh) * 2015-05-08 2015-09-23 小米科技有限责任公司 充电电路、电子设备和充电方法
CN105044608B (zh) * 2015-06-30 2019-08-30 努比亚技术有限公司 电池状态监控方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630762A (zh) * 2008-07-14 2010-01-20 宏碁股份有限公司 电池充电方法及其装置
US20110215769A1 (en) * 2010-03-08 2011-09-08 Hon Hai Precision Industry Co., Ltd. Battery charging system and method
CN102195299A (zh) * 2010-03-10 2011-09-21 鸿富锦精密工业(深圳)有限公司 电池充电系统及方法
CN103124097A (zh) * 2013-03-27 2013-05-29 南通林诺电子科技有限公司 智能型锂离子充电器
CN103986215A (zh) * 2014-05-30 2014-08-13 深圳市中兴移动通信有限公司 移动终端及其充电电流调整方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112998744A (zh) * 2021-03-16 2021-06-22 广州医科大学附属第一医院(广州呼吸中心) 一种可判读听诊器
CN112998744B (zh) * 2021-03-16 2023-03-10 广州医科大学附属第一医院(广州呼吸中心) 一种可判读听诊器

Also Published As

Publication number Publication date
CN107634551A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
US9906061B2 (en) Quick charging mobile terminal, method and system
ES2745043T3 (es) Método de control de carga, dispositivo de control de carga y terminal
US9929573B2 (en) Modules, systems, and methods for battery balancing
WO2020239114A1 (zh) 充电方法及装置、充电系统、电子设备、存储介质
EP2381557B1 (en) Battery charging method and device
US8538494B2 (en) Mobile phone and method for transferring battery power of the mobile phone
US20160099608A1 (en) Power adapter with built-in battery and power storage and supply method thereof
WO2018072209A1 (zh) 充电方法及电子设备
WO2021068121A1 (zh) 电池检测方法、电池、电子设备和存储介质
US10298033B2 (en) Information processing method, smart battery, terminal and computer storage medium
WO2020133681A1 (zh) 动力电池包的加热控制方法、控制系统及汽车
JP2011259693A (ja) 電池充電保護回路
US20180159342A1 (en) Electronic device and method for controlling battery of the electronic device to charge and discharge
US10965139B2 (en) Charger circuit and intelligent charging control method thereof
US20130076519A1 (en) Apparatus and method for controlling charging and discharging of batteries
WO2018014486A1 (zh) 电池充电装置、方法及终端
TW201338324A (zh) 電池充電保護電路
CN103197258B (zh) 一种电池类型检测方法及移动终端
CN207199982U (zh) 一种数据线
CN102984326A (zh) 一种移动终端及其电池检测方法
JP2014117081A (ja) 充電制御装置および充電制御方法
CN104917245A (zh) 充电管理电路、移动终端以及移动终端的充电控制方法
CN109450016B (zh) 放电方法、移动电源及计算机存储介质
JP3197575U (ja) スイッチバック充電システム
US20140019790A1 (en) Monitoring a battery in an electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909413

Country of ref document: EP

Kind code of ref document: A1